
Multi-Target Attacks on the Picnic Signature
Scheme and Related Protocols

Itai Dinur1 and Niv Nadler2

1 Department of Computer Science, Ben-Gurion University, Israel
2 Independent

Abstract. Picnic is a signature scheme that was presented at ACM CCS
2017 by Chase et al. and submitted to NIST’s post-quantum standard-
ization project. Among all submissions to NIST’s project, Picnic is one
of the most innovative, making use of recent progress in construction of
practically efficient zero-knowledge (ZK) protocols for general circuits.
In this paper, we devise multi-target attacks on Picnic and its underlying
ZK protocol, ZKB++. Given access to S signatures, produced by a single
or by several users, our attack can (information theoretically) recover the
κ-bit signing key of a user in complexity of about 2κ−7/S. This is faster
than Picnic’s claimed 2κ security against classical (non-quantum) attacks
by a factor of 27 ·S (as each signature contains about 27 potential attack
targets).
Whereas in most multi-target attacks, the attacker can easily sort and
match the available targets, this is not the case in our attack on Picnic, as
different bits of information are available for each target. Consequently,
it is challenging to reach the information theoretic complexity in a com-
putational model, and we had to perform cryptanalytic optimizations by
carefully analyzing ZKB++ and its underlying circuit. Our best attack
for κ = 128 has time complexity of T = 277 for S = 264. Alternatively, we
can reach the information theoretic complexity of T = 264 for S = 257,
given that all signatures are produced with the same signing key.
Our attack exploits a weakness in the way that the Picnic signing algo-
rithm uses a pseudo-random generator. The attack is mitigated in the
recent Picnic 2.0 version.
In addition to our attack on Picnic, we show that a recently proposed im-
provement of the ZKB++ protocol (due to Katz, Kolesnikov and Wang)
is vulnerable to a similar multi-target attack.

Keywords: Cryptanalysis, multi-target attack, Picnic, signature scheme,
zero-knowledge protocol, ZKB++, MPC, block cipher, LowMC.

1 Introduction

Multi-target attacks are among the most basic attacks against cryptosystems
that are built using symmetric-key primitives. In a typical example, the attacker
first obtains G possible targets, which correspond to outputs of the cryptosystem,
evaluated with different secret keys (or secret inputs, in general). Then, the

attacker guesses a key, evaluates the cryptosystem, and compares the result
with all targets. Based on a standard birthday paradox argument, the expected
workload of the attacker for hitting one of the targets is reduced by a factor of
(at least1) G, compared to the workload of hitting a single target.2

In our multi-target attack model, we deal with a cryptosystem with U users,
each with a long-term key. For each user i ∈ [1, U], the attacker obtains Di data

points created by this user and we denote D =
∑U
i=1Di. Each data point may

be additionally associated with a short-term key. The goal of the attacker is to
recover one of the keys for the cryptosystem (either a short or a long-term key).
For example, in a signature scheme, each user has a long-term signing key, a data
point may be a signature and a short-term key is (secret) randomness used in
creating the signature. We note that in many cases the recovery of a short-term
key allows recovering the corresponding user’s long-term key, but this possibility
is not directly captured by our simple model.

We distinguish between three types of multi-target attacks according to the
number of targets G they present to an attacker.3

1. Multi-user single-target attack : G is determined by the number of users U ,
i.e., G = U . Typically, this occurs if the long-term user keys are vulnerable
to a multi-target attack.

2. Single-user multi-target attack : G is determined separately for each user as
Gi = Di. Hence, the best attack uses G = argmaxi{Di}. In this case, the
short-term keys of each user are vulnerable to a multi-target attack.

3. Multi-user multi-target attack (or generic multi-target attack): G is deter-
mined by the total number of available data points D, i.e., G = D. Here, all
short-term keys are vulnerable to a multi-target attack. In principle, this is
the most powerful type of multi-target attack, as all data points can simul-
taneously be used by the attacker as targets.

A standard way to mitigate multi-target attacks is to add a public random
input to the cryptosystem (i.e., a salt), thus creating a different tweaked variant
of it per salt. Since one has to choose a particular salt in order to evaluate the
cryptosystem with a secret key, salting forces the attacker to focus on only one
target per secret key guess.

In this paper, we are mainly interested in public key cryptosystems that are
based on symmetric-key primitives. These cryptosystems have received signif-
icant attention recently due to their alleged post-quantum security. The most
well-known category within this class consists of hash-based signatures, which
originate from Lamport’s one-time signatures [14]. In recent years, these sig-
natures have been subject to many optimizations and improvements until the
recent development of practical stateless hash-based signatures [3]. As all cryp-
tosystems built with symmetric-key primitives, hash-based signature are poten-

1 If the keys are not generated uniformly, the workload of the attack could be lower.
2 Throughout this paper, we focus on attacks run on classical computers, but our

analysis can be extended to deal with attacks on quantum computers.
3 Our model is related to the one of [11], but our classification is at a higher level.

2

tially vulnerable to multi-target attacks and substantial effort has been put into
their efficient mitigation (cf. [11]).

Another public key cryptosystem that is based on symmetric-key components
is the Picnic signature scheme. It was presented at ACM CCS 2017 [6] by Chase
et al. and submitted [5] to NIST’s post-quantum standardization project [19].4

Picnic’s design is solely based on symmetric-key primitives, yet is completely
different from the design of hash-based signatures. Our main goal in this paper
is to investigate the resistance of Picnic against multi-target attacks. As we
demonstrate, this requires dedicated analysis due to Picnic’s novel design. We
note that our description of Picnic and its analysis applies to Picnic 1.0 and not
to the recent Picnic 2.0 version [5].

Picnic The Picnic signature scheme uses the ZKB++ zero-knowledge (ZK)
protocol (that improves upon the original ZKBoo protocol [10] in terms of effi-
ciency), which allows to non-interactively prove knowledge of a preimage x to a
public value y under a one-way function f . In Picnic, y is part of the public key,
whereas x is the secret signing key. In order to sign a message, the signer uses
ZKB++ to prove knowledge of x, where the message is embedded in the signing
process to generate (pseudo) random bits.

The ZKB++ protocol employs the “MPC-in-the-head” paradigm due to Ishai
et al. [12]. In order to prove knowledge of x, the prover (signer), simulates a multi-
party computation (MPC) protocol between several players (whose number is 3
in ZKB++) that receive shares of x and compute f(x) = y. The prover then
commits to the different internal states (views) of each of the players, and the
verifier challenges the prover by asking to open the commitments of a subset of
the players, revealing their views.

The correctness of the MPC protocol guarantees that if the prover does not
know x and tries to cheat, then the joint views of some of the players are incon-
sistent. Hence, the verifier can catch a cheating prover with some probability,
which is amplified by repeating the process. The privacy guarantee of the MPC
protocol ensures that opening the views of a (sufficiently small) subset of play-
ers does not reveal any information about x, hence the secret signing key is not
leaked. The proof is made non-interactive using the Fiat-Shamir transform [9].
More specifically, the prover computes the challenge by hashing the commit-
ments, where in Picnic, the message to be signed is hashed as well (making the
signature depend on the message).

A Picnic signature thus comprises of partial transcripts of several indepen-
dent runs of the MPC protocol, where for each run, the views of two out of three
participating (virtual) players are opened. As noted above, a view contains the

4 The ACM CCS 2017 paper [6] introduced two signature scheme variants: Fish (which
uses the Fiat-Shamir transform [9]), with claimed security against classical com-
puter attacks, and Picnic (which uses Unruh’s transform [21]), with claimed security
against quantum computer attacks. In the NIST submission [5], these variants were
renamed to Picnic-FS and Picnic-UR, respectively. Our analysis applies to both
variants, but we focus on Picnic-FS for simplicity.

3

player’s internal states computed during the MPC protocol. The signature also
includes the player’s sampled random bits, so that the view’s consistency can be
checked by a verifier of the signature. However, having the signature include all
the random bits sampled by the “opened players” blows up its size. Hence, Pic-
nic uses a standard optimization, where each player only samples a short seed of
size κ bits (where κ is the security level against classical attacks), and produces
the random bits required by the protocol using a deterministic pseudo-random
generator (PRG), initialized with the seed. Thus, the short seeds of the opened
players are included in the signature for each run and the verifier uses them
to compute the required pseudo-random bits. Obviously, the random seed (and
view) of the remaining “unopened player” in each run must not be included in
the signature, as it may expose the secret key x.

Multi-Target Attacks on Picnic Our main result is a multi-target attack
on Picnic. The first step of the attack involves collecting signatures (produced
by one or several users) containing (partial) transcripts of various runs of the
MPC protocol. Then, by independently guessing a value of the κ-bit seed and
evaluating the PRG, the attacker can match and detect that the seed is used by
the unopened player in a particular run. Once the seed of the unopened player
in a run is revealed, the secret signing key of the corresponding user can be
computed easily. Thus, given a total of D runs, the attacker needs to test an
average of 2κ/D seeds until a match with a run is detected. The attack is thus a
generic multi-target attack (i.e., a multi-user multi-target attack) and it violates
Picnic’s claims of κ-bit security (against attacks by classical computers).

A crucial detail missing from the attack’s outline above is how to detect a
match between a guessed seed and the seed used by an unopened player in an
available run. In fact, this may seem impossible, as the privacy of the MPC pro-
tocol should presumably prevent the pseudo-random bits used by the unopened
player from leaking. This issue is related to a subtlety about MPC protocols:
their privacy guarantees apply to the input of each player and not (necessarily)
to the (pseudo) random bits that each player uses. In other words, MPC pro-
tocols are allowed to (and mostly do) expose some (pseudo) random bits used
by each player and still remain private, i.e., protect the players’ inputs. On the
other hand, it is generally important that not all of a player’s randomness is ex-
posed, as this leaks the player’s input. In the context of Picnic, in each run, some
output bits of the PRG used by the unopened player can be easily computed by
the attacker, which makes it possible to detect that the unopened player uses a
certain seed once it is correctly guessed (and then compute the secret key).

We note that the Picnic designers attempted to protect it against multi-target
attacks. For example, the public key of each owner i defines a different one-
way function fi,

5 rather than having all owners prove knowledge of a preimage
under the same function f . Indeed, a global choice of f allows the attacker to

5 Internally, Picnic uses a block cipher encryption fi(x) = Encx(p(i)), where a different
plaintext p = p(i) is used for each public key owner (defining a different encryption
function).

4

mount a multi-user single-target attack by computing a preimage to one out of
many images available in the different public keys. Yet, Picnic was not protected
against our generic (and more powerful) multi-user multi-target attack against
the seeds, presumably because it is not obvious that such an attack is possible
(as previously mentioned). Internally, the security proof of Picnic (published in
its design document [5]) simply does not consider attacker queries with arbitrary
seed values to the PRG and hence does not cover our attack.

Randomness Extraction According to the birthday paradox, the expected
complexity of our attack is T = 2κ/D (for D ≤ 2κ/2). However, this information
theoretic analysis assumes that the attacker wins once the PRG is evaluated
with a seed that is used by the unopened player in one of the available runs (as
enough information is available to recover the key). In practice, achieving the
information theoretic complexity is challenging, since the PRG output bits of
the unopened player that can be computed in each run, vary according to the
run. Therefore, a standard matching algorithm which sorts the runs according
to the available PRG output bits does not work, while its naive extension has
very high complexity (e.g., at least 2102 for κ = 128). Consequently, we carefully
analyze Picnic (and its underlying block cipher LowMC that implements f [1])
in order to extract the maximal amount of PRG output data from each run. We
then utilize this data by devising a dedicated attack algorithm that that recovers
the signing key and outperforms the naive algorithm by a factor of up to 225 for
κ = 128 and by more than 230 for larger κ values.

These techniques we use for extracting the maximal amount of PRG output
data mainly involve exploiting dependencies among private values computed by
a player and masked with PRG output bits. As a simple example, assume that
a player outputs 3 bits z1, z2, z3 such that z1 = v1 · v2 ⊕ r1, z2 = v2 · v3 ⊕ r2
and z3 = v1 · v3 ⊕ r3 where v1, v2, v3 are internal private bit values and r1, r2, r3
are PRG output bits. Observe that the triplet v1 · v2, v2 · v3, v1 · v3 can only
attain 5 values (as the values 011, 101, 110 as impossible). Hence, given z1, z2, z3,
the triplet of bits r1, r2, r3 can only attain 5 out of 8 possible values, revealing
information about them.

Although our techniques are tailored to the Picnic circuit, they can be easily
adapted and applied to other MPC protocols in order to extract information
about the random bits that are used by the players. Such extraction techniques
may be relevant to attackers is scenarios that extend beyond multi-target attacks.
For example, the attacker’s ability to exploit a weak PRG in a cryptographic
protocol (e.g., by predicting its output) may depend on the number of PRG
output bits available. This was demonstrated in [7] by Checkoway et al.6 which
investigated the exploitability of the Dual EC weak PRG in TLS implementa-
tions. Additionally, in case protocol implementations generate seeds with low
entropy, extraction techniques may allow an attacker to efficiently detect that
two protocol executions use the same seed and to violate their security. To the

6 We thank an anonymous reviewer for pointing out the link between [7] and our
paper.

5

best of our knowledge, this is the first paper that investigates such randomness
extraction techniques for MPC protocols.

Concrete Complexity of the Main Attack In terms of concrete com-
plexity, we are interested in attacks that utilize at most 264 signatures. This
is the limit set in NIST’s Call for Proposals document [19] on the number
of signatures produced per signing key.7 For Picnic, each signature contains
R ∈ {219, 324, 438} runs depending on the desired security level against clas-
sical attacks, κ ∈ {128, 192, 256}, respectively. The complexities of our main
attack for each desired security level are summarized below.

– For κ = 128, we can reach the information theoretic complexity of T = 2κ/D
up to D = 242 (using about 235 signatures), and obtain T ≈ 2128−42 = 286.
When 264 signatures are available, we can recover a secret signing key with
complexity of about 277.

– For κ = 192, we achieve the information theoretic complexity T = 2κ/D for
almost all D ≤ 324 · 264 ≈ 272. The best complexity is T = 2124, obtained
for D = 272.

– For κ = 256, we achieve the information theoretic complexity T = 2κ/D for
all D ≤ 438 · 264.

Seed Collision Attack Interestingly, for κ = 128, we can reach the informa-
tion theoretic complexity for the specific case of D = 264 (i.e. utilizing about
257 signatures) using another attack, given that all the available signatures are
produced with the same signing key.8 While the attack resembles a single-user
multi-target attack, it is not a classical multi-target attack in the sense that the
attacker does not guess any key material (such as PRG seeds). Instead, the at-
tacker waits for a specific seed collision event (in which two different runs use the
same PRG seed for the unopened player) to occur on the observed data. Once
the event is detected, the user’s signing key can be efficiently recovered using
the known PRG output bits of the unopened player in both runs. The attack
can be extended (with a limited range of parameters) to recover the signing key
of one out of many users, e.g., if the attacker collects 264 signatures (D ≈ 271),
produced with up to 214 private keys.

Multi-Target Attacks on Additional Cryptosystems Our multi-target at-
tack is, in fact, an attack on the ZKB++ protocol, as well as the previous ZKBoo
protocol. Therefore, the attack also carries over to additional cryptosystems that
were built using these protocols. This includes the ring-signature and additional
constructions of [4, 8], whose implementations are based in ZKB++.

7 As the attacker may acquire signatures produced with various signing keys, our
model is somewhat more restrictive than NIST’s.

8 The attack can also be applied to κ ∈ {192, 256}, but it requires significantly more
than 264 signatures.

6

We further analyze in this paper a recently proposed protocol due to Katz,
Kolesnikov and Wang [13] (KKW), which was presented at ACM CCS 2018.
The KKW protocol describes a new way to instantiate the MPC-in-the-head
approach, yielding shorter proofs compared to ZKB++. Interestingly, the KKW
protocol is vulnerable to a multi-target attack which is similar to our main attack
on Picnic (and ZKB++).

In the penultimate section of the paper, we describe multi-target attacks on
additional cryptosystems, which are made possible due to several design opti-
mizations (mostly for MPC protocols). Unlike the case of Picnic, these multi-
target attacks are standard and their descriptions only requires a very high-level
understanding of the cryptosystems. Yet, the aim of this section is to show that
some common optimizations do not come without a cost, which needs to be
considered in cryptosystems that are designed for practical use.

Picnic 2.0 We notified the Picnic designers about the attack and they confirmed
our findings. The weakness is addressed in the Picnic 2.0 version [5] by appending
an additional salt to each signature. The salt is carefully used in generating the
pseudo-random bits of each player in each run, such that multi-target attacks
are mitigated. We further note that Picnic 2.0 added additional instances that
use the KKW protocol, while in this paper we describe and analyze Picnic 1.0
which only uses ZKB++.

Paper Organization The rest of this paper is organized as follows. In Sec-
tion 2 we describe Picnic and its building blocks, while in Section 3 we partially
summarize the KKW protocol. Next, in Section 4, we outline the main steps of
our multi-target attacks on Picnic and the KKW protocol. In Section 5, we elab-
orate on our main multi-target attack on Picnic, while our seed collision attack
is described in Section 6. Finally, we describe multi-target attacks on additional
cryptosystems in Section 7 and conclude in Section 8.

2 ZKBoo, ZKB++ and Picnic

ZKBoo is a ZK protocol described in [10]. An optimized variant of ZKBoo (called
ZKB++) was later described in [6], which used it to construct the Picnic signa-
ture scheme. In this section, we give a brief overview of these constructions.

2.1 Overview of ZKBoo

The goal ZKBoo is to prove knowledge of a witness for a relationRe := {(x, y), f(x) =
y}, where y is public and x is kept private. For example, given a 256-bit string y,
we aim to prove knowledge of a preimage of y under SHA-256, namely, a string
x such that y = SHA-256(x).

ZKBoo employs the MPC-in-the-head paradigm of Ishai et al. [12], that we
now outline very briefly. It uses some MPC protocol that implements f on input

7

shares of the secret witness x. The prover simulates the MPC protocol “in the
head” and commits to the state and transcripts of all players. The verifier then
“corrupts” a random subset of the simulated players by requesting to see their
complete states. The verifier checks that the computation was done correctly
from the perspective of the corrupted players, obtaining some assurance that
the output is correct and the prover knows x. Iterating this procedure many
times gives the verifier high assurance.

ZKBoo improves upon the practical efficiency of the MPC-in-the-head ap-
proach by replacing the MPC with a circuit decomposition, which does not nec-
essarily need to satisfy classical MPC protocol properties. The circuit decompo-
sitions in ZKBoo involves 3 players. Given a circuit φ that computes f , it defines
the following functions.

– Share: splits the input x into 3 shares.
– Outputi∈{1,2,3}: takes as input all of the input shares and some randomness

and produces an output share for each of the players.
– Reconstruct: takes as input the three output shares and reconstructs the

circuit’s final output.

The circuit decomposition should satisfy the correctness property which means
that its execution on input x must yield f(x). It must further satisfy the 2-
privacy property which requires that revealing the views (i.e., the values of the
intermediate computation states) of any two players does not leak information
about the witness x.

Given a circuit decomposition for φ, the ZKBoo protocol is a Σ-protocol for
languages of the form L := {y | ∃x : y = φ(x)}. As outlined below, it gives a non-
interactive ZK proof of knowledge system for the relation using the Fiat-Shamir
transform [9].

The computation φ(x) using the decomposition is a randomized algorithm
called a run. As indicated above, in each run, each player Pi∈{1,2,3} uses some
(pseudo) random bits, generated by random seeds k1, k2, k3, respectively. For a
parameter R that determines the total number of runs, a proof is constructed
as below.

1. For each run i ∈ [1, R]:

(a) Sample k
(i)
1 , k

(i)
2 , k

(i)
3 and compute run i using the circuit decompo-

sition outlined above.
(b) For each player P

(i)
1 , P

(i)
2 , P

(i)
3 , compute a commitment to its view

during the run. The commitment for each player is computed by ap-
plying a hash function (modeled as a random oracle) to the player’s
view and additional randomness.

2. Using the Fiat-Shamir transform, send the 3R commitments and output
shares of each player in all runs to a random oracle (implemented as a
hash function).

8

3. Interpret the output of the random oracle as a challenge {e(i)}Ri=1. For
each run i ∈ [1, R], the challenge element e(i) ∈ {1, 2, 3} specifies to

open the views of the two players P
(i)

e(i)
, P

(i)

e(i)+1
(where 3 + 1 = 1).

4. The proof contains for each run i ∈ [1, R]:
– The commitments and output shares of all 3 players.
– The two views and commitment openings (i.e., additional random-

ness) of the players P
(i)

e(i)
, P

(i)

e(i)+1
, indicated by the challenge.

– The values k
(i)

e(i)
, k

(i)

e(i)+1
. Namely, the random seeds used by the two

players whose views are opened.

Due to the 2-privacy property, opening two views for each run does not leak
information about the witness. The number of runs, R, is chosen to achieve
negligible soundness error, i.e., it should be infeasible for the prover to cheat
without getting caught in at least one of the runs. More specifically, in order to
achieve soundness error of 2−κ , we set R = dκ(log2 3− 1)−1e.

The verifier checks that: (1) for each run, the output shares of the three views
reconstruct to y, (2) for each run, each of the two open views was computed
correctly and their commitment openings are valid, and (3) the challenge was
computed correctly,

In the following, we describe Step 1.(a) in the above ZKBoo protocol in more
detail.

2.2 (2, 3)-Function Decomposition

ZKBoo uses the following circuit decomposition.

Definition 1. Let f be a function that is computed by an N -gate circuit φ
such that f(x) = φ(x) = y, and let κ be the security parameter. Let k1, k2, k3
be seeds chosen uniformly at random from {0, 1}κ, corresponding to players
P1, P2, P3, respectively. A (2, 3)-decomposition of φ is a tuple of algorithms D =
(Share,Update,Output,Reconstruct):

– (view
(0)
1 , view

(0)
2 , view

(0)
3)← Share(x, k1, k2, k3)

On input of the secret value x and random seeds, outputs the initial views
for each player containing the secret share xi of x.

– view
(j+1)
i ← Update(view

(j)
i , view

(j)
i+1, ki, ki+1)

On input of the views view
(j)
i , view

(j)
i+1 and random seeds ki, ki+1, computes

wire values for the next gate and returns the updated view view
(j+1)
i .

– yi ← Output(view
(N)
i)

On input of the final view view
(N)
i , returns the output share yi.

– y ← Reconstruct(y1, y2, y3)
On input of output shares yi, reconstructs and returns y.

In order to compute a run for the computation φ(x) using the decomposition
D defined above, the prover executes the steps detailed below.

9

1. Choose the seeds k1, k2, k3 uniformly at random from {0, 1}κ.

2. (view
(0)
1 , view

(0)
2 , view

(0)
3)← Share(x, k1, k2, k3)

3. For each of the three views, call the Update function successively for
every gate in the circuit:

view
(j+1)
i ← Update(view

(j)
i , view

(j)
i+1, ki, ki+1),

for i ∈ {1, 2, 3}, j ∈ [1, N].
4. From the final views, compute the output share of each view:

yi ← Output(view
(N)
i),

for i ∈ {1, 2, 3}.
5. y ← Reconstruct(y1, y2, y3)

The correctness property requires that the output y above satisfies y = φ(x). The
2-privacy property requires that revealing the views of any two players reveals
nothing about x.

2.3 The ZKBoo (2, 3)-Function Decomposition

The ZKBoo protocol works over some finite ring R. Let f : Rm → R` be a func-
tion and φ an arithmetic circuit realizing f with N gates that include addition by
constant, multiplication by constant, binary addition and binary multiplication
gates. The (2, 3)-decomposition of φ in ZKBoo is a linear decomposition: denote
by wk the value of the k’th wire of φ. Then, each party Pi has a corresponding

wire value w
(i)
k . The linear decomposition maintains the invariant that for all

wires, wk = w
(1)
k + w

(2)
k + w

(3)
k . In detail, the (2, 3)-decomposition is defined

using the following tuple of algorithms:

– Share(x, k1, k2, k3): Samples uniform x1, x2 ∈ Rm and computes x3 such that
x1 + x2 + x3 = x (or x3 = x− x1 − x2). Returns views containing x1, x2, x3.

– Update(view
(j)
i , view

(j)
i+1, ki, ki+1): Computes Pi’s view of the output wire of

gate gj and appends it to the view. For the k’th wire wk (where w
(i)
k denotes

Pi’s view for the wire), the update operation is defined as follows:

Addition by constant: (wb = wa + d): w
(i)
b = w

(i)
a + d if i = 1 and

w
(i)
b = w

(i)
a , otherwise.

Multiplication by constant: (wb = wa · d): w
(i)
b = w

(i)
a · d.

Binary addition: (wc = wa + wb): w
(i)
c = w

(i)
a + w

(i)
b .

Binary multiplication: (wc = wa · wb):

w(i)
c = (w(i)

a · w
(i)
b) + (w(i+1)

a · w(i)
b) + (w(i)

a · w
(i+1)
b) +Ri(c)−Ri+1(c),

where Ri(c) is the c’th output of a pseudorandom generator (PRG) seeded
with ki.

10

– Output(view
(N)
i): Returns the output wires of view, view

(N)
i .

– Reconstruct(y1, y2, y3): Returns y = y1 + y2 + y3.

It is easy to verify that the decomposition maintains the invariant wk = w
(1)
k +

w
(2)
k + w

(3)
k for all wires, which implies that it is correct. Note that Pi can

compute all gate types locally with the exception of binary multiplication gates
which require inputs from Pi+1.

Serializing the Views It is sufficient for the prover to include in the proof
only the wire values of the gates that require non-local computations (namely,
the binary multiplication gates). The verifier can recompute these omitted parts
of the view by local computations (i.e., they do not need to be serialized). In
ZKBoo, a serialized view includes: (1) the input share, (2) output wire values
for binary multiplication gates, and (3) the output share.

2.4 ZKB++

ZKB++ is an improved version of ZKBoo, obtained using several optimizations
which reduce the proof size to less than a half. In general, these optimizations
mainly show that some values included in the ZKBoo proof (as outlined above)
can be directly computed by the verifier and hence can be omitted in the proof
of ZKB++. In our context, most of these optimization are not very relevant as
the attacker (verifier) has access to all data included in the original ZKBoo proof
(since it is either directly included in the shorter ZKB++ proof, or can be easily
computed from it).

The only optimization that is directly exploited in our attack involves the
Share function: instead of uniformly sampling the input shares x1, x2, the Share
function of ZKB++ uses pseudo-random shares for the first 2 players, generated
by PRG invocations seeded with the corresponding player’s random seed (k1 or
k2). Since the random seeds of two players are revealed in the proof, the verifier
can compute some of the shares (the ones of the first two players whose seeds
are revealed) using the known seeds and they do not have to be included in the
proof.

2.5 The Picnic Signature Scheme

The Picnic signature scheme is based on the ZKB++ protocol, where the input
to the hash function that computes the challenge also includes the message m to
be signed (in addition to the 3R commitments and output shares of each player,
which are input to the hash function in ZKB++).9

In order to define the statement to be proved by the signer, Picnic uses a
block cipher, Enc. In the classical setting (on which we focus in this paper),
the block size of the block cipher and its key size in bits are both equal to the
security parameter κ.

9 In the NIST submission, the public key is hashed as well.

11

During key generation, the signer chooses a plaintext p and a key x for the
block cipher uniformly at random from {0, 1}κ, encrypts the plaintext using
the key and obtains the ciphertext y (of length κ bits). The public key is the
plaintext-ciphertext pair (p, y) and the private signing key is the pair (x, p) (i.e.,
the chosen block cipher key and plaintext).

During signing, the signer proves knowledge of the key x, which encrypts p
to y. Namely, Picnic uses ZKB++ in order to prove knowledge of a witness for
the relation Re := {((p, y), x),Encx(p) = y}, where Encx(p) is the block cipher
encryption of plaintext p with of the key x.

The specific block cipher used by Picnic is LowMC [1], implemented using
a Boolean circuit. LowMC is an iterative block cipher that employs a certain
number of encryption rounds to its input. The most relevant components of
LowMC for this paper are its identical 3 × 3 Sboxes (all the other operations
are linear over GF (2)). Each LowMC round applies a certain number of Sboxes
in parallel to the encryption state. In all LowMC variants used in Picnic, 10
parallel Sboxes are applied in a round. The algebraic normal form of an Sbox is
given as

S(wa1 , wa2 , wa3) =(
wa1 ⊕ (wa2 · wa3), wa1 ⊕ wa2 ⊕ (wa1 · wa3), wa1 ⊕ wa2 ⊕ wa3 ⊕ (wa1 · wa2)

)
.

(1)

In particular, the Sbox employs 3 non-linear AND operations

wa2 · wa3 , wa1 · wa3 , wa1 · wa2

in computing the 3 output bits, respectively.

Picnic defines a total of 6 instances depending on a desired security level
and on whether they are intended to resist attacks by quantum computers. We
focus on the instances that are deemed secure (only) against attacks by classical
computers, whose parameters are given in Table 1. However, our attacks are
applicable to all instances. Note that all LowMC instances have at least 200

Table 1. Picnic Instances (for classical security)

Instance κ LowMC rounds Sboxes\round PRG R

picnic-L1-FS 128 20 10 SHAKE128 219

picnic-L3-FS 192 30 10 SHAKE256 324

picnic-L5-FS 256 38 10 SHAKE256 438

Sboxes, where each Sbox employs 3 AND operation. Since evaluating an AND
operation in Picnic requires a PRG output bit from each player, then each player
computes at least 200 · 3 = 600 PRG output bits during a run.

12

3 The KKW Protocol [13]

In this section we give a very brief overview of the KKW protocol [13], focusing
on details relevant for the paper.

The KKW protocol describes a new way to instantiate the MPC-in-the-head
approach which leads to shorter proofs compared to ZKB++. The main idea is to
instantiate the MPC protocol in the preprocessing model, which makes it possible
to use protocols designed for a large number of players with small communication
complexity (which translates to small proofs in the ZK proof protocol) and
low soundness error per protocol execution (i.e., run). In the following, we only
partially summarize the details of KKW’s MPC protocol and refer the reader to
the original paper [13] for more details about the full protocol.

The KKW MPC protocol involves n players that compute a Boolean circuit
on the secret input x. The privacy property of the protocol assures that revealing
the states and randomness of n − 1 (all-but-one) players reveals nothing about
the secret input x. The protocol maintains the invariant that, for each wire
in the circuit α, the players hold an n-out-of-n XOR-based secret sharing of a
random mask λα, denoted by [λα], along with the public masked value of the
wire ẑα = zα ⊕ λα on the input x.

During the preprocessing phase, shares are distributed among the players as
follows. For each wire α that is either an input wire of the circuit or the output
wire of an AND gate, the players are given [λα], where λα ∈ {0, 1} is uniform.
For an XOR gate with input wires α, β and output wire γ, let λγ = λα⊕λβ (the
players can compute [λγ] locally). Finally, for each AND gate with input wires
α, β, the players are given [λa,b], where λα,β = λα · λβ .

The uniform shares of {λα} are generated by each player Pi by applying a
PRG to its short input seed ki ∈ {0, 1}κ (where κ is the claimed security level).
Then, each {λα} is defined implicitly by these shares. The shares of each {λa,b}
are also generated this way, but the final shares of Pn are constrained by the
values of {λα}. Therefore, Pn is given additional |C| “correction bits” (where
|C| is the number of AND gates in the circuit) that determine its share of {λα}
for each AND gate.

In the online phase, the players are given a masked value ẑα for each input
wire α. The players inductively compute ẑα for all wires in the circuit. The full
details of the online protocol are given in [13]. We remark that when used to
instantiate MPC-in-the-head, an unopened player i ∈ [1, n] is selected, while the
views of the remaining n − 1 players are opened. For each player this involves
revealing its secret seed, while for Pn this additionally involves revealing the
auxiliary |C| correction bits.

4 Multi-Target Attacks on Zero-Knowledge Protocols

4.1 Outline of the Attacks

In this section we give a general overview of our multi-target attacks on the KKW
protocol and Picnic. We assume that the attacker has access to D = 2d runs of

13

the underlying MPC-in-the-head protocol (generated by a single of by multiple
users). In each run, the views of all-but-one player are opened, along with their
randomness. We refer to the player whose view is not opened as the unopened
player. The randomness used by each player is generated by a PRG initialized
with a seed of length κ bits, where κ is the claimed security level against classical
attack algorithms. A crucial assumption required for the multi-target attacks is
that for each run, the attacker can extract a string of bits output by the PRG
of the unopened player.

Below, we provide a very rough outline of the steps of the multi-user multi-
target attack and its analysis in the setting described above.

1. For each run r ∈ [1, 2d], extract a string of bits br that are output by
the PRG of the unopened player, and store br along with run r.

2. For each PRG seed k ∈ [1, 2κ−d],a derive a corresponding PRG output
string b′k using the seed k, and compare with the 2d stored strings br.

3. For each matching pair r, k such that br = b′k, compute and output the
corresponding secret witness x.

a The seed values can be selected arbitrarily.

After trying 2κ−d random seeds to Step 2, according to the birthday paradox,
the attacker will test a seed used in one of the 2d runs with high probability
(assuming that the players’ seeds are selected uniformly at random). Given that
in Step 1 the attacker can extract sufficiently many PRG output bits from each
run,10 then the expected number of matches will be (a small) constant. Finally,
assuming that Step 3 can indeed be performed, the attacker will recover the
secret witness for the corresponding run. In the information theoretic model
assumed in the security analysis of Picnic and KKW, the complexity of the
attack is 2κ−d invocations of the PRG (as long as d ≤ κ/2). However, in practice
the computational complexity could be higher, depending on how efficiently the
matching in Step 2 is performed.

Next, we describe each one of these steps for the KKW protocol. The dedi-
cated attack on Picnic (detailed in Section 5) uses a variant of the attack above
in order to optimize its complexity. In particular, for a range of parameter val-
ues, it filters out some of the 2d runs in the first step and keeps only those that
satisfy a certain condition which allows more efficient matching in the second
step.

4.2 A Multi-Target Attack on the KKW protocol

We describe the step details of the multi-target attack on the KKW protocol. In
contrast to our analysis of Picnic, we will not calculate the concrete (computa-
tional) complexity of the attack. In particular, we will reduce the second step of

10 In general, κ bits are sufficient to uniquely determine the key on average. However,
even if several candidate keys are recovered, they can be filtered against the public
key.

14

the attack to a known problem, but will not analyze the known algorithms for
this problem in order to determine the best one for a given set of parameters.

Step 1: Deriving PRG Output of the Unopened Player We focus on
the additive secret sharing of λa,b = λa · λb. We assume that the view of Pi is
unopened for i 6= n, hence the attacker has all shares of λa,b, except for the
i’th share that is computed using a PRG applied to the seed of unopened Pi.
Observe that λa,b = λa · λb is not uniform, as it is equal to 0 with probability
3/4. Consequently, the attacker can compute a guess for Pi’s share of λa,b, which
is correct with probability 3/4 by XORing together all the known n− 1 shares.
Hence, in this case, the attacker does not obtain direct outputs of Pi’s pseudo-
random bits, but rather noisy bits with a noise of 1/4.

Step 2: Matching a Run and a PRG Seed According to the previous step,
finding a match between the 2d runs and 2κ−d PRG seeds reduces to finding
a pair of highly correlated strings (with expected correlation of 3/4) among
two groups of strings (which, other than the matching pair, are assumed to be
independent and uniform). This is known as the nearest neighbor search problem.
The trivial algorithm for this problem simply exhausts all string pairs and runs
in time 2κ−d · 2d = 2κ. However, there are more efficient algorithms for this
well-studied problem (cf. [17, 22]).

Step 3: Recovering the Secret Witness Given a run and a seed for the
unopened player, we can compute all random bits used by this player in the run.

In the KKW protocol, for each wire in the circuit, the players holds an n-
out-of-n secret sharing of a random mask along with masked value of the wire,
which is public (and given to the players in the online execution of the protocol).
In particular, this applies to the input wires, whose value encodes the bits of the
secret witness x. The randomness of the unopened player allows the attacker to
compute the missing share for each wire α of x, and thus compute the random
mask λα for this wire by summing together (XORing) all the n shares for the
mask [λα]. Finally, the attacker XORs the mask λα with the public masked value
of the wire ẑα = zα ⊕ λα, which gives the value of the corresponding bit of x,
zα.

5 The Multi-Target Attack on Picnic

The attack on Picnic is a variant of the general attack of Section 4.1. In this
section, we describe it in more detail and start with an overview below.

5.1 Overview of the Attack

Given D = 2d runs, our goal is to devise a concrete attack on Picnic by matching
the PRG output of the unopened player in each run with output obtained by eval-
uating the PRG with arbitrary seeds (similarly to the generic attack described in

15

Section 4). If each run would contain values about the same PRG output bits, we
could sort these values and efficiently match each PRG evaluation with the runs.
However, as we will see later each run contains data about different bits of the
PRG output of the corresponding unopened player (and the number of known
bits varies according to the run). Based on this fact, we describe below a more
specific (yet still incomplete) outline of the steps, parameterized by κ, d, d′, `.

1. Out of 2d runs, filter out ones that contain less data (about the PRG
output of the unopened player) than some threshold.

2. For of each remaining run, r ∈ [1, 2d
′
]: extract a prefix of ` bits that are

output by the PRG of the unopened player (including possible unknown
bits). Enumerate over all possible guesses for the unknown bits in the
prefix, and store all the generated fully specified `-bit expanded strings
in a hash table (with a pointer to run r).

3. For each PRG seed k ∈ [1, 2κ−d
′
]: derive an `-bit PRG output string

using the seed k, and search for it in the hash table. For each match:
obtain the corresponding run r and compare the additional PRG output
bits computed from this run with the PRG output. In case of equality,
compute and output the corresponding secret key x.

Analysis Sketch We briefly analyze the attack for the specific case where we
wish to obtain the information theoretic complexity of 2κ−d (assuming d ≤ κ/2).
In this case, we must have d = d′, i.e., we cannot use any filtering in Step 1.

We introduce another parameter 0 < τ ≤ 1, which quantifies the fraction
of bits that we can extract from each run about the `-bit prefix of the PRG
output of the unopened player. Namely, we assume that for an `-bit prefix, we
can determine τ` bits, while (1 − τ)` are unknown.11 Hence, for each run, we
obtain 2(1−τ)` expanded strings in Step 2 and the hash table contains a total
of 2d+(1−τ)` strings of ` bits. We refer to τ as the information rate that we can
achieve.

Given a random `-bit PRG output in Step 3, the expected number of matches
with the hash table is 2−` ·2d+(1−τ)` = 2d−τ`, hence the total number of matches
tested in the attack (before the key is recovered) is 2κ−d · 2d−τ` = 2κ−τ`.

Taking into account all the steps, the expected complexity of the attack is
max(2κ−d, 2d+(1−τ)`, 2κ−τ`). We balance the first and third terms by setting τ` =
d, or ` = d/τ . Then, the complexity becomes max(2κ−d, 2d/τ), which implies
that information theoretic complexity can be obtained as long as d/τ ≤ κ − d,
or d ≤ κ · (τ/(1 + τ)). The optimal complexity in this case is 2κ−d = 2κ(1/(1+τ)).
When d > κ·(τ/(1+τ)), the information theoretic complexity cannot be reached,
and we will apply filtering to optimize the complexity.

11 We assume here for that sake of simplicity that τ is constant and does not depend
on the analyzed run (although as we will see later, this does not necessarily hold).

16

Optimizations and Parameters for the Attack Clearly, the complexity of
the attack depends in a strong way on the information rate τ , namely, on the
ability to extract as much information as possible from each run about the PRG
output of the unopened player. The first part of the concrete analysis below
(which is the most technical one) involves deriving methods that maximize the
information rate. We first show that a naive method achieves τ = 1/4, giving
(optimal) complexity of 2κ(1/(1+τ)) = 24κ/5 ≈ 2102 for κ = 128. We then utilize
the design of Picnic (and the underlying LowMC circuit) in order to maximize the
information rate. In particular, we obtain τ = 1/2, which significantly improves
the complexity to 22κ/3 ≈ 285 for κ = 128. Finally, by applying filtering, we
reduce the optimal complexity to about 277.

As a concrete example of the parameters, we note that our optimized attack
has τ ≥ 1/2, hence we need to match ` = d/τ < 2d PRG output bits. In this
paper, we only consider data complexity of d < 64+9 = 73, hence ` < 2·73 = 146.
We note that these PRG output bits are used in the evaluation of d146/3e = 49
Sboxes, whereas all LowMC variants in Picnic have at least 200 Sboxes.

5.2 Deriving PRG Output of the Unopened Player

We start by describing a preliminary method to extract PRG output of the
unopened player. We then present two optimized methods, exploiting the specific
Sbox design of LowMC. In Appendix A we describe an additional method which
is not directly used in our attack, but is interesting nevertheless.

Preliminary Extraction Method We consider a binary multiplication gate
(wc = wa · wb). Recall that in ZKBoo (and ZKB++),

w(i)
c = (w(i)

a · w
(i)
b) + (w(i+1)

a · w(i)
b) + (w(i)

a · w
(i+1)
b) +Ri(c)−Ri+1(c). (2)

Let us assume that the views and random seeds of players 2, 3 are revealed.
Consider i = 3, for which the equation above reduces to:

w(3)
c = (w(3)

a · w
(3)
b) + (w(1)

a · w
(3)
b) + (w(3)

a · w
(1)
b) +R3(c)−R1(c).

Moreover, we assume that

w(3)
a = w

(3)
b = 0. (3)

Note that since view 3 is revealed, the attacker knows when this event occurs.

Conditioned on this event, the equation simplifies to w
(3)
c = R3(c)−R1(c), or

R1(c) = R3(c)− w(3)
c .

Since R3(c) and w
(3)
c are known from random seed and view of player 3 (respec-

tively), then the attacker can compute R1(c) with probability 1, conditioned
on (3).

17

In Boolean circuits (as in Picnic), we expect (generalized) condition (3) to
hold for 1/4 of the AND gates (the probability is over the randomness of the
view of Pe+1). Consequently, the attacker knows about τ = 1/4 of the output
bits produced by the PRG (not including the ones used in the initial Share

function). Note that the locations of these known output bits depends on w
(e+1)
a

and w
(e+1)
b , which are different for each run.

Below, we exploit the specific structure of the Picnic circuit in order to op-
timize the information rate.

Extraction Method 1 Recall that the AND operations performed by a LowMC
Sbox are

S′(wa1 , wa2 , wa3) = (wa2 · wa3 , wa1 · wa3 , wa1 · wa2),

where S′ denotes the function obtained from S by only considering AND op-
erations. Denote the output wires of these 3 AND operations by wc1 , wc2 , wc3 ,
respectively, and write the basic equation of (2) with i = 3 for the 3 AND gates:

w(3)
c1 = (w(3)

a2 · w
(3)
a3)⊕ (w(1)

a2 · w
(3)
a3)⊕ (w(3)

a2 · w
(1)
a3)⊕R3(c1)⊕R1(c1),

w(3)
c2 = (w(3)

a1 · w
(3)
a3)⊕ (w(1)

a1 · w
(3)
a3)⊕ (w(3)

a1 · w
(1)
a3)⊕R3(c2)⊕R1(c2),

w(3)
c3 = (w(3)

a1 · w
(3)
a2)⊕ (w(1)

a1 · w
(3)
a2)⊕ (w(3)

a1 · w
(1)
a2)⊕R3(c3)⊕R1(c3).

(4)

Assuming the the views of players 2, 3 are revealed, the unknown values in these
3 equations are the view and randomness variables of player 1:

R1(c1), R1(c2), R1(c3), w(1)
a1 , w

(1)
a2 , w

(1)
a3 .

Observe that for every value of the 3 known bits w
(3)
a1 , w

(3)
a2 , w

(3)
a3 , we obtain a

linear equation system with 3 equations. Our goal is to perform Gaussian elimi-

nation on this system in order to eliminate the unknown variables w
(1)
a1 , w

(1)
a2 , w

(1)
a3

and remain with linear relations in the 3 randomness variables of player 1,
R1(c1), R1(c2), R1(c3). We are thus interested in the rank of the equation system

in w
(1)
a1 , w

(1)
a2 , w

(1)
a3 as a function of the known variables w

(3)
a1 , w

(3)
a2 , w

(3)
a3 .

Since the equation system is symmetric, the rank depends only on the Ham-

ming weight (HW) of w
(3)
a1 , w

(3)
a2 , w

(3)
a3 . It is easy to check that the following holds:

– If HW = 0 (i.e., w
(3)
a1 = w

(3)
a2 = w

(3)
a3 = 0), the rank is 0 and we obtain the 3

PRG output bits R1(c1), R1(c2), R1(c3).
– If HW > 0, the rank is 2 and we obtain 1 PRG output bit (or a linear

combination of output bits) according to the specific values of w
(3)
a1 , w

(3)
a2 , w

(3)
a3 .

The first case w
(3)
a1 = w

(3)
a2 = w

(3)
a3 = 0 occurs with probability 1/8 (over

the randomness of the view of P3). Note that the equation system is never
of full rank and we can always obtain at least 1 bit of information about
R1(c1), R1(c2), R1(c3).

18

Example 1. If w
(3)
a1 = w

(3)
a2 = w

(3)
a3 = 1, we XOR together the 3 equations to

eliminate w
(1)
a1 , w

(1)
a2 , w

(1)
a3 , and can compute the value of R1(c1)⊕R1(c2)⊕R1(c3).

We performed the analysis assuming the views of P2, P3 were opened in
the run, but similar analysis applies (with appropriate indexing modifications)
regardless of which 2 views are opened. We summarize our findings below.

Proposition 1. Given access to the open views and randomness of Pe, Pe+1 in
Picnic, for any triplet of wires that are input to a LowMC Sbox and its cor-
responding triplet of output wires wc1 , wc2 , wc3 , with probability 1/8 (over the
randomness of the view of Pe+1), we can easily compute the corresponding PRG
output bits of Pe+2, namely, Re+2(c1), Re+2(c2), Re+2(c3). Otherwise (with prob-
ability 7/8) we can compute one of seven possible linear equations on these bits,
where each particular linear equation is obtained with probability 1/8 (over the
randomness of the view of Pe+1).

Hence, with high probability, for most runs we obtain 3 bits of information for
at least 1/8 of the Sboxes and 1 bit of information for the remaining Sboxes.
We therefore obtain at least 3/8 + 7 · 1/8 = 10/8 = 5/4 bits of information on
average per 3-bit Sbox, or τ1 = 5/12 bits of information per PRG output bit
(for most runs). This is significantly better than the ratio of 1/4 obtained in a
generic manner above.

Extraction Method 2 Assume that P2, P3 are opened and reconsider the
equation system of (4). If we guess the values of wa1 , wa2 , wa3 , we can easily
deduce the unknown PRG output bits R1(c1), R1(c2), R1(c3) by first comput-

ing w
(1)
a1 , w

(1)
a2 , w

(1)
a3 . On its own, this is a useless observation since we could

have directly guessed these 3 PRG output bits. However, let us assume that
the analyzed Sbox is located in the first LowMC Sbox layer. This implies that
each of wa1 , wa2 , wa3 is a linear function of the unknown LowMC secret key x
corresponding to the run (as there is no non-linear function applied to com-
pute these bits from the known plaintext). Therefore, the knowledge of the 3
bits wa1 , wa2 , wa3 input to the Sbox directly translates to knowledge of 3 linear
equations on the LowMC secret key. More specifically, we have wai = lai(x)
for i ∈ {1, 2, 3}, where lai(x) is a linear equation on the secret key x. Recall
that the Share function outputs 3 shares that sum to the LowMC secret key
x = x1 ⊕ x2 ⊕ x3. Therefore, for i ∈ {1, 2, 3} we have

wai = lai(x) = lai(x1)⊕ lai(x2)⊕ lai(x3), or

lai(x1) = wai ⊕ lai(x2)⊕ lai(x3). (5)

We (assume to) know wai , lai(x2), lai(x3), and therefore, we can derive lai(x1).
The 3 bits lai(x1) are linear combinations of PRG output bits of P1 that are
output by the Share function, and we have shown that they are directly deduced
from the knowledge of wai .

19

Altogether, we guess 3 bits and obtain 6 PRG output bits. Crucially for the
attack, that indices of the computed 6 PRG (linear combinations of) output bits
are fixed among all runs.

Proposition 2. Given access to the open views and randomness of Pe, Pe+1 in
Picnic for e ∈ {2, 3}, for any triplet of wires that are input to a LowMC Sbox
in the first Sbox layer, a guess for the 3 bit values for these wires allows to
easily compute a guess for values of 6 (linear combinations of) PRG output bits
of Pe+2. The locations of these output bits depend only on the choice of Sbox.
Moreover, the same holds for any Sbox in the i’th Sbox layer, given that we have
a guess for the all the Sbox inputs in layers 1, 2, . . . , i− 1.

Note that the proposition only applies to e ∈ {2, 3}, as for e = 1, the key
share of Pe+2 = P3 (namely x3) is not computed using a PRG. The last part of
the proposition holds since each input wire to each Sbox in the i’th layer can
be expressed as a linear combination of the key bits and the output bits of the
Sboxes in previous layers. These output bits are (assumed to be) known.

Recall that in the previous extraction method we obtained an information
rate of τ1 = 5/12 for most runs. Here, we guess 3 bits and obtain 6 PRG output
bits, i.e. τ2 = 1/2 > τ1, and hence this method can be viewed as an improvement
over the previous one. On the other hand, for specific runs which deviate from
the average, the first method may yield a higher information rate, thus the
methods are not always directly comparable. Indeed, our attack will combine
these methods according to some parameter values.

5.3 Exploiting PRG Output of the Unopened Player

We focus on a single run that contains data about the PRG output of the
unopened player (Pe+2) . We only exploit data for runs with e ∈ {2, 3} in the
attack.

We call the useful data extracted from a run a target string (TS). The target
string is indexed according to triplets of bits (corresponding to the Sboxes in
LowMC’s circuit), where the relevant information about each triplet consists of
the known view and randomness bits of Pe+1. For example, if e = 2 (i.e., players
2,3 are opened), then for each Sbox in LowMC’s circuit, the TS contains all
the known view and randomness bits of P3 that appear in the equation system
of (4). Recall from Proposition 1 that for each triplet, we may obtain all the 3
PRG output bits of the unopened player, and in this case, we call it a full triplet.
Otherwise, we obtain 1 bit of a linear equation on the 3 PRG output bits (the
linear equation itself depends on the view of Pe+1) and call the triplet a partial
triplet.

The triplet data in each target string is sorted according to the indices of
LowMC’s Sboxes. Importantly, Sboxes in each layer i appear together before
layer i + 1 (the order within each layer is chosen arbitrarily, but is consistent
among all target strings). Given a target string ts, we refer to the data of the
i’th triplet by ts[i], and to the data of the triplet sequence i, i+1, . . . , j as ts[i, j].

20

For the purpose of exploiting Proposition 2, we also need auxiliary informa-
tion from the Share function about the shares of Pe, Pe+1. We append this data
to each TS.

Target String Expansion We elaborate on Step 2 of the general attack of
Section 5.1 by defining the expansion of a target string ts. Essentially, it is a set
of strings that correspond to all possible PRG outputs of the unopened player
(for some specific triplets) that match the partial information in ts.

Given parameters t1, t2 ≥ 0, assume ts[t1 + 1, t1 + t2] contains t3 ≤ t2 full
triplets (and t2 − t3 partial triplets). We can expand the t2 triplets of ts[t1 +
1, t1 + t2] according to Proposition 1 into a set of 22(t2−t3) expanded strings,
each of length 3t2 bits. Similarly, we can expand triplets ts[1, t1] according to
Proposition 2 into a set of 23t1 expanded strings, each of length 6t1 bits.

Combining these two expansion methods into one expansion function (de-
noted expand(ts)), we obtain a set of 23t1+2(t2−t3) strings. Each string is of
length ` = 6t1 + 3t2 bits and represents possible values for certain 6t1 + 3t2
PRG output bits, which we call matching bits (mb). Given a PRG seed k, we
denote by PRGk[mb] the 6t1 + 3t2-bit PRG output value for the matching bits,
when evaluated with k. Given a TS, ts, generated with seed k, only one of the
23t1+2(t2−t3) strings in expand(ts) is equal to PRGk[mb]. We summarize below.

Proposition 3. Given a target string ts, parameters t1, t2 ≥ 0, and assuming
ts[t1 + 1, t1 + t2] contains t3 ≤ t2 full triplets, the expansion of ts with param-
eters t1, t2, t3 is a set denoted expand(ts) that contains 23t1+2(t2−t3) expanded
strings, each of length 6t1+3t2 bits. Each string in expand(ts) contains 6t1+3t2
possible values for the matching bits, derived from ts by a guess for the missing
information.

5.4 The Multi-Target Attack

It is obvious that a run with a large number of full triplets in ts[t1 + 1, t1 + t2] is
more useful for our purpose, as it contains more data about the PRG output of
the unopened player (equivalently, its expanded set according to Proposition 3
is relatively small). Hence, we filter the target data strings, keeping those with
a large value of t3. Each remaining target string is then expanded and the resul-
tant expanded strings are stored to be matched with data obtained from PRG
evaluations. Based on Proposition 1, we derive the following proposition.

Proposition 4. Given integer parameters t1 ≥ 0 and 0 ≤ t3 ≤ t2, the probabil-
ity (over the randomness of the view of Pe+1) that for an arbitrary target string
ts, the t2 triplets of ts[t1 + 1, t1 + t2] contain at least t3 full triplets is

Γ (t2, t3)
def
==

t2∑
i=t3

(
t2
t3

)(
1

8

)i
·
(

7

8

)t2−i
.

We describe the attack below, using positive integer parameters κ, r, r′, t1, t2, t3.

21

1. For each of the 2d available runs: denote by ts the target string of the
current run. If e + 2 = 3 (Pe+2 is the unopened player), or if ts[t1 +
1, t1 + t2] contains less than t3 full triplets, then discard the run.

2. For of each remaining 2d
′

runs: compute expand(ts), and store each of
the 6t1 + 3t2-bit expanded strings s ∈ expand(ts) (along with a pointer
to ts) in a hash table L, indexed by s.

3. For each PRG seed k ∈ [1, 2κ−d
′
]:

– Evaluate the PRG, derive PRGk[mb] and search for a match in L.
– For each match with an expanded string s, recover the correspond-

ing ts.
– Continue to compute the PRG output on k and compare with ts.
– If the PRG outputs match, we have guessed the correct seed k for

the unopened player in ts with high probability. Derive and output
the signing key x based on the Share function x = x1 ⊕ x2 ⊕ x3 by
computing the missing share using k.

Analysis In order to analyze the attack, observe that on average, in 2/3 of the
runs P1 or P2 are unopened. Out of the remaining runs, a fraction of Γ (t2, t3)
contains at least t3 full triplets in ts[t1 + 1, t1 + t2] (according to Proposition 4).
Consequently, we expect

2d
′

= 2/3 · Γ (t2, t3) · 2d. (6)

Next, according to Proposition 3, L is expected to contain at most 2d
′+3t1+2(t2−t3)

expanded strings, which gives the memory complexity of the attack (and a lower
bound on its time complexity).

Finally, the expected number of matches in Step 3 between a random 6t1+3t2-
bit string PRGk[mb] and one of the expanded 2d

′+3t1+2(t2−t3) strings in L is
at most 2d

′+3t1+2(t2−t3) · 2−6t1−3t2 = 2d
′−3t1−t2−2t3 . Hence, the total expected

number of matches that we need to test in Step 3 is upper bounded by 2κ−d
′ ·

2d
′−3t1−t2−2t3 = 2κ−3t1−t2−2t3 .

Taking all steps into account, the total time complexity is upper bounded by
max(2d, 2κ−d

′
, 2d

′+3t1+2(t2−t3), 2κ−3t1−t2−2t3). Plugging in the value of d′ calcu-
lated in (6), we obtain

max(2d, 3/2·1/Γ (t2, t3)·2κ−d, 2/3·Γ (t2, t3)·2d+3t1+2(t2−t3), 2κ−3t1−t2−2t3). (7)

We balance the second and fourth terms by setting

23t1+t2+2t3 = 2/3 · Γ (t2, t3) · 2d, (8)

i.e., 2/3 · Γ (t2, t3) = 23t1+t2+2t3−d. Thus, the third term (which also represents
the memory complexity) becomes 26t1+3t2 and the time complexity upper bound
is calculated as

max(2d, 3/2 · 1/Γ (t2, t3) · 2κ−d, 26t1+3t2), (9)

under constraint (8). We now analyze the complexity of the attack for various
choice of the free parameters t1, t2, t3.

22

Achieving the Information Theoretic Complexity If we want a time com-
plexity close to the information theoretic complexity we apply a minimal amount
of filtering. Based on the conclusion of Section 5.1, it is best to use the extrac-
tion method with has highest information rate. Thus, we use the second ex-
traction method (summarized in Proposition 2), which has τ2 = 1/2, by setting
t2 = t3 = 0 (and Γ (t2, t3) = 1). The analysis becomes similar to the one of Sec-
tion 5.1, with the exception of the filtering constant 2/3 and rounding factors.
We can come close to the information theoretic time complexity and obtain time
complexity of 3/2 · 2κ−d as long as 3/2 · 2κ−d ≥ 4/9 · 22d, or

d ≤ log 3/2 + κ/3

(the formula only holds for values of d that satisfy 2d = 3/2·23t1 for an integer t1).
For example, if κ = 128, we can only exploit up to 2d ≤ 3/2 · 242 data (by

setting t1 = 14). The optimal time complexity is therefore about 2128−42 = 286.
For κ = 192, we can reach the information theoretic time complexity for almost
the entire range of D ≤ 324 ·264, whereas for κ = 256, we obtain the information
theoretic time complexity for the full range D ≤ 438 · 264.

General Time Complexity Optimization When more than 3/2 · 2κ/3 runs
are available and our goal is to optimize time complexity, we could not accurately
optimize the attack analytically as a function of the known parameters κ, d.
Instead, we optimized the most precise original attack complexity equation (7)
for several choices of κ, d by brute force. In particular, for κ = 128, if we restrict
ourselves to 264 signatures (r = log(219 · 264) ≈ 71), then we (approximately)
obtain T = 277 and M = 276 memory by setting t1 = 0, t2 = 25, t3 = 13. This
demonstrates the fact that when a large amount of data is available, we do not
exploit the second extraction method in the optimal attack, namely, we set t1 =
0. This is due to the fact that filtering a large amount of data results in a better
information rate using the first extraction method.

We can also obtain some time-memory tradeoffs by applying more filtering.
For example, we obtain T = 283,M = 257 by setting t1 = 0, t2 = 19, t3 = 13.

6 Seed Collision Attack on Picnic

In this section we describe our seed collision attack on Picnic. Unlike our main
multi-target attack, this attack (almost) reaches the information theoretic com-
plexity of 2κ = T · D for D = 2κ/2 (but only in the single-user setting for the
particular point of D = 2κ/2). The reason we can reach the information theoretic
complexity here is that the matching step is much easier compared to that of
our main multi-target attack.

Assume the attacker has access to two runs generated with the same private

key. For run i ∈ {1, 2}, denote by P
(i)

e(i)+2
the unopened player and assume

that in both runs the unopened player uses the same seed k
(1)

e(1)+2
= k

(2)

e(2)+2
.

Moreover, assume that e(i) ∈ {2, 3}. Then, in both runs, the pseudo-random bits

23

generated by the PRG of the unopened players are identical, and in particular,

the outputs of their Share functions are identical, namely x
(1)

e(1)+2
= x

(2)

e(2)+2
.

Hence, x ⊕ x(1)
e(1)
⊕ x(1)

e(1)+1
= x ⊕ x(2)

e(2)
⊕ x(2)

e(2)+1
(since both runs are generated

with the same private key x). Therefore, the attacker can easily detect this event
by verifying the condition

x
(1)

e(1)
⊕ x(1)

e(1)+1
= x

(2)

e(2)
⊕ x(2)

e(2)+1
. (10)

The key recovery process (once again) has to use the available data about

the PRG outputs of the unopened players. Assuming that k
(1)

e(1)+2
= k

(2)

e(2)+2
, the

attacker can recover the secret key x by exploiting the fact that the remain-

ing PRG outputs of P
(1)

e(1)+2
and P

(2)

e(2)+2
are identical, assuming that the seeds

of P
(1)

e(1)+1
and P

(2)

e(2)+1
are different (i.e., k

(1)

e(1)+1
6= k

(2)

e(2)+1
), which occurs with

high probability. This is done by independently analyzing each Sbox, observing
the corresponding input triplets of bits in the two target strings for the runs.

Assuming that the 3-bit randomness values of P
(1)

e(1)+1
and P

(2)

e(2)+1
are different

for the Sbox (which occurs with probability 7/8), then the attacker can always
obtain two linear equations on the secret inputs to the Sbox.

Example 2. Examine again the equation system (4), assuming for simplicity that
player 1 is unopened in both runs, namely, e(1) + 2 = e(2) + 2 = 1. Moreover,
assume that in the first run, the 3 relevant view bits of player 3 are equal to

zero, i.e., w
(3)
a1 = w

(3)
a2 = w

(3)
a3 = 0. Then, we can compute the common random

bits of unopened player 1, namely, R1(c1), R1(c2), R1(c3). Furthermore, assume

that for the second run, the 3 relevant view bits of player 3 satisfy u
(3)
a1 = u

(3)
a2 =

0, u
(3)
a3 = 1 (we index these bits with u, as they are different across the runs).

Then, since the randomness of player 1 is known, we can deduce the share values

u
(1)
a1 , u

(1)
a2 in the second run, which reveal the wire values wa1 , wa2 .

Linearizing the Circuit After analyzing all the Sboxes, the attacker knows
2 out of 3 (linear combinations of) input bits to a fraction of about 7/8 of
the Sboxes. This makes the 3 output bits of each such Sbox linear functions of
the inputs. We call these Sboxes linearized Sboxes. From the viewpoint of the
attacker, the only non-linear operations that remain in the circuit involve the
non-linearized Sboxes (whose expected fraction is 1/8). Based on this observa-
tion, we set up a linear equation system where the variables are the values of
the κ key bits in addition to the 3 unknown output values of each non-linearized
Sbox. Note that the value of every wire in the circuit can be expressed as a
linear combination of these variables. Assuming that the circuit has K Sboxes,
the expected number of variables is κ+ 3 ·K/8.

In order to get the values of linear equations in the variables, we deduce
values of specific wires (or linear combination of wires) in the circuit. First, note
that the output of the circuit is known and gives rise to κ linear equations.
We obtain additional equations based on the 2 known input bits of linearized

24

Sboxes. Hence, the expected number of equations is κ+ 2 · 7K/8 = κ+ 14K/8.
For Picnic, we expect to obtain many more equations than variables to the
system, whose solution gives the secret signing key. For example, if κ = 128, then
K = 200, implying that the expected number of variables is 203 and the number
of equations is 478. A simple Chernoff bound shows that the numbers of variables
and equations are close to their mean with high probability. For example, for
κ = 128,K = 200, with probability (more than) 0.9999 the attacker knows 2 out
of 3 input bits for at least 7/8 · 200 − 25 = 150 Sboxes. This implies that with
probability 0.9999, the number of variables is at most κ+ 3 · (200/8 + 25) = 278
and the number of equations is at least κ+ 2 · 150 = 428.

In case the attacker is unlucky and still has to spend considerable effort in key
recovery, it is possible to exploit several collisions for this purpose at the price of
increased data complexity. As in typical collision attacks, the expected number
of collisions grows quadratically as a function of the data. In particular, after
obtaining 4 collisions (requiring about twice the amount of data), the expected
fraction of Sboxes with 3 unknown input bits is (1/8)4 = 1/4096. Since the
LowMC instances only have a few hundreds of Sboxes, the system becomes
completely linear in the key bits and the attacker directly solves for the key.

Details of the Attack The seed collision attack is described below.

1. Store each of the ≈ 2/3 · 2d available runs (generated with the same
private key) for which e(i) ∈ {2, 3} in a hash table L, with the value

x
(i)

e(i)
⊕ x(i)

e(i)+1
as the index.

2. For each collision x
(i)

e(i)
⊕x(i)

e(i)+1
= x

(j)

e(j)
⊕x(j)

e(j)+1
between runs i, j in L:

– If k
(i)

e(i)+1
= k

(j)

e(j)+1
, discard the collision.

– Otherwise, if the known PRG output bits of runs i, j do not match,
discard the collision.

– Otherwise, recover and output the secret key by solving a system
of linear equations.

Analysis Since the seeds are of a length κ bits, we need about d = 1 + κ/2 to

have two runs i, j for which k
(i)

e(i)+2
= k

(j)

e(j)+2
with probability larger than 1/2

(for these runs k
(i)

e(i)+1
6= k

(j)

e(j)+1
with probability 1 − 2−κ ≈ 1). On the other

hand, x
(i)

e(i)
⊕ x

(i)

e(i)+1
= x

(j)

e(j)
⊕ x

(j)

e(j)+1
is a κ-bit condition that occurs for an

arbitrary pair of runs with probability 2−κ. Hence, summing over all pairs of
runs, the expected total number of collisions that we need to test in Step 2 is
about 1/4 · 22d−κ = 1 and the complexity of the attack is 2d = 2 · 2κ/2. As
the linear system of equations considered in the final step has several hundreds
of variables, the complexity of solving it can be bounded by 230 bit operations
using Gaussian elimination, and this complexity can be neglected.

25

The Multiple User Setting In the multiple user setting we independently
run the attack on the data of each user. Assume that we have 2u users with 2d

distinct runs available per user. Then, the success probability per user (assuming
d ≤ 1 + κ/2) is about 1/4 · 22d−κ, and the success probability across all users
is roughly 1/4 · 2u+2d−κ, implying that we need d ≈ 1 + (κ − u)/2 in order to
recover the key of one of the users with high (constant) probability. Therefore,
we require a total of 2 · 2u+d = 2 · 2(κ+u)/2 runs. More generally, if the number
of available runs varies among the different users, i.e., we have 2di available runs
for user i, then the success probability is proportional to

1/4 · 2−κ ·
2u∑
i=1

22di .

The expression is minimized when all di’s are equal, implying that a skewed
distribution of data helps the attacker.

7 Multi-Target Attacks on Additional Cryptosystems

In this section we give two examples of optimizations used in MPC protocols
that weaken their resistance to multi-target attacks. We further give an example
of a general public key scheme that is vulnerable to a multi-user single-target
attack. For each example, we reference at least one vulnerable scheme that was
proposed recently. We note that all of the described attacks can be prevented
by appropriate use of salting. This results in some performance overhead, which
depends on the underlying scheme.

We assume throughout this section that the desired security level is κ bits.

7.1 Hash-Based Commitments Optimization

We consider the widely used hash-based commitment scheme, which utilizes a
hash function H : {0, 1}∗ → {0, 1}2κ. In order to commit to a string W , one
selects a sufficiently long random string rand, and the commitment is defined
as H(rand,W). The commitment is opened by revealing rand,W . Several MPC
protocols such as [13, 16] optimize this scheme by omitting rand and defining
the commitment as H(W), given that W has sufficient min-entropy of at least
κ bits. This way, only W has to be sent when opening the commitment, thus
saving communication. However, the optimization clearly exposes the protocol
to multi-user multi-target attacks, as the attacker may try to derive a preimage
to one out of many available commitments.

7.2 Seed Tree Optimization

We analyze an MPC protocol optimization that is used in the KKW protocol [13].
In the unoptimized protocol, the seeds of all n players are (essentially) indepen-
dent and opening n−1 players out of n requires κ ·(n−1) bits of communication.

26

As shown in Section 4.2, the unoptimized protocol is already vulnerable to multi-
user multi-target attacks. We now consider an optimized version of the protocol
described in [13], which further weakens its security against such attacks.

The optimization involves building a seed tree construction (cf. [18]) which
generates seeds for the n players that participate in the MPC protocol in a way
that reduces the communication required to reveal n − 1 seeds. The seed tree
is a binary tree, where each node has a label of κ bits. The label of the root
is a randomly generated master seed of κ bits, and the two κ-bit labels of the
2 children of each node are defined recursively by running a PRG on the label
of the parent and outputting 2κ bits. The tree is of depth log n and the seeds
of the n players are defined as the labels of the n leaves. In order to reveal the
seeds of all players but player i, it is sufficient to reveal the labels of the siblings
of the path from the root to leaf i, which requires only κ · log n communication.

Observe that in the original protocol, the attacker had only a single target
per run, which was the seed of the unopened player. In contrast, in the optimized
protocol, each node on the path from the root to the unopened leaf i is a target,
as the attacker knows one of its κ-bit outputs from the log n revealed labels.
Hitting one of these targets allows the attacker to easily compute the label of
leaf i. The degradation in security is proportional to log n, which is not large,
but should still be noted.

7.3 Public Key Scheme Construction

Finally, we consider a public key scheme that uses a secret signing key x ∈ {0, 1}κ
and generates its public key as pk = g(x), where g is a deterministic function.
Typically, g involved invoking a PRF at least once on input x and additional
(deterministically generated) inputs. An example of such a scheme is the recently
proposed TACHYON signature algorithm [2] (which was presented at ACM CCS
2018). This described scheme is clearly vulnerable to a multi-user single-target
attack, where the attacker obtains access to several public keys that belong to
several users. The attacker attempts to recover the secret key of one (or several)
of the users by iteratively guessing a value for x′, computing pk′ = g(x′), and
comparing with the available public keys.

8 Conclusions

In this paper we described multi-target attacks on the Picnic signature scheme
and on the related KKW protocol. Our attacks have two features that stem from
Picnic’s novel design and distinguish them from standard multi-target attacks:

1. The vulnerability of the cryptosystem (Picnic) to multi-target attacks is not
evident, even when one carefully looks for it. As a result, it was missed by
the designers.

2. Internally, the multi-target attacks cannot apply a typical sort-and-match
algorithm, and efficient key recovery requires cryptanalytic effort.

27

The attacks expose a design weakness in the way Picnic uses a PRG during
signing. Although our attacks are generally impractical, in some cases this design
weakness could be leveraged in combination with an additional implementation
weakness (such as generation of seeds with low entropy12) to mount a practical
attack. Such an attack would have been harder to carry out had the PRG been
appropriately salted.

Besides the short-term impact of our analysis on enhancing Picnic’s security,
we hope that it will contribute to the secure design of novel cryptosystems in
the future.

Acknowledgements: The authors would like to thank the Picnic designers
for helpful discussions about this work and anonymous reviewers for valuable
suggestions.

References

1. M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers
for MPC and FHE. In Oswald and Fischlin [20], pages 430–454.

2. R. Behnia, M. O. Ozmen, A. A. Yavuz, and M. Rosulek. TACHYON: Fast Signa-
tures from Compact Knapsack. In Lie et al. [15], pages 1855–1867.

3. D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Pa-
pachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn. SPHINCS:
Practical Stateless Hash-Based Signatures. In Oswald and Fischlin [20], pages
368–397.

4. D. Boneh, S. Eskandarian, and B. Fisch. Post-Quantum Group Signatures from
Symmetric Primitives. IACR Cryptology ePrint Archive, 2018:261, 2018.

5. M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger, D. Sla-
manig, and G. Zaverucha. Picnic: A Family of Post-Quantum Secure Digital Sig-
nature Algorithms. https://microsoft.github.io/Picnic/.

6. M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger, D. Sla-
manig, and G. Zaverucha. Post-Quantum Zero-Knowledge and Signatures from
Symmetric-Key Primitives. In B. M. Thuraisingham, D. Evans, T. Malkin, and
D. Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - Novem-
ber 03, 2017, pages 1825–1842. ACM, 2017.

7. S. Checkoway, R. Niederhagen, A. Everspaugh, M. Green, T. Lange, T. Ristenpart,
D. J. Bernstein, J. Maskiewicz, H. Shacham, and M. Fredrikson. On the Practical
Exploitability of Dual EC in TLS Implementations. In K. Fu and J. Jung, edi-
tors, Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA,
August 20-22, 2014., pages 319–335. USENIX Association, 2014.

8. D. Derler, S. Ramacher, and D. Slamanig. Post-Quantum Zero-Knowledge Proofs
for Accumulators with Applications to Ring Signatures from Symmetric-Key Prim-
itives. In T. Lange and R. Steinwandt, editors, Post-Quantum Cryptography - 9th
International Conference, PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-
11, 2018, Proceedings, volume 10786 of Lecture Notes in Computer Science, pages
419–440. Springer, 2018.

12 The Picnic specification recommends to generate the seeds based on the (high-
entropy) private key, but does not (and cannot) enforce this.

28

9. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In A. M. Odlyzko, editor, Advances in Cryptology -
CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings, volume 263 of
Lecture Notes in Computer Science, pages 186–194. Springer, 1986.

10. I. Giacomelli, J. Madsen, and C. Orlandi. ZKBoo: Faster Zero-Knowledge for
Boolean Circuits. In T. Holz and S. Savage, editors, 25th USENIX Security Sym-
posium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016., pages 1069–
1083. USENIX Association, 2016.

11. A. Hülsing, J. Rijneveld, and F. Song. Mitigating Multi-target Attacks in Hash-
Based Signatures. In C. Cheng, K. Chung, G. Persiano, and B. Yang, editors,
Public-Key Cryptography - PKC 2016 - 19th IACR International Conference on
Practice and Theory in Public-Key Cryptography, Taipei, Taiwan, March 6-9, 2016,
Proceedings, Part I, volume 9614 of Lecture Notes in Computer Science, pages 387–
416. Springer, 2016.

12. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure
multiparty computation. In D. S. Johnson and U. Feige, editors, Proceedings of
the 39th Annual ACM Symposium on Theory of Computing, San Diego, California,
USA, June 11-13, 2007, pages 21–30. ACM, 2007.

13. J. Katz, V. Kolesnikov, and X. Wang. Improved Non-Interactive Zero Knowledge
with Applications to Post-Quantum Signatures. In Lie et al. [15], pages 525–537.

14. L. Lamport. Constructing Digital Signatures from a One Way Function. Technical
Report SRI-CSL-98, SRI International Computer Science Laboratory, 1979.

15. D. Lie, M. Mannan, M. Backes, and X. Wang, editors. Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018. ACM, 2018.

16. Y. Lindell and B. Riva. Blazing Fast 2PC in the Offline/Online Setting with
Security for Malicious Adversaries. In I. Ray, N. Li, and C. Kruegel, editors, Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-16, 2015, pages 579–590. ACM, 2015.

17. A. May and I. Ozerov. On Computing Nearest Neighbors with Applications to
Decoding of Binary Linear Codes. In Oswald and Fischlin [20], pages 203–228.

18. D. Naor, M. Naor, and J. Lotspiech. Revocation and Tracing Schemes for State-
less Receivers. In J. Kilian, editor, Advances in Cryptology - CRYPTO 2001, 21st
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 19-23, 2001, Proceedings, volume 2139 of Lecture Notes in Computer Science,
pages 41–62. Springer, 2001.

19. NIST’s Post-Quantum Cryptography Project. https://csrc.nist.gov/Projects/Post-
Quantum-Cryptography.

20. E. Oswald and M. Fischlin, editors. Advances in Cryptology - EUROCRYPT 2015
- 34th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume
9056 of Lecture Notes in Computer Science. Springer, 2015.

21. D. Unruh. Quantum Proofs of Knowledge. In D. Pointcheval and T. Johans-
son, editors, Advances in Cryptology - EUROCRYPT 2012 - 31st Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237 of Lecture Notes in
Computer Science, pages 135–152. Springer, 2012.

22. G. Valiant. Finding Correlations in Subquadratic Time, with Applications to
Learning Parities and the Closest Pair Problem. J. ACM, 62(2):13:1–13:45, 2015.

29

A An Additional PRG Output Extraction Method

In continuation of Section 5.2, we describe an additional (third) extraction
method, which is closely related to the second one. We observe that for each
Sbox in the first Sbox layer, given an arbitrary run, it is possible to obtain
3 (linear combinations of) PRG output bits by exploiting linear dependencies
among the key bits used in the Share function and the inputs to the first Sbox
layer (without performing any guesses). However, unlike the previous method,
the indices of these 3 output bits vary according to the run data and it is not
compatible with the attack described in Section 5.1.

Example 3. Let us focus of the first equation in (4),

w(3)
c1 = (w(3)

a2 · w
(3)
a3)⊕ (w(1)

a2 · w
(3)
a3)⊕ (w(3)

a2 · w
(1)
a3)⊕R3(c1)⊕R1(c1).

If w
(3)
a2 = w

(3)
a3 = 0, then, we can calculate R1(c1).

Example 4. As a slightly more complex example, if w
(3)
a2 = 0, w

(3)
a3 = 1, then we

can calculate

w(1)
a3 ⊕R1(c1) = wa3 ⊕ w(2)

a3 ⊕ w
(3)
a3 ⊕R1(c1). (11)

On the other hand, recall from (5) that wa3 can be expressed as a linear equation
in the secret key, which is the sum of 3 shares wa3 = la3(x1)⊕ la3(x2)⊕ la3(x3).
Plugging the value of wa3 into (11) and we obtain

w(1)
a3 ⊕R1(c1) = la3(x1)⊕ la3(x2)⊕ la3(x3)⊕ w(2)

a3 ⊕ w
(3)
a3 ⊕R1(c1).

As noted, the value of the left hand side is known, and so is the value of the right

hand side. Moreover, the value of la3(x2)⊕ la3(x3)⊕w(2)
a3 ⊕w

(3)
a3 is known, hence

we deduce la3(x1)⊕R1(c1) which is a PRG output bit of P1 (more precisely, it
is a linear combination of output bits).

By exploiting the above extraction method, given a parameter t and a run,
we can generate a 6t-bit string where the 3t-bit prefix specifies which 3 (linear
combinations of) PRG output bits (of the unopened player) are derived for the
first t Sboxes in the first layer of LowMC. The 3t-bit suffix specifies the values of
these bits for the run. This extraction method can be used to match an arbitrary
PRG seed with the PRG outputs of the unopened player in 26t runs in time 23t

(after inserting the runs into a hash table according to their 6t-bit strings defined
above). Note that since there are 23t possible equations, we have to match the
PRG output generated with the given seed against 23t hash table entries, hence
the time complexity is 23t rather than 1.

We do not base our attack on this extraction method since we can generally
obtain a better time complexity with the first two. On the other hand, using
this method has minimal memory complexity, as the runs are merely stored in a
hash table. Hence, it can be used to obtain time-memory tradeoffs by combining
it with the previous two methods.

30

