
New Hybrid Method for Isogeny-based
Cryptosystems using Edwards Curves

Suhri Kim1, Kisoon Yoon2, Jihoon Kwon3, Young-Ho Park3, and Seokhie
Hong1

1 Center for Information Security Technologies (CIST), Korea University, Seoul,
Republic of Korea

suhrikim@gmail.com, shhong@korea.ac.kr
2 NSHC Inc., Uiwang, Republic of Korea

kisoon.yoon@gmail.com
3 Security Algorithm Lab, Samsung SDS, Inc., Seoul, Republic of Korea

jihoon.kwon@samsung.com
4 Sejong Cyber University, Seoul, Republic of Korea

youngho@sjcu.ac.kr

Abstract. Along with the resistance against quantum computers, isogeny-
based cryptography offers attractive cryptosystems due to small key sizes
and compatibility with the current elliptic curve primitives. While the
state-of-the-art implementation uses Montgomery curves which facili-
tates efficient elliptic curve arithmetic and isogeny computations, other
forms of elliptic curves can be used to produce an efficient result.
In this paper, we present the new hybrid method for isogeny-based
cryptosystem using Edwards curves. Unlike the previous hybrid meth-
ods, we used Edwards curves for isogeny computations and Montgomery
curves for other operations. We demonstrated that our hybrid method
outperforms the previously proposed hybrid method, and is as fast as
Montgomery-only implementation. We present the implementation re-
sults of Supersingular Isogeny Diffie–Hellman (SIDH) key exchange using
the proposed hybrid method. Our results show that the use of Edwards
curves for isogeny-based cryptosystem can be quite practical.

Keywords: Isogeny, Post-quantum cryptography, Montgomery curves,
Edwards curves, SIDH

1 Introduction

The implementation of Shor’s algorithm in a quantum computer at a large
enough scale would break the intractability assumptions of integer factorization
or discrete logarithm problems. Therefore, cryptographic construction based on
RSA, DH(Diffie-Hellman key exchange), DSA(Digital Signature Algorithm) or
ECC(Elliptic Curve Cryptography) will no longer be secure. These recent con-
cerns have accelerated the field of post-quantum cryptography. Post-quantum
cryptography (PQC) refers to classical cryptosystems which remain secure even
in the presence of a quantum adversary. The main categories of PQC include



cryptosystems based on multivariate quadratic equations, lattices, error cor-
recting codes, hash functions, and isogenies. The cryptosystems based on these
mathematical problems are expected to be quantum-secure since there is no
known quantum algorithm that can solve security base problems more efficiently
than classical algorithms. Although isogeny-based cryptography is the newest in
this field, due to its small key sizes compared to other cryptosystems in PQC,
isogeny-based cryptosystems provide a strong candidate for the post-quantum
key establishment.

The isogeny-based cryptosystem became increasingly popular after the intro-
duction of SIDH key exchange by Jao, De Feo, and Plût in 2011 [13]. Although
the cryptosystem based on isogenies on ordinary curves was first proposed by
Couveignes [12] and rediscovered by Stolbunov [21], their algorithm suffered from
the quantum sub-exponential attack proposed by Childs et al. [8]. Since SIDH
is based on the difficulty of constructing isogenies between supersingular elliptic
curves, the endomorphism ring of supersingular curves is non-commutative so
that their cryptosystem resists against the attack proposed in [8]. Until now, the
best known classical and quantum attacks against the underlying problem are
both exponential so that SIDH has positioned itself as a promising candidate for
PQC. In 2017, Supersingular Isogeny Key Encapsulation (SIKE) was submitted
as one of the candidates to the NIST standardization project [1].

The potential of isogeny-based cryptosystem is that it provides significantly
smaller key sizes than other PQC primitives while providing same level of secu-
rity. However, its state-of-the-art implementation is slower than any other can-
didates in PQC. Therefore, numerous implementation results on isogeny-based
cryptosystem have been proposed to increase the viability as a PQC candidate.
In 2016, Azarderakhsh et al. implemented the SIDH key exchange protocol on
ARM-NEON and FPGA devices [2, 16]. Costello et al. proposed faster com-
putation methods and library for supersingular isogeny key exchange and their
implementation remains state-of-the-art [11]. In 2018, Seo et al. proposed a faster
modular multiplication for SIDH and SIKE [20]. Their implementation has re-
sulted in additional speed improvements of SIDH and SIKE on ARM processors.

Regarding the implementation, it is important to choose a model of the el-
liptic curves that provides efficient elliptic curve arithmetic as well as isogeny
computation. Due to the group structure of elliptic curves used in the isogeny-
based cryptosystem, either the curve or its twist has a point of order four,
which is isomorphic to Montgomery curves or Edwards curves. The state-of-
the-art implementation works entirely on Montgomery curves since it provides
fast point operations and efficient isogeny computation. However, whether other
forms of elliptic curves are efficient as Montgomery curves is still unclear. In [9],
Costello et al. also remarked that there could exist savings to be gained in a
twisted Edwards version of SIDH, or some hybrid method that exploits the sim-
ple relationship between Montgomery and twisted Edwards curves. Meyer et al.
proposed the hybrid SIDH scheme which exploits the fact that arithmetic in
twisted Edwards curves is efficient in some instances [17]. Their method uses
twisted Edwards curves for point operations and Montgomery curves for isogeny



computation. Bos et al. investigated the result of [17] and concluded that using
twisted Edwards curves does not result in faster elliptic curve arithmetic in the
setting of SIDH [4]. However, recently Kim et al. proposed isogeny formulas on
Edwards curves for isogeny-based cryptosystem and concluded that isogenies on
Edwards curves are as efficient as on Montgomery curves [15]. Their work sug-
gests that using Edwards curves instead of twisted Edwards curves for hybrid
method could result in better performance.

The aim of this work is to demonstrate the optimal combination of the usage
of Montgomery curves and Edwards curves. This work is done by first imple-
menting SIDH entirely on Edwards curves. The following list details the main
contributions of this work.

– We further optimized the 4-isogeny formula on Edwards curves proposed
in [15]. Our optimization of the 4-isogeny formula on Edwards curves re-
quires 6M+6S, where M (resp. S) refers to field multiplication (resp. a field
squaring). Additionally, we analyzed the computational cost of doubling and
tripling formula on Edwards curves used in the isogeny-based cryptosystem.
We conclude that except for the doubling and differential addition, compu-
tational costs on Edwards curves are as fast as on Montgomery curves.

– We optimized the 3- and 4- isogeny formulas to be suitable for our hybrid
setting. Naive conversion from an Edwards curve to a Montgomery curve
increases the computational costs which results in decreased performance
of the cryptosystem. We efficiently combined the isogeny functions on Ed-
wards curves and transformation from an Edwards curve to a corresponding
Montgomery curve. Our isogeny functions take points on an Edwards curve
as inputs and output points on a corresponding Montgomery curve and its
curve coefficients. The computational costs of our functions are detailed in
Table 6 on Section 5 and algorithms are listed in the appendix.

– We present the new Montgomery-Edwards hybrid version of SIDH. Pre-
vious works on such hybrid method use isogenies on Montgomery curves
and elliptic curve arithmetic on twisted Edwards curves [4, 17]. However,
we demonstrated that using Montgomery curves for elliptic curve arithmetic
and Edwards curves for isogeny computation is faster than the previous hy-
brid method. Compared with the current state-of-the-art implementation,
our hybrid method is faster by 1.18% for the 192-bit security level. Although
the result may seem insignificant, since isogeny-based cryptosystem is slower
than any other candidates in PQC, small speed improvements are meaningful
in this field. The results of our experiments are presented in Section 5.

This paper is organized as follows: In Section 2, we review some special forms
of elliptic curves that will be used throughout the paper. Also, the description
of the SIDH protocol is presented. In Section 3, we present our optimization of
4-isogeny formula on Edwards curves and analyze the computational cost of the
lower-level functions used in SIDH. The implementation result of SIDH using
Edwards curves is presented in Section 4, and experiments on hybrid methods
are presented in Section 5. We draw our conclusions and future work in Section
6.



2 Preliminaries

In this section, we provide the required background that will be used throughout
the paper. First, we introduce the characteristic of Montgomery and Edwards
curves and their relations. Then, we introduce the SIDH protocol used in the
implementation.

2.1 Montgomery curves and Edwards curves

Montgomery curves Let K be a field with the characteristic not equal to 2
or 3. The Montgomery elliptic curves over K are given by the equation of the
form

Ma,b : by2 = x3 + ax2 + x, (1)

where b(a2 − 4) 6= 0. The j-invariant of Montgomery curves is defined as
j(Ma,b) = 256(a2−3)3/(a2−4). When evaluating the isogenous curve coefficients
using Vélu’s formula, it is efficient to work with both projective coordinates and
projective curve coefficients to avoid field inversions [11]. Let (A : B : C) ∈
P2(K) with C ∈ K̄× suth that a = A/C and b = B/C. Then Ma,b can be
expressed as

MA:B:C : By2 = Cx3 +Ax2 + Cx.

Arithmetic on Montgomery Curves Montgomery curves are known for fast
elliptic curve arithmetic. In [18], Montgomery simplified the computations by
dropping the y-coordinate. For example, let P = (x, y) be a point on Montgomery
curve Ma,b, where x = X/Z and y = Y/Z. The doubling [2]P can be obtained
using only XZ-coordinate as described below.

X ′ = (X − Z)2(X + Z)2

Z ′ = ((X + Z)2 − (X − Z)2)

(
(X + Z)2 +

a− 2

4
((X + Z)2 − (X − Z)2)

)
Additionally, the Montgomery ladder is a method of computing scalar mul-

tiples of points on various forms of elliptic curves. This method is only efficient
when used on a Montgomery curve [5].

Edwards Curves Edwards elliptic curves over K are defined by the equation,

Ed : x2 + y2 = 1 + dx2y2, (2)

where d 6= 0, 1. The Ed has singular points (1 : 0 : 0) and (0 : 1 : 0) at infinity.
In Edwards curves, the point (0, 1) is the identity element, and the point (0,−1)
has order two. The points (1, 0) and (−1, 0) have order four. Since the condition
that Ed always has a rational point of order four restrict the use of elliptic curves



in the Edwards model. Twisted Edwards curves are a generalization of Edwards
curves proposed by Bernstein et al. in [3], to overcome such deficiency. Twisted
Edwards curves are defined by the equation,

Ea,d : ax2 + y2 = 1 + dx2y2, (3)

for distinct nonzero elements a, d ∈ K [3]. Clearly, Ea,d is isomorphic to an
Edwards curve over K(

√
a). The j-invariant of Edwards curves is defined as

j(Ed) = 16(1 + 14d + d2)3/d(1 − d)4. For the same reason as in Montgomery
curves, we use projective curve coefficients on Edwards curves to avoid inversion.
Let (C,D) ∈ P2(K) where C ∈ K̄× such that d = D/C. Then Ed can be
expressed as

EC:D : Cx2 + Cy2 = C +Dx2y2.

Arithmetic on Edwards Curves For points (x1, y1) and (x2, y2) on Edwards
curves Ed, the addition of two points is defined as below, and doubling can be
performed with exactly the same formula.

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)
.

In general, projective coordinates (X : Y : Z) ∈ P2 where x = X/Z and y =
Y/Z are used for the corresponding affine point (x, y) on Ed to avoid inversion
during point operations. There are many coordinate systems for Edwards curves
but similar to XZ-only Montgomery arithmetic, Castryck et al. proposed Y Z-
only doubling formulas on Edwards curves [7]. Let P = (x, y) be a point on an
Edwards curve Ed. The doubling of P on Edwards curves is given by,

[2]P =

(
2xy

1 + dx2y2
,
y2 − x2

1− dx2y2

)
.

Substituting the x2 = (1 − y2)/(1 − dy2) on y-coordinate of [2]P using the
curve equation, we have,

y2 − x2

1− dx2y2
=

y2(1− dy2)− (1− y2)

(1− dy2)− dy2(1− y2)
=
−dy4 + 2y2 − 1

dy4 − 2dy2 + 1
.

Therefore, the second coordinate of [2]P is expressed using only y-coordinate.
Now, let P = (X : Y : Z) be the projective representation of P such that
x = X/Z and y = Y/Z. Then [2]P = (Y ′ : Z ′) is given by,

Y ′ = −dY 4 + 2Y 2Z2 − Z4

Z ′ = dY 4 − 2dY 2Z2 + Z4,

which is expressed using only Y Z-coordinate. The tripling on Edwards curves
can also be expressed in Y Z-coordinate. In our implementation of SIDH, we
use Y Z-coordinate system on Edwards curves for computational efficiency and
compatibility with XZ-coordinate on Montgomery curves.



Relation between Montgomery Curves and Edwards Curves Gener-
ally, every twisted Edwards curve over K is birationally equivalent over K to
a Montgomery curve [3]. In [3], Bernstein et al. demonstrated that for a field
K with #K ≡ 3 (mod 4), then every Montgomery curve over K is birationally
equivalent over K to an Edwards curve. Therefore, to exploit the birationality
of Montgomery and Edwards curves, we shall define K with #K ≡ 3 mod 4 in
the remainder of this paper, unless otherwise specified.

Let d be a nonzero element in K. Then every Edwards curve Ed is birationally
equivalent to a Montgomery form MA,B via

(x, y)→ (u, v) =

(
1 + y

1− y
,

1 + y

(1− y)x

)
, (4)

where A = 2(1 + d)/(1 − d) and B = 4/(1 − d). The inverse of the map from
MA,B to Ed, is defined as

(u, v)→ (x, y) =

(
u

v
√
a
,
u− 1

u+ 1

)
. (5)

where a = (A+2)/B and d = (A−2)/(A+2). The first coordinate in map (4)
is computed by using only y-coordinate and the second coordinate in map (5)
uses only u-coordinate. In projective coordinates, this map becomes remarkably
simple [7]. A point (XM : ZM ) on a Montgomery curve can be transformed to
the corresponding Edwards Y Z-coordinates (YE : ZE) and vice versa:

(XM : ZM )→ (YE : ZE) = (XM − ZM : XM + ZM ),

(YE : ZE)→ (XM : ZM ) = (YE + ZE : ZE − YE).

Therefore, the point conversion between these two curves costs only two addi-
tions.

2.2 Supersingular Isogeny Diffie-Hellman

We recall the SIDH key exchange protocol proposed by Jao, De Feo, and Plût
[13]. For more information, please refer to [13]. The notations used in this section
will continue to be used throughout the paper.

SIDH protocol Fix two small prime numbers `A and `B . Let p be prime of the
form p = `eAA `eBB f ± 1 for some integer cofactor f , and eA and eB are positive
integers such that `eAA ≈ `

eB
B . Then we can easily construct a supersingular elliptic

curve E over Fp2 of order (`eAA `eBB f)2 [6]. We have full `e-torsion subgroup on E
over Fp2 for ` ∈ {`A, `B} and e ∈ {eA, eB}. Choose basis {PA, QA} and {PB , QB}
for the `eAA - and `eBB -torsion subgroups, respectively.

Suppose Alice and Bob want to exchange a secret key. Let {PA, QA} be the
basis for Alice and {PB , QB} be the basis for Bob. For key generation, Alice
chooses random elements mA, nA ∈ Z/`eAA Z, not both divisible by `A, and com-
putes the subgroup 〈RA〉 = 〈[mA]PA+[nA]QA〉. Then using Velu’s formula, Alice



computes a curve EA = E/〈RA〉 and an isogeny φA : E → EA of degree `eAA ,
where kerφA = 〈RA〉. Alice computes and sends (EA, φA(PB), φA(QB)) to Bob.
Bob repeats the same operation as Alice so that Alice receives (EB , φB(PA), φB(QA)).

For the key establishment, Alice computes the subgroup 〈R′A〉 = 〈[mA]φB(PA)+
[nA]φB(QA)〉. By using Velu’s formula, Alice computes a curve EAB = EB/〈R′A〉.
Bob repeats the same operation as Alice and computes a curve EBA = EA/〈R′B〉.
The shared secret between Alice and Bob is the j-invariant of EAB , i.e. j(EAB) =
j(EBA).

Computing large degree isogenies In the isogeny-based cryptosystem, one
has to compute `e-degree isogeny φ. The complexity of Vélu’s formulas scales
linearly with the size of the kernel subgroup. Therefore, we decompose an isogeny
of degree `e into e isogenies of degree ` for computational efficiency.

Given a cyclic subgroup 〈R〉 ∈ E[`e] of order `e, let φ be the isogeny from
E to E/〈R〉, with kerφ = 〈R〉 ∈ E[`e]. The isogeny φ is computed as the
composition of e isogenies of degree ` by Velu’s formula [22]. Starting with by
setting E = E0 and R = R0, compute Ei+1 = Ei/〈`e−i−1Ri〉 for 0 ≤ i < e [13].
For each iteration, compute `-isogeny φi : Ei → Ei+1, with kerφi = 〈`e−i−1Ri〉
of order `, and set Ri+1 = φi(Ri). The point Ri is an `e−i torsion point so that
[`e−i−1]Ri has order `. Therefore, combining φ = φe−1 ◦ · · · ◦ φ0 we can obtain
isogeny φ of degree `e having 〈R〉 as a kernel.

3 Formulas for Constructing Isogeny-based
Cryptosystems

In this section, we present the computational cost of lower-level functions which
are used as building blocks of SIDH. In order to avoid inversions during the
computation, not only projective coordinates but projective curve coefficients are
also used [11]. The formulas presented in this sections are the result of considering
such circumstances. Additionally, since `A = 2 and `B = 3 are the common
choice for implementing isogeny-based systems, we consider formulas focusing
on the doubling (resp. tripling) and 4-isogeny (resp. 3-isogeny). For projective
4-isogeny formula on Edwards curves, we optimized the formula presented in [15].

3.1 Elliptic Curves Arithmetic in SIDH

The elliptic curves arithmetic on Edwards curves using projective curve coef-
ficients is similar to the case when using twisted Edwards curves. Unlike the
currently used ECC, elliptic curves used in the isogeny-based cryptosystem are
not fixed but changes as moving around an isogeny class. Therefore, the formula
used in SIDH cannot be optimized for specific curve coefficients.

Doubling Let P = (x, y) be a point on an Edwards curve Ed defined as in
equation (2). Let d = D/C, x = X/Z, and y = Y/Z. For P = (Y : Z) in



projective coordinates, the doubling of P gives [2]P = (Y ′ : Z ′), where Y ′ and
Z ′ are defined as

Y ′ = −DY 4 + 2CY 2Z2 − CZ4

Z ′ = DY 4 − 2DY 2Z2 + CZ4.

The above equations can be computed as,

t0 = Y 2, t1 = Z2, t2 = D · Y 2, t3 = C · Z2,

t4 = t0 − t1, t5 = t2 − t3, t4 = t4 · t5,
t5 = C −D, t5 = t5 · t0 · t1
Y ′ = t5 − t4, Z ′ = t5 − t4,

The cost of this computation is 5M+2S.

Tripling For P = (Y : Z) on an Edwards curve Ed represented in projective
coordinates, the tripling of P gives [3]P = (Y ′ : Z ′), where Y ′ and Z ′ are defined
as

Y ′ = Y (D2Y 8 − 6CDY 4Z4 + 4C2Y 2Z6 + 4CDY 2Z6 − 3C2Z8)

Z ′ = Z(C2Z8 − 6CDY 4Z4 + 4D2Y 6Z2 + 4CDY 6Z2 − 3D2Y 8).

Let F = Y ′ + Z ′ and G = Y ′ − Z ′. Then F and G can be written as,

F = Y ′ + Z ′ = (DY 2(Y 2 − 2Y Z) + CZ2(2Y Z − Z2))2(Y + Z)

G = Y ′ − Z ′ = (DY 2(Y 2 + 2Y Z)− CZ2(2Y Z + Z2))2(Y − Z).

After computing F and G, the results Y ′ and Z ′ can be obtained by com-
puting F +G and F −G. The cost of tripling is 7M+5S.

Differential addition The SIDH starts by computing R = [m]P + [n]Q for
chosen basis P and Q and a secret key (m,n). Without loss of generality, we may
assume that m is invertible, and compute R = P + [m−1n]Q. This can be done
by using the Montgomery ladder which requires computing differential additions
as a subroutine. In the proof of [14], Edwards curves have the similar formula,
and we briefly introduce here.

Let P1 = (x1, y1) and P2 = (x2, y2) be two different points on the Edwards
curve Ed. Let P1 + P2 = (x3, y3) and P1 − P2 = (x4, y4). The addition formula
on Edwards curves gives



y3(1− dx1x2y1y2) = y1y2 − x1x2,
y4(1 + dx1x2y1y2) = y1y2 + x1x2.

By multiplying the two equations above, we obtain

y3y4(1− d2x21x22y21y22) = y21y
2
2 − x21x22. (6)

Substitute x21 =
1−y2

1

1−dy2
1

and x22 =
1−y2

2

1−dy2
2
, and let yi = Yi/Zi for i = 1, 2, 3.

Then the equation (6) can be rewritten as,

Y3
Z3

= − (DY 2
1 Y

2
2 − CY 2

2 Z
2
1 − CY 2

1 Z
2
2 + CZ2

1Z
2
2 )Z4

(DY 2
1 Y

2
2 −DY 2

2 Z
2
1 −DY 2

1 Z
2
2 + CZ2

1Z
2
2 )Y4

(7)

where d = D/C. Using the equation (7), the doubling-and-addition for ladder
computation on an Edwards curve costs 13M+4S.

The j-invariant In SIDH, the j-invariant of the image curve EAB is used as
a shared secret between two parties. The j-invariant of an Edwards curve Ed is
defined as

j(Ed) =
16(C2 + 14CD +D2)3

CD(C −D)4

where d = D/C. The computational cost of the j-invariant is 3M+4S+1I,
where I refers to field inversion.

3.2 Isogenies on Edwards Curves

Projective 3-isogenies The formulas for odd-degree isogenies on Edwards
curves were first proposed by Moody and Shumow in [19]. They proposed a
’multiplicative’ isogeny formula on Edwards curves which resulted in better al-
gebraic complexity than ’additive’ form of Vélu’s formula. Let P = (α, β) be a
3-torsion point on an Edwards curve Ed. Then φ is a 3-isogeny from Ed to E′d
given by the equation,

ψ(x, y) =

(
x

β2

β2x3 − α2y2

1− d2α2β2x2y2
,
y

β2

β2y2 − α2x2

1− d2α2β2x2y2

)
,

where d′ = β8d3 and having
〈
P
〉

as a kernel. Later, Kim et al. optimized the
isogeny formula presented in [19] using projective coordinates, projective curve



coefficients, and division polynomial, for the use in the isogeny-based cryptosys-
tem [15]. Let P = (α, β) be a 3-torsion point on Edwards curve Ed, where
β = Y3/Z3. Let φ : Ed → Ed′ be a 3-isogeny generated by a kernel

〈
P
〉
, so

that Ed′ = Ed/
〈
P
〉
. Let (Y : Z) be the additional input and (Y ′ : Z ′) be its

corresponding image such that φ(Y : Z) = (Y ′ : Z ′). The projective version of
3-isogeny on Edwards curves is given as

(Y ′ : Z ′) = (Y (Z2Y 2
3 + 2Z2Y3Z3 + Y 2Z2

3 ) : Z(Z2Y 2
3 + 2Y 2Y3Z3 + Y 2Z2

3 )). (8)

The curve coefficients of the isogenous curve Ed′ are,

D′ = (Z3 + 2Y3)3Z3, C ′ = (2Z3 + Y3)3Y3, (9)

where d′ = D′/C ′. The computational cost for evaluating 3-isogeny and curve
coefficients is 6M+5S [15].

Projective 4-isogenies In [15], Kim et al. proposed 4-isogeny formula on Ed-
wards curves by exploiting the efficiency of transforming Edwards curves and
Montgomery curves. They combined the transformation between the two curves
and 4-isogeny on Montgomery curves.

Let P = (α, β) be a 4-torsion point on an Edwards curve Ed, where β =
Y4/Z4. Let φ : Ed → Ed′ be a 4-isogeny generated by a kernel

〈
P
〉
, so that Ed′ =

Ed/
〈
P
〉
. Let (Y : Z) be the additional input and (Y ′ : Z ′) be its corresponding

image such that φ(Y : Z) = (Y ′ : Z ′). The projective version of 4-isogeny on
Edwards curves is given as

Y ′ = (Z2Y 2
4 + Y 2Z2

4 )Y Z(Y4 + Z4)2,

Z ′ = (Z2Y 2
4 + Y 2Z2

4 )2 + 2Y 2Z2Y4Z4(Y 2
4 + Z2

4 ).
(10)

The curve coefficients of the isogenous curve Ed′ are,

D′ = 8Y4Z4(Y 2
4 + Z2

4 ),

C ′ = (Y4 + Z4)4. (11)

where d′ = D′/C ′. For the computational cost, we further optimized the
result presented in [15]. Algorithm 1 shows an efficient way to compute 4-isogeny
and its corresponding curve coefficients. The computational cost for Algorithm 1
is 6M+6S. The algorithm for computing 4-isogeny is presented in the appendix.

3.3 Summary on the Lower-level Functions

We compared the computational cost of point and isogeny operations on Mont-
gomery and Edwards curves in Table 1. The computational costs of 4-isogeny



(resp. 3-isogeny) represented in Table 1 is the combined computational costs of
get 4 isog and eval 4 isog (resp. get 3 isog and get 3 isog). As shown in
Table 1, except for the doubling and differential addition for computing Mont-
gomery ladder, operations on Edwards curves are as efficient as on Montgomery
curves.

Table 1: Computational costs of lower-level functions on Montgomery and Edwards
curves

Montgomery Curves Edwards Curves

Differential Addition 6M+4S 13M+4S

Doubling 4M+2S 5M+2S

4-isogeny 6M+6S 6M+6S

Tripling 7M+5S 7M+5S

3-isogeny 6M+5S 6M+5S

j-invariant 3M+4S+1I 3M+4S+1I

4 SIDH on Edwards Curves

In this section, we present the implementation result of SIDH entirely on Ed-
wards curves. From this section, the field K is fixed as K = Fp2 , where p is
prime, and Fp2 = Fp2 [X]/(X2 + 1). For the prime p, we used the 503-bit prime
p503 = 2250 · 3159 − 1 and the 751-bit prime p751 = 2372 · 3239 − 1, presented
in [1, 10], which aims at 128-bit and 192-bit security level, respectively.

4.1 Parameters for SIDH on Edwards curves

The starting curve of our implementation is the supersingular Edwards curve,

E−1/Fp2 : x2 + y2 = 1− x2y2.

This curve is birationally equivalent to the Montgomery curve M0,1 : y2 =
x3+x over Fp2 , which are used as a public curve in [1,10]. The reason for choosing
this curve is to compare the exact differences caused by isogeny computations
and elliptic curve arithmetic when using Edwards curves. As a result, the public
keys we used on the Edwards curve correspond to the public key used in [1,10].

4.2 Strategies on Edwards curves

The most expensive part when computing isogeny is the computation of the point
[`e−i−1]R for each iteration. Computing [`e−i−1]R costs at most e multiplication
by the scalar `, which is repeated e times. Therefore, naive implementation
requires a total of O(e2) operations. In [13], Jao, De Feo, and Plût proposed an
efficient way that decomposes isogeny computation which reduces to O(e log e)
multiplication by the scalar ` and `-isogeny evaluations.



Recall that computation of `e-isogeny is composed of e number of isogenies
of degree `. Computation of an `e-isogeny can be guided by a full binary tree
on e− 1 nodes, as depicted in Figure 2 in [13]. The goal is to compute all leaves
of a tree, namely, [`e−i−1]R for 0 ≤ i < e. Depending on the relative costs of
multiplication-by-` and `-isogeny evaluation, the algorithm moves along the left
edge or right edge and selects the optimal strategy. In [11], Costello et al. stored a
strategy in a list L of integers of length equal to the total number of leaves. The
i-th entry L[i] corresponds to the number of scalar-multiplication steps along
the left edge that are needed in a strategy of i leaves to reach the root of the
next sub-strategy. In [1], they stored a strategy by first labeling the node the
number of leaves to its right. Then, they stored the labels as they encountered
when walking the tree in depth-first left-first order.

To obtain the strategies on Edwards curves, we first computed the relative
costs of scalar multiplication-by-` and `-isogeny evaluation. The ratio between 4-
isogeny evaluation and multiplication-by-4 was (15, 494/2 ·10, 470), and the ratio
between 3-isogeny evaluation and multiplication-by-3 was (8, 856/17281). The
results were obtained on an Intel Core i7-6700 (Skylake) at 3.40 GHz, running
Ubuntu 16.04 LTS, averaging 106 executions. The results are represented in the
number of clock cycles. From these ratios, we obtained the strategies by using
the magma script provided in [10].

4.3 Computing isogenies

When computing the `e-degree isogeny, the public key of the opponents are also
evaluated for each iteration. In order to compute the ladder efficiently in the
key establishment stage of SIDH, not only the basis (P,Q) but their differences
P−Q are also considered and stored as a public key [1,10]. The implementations
in [1,10] first compute the coefficients of the isogenous curve and evaluate isogeny
on the public key (P,Q, P −Q) for 0 ≤ i < e. Therefore, it is efficient to split the
computation of `-degree isogeny in [15] and Algorithm 1 into the function where
it computes the coefficients, i.e. get ` isog, and the function where it evaluates,
i.e. eval ` isog as in [1, 10]. Since eval ` isog is called more than get ` isog
for each round, it is important to reduce the cost of the evaluation function for
a better performance.

4.4 Implementation Result

To evaluate the performance, the algorithms are implemented in C language.
We used the SIDH library version 3.0 for SIDH on Montgomery curves. To make
an exact comparison, the field operations implemented in the SIDH library were
used for both curves which are written in x64 assembly. As a result, the difference
in performance lies purely in the choice of the model of an elliptic curve. All cycle
counts were obtained on one core of an Intel Core i7-6700 (Skylake) at 3.40 GHz,
running Ubuntu 16.04 LTS. For compilation, we used GNU GCC version 5.4.0.

We first measure the field operations over Fp2 to examine the ratio between
each operation. To this end, each field operations were repeated 108 times for



each prime field. Table 2 summarizes the average cycle counts of field operations
over Fp2 .

Table 2: Cycle counts of the field operations over Fp2 .

Field size Addition Subtraction Multiplication Squaring Inversion

p503 48 40 530 448 119,389

p751 79 63 930 759 332,926

As in Table 2, 1S equals approximately 0.8M, for both 503-bit prime and
751-bit prime. Base on the above result, Table 3 shows the computational costs
and corresponding cycle counts of `-isogeny and multiplication-by-`, when us-
ing Montgomery curves and Edwards curves. For each operation, we report the
average cycles of 108 times. Note that the number of field multiplications and
squarings are identical on both curves except for the multiplication-by-2 map
(doubling). Therefore, to better represent the results, we also counted field ad-
ditions and subtractions. In Table 3, a (resp. s) refers to field addition (resp.
subtraction).

Table 3: Implementation results of operations on Montgomery curves and Edwards
curves (cc represents the number of clock cycles).

Montgomery Curve Edwards Curve (This Work)
p503 p751 p503 p751

Doubling
4M+2S 5M+2S

3,085 cc 5,594 cc 3,614 cc 6,541 cc

get 4 isog
4S+4a+1s 4S+2a+2s

1,926 cc 3,396 cc 1,888 cc 3,355 cc

eval 4 isog
6M+2S+3a+3s 6M+2S+4a+3s

4,145 7,498 cc 4,210 cc 7,670 cc

Tripling
7M+5S+3a+7s 7M+5S+4a+8s

6,043 cc 11,078 cc 6,326 cc 11,056 cc

get 3 isog
2M+3S+12a+3s 2M+3S+7a+4s

2,955 cc 5,157 cc 2,930 cc 4,890 cc

eval 3 isog
4M+2S+2a+2s 4M+2S+3a+3s

3,131 cc 5,478 cc 3,234 cc 5,602 cc

The get 4 isog and get 3 isog are a function that computes the coefficients
of the isogeneous curve. The eval 4 isog and eval 3 isog are a function that
evaluates the isogeny on a given input point. Combining the results from Table
2 and Table 3, Table 4 compares the performance of SIDH when using Edwards
curves and Montgomery curves.



Table 4: Performance results of SIDH implementation using Edwards and Montgomery
Curves. The results were rounded to the nearest 103 clock cycles.

Montgomery Curve [1] Edwards Curve (This Work)
p503 p751 p503 p751

Alice’s Keygen 7,818 21,792 9,023 24,671

Bob’s Keygen 8,762 24,780 9,427 26,397

Alice’s Shared Key 6,413 17,870 7,672 21,990

Bob’s Shared Key 7,396 21,322 8,033 22,664

Total 30,389 85,764 34,155 95,668

Remark. The SIDH implementation on Edwards curves might be improved
when using the addition chain proposed in [4] to compute the kernels instead of
the Montgomery ladder.

5 Montgomery-Edwards Hybrid SIDH

Due to the differential addition and doubling on Edwards curves, implementing
SIDH using Edwards curves does not result in faster computation. However, as
demonstrated in Section 3, some combination of the use of Montgomery and Ed-
wards curves might speed-up the current result. In this section, we present the
most optimal hybrid SIDH method that efficiently combines the usage of both
curves. We deduce our result by measuring the performance of various combi-
nations. As denoted in Table 1 and Table 3, Montgomery curves provides fast
elliptic curve arithmetic while Edwards curves provide fast isogeny computation.

5.1 Switching between Montgomery and Edwards curves

In this subsection, we analyze the additional cost required during the transforma-
tion process. When converting between two curves, the conversion of the curve
coefficients should also be considered. Let AM , BM , and CM be the projective
curve coefficients of the Montgomery curve MAM :BM :CM

and DE and CE be the
projective curve coefficients of the corresponding Edwards curve ECE :DEx. For-
tunately, the arithmetic on Montgomery curve uses only the curve coefficients
AM and CM , which correspond to Edwards curve coefficients CE and DE . In-
stead of storing AM and CM , the implementation in [1,10] stores AM +2CM and
4CM for doubling and AM +2CM and AM −2CM for tripling, for computational
efficiency.

Montgomery to Edwards Since the conversion of a Montgomery curve to an
Edward curve only occurs after elliptic curve point operations in our setting,
we solely consider the case. Let (XM : ZM ) be the projective point on a Mont-
gomery curve MAM :BM :CM

and (YE : ZE) be the projective point on an Edwards



curve ECE :DE
. The transformation from Montgomery curve to Edwards curve

on Alice’s side is as follows:

(XM : ZM )→ (YE : ZE) = (XM − ZM : XM + ZM )

(A′ : C ′)→ (CE : DE) = (A′ : A′ − C ′)

where A′ = AM + 2CM and C ′ = 4CM .
The transformation from Montgomery curve to Edwards curve on Bob’s side

is as follows:

(XM : ZM )→ (YE : ZE) = (XM − ZM : XM + ZM )

(A′ : C ′)→ (CE : DE) = (A′ : C ′)

where A′ = AM + 2CM and C ′ = AM − 2CM . There is no additional cost in the
conversion of the curve coefficients.

Edwards to Montgomery Since the conversion of an Edwards curve to a
Montgomery curve only occurs after evaluating isogenies in our setting, we solely
consider the case. Let (XM : ZM ) be the projective point on a Montgomery
curve MAM :BM :CM

and (YE : ZE) be the projective point on an Edwards curve
ECE :DE

. The transformation from an Edwards curve to a Montgomery curve on
Alice’s side is as follows:

(YE : ZE)→ (XM : ZM ) = (YE − ZE : ZE − YE)

(CE : DE)→ (A′ : C ′) = (4CE : 4(CE −DE))

where A′ = AM + 2CM and C ′ = 4CM .
The transformation from an Edwards curve to a Montgomery curve on Bob’s

side is as follows:

(YE : ZE)→ (XM : ZM ) = (YE − ZE : ZE − YE)

(CE : DE)→ (A′ : C ′) = (4CE : 4DE)

where A′ = AM + 2CM and C ′ = AM − 2CM . However, converting points on
Edwards curves to the corresponding Montgomery curves after evaluating iso-
genies requires no additional cost due to the computational structure presented
in [15] and in Algorithm 1. Rather, it reduces the computational cost of isogeny
functions. For example, in Algorithm 1, to compute the image (Y ′ : Z ′) on a
isogenous curve, the algorithms computes F = Y ′ + Z ′ and G = Y ′ − Z ′ and
obtain Y ′ and Z ′. By omitting the Step 22 and 23 and changing the Step 19 into
t6 − t2, the outputs are the image of an input point on a corresponding Mont-
gomery curve. Therefore, the cost of computing isogenies is reduced by 1a+1s
on Edwards curves in the hybrid setting.



The Algorithm 2 in appendix, describes ways to compute curve coefficients
of the 3-isogenous image curve, given 3-torsion points on an Edwards curve. Let
P = (Y3 : Z3) be a 3-torsion point on an Edwards curve Ed and φ : Ed → Ed′ ,
where kerφ = 〈P 〉. The Algorithm 2 outputs curve coefficients of a Montgomery
curve Ma,b, where Ma,b is birationally equivalent to Ed′ . For additional curve
point Q = (Y : Z) on an Edwards curve Ed, The Algorithm 3 outputs Q′ = (X ′ :
Z ′) on a Montgomery curve Ma,b. Similarily, the Algorithm 4 describes ways to
compute curve coefficients of the 4-isogenous image curve, given 4-torsion points
on an Edwards curve. Let P = (Y4 : Z4) be a 4-torsion point on an Edwards
curve Ed and φ : Ed → Ed′ , where kerφ = 〈P 〉. The Algorithm 4 outputs curve
coefficients of a Montgomery curve Ma,b, where Ma,b is birationally equivalent
to Ed′ . For additional curve point Q = (Y : Z) on an Edwards curve Ed, The
Algorithm 5 outputs Q′ = (X ′ : Z ′) on a Montgomery curve Ma,b.

5.2 Implementation results of hybrid SIDH

As analyzed in Table 1 and Table 3, Montgomery curves provide fast elliptic
curve arithmetic while Edwards curves provide fast isogeny computation. Ad-
ditionally, the conversion between Montgomery curve and Edwards curves is
almost cost-free and has a particular advantage when transforming Edwards
curves to Montgomery curves. Therefore, we can think of a hybrid method that
exploits the merits of each curve. In order to evaluate the best combination, we
implemented the SIDH in 2 additional ways.

Montgomery-only-for-ladder This implementation computes the kernel 〈P+
[m]Q〉 on Montgomery curves and other operations on Edwards curves. Since Bob
repeats the same operation as Alice in the SIDH protocol, we shall describe the
implementation on Alice’s side.

On the choice of her secret key mA, Alice first computes the kernel 〈PA +
[mA]QA〉 on a Montgomery curve. Alice then converts her kernel as well as Bob’s
public key (PB , QB , PB −QB) to points on an Edwards curve. The `eAA -isogeny
is computed on Edwards curves. The results are converted back to points on a
Montgomery curve. Upon the receiving of (EB , φB(PA), φB(QA), φB(PA−QA))
from Bob, Alice again computes 〈φB(PA) + [mA]φB(QA)〉 on a Montgomery
curve and converts to point on the corresponding Edwards curves. As the j-
invariant is used as a shared secret, converting back to Montgomery curves is
not required. The shared secret is the j-invariant of EAB in Edwards form.

Our implementation used E−1 : x2 + y2 = 1 − x2y2 and M0,1 : y2 = x3 + x
over Fp2 as the base curves. For the efficiency, Alice’s and Bob’s public key
(PA, QA, PA−QA) and (PB , QB , PB−QB) may already be converted into points
on the Edwards curve, E−1 : x2 + y2 = 1− x2y2.

Edwards-only-for-isogeny This implementation exploits the efficiency of isogeny
computation on Edwards curves. The Edwards-only-for-isogeny method com-
putes the entire isogenies on Edwards curves and the entire points operations on



Montgomery curves. Since Bob repeats the same operation as Alice in the SIDH
protocol, we shall describe the implementation on Alice’s side.

On the choice of her secret key mA, Alice first computes the kernel 〈R〉 =
〈PA + [mA]QA〉 on a Montgomery curve. Alice then converts Bob’s public key
(PB , QB , PB−QB) to points on an Edwards curve. The computation of [`e−i−1]R
is obtained using Montgomery curves. The results are converted to points on
Edwards curves and isogeny computations on [`e−i−1]R,PB , QB , and PB −QB

for each i are followed. After isogeny computations, the points are converted
back to points on a Montgomery curve. Upon receiving points from Bob, Alice
follows the identical conversion step and computes the shared secret.

Identical to the previous implementation, we used E−1 : x2 + y2 = 1− x2y2
and M0,1 : y2 = x3 + x over Fp2 as the base curves. For the efficiency, Alice’s
and Bob’s public key (PA, QA, PA − QA) and (PB , QB , PB − QB) may already
be converted into points on the Edwards curve, E−1 : x2 + y2 = 1− x2y2.

Implementation results In the Edwards-only-for-isogeny implementation, the
multiplication-by-` is computed on Montgomery curves and isogeny is evalu-
ated on Edwards curves. Therefore, a new strategy is needed for Edwards-only-
for-isogeny implementation. The Table 5 compares the relative costs of scalar
multiplication-by-` and `-isogeny evaluation. The Alice in Table 5 represents
the ratio between 4-isogeny evaluation and multiplication-by-4. The Bob in Table
5 represents the ratio between 3-isogeny evaluation and multiplication-by-3. The
results were obtained by averaging 106 executions. Base on this ratio, the strat-
egy for the hybrid SIDH was obtained by running the magma script provided
in [10].

Table 5: Relative cost of scalar multiplication and isogeny evaluation on various cir-
cumstances.

Montgomery Curve Edwards Curve Edwards-to-Montgomery
p503 p751 p503 p751 p503 p751

Alice 0.59 0.67 0.57 0.58 0.60 0.67

Bob 0.51 0.49 0.52 0.49 0.52 0.50

The Table 6 shows the computational costs of key generation stage in SIDH
on Montgomery curves presented in [10], and the hybrid methods described in
Section 5.2.1 and Section 5.2.2. The computational costs and the form of the
elliptic curve used in the computation are analyzed in Table 6. The Mont. and
Ed. represent Montgomery curves and Edwards curves, respectively. In Table 6,
the computational cost of Kernel means the computational cost of differential
addition.

In Montgomery-only-for-ladder implementation (Section 5.2.1), the transfor-
mation from a Montgomery curve to an Edwards curve only occurs after comput-



ing the kernel, 〈PA+[mA]QA〉 (or 〈PB+[mB ]QB〉 for Bob). In Edwards-only-for-
isogeny implementation (section 5.2.2), the transformation from a Montgomery
curve to an Edwards curve occurs after doubling or tripling. The transformation
from an Edwards curve to a Montgomery curve occurs after isogeny evaluation
in order to perform doubling or tripling on next iteration. The computational
cost of curve conversion is included when computing isogenies and coefficients
of the image curve and its method is detailed in Algorithm 2 to Algorithm 5.

Table 6: Computational cost of key generation stage in SIDH on various circumstances.

[10] 5.2.1 5.2.2

Alice

Kernel
6M+4S 13M+4S 6M+4S
Mont. Mont. Mont.

Curve Conversion - 1s -
Point Conversion - 1a+1s -

Doubling
4M+2S 5M+2S 4M+2S
Mont. Ed. Mont.

Curve Conversion - - 1s
Point Conversion - - 1a+1s

get 4 isog
4S+4a+1s 4S+2a+2s 4S+4a+1s
Mont. Ed. Ed.

eval 4 isog
6M+2S+3a+3s 6M+2S+4a+3s 6M+2S+3a+2s
Mont. Ed. Ed.

Bob

Kernel
6M+4S 13M+4S 6M+4S
Mont. Mont. Mont.

Curve Conversion - - -
Point Conversion - 1a+1s -

Tripling
7M+5S+3a+7s 7M+5S+4a+8s 7M+5S+3a+7s
Mont. Ed. Mont.

Curve Conversion - - -
Point Conversion - - 1a+1s

get 3 isog
2M+3S+12a+3s 2M+3S+7a+4s 2M+3S+8a+4s
Mont. Ed. Ed.

eval 3 isog
4M+2S+2a+2s 4M+2S+3a+3s 4M+2S+2a+2s
Mont. Ed. Ed.

The results of the implementations are organized in Table 7. For each im-
plementation, we report the average cycles of 108 times. The roman number I
refers to SIDH implementation entirely on Montgomery curves and II refers to
SIDH implementation entirely on Edwards curves. The roman number III and
IV refers to Montgomery-only-for-ladder implementation and Edwards-only-for-
isogeny implementation, respectively.



Table 7: Performance results of the hybrid SIDH implementation. The results were
rounded to the nearest 103 clock cycles.

I II III IV
p503 p751 p503 p751 p503 p751 p503 p751

Alice’s Keygen 7,712 21,820 8,878 24,769 8,245 23,002 7,660 21,583

Bob’s Keygen 8,610 24,755 9,305 26,495 8,658 24,634 8,569 24,331

Alice’s Shared Key 6,302 17,965 7,401 20,912 6,809 19,358 6,252 17,947

Bob’s Shared Key 7,498 21,129 8,169 22,599 7,398 20,947 7,389 20,794

Total 30,122 85,669 33,753 94,775 32,110 87,941 29,870 84,655

As shown in Table 7, IV which uses Montgomery curves for elliptic curve
arithmetic and Edwards curves for isogeny computation is faster than any other
hybrid method. The implementation IV is 0.83% and 1.18% faster than the im-
plementation using only Montgomery curve (i.e. I) on p503 and p751, respectively.
The reason is that computational costs of get 3 isog and eval 4 isog is re-
duced in IV. Although the reduction is minimal, since the functions are called
multiple times this resulted in an increase in the overall speed. Therefore, for
a better performance in hybrid SIDH setting, it is recommended to use Mont-
gomery curves for point operations and Edwards curves for computing isogenies.

6 Conclusion and Future Work

In this paper, we proposed the new hybrid method for SIDH implementation.
Although using Edwards curves does not result in better SIDH performance,
we noticed that Edwards curves have an advantage on isogeny computation and
examined the optimal combination of using Montgomery and Edwards curves
through various experiments. We demonstrated that using Montgomery curve
for elliptic curve arithmetic and Edwards curves for isogeny is faster than cur-
rently proposed hybrid method. We believe that we were the first to propose such
a hybrid SIDH method which uses Edwards curves. Moreover, compared with
the standard SIDH, our Montgomery-Edwards hybrid SIDH is faster than the
standard SIDH by 0.83% and 1.18% for 128-bit and 192-bit security level, respec-
tively. The proposed hybrid method in this paper is meaningful in two ways – i)
its speed is as fast as the current state-of-the-art implementation, ii) it is faster
than previously proposed Montgomery-twisted Edwards version of hybrid SIDH.
We emphasize the fact that using Edwards curves on isogeny-based cryptosys-
tem can be quite practical. Additionally, since currently proposed isogeny-based
cryptosystems have the same structure as in SIDH, our implementation results
can also be applied.

References

1. Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Jalali, A.,
Jao, D., Koziel, B., LaMacchia, B., Longa, P., et al.: Supersingular isogeny key



encapsulation. submission to the nist post-quantum standardization project, 2017
2. Azarderakhsh, R., Koziel, B., Langroudi, S.H.F., Kermani, M.M.: Fpga-sidh: High-

performance implementation of supersingular isogeny diffie-hellman key-exchange
protocol on fpga. IACR Cryptology ePrint Archive 2016, 672 (2016)

3. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted edwards
curves. In: International Conference on Cryptology in Africa. pp. 389–405. Springer
(2008)

4. Bos, J., Friedberger, S.: Arithmetic considerations for isogeny based cryptography.
IEEE Transactions on Computers (2018)

5. Bos, J.W., Costello, C., Longa, P., Naehrig, M.: Selecting elliptic curves for cryptog-
raphy: An efficiency and security analysis. Journal of Cryptographic Engineering
6(4), 259–286 (2016)

6. Bröker, R.: Constructing supersingular elliptic curves. J. Comb. Number Theory
1(3), 269–273 (2009)

7. Castryck, W., Galbraith, S.D., Farashahi, R.R.: Efficient arithmetic on ellip-
tic curves using a mixed edwards-montgomery representation. IACR Cryptology
ePrint Archive 2008, 218 (2008)

8. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum
subexponential time. Journal of Mathematical Cryptology 8(1), 1–29 (2014)

9. Costello, C., Hisil, H.: A simple and compact algorithm for sidh with arbitrary
degree isogenies. In: International Conference on the Theory and Application of
Cryptology and Information Security. pp. 303–329. Springer (2017)

10. Costello, C., Longa, P., Naehrig, M.: Sidh library (2016)
11. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny

diffie-hellman. In: Annual Cryptology Conference. pp. 572–601. Springer (2016)
12. Couveignes, J.M.: Hard homogeneous spaces. IACR Cryptology ePrint Archive

2006, 291 (2006)
13. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular

elliptic curve isogenies. In: International Workshop on Post-Quantum Cryptogra-
phy. pp. 19–34. Springer (2011)

14. Justus, B., Loebenberger, D.: Differential addition in generalized edwards coordi-
nates. In: International Workshop on Security. pp. 316–325. Springer (2010)

15. Kim, S., Yoon, K., Kwon, J., Hong, S., Park, Y.H.: Efficient isogeny computations
on twisted edwards curves. Security and Communication Networks 2018 (2018)

16. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Mozaffari-Kermani, M.: Neon-
sidh: efficient implementation of supersingular isogeny diffie-hellman key exchange
protocol on arm. In: International Conference on Cryptology and Network Security.
pp. 88–103. Springer (2016)

17. Meyer, M., Reith, S., Campos, F.: On hybrid sidh schemes using edwards and
montgomery curve arithmetic

18. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Mathematics of computation 48(177), 243–264 (1987)

19. Moody, D., Shumow, D.: Analogues of vélu’s formulas for isogenies on alternate
models of elliptic curves. Mathematics of Computation 85(300), 1929–1951 (2016)

20. Seo, H., Liu, Z., Longa, P., Hu, Z.: Sidh on arm: Faster modular multiplications
for faster post-quantum supersingular isogeny key exchange

21. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Adv. in Math. of Comm. 4(2), 215–235
(2010)

22. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sc. Paris. 273, 238–241
(1971)



I Appendix

Algorithm 1 Computing 4-isogeny on Edwards curves

Require: 4-torsion point P = (Y4 : Z4) and a curve point Q = (Y : Z) on Ed

Ensure: Image point Q′ = (Y ′ : Z′) on Ed′ and curve coefficients C′, D′ of the image
curve Ed′ where d′ = D′/C′

1: t0 ← Y · Z // t0 = Y Z
2: t1 ← Y4 + Z4 // t1 = Y4 + Z4

3: t1 ← t21 // t1 = (Y4 + Z4)2

4: c1 ← Y4 − Z4 // c1 = Y4 − Z4

5: c1 ← c21 // c1 = (Y4 − Z4)2

6: t2 ← t1 + c1 // t2 = 2(Y 2
4 + Z2

4 )
7: C′ ← t21 // C′ = (Y4 + Z4)4

8: D′ ← c21 // D′ = (Y4 − Z4)4

9: D′ ← C′ −D′ // D′ = 8Y4Z4(Y 2
4 + Z2

4 )
10: t2 ← t0 · t2 // t2 = 2Y Z(Y 2

4 + Z2
4 )

11: t0 ← Y · Z4 // t0 = Y Z4

12: t1 ← Z · Y4 // t1 = ZY4

13: t3 ← t0 + t1 // t3 = Y Z4 + ZY4

14: t4 ← t0 − t1 // t4 = Y Z4 − ZY4

15: t3 ← t23 // t3 = (Y Z4 + ZY4)2

16: t4 ← t24 // t4 = (Y Z4 − ZY4)2

17: t6 ← t3 + t4 // t6 = 2(Y 2Z2
4 + Z2Y 2

4 )
18: t0 ← t2 + t6 // t0 = 2Y Z(Y 2

4 + Z2
4 ) + 2(Y 2Z2

4 + Z2Y 2
4 )

19: t1 ← t2 − t6 // t1 = 2Y Z(Y 2
4 + Z2

4 )− 2(Y 2Z2
4 + Z2Y 2

4 )
20: t0 ← t0 · t3
21: t1 ← t1 · t4
22: Y ′ ← t0 + t1
23: Z′ ← t0 − t1
24: return Y ′, Z′, C′, D′



Algorithm 2 Computing 3-isogeny on Edwards curves

Require: 3-torsion point P = (Y3 : Z3) on an Edwards curve Ed

Ensure: The 3-isogenous Montgomery curve with projective curve coefficients
CM/DM where CM = A′ + 2C′ and DM = A′ − 2C′.

1: t0 ← Y3 + Z3 // t0 = Y3 + Z3

2: t0 ← t20 // t0 = (Y3 + Z3)2

3: t0 ← t0 + t0 // t0 = 2(Y3 + Z3)2

4: t1 ← Y 2
3 // t1 = Y 2

3

5: t2 ← Z2
3 // t2 = Z2

3

6: t3 ← t1 + t1 // t3 = 2Y 2
3

7: t4 ← t2 + t2 // t4 = 2Z2
3

8: t6 ← t0 − t3 // t6 = 2Z2
3 + 4Y3Z3

9: t5 ← t0 − t4 // t5 = 2Y 2
3 + 4Y3Z3

10: DM ← t0 + t3 − t2 // DM = (Z3 + 2Y3)2

11: CM ← t0 + t4 − t1 // CM = (Y3 + 2Z3)2

12: DM ← DM · t6 // DM = 2(Z3 + 2Y3)3Z3

13: CM ← CM · t5 // CM = 2(Y3 + 2Z3)3Y3

14: CM ← CM + CM

15: DM ← DM +DM

16: return CM , DM

Algorithm 3 Evaluating 3-isogeny on Edwards curves

Require: 3-torsion point P = (Y3 : Z3) and a curve point Q = (Y : Z) on Ed

Ensure: Image point Q′ = (X ′ : Z′) on the image curve Ma,b birationally equivalent
to φ(Ed)

1: t0 ← Y3 · Z // t0 = Y Z3

2: t1 ← Z3 · Y // t1 = ZY3

3: t2 ← t0 + t1 // t2 = Y Z3 + ZY3

4: t3 ← Y + Z // t3 = Y + Z
5: t2 ← t22 // t2 = (Y Z3 + ZY3)2

6: X ′ ← t2 · t3 // X ′ = (Y + Z)(ZY3 + Y Z3)2

7: t0 ← t0 − t1 // t0 = Y Z3 − ZY3

8: t0 ← t20 // t0 = (Y Z3 − ZY3)2

9: t1 ← Z − Y
10: Z′ ← t0 · t1 // Z′ = (Z − Y )(ZY3 − Y Z3)2

11: return X ′, Z′



Algorithm 4 Computing 4-isogeny on Edwards curves

Require: 4-torsion point P = (Y4 : Z4) on an Edwards curve Ed

Ensure: The 4-isogenous Montgomery curve with projective curve coefficients
CM/DM where CM = A′ + 2C′ and DM = 4C′ with coefficients c0 that are used
to evaluate the 4-isogeny

1: CM ← Y4 + Z4 // CM = Y4 + Z4

2: CM ← C2
M // CM = (Y4 + Z4)2

3: t1 ← Y4 − Z4 // t1 = Y4 − Z4

4: t1 ← t21 // t1 = (Y4 − Z4)2

5: c0 ← CM + t1 // c0 = 2(Y 2
4 + Z2

4 )
6: CM ← CM + CM // CM = 2(Y4 + Z4)2

7: t1 ← t1 + t1 // t1 = 2(Y4 − Z4)2

8: CM ← C2
M // CM = 4(Y4 + Z4)4

9: DM ← t21 // DM = 4(Y4 − Z4)4

10: return CM , DM , c0

Algorithm 5 Evaluating 4-isogeny on Edwards curves

Require: 4-torsion point P = (Y4 : Z4), a curve point Q = (Y : Z) on Ed and c0
computed from Algorithm 4.

Ensure: Image point Q′ = (X ′ : Z′) on the image curve Ma,b birationally equivalent
to φ(Ed)

1: t0 ← Y · Z // t0 = Y Z
2: t2 ← c0 · t0 // t2 = 2Y Z(Y 2

4 + Z2
4 )

3: t0 ← Y · Z4 // t0 = Y Z4

4: t1 ← Z · Y4 // t1 = ZY4

5: t3 ← t0 + t1 // t3 = Y Z4 + ZY4

6: t4 ← t0 − t1 // t4 = Y Z4 − ZY4

7: t3 ← t23 // t3 = (Y Z4 + ZY4)2

8: t4 ← t24 // t4 = (Y Z4 − ZY4)2

9: t5 ← t3 + t4 // t5 = 2(Y 2Z2
4 + Z2Y 2

4 )
10: t0 ← t2 + t5 // t0 = 2Y Z(Y 2

4 + Z2
4 ) + 2(Y 2Z2

4 + Z2Y 2
4 )

11: t1 ← t5 − t2 // t1 = 2(Y 2Z2
4 + Z2Y 2

4 )− 2Y Z(Y 2
4 + Z2

4 )
12: X ′ ← t0 · t3
13: Z′ ← t1 · t4
14: return X ′, Z′


