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ABSTRACT
We introduce BitML, a domain-specific language for specifying

contracts that regulate transfers of bitcoins among participants,

without relying on trusted intermediaries. We define a symbolic

and a computational model for reasoning about BitML security. In

the symbolic model, participants act according to the semantics of

BitML, while in the computational model they exchange bitstrings,

and read/append transactions on the Bitcoin blockchain. A compiler

is provided to translate contracts into standard Bitcoin transactions.

Participants can execute a contract by appending these transactions

on the Bitcoin blockchain, according to their strategies. We prove

the correctness of our compiler, showing that computational attacks

on compiled contracts are also observable in the symbolic model.

CCS CONCEPTS
• Security and privacy → Distributed systems security; For-
mal security models; Security protocols;
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Bitcoin; smart contracts; process calculi

1 INTRODUCTION
Cryptocurrencies like Bitcoin and Ethereumhave revived the idea of

smart contracts — agreements between untrusted parties that can be

automatically enforced without a trusted intermediary [58]. These

agreements regulate cryptocurrency exchanges among participants:

for instance, a lottery collects bets from players, determines the

winner in a fair manner, and then transfers the pot to the winner.

Disintermediation is made possible by the blockchain, a public,
append-only record of transactions, and by the consensus protocol
followed by the nodes to update the blockchain [27]. The execution

of smart contracts relies on the blockchain to log all the participants’

moves; further, the underlying logic of transactions is exploited

to enable all and only the moves permitted by the contract. The

consensus protocol is used to consistently update the blockchain:

suitable economic incentives ensure that the nodes of the network

have the same view of the blockchain. In this way, the state of

each contract (and consequently, the asset of each user) is uniquely

determined by the sequence of its transactions on the blockchain.

Smart contracts have different incarnations, depending on the

platform on which they are based. In Ethereum, they are expressed

as programs in a Turing-equivalent bytecode language. Any user

can publish a contract on the blockchain. This makes the contract

available to other users, who can then run it by calling its functions

(concretely, by publishing suitable transactions on the blockchain).

Such openness comes at the price of a wide attack surface: attackers

may exploit vulnerabilities in the implementation of contracts, or

may publish themselves Trojan-horses with hidden vulnerabilities,

to steal or tamper with the assets controlled by contracts. Indeed,

a series of vulnerabilities in Ethereum contracts [14] have caused

losses in the order of hundreds of millions of USD [4, 6, 7].

Unlike Ethereum, Bitcoin does not provide a language for smart

contracts: rather, in literature they are expressed as cryptographic

protocols where participants send/receive/sign messages, verify

signatures, and put/search transactions on the blockchain [15].

Lotteries [11, 20, 22, 47], gambling games [42], micro-payment

channels [31, 48, 54], contingent payments [18, 32, 46], and more

general fair multi-party computations [12, 41] witness the variety

of smart contracts supported by Bitcoin.

Describing smart contracts at this level of abstraction is complex

and error-prone. Indeed, establishing the correctness of a smart con-

tract requires to prove the computational security of a cryptographic
protocol, where — besides the usual primitives — participants can

craft Bitcoin transactions and interact with the Bitcoin network.

Further, these protocols often rely on advanced features of Bitcoin

(e.g., transaction scripts, signature modifiers, segregated witnesses),

whose actual behaviour relies on low-level implementation details.

The task of proving the security of such kind of protocols requires

the skills of expert cryptographers, and even in this case it is a

significant effort. By contrast, working in an high-level symbolic
model would relieve smart contract programmers from (most of)

this burden, since the much higher level of abstraction would allow

security proofs to be carried out with automatic tools.

Contributions. We introduce BitML (after “Bitcoin Modelling

Language”), a domain-specific language for Bitcoin smart contracts.

BitML is a process calculus, with primitives to stipulate contracts

and to exchange currency according to the contract terms. In this

respect, BitML departs from the current practice of representing

Bitcoin contracts as cryptographic protocols: rather, BitML pioneers

the “contracts-as-programs” paradigm for Bitcoin, by completely

abstracting from Bitcoin transactions and cryptographic details.

Despite the high level of abstraction, BitML can express most of the

Bitcoin smart contracts proposed so far [15], e.g. escrow services,

timed commitments, lotteries, gambling games, etc. The operational

semantics of BitML allows for reasoning about the behaviour of

these contracts in a symbolic setting, where the underlying cryp-
tography and Bitcoin machinery are abstracted away.

One of our main contributions is a compiler to translate BitML

contracts into standard Bitcoin transactions. Participants can per-

form the contract actions by publishing the corresponding trans-

actions on the blockchain. The crucial technical challenge is to

guarantee the correctness of the compiler, i.e. that the “symbolic”

execution of the contract matches the “computational” one per-

formed on Bitcoin. This correspondence must hold also in the pres-

ence of computational adversaries: otherwise, attacks at the Bitcoin

level could be unobservable at the level of the symbolic semantics.

We establish the correctness of the BitML compiler through a

computational soundness theorem [9]. More specifically, we prove

that if honest participants use compiler-generated transactions,
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then the actual Bitcoin executions resulting from their interaction

with computational adversaries will have a symbolic counterpart

as a BitML execution (with overwhelming probability). Basically,

this implies that computational attacks to compiled contracts in

Bitcoin are also observable in the symbolic semantics of BitML. A

practical consequence of this result is that proofs of trace-based

security properties carried out in the symbolic model can be lifted

for free to the computational model. This result is crucial, since it

enables the development of analysis and verification techniques

at the symbolic level, which would be much more burdensome to

obtain at the (far more concrete) computational level.

2 OVERVIEW OF THE APPROACH
In this section we overview our approach, introducing its main com-

ponents, and discussing the relations among them. In particular,

we provide a gentle introduction to BitML, illustrating its expres-

siveness through a series of examples. We then discuss the main

results of the paper, illustrating their practical consequences.

BitML in a nutshell. In BitML, contracts allow participants to

interact according to the following workflow. First, a participant

broadcasts a contract advertisement {G }C . The component C is the

contract, which specifies the rules to transfer bitcoins (B) among

participants. The component G is a set of preconditions to its exe-

cution: roughly, it requires participants to deposit some B, either

upfront or during the contract execution, and to commit to some

secrets. Participants can then choose whether to accept the adver-

tisement, or not. When all the involved participants have accepted

{G }C , satisfying its preconditions, the contract C becomes stipu-

lated. Only at this point, participants can transfer the deposited

funds by acting as prescribed byC . OnceC is stipulated, it starts its

execution with a balance, initially set to the sum of the deposits in

its advertisement. The execution ofC will affect this balance, when

participants deposit/withdraw funds to/from the contract.

As a first example, assume a buyer A who wants to buy an item

from a seller B. The participants want to use a contract to ensure

that B will get paid if and only if A gets her item. Assuming the

cost of the item is 1B, the contract precondition G = A:! 1B @x
requires A to provide a 1B deposit (where x is the deposit name),

which will be transferred to B only after A’s consent. The contract
has two mutually exclusive clauses (separated by +):

PayOrRefund = A : withdraw B + B : withdraw A

The first clause allows B to withdraw 1B from the contract, if A
provides her authorization (denoted by A : · · ·). Instead, the second
clause allows A to get back her deposit upon B’s authorization (e.g.,

in case B acknowledges a problem with the shipment).

Note that the above contract gives little guarantees when the

participants dishonestly deny their authorization: in particular, A
can receive the item and then prevent B from withdrawing the

payment, while B can freeze A’s deposit without shipping the item.

A less naïve contract should guarantee that, even if A or B are

dishonest, exactly one of them will be able to redeem the deposit.

To ensure this property, we resort to a mediator M who resolves

disputes between A and B. Assuming that the mediator takes a fee

of 0.1B (cut down from A’s deposit), we can craft the following:

Escrow = PayOrRefund + A : Resolve0.1,0.9 + B : Resolve0.1,0.9

Resolvev,v ′ = split(vB→ withdraw M

| v ′B→ M : withdraw A +M : withdraw B )

Besides the two clauses in PayOrRefund, the contract Escrow fea-

tures two additional clauses, which allow A and B to trigger the

dispute resolution, specified by Resolve. The two parallel clauses

therein split the 1B deposit in two parts: 0.1B go to the mediator,

while 0.9B are assigned either to A and B, depending onM’s choice.

BitML contracts feature other primitives besides those seen so

far: for instance, they can express time constraints, and allow par-

ticipants to choose/reveal secrets. We show these features to model

a timed commitment protocol [12, 26, 35, 57]. There, a participant
A wants to choose a secret, and reveal it after some time t — guar-

anteeing that the revealed value is the chosen secret. We force A to

pay to another participant B a penalty of 1B if A does not reveal the

secret within t . In the contract precondition, A declares a deposit

of 1B, and a secret with name a . The contract is the following:

TC = (reveala . withdraw A ) + (after t : withdraw B )

Only A can choose the first clause, by revealing a . When doing so,

A can take her 1B deposit back. After the deadline t , B can choose

the second clause, and collect A’s penalty. Before t , A has the option

to reveal a (avoiding the penalty), or to keep it secret (paying the

penalty). As a borderline case, if A reveals a after t , a race condition
occurs: the first one who makes a step gets the money.

Timed commitment contracts like the one above are the basis

upon which constructing complex contracts which distribute bit-

coins according to values chosen by participants (e.g., gambling

games, lotteries, etc.). For instance, consider a simple “odds and

evens” game between two players. The contract preconditions re-

quire A and B to commit to one secret each (a and b , respectively),
and to put a deposit of 3B each (1B as a bet, and 2B as a penalty in

case of dishonest behaviour). The contract is the following:

OddsEvens = split(
2B→ revealb if 0 ≤ |b | ≤ 1. withdraw B
+ after t : withdraw A

| 2B→ reveala . withdraw A + after t : withdraw B
| 2B→ reveala b if |a | = |b |. withdraw A
+ reveala b if |a | , |b |. withdraw B )

The balance is split in three parts. Player B must reveal b by the

deadline t ; otherwise, A can redeem B’s penalty (as in the timed

commitment). Similarly, A must reveal a . To determine the winner

we compare the lengths of the secrets, in the third clause of split.
The winner isA if the secrets have the same length, otherwise it is B.
Checking thatb ’s length is either 0 or 1 (in the first clause) is needed
to achieve fairness: indeed, B can increase his probability to win 2B

in the third clause by choosing a secret with lengthN > 1. However,

doing so would make B lose his 2B deposit, so overall B’s average
payoff would be negative. So, a rational B would then choose a

secret of length 0 or 1 — as well as a rational A, who otherwise

decreases her probability to win. When both lengths are 0 or 1, A
and B can redeem their 2B penalty, and have a 1/2 probability to

win, if at least one of them chooses the length uniformly.
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The last primitive we present is putx , which allows a participant
to provide a “volatile” deposit x after stipulation. We illustrate it in

a variant of Escrow, where both A and B contribute to the fee for

the mediator, only if they do not agree within PayOrRefund:

EscrowPut = PayOrRefund + after t : withdraw B

+ putx . (puty . Resolve0.2,1 + after t ′ : withdraw A )

As a precondition, we assume that A and B declare additional

volatile 0.1B deposits (respectively, x and y). If they disagree, A has

to pay her deposit before time t , otherwise B can withdraw A’s 1B
deposit. The same for B, which must pay his 0.1B deposit before

t ′ > t . After that, they invoke Resolve, paying 0.2B to the mediator,

and assigning 1B to the winner of the dispute.

Symbolic model. To reason about the security of BitML, we in-

troduce two security models: a symbolic model and a computational

one. The symbolic model is based on the semantics of BitML, which

abstracts from Bitcoin and its blockchain. In this model, partici-

pants are represented as strategies (formally, PPTIME algorithms)

which allow them to choose which actions to perform, in any given

state. Each honest participant has its own strategy, while the dis-

honest ones are collectively represented as a single adversarial

strategy. Strategies can read the current BitML configuration — a

public, shared state — and output actions which determine the next

state. Further, the adversary strategy can schedule the participants’

moves, eavesdrop messages, and impersonate other participants.

Within a configuration, we can find e.g. deposits of the form ⟨A,vB⟩,
modelling the ownership of vB by participant A. Participant can
freely split or gather their own deposits, or transfer them to other

participants. Further, deposits can be spent to stipulate contracts:

technically, stipulation creates an active contract, i.e. a term of the

form ⟨C ,vB⟩, with an initial balancevB amounting to the sum of all

the spent deposits. The contract C determines how the balance of

vB can be distributed among participants, depending on their actual

interaction. Contracts have an operational semantics, describing

all their possible transitions: participants strategies (either honest

or adversarial) can only choose among the transitions allowed by

the semantics. For instance, a possible symbolic run of Escrow is

the following (omitting the stipulation and the intermediate steps):

⟨Escrow, 1B⟩ −→∗ ⟨A, 0.9B⟩ | ⟨M, 0.1B⟩

which models the case where the mediator has resolved a dispute

in favour of A (there are also runs where the dispute is won by B,
or the mediator is not invoked). The timed commitment TC has

two kinds of runs, according to A’s strategy: those where A reveals

the secret, and those where B redeems the deposit. For instance:

⟨TC, 1B⟩ | t0 −→∗ ⟨A, 1B⟩ | A : a#N | t0

is an run where A has revealed the secret (represented by the term

A : a#N , where N is a ’s length) at time t0 < t . Instead, in the run:

⟨TC, 1B⟩ | t0 −→∗ ⟨B, 1B⟩ | t0 + δ

with t0 + δ > t , A has not revealed the secret, and B has collected

A’s 1B penalty. Finally, OddsEvens features symbolic runs where

either A or B redeem the winnings, and they reveal or not their

secrets. For instance, in the following run (where t0 < t ):

⟨OddsEvens, 6B⟩ | t0 −→∗ ⟨A, 2B⟩ | ⟨B, 4B⟩ | A : a#0 | B : b#1 | t0

players have revealed their secrets (and redeemed the 2B deposits),

and B has won the pot, since the lengths of the secrets are different.

Compiling BitML to Bitcoin. We design a compiler that, given a

BitML contract, outputs a set of Bitcoin transactions through which

the contract can be actually executed on Bitcoin. Our compiler only

relies on standard features of Bitcoin transactions: for instance, the

withdraw primitive relies on signature verification, split relies

on transactions with multiple outputs, and reveal exploits the

hash opcode of Bitcoin scripts. Sequencing and choice are obtained,

respectively, by transaction cascading and by the absence of double-

spending. We show several examples of compilation in Section 7.

A crucial question is: how to preserve security properties of a BitML
contract once it is compiled into Bitcoin? Indeed, lifting symbolic

security to computational security is a necessary result in order to

justify the adoption of high-level languages for smart contracts: in

the absence of such result, proving that a contract is secure in the

symbolic model would not guarantee its security under a computa-

tional attacker. Proving such preservation result is challenging, as

the symbolic model is a substantially higher-level than what can

actually happen in Bitcoin. For instance, while the executions of

contracts strictly follow the BitML semantics (so, the possible con-

figurations are pre-determined), in Bitcoin adversaries can append

arbitrary transactions to the blockchain (not necessarily those ob-

tained by the compiler), crafting them with data in their knowledge,

possibly sniffed over the network.

Computational model. In order to reason about the behaviour

of participants in Bitcoin, we introduce a computational model,

where attackers are only subject to the usual restrictions of stan-

dard computational models (i.e. they can only manipulate bitstrings

using PPTIME algorithms). As in the symbolic model, also com-

putational participants are rendered as strategies: these strategies

can listen to network traffic and scan the blockchain, in order to

decide their next actions. As an action, a participant can append a

transaction to the blockchain: for this to happen, the bitstring gen-

erated by a strategy must be the encoding of a transaction which

redeems some unspent transaction outputs on the blockchain. An-

other action is broadcasting a bitstring: this is used for off-chain

communications, e.g., when participants need to exchange signa-

tures, or to reveal their secrets. The adversary strategy defines the

behaviour of the dishonest participants, and acts as a scheduler for

all the participants’ moves, as in the symbolic model. The main

difference, here, is that computational actions are bitstrings, instead

of symbolic terms. Computational adversaries can obtain these

bitstrings from their knowledge (e.g., sniffed messages), with the

only limitation of crafting them through PPTIME algorithms. For

simplicity, our model slightly abstracts from the actual low-level be-

haviour of Bitcoin (e.g., we assume the blockchain to be immutable

and without forks, and we neglect transaction fees).

Relating symbolic and computational security. The main re-

sult of this paper is a computational soundness theorem [9]: it states

that, with overwhelming probability, runs in the computational

model have a corresponding run in the symbolic model. Therefore,

computational attacks can be observed in the symbolic model. More

precisely, the theorem states that we can securely execute BitML

contracts on Bitcoin according to the followingworkflow. First, each

honest participant chooses her symbolic strategy, which drives the
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stipulation and execution of contracts according to the symbolic se-

mantics. Then, they translate their strategies to computational ones;

in this step, we leverage our compiler to map the involved contracts

into Bitcoin transactions. Finally, participants execute their com-

putational strategies, being subject to computational adversaries.

Our computational soundness result ensures that computational

strategies admit no attacks, unless the original symbolic strategies

also admit the same attack. To state computational soundness, we

define a correspondence relation (called coherence) between runs of

contracts in the two models. Intuitively, (symbolic) deposits ⟨A,vB⟩
correspond to (computational) unspent transaction outputs for vB
which can be redeemed using only A’s signature. Active contracts
⟨C ,v⟩ also correspond to unspent transaction outputs, but they

involve more complex redeem conditions (e.g., they may require to

provide a signature from all the contract participants, or to reveal

a secret having a certain length). Performing a transition in the

symbolic semantics of a contract C corresponds to appending to

the blockchain one of the transactions obtained by compiling C .

Practical consequences of computational soundness. To il-

lustrate the practical applications of our results, recall theOddsEvens
contract introduced before. Assume that A’s symbolic strategy is

to (i) stipulate the contract, depositing 3B and committing to a

randomly chosen secret a of length 0 or 1; (ii) reveal her secret at a

certain time t ′ < t ; (iii) withdraw her deposit at time t ′; (iv) collect
the pot, if she is the winner. According to the symbolic semantics,

in all the runs of OddsEvens which are conformant to A’ strategy
(and to any adversarial strategy), after time t ′, A will receive at

least 2B (i.e. her deposit) from the contract. Computational sound-

ness guarantees that the same holds in the computational model,

i.e. when executing the compiled contract on Bitcoin. Note that

proving this result directly in the computational model is incon-

venient, as the adversary — not being constrained to follow the

structure of the contract — can play any sequence of actions that

respects the computational model, and the consistency of the Bit-

coin blockchain (where he can also append transactions crafted

by himself, not obtained by the BitML compiler). In this setting,

proving security against all adversaries would require to cope with

a universal quantification over all possible PPTIME algorithms. By

contrast, proving security in the symbolic model is significantly

simpler: a verification algorithm should check if the desired prop-

erty holds in all the reachable configurations in the contract runs

conformant with A’s strategy. This simplification is similar to the

one obtained when reasoning about the security of cryptographic

protocols in symbolic models, instead of computational ones [9].

3 RELATEDWORK
The first proposal to implement smart contracts on Bitcoin dates

back (at least) to 2012 [1], and the first scientific paper to 2013 [12].

Since then, the research on smart contracts has evolved along dif-

ferent directions: (i) studying contracts that can be run directly

on Bitcoin; (ii) increasing the expressiveness of contracts through

Bitcoin extensions; (iii) developing high-level languages for Bitcoin

contracts; (iv) studying new blockchain infrastructures for smart

contracts. Below we briefly survey the literature along these lines.

Bitcoin smart contracts. Basic smart contracts which transfer

bitcoins according to the external state [2, 3] can be implemented

using multi-signature transactions. Timed commitments for Bitcoin

were originally introduced by [12], and then used to implement

multiparty computations, like lotteries. The lottery in [12] requires

each player to deposit a collateral which grows quadratically with

the number of players. Subsequent works proposed Bitcoin exten-

sions which allow for lotteries without collaterals. More general

forms of fair multiparty computations on “pure” Bitcoin, exploiting

SegWit [43], were proposed in [11, 22, 41]. Contingent payments

for Bitcoin (i.e., contracts which allow to sell solutions for a class

of NP problems) were introduced in [18, 46].

Extensions of the Bitcoin scripting language. Other works

proposed extensions of Bitcoin to enhance the expressiveness of

smart contracts. In [49] the Bitcoin scripting language is extended

with covenants, a construct that can constrain the structure of the

redeeming transaction. Another implementation of covenants is

proposed in [53], exploiting a (currently disabled) opcode to con-

catenate arbitrary data, and introducing a new opcode to verify

signatures against it. Covenants enable contracts that implement

vaults, i.e. protocols which scatter a money transfer along a se-

quence of transactions, giving the ability to the owner of the vault

to abort the transfer if he detects misbehaviour. More generally,

recursive covenants allow to implement a state machine through a

sequence of transaction that store its state. The collaterals of multi-

party lotteries can be eliminated through Bitcoin extensions: e.g.,

[20] requires input malleability (i.e. the possibility of not signing

any input), while [47] requires a new opcode that checks if the

redeeming transaction belongs to a predetermined set. The work

[32] proposed a contingent payment protocol that does not rely on

zero-knowledge proofs, but instead requires a new opcode to check

if the two top elements of the stack are a valid key pair. The work

[42] captures general multiparty, interactive, stateful computations

by exploiting a new opcode (similar to the one in [53]), to check

signatures for arbitrary messages.

Languages for Bitcoin smart contracts. Only a few languages

for Bitcoin contracts have been proposed so far. TypeCoin [30]

allows to model the updates of a state machine as affine logic propo-

sitions. Users “run” this machine by putting transactions on the

blockchain, with the guarantee that only legit updates can be per-

formed. A downside of [30] is that liveness is guaranteed only when

participants cooperate, i.e., an adversary can prevent the others

from completing the contract. Note instead that in BitML, honest

participants can always make a contract progress. The other lan-

guages we are aware of, IVY [5], BALZaC [8] and Simplicity [52],

are high-level alternatives to the Bitcoin scripting language, that

can be compiled into Bitcoin scripts. In order to implement a smart

contract using these languages, one still needs to design it as a

protocol involving message exchanges and transactions (although

with more readable scripts). Note that these languages do not allow

to describe the whole contract, but only the individual transactions
used in the associated protocol. Compared to these approaches,

BitML has two main advantages: first, it can express the whole con-
tract within a single term; second, it relieves the designer from the

burden of Bitcoin transactions, which, instead, can be automatically

generated by our compiler. The loss of expressiveness caused by the

abstraction from low-level Bitcoin details (discussed in Section 10),
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is repaid by a gain of elegance in the specifications of contracts,

and by the simplification of upcoming verification techniques.

Smart contracts beyond Bitcoin. After Bitcoin, other platforms

and languages for smart contracts have been created [19]. Currently,

the most popular ones are Ethereum [28] (in the permissionless

setting) and Hyperledger Fabric [10] (in the permissioned one). The

recent attacks on Ethereum contracts have given rise to extensive re-

search on how to make it more secure. A few papers study EVM, the

bytecode language which is the target of compilation of Ethereum

contracts. Among them, [44] formalises the semantics of EVM, and

develops a symbolic execution of EVM contracts, to detect some

vulnerability patterns. Another approach based on the analysis of

vulnerability patterns on dependency graphs is pursued by [59],

which develop a tool called Securify. A more detailed formalisa-

tion of EVM (validated against the official Ethereum test suite) is

in [37], which also proposes a set of general security properties

relevant for avoiding classic vulnerabilities in Ethereum contracts.

The work [36] develops EtherTrust, a framework for the static veri-

fication of Ethereum smart contracts at the EVM level, which can

establish the absence of re-entrancy vulnerabilities. Also [23] de-

tects vulnerabilities of Ethereum contracts, by translating Solidity

and EVM code into F∗ [56]. Further, given a Solidity program and

an alleged compilation of it into EVM bytecode, [23] verifies that

the two pieces of code have equivalent behaviours. The work [38]

uses the Isabelle/HOL proof assistant [51] to verify the EVM ob-

tained by compiling the Solidity code of “Deed”, a contract which

is part of the Ethereum Name Service. In particular, it proves that,

upon an invocation of the contract, only its owner can decrease the

balance. The work [55] proposes Scilla, a strongly typed intermedi-

ate language where contracts are represented as Communicating

Automata. Compared to EVM, Scilla is more structured: this sim-

plifies formal reasoning, and makes contracts more amenable to

verification. Ongoing work aims at a Coq formalization of Scilla.

Other papers propose domain-specific languages for Ethereum con-

tracts. Among them, [45] represents smart contracts as finite state

automata, where state transitions can be constrained according to

contract variables and inputs; a tool is provided to translate these

automata into Solidity code. The work [24] compiles to Solidity a

fragment of the language for financial contracts introduced by [39].

While the previous works address qualitative properties of con-

tracts, the work [29] develops a framework for their quantitative
analysis, by transforming contracts (specified in an abstract lan-

guage) into state-based games. This allows one to compute the

worst-case guaranteed utility resulting from interacting with a

contract, which can be helpful to detect vulnerabilities.

4 THE BITML CALCULUS
We assume a set Part of participants, ranged over by A,B, . . ., and
we denote with Hon ⊆ Part a non-empty set of honest participants.
We also assume a set of names, of two kinds: x ,y, . . . denote de-
posits of B, while a ,b, . . . denote secrets. We denote with x⃗ a finite

sequence of deposit names, and we adopt a similar notation for

sequences of other kinds.

Definition 1 (Contract preconditions).

G ::= A:?v @x volatile deposit of vB, expected from A

| A:!v @x persistent deposit of vB, expected from A

| A:secreta committed secret by A

| G | G composition ⋄

The precondition A:!v @x requires A to own vB in a deposit x ,
and to spend it for stipulating a contract C . Instead, A:?v @x only

requires A to pre-authorize the spending of x . Since x is not spent

upfront, there is no guarantee that vB will be available when C de-

mands x , as A can spend it for other purposes. Finally, A:secreta
requires A to generate a random nonce a , and commit to it before

C starts. During the execution ofC , A can choose whether to reveal

a to the other participants, or not.

Definition 2 (Contracts). The syntax of contracts is in Figure 1,

We abbreviate put x⃗ & reveal a⃗ ifp as: (i) put x⃗ when a⃗ is empty

and p is true, (ii) reveal a⃗ ifp when x⃗ is empty, (iii) τ when x⃗ and

a⃗ are empty andp is true, and (iv) we omit “ifp” when the predicate
p is true. We denote with 0 the empty sum. In guarded contracts, we

assume that the order of decorations is immaterial, e.g., we consider

after t :A :B :D equivalent to B :A : after t :D . ⋄

A contractC is a choice among branches. Intuitively, a branch D
performs an action, and possibly proceeds with a continuation C ′.
The action put x⃗ & reveal a⃗ ifp atomically performs the follow-

ing: (i) spend all the volatile deposits x⃗ , adding their values to

the current balance; (ii) check that all the secrets a⃗ have been re-

vealed, and that they satisfy the predicate p . The guarded contract

split v1 → C1 | · · · | vn → Cn divides the contract into n con-

tractsCi , each one with balancevi . The sum of thevi must be equal

to the current balance. The prefix withdraw A transfers the whole

balance to A (to transfer only a part of it, one can perform a split).
Note that, when enabled, the above actions can be fired by anyone

at anytime. To restrict who can execute a branch and when, one can
use the decoration A :D , which requires the authorization of A,
and the decoration after t :D , which requires to wait until time t .

Definition 3 (Contract advertisement). A contract advertise-

ment is a term {G }C satisfying the following conditions: (i) the

names in G are distinct; (ii) each name in C occurs in G ; (iii) the

names in put x⃗ & reveal a⃗ ifp are distinct; and, each name in p
occurs in a⃗ ; (iv) each A in {G }C has a persistent deposit in G . ⋄

The last condition will be used to guarantee that the contract is

stipulated only if all the involved participants give their authoriza-

tions. Indeed, in order to transform a contract advertisement {G }C
into an active contract, our semantics requires only the authoriza-

tions of participants with persistent deposits inG . So, condition (iv),

makes the participants involved in {G }C equal to those with per-

sistent deposits inG , causing the stipulation to happen only when

everyone agrees. Requiring exactly the authorizations to spend

persistent deposits in the symbolic semantics is key to implement

contract stipulation in Bitcoin: indeed, to record that a contract has

been stipulated, in Bitcoin one has to append a suitable transaction,

say Tinit . When doing this, the Bitcoin network cannot check condi-

tions corresponding to committing to a secret, or to pre-authorize

a volatile deposit, since these actions are performed off-chain. The
5



C ::=
∑
i∈I Di contract

D ::= guarded contract

put x⃗ & reveal a⃗ ifp .C collect deposits x⃗ and secrets a⃗

| withdraw A transfer the balance to A

| split v⃗ → C⃗ split the balance ( |v⃗ | = |C⃗ |)

| A :D wait for A’s authorization

| after t :D wait until time t

p ::= predicate

true truth

| p ∧ p conjunction

| ¬p negation

| E = E equality

| E < E less than

E ::= arithmetic expression

N 32-bit constant

| |a | length of a secret

| E + E addition

| E − E subtraction

Figure 1: Syntax of BitML contracts.

only condition that can be checked is that persistent deposits are

spent contextually with appending Tinit : this can be obtained by

setting the inputs of Tinit to these deposits. Note also that condi-

tion (iv) is not restrictive in practice: we can craft a contract that

allows a participant A to deposit just a small fraction of bitcoin,

and then immediately transfer it back to A through a split.

Semantics We introduce a reduction semantics of BitML. Because

of space limitations, here we provide the underlying intuitions,

relegating the full formalisation to Appendix A.2. The rules of the

semantics are grouped into four sets: (i) rules for managing deposits;

(ii) rules for advertising contracts and stipulating them; (iii) rules

for executing active contracts; (iv) rules for handling time. The

untimed rules follow a common pattern, in order to perform an

operation: first, the involved participants give their authorization;

then, the operation is actually performed. Both cases are rendered as

transitions in the semantics. Transitions are decorated with labels,

which describe the performed actions. For simplicity, we ignore

these labels in our informal description below.

The configurations of the semantics contain the following terms:

(i) contract advertisements {G }C represent a contract which has

been proposed, but not stipulated yet; (ii) active contracts ⟨C ,v⟩x
represent a stipulated contract, holding a current balance ofvB. The
name x uniquely identifies the active contract; (iii) personal deposits
⟨A,v⟩x represent a fund ofvB owned byA, andwith unique name x ;
(iv) authorizations A[χ ] represent the consent of A to perform some

operation χ ; (v) committed secrets {A : a#N }, represent A who has

committed a random nonce a of (secret) length N , by broadcasting

its hash H (a ); (vi) revealed secrets A : a#N represent the fact that

A has revealed her secret a (hence, its length N ).

Definition 4 (Configurations). The syntax of configurations is:

Γ ::= 0 empty

| {G }C contract advertisement

| ⟨C ,v⟩x an active contract containing vB

| ⟨A,v⟩x a deposit of vB redeemable by A

| A[χ] authorization of A to perform χ

| {A : a#N } committed secret of A (N ∈ N ∪ {⊥})

| A : a#N revealed secret of A (N ∈ N)

| Γ | Γ′ parallel composition

Further, Γ | t is a timed configuration, where t ∈ N is a global time.

We now illustrate the BitML semantics through a series of exam-

ples, which cover all the primitives. When time is immaterial, we

will only show the steps of the untimed semantics. A full execution

of the timed commitment contract is shown in Appendix A.2.

Deposits. When a participant A owns a deposit ⟨A,v⟩x , she can
employ that amount for several operations: she can divide the

deposit into two smaller deposits, or join it with another deposit

of hers to form a larger one; the deposit can also be transferred

to another participant, or destroyed. For instance, to authorize the

join of two deposits, A can perform the following step:

⟨A,v⟩x | ⟨A,v ′⟩y −→ ⟨A,v⟩x | ⟨A,v ′⟩y | A[χx ]

where χx = x ,y ▷ ⟨A,v +v ′⟩ means that A authorizes to spend x .
After A also provides the dual authorization χy , any participant

can perform the actual join as follows:

⟨A,v⟩x | ⟨A,v ′⟩y | A[χx ] | A[χy ] −→ ⟨A,v +v ′⟩z

Advertisement. Any participant, at any time, can advertise a new

contractC (with preconditionsG ) by performing the following step:

Γ −→ Γ | {G }C

The rule requires that all the deposits mentioned in G exist in Γ,
that secrets names are fresh, and that at least one of the participants

in G is honest. The last condition, useful to obtain computational

soundness, does not limit the power of adversary. Indeed, the same

effect of executing a contract among dishonest participants can be

obtained by the adversary using the deposit rules, only.

Stipulation. To perform a stipulation, turning a contract adver-

tising into an active contract, a few steps are needed. For instance,

consider G = A:! 1B @x | A:? 1B @y | A:secreta , and let C be

an arbitrary contract, only involving A. Assuming A honest, our

semantics gives the following steps:

⟨A, 1B⟩x | ⟨A, 1B⟩y | {G }C

−→ ⟨A, 1B⟩x | ⟨A, 1B⟩y | {G }C | {A : a#N } | A[# ▷ {G }C ] = Γ

−→ Γ | A[x ▷ {G }C ]

−→ ⟨A, 1B⟩y | ⟨C , 1B⟩z | {A : a#N }

The rules require all participants to commit to their secrets (and

to their lengths). Above, this step adds {A : a#N } | A[# ▷ {G }C ]
to the configuration, where N is the committed length. After that,

all participants must authorize to spend their persistent deposits.

Above, this step adds A[x ▷ {G }C ] to the configuration. After all

such authorizations have been performed, any participant can spend
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the persistent deposits to create the active contract. Above, this step

consumes ⟨A, 1B⟩x (and all the authorizations) to create ⟨C , 1B⟩z .
We anticipate that, in the computational setting, committing

to a secret a is performed by generating a random nonce sa and

broadcasting its hash ha = H (sa ). Note that a dishonest A could

perform a fake commitment, by broadcasting a value ha without

knowing its preimage. In the symbolic setting, we model this situa-

tion by allowing a dishonest A to produce a term {A : a#⊥}, where
⊥ represents an “invalid” hash. In the subsequent steps, A will not

be able to reveal the secret, coherently with the fact that, in the

computational setting, A is not able to compute a preimage of ha .

Withdraw. We now exemplify the rules for active contracts. Exe-

cuting withdraw A transfers the whole contract balance to A:

⟨withdraw A +C ′,v⟩x −→ ⟨A,v⟩y

This step terminates the contract, and creates a deposit owned by A,
with a fresh name y. Above, withdraw A is executed as a branch

within a choice: as usual, taking a branch discards the other ones

(denoted as C ′). Below, C ′ always denotes the discarded branches.

Split. split can be used to spawn several new concurrent con-

tracts, dividing the balance among them:

⟨(split v1 → C1 | v2 → C2) +C
′,v1 +v2⟩x −→ ⟨C1,v1⟩y | ⟨C2,v2⟩z

The balance of the initial contract, (v1 +v2)B, is split between two

newly spawned contracts:C1, receiving v1B, andC2, receiving v2B.
After this step, the two new contracts are executed independently.

Put. putx rakes the volatile deposit x within the contract:

⟨putx .C +C ′,v⟩y | ⟨A,v ′⟩x −→ ⟨C ,v +v ′⟩z

This step can only be performed if x is still unspent; otherwise, the

put prefix is stuck. This action naturally generalizes to multiple

volatile deposits x⃗ (if any of them is spent, the prefix is stuck).

Reveal. reveala ifp can be fired when the previously commit-

ted secret a has been revealed, and it satisfies the guard p . E.g.:

⟨reveala if |a | = M .C +C ′,v⟩x | {A : a#N }

−→ ⟨reveala if |a | = M .C +C ′,v⟩x | A : a#N

−→ ⟨C ,v⟩y | A : a#N if N = M

In the first step, A reveals her secret a . In the second step, any

participant can cause the contract to take the reveal branch, pro-

vided that the length of a isM , as required by the predicate. This

action naturally generalizes to the case of multiple secrets a⃗ (all of

the must be revealed), and to the case where put and reveal are

performed atomically, e.g. in an action put x⃗ & reveal a⃗ ifp .

Authorizations. When a branch is decorated by A : · · · it can be

taken only after A has provided her authorization. For instance:

⟨A : withdraw B +C ′,v⟩x

−→⟨A : withdraw B +C ′,v⟩x | A[x ▷ A : withdraw B ] −→ ⟨B,v⟩y

In the first step, A authorizes the contract to take the branch

withdraw B . After that, any participant can fire such branch.When

multiple authorizations are required, the branch can be taken only

after all of them occur in the configuration.

Time. We now discuss the rules for handling time. These rules

describe transitions between timed configurations Γ | t where t
denotes the current time. We always allow time t to advance by a

delay δ > 0, through the rule: Γ | t −→ Γ | t + δ . We allow a contract

branch decorated with after t to be taken only when the current

time is greater than t . For instance, if t0 + δ ≥ t :

⟨after t : withdraw B ,v⟩x | t0
−→ ⟨after t : withdraw B ,v⟩x | t0 + δ −→ ⟨B,v⟩y | t0 + δ

For the branches not guarded by an after, we lift transitions from
untimed to timed configurations, without making them affect time.

Namely, for an untimed transition Γ −→ Γ′, we also have the timed

transition Γ | t −→ Γ′ | t . Thismakes actions instantaneous (similarly

to many timed process calculi [50]) reflecting the assumption that

participants can always meet deadlines, if they want to.

5 SYMBOLIC STRATEGIES & ADVERSARIES

Symbolic runs. A symbolic run Rs is a (possibly infinite) sequence

Γ0 | t0
α0

−−→ Γ1 | t1
α1

−−→ · · · where αi are the transition labels, Γ0
contains only deposits, and t0 = 0. If Rs is finite, we write ΓRs for
its last untimed configuration.

Stripping. The strategy of a participant can inspect the whole

past run, except for the (lengths of the) unrevealed secrets. The

stripping of a run censors this information: technically, it replaces

each committed secret {A : a#N } with a term {A : a#⊥}.

Symbolic participant strategies. A symbolic strategy ΣsA is a

PPTIME algorithm which allows A to select which action(s) to per-

form, among those permitted by the BitML semantics. ΣsA receives

as input a stripped run Rs∗ , and outputs a finite set of actions (possi-
bly, time delays) that A wants to perform. The choice among these

actions is controlled by the adversary strategy, specified below. We

forbid ΣsA to output authorizations for participants B , A. Further,
strategies must be persistent: if on a run ΣsA chooses an action α ,

and α is not taken as the next step in the run (e.g., because some

other participant acts earlier), then ΣsA must still choose α after that

step, if still enabled. In this way, once ΣsA has chosen α (implicitly,

giving to the adversary her consent to schedule such action), she

cannot change her mind.

Symbolic adversary strategies. The adversary Adv acts on be-

half of all the dishonest participants, and controls the scheduling

among all participants (including the honest ones). Her symbolic

strategy ΣsAdv takes as input the current run and the sets of moves

outputted by the strategies of honest participants. Both the run and

the moves are stripped, to prevent the adversary from inferring the

lengths of secrets. The output of ΣsAdv is a single action λs (to be

appended to the current run), only subject to the following con-

straints: (i) if λs is an authorization by some honest A, then it must

be chosen by ΣsA ; (ii) if λ
s
is a time delay, then all the honest partic-

ipants must agree. Condition (i) rules out authorization forgeries,

while (ii) prevents the adversary from delaying the honest partici-

pants. Were this condition dropped, honest participants could be

prevented from meeting deadlines: e.g., in the timed commitment

contract, the adversary could collude with B by enabling the after
branch before A had the possibility to reveal her secret.

7



Symbolic conformance. Strategies are PPTIME algorithms: so,

besides the other inputs, they also implicitly take as input a stream

r of random bits. Fixing this stream and a set of strategies Σs
—

both for the honest participants and for the adversary — we obtain

a unique run, which is made by the sequence of actions chosen by

ΣsAdv when taking as input the outputs of the honest participants’

strategies. We say that this run is conformant to Σs
(and r ). When

ΣsAdv < Σs
, we say that Rs conforms to Σs

(and r ) when there exists

some ΣsAdv such that Rs conforms to Σs ∪ {ΣsAdv } (and r ).

6 COMPUTATIONAL MODEL
In this section we introduce our computational model, which will

be the target of the BitML compiler. We start by briefly recapping

Bitcoin transactions (referring to [16] for a full formal model).

Transactions. In Bitcoin, transactions describe transfers of cur-
rency. The log of all transactions is maintained on a public, im-

mutable and decentralised data structure called blockchain. We

represent transactions as records, with fields in, wit, out and absLock.
For instance, consider the transactions T1 and T2 below:

T1
in: · · ·
wit: · · ·

out:
0 7→ (λς .versigK(A ) (ς ), v0B)

1 7→ (λς .versigK(B ) (ς ), v1B)

T2
in: 0 7→ (T1, 0)
wit: 0 7→ sigK(A )
out: 0 7→ (λx .H (x ) = k, v0B)
absLock: t

The transaction T1 has two outputs: the v0B in out(0) can be re-

deemed by any transaction T whose in field refers to (T1, 0), and
whose wit field satisfies the predicate in out(0) (similarly for the

other output). This is the case e.g. of the transaction T2 above. Its
witness sigK(A ) is the signature of A on T2 (excluding the wit field

itself), as required by T1.out(0).
If T1 is on the blockchain and its out(0) is unspent, A can update

the blockchain by appending T2. This moves v0B
1
from T1 to T2.

The transaction T2 has only one output, which can be redeemed by

any transaction providing a witness having hash k . The time t in
T2.absLock represents the earliest moment when T2 can be put on

the blockchain. A subsequent transaction can redeem (v1 +v0)B in

a single shot. This requires two inputs, (T1, 1) and (T2, 0), and two

witnesses. The witness associated to the first input is a signature of

B; the other is a preimage of k .
We assume that Bitcoin uses secure cryptographic primitives,

i.e. ideal hash functions (which hereafter are modelled according

to the random oracle model [21]), and a digital signature scheme

which is robust against existential forgery attacks.

Blockchain. A blockchain B is a sequence (T0, t0) · · · (Tn , tn ),
where T0 · · · Tn are transactions (T0 is the coinbase transaction, i.e.
T0.in = ⊥, meaning that is does not point to a previous transaction),

and t0 · · · tn are timestamps, with ti ≤ tj for all i ≤ j. Hereafter,
we assume that blockchains are append-only, without forks, and

consistent, i.e. obtained by appending transactions that respect the

Bitcoin protocol (as formalised in [16]). Essentially, these ideal

properties are coherent with the results in [17, 34, 40], as long as

the adversary does not control a very large mining pool [13, 33].

1
In the actual Bitcoin, the value the outputs of T2 must be strictly smaller than v0 , and

the difference is paid to the Bitcoin network. For simplicity, in this paper (as in [16])

we neglect these transaction fees.

Computational runs. Wenow introduce the computational coun-

terparts of symbolic runs. These are sequences of computational
labels λc , namely bitstrings encoding one of the following actions,

where A ∈ Part ∪ {Adv}, andm is a bitstring:

A → ∗ :m A broadcasts messagem

T append a Bitcoin transaction to the blockchain

δ perform a delay

To compute the hash of a message m, A sends m to the oracle

O < Part, and waits for the reply H (m). Also these actions are

included in the computational labels. Note that reliable message

broadcasts can be effectively obtained through the Bitcoin network.

We postulate that a computational run begins with a coinbase

transaction T0, followed by the broadcasts of the public keys of all

participants. Each A has two key pairs: KA for signing messages,

and K̂A for redeeming deposits. For eachA (either honest or not), we

assume that T0 has an output redeemable with the private key K̂s
A .

In this way, each participant starts with some funds (possibly 0), and

knows the public keys of the others. By extracting the transactions

from a computational run Rc , and assigning their time according to

the accumulated delays, we obtain a blockchain, denoted as BRc .

Stripping. Analogously to the stripping of symbolic runs, we

define the A-stripping of a computational run Rc as the run obtained
by removing from Rc all the messages not visible by A, i.e. the
messages between O and some other B , A.

Computational participant strategies. We now introduce the

computational counterparts of symbolic strategies. A computational

strategy ΣcA for A is a PPTIME algorithm which receives as input

a (A-stripped) computational run Rc∗ , and outputs is a finite set of

computational labels. The choice among these labels is controlled

by the adversary strategy, specified below. We impose a few sanity

constraints: (i) we forbid A to impersonate another participant;

(ii) if the strategy outputs a transaction T, then T must be a consis-

tent update of the blockchain BRc∗ obtained from the run in input,

and all the witnesses of T have already been broadcast in the run;

(iii) finally, strategies must be persistent, similarly to the symbolic

case. The condition on the witnesses of T in (ii) is not a limitation,

since these witnesses become public once T is broadcast on the

Bitcoin network. We put this condition since it helps to obtain a

sharp correspondence between computational and symbolic runs:

indeed, the symbolic counterpart of broadcasting a witness is to

give an authorization.

Computational adversary strategies. A computational adver-

sary strategy ΣcAdv is a PPTIME algorithm taking as input a (Adv-
stripped) computational run Rc∗ and the moves chosen by each

honest participant. The strategy gives as output a single computa-

tional label, to be appended to the run. We require ΣcAdv to obey

sanity constraints similar to those of participants strategies, with

two differences: (i) Adv can impersonate any other participant (ex-

cept the oracle O); (ii) Adv can perform a time delay only if all the

honest participants agree.

This assumption prevents the adversary from delaying the ac-

tions of honest participants, who can therefore always meet their

deadlines, without interference by the adversary. Note that, even if

the adversary controlled a large portion of the mining power of the

8



Bitcoin network — so being able to delay the transactions sent by

honest participants — honest participants could still protect them-

selves by setting far enough deadlines in their contracts, making

the delay attacks ineffective
2
.

Computational conformance. For each participant A, we in-

dicate with rA the stream of random bits implicitly used by ΣcA .

Similarly, we indicate with rO the stream available to the oracle.

Fixing a set of computational strategies Σc
— both for the honest

participants and for the adversary — and a function r from partici-

pants to streams, we obtain a unique computational run, made by

the sequence of actions chosen by ΣcAdv when taking as input the

outputs of the honest participants’ strategies, and enforcing that

the queries to the oracle are always answered. We say that this run

is conformant to Σc
and r .

7 COMPILING BITML TO BITCOIN
We now describe how to implement BitML on top of Bitcoin. This

is done by compiling BitML contract advertisements {G }C into a fi-

nite set Tof Bitcoin transactions
3
, signed by all participants (except

from those whose authorizations are required after stipulation, via

A : · · ·). In Bitcoin, appending (a subset of) these transactions to

the blockchain mimics, in BitML, the semantics of {G }C (assuming,

as usual, that at least one participant is honest). More precisely, the

first transaction in Tto be published (called Tinit ), redeems all the

permanent deposits, correspondingly to the stipulation of {G }C .
After that, Tinit can only be redeemed by one of the transactions in

Twhich corresponds to the subsequent computation step of ⟨C ,v⟩
in BitML. This is enforced by requiring, in the output script of Tinit ,
suitable signatures by all the participants involved in {G }C . The
same principle is followed for the other transactions in T: they

can be appended to the blockchain only when this corresponds

to a computation step in BitML. The only transactions in T that

can be redeemed by transactions not in Tare those which corre-

spond to the deposits ⟨A,v⟩ obtained by reducing a withdraw A
contract. Indeed, these transactions can be redeemed by standard

transactions signed by A.
We illustrate the compiler through a series of examples, which

cover all the primitives of BitML. We refer to Appendix A.5 for a

formal definition and further examples.

Before running the compiler, participants generate the following

key pairs, and exchange their public parts:

• K(A), used in the compilation of a withdraw A contract.

We exploit this to guarantee that the deposit obtained after

the execution of withdraw A can be redeemed with a

signature of A (using the private part of K(A)).
• K(D ,A) (for each subterm D ofC ), used in the compilation

of the subterms ofC of the form D +C ′ to enable the firing
of the (initial) action in the D branch. The private part of

2
For the sake of simplicity, we do not model such delays. At the price of adding

further complexity, we could extend our model to relax this assumption, by allowing

the adversary to perform delays under reasonable constraints. As long as the same

delays are allowed in both the symbolic and computational models, computational

soundness still holds. In such extended model, deadlines in contracts must be chosen

so to compensate for these delays.

3
An implementation of the BitML compiler is under way, at https://github.com/

bitml-lang/bitml-compiler. This implementation generates standard Bitcoin transac-

tions by exploiting our BALZaC tool [8]. This is crucial, since the Bitcoin network

currently discards non-standard transactions.

K(D ,A) is used to compute the witness of the transaction

corresponding to the compilation of D .

For a set of participants P = {A1, . . . ,An }, we denote with

K(D ,P ) the set of key pairs {K(D ,A1), . . . ,K(D ,An )}.

Withdraw. As a first example, we show how to compile:

{G }C = {A:! 1B @x | B:! 1B @y} withdraw B

The transactions obtained from the compiler are the following,

where Tx is the transaction associated to A’s deposit ⟨A, 1B⟩x and

Ty is the transaction associated to B’s deposit ⟨B, 1B⟩y :

Tinit

in: 0 7→ Tx , 1 7→ Ty
wit: 0 7→ sigK(A ) , 1 7→ sigK(B )
out: (λς⃗ . versigK(withdraw B, {A,B }) (⃗ς ), 2B)

TB

in: Tinit
wit: sigK(withdraw B, {A,B })
out: (λς . versigK(B ) (ς ), 2B)

In BitML, the stipulation of the contract requires a few steps:

⟨A, 1B⟩x | ⟨B, 1B⟩y | {G }C

−→4⟨A, 1B⟩x | ⟨B, 1B⟩y | {G }C | A[x ▷ {G }C ] | B[y ▷ {G }C ]

| A[# ▷ {G }C ] | B[# ▷ {G }C ] = Γ

In Bitcoin, these steps correspond to obtaining the transactions

above from the compiler, and exchanging the signatures shown

there (signing Tinit last). The BitML authorization A[x ▷ {G }C ]
corresponds to the broadcast of A’signature in the first witness of

Tinit . The authorization A[# ▷ {G }C ] in this case is immaterial: in

general, it corresponds to the commit of A’s secrets. The autho-
rizations B[y ▷ {G }C ] and B[# ▷ {G }C ] are similar, for B. In BitML,

the stipulation is then completed with the following step:

Γ −→ ⟨withdraw B , 2B⟩

In Bitcoin, this corresponds to appending Tinit to the blockchain,

which redeems Tx and Ty . The last computation step in BitML is:

⟨withdraw B , 2B⟩ −→ ⟨B, 2B⟩z

In Bitcoin, this corresponds to appending TB to the blockchain,

which redeems 2B from Tinit4. After that, 2B are under B’s con-
trol, since the output script of TB only requires B’s signature. The
unspent transaction TB corresponds to the BitML deposit ⟨B, 2B⟩z .

Note that, during the stipulation phase, it is crucial to exchange

the signatures on Tinit after the ones on TB , otherwisewewould lose
the correspondence with the BitML semantics. Indeed, were Tinit
signed first, A could refuse to sign TB , and yet be able to complete

the stipulation, by appending Tinit to the blockchain. Then, B would

be prevented to append TB , i.e. the Bitcoin counterpart of the BitML

withdraw B action, which would transfer 2B to him.

Authorizations. We exploit the previous example to illustrate the

compilation of authorizations. Compiling A : withdraw B requires

only minor changes: in the witness of TB , the compiler only inserts

B’s signature sigK(A : withdraw B,B ) , while the output script of Tinit
still requires both signatures, so to prevent TB from being appended

4
Note that in the example above, an optimized version of our compiler could omit the

transaction Tinit , and transfer the deposit to B directly through TB (with the in field as

in Tinit ). However, this optimization is only possible when withdraw does not occur

within a choice; further, the semantics of withdraw should be revised accordingly to

preserve computational soundness. For the sake of simplicity, we prefer to ignore this

optimization in the definition of our compiler.
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the blockchain before obtaining A’s authorization. In BitML, to

perform the withdraw action, A must authorize it:

Γ −→ Γ | A[A : withdraw B ]

In Bitcoin, this step corresponds to broadcasting A’s signature

sigK(A : withdraw B,A ) . After that, the signature can be added to the

witness of TB , which can now be appended to the blockchain.

After. Similarly, compiling after t : withdraw B requires only

a small change to our first example: the transaction TB now has an

absLock field set to time t . In this way, TB can not be appended to

the blockchain until time t — coherently to the BitML semantics,

where the withdraw B action can not be fired until such time.

Split. To illustrate the compilation of the split primitive, let:

Cs = split (1B→ withdraw A | 2B→ withdraw B )

Compiling {A:! 2B @x | B:! 1B @y}Cs produces the following

transactions, where Tx and Ty correspond to the deposits ⟨A, 2B⟩x
and ⟨B, 1B⟩y , and KW p = K(withdraw p, {A,B}) for p ∈ {A,B}:

Tinit

in: 0 7→ Tx , 1 7→ Ty
wit: 0 7→ sigK(A ) , 1 7→ sigK(B )
out: (λς⃗ .versigK(Cs , {A,B }) (⃗ς ), 3B)

Tsplit

in: Tinit
wit: sigK(Cs , {A,B })
out: 0 7→ (λς⃗ .versigKW A (⃗ς ), 1B)

1 7→ (λς⃗ .versigKW B (⃗ς ), 2B)

TA

in: (Tsplit , 0)
wit: sigK(withdraw A, {A,B })
out: (λς . versigK(A ) (ς ), 1B)

TB

in: (Tsplit , 1)
wit: sigK(withdraw B, {A,B })
out: (λς . versigK(B ) (ς ), 2B)

As before, Tinit gathers A’s and B’s deposits and starts the con-

tract. Then, appending Tsplit to the blockchain splits the contract

balance between two different outputs, indexed with 0 and 1. In

BitML, this would correspond to the computation step:

⟨Cs , 3B⟩ −→ ⟨withdraw A , 1B⟩ | ⟨withdraw B , 2B⟩

where the two contracts in the parallel composition can be exe-

cuted independently (as usual in process calculi). Similarly, the two

outputs of Tsplit can be independently redeemed by TA and TB . The
in field of these transactions specifies, besides the input transaction
Tsplit , also the index of the output they want to redeem. For instance,

appending TA corresponds, in BitML, to the step:

⟨withdraw A , 1B⟩ | ⟨withdraw B , 2B⟩ −→ ⟨A, 1B⟩ | ⟨withdraw B , 2B⟩

Put. To illustrate the compilation of the put primitive, let:

Cp = putx . withdraw B

Compiling {A:? 1B @x | A:! 1B @y | B:! 1B @ z}Cp produces the

following transactions, where Tx , Ty , Tz are the Bitcoin counterpart
of the BitML deposits:

Tinit

in: 0 7→ Ty , 1 7→ Tz
wit: 0 7→ sigK(A ) , 1 7→ sigK(B )
out: (λς⃗ .versigK(Cp, {A,B }) (⃗ς ), 2B)

TB

in: Tput
wit: sigK(withdraw B, {A,B })
out: (λς . versigK(B ) (ς ), 3B)

Tput

in: 0 7→ Tinit , 1 7→ Tx
wit: 0 7→ sigK(Cp, {A,B })

, 1 7→ sigK(A )
out: (λς⃗ .versigK(withdraw B, {A,B }) (⃗ς ), 3B)

The transaction Tinit gathers only the persistent deposits. Tput
has two inputs: Tinit , which can be redeemed with the signatures of

both A and B, and Tx , which can be redeemed with A’s signature
only. All these signatures are exchanged before stipulation, hence

any participant can append Tput to the blockchain — provided that

Tx is still unspent. Instead, if Tx has been spent, the contract gets

stuck, and the deposit within Tinit is frozen — coherently with the

semantics of BitML, where deposits can be spent arbitrarily.

Reveal / choice. Recall from Section 2 the timed commitment

contract TC = D1 + D2, where D1 = reveala . withdraw A and

D2 = after t : withdraw B . The contract precondition is G =

A:! 1B @x | A:secreta | B:! 0B @y. Before running the com-

piler, A generates a random nonce sa , and broadcasts its hash

ha = H (sa ). Honest participants will choose a nonce of length

greater than a public security parameter η. A large enough parame-

ter (e.g., η = 128) ensures that the other participants cannot infer

sa (assuming H to be preimage resistant), nor its length. Further, A
cannot later on reveal a different secret or a different length (assum-

ing collision resistance). After that, both participants can compile

{G }TC, obtaining the following transactions:

Tinit

in: 0 7→ Tx , 1 7→ Ty
wit: 0 7→ sigK(A ) , 1 7→ sigK(B )
out: (λς⃗β .versigK(D1, {A,B }) (⃗ς ) ∧ H (β ) = ha ∧ |β | ≥ η

∨ versigK(D2, {A,B }) (⃗ς ), 1B)

Treveal

in: Tinit

wit: sigK(D1, {A,B })
[sa]

out: (λς⃗ .versigK(withdraw A, {A,B }) (⃗ς ), 1B)

TA

in: Treveal
wit: sigK(withdraw A, {A,B })
out: (λς . versigK(A ) (ς ), 1B)

TB

in: Tinit
wit: sigK(D2, {A,B })

−

out: (λς . versigK(B ) (ς ), 1B)

absLock: t

Transaction Tinit can be redeemed in two ways, according to

the two clauses in the disjunction of its output script: (i) with both

signatures sigK(D1,A )
and sigK(D1,B )

(corresponding to the reveal
branch), or (ii) with both signatures sigK(D2,A )

and sigK(D2,B )
(cor-

responding to the after branch).

In case (i), also the secret value sa must be provided in the wit
field of Treveal . As indicated by the square brackets around sa in

Treveal , such value is not provided at compilation time, but added

at runtime. Crucially, altering the wit field does not invalidate the

signatures sigK(D1,A )
and sigK(D1,B )

on Treveal (since signatures

neglect the wit field), nor the actual identifier of Treveal used in the

in field of TA . This relies on the SegWit feature (activated in August

2017), which allows to neglect witnesses in the computation of
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transaction identifiers. Revealing the secret and appending Treveal
correspond to the following computation steps in BitML (time is

omitted, because immaterial in this case):

{A : a#N } | ⟨TC, 1B⟩ −→ A : a#N | ⟨TC, 1B⟩ −→ ⟨withdraw A , 1B⟩

After that, anyone can append the transaction TA to the blockchain

to transfer 1B under A’s control. Note that once Treveal is on the

blockchain, it will be no longer possible to append TB , since both
transactions want to redeem Tinit .

In case (ii), the absLock guarantees that TB can be appended to

the blockchain only after time t , coherently with the after clause

in BitML. Indeed, appending TB (which makes 1B available to B)
corresponds to the following step in BitML (where t ′ ≥ t ):

⟨TC, 1B⟩ | t ′ −→ ⟨B, 1B⟩ | t ′

8 COHERENCE
Our computational soundness result is based on a correspondence

between symbolic and computational runs, that we call coherence.
Intuitively, a symbolic run Rs is coherent with a computational

run Rc when each symbolic step in Rs is matched by the computa-

tional step corresponding to its implementation in Rc (in symbols,

Rs ∼r Rc , where r is the randomness source used by participants).

We illustrate the coherence relation following the possible symbolic

steps (see Appendix A.6 for the formal details).

Advertisement. Advertising a contract {G }C in Rs is performed

through the following step:

Γ −→ Γ | {G }C

which requires that all the deposits mentioned in G (either persis-

tent or volatile) occur in Γ. This step corresponds, in Rc , to broad-

casting a bitstring which encodes the symbolic term {G }C . In the

bitstring, the deposit names in G are encoded as the identifiers of

their corresponding Bitcoin transaction outputs.

Stipulation: committing secrets. After advertisement, commit-

ting secrets is done in Rs performing a step such as:

Γ | {G }C −→ Γ | {G }C | {A : a#N } | A[# ▷ {G }C ] = Γ1

assuming, for simplicity, thatG only requires A:secreta . In Rc ,
this step corresponds to a broadcast of a messagem(C,h , k⃗ ) which
comprises the encoding of the contract advertisement C, the hash h

of the secret of A, and the sequence k⃗ of all the public keys K(D ,B)
for any D subterm ofC , and any participant B occurring inG . Note

that A can obtain k⃗ by previously exchanging the public keys with

other participants in Rc . Messagem is then signed using key KA .

We further require that, in Rc , the value h was indeed generated

by querying the oracle O with some bitstring of length N + η. If
h is not generated through the oracle, or if the required length is

shorter than η, the computational commitment would be coherent,

instead, with the symbolic commitment {A : a#⊥}, which models a

dishonestly chosen secret.

Stipulation: authorizing deposits. The stipulation phase pro-

ceeds, in the symbolic model, by providing the authorizations to

spend the persistent deposits required byG . This is done in Rs by
performing a step such as:

Γ1 −→ Γ1 | A[x ▷ {G }C ] = Γ2

assuming, for simplicity, that G only requires A:!vB @x . In Rc ,
this step corresponds to the broadcast of a signature on the Tinit
transaction made with A’s key K̂A . This signature authorizes Tinit
to redeem the transaction output corresponding to the symbolic

persistent deposit ⟨A,vB⟩x . The unsigned Tinit transaction is ob-

tained from the compiler, using the hashes and the keys in the

commitment messagesm(C,h , k⃗ ) broadcast in Rc by each partic-

ipant. Note that an honest participant would sign Tinit only after
having exchanged with the other participants the signatures for all

the other transactions generated by the compiler.

Stipulation: activating the contract. The stipulation phase is

finalised by gathering all the required persistent deposits, and pro-

ducing an active contract with an initial balance equal to their sum.

This is done in Rs by performing a step such as:

Γ2 −→ ⟨C ,vB⟩ | Γ0 where Γ = Γ0 | ⟨A,vB⟩x

In Rc , this step corresponds to appending Tinit to the blockchain.

Contract actions. In the symbolic run, once the active contract

⟨C ,vB⟩ is created, it can be executed by performing its actions,

causing in Rs steps such as:

⟨C ,vB⟩ −→ ⟨C ′,vB⟩

In the computational run, each of these steps corresponds to ap-

pending to the blockchain a transaction. The blockchain initially

contains a compiler-generated transaction TC , with an unspent

output (say, at index i) corresponding to C . Performing the com-

putational step consists in appending another compiler-generated

transaction TC ′ , which redeems the output i of TC . In turn, TC ′ has
an output corresponding to C ′. The case of split steps, where:

⟨C ,vB⟩ −→ ⟨C1,v1B⟩ | · · · | ⟨Cn ,vnB⟩

is similar: TC ′ will now have n outputs, corresponding to the n
active contracts produced by the symbolic step.

Some symbolic steps can only be performed under certain condi-

tions. For instance,C = A :τ .C ′ (recall that τ = reveal ∅) requires
A’s authorization before it canmove forward. In the symbolic model,

this authorization is provided by the step:

⟨C ,vB⟩x −→ ⟨C ,vB⟩x | A[x ▷C ]

In the computational setting, TC can be redeemed with the sig-

natures of all the participants. During the stipulation phase, all

such signatures of TC ′ are exchanged, except for A’s one. Partici-
pant A can give her authorization at runtime by broadcasting such

signature, coherently with the symbolic step above.

Another symbolic step which requires the intervention of a given

participant is that of firing a reveal prefix. Indeed, in a symbolic

run,C = reveala .C ′ can only proceed once the secret a has been

revealed through a step:

⟨C ,v⟩ | {A : a#N } −→ ⟨C ,v⟩ | A : a#N

In the computational run, this corresponds to broadcasting a preim-

age of the hash value which was broadcast during the stipulation.

After. Symbolic delays trivially correspond to computational ones.
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Deposits. Symbolic steps which manage deposits have an imme-

diate computational counterpart. For instance, joining two deposits

⟨A,v⟩x and ⟨A,v ′⟩y into a single deposit ⟨A,v +v ′⟩z corresponds

to appending to the blockchain a transaction with two inputs Tx
and Ty and one output, with value v +v ′. Its witnesses comprise

two signatures with K̂A , and its output script verifies a signature

with the same key. In the symbolic run, before the join action can

be performed, A needs to authorize the spending of x and y , using
two distinct steps. In the computational run, these steps correspond

to two messages, where A broadcasts the two signatures.

Dually, dividing a deposit ⟨A,v +v ′⟩ into two parts ⟨A,v⟩ and
⟨A,v ′⟩ corresponds, in the computational run, to appending to the

blockchain a transaction with a single input and two outputs. Trans-

forming ⟨A,v⟩x into ⟨B,v⟩y (i.e., donating a deposit) corresponds,

in the computational run, to appending to the blockchain a trans-

action having as input Tx , as witness a signature with K̂A , and a

single output of value v , redeemable with K̂B .

Computational broadcasts. As described above, symbolic au-

thorization or reveal steps correspond to computational broadcasts

of suitable messages, such as signatures or hash preimages. Compu-

tational participants, however, can also broadcasts other messages,

e.g. for exchanging their public keys during stipulation. Further,

dishonest computational participants can broadcast any arbitrary

bitstring they can compute in PPTIME. Coherence ignores any com-

putational broadcast which does not correspond to any of the above

mentioned symbolic steps. That is, such broadcasts correspond to

no symbolic steps. Ignoring these messages does not affect the se-

curity of contracts, because the other computational messages (in

particular, the appended transactions) are enough to reconstruct,

from a computational run, the BitML steps in the symbolic run.

Appending non-compiler-generated transactions. A subtle

case in the definition of coherence is when dishonest participants
append transactions to the blockchain. To illustrate the issue, sup-

pose that a dishonest A owns vB, represented in the symbolic run

as a term ⟨A,v⟩x , and in the computational run as a transaction Tx
redeemable with K̂A . Since A knows her key K̂A , she can sign an

arbitrary transaction T′ which redeems vB from Tx , and append it

to the blockchain. Crucially, T′ could be a transaction that can never
be generated by the BitML compiler. In such case, it is not possible

to precisely match this computational step with a symbolic one. To

obtain a correspondence, we let the appending of T′ to be coherent

with the symbolic destruction of the deposit ⟨A,v⟩x , which makes

it disappear from the symbolic configuration. In subsequent steps,

coherence will ignore the descendants of T′ in the computational

run. While, in principle, this loss of information at the symbolic

level could allow for computational attacks without a symbolic

counterpart, in fact this is not the case, since computational attacks

can always be adapted so to have a symbolic counterpart. Indeed, to

attack honest participants, A has to stipulate contracts with them:

this requires A to put a deposit, computationally represented as a

transaction T′′. Instead of obtaining T′′ from T′, which makes T′′

unrepresentable at the symbolic level, A can perform symbolically-

representable actions to create from T a deposit T′′′ with the same

value of T′′, to be used in the computational attack. This adaptation

is feasible, because unrepresentable computational actions do not

allow the adversary to artificially increase his wealth. Hence, the

value of T′′ can not exceed the value of T, so making it possible to

produce T′′′ with symbolic actions.

Note that, unlike A’s deposits, active contracts involving A can

not be destroyed by A in the symbolic run. Hence, if in the compu-

tational run A can somehow redeem a transaction T which corre-

sponds to an active contract, using a transaction T′ which is not

symbolically representable, then such computational step is not co-
herent with any symbolic step. This is intended, since in such case

A succeeded in an attack which made the active contract deviate

from its symbolic behavior.

Deposits and coherence. The following lemma ensures that de-

posits in a symbolic run Rs have a correspondent transaction output
in any computational run Rc coherent with Rs . A similar correspon-

dence also exists for active contracts (see Appendix A.6).

Lemma 1. Let Rs ∼r Rc . For each deposit ⟨A,v⟩ occurring in ΓRs ,
there exists a corresponding unspent transaction output in BRc with
value v , redeemable with a signature with key K̂A .

9 COMPUTATIONAL SOUNDNESS
To state the correctness of the BitML compiler, we need to describe

how to convert any symbolic strategy ΣsA to a computational strat-

egy ΣcA = ℵ(Σ
s
A ), which realizes the symbolic behaviour in the

computational model. Here, we provide the key intuition behind

the construction (see Appendix A.7 for details). Strategy ΣcA re-

ceives as input a (stripped) computational run Rc . From this, ΣcA
can reconstruct a (stripped) symbolic run Rs coherent with Rc . At
this point, ΣcA runs ΣsA on Rs , obtaining a set of symbolic actions

Λs . This is then converted to a set of corresponding computational

moves Λc , so that performing any of the computational moves will

produce an extension of Rc which is still coherent with Rs , possibly
extended with one of the symbolic moves in Λs . This conversion
closely follows the definition of coherence.

Our computational soundness result follows (see Appendix A.8

for its proof). We assume that honest participants have a symbolic

strategy, and that their computational strategy is consequently

obtained through the mapping ℵ sketched above. Our computa-

tional soundness result establishes that any computational run

conforming to the (computational) strategies, with overwhelming

probability has a corresponding symbolic run conforming to the

(symbolic) strategies.

Theorem 2 (Computational soundness). Let Σs be a set of sym-
bolic strategies for all A ∈ Hon. Let Σc be a set of computational
strategies such that ΣcA = ℵ(Σ

s
A ) for all A ∈ Hon, including an arbi-

trary adversary strategy ΣcAdv . Fix k ∈ N. Then, the following set has
overwhelming probability:{

r
����
∀Rc conforming to (Σc, r ) with |Rc | ≤ ηk :

∃Rs conforming to (Σs,π1 (r )) with Rs ∼r Rc
}

In the statement above, r represents the randomness used by

all participants, including Adv. Formally, r maps each participant

to an infinite string of independent and uniformly distributed bits.

Once r is fixed, the behavior of the participants is deterministic,

resulting in a single run. Hence, the probability that r drives a run
Rc satisfying some property p, as done in the statement, can be seen

as the probability that a random run Rc , sampled according to the
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strategies, satisfies p. The statement considers only computational

runs Rc having a polynomial length (≤ ηk ) with respect to a secu-

rity parameter η. This is crucial, since the adversary strategy is run

at each computational step, hence in the whole run the adversary

can run PPTIME algorithms for |Rc | times. Without a polynomial

bound on |Rc |, the adversary would be able to run algorithms out-

side PPTIME before the end of the run, breaking the underlying

cryptographic primitives. Overall, the theorem states that if we run

the computational strategies Σc
using r , generating a polynomially-

bounded run Rc conformant with Σc
, then, with overwhelming

probability, Rc is coherent with some symbolic run Rs . Further, this
run can be obtained running the strategies Σs

using the randomness

π1 (r ). This stands for the sequence of the even-indexed bits in r
(this is a technical artifact of our ℵ construction).

Finally, note that Theorem 2 implicitly uses the compiler in

two points: the translation ℵ (the obtained computational strate-

gies involve the compilation of the contracts used by the symbolic

strategies), and the coherence relation ∼.

10 CONCLUSIONS
Our work bridges the gap between the cryptography community,

where Bitcoin smart contracts have been investigated first, and the

programming languages community. In particular, our computa-

tional soundness result guarantees that, if some safety properties

are violated at the computational level, then they are also violated

at the symbolic level. So, reachability-based symbolic analyses can

be soundly used to prove safety properties of smart contracts.

Although BitML can express many of the smart contracts ap-

peared in literature [15], it has some limitations. For instance, it can-

not express contingent payments, where a participant A promises

to pay B for a value x satisfying a predicate chosen by A (e.g., x
is a prime factor of a given large number). Contingent payments

can be implemented in Bitcoin similarly to timed commitments:

A pays a deposit, which is taken by B after revealing a preimage

of H (x ) which satisfies the predicate. An off-chain protocol [18]

(which exploits zero-knowledge proofs) is used to guarantee that

H (x ) is indeed the hash of a value x satisfying the predicate (note

that, in the Bitcoin scripting language, one can only check trivial

predicates, like e.g. equality). BitML could be extended to express

contingent payments, by exploiting zero-knowledge proofs simi-

lar to those in [18] in the stipulation phase. This would allow our

compiler to only generate standard Bitcoin transactions. Another

kind of contracts which are not expressible in BitML are those for

which one cannot pre-determine at compile time, a finite set of
transactions, or of signatures, or of execution steps. This is the

case, e.g., of crowdfunding contracts [15], where participants invest

some money until a given threshold is reached. Here, we do not

statically know neither the number of participants, nor their identi-

ties, so it is not possible to statically produce (and pre-sign) a set of

transactions, as required by BitML. Extending BitML to express this

kind of contracts — while preserving our compilation technique —

would require suitable extensions of Bitcoin transactions. For in-

stance, recursion could be obtained via extensions similar to those

proposed in [49, 53].
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A APPENDIX
A.1 Additional BitML examples
We show a few additional examples of BitML contracts. Hereafter,

in a term reveal a⃗.C , we abbreviate prefixes reveal a⃗b⃗ ifp oc-

curring in C as reveal b⃗ ifp if some name in a⃗ occurs in p .

Variable-refund escrow. We propose a variant of the escrow

contract in Section 2 where M can issue a partial refund of ζvB to

A, and of (1 − ζ )vB to B (similarly to [3, 25]). The possible values

of ζ are given by a finite set Z in the range [0, 1]. We model the

new contract as:

C = A : withdraw B + B : withdraw A +
∑
ζ ∈Z M :Dζ

Dζ = split
(
ζv → withdraw A | (1 − ζ )v → withdraw B

)
The case of full refunds is obtained with Z = {0, 1}. If Z = {0, 1/2, 1},
M can also choose to refund v/2B to both.

Intermediated payment. Assume that A wants to send an indi-

rect payment of vCB to C, routing it through an intermediary B
who can choose whether to authorize the payment, in this case

retaining a fee vBB, or not. Since A does not trust B, she wants to
use a contract to guarantee that: (i) if B is honest, then vCB are

transferred to C; (ii) if B is not honest, then A does not lose money.

In BitML, we use G = A:! (vB +vC ) @x as precondition, and

the following contract:

C = B : split
(
vB → withdraw B | vC → withdraw C

)
+ after t : withdraw A

The first branch can only be taken if B authorizes the payment: in

this case, B gets his fee, and C gets his payment. If B denies his

authorization, after time t , A can redeem her deposit.
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Mutual timed commitment. We can also model mutual timed

commitment as follows, where t < t ′:

G = A:!v @x | A:secreta | B:!v @y | B:secretb

C = reveala .C ′ +
(
after t : withdraw B

)
C ′ = revealb .C ′′ +

(
after t ′ : withdraw A

)
C ′′ = split

(
vB→ withdraw A | vB→ withdraw B

)
The contract C can reduce to C ′ if A reveals a , otherwise (after t )
B can redeem 2vB. In C ′, if B reveals b , then both participants can

redeem their deposits, running C ′′. Otherwise, A can redeem 2vB.

Zero-collateral lottery. We show a two-players lottery which

requires no collateral, similarly to [20, 47]. The preconditions just

require the 1B bets and the secrets, while the contract is the follow-

ing, where d ′ > d :

revealb if 0 ≤ |b | ≤ 1.
(

reveala if |a | = |b |. withdraw A
+ reveala if |a | , |b |. withdraw B
+ afterd ′ : withdraw B

)
+ afterd : withdraw A

Here, B must reveal first. If B does not reveal his secret by the

deadline d , or the secret has not the expected length, then A can

redeem 2B. Otherwise, A in turn must reveal by the deadline d ′,
or let B redeem 2B. If both A and B reveal, then the winner is

determined by comparing the lengths of their secrets. As before,

the rational strategy for each player is to choose a secret length 0

or 1, and reveal it. This makes the lottery fair, even in the absence

of a collateral.

Rock-Paper-Scissors. Using similar insights, we can craft con-

tracts for other games. For instance, consider Rock-Paper-Scissors, a
two players hand game where both players choose simultaneously

a hand-shape, and the winner is decided along with the following

rules: rock beats scissors, scissors beats paper, and paper beats rock.

We model the game for two players A and B who bet 1B each, and

represent their moves as secrets of length 0 (rock), 1 (paper), and 2

(scissors). We define the following boolean predicate to determine

the winner:

w (N ,M ) = (N = 0∧M = 2) ∨ (N = 2∧M = 1) ∨ (N = 1∧M = 0)

The contract preconditions are:

A:! 3B @x | A:secreta | B:! 3B @y | B:secretb

while the contract is the following:

split
(

2B→ revealb if 0 ≤ |b | ≤ 2. withdraw B
+ afterd : withdraw A

| 2B→ reveala if 0 ≤ |a | ≤ 2. withdraw A
+ afterd : withdraw B

| 2B→ revealab ifw ( |a |, |b |). withdraw A
+ revealab ifw ( |b |, |a |). withdraw B
+ revealab if |a | = |b |. split(1B→ withdraw A

| 1B→ withdraw B )
)

The contract is split in three parts, each with a balance of 2B: the

first two parts allow the players to redeem the collaterals by re-

vealing their secrets in time (similarly to the first version of the

lottery), while the third one computes the winner. The winner is

A ifw ( |a |, |b |), and B ifw ( |b |, |a |). If a and b have the same length

(i.e., they represent the same move), then there is a tie, so the bets

are given back to the two players. Notice that if a player chooses

a secret of unexpected length, then it may happen that the 2B in

the third part of the split remain frozen. However, in such case

the dishonest player will pay a 2B penalty to the other one. A zero-

collateral version of Rock-Paper-Scissors can be obtained similarly

to the second version of the lottery.

A.2 Supplementary material for Section 4
The semantics of BitML is organised in two layers: a bottom layer,

taking the form of an LTS between (untimed) configurations, and a

top layer, in the form of a timed LTS between timed configurations.

Definition 5 (Configurations). We define (untimed) configura-

tions Γ,∆, . . . through the syntax in Figure 2, where we stipulate

that in a configuration there are no duplicate authorizations. We

assume that ( |, 0) is a commutative monoid. Indexed parallel compo-

sitions are denoted with ∥ . We say that Γ is initial when it contains

only terms of the form ⟨A,v⟩x . ⋄

Definition 6 (LTS of untimed configurations). The LTS of con-

figurations is defined in Figure 3 (deposits) Figure 4 (advertise-

ments and stipulation), and Figure 5 (contracts). The function cv
from labels α to sets of names is defined as: cv (put (x⃗ , a⃗ ,y )) =
cv (withdraw (A,v ,y )) = cv (split (y )) = {y }, otherwise cv (α ) is
empty. We further assume that a transition Γ −→ Γ | A[χ ] is possible
only if A[χ] is not already present in Γ. ⋄

We now describe the rules of deposits, starting from the simplest

ones: those which deal with deposits, without directly affecting

contracts.

The rule [Dep-AuthJoin] allows A to authorize the merge of two

deposits x ,y into a single one, creating the needed authorization.

The label of the form A : · · · records that only participant A can

perform this move. The rule [Dep-Join] uses this authorization to

create a single deposit z of A. The rules [Dep-AuthDivide] and [Dep-Divide]

act similarly, allowing a deposit of A to be divided in two parts.

The rules [Dep-AuthDonate] and [Dep-Donate] allow A to transfer one of

her deposits to another participant. The pair of rules [Dep-AuthDestroy]

and [Dep-Destroy] allow a set of participants to destroy a set of deposits

x1 · · · xn . To do that, first each participant Ai must provide the

needed authorization Ai [x⃗ , i ▷ y] for their own deposit xi . When

all the authorizations have been collected, rule [Dep-destroy] eliminates

the deposits. The last pair of rules is needed to properly represent

the fact that computational participants can create (and put on

the ledger) transactions which do not have a counterpart in our

symbolic model. To achieve a meaningful correspondence between

the symbolic and the computational models, putting on the ledger

such transactions is rendered with the rule [Dep-destroy].

We discuss a few subtleties in the rules. First, [C-Advertise] requires

as a side condition that at least one of the participants involved

in each stipulation is honest (one of the weakest assumptions in

cryptographic protocols). The same effect of running contracts

among dishonest participants can still be obtained by redistributing

funds through the rules for deposits. Hence, this side condition

does not affect the power of the adversary. A further motivation
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Γ ::= untimed configuration

0 empty

| {G }C contract advertisement

| ⟨C , v⟩x an active contract containing vB

| ⟨A, v⟩x a deposit of vB redeemable by A

| A[χ ] authorization of A to perform χ

| {A : a#N } committed secret of A (N ∈ N ∪ {⊥})

| A : a#N revealed secret of A (N ∈ N)

| Γ | Γ′ parallel composition

Γ | t timed configuration (t ∈ N)

χ ::= authorization to . . .

# ▷ {G }C commit secrets to stipulate {G }C

| x ▷ {G }C spend x to stipulate {G }C

| x ▷ D take branch D

| x, y ▷ ⟨A, v⟩ join deposit x with y into a deposit for A

| x ▷ ⟨A, v⟩, ⟨A, v ′⟩ divide a deposit x in two deposits for A

| x ▷ B donate deposit x to B

| x⃗, i ▷ y destroy i-th deposits in x⃗ through y

Figure 2: Configurations and authorizations.

for the side condition is that the correctness of our compiler will

rely on this assumption.

Rule [C-AuthCommit] allows dishonest participants to choose an

“invalid” length ⊥ for their committed secrets. This reflects the

fact that, in the computational model, A commits to a secret by

broadcasting a bitstring, meant to be the hash of the secret. If A
is dishonest, she could instead broadcast an arbitrary bitstringw ,

preventing herself later on to reveal a preimage ofw . Similarly, the

length ⊥ prevents the reveal action in the symbolic model.

Note that the semantics of predicates is well-defined, provided

that there exists a unique A : a#N in Γ for each |a | in the predicate.

Our semantics of contracts ensures that is indeed the case.

Definition 7 (LTS of timed configurations). Timed configura-

tions are terms Γ | t , where t ∈ N is the global time. The LTS

between timed configurations is defined in Figure 6, where labels

α are either untimed labels, or delays δ ∈ N. ⋄

Example 1 (Timed commitment). We show two computations

of the timed commitment contract TC introduced in Section 2, using

G = A:! 1B @x | A:secreta | B:! 0B @y as precondition. Let

Γ = ⟨A, 1B⟩x | ⟨B, 0B⟩y . Assuming that A is honest, a possible

computation where A reveals her secret and then redeems the

deposit is the following (here time is immaterial):

Γ −→ Γ | {G }TC = Γ1 (1)

−→ Γ1 | {A : a#N } | A[# ▷ {G }TC] = Γ2 (2)

−→ Γ2 | B[# ▷ {G }TC] = Γ3 (3)

−→ Γ3 | A[x ▷ {G }TC] = Γ4 (4)

−→ Γ4 | B[y ▷ {G }TC] (5)

−→ ⟨TC, 1B⟩x1 | {A : a#N } = Γ′ (6)

−→ ⟨TC, 1B⟩x1 | A : a#N (7)

−→ ⟨withdraw A , 1B⟩x2 | A : a#N (8)

−→ ⟨A, 1B⟩x3 | A : a#N (9)

Step (1) advertises {G }TC. This is possible because both deposits

x and y (required by G ) are available in Γ. At step (2), A commits

to a secret: its length N is a natural, since A is honest. At step (3)

also B does his commitment (empty, since G does not require any

secrets from B). At steps (4)-(5), A and B give their authorization to

stipulate TC, by providing their authorizations to spend the deposits
x andy , respectively. At step (6) the contract TC becomes stipulated.

After this step, the bitcoins in the deposits x and y are transferred

to the contract. At step (7), A reveals her secret (and consequently,

also its length N ). After that, the action reveala is performed at

step (8), reducing the contract to withdraw A , and discarding the

after branch. Finally, step (9) performs the withdraw A action,

producing a fresh deposit x3 with 1B redeemable by A.
We also show a computation where A does not reveal her secret,

and B waits until t ′ > t to redeem A’s deposit. Starting from the

configuration Γ′ at time 0, we have the following steps:

Γ′ | 0 −→ Γ′ | t ′ −→ ⟨B, 1B⟩y | {A : a#N } | t ′

The first step lets the time pass, by rule [Delay]. In the second step, B
fires the prefix withdraw B within the after, and in this way he

collects 1B. This is obtained by using rule [C-Withdraw] in the premise

of [C-Timeout]. ⋄

A.3 Supplementary material for Section 5
If a symbolic run Rs is finite, we write ΓRs for its last untimed

configuration, and δRs for the last time. We write Rs
α
−→ Ṙs when

Ṙs extends Rs with the transition (ΓRs ,δRs )
α
−→ (ΓṘs ,δṘs ).

Definition 8 (Stripping of symbolic runs). We denote with

strip(Rs ) the sequence obtained from Rs by replacing each com-

mitted secret {A : a#N } with {A : a#⊥}, and each label A : {G }C ,∆
with A : {G }C , 0. We accordingly define label stripping. ⋄

The strategy of A has access to an infinite sequence rA ∈ {0, 1}
ω

of independent and uniformly random bits. Instead of modelling

the access to rA through an oracle, we simply pass rA as input to

the strategy.

Definition 9 (Randomness sources). A randomness source is a

function r from participants A ∈ Hon ∪ {Adv} to infinite bitstrings

r (A) ∈ {0, 1}ω . We usually write rA for r (A). ⋄

The following lemma states that stripping preserves the symbolic

transitions, except for those which reveal secrets.

Lemma 3. Let α , A : a , for any A and a . (i) if Rs
α
−→ Ṙs , then

strip(Rs )
α
−→ strip(Ṙs ); (ii) if strip(Rs )

α
−→ Rs∗ , then Rs

α
−→ Ṙs , for

some Ṙs such that strip(Ṙs ) = strip(Rs∗ ).

Definition 10 (Symbolic participant strategies). The symbolic

strategy of a participantA ∈ Hon is a PPTIME algorithm ΣsA (R
s
∗ , rA ),
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⟨A, v⟩x | ⟨A, v ′⟩y | Γ
A :x,y
−−−−−→ ⟨A, v⟩x | ⟨A, v ′⟩y | A[x, y ▷ ⟨A, v + v ′⟩] | Γ

[Dep-AuthJoin]

Γ = A[x, y ▷ ⟨A, v + v ′⟩] | A[y, x ▷ ⟨A, v + v ′⟩] | Γ′ z fresh

⟨A, v⟩x | ⟨A, v ′⟩y | Γ
join(x,y )
−−−−−−−→ ⟨A, v + v ′⟩z | Γ′

[Dep-Join]

⟨A, v + v ′⟩x | Γ
A :x,v,v ′
−−−−−−−−→ ⟨A, v + v ′⟩x | A[x ▷ ⟨A, v⟩, ⟨A, v ′⟩] | Γ

[Dep-AuthDivide]

Γ = A[x ▷ ⟨A, v⟩, ⟨A, v ′⟩] | Γ′ y, y′ fresh

⟨A, v + v ′⟩x | Γ
divide(x,v,v ′)
−−−−−−−−−−−−→ ⟨A, v⟩y | ⟨A, v ′⟩y′ | Γ′

[Dep-Divide]

⟨A, v⟩x | Γ
A :x,B
−−−−−→ ⟨A, v⟩x | A[x ▷ B] | Γ

[Dep-AuthDonate]

Γ = A[x ▷ B] | Γ′ y fresh

⟨A, v⟩x | Γ
donate(x,B )
−−−−−−−−−−→ ⟨B, v⟩y | Γ′

[Dep-Donate]

x⃗ = x1 · · · xn j ∈ 1..n y fresh (except in destroy authorizations for x⃗ )(
∥ i∈1. .n ⟨Ai , vi ⟩xi

)
| Γ

Aj :x⃗, j
−−−−−→

(
∥ i∈1. .n ⟨Ai , vi ⟩xi

)
| Aj [x⃗, j ▷ y] | Γ

[Dep-AuthDestroy]

x⃗ = x1 · · · xn Γ =
(
∥ i∈1. .n Ai [x⃗, i ▷ y]

)
| Γ′(

∥ i∈1. .n ⟨Ai , vi ⟩xi
)
| Γ

destroy (x⃗ )
−−−−−−−−→ Γ′

[Dep-Destroy]

Figure 3: Semantics of untimed configurations: rules for deposits.

{G }C contains at least one participant in Hon
a fresh, for each A:secreta in G

Γ contains ⟨Ai , vi ⟩xi for all Ai:!vi @ xi in {G }C
Γ contains ⟨Ai , vi ⟩xi for all Ai:?vi @ xi in {G }C

Γ
advertise({G }C )
−−−−−−−−−−−−−→ {G }C | Γ

[C-Advertise]

a1 · · · ak secrets of A in G

∀i ∈ 1..k : ∄N : {A : ai #N } ∈ Γ

∆ = {A : a1#N1 } | · · · | {A : ak #Nk }

∀i ∈ 1..k : Ni ∈



N if A ∈ Hon

N ∪ {⊥} otherwise

{G }C | Γ
A :{G }C ,∆
−−−−−−−−−→ {G }C | Γ | ∆ | A[# ▷ {G }C ]

[C-AuthCommit]

Γ contains B[# ▷ {G }C ] for all B in G G = A:!v @ x | · · ·

{G }C | Γ
A :{G }C ,x
−−−−−−−−−→ {G }C | Γ | A[x ▷ {G }C ]

[C-AuthInit]

G =
(
∥ i∈IAi:!vi @ xi

)
|
(
∥ i∈J Bi:?v ′i @yi

)
|
(
∥ i∈KCi:secretai

)
x fresh

{G }C | Γ |
(
∥ i∈I ⟨Ai , vi ⟩xi

)
|
(
∥ A∈G A[# ▷ {G }C ]

)
|
(
∥ i∈IAi [xi ▷ {G }C ]

) init (G ,C )
−−−−−−−−→ ⟨C ,

∑
i∈I vi ⟩x | Γ

[C-Init]

Figure 4: Semantics of untimed configurations: rules for advertisement and stipulation.

A, B, . . . ∈ Part Participants

x, y, . . . Deposit names

a, a′, b, . . . Secrets names

t, t ′, δ, . . . ∈ N Delays

v, v ′ . . . ∈ 10−8N Currency values

G , G ′, . . . Preconditions

C , C ′, . . . Contracts

D , D ′, . . . Guarded contracts

{G }C Advertisement

Γ, ∆, . . . Configuration (untimed)

Γ | t Configuration (timed)

α, α ′, . . . Labels (including delays)

Rs , Ṙs , . . . Symbolic runs

Rs∗ , Ṙ
s
∗ , . . . Stripped symb. runs

λs Symbolic label

Λs Set of symbolic labels

ΣsA Symbolic strategy

Badv ( ·) Compiler

r Random generator

rA Random nonce (of A)
m,m′, . . . Bitstrings

T, T′, . . . Transactions

Rc , Ṙc , . . . Computational runs

Rc∗ , Ṙ
c
∗ , . . . Stripped comp. runs

λc Computational label

Λc Set of computational labels

ΣcA Computational strategy

ℵ( ·) Strategy mapping

Table 1: Summary of notation.
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v⃗ = v1 · · ·vk C⃗ = C1 · · ·Ck
∑k
i=1 vk = v

′ x1 · · · xk fresh

⟨split v⃗ → C⃗ , v ′⟩y | Γ
split (y )
−−−−−−→

(
∥ ki=1⟨C i , vi ⟩xi

)
| Γ

[C-Split]

N , ⊥

{A : a#N }
A :a
−−−→ A : a#N

[C-AuthRev]

x⃗ = x1 · · · xm

a⃗ = a1 · · · an

Γ = ∥mi=1⟨Ai , vi ⟩xi
∆ = ∥ ni=1Bi : ai #Ni

z fresh

JpK∆ = true

⟨put x⃗ & reveal a⃗ ifp .C , v⟩y | Γ | ∆ | Γ′
put (x⃗, a⃗,y )
−−−−−−−−−→ ⟨C , v +

∑m
i=1 vi ⟩z | ∆ | Γ

′

[C-PutRev]

x fresh

⟨withdraw A, v⟩y | Γ
withdraw (A,v,y )
−−−−−−−−−−−−−−→ ⟨A, v⟩x | Γ

[C-Withdraw]

D ≡ A :D ′

⟨D +C , v⟩x | Γ
A :x,D
−−−−−−→ ⟨D +C , v⟩x | A[x ▷ D ] | Γ

[C-AuthControl]

D ≡ A1 : · · · :Ak : after t1 : · · · : after tm :D ′ D ′ . A : · · · D ′ . after t : · · · ⟨D ′, v⟩x | Γ
α
−→ Γ′ x ∈ cv (α )

⟨D +C , v⟩x | ∥ ki=1Ai [x ▷ D ] | Γ
α
−−−→ Γ′

[C-Control]

JtrueKΓ = true Jp1 ∧ p2KΓ = Jp1KΓ and Jp2KΓ J¬pKΓ = not JpKΓ JE1 ◦ E2KΓ = JE1KΓ ◦ JE2KΓ (◦ ∈ {=, < })

JN KΓ = N J |a |KΓ = N if Γ contains A : a#N JE1 • E2KΓ = JE1KΓ • JE2KΓ (• ∈ {+, −})

Figure 5: Semantics of untimed configurations: rules for contracts.

Γ
α
−→ Γ′ cv (α ) = ∅

Γ | t
α
−→ Γ′ | t

[Action]

δ > 0

Γ | t
δ
−→ Γ | t + δ

[Delay]

D ≡ after t1 : · · · : after tm :D ′ D ′ . after t ′ : · · ·

⟨D , v⟩x | Γ
α
−→ Γ′ x ∈ cv (α ) t ≥ t1, . . . , tm

⟨D +C , v⟩x | Γ | t
α
−→ Γ′ | t

[Timeout]

Figure 6: Semantics of timed configurations.

taking as input a stripped symbolic run Rs∗ and a random sequence

rA . The output is a finite sequence of α-moves such that the follow-

ing constraints hold:

(1) if α ∈ ΣsA (strip(R
s ), rA ), then Rs

α
−→;

(2) if B : · · · ∈ ΣsA (strip(R
s ), rA ), then B = A;

(3) if A : {G }C ,∆ and A : {G }C ,∆′ in ΣsA (strip(R
s ), rA ), then

∆ = ∆′;

(4) if α ∈ ΣsA (strip(R
s ), rA ) and Rs

α1

−−→ Ṙs
α
−→, then α ∈

ΣsA (strip(Ṙ
s ), rA ). ⋄

The constraints in Definition 10 are needed to rule out ill-formed

strategies. (1) requires that ΣsA only chooses moves enabled by

the semantics; (2) states that ΣsA cannot choose moves of B; (3)
guarantees that the lengths of secrets are chosen coherently (i.e., A
cannot choose different lengths for the same secret); (4) requires the

strategy to be persistent: if on a run ΣsA chooses α , and α is not taken

as the next step in the run (e.g., because some other participant acts

earlier), then ΣsA must still choose α after that step, if still enabled.

Definition 11 (Symbolic adversary strategies). A symbolic ad-

versary strategy is a PPTIME algorithm ΣsAdv (R
s
∗ , rAdv , Λ⃗

s ), tak-

ing as input a stripped symbolic run Rs∗ , a random sequence rAdv ,

and a list Λ⃗s = Λs
1
· · ·Λsk of sequences of stripped moves for each

Ai ∈ Hon = {A1, . . . ,Ak }. The output is a single adversary action λ
s

such that, for all symbolic runs Rs , if ΣsAdv (strip(R
s ), rAdv , Λ⃗

s ) = λs ,

one of the following holds:

(1) λs = (Ai , j ), Λsi = α1 · · ·αm , and α j = Ai : · · ·;

(2) λs = α , α , A : · · · for any A, α < N, and Rs
α
−→;

(3) λs = B : · · ·, λs , B : a for any a , B < Hon and Rs
λs
−−→;

(4) λs = δ , where ∀i ∈ 1..k :

(
Λsi = ∅ or ∃δi ∈ Λ

s
i : δi ≥ δ

)
.

(5) λs = B : a, where:
(i) B < Hon;
(ii) Γstrip(Rs ) contains {B : a#⊥};

(iii) for some prefix Rs∗ of strip(R
s ), we have ΣsAdv (R

s
∗ , rAdv , ϵ )

= B : {G }C ,∆ where {B : a#N } in ∆ , for some N , ⊥
and {G }C .

If ΣsAdv (strip(R
s ), rAdv , Λ⃗

s ) = B : {G }C ,∆ for B < Hon, we ask that
ΣsAdv (strip(R

s ), rAdv , ϵ ) = B : {G }C ,∆. ⋄

Conditions (1)–(4) are straightforward; in (5) the adversarymakes

a dishonest participant B reveal a secret a . In such case, we require

that the (stripped) run contains the corresponding committed secret

{B : a#⊥}, and that, at some previous point Rs∗ in the (stripped) run,

ΣsAdv chose a non-⊥ length N for a . This requirement is achieved

by considering ΣsAdv (R
s
∗ , rAdv , ϵ ), where the use of ϵ is due to the

ignorance of the parameter Λ⃗s generated at the point Rs∗ . We con-

sequently require that the N chosen by ΣsAdv does not depend on

Λ⃗s . This restriction does not limit the power of Adv, who can first

perform a sequence of actions λs depending on Λ⃗s , appending them
to Rs , and then choose N depending on such actions λs .

Lemma 4. Let Rs∗ = strip(Rs ) for some symbolic run Rs . Also, let
Hon = {A1, . . . ,Ak }, and let Λ⃗s = Λs

1
· · ·Λsk , whereΛ

s
i = ΣsAi

(Rs∗ , rAi )

for i ∈ 1..k . If ΣsAdv (R
s
∗ , r , Λ⃗

s ) = λs , then:
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(1) if λs = (Ai , j ), then Rs
α j
−−→, where Λsi = α1 · · ·αm ;

(2) otherwise, Rs
λs
−−→.

We now characterise the runs obtained under an adversary with

strategy ΣsAdv taking as input the outputs of the participant strate-

gies. This notion, called conformance, also involves a randomness

source, fed as input to the strategies.

Definition 12 (Symbolic conformance). Let Σs
be a set of sym-

bolic strategies, comprising those of honest participants A1, . . . ,Ak
and of the adversary, and let r be a randomness source. We say that

a symbolic run Rs conforms to (Σs, r ) when one of the following

conditions hold:

(1) Rs = Γ | 0, with Γ initial;

(2) Ṙs
α
−→ Rs , where Ṙs conforms to (Σs, r ), and, given Λsi =

ΣsAi
(strip(Ṙs ), rAi ) for all i ∈ 1..k and Λ⃗

s
∗ = strip(Λs

1
· · ·Λsk ),

if λs = ΣsAdv (strip(Ṙ
s ), rAdv , Λ⃗

s
∗ ) then λ

s = α , or λs = (Ai , j )
for α = α j and Λsi = α1 · · ·αm .

If Σs
does not comprise the adversary strategy, we say that Rs

conforms to (Σs, r ) when there exists some strategy ΣsAdv such that

Rs conforms to (ΣsΣsAdv , r ). ⋄

A.4 Supplementary material for Section 6
Key pairs. We associate each A with two key pairs: These key

pairs are generated through rA , if A ∈ Hon. We write KA (rA ),

K̂A (rA ) for the key pairs generated using the first 2η bits of rA .
For the participants not in Hon, denoted with B1, . . . ,Bk , we write
KBi (rAdv ), K̂Bi (rAdv ) for the key pairs generated from rAdv . Given

any key pair K , we denote with Kp
its public part, and with Ks

its

private part.

Security parameter. Our model uses PPTIME algorithms w.r.t.

a security parameter η ∈ N. We extend the randomness source

also to O, assuming rO ∈ {0, 1}
ω
to be defined. For simplicity, we

assume that all communications (except those involving O) are

(reliable) broadcasts. The security parameter η is such that: (i)H (m)
comprises η random bits. (ii) the i-th key pair is generated using

the i-th 2η bits from rAdv .

Definition 13 (Computational runs). Let r be a randomness

source. A computational run Rc is a finite sequence of computa-

tional labels, beginning with a prefix Rc
0
such as:

T0 · · ·Ai → ∗ : (K
p
Ai
(rAi ), K̂

p
Ai
(rAi )) · · · (∀Ai ∈ Hon)

· · ·Bj → ∗ : (K
p
Bj
(rAdv ), K̂

p
Bj
(rAdv )) · · · (∀Bj < Hon)

where T0 is a coinbase transaction, and for each participant P (hon-

est or dishonest), there exists an output of T0 redeemable with the

private key K̂s
P . We say that the run Rc

0
is initial. We denote with

δRc the sum of all the delays in Rc . ⋄

The labels Pi → ∗ : (K
p
Pi
, K̂

p
Pi
) represent a broadcast of Pi ’s

public keys (of both kinds) to all participants.

Definition 14 (Stripping of computational runs). For each

computational run Rc and participant A ∈ Part ∪ {Adv}, we define

stripA (R
c ) as the computational run obtained from Rc by replacing

each label λc with stripA (λ
c ), defined as follows:

stripA (λ
c ) =




ϵ if λc = B → O :m, with B , A

ϵ if λc = O → B :m, with B , A

λc otherwise

⋄

Borrowing from [16], we writeB▷ (T, t ) when (T, t ) consistently
updates B.

Definition 15 (Blockchain of a computational run). For each

Rc , we define the blockchain BRc inductively as follows:

BT0 = (T0, 0) BRcλc =



BRc (T,δRc ) if λc = T

BRc otherwise

⋄

Definition 16 (Computational participant strategies). The com-

putational strategy of a participant A ∈ Hon is a PPTIME algorithm

ΣcA (R
c
∗ , rA ), taking as input a (A-stripped) computational run Rc∗

and a random sequence rA . The output is a finite set Λc of compu-

tational labels, such that if λc ∈ Λc , then one of the following items

holds:

(1) λc = A → ∗ :m or λc = A → O :m , for somem;

(2) λc = T, where BRc∗ ▷ (T,δRc∗ ), where in Rc∗ we can find (in

this order): (i) all the inputs of T; (ii) a message B → ∗ : T,
for someB; (iii) for eachwitnessw in T, a messageB → ∗ : w ,

for some B.
(3) λc = δ .

We further require that participant strategies are persistent: i.e.,

if Λc = ΣcA (R
c
∗ , rA ), then for all λc such that BRc∗ λc is consistent,

ΣcA (R
c
∗λ
c , rA ) includes the computational labels:

{T ∈ Λc | BRc∗ λc ▷ (T,δRc∗ λc )} ∪{
A → ∗ :m ∈ Λc �� (A → ∗ :m) , λc

}
∪{

A → O :m ∈ Λc �� (A → O :m) , λc
}

⋄

Persistency ensures that, if A at a certain point wants to perform

some λc (sendingm or putting T on the blockchain), she cannot

change her mind in the future, until λc is performed. Condition (2)

requires that, before being able to append T, one has to make both T
and its witnesses public. This models the fact that, before T actually

appears on the blockchain, it has to be broadcast on the Bitcoin

network, potentially enabling an adversary to know T beforehand.

Definition 17 (Computational adversary strategies). A com-

putational adversary strategy is a PPTIME algorithm ΣcAdv (R
c
∗ , rAdv , Λ⃗

c ),

taking as input a (Adv-stripped) computational run Rc∗ , a random
sequence rAdv , and a list Λ⃗c of sequences of moves of each Ai ∈
Hon = {A1, . . . ,Ak }. The output is a single computational label λc

such that if ΣcAdv (R
c
∗ , rAdv , Λ⃗

c ) = λc , one of the following holds:

(1) λc = A → ∗ :m or λc = Adv → O :m, for somem, A;
(2) λc = T, where BRc∗ ▷ (T,δRc∗ ), where in Rc∗ we can find (in

this order): (i) all the inputs of T; (ii) a message B → ∗ : T,
for someB; (iii) for eachwitnessw in T, a messageB → ∗ : w ,

for some B.
(3) λc = δ , where ∀i ≤ k :

(
Λci = ∅ or ∃δi ∈ Λ

c
i : δi ≥ δ

)
. ⋄

19



Note that (1) allows Adv to impersonate any A, to use either A’s
messages in Λc , or self-produced ones. The other cases allow Adv to
(consistently) extend the blockchain, and to delay (if all the honest

participants agree).

Given a set of strategies Σc
for all the honest participants and

for the adversary, and a randomness source r , we now define which

runs Rc can result from making everyone interact. Such runs are

said to conform to (Σc, r ).

Definition 18 (Computational conformance). LetΣc
be a set of

computational strategies, including those of the honest participants

A1, . . . ,Ak and of the adversary, and let r be a randomness source.

We say that a computational run Rc pre-conforms to (Σc, r ) if one
of the following conditions holds:

(1) Rc is initial;
(2) Rc = Ṙcλc , where Ṙc pre-conforms to (Σc, r ), and λc =

ΣcAdv (stripAdv (Ṙ
c ), rAdv , Λ⃗

c ), where Λ⃗c = Λc
1
· · ·Λck , Λ

c
i =

ΣcAi
(stripAi (Ṙ

c ), rAi ), O not occurring in Λ⃗c , λc .

(3) Rc = Ṙc (Adv → O :m) (O → Adv : hm ), where Ṙc pre-conforms

to (Σc, r ), and ΣcAdv (stripAdv (Ṙ
c ), rAdv , Λ⃗

c ) = Adv → O :m,

where Λ⃗c = Λc
1
· · ·Λck , Λ

c
i = ΣcAi

(stripAi (Ṙ
c ), rAi ), and O

does not occur in Λ⃗c .
(4) Rc = Ṙc (Aj → O : m) (O → Aj : hm ), where Ṙc pre-

conforms to (Σc, r ), Λci = ΣcAi
(stripAi (Ṙ

c ), rAi ), and (Aj →
O : m) is the first occurrence of a query to the oracle in

Λc
1
· · ·Λck .

Further, in both Items 3 and 4, given n the number of distinct

queries toO in Rc , we require that ifm was already requested, then

hm is its reply in Ṙc ; otherwise, hm is the portion of rO of length η
starting from nη.

We say that Rc conforms to (Σc, r ) if Rc is a prefix of a run pre-

conforming to (Σc, r ). ⋄

Above, in Items 3 and 4 we handle the queries to O, modelling

the hash functionality as in the random oracle model. We let queries

have higher priority than other actions.

Lemma 5. Let Σc be a set of computational strategies for the honest
participants and for the adversary, and let r be a randomness source.
There exist exactly one maximal run Rc which conforms to (Σc, r ).

A.5 Supplementary material for Section 7
We compile a contract advertisement {G }C into a sequence of stan-

dard Bitcoin transactionsOur compiler relies on the following pa-

rameters, which depend on G and C :

• PartG is the set of all participants occurring in G ;

• part maps deposit names inG to the corresponding partic-

ipants (e.g., part(x ) = A if A:?v @x in G );

• txout maps deposit names in G to the corresponding Bit-

coin transaction output (T,o);
• val maps deposit names inG to the value contained in the

deposit (e.g., val(x ) = v if A:?v @x in G );

• sechash maps secret names inG to the corresponding com-

mitted hashes.

Further, we assume that participants generate the following key

pairs, and exchange their public parts:

• K(A), for each A ∈ PartG;
• K(D ,A), for each subterm D of C , and each A ∈ PartG.

For a set of participants P = {A1, . . . ,An }, we denote with

K(D ,P ) the set of key pairs {K(D ,A1), . . . ,K(D ,An )}.

Definition 19 (BitML compiler). The function Badv (·) from con-

tract advertisements to sequences of Bitcoin transactions is defined

by the rules in Figure 7. ⋄

The function Badv produces all the transactions for {G }C . In
particular, Tinit will be the first to be put on the blockchain, rep-

resenting the stipulation of C . Function BC assigns to a contract

C =
∑
i Di a transaction TC , which can be redeemed only by using

the keys of the subtermsDi ofC . The functions BD and Bout handle
the possible actions of eachD . The action split is handled by Bpar.
We provide more intuition through an example.

Example 2. We compile the timed commitment {G }TC of Section 2,

where G = A:!v @x | A:secreta | B:! 0 @y, and C = D1 + D2,

withD1 = reveala . withdraw A andD2 = after t : withdraw B .
Assume that: A ∈ Hon, txout(x ) = (TA , 0) for some TA whose

output 0 has value v and is redeemable by A, sechash(a ) = ha ,
val(x ) = v . Similarly, for B: txout(y) = (TB , 0), and val(y ) = 0.

The compiler produces Badv ({G }C ) = TinitT1T2, where:

T1 = BD (D1, D1, Tinit, 0, v, {A, B }, 0)

= BC (withdraw A, D1, Tinit, 0, v, ∅, {A, B }, 0)

= T′BD (withdraw A, withdraw A, T′, 0, v, {A, B }, 0) = T′T′A
T2 = BD (D2, D2, Tinit, 0, v, {A, B }, 0)

= BD (withdraw B, D2, Tinit, 0, v, {A, B }, t ) = T′B

The obtained transactions are in Figure 8, where:

e1 = Bout (D1)

= versigK(D1, {A,B }) (ςAςB ) ∧ H(b ) = ha ∧ |b | ≥ η

e2 = Bout (D2) = versigK(D2, {A,B }) (ςAςB )

e′ = Bout (withdraw A ) = versigK(withdraw A , {A,B }) (ςAςB )

For the sake of readability we do not use distinct variables for dif-

ferent signatures of the same participant. The participants start by

generating the transactions off chain, and exchanging the signa-

tures shown in Figure 8. Doing this, A commits to her secret, whose

hash ha occurs in the output script Tinit .out. After that, both A and

B sign Tinit , and put it on the ledger, stipulating the contract. The

transaction Tinit can be redeemed either by T′ or by T′B . In the first

case, T′ has to add to her witness a value a such thatH (a ) = ha and

|a | ≥ η. After that, A can redeem her deposit (now in T′) by putting
T′A on the blockchain. In the second case, Tinit can be redeemed by

T′B : however, this transaction can be put on the blockchain only

after t , because of the timelock in T′B . ⋄

A.6 Supplementary material for Section 8
Hereafter, we assume that at least one of the participants in {G }C
has a secret a inG . Since rule [C-Advertise] requires that secret names

are fresh, this ensures that the same contract can not be advertised

twice. Expressiveness is not affected by this assumption, since a
needs not be used in C . In all our examples, we implicitly assume

this condition to be respected.
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G =
(
∥ i∈IAi:?vi @ xi

)
|
(
∥ i∈J Bi:!v ′i @yi

)
|
(
∥ i∈KCi:secretai

)
C =

∑m
i=1 Di v =

∑
i∈J v ′i

ei = Bout (Di ) (∀i ∈ 1..m) x⃗ =
⊎m
i=1 fv(ei )

Ti = BD (Di , Di , Tinit, 0, v, PartG, 0) (∀i ∈ 1..m)

Tinit

in: i 7→ txout(yi ) (∀i ∈ J )

wit: ⊥

out:
(
λx⃗ .
∨m
i=1 ei , v

)
Badv ( {G }C ) = TinitT1 · · · Tm

C =
∑m
i=1 Di I = {z1, . . . , zk }

ei = Bout (Di ) (∀i ∈ 1..m)

x⃗ =
⊎m
i=1 fv(ei )

Ti = BD (Di , Di , TC , 0, v, PartG, 0) (∀i ∈ 1..m)

TC

in: 0 7→ (T, o), i 7→ txout(zi ) (∀i ∈ 1..k )

wit: 0 7→ sigK(Dp ,P )
, i 7→ sigK(part(zi ))

(∀i ∈ 1..k )

out:
(
λx⃗ .
∨m
i=1 ei , v

)
absLock: t

BC (C , Dp, T, o, v, I, P, t ) = TC T1 · · · Tm

D . A1 : · · · :An : after t1 : · · · : after tk : put z⃗ & reveal a⃗ ifp . C ς⃗ fresh

Bout (D ) = versigK(D ,PartG) (⃗ς )

D ≡ A1 : · · · :An : after t1 : · · · : after tk : put z⃗ & reveal a⃗ ifp . C a⃗ = a1 · · · am ς⃗, b1 · · ·bm fresh

Bout (D ) = versigK(D ,PartG) (⃗ς ) ∧ B(p ) ∧
∧m
i=1 H(bi ) = sechash(ai ) ∧ |bi | ≥ η

D = withdraw A

BD (D , Dp, T, o, v, P, t ) = {in : (T, o), wit : sigK(Dp ,P )
, out :

(
λς . versigK(A ) (ς ), v

)
, absLock : t }

D = put z⃗ & reveal a⃗ ifp . C v ′ = v +
∑
x∈z⃗ val(x )

BD (D , Dp, T, o, v, P, t ) = BC (C , Dp, T, o, v ′, z⃗, P, t )

D = split v⃗ → C⃗ v⃗ = v1 · · ·vk
∑k
i=1 vi ≤ v

BD (D , Dp, T, o, v, P, t ) = Bpar (C⃗ , Dp, T, o, v⃗, P, t )

D = A :D ′

BD (D , Dp, T, o, v, P, t ) = BD (D ′, Dp, T, o, v, P \ {A }, t )
D = after t ′ :D ′

BD (D , Dp, T, o, v, P, t ) = BD (D ′, Dp, T, o, v, P, max{t, t ′ })

C⃗ = C1 · · ·Cn C i =
∑ki
j=1 Di, j (∀i ∈ 1..n)

v⃗ = v1 · · ·vn ei, j = Bout (Di, j ) (∀i ∈ 1..n, j ∈ 1..ki )

x⃗i =
⊎ki
j=1 fv(ei, j ) (∀i ∈ 1..n)

Ti, j = BD (Di, j , Di, j , TC , i − 1, vi , PartG, 0) (∀i ∈ 1..n, j ∈ 1..ki )

TC

in: (T, o)

wit: sigK(Dp ,P )

out: i − 1 7→
(
λx⃗i .

∨ki
j=1 ei, j , vi

)
(∀i ∈ 1..n)

absLock: t

Bpar (C⃗ , Dp, T, o, v⃗, P, t ) = TC (Ti, j )i∈1. .n, j∈1. .ki

B(true) = true B(p1 ∧ p2) = B(p1) ∧ B(p2) B(¬p ) = ¬B(p ) B(e1 ◦ e2) = B(e1) ◦ B(e2)

B(N ) = N B( |a |) = |a | − η B(e1 • e2) = B(e1) • B(e2)

Figure 7: Compiling contracts to Bitcoin transactions.

Tinit

in: 0 7→ (TA , 0), 1 7→ (TB , 0)
wit: ⊥

out: (λςAςBb .e1 ∨ e2, v )

T′

in: (Tinit , 0)

wit: sigK(D1, {A,B })
out: (λςAςB .e

′, v )

T′A

in: (T′, 0)
wit: sigK(withdraw A, {A,B })
out: (λς . versigK(A ) (ς ), v )

T′B

in: (Tinit , 0)
wit: sigK(D2, {A,B })
out: (λς . versigK(B ) (ς ), v )

absLock: t

Figure 8: Transactions obtained by compiling the timed commitment contract.
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Definition 20 (Coherence). We inductively define the relation

coher (Rs , Rc , r , txout, sechash,κ), where (i) Rs is a symbolic run,

(ii) Rc is a computational run, (iii) r is a randomness source, (iv) txout
is an injective function from names x (occurring in Rs ) to trans-

action ouputs (T,o) (where T occurs in Rc ), respecting values;

(v) sechash is a mapping from secret names a (occurring in Rs )
to bitstrings; (vi) κ maps triples ({G }C ,D ,A), where D is a subterm

of C , to public keys.

Base case: coher (Rs , Rc , r , txout, sechash,κ) holds if all the follow-
ing conditions hold: (i) Rs = Γ0 | 0, with Γ0 initial; (ii) Rc = T0 · · ·
initial; (iii) all the public keys in Rc are generated from r , accord-
ing to Definition 13; (iv) txout maps exactly the x of ⟨A,v⟩x in

Γ0 to an output in T0 of value vB, and spendable with K̂A (rA );
(v) dom sechash = ∅; (vi) domκ = ∅.

Inductive case: coher (Ṙs
α
−→ Γ | t , Ṙcλc , r , txout, sechash,κ) holds

if coher (Ṙs , Ṙc , r , txout ′, sechash′,κ ′) and one of the following cases
applies.

(1) α = advertise({G }C ), λc = A → ∗ : C, where C is obtained

by encoding {G }C as a bitstring, representing each x in it

as the transaction output txout ′(x ). Further, txout ′ = txout,
sechash′ = sechash, and κ ′ = κ.

(2) α = A : {G }C ,∆ , where: (i) for someB, Ṙc containsB → ∗ : C,
where C is obtained from {G }C and txout ′ as in Item 1.

Note that Ṙc might contain several such messages; below,

we let C represent the first occurrence. (ii) for some B,
λc = B → ∗ : (C, h⃗ , k⃗ ) (signed by A), where h⃗ is a sequence

comprising a bitstring hi with |hi | = η for each secret ai in

∆ , and k⃗ is a sequence of keys, as the one produced by the

stipulation protocol. We require that λc is the first occur-
rence, in the run Ṙc , of such a message after C. (iii) Let Ni
be the length of ai fixed in ∆. If Ni , ⊥, we require that
Ṙc contains, for some B, a query to the oracle B → O :mi ,

and a subsequent replyO → B : hi such that |mi | = η+Ni .

Otherwise, if Ni = ⊥, we require that hi does not occur as
a reply from O to any query of length ≥ η. (iv) No hash is

reused: the hi are pairwise distinct, and also distinct from

sechash′(b ) for any b ∈ dom (sechash′). (v) txout = txout ′.
(vi) sechash extends sechash′ so that for each secret ai we
have sechash(ai ) = hi . (vii) If A ∈ Hon, we define κ by

extending κ ′ according to k⃗ , so to record the public keys

of all participants occurring in G for each subterm D of C .

If κ ′ already defines such keys, or A < Hon, we let κ = κ ′.
(3) α = A : {G }C ,x , where: (i) λc = B → ∗ : m for some

B, where m is the signature of the transaction Tinit of
Badv ({G }C ) relatively to the input x with K̂A (rA ). The pa-
rameters of the compiler are set as follows: part, PartG and

val are inferred fromG , we let txout = txout ′, sechash = sechash′,
and K(B) = K̂

p
B (rB ), K(D ,B) = κ ′({G }C ,D ,B) for each B,

and D subterm ofC . (ii) For some B, we have B → ∗ : Tinit
occurring in Ṙc . (iii) λc is the first occurrence in Ṙc of a

broadcast ofm after Tinit . (iv) txout = txout ′, sechash = sechash′,
and κ = κ ′.

(4) α = init (G ,C ), where: (i) α consumes from Ṙs the ad-

vertisement {G }C and its persistent deposits to produce

⟨C ,v⟩z . (ii) λ
c = Tinit where Tinit is the first transaction

in Badv ({G }C ). The needed compiler parameters are ob-

tained as in Item 3. (iii) sechash = sechash′, κ = κ ′, and
txout extends txout ′, mapping z to Tinit .

(5) α = A : x ,D , where: (i) Ṙs contains ⟨C ′,v⟩x withC ′ = D+
∑
i Di ,

for some D = A :D ′. (ii) In Ṙs , we find that ⟨C ′,v⟩x has

{G }C as its ancestor advertisement. (iii) λc = B → ∗ :m,

where m is a signature with key κ ′({G }C ,D ,A) of the
first transaction T in BD (D ,D , T′,o,v ,PartG, 0), where
(T′,o) = txout ′(x ). The compiler parameters are obtained

as in Item 3. (iv) txout = txout ′, sechash = sechash′, and
κ = κ ′. (v) Ṙc contains B → ∗ : T for some B, andm is the

first signature of T in Ṙcλc after the first broadcast of T.
(6) α = put (x⃗ , a⃗ ,y), where: (i) x⃗ = x1 · · · xk . (ii) In ΓṘs , the ac-

tion α consumes ⟨D +C ,v⟩y and the deposits ⟨Ai ,vi ⟩xi to
produce ⟨C ′,v ′⟩y′ , whereD = · · · : put · · · reveal · · ·.C ′.
Let t bemaximumdeadline in an after in front ofD . (iii) In

Ṙs , we find that ⟨D +C ,v⟩y has {G }C ′′ as its ancestor ad-
vertisement, for someG andC ′′. (iv) λc = T where T is the

first transaction of BC (C
′,D , T′,o,v ′, x⃗ ,PartG, t ), where

(T′,o) = txout ′(y ). The compiler parameters are obtained

as in Item 3. (v) txout extends txout ′ so that y′ is mapped

to (T, 0), sechash = sechash′, and κ = κ ′.
(7) α = A : a, where: (i) λc = B → ∗ :m from some B with

|m | ≥ η. (ii) Ṙc = · · · (B → O :m) (O → B : sechash′(a )) · · · ,
for some B. (iii) txout = txout ′, sechash = sechash′ and
κ = κ ′. (iv) In Ṙs we find an A : {G }C ,∆ action, with a in

G , with a corresponding broadcast in Ṙc ofm′ = (C, h⃗ , k⃗ ).
(v) λc is the first broadcast ofm in Ṙc after the first broad-
cast ofm′.

(8) α = split (y), where: (i) In Ṙs , the actionα consumes ⟨D +C ,v⟩y

to obtain ⟨C0,v0⟩x0 | · · · | ⟨Ck ,vk ⟩xk whereD = · · · : split v⃗ → C⃗

and C⃗ = C0 . . .Ck . Let t be the maximum deadline in an

after in front of D . (ii) In Ṙs , we find that ⟨D +C ,v⟩y has

{G }C ′ as its ancestor advertisement. (iii) λc = T where T
is the first transaction of Bpar (C⃗ ,D , T′,o,PartG, t ) where
(T′,o) = txout ′(y). The compiler parameters are obtained

as for Item 3. (iv) txout extends txout ′ mapping each xi to
(T, i ), sechash = sechash′, and κ = κ ′.

(9) α = withdraw (A,v ,y ), where: (i) In Ṙs , the action α con-

sumes ⟨D +C ,v⟩y to obtain ⟨A,v⟩x , whereD = · · · : withdraw A .

(ii) In Ṙs , we find that ⟨D +C ,v⟩y has {G }C ′ as its ancestor
advertisement. (iii) λc = T where T is the first transaction of

BD (D ,D , T′,o,v ,PartG, 0) where (T′,o) = txout ′(y). The
compiler parameters are obtained as for Item 3. (iv) txout
extends txout ′ mapping x to (T, 0), sechash = sechash′,
and κ = κ ′.

(10) α = A : x ,x ′, where: (i) In Ṙs we find ⟨A,v⟩x and ⟨A,v ′⟩x ′ .
(ii) In Ṙc we findB → ∗ : T for someB, T, where T has as its

two inputs txout ′(x ) and txout ′(x ′), and a single output of
valuev +v ′ redeemable with K̂A (rA ). (iii) λ

c = B → ∗ :m′

for some B,m′, wherem′ is the signature of T with K̂A (rA ).

(iv) λc is the first broadcast ofm′ in Ṙc after the first broad-
cast of T. (v) txout = txout ′, sechash = sechash′, and
κ = κ ′.
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(11) α = join(x ,y), where: (i) In Ṙs the action α spends ⟨A,v⟩x
and ⟨A,v ′⟩x ′ to obtain ⟨A,v +v ′⟩y . (ii) λc = T is a trans-

action having as inputs txout ′(x ) and txout ′(x ′), and hav-

ing one output of value v + v ′ redeemable with K̂A (rA ).
(iii) txout extends txout ′mappingy to (T, 0), sechash = sechash′,
and κ = κ ′.

(12) α = A : x ,v ,v ′. Similar to Item 10.

(13) α = divide(x ,v ,v ′). Similar to Item 11.

(14) α = A : x ,B. Similar to Item 10.

(15) α = donate(x ,B). Similar to Item 11.

(16) α = A : y⃗, j, where: (i) y⃗ = y1 · · ·yk . (ii) In Ṙs we find

⟨Bi ,vi ⟩yi for i ∈ 1..k , with Bj = A. (iii) In Ṙc we find

B → ∗ : T for some B, T, where T has as its inputs

txout ′(yi ) for i ∈ 1..k , and possibly others not in ran txout ′.
(iv) λc = B → ∗ : m from some B,m wherem is a signa-

ture of T with K̂A (rA ), corresponding to the j-th input.

(v) λc is the first broadcast ofm in Ṙc after the first broad-
cast of T. (vi) λc does not correspond to any of the other

cases, i.e. there is no other symbolic action α for which

Ṙsα would be coherent with Ṙcλc . (vii) txout = txout ′,
sechash = sechash′, and κ = κ ′.

(17) α = destroy (x⃗ ), where: (i) x⃗ = x1 · · · xk . (ii) In Ṙs , α con-

sumes ⟨Ai ,vi ⟩xi to obtain 0. (iii) λc = T from some T hav-

ing as inputs txout ′(x1), . . . , txout ′(xk ), and possibly oth-

ers not in ran txout ′. (iv) λc does not correspond to any of

the other cases, i.e. there is no other symbolic action α for

which Ṙsα would be coherent with Ṙcλc . (v) txout = txout ′,
sechash = sechash′, and κ = κ ′.

(18) α = δ = λc , and txout = txout ′, sechash = sechash′, and
κ = κ ′.

Inductive case 2: the predicate coher (Rs , Rcλc , r , txout, sechash,κ)
holds if coher (Rs , Rc , r , txout, sechash,κ), and one of the following

cases applies:

(1) λc = T where no input of T belongs to ran txout.
(2) λc = A → O :m or λc = O → A :m, for some A,m.

(3) λc = A → ∗ : m, where λc does not correspond to any

symbolic move, according to the first inductive case.

We write Rs ∼r Rc iff coher (Rs , Rc , r , txout, sechash,κ) for some

txout, sechash, and κ. ⋄

The following lemma is the active contracts analogous of Lemma 1.

Both results are proved by induction on the definition of coherence.

Lemma 6. Let coher (Rs , Rc , r , txout, sechash,κ). For each active
contract ⟨C ,v⟩x occurring in ΓRs , there exists a corresponding unspent
transaction output (T,o) in BRc with value v . Further, T is generated
by the invoking the compiler as BC (C ,Dp , T′,o′,v , I ,P , t ) for some
values of Dp , T′,o′, I ,P , t , or as Bpar (C⃗ ,Dp , T′o′, v⃗ ,P , t ) for some
values of C⃗ ,Dp , T′,o′, v⃗ ,P , t such that C = C⃗o+1 and v = v⃗o+1,
using parameters txout, sechash,κ.

Proof. By induction on the definition of coherence. The corre-

spondence is witnessed by the txout mapping. □

A.7 From symbolic to computational strategies
Our computational soundness result is based on a mapping from

symbolic to computational strategies.

Given a symbolic strategy Σs of an honest participant A, we
translate it to a computational strategy Σc which emulates its be-

haviour. We first describe how to translate the stipulation of a

contract advertisement {G }C , i.e. by providing a computational

counterpart to the rules in Figure 4. In the computational model,

this is performed by following a stipulation protocol (Definition 21),

which will be exploited to construct Σc .
Note that, while in the symbolic setting we model contract ad-

vertisements as terms {G }C , containing names x for the deposits,

in the computational setting we encode such advertisements as bit-

strings, using transaction outputs (T,o) instead of deposit names x .
In the stipulation protocol, we assume as given this representation

C, which we call computational contract advertisement, and the

parameters of ΣcA , i.e. the computational run Rc and the random

sequence rA . After decoding C as a symbolic advertisement {G }C ,
A interacts with the other participants to obtain all the parame-

ters required to compile {G }C . Then, A computes Badv ({G }C ), and
finally she puts the generated Tinit transaction on the ledger.

Definition 21 (Stipulation protocol). Let A ∈ Hon, let Rc∗ be a
(A-stripped) computational run, and let rA be a random sequence.

The stipulation protocol for a computational contract advertisement

C is the following.

(1) A decodes C, constructing a symbolic contract advertise-

ment {G }C ; in doing this, A chooses distinct symbolic

names for all the transaction outputs in C. The mapping

txout is defined according to the used correspondence be-

tween names and transaction outputs.

(2) A infers from G the parameters part, PartG, and val.
(3) A uses rA to obtain the key pairs KA (rA ) and K̂A (rA ). The

key KA (rA ) is used by A to sign all the protocol messages.

Further, A reads, from the initial prefix of the run Rc∗ , the
public keys K

p
B (rB ) and K̂

p
B (rB ) of the all B ∈ PartG \

{A}. The keys Kp
B (rB ) are then used by A to filter out the

incoming messages with incorrect signatures.

(4) A defines compiler keys: K(A) is K̂A (rA ), while the public

part of K(B) is K̂p
B (rB ) for B , A. The keys K(D ,A) are

generated by A consuming ∼ η fresh bits from rA , and their
public parts are shared with the others. Dually, A defines

the public parts of keys K(D ,B) using the first broadcasts

by the other participants. Let k⃗ be the sequence of public

keys known by A after this step.

(5) A generates from rA a secret nonce of the desired length

(to be defined by ΣcA ) for every A:secreta in G . Then,

A computes the hashes h⃗ = h
1
· · ·hk of secret nonces (by

querying O), and broadcasts all these hashes as a single

messagem(C, h⃗ , k⃗ ). Dually, A receives the hashes h⃗ ′ from
the other participants. When doing this, A defines sechash
using the first (correctly signed)m(C, h⃗ ′, k⃗ ) in Rc∗ which
has no duplicate hashes, and has no hashes already occur-

ring (signed) in Rc∗ .
(6) A computes Badv ({G }C ), generating a list of transactions.

The signatures by A occurring in the witnesses are com-

puted and shared with others, while the signatures of other

participants are received and verified. Note that the Tinit
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transaction, (whose wit field is left to ⊥ by the compiler),

is not signed, yet.

(7) Only at this point, after having verified all the other signa-

tures, A signs the first transaction, adding the signatures

for her persistent deposits using K̂A (rA ). Dually, she re-
ceives the signatures from the other participants for their

own persistent deposits.

(8) Finally, A broadcasts the signed Tinit , and its witnesses,

and puts it on the ledger.

In order to define the mapping from symbolic to computational

strategies, we first sketch how to parse a (stripped) computational

run Rc∗ so to obtain a (stripped) symbolic run Rs∗ . This requires
to find, when possible, a symbolic counterpart to computational

actions, mapping, e.g., computational advertisements to symbolic

ones, signatures to authorizations, transactions to symbolic actions

(involving deposits or contracts), and secrets to reveal actions. This

correspondence closely follows Definition 20. Indeed, to perform

the parsing, we can exploit maps similar to txout, sechash and κ to

keep track of the correspondence at each step of Rs∗ .
Using such maps, we can detect when a transaction T in Rc∗ has

some input with a symbolic counterpart (i.e. in ran txout). When

that happens, we can map T into its corresponding action in Rs∗ .
According to Definitions 16 and 17, T has to be preceded by the

broadcasts of its witnessesw , which, in turn, must be preceded by

the broadcast of T. This allows to parse the signatures inw , so to

generate authorizations in Rs∗ .
A few cases must be handled with more care. For instance, Adv

could broadcast a signature before the signed transaction.When this

happens, we simply ignore the message; duplicate signatures are

ignored as well. Further, a computational contract advertisement

could involve only dishonest participants: we ignore that as well.

Adv can consume her own deposits (among those tracked by txout),
to create an arbitrary transaction without a symbolic counterpart.

In this case, in the semantics we use the [Dep-Destroy] move in Rs∗ ,
preceded by its authorizations, making those deposits disappear

from the symbolic world. When the hash of a secret is committed, it

can not be parsed precisely as a [C-AuthCommit] move, since the latter

involves the length of the secrets, which can not be inferred from

the hash. However, this is not needed, since the stripped run Rs∗
does not involve such lengths.

Definition 22 (From symbolic to computational strategies).
Let ΣsA be a symbolic strategy, with A ∈ Hon. We define ℵ(ΣsA ) =

ΣcA below. Given the parameters Rc∗ , rA of ΣcA , we:

(1) parse the (stripped) run Rc∗ , so to obtain a corresponding

symbolic (stripped) run Rs∗ , as sketched above;

(2) halve the random sequence rA as (π1 (rA ),π2 (rA ));
(3) evaluate Λs = ΣsA (R

s
∗ ,π1 (rA ));

(4) convert the symbolic actions Λs into computational ac-

tions Λc , and define ΣcA (R
c
∗ , rA ) = Λc . When Λs contains

A : {G }C ,∆ or A : {G }C ,x , their conversion follows the

stipulation protocol (Definition 21), using π2 (rA ). There,
at item 5, we choose the length of each secret by adding η
to the corresponding value N in ∆. ⋄

A.8 Supplementary material for Section 9
Proof of Theorem 2 Assume that Rc satisfies the hypotheses, but
has no corresponding Rs which is coherent (to Rc ) and conforming

(to the symbolic strategies). Consider the longest prefix Ṙc of Rc

having a corresponding Ṙs which is coherent (to Ṙc ) and conform-

ing (to the computational strategies). We have that Rc = Ṙcλc · · · .
We now show that either Ṙcλc has a corresponding symbolic run

Ṙs R̈s which is coherent and conforming to the symbolic strategies

(contradicting the maximality of Ṙc ), or the adversary succeeded

in a signature forgery, or in a preimage attack (which can happen

only with negligible probability). Note that, by obtain coherence,

R̈s must be either empty, or contain a single symbolic action.

We proceed by cases on λc :

(1) λc = B → ∗ :m. Then, coherence must hold for some R̈s .
Indeed, the definition of coherence mapsm to an authoriza-

tion (if it is the first broadcast of a signature), a revealed

secret (if it is the first broadcast of a preimage), or in all
other cases it simply ignoresm. So, we can choose R̈s as the
corresponding move, or to be empty, and obtain coherence.

In these cases, we also obtain conformance. Indeed, in the

last case (R̈s empty) the run Ṙs R̈s = Ṙs is trivially conform-

ing. For the authorization or reveal cases, we note that if

the computational Adv was able to generatem, it is either

forged (with negligible probability), or it originated from

some honest A. Since ΣcA = ℵ(Σ
s
A ), it follows that, at some

time in the past, ΣsA enabled the authorization or reveal.

By persistency, it is also enabled at the end of Ṙs , hence
ΣsAdv can choose such action, and achieve conformance.

(2) If λc = T, we consider the following subcases according to

the inputs of T:
(a) If no input of T belongs to ran txout, then coherence

and conformance are achieved taking R̈s to be empty.

(b) Otherwise, if at least one of the inputs of T belongs

to ran txout, then we look in Ṙs for all the deposits

and active contracts corresponding to such inputs. By

definition of computational strategy, we must find in

Ṙc a (first) broadcast B → ∗ : T followed by a (first)

broadcast B → ∗ :m for all witnessesm of T. By the

coherence of Ṙc , in Ṙs the messages B → ∗ :m corre-

spond to suitable authorization/reveal moves for each

of the (counterparts of the) inputs of T. We consider

the following subcases:

(i) If all the inputs are deposits, then we let R̈s

perform the symbolic move corresponding to T
(e.g., init or join). Note that if T can not be rep-

resented symbolically, we can choose R̈s to per-

form a destroy. Such moves are feasible symboli-

cally since we already have their authorizations.

Such R̈s leads to a coherent run, which is also

conforming, since even if no honest strategy

wants to perform the move, Adv can perform it

on its own, having all the authorizations.

(ii) Otherwise, some input T′ of T must correspond

to an active contract. This must be originated

from an advertisement, which has to involve at

least one honest participant A, by definition of

24



the symbolic semantics (rule [C-Advertise]). How-

ever, by construction, our compiler makes T′

require the signatures of all the participants,

hence including A. Since such signature must

occur as a witness in T, the adversary Adv must

have forged it (with negligible probability), or

must have obtained it from A. In the latter case,

Ṙs contains an authorization for the symbolic

move corresponding to λc . By choosing R̈s ac-
cordingly, we obtain a coherent and conforming

run.

(3) Finally, if λc = δ , we simply choose R̈s to perform δ . Co-
herence trivially holds. For conformance, we note that by

definition of computational strategy, all the honest partici-

pants must output a Λc which either contains some δ ′ ≥ δ ,
or is empty. By definition of ℵ, this must also be the case

in Λs , resulting in conformance. □
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