
Implementing Token-Based Obfuscation under
(Ring) LWE

Cheng Chen∗, Nicholas Genise†, Daniele Micciancio†, Yuriy Polyakov‡§, Kurt Rohloff‡

∗ MIT CSAIL
† UCSD

‡ NJIT Cybersecurity Research Center
§ Duality Technologies

FEBRUARY 6, 2019

Abstract

Token-based obfuscation (TBO) is an interactive approach to cryptographic program obfuscation that was
proposed by Goldwasser et al. as a potentially more practical alternative to conventional non-interactive security
models, such as Virtual Black Box (VBB) and Indistinguishability Obfuscation. We introduce a query-revealing
variant of TBO, and implement in PALISADE several optimized query-revealing TBO constructions based on
(Ring) LWE covering a relatively broad spectrum of capabilities, ranging from special-purpose linear functions to
general branching programs.

The linear-function construction is first proposed in our work, and can be used to efficiently obfuscate binary
classifiers by utilizing the token-based model where the number and format of queries can be restricted by the token
generator. Our implementation can evaluate obfuscated binary classifiers in less than 1 millisecond and requires a
program size of only 8MB for the case of 16 2-byte features. We also present an optimized TBO implementation
for conjunctions based on an exisiting construction for constrained-hiding constrained PRF, which outperforms the
prior recent implementation of distributional VBB conjunction obfuscator by one order of magnitude and reduces
the program size by a factor of 3. The token-based model also provides protection against exhaustive search attacks
the VBB implementation is prone to. The last group of TBO constructions implemented in our work deals with
obfuscating permutation and general branching programs.

To enable efficient implementation of all these constructions, we developed many algorithmic and code-level
optimizations that can also be applied to other lattice-based cryptography primitives, including VBB and Indistin-
guishability Obfuscation.

CONTENTS

I Introduction 1
I-A Our Contributions . 2
I-B Related Work . 2

II Preliminaries 3
II-A Cyclotomic Rings . 3
II-B Double-CRT (RNS) Representation . 3
II-C Non-uniform Generalized Learning with Errors . 3
II-D GGH15 Encoding . 4
II-E Query-Revealing Token-Based Obfuscation . 4

III Token-Based Obfuscation of Linear Functions 5
III-A LWE Secret Key Scheme for Evaluating Linear Weighted Sums 5

III-A1 Security . 6
III-B Token-Based Obfuscation of Binary Classifiers . 6

III-B1 Single feature . 6
III-B2 Conjunction of multiple features . 7

IV Token-Based Obfuscation of Conjunctions 7
IV-A Definition of Conjunctions . 7
IV-B Conceptual Model . 7
IV-C Algorithms for TBO Functions . 8
IV-D Security . 10
IV-E Setting the Parameters . 10
IV-F Comparison with Construction in [31] . 11

V Token-Based Obfuscation of Branching Programs 11
V-A Matrix Branching Programs . 12
V-B TBO Construction . 12
V-C Security . 14
V-D Parameter Selection for Matrix Branching Programs . 14
V-E Efficiency of Permutation and General Branching Programs 14
V-F Application: Hamming Distance . 14

VI Efficient Algorithms for the Ring Constructions 15
VI-A Trapdoor Sampling for the Matrices of Ring Elements . 15
VI-B RNS Algorithms . 15

VII Implementation and Results 16
VII-A Software Implementation . 16
VII-B Experimental Testbed . 16
VII-C TBO of Linear Functions (Binary Classifiers) . 17
VII-D TBO of Conjunctions . 17
VII-E TBO of Branching Programs . 18

VIII Conclusion 18

IX Acknowledgements 18

References 18

Appendix A: Security Proof for TBO of Linear Functions 21

Appendix B: Security Proof for TBO of Branching Programs 22

Appendix C: Complexity of TBO for Binary Classifiers 23

Appendix D: Noise Analysis for Token-Based Obfuscation of Conjunctions 23

Appendix E: Noise Analysis for Token-Based Obfuscation of Branching Programs 23

Appendix F: Trapdoor Algorithms for Matrices of Ring Elements 24
F-A Preliminaries . 24

F-A1 Cyclotomic Fields . 24
F-A2 Discrete Gaussians and G-Lattice Sampling . 24

F-B Main Procedures . 25
F-B1 Perturbation Sampling . 25

Appendix G: Trapdoor Algorithms in CRT 27
G-A Trapdoor Generation . 27
G-B Trapdoor Sampling . 27

Appendix H: Non-uniform Ring LWE 27

I. INTRODUCTION

Program obfuscation has long been of interest to the cyber-security community. Obfuscated programs need to be
difficult (computationally hard) to reverse engineer, and have to protect intellectual property contained in software
from theft. For many years practical program obfuscation techniques have been heuristic and have not provided
secure approaches to obfuscation based on the computational hardness of mathematical problems, similar to how
cryptography has provided data security based on the computational hardness assumptions. Some of these prior
techniques are discussed in [58], [59], [69], [70], [73], [75]. Although often usable in practice, these approaches do
not provide strong security guarantees, and can often be defeated without large computational effort. For example,
[27], [33], [51], [71], [72] all provide methods to defeat heuristic software obfuscation.

There have been multiple recent attempts to develop cryptographically secure approaches to program obfuscation
based on the computational hardness of mathematical problems. See [10] for a survey of these recent approaches.
There are multiple definitions used for obfuscation in these recent approaches. Two prominent definitions are Virtual
Black Box (VBB) and Indistinguishability Obfuscation (IO).

Virtual Black Box (VBB) obfuscation is an intuitive definition of secure program obfuscation where the obfuscated
program reveals nothing more than black-box access to the program via an oracle [46]. VBB is known to have strong
limitations [12], [15], [41]. The most significant limitation is that general-purpose VBB obfuscation is unachievable
[12].

To address limitations of VBB, Barak et al. [12] define a weaker security notion of Indistinguishability Obfusca-
tion (IO) for general-purpose program obfuscation. IO requires that the obfuscations of any two circuits (programs)
of the same size and same functionality (namely, the same truth table) are computationally indistinguishable. The
IO concept has been of current interest, with recent advances to identify candidate IO constructions based on multi-
linear maps [5], [11], [34], [38], [55], [56], [57]. There has also been recent work to implement multi-linear map
constructions [4], [21], [31], [47], [54]. Recent results show that these constructions might not be secure [3], [23],
[25], [26], [28], [29], [30], [49], [66]. The only IO constructions supporting general functions that are not subject to
any attack to date are the works by Garg et al. [35] and Chen et al. [24]. These cryptographically secure program
obfuscation capabilities have also been considered impractical due to their computational and storage inefficiencies.

There have also been attempts to securely obfuscate under the VBB model (and its variants) certain special-
purpose functions, such as point, conjunction, and evasive functions, using potentially practical techniques. For
example, there have been several approaches to obfuscating point functions [7], [13], [32], [44], [60]. Unfortunately,
point functions have limited applicability.

Both VBB and IO are non-interactive models of program obfuscation where the obfuscated program is made
available to a computationally bound adversary. The adversary can then run a large number of queries (bounded
only by its computational power) against the obfuscated program. In many practical scenarios, e.g., classification
problems, the obfuscated program can be potentially reverse-engineered by analyzing input-output maps.

An alternative approach to program obfuscation involves interactions with a trusted party, which allows one
to build program obfuscation systems where the number of queries is limited by the trusted party. The two main
models for interactive program obfuscation are Trusted-Hardware Obfuscation (THO) and Token-Based Obfuscation
(TBO). In the THO model, the user first executes the obfuscated program for a given input and then interacts with
a trusted hardware to obtain the decryption of the result [16], [45]. In the TBO model, the user obtains a special
token before executing the obfuscated program and then finds the decrypted result by herself [42]. The latter model
is more flexible and can support the use cases where the tokens are pre-generated offline, i.e., the trusted hardware
does not need to be accessible to the user.

To illustrate TBO, consider an application where a vendor obfuscates an arbitrary program and provides tokens
representing the rights to run this program on specific inputs. When a specific user wants to input a query x to this
program, she also gets a token for x from the program owner, and then executes the obfuscated program.

Our work introduces a query-revealing variant of TBO (where input queries are in the clear), which is more
efficient than the query-hiding TBO model proposed in [42] based on functional encryption/reusable garbled circuits.
Our variant is adequate for most obfuscation scenarios as program inputs are typically not hidden. We develop
optimized constructions, implement them in PALISADE, and report experimental results for the TBO of several types
of programs, including linear functions (binary classifiers), conjunctions [20], permutation branching programs [20],
and general branching programs [24]. All of the constructions presented in our work are secure under standard

1

assumptions, namely Learning With Errors (LWE) or Ring LWE. The performance results for binary classifiers and
conjunctions suggest that they are already practical.

A. Our Contributions

We introduce a query-revealing variant of TBO and present a new TBO scheme for linear functions, which
is based on an LWE secret-key scheme. We show how the TBO of linear functions can be used to efficiently
obfuscate a binary classifier. We implement the scheme in PALISADE, a general-purpose lattice cryptography
library. Our performance evaluation results suggest that this implementation is already practical. For instance, our
implementation can evaluate obfuscated binary classifiers in less than 1 millisecond and requires a program size
of only 8MB for the case of 16 2-byte features. The scheme can also be inverted to efficiently compute weighted
sums over encrypted data, where the weights are in the clear.

We develop an efficient variant of the TBO of conjunctions based on the constraint-hiding constrained PRF
construction presented in [20], and implement it in PALISADE. Our optimizations compared to the original scheme
include significantly improved key generation and evaluation algorithms for the token generator (both runtime and
storage requirements are reduced by more than one order of magnitude), much tighter correctness constraints
(using lower values of main parameters and Central Limit Theorem/subgaussian analysis), and a larger alphabet for
encoding binary patterns. Our implementation also uses the Residue-Number-System (RNS) representation for all
operations of the scheme, i.e., we present a full RNS variant of the scheme, which works only with native integers
and can be easily parallelized. Our performance results suggest that this implementation is faster by one order of
magnitude and requires a 3x smaller program size, as compared to the prior recent distributional VBB conjunction
obfuscation implementation [31].

We present an efficient (full RNS) variant of the TBO for permutation branching programs based on the constraint-
hiding constrained PRF construction presented in [20], and implement it in PALISADE. The optimizations w.r.t.
the original construction are similar to those for the TBO of conjunctions.

We develop an efficient ring (full RNS) variant of the LWE construction for the TBO of general branching
programs proposed in [24], and implement it in PALISADE. The optimizations compared to the original construction
include the use of Ring LWE instead of LWE, significantly improved key generation and evaluation algorithms
for the token generator (both runtime and storage requirements are reduced by about two orders of magnitude),
much tighter correctness constraints (using lower values of main parameters and Central Limit Theorem/subgaussian
analysis), and a larger alphabet for encoding bits. Note that we use the same general framework for the TBO of
both permutation and general branching programs.

The development of the ring variant of the TBO for general branching programs also required new algorithms
for lattice trapdoor sampling and a security proof for the non-uniform Ring LWE problem. These contributions are
also presented in our paper.

All our implementations of TBO constructions and lower-level lattice algorithms are added as modules to
PALISADE, thus effectively providing a TBO toolkit that will be included in one of the next public releases
of PALISADE.

B. Related Work

The TBO construction in [42] is formulated for the case of hidden queries, i.e., it is more general but less
efficient than our TBO variant, using reusable garbled circuits, which in their turn can be built on top of a functional
encryption (FE) scheme. This implies that a TBO scheme can be derived from an FE scheme by treating a secret
key for evaluating a specific function on encrypted data as a token.

General FE constructions are currently impractical. One approach is based on a combination of key-policy
attribute-based encryption and fully homomorphic encryption [42]. The state-of-the-art results in key-policy attribute
encryption [37] suggest these schemes are still inefficient, and hence their use in FE where each attribute bit needs
to be encrypted with FHE is currently not practical. Initial experimental results for multi-input FE are presented
in [21] but they are far from practical.

However, practical constructions exist for simpler functions, such as inner products. For instance, Agrawal et al.
proposed an FE for inner product predicates as an extension of identity-based encryption using dual Regev’s public
key encryption scheme (based on LWE) and lattice trapdoor sampling. Another FE construction for inner product

2

predicates builds directly on top of dual Regev’s public key encryption scheme [1]. Several works considered the
scenario of function-hiding inner product encryption where the result of inner product is computed while keeping
both input vectors hidden [14], [50]. The experimental results for the scheme based on the Symmetric External
Diffie-Hellman (SDXH) assumption for bilinear groups are presented in [50].

The main difference between query-revealing TBO used in our work and FE (TBO model in [42]) is that the
input queries in our model are in the clear, just like in the non-interactive program obfuscation models. This enables
more efficient constructions for TBO. For instance, our linear function (inner product) construction based on LWE is
significantly faster (by orders of magnitude) than function-hiding inner product encryption based on SDXH in [50],
as can be seen from comparing Table I in our work with Table 1 in [50]. In our case, the evaluation using a token
is essentially a modular inner product of two native integer vectors, just like in the plaintext computation of inner
product.

II. PRELIMINARIES

A. Cyclotomic Rings

Our implementation utilizes cyclotomic polynomial rings R = Z[x]/ 〈xn + 1〉 and Rq = Zq[x]/ 〈xn + 1〉, where
n is a power of 2 and q is an integer modulus. The order of cyclotomic polynomial Φm̂(x) = xn + 1 is m̂ = 2n.
The modulus q is chosen to satisfy q ≡ 1 mod m̂. The elements in these rings can be expressed in coefficient
or evaluation representation. The coefficient representation of polynomial a(x) =

∑
i<n aix

i treats the polynomial
as a list of all coefficients a = 〈a0, a1, . . . , an−1〉 ∈ (Z/qZ)n. The evaluation representation, also referred to as
polynomial Chinese Remainder Transform (CRT) representation [63], computes the values of polynomial a(x) at
all primitive m̂-th roots of unity modulo q, i.e., bi = a(ζi) mod q for i ∈ (Z/m̂Z)∗. These cyclotomic rings support
fast polynomial multiplication by transforming the polynomials from coefficient to evaluation representation in
O(n log n) time [61] (also called negacyclic convolution NTT) and component-wise multiplication.

Lattice sampling works with n-dimensional discrete Gaussian distributions over lattice Λ ⊂ Rn denoted as DΛ,c,σ,
where c ∈ Rn is the center and σ is the distribution parameter. At the most primitive level, the lattice sampling
algorithms work with discrete Gaussian distribution DZ,c,σ over integers with floating-point center c and distribution
parameter σ. If the center c is omitted, it is assumed to be set to zero. When discrete Gaussian sampling is applied
to cyclotomic rings, we denote discrete Gaussian distribution as DR,σ. In this work, all discrete Gaussian sampling
over rings is done in the coefficient representation.

We use Uq to denote discrete uniform distribution over Zq and Rq. We define k = dlog2 qe as the number of
bits required to represent integers in Zq.

B. Double-CRT (RNS) Representation

Our implementation utilizes the Chinese Remainder Theorem (referred to as integer CRT) representation to
break multi-precision integers in Zq into vectors of smaller integers to perform operations efficiently using native
(64-bit) integer types. The integer CRT representation is also often referred to as the Residue-Number-System
(RNS) representation. We use a chain of same-size prime moduli q0, q1, q2, . . . satisfying qi ≡ 1 mod m̂. Here, the
modulus q is computed as

∏l−1
i=0 qi, where l is the number of prime moduli needed to represent q. All polynomial

multiplications are performed on ring elements in polynomial CRT representation where all integer components
are represented in the integer CRT basis. Using the notation proposed in [39], we refer to this representation of
polynomials as “Double-CRT”.

C. Non-uniform Generalized Learning with Errors

The following distinguishing problem, originated by Regev and modified to an algebraic version [62], will be
our source of cryptographic hardness.

Definition 1. (Generalized, cyclotomic-RLWE). Let R be a power-of-two cyclotomic ring of dimension n over
Z, q ≥ 2 be integer used as a modulus, and m > 0. Let χ,D be distributions over Rq. Then, the non-uniform
(Rl,m, q, χ,D)RLWE problem is to distinguish between the following two distributions:

{(A, sTA + eT)} and {(A,uT)},

3

where, s← U(Rql), A← Dl×m, e← χm and u← U(Rqm)1.

Traditionally, D is the uniform distribution and the noise, χ, is a discrete Gaussian (defined below). We will,
however, prove the hardness of RLWE when D is a discrete Gaussian. This is required for extending the security
reduction of [24] to RLWE.

The LWE assumption is often extended to its multi-secret form with matrices and secrets sampled uniformly.
We will only need the case when R = Z, and pseudorandomness follows from LWE [64, Lemma 2.9].

Definition 2. The k-secret (n, q,m, χ)LWE distribution is (A,AS + E) where A ← U(Zm×nq), S ← U(Zn×kq),
and E← χm×k.

Claim 3. Let (A,B = AS + E) be a k-secret (n, q,m, χ)LWE sample. Then, the distribution (A,AS + pE) is
pseudorandom assuming the pseudorandomness of (A,B) for any prime p which does not divide q.

Proof. Assume we have an oracle O that can distinguish (A,AS + pE) from (A,U(Zm×kq)). Then, we will
use this oracle to break k-secret LWE. Given (A,B), we give the oracle (A,B′ = pB + AS′) for a newly
sampled, uniformly random S′. Since p is coprime with q, this maps uniform B to uniform B′ and k-LWE to
(A,B′ = A(pS + S′) + pE).

D. GGH15 Encoding

We will use the generalized GGH15 construction [38] given in [24], called γ-GGH15. For a complete description,
see Section 2 of [24].

First, we give the parameters and variables. Fix some ring Rq. Let ` > 0 be a fixed computation length,
(Mi,b ∈ Rqw×w)i∈[`],b∈{0,1} be a collection of binary, scalar matrices to be used as a form of computation, e.g.
a matrix-branching program, and let (si,b ∈ Rq)i∈[`],b∈{0,1} be a set ring elements. Let γ(M, s) be a function
mapping (M, s) to another matrix satisfying γ(M, s)γ(M′, s′) = γ(MM′, ss′). The three choices of γ we will
use are γ(M, s) = s, γ(M, s) = M⊗ s, and γ(M, s) = diag(s,M⊗ s) where diag(·, ·) is a diagonal matrix. For
an x ∈ {0, 1}`, define the matrix subset products Zx =

∏`
i=1 Zi,xi

given any tuple of matrices (Zi,b)i∈[`],b∈{0,1}.
The γ-GGH15 construction, given as input the matrices

(Mi,b, si,b)i∈[`],b∈{0,1} along with an additional matrix A`, returns the matrix A0 as well as the tuple (Di∈[`],b∈{0,1})
satisfying

A0Dx ≈ γ(Mx, sx)A` mod q

for any x ∈ {0, 1}`.

E. Query-Revealing Token-Based Obfuscation

Here we define token-based obfuscation with restricted queries. Our definition is similar to [43], though weaker
since the input query x is in the clear. Let λ be a security parameter throughout the following two definitions.

Definition 4 (Query-Revealing TBO). Let k = k(λ) ∈ N and n = n(λ) ∈ N. A k-query token-based obfuscation
scheme for a class of circuits {Cn}n∈N, where each Cn is a set of n-bit-input circuits, is a tuple of probabilistic
polynomial time algorithms (SETUP,OBFUSCATE, TOKENGEN) with the following properties:
• SETUP(1λ) takes as input a security parameter λ and returns a secret key osk.
• OBFUSCATE(osk, C ∈ Cn) takes as input a circuit C, a secret key osk, and outputs an obfuscated circuit O.
• TOKENGEN(osk, x) takes as input the secret key osk and some input x ∈ {0, 1}n, and returns a token tkx.

Further, we assume TOKENGEN’s runtime is independent of |C|.
We require O(tkx) = C(x) with all but negligible probability.

Next, we define the security game in Figure 1. We abbreviate (OBFUSCATE, TOKENGEN) as (OBF, TG). In
Figure 1, OS(·, C)[[stS]] is an oracle that on input x from A2, runs S2 with inputs C(x), x (note that it was 1|x|

in the query-hiding TBO of [43]), and the current state of S, stS . S2 responds with a fake tk∗x and a new state st’S
which OS will feed to S2 on the next call. OS returns tk∗x to A2.

1This problem is referred to as GLWE or MLWE in literature [18], [53], though we refer to it as RLWE for succintness.

4

Expreal
tOB,A(1λ):

osk← SETUP(1λ)

(C, stA)← A1(1λ)

(O)← OBF(osk,C)

α← ATG(osk,·)
2 (C,O, stA)

Return α

Expideal
tOB,A,S(1λ):

(C, stA)← A1(1λ)

(Õ, stS)← S1(1λ, 1|C|)

α← AOS(·,C)[[stS]]
2 (C, Õ, stA)

Return α

Fig. 1: TBO security game.

Definition 5 (Security). The TBO scheme is secure if there exists a pair of PPT simulation algorithms (S1,S2) such
that for all PPT adversaries (A1,A2), the two probabilistic experiments defined in Figure 1 are computationally
indistinguishable

{Expreal
tOB,A(1λ)} ≈c {Expideal

tOB,A,S(1λ)}.

III. TOKEN-BASED OBFUSCATION OF LINEAR FUNCTIONS

We first present an LWE secret-key scheme that can be used for the TBO of linear functions and then demonstrate
how it can be applied for encoding binary classifiers. We provide a discussion suggesting that the security of TBO
for binary classifiers is determined by the statistical poperties of the classification rules rather than our obfuscation
technique. The use of token-based approach allows one to bound the number of queries and restrict inputs based
on the statistical properties of classification rules, thus overcoming one of the major limitations of non-interactive
obfuscation security models, such as VBB and IO.

A. LWE Secret Key Scheme for Evaluating Linear Weighted Sums

The purpose of this scheme is to perform evaluation on obfuscated tests for linear functions. The evaluation

function can be described as
N∑
i=1

wixi, where x = (x1, . . . , xN) ∈ ZNp and w = (w1, . . . , wN) ∈ ZNp refer to data

and weights, respectively. Here, N is the dataset size (number of variables in the linear function). In the obfuscation
case, the weights are encrypted and data (inputs) are in clear. For each input, a new token is generated.

It is also possible to invert this problem by encrypting the inputs and storing the weights in the clear. Each vector
of weights would then require a token. This formulation would apply to use cases where the function is public but
data need to stay encrypted.

The scheme is a tuple of functions, which includes PARAMGEN, KEYGEN, OBFUSCATE, TOKENGEN, and
EVAL, where the functions are defined as follows:
• PARAMGEN(1λ, N, p) : Given a security parameter λ and system parameters N and p, select an integer modulus
q, LWE security parameter n, and discrete Gaussian distribution χ with standard deviation σ/

√
2π.

• KEYGEN(N) → SK. Generate N secret vectors si ∈ Znq , where N ≥ 2. For example, use a nonce K and define
si to be a hash of K concatenated to the index i.

• OBFUSCATE(SK,w) → O. Choose a random vector a ∈ Znq and error values (numbers) ei ∈ Zq generated using
χ. Compute the obfuscated program

O :=
[
a,b := {〈a, si〉+ pei + wi}Ni=1

]
.

• TOKENGEN(SK,x) → t. Generate tokens for data x as t :=
N∑
i=1

xisi ∈ Znq . For each distinct data input, a

separate token needs to be generated.
• EVAL(O, t,x) → µ̄. Compute

µ̄ :=

N∑
i=1

bixi − 〈a, t〉 mod p.

5

The scheme is correct, i.e., µ̄ =
N∑
i=1

wixi, as long as the noise does not cause a wrap-around w.r.t. mod q. Indeed,

N∑
i=1

bixi − 〈a, t〉 =

N∑
i=1

xi · 〈a, si〉+ p ·
N∑
i=1

xiei

+

N∑
i=1

wixi − 〈a,
N∑
i=1

xisi〉 = p ·
N∑
i=1

xiei +

N∑
i=1

wixi,

where the first term in the result is eliminated after applying mod p. For the evaluation to be correct, the following
correctness constraint has to be satisified: ∥∥∥∥∥p ·

N∑
i=1

xiei

∥∥∥∥∥
∞

< q/4.

Note on key generation. Another alternative for key generation is to compute secret keys as AES(K,i). More
specifically, we can generate a secret key K for AES and do encryptions of a counter to generate 128-bit random
sequences. These sequences would then be used for random numbers in Zq. In this scenario, we need to store only
the nonce K and can generate a particular key on the fly. In other words, the space requirements for the secret key
vectors are limited by the value of n (negligibly small from the practical perspective). This method is used in our
implementation.

1) Security: The obfuscated program O is secure under LWE. We prove the security of the TBO scheme using
Definition 4.

Theorem 6. The LWE secret key scheme for evaluating linear weighted sums is secure under query-revealing TBO
(Definition 4).

The outline of the proof is as follows: first we sketch a transformation from our scheme to one which follows
Definition 4, including a simulation mode for token generation; then we prove that the distributions of (C, stateA,O,
{x}, {tkx}) are computationally close in both games. The full proof is provided in Appendix A.

The main practical security limitation comes from the use of linear functions. All weights can be found in at
most N queries. When the weights vector w is sparse (especially if the locations of some zeros are known) or
some weight components are correlated, the number of queries is even smaller. This implies that the maximum
number of queries for which tokens can be generated should be selected based on the dimension N as well as
sparsity and other possible special properties of the weights vector w.

B. Token-Based Obfuscation of Binary Classifiers

The TBO of linear functions can be used to build obfuscated binary classifiers. For instance, it can be directly
applied for prediction using linear classifiers. As an example, consider a linear Support Vector Machine classification
model that can be represented as a vector of weights and a bias, and obfuscated using the linear TBO scheme.
The scheme can also be used for certain more advanced binary classifiers (with some non-linear properties). In this
work we consider two cases of more advanced classifiers: (1) an arbitrary classification rule for a single feature
and (2) a conjunction of such classifiers for multiple features. Note that the single-feature scenario is introduced
only to illustrate the encoding but it cannot be used in practice because each token query would reveal one of the
secret key vectors.

1) Single feature: Given an M -bit feature and an arbitrary binary classification rule, we can map every possible
value of the feature to a different component in the weights vector and then compute a linear weighted sum over
all possible values to find the result of the classification. In this case, the dimension N of w and x is equal to 2M .

Let us set the weight component wi to 0 for all matching M -bit patterns and to 1 for all non-matching patterns,
and encode M -bit patterns in an ascending order. In other words, a binary 0 is mapped to w1, a binary 1 to w2,
and a binary 111 . . . 111 to index w2M . The same indexing function is applied to inputs, i.e., we convert the binary
representation of the input to decimal representation. We then set xi at this computed index to 1 and all other
components of x are set to 0.

6

With this setup,
N∑
i=1

wixi = 0 for a matching value of the attribute and 1 otherwise. This technique can be

generalized to support a binary classification based on a conjunction of multiple features, which is discussed next.
2) Conjunction of multiple features: We can concatenate the weights and input vectors for individual features

to provide a binary classifier for a conjunction of P features. If the inputs for all P features match,
N∑
i=1

wixi = 0.

If there is at least one non-matching value for one of the features, the result will be in the range from 1 to P .
To hide the number of non-matching features in this scenario, we can encode non-matching components of wi as

a random value between 1 and p − 1. With this setup, we get
N∑
i=1

wixi ≡ 0 mod p when there is a match and a

random value between 1 and p − 1 otherwise. The value p should be large enough to avoid a false positive with
a high probability (we used p = 240 in our experiments). Alternatively, we can keep the result for a non-matching
input unchanged (in the range from 1 to P) to provide a linear classifier functionality with a non-binary output.

One potential application of this classifier is image classification. Images can be matched against known classi-
fication rules. Each feature would represent a subset of an image, such as a pixel or a square of pixels.

From the practical perspective, the statistical properties of a classification rule need to be examined before
obfuscation to determine the practical bound on the number of queries. Furthermore, the token generator may
not allow certain inputs. This implies that the token-based obfuscation approach may address an inherent security
limitation of non-interactive models, such as IO and VBB, w.r.t. classifiers by bounding the number of queries and
restricting query inputs.

We discuss the storage requirements, computational complexity, and scalability of the TBO for binary classifiers
in Appendix C.

IV. TOKEN-BASED OBFUSCATION OF CONJUNCTIONS

We next consider a construction for the token-based obfuscation of conjunctions based on Ring LWE. Our TBO
construction is a significantly optimized variant of the bit-fixing construction for constrained-hiding constrained
PRFs proposed in Section 5.1 of [20]. We chose the example of conjunctions to give a fair comparison with a prior
recent non-interactive (distributional VBB) conjunction obfuscation construction implemented in [31] and introduce
several major optimizations used in the next section for the TBO of more general programs, i.e., branching programs.

Compared to the non-interactive conjunction obfuscation construction implemented in [31] (and originally formu-
lated in [19]), the TBO construction has several advantages w.r.t. both security and efficiency. The construction [19],
[31] is secure under entropic (non-standard) Ring LWE while the current construction is secure under LWE. The
token-based security model allows one to limit the number of queries versus the unbounded number of queries in
the case of [31] (the latter would allow the adversary to learn the full pattern unless a relatively long pattern with
high entropy is used). Our complexity analysis (and experimental results later in the paper) show that the program
size and evaluation runtime in the case of TBO are significantly smaller. The only drawback of TBO is the need
to have a trusted party generating tokens (either in advance or for each query on demand).

A. Definition of Conjunctions

We define a conjunction as a function on L-bit inputs, specified as f (x1, . . . , xL) =
∧
i∈I yi, where yi is either

xi or ¬xi and I ⊆ [L]. The conjunction program checks that the values xi : i ∈ I match some fixed pattern
while the values with indices outside I can be arbitrary. We represent conjunctions further in the paper as vectors
v ∈ {0, 1, ?}L, where we define Fv (x1, . . . , xL) = 1 iff for all i ∈ [L] we have xi = vi or vi = ?. We refer to ?
as a “wildcard”.

This type of conjunctions is used in machine learning to execute or approximate classes of classifiers [52], [74].
Conjunctions can be used to encode binary classifiers (similar to the approach discussed in Section III-B) but with
some additional restrictions due to the wild-card-based (rather than arbitrary) format of patterns. A more detailed
discussion on conjunctions and their applications is presented in [31].

B. Conceptual Model

The scheme for the TBO of conjunctions includes the same tuple of functions as the TBO for linear functions
(Section III-A) but the concept of token is used differently. The conceptual workflow is defined as follows:

7

• PARAMGEN: Generate lattice parameters based on the length of the pattern and security level.
• KEYGEN: Generate trapdoor key pairs and an unconstrained master secret key. The unconstrained key corresponds

to a pattern of all wild cards (which accepts any pattern).
• OBFUSCATE: An obfuscated program (constrained key) for a given pattern is generated by replacing the master

key elements with random samples where a specific bit is fixed (no changes are made for wild cards in the input
pattern).

• TOKENGEN: Compute a vector y′ ∈ R1×m
p , which is a result of evaluating the PRF, to generate the token using

the master (unconstrained) key.
• EVAL: Evaluate the obfuscated program using the constrained key (obfuscated program) and output a vector
y ∈ R1×m

p , where Rp = Zp[x]/ 〈xn + 1〉. Compare y with y′; if they match, output 1 (True), otherwise output
0 (False).
The output of TOKENGEN is the PRF value, and is used as the “token” in this case. If the token for the

unconstrained key (master seret key) matches the output for the constrained key (obfuscated program), the result
is 1 (True).

The TOKENGEN procedure is executed for each input by a trusted party. The EVAL operation is executed by a
public (untrusted) party. PARAMGEN, KEYGEN, and OBFUSCATE are offline operations. EVALTOKEN and EVAL

are online operations in the scenario where a token generator is available to generate a token for each input on
demand.

We next describe the algorithms for each function.

C. Algorithms for TBO Functions

The building blocks of the TBO construction for conjuctions, such as lattice trapdoor sampling and GGH15
directed encoding, are the same as for the distributional VBB conjunction obfuscation construction implemented
in [31], which makes it possible to provide a fair comparison of both constructions. In this section we provide the
pseudocode for the algorithms, focusing on the differences between the constructions and our optimizations w.r.t.
to the theoretical bit-fixing constraint-hiding constrained PRF construction proposed in [20].

The main difference of the TBO model as compared to the distributional VBB model [31] is the interaction
between untrusted and trusted components of the system. This bounds the number of evaluation queries and prevents
exhaustive search attacks that the distributional VBB construction is amenable to.

The main optimizations w.r.t. the construction in [20] include the use of a larger (non-binary) alphabet for encoding
words of the pattern, an asymptotically and practically faster procedure (with much smaller storage requirements)
for generating the tokens, and significantly tighter correctness constraints.

Algorithm 1 Key generation

function KEYGEN(1λ)
for i = 0..L do

Ai, T̃i := TRAPGEN(1λ)
end for
for i = 1..L do

for b = 0..2w-1 do
si,b ← DR,σ

end for
end for
return KMSK :=(
{si,b}i∈{1,..,L},b∈{0,..,2w−1}, {Ai, T̃i}i∈{0,..,L}

)
end function

The key generation algorithm is listed in Algorithm 1. The prameter L = dL/we is the effective length of
conjunction pattern, w is the number of bits per word of the pattern, si,b ∈ R is the i-th word secret-key component
for the b-th value of the current word, Ai ∈ R1×m

q is the public key for the i-th word, T̃i ∈ R2×κ
q is the trapdoor

for the i-th word, κ is the number of digits used in Gaussian sampling, and m = 2 + κ. The key generation

8

procedure includes two major steps: generating L trapdoors (the definition of TRAPGEN is given in Appendix G)
and computing the unconstrained key as L × b short ring elements.

As compared to the construction in [20], we optimized the master secret key generation to only sample short
ring elements si,b (without calling complex lattice trapdoor sampling for these short ring elements), which reduces
the storage and speed complexity for the unconstrained key by a factor of O(m2). In the original construction, the
size of the master key was approximately the same as the obfuscated program. In summary, the storage requirement
for the keys in our construction is O(Lbn) +O(L(m+ 2κ)n) integers in Zq versus O(m2Lbn) +O(L(m+ 2κ)n)
integers in the original construction. Storing the secret keys rather their GGH15 encodings does not effect the
security of the construction in the TBO model as the trusted party is allowed to have access to the secret keys by
definition.

Algorithm 2 Obfuscation

function OBFUSCATE(v ∈ {0, 1, ∗}L,KMSK , σ)
for i = 1..L do

Build binary mask M (0’s correspond to wild-card bits, 1’s correspond to fixed bits)
for b = 0..2w-1 do

if (b ∧M) 6= (v ∧M) then
ri,b ← DR,σ

else
ri,b := si,b

end if
Di,b := EncodeAi−1→Ai

(T̃i−1, ri,b, σ)
end for

end for
Πv :=

(
A0, {Di,b}i∈[L],b∈{0,...,2w−1}

)
return Πv

end function

Algorithm 2 lists the pseudocode for the main obfuscation function OBFUSCATE. We encode words of conjunction
pattern v ∈ {0, 1, ?}L rather than bits as in the original construction [20]. Each word is w bits long, and 2w is the
number of encoding matrices for each encoded word of the pattern. The actual pattern length L gets replaced with
the effective length L = dL/we to reduce the number of encoding levels (multi-linearity degree). When the fixed
bits in the encoded word match the fixed bits in the pattern being obfuscated, the obfuscated program uses the short
ring elements si,b from the unconstrained key. Otherwise, new short ring elements ri,b specific to the obfuscated
program are generated.

The OBFUSCATE procedure relies on an ENCODE algorithm for the directed-encoding ring instantiation to encode
each word of the conjunction pattern. The ENCODE algorithm is depicted in Algorithm 3 and is the same GGH15
directed encoding procedure as described in [31]. The lattice trapdoor sampling procedure GAUSSSAMP is described
in Appendix G.

The storage requirement for the obfuscated program
Πv is O(Lbm2n) .

Algorithm 3 Directed encoding

function EncodeAi→Ai+1
(Ti, r, σ)

ei+1 ← DR,σ ∈ Rq1×m.
bi+1 := rAi+1 + ei+1 ∈ R1×m

q

Ri+1 := GaussSamp(Ai,Ti,bi+1, σt, σs) ∈ Rm×mq

return Ri+1

end function
Algorithm 4 lists the pseudocode for TOKENGEN, i.e., the evaluation of the input using unconstrained key. Our

variant is significantly optimized compared to the construction in [20]: it multiplies short ring elements followed

9

Algorithm 4 Token Generation: Evaluation by a trusted party (using the master secret key)

function TOKENGEN(x ∈ {0, 1}L, KMSK)
∆ := AL[1]

∏L
i=1 si,x[1+(i−1)w : iw]

y′ := b2
q∆e ∈ Zn2

return y′

end function

by a single scalar product with the second ring element of the public key A0 (in contrast to vector-matrix products
in [20]), which reduces the computational complexity by a factor of O(m2).

Algorithm 5 shows the psedocode for the evaluation of a given input using the obfuscated program (constrained
key).

Algorithm 5 Evaluation using the obfuscated program

function EVAL(x ∈ {0, 1}L, Πv, y′)
DΠ := A0

for i = 1..L do
DΠ := DΠ Di,x[1+(i−1)w : iw] ∈ Rq1×m

end for
y := b2

qDΠ[1]e ∈ Zn2
return (y = y′)

end function

In this case, the token y′ is generated using a lattice PRF. We do not need to perform the comparison of all
polynomial coefficients in y′ and y. Instead we can perform it for the number of coefficients that makes the
probability of a false positive negligibly small. In our experiments, we chose this number to be 128.

Dropping a fixed number of bits from a PRF retains all security measures. Next, we note that the probability
of comparison error is linear in the number of coefficients compared under the heuristic that the coefficients are
independent and uniformly distributed over Zq. Let B be our bound on the GGH15 noise. Then, the probability of
rounding error in a comparison of the entire output is less than (nmd)4B

q since there are two “bad” regions of Zq
of size 2B corresponding to rounding errors and there are nmd Zq-coefficients being rounded to bits (nmd bits)
2. By only comparing α bits, we can replace this by α · 4B

q . The choice of α and the probability upper-bound for
a comparison error will affect the modulus size (Appendix D).

D. Security

The TBO construction for conjunctions is secure under Definition 4 for query-revealing TBO under Ring LWE.
The proof is sketched in Appendix B.

E. Setting the Parameters

Ring-LWE trapdoor construction. The trapdoor secret polynomials are generated with a noise width σ, which
is at least the smoothing parameter estimated as

√
ln(2nm/ε)/π, where nm is the maximum ring dimension and

ε is the bound on the statistical error introduced by each randomized-rounding operation [65]. For nm ≤ 214 and
ε ≤ 2−80, we choose a value of σ ≈ 4.578.

Short Ring Elements in Directed Encoding. For short ring elements si,b, ri,b, we use error distribution with
the distribution parameter σ. This implies that we rely on Ring-LWE for directed encoding.

Directed Encoding. To encode short ring elements, we use the error distribution with noise width σ (for the
noise polynomials).
G-Sampling. Our G-sampling procedure requires that σt = (t + 1)σ. This guarantees that all integer sam-

pling operations (noise widths) inside G-sampling are at least the smoothing parameter σ, which is sufficient to
approximate the continuous Gaussian distribution with a negligible error.

2This analysis is nearly identical to the original LWE to LWR reduction in [9] for p = 2.

10

Spectral norm σs. Parameter σs is the spectral norm used in computing the Cholesky decomposition matrix
(it guarantees that the perturbation covariance matrix is well-defined). To bound σs, we use inequality σs >
s1 (X)σt, where X is a sub-Gaussian random matrix with parameter σ [65]. Lemma 2.9 of [65] states that
s1 (X) ≤ C0σ

(√
nκ+

√
2n+ C1

)
, where C0 is a constant and C1 is at most 4.7. We can now rewrite σs as

σs > C0σσt
(√
nκ+

√
2n+ 4.7

)
. In our experiments we used C0 = 1.3, which was found empirically.

Modulus q. The correctness constraint for a conjunction pattern with L words (L ≥ 2) is expressed as q >
210P−1

e Be (βσs
√
mn)

L−1, where Be = 6σ, β = 6, Pe = 2−20, and all other parameters are the same as in [31].
The derivation details are presented in Appendix D.

Ring Dimension n. All of the security proofs presented in [20] for the constraint-hiding constrained PRF directly
apply to our construction, which implies that the TBO of conjunctions is secure under Ring LWE. To choose the
ring dimension, we run the LWE security estimator3 (commit a2296b8) [2] to find the lowest security levels for
the uSVP, decoding, and dual attacks following the standard homomorphic encryption security recommendations
[22]. We choose the least value of λ for all 3 attacks on classical computers based on the estimates for the BKZ
sieve reduction cost model, and then multiply it by the number of encoded matrices, corresponding to the number
of Ring LWE problems that need to be solved.

Dimension m. The dimension m was set to 2 + κ following the logic described in [31].
Word size w. We found w = 8 to be the optimal value for all our experiments, using the same procedure as

described in [31].

F. Comparison with Construction in [31]

As the building blocks and many underlying parameters for the TBO construction are the same as for the
distributional VBB constructon [31], we can directly compare them. The noise constraints are approximately the
same as the smaller depth in the TBO construction (by 1) is compensated by the extra factor of approximately
25P−1

e introduced by the rounding. The construction in [31] requires computing two product chains versus just one
product chain in our TBO construction. All other parameters are the same. This implies that the TBO construction
is approximately twice faster in obfuscation and evaluation, and requires 2x smaller storage for the obfuscated
program. We provide their experimental comparison later in the paper.

From the security perspective, the TBO model can be used to bound the number of queries and restrict the format
of inputs, thus overcoming the main security limitation of the conjunction obfuscation construction discussed in [31].

V. TOKEN-BASED OBFUSCATION OF BRANCHING PROGRAMS

In this section we present a construction for the TBO of more general classes of programs, namely permutation
and general branching programs. For permutation branching programs, we develop an optimized variant of the
constrained-hiding constrained PRF construction presented in Section 5.2 of [20]. For general branching programs,
we adapt the private constrained PRF4 construction of [24] (Section 7.2) to rings and add several optimizations
to it. Both classes of branching programs are integrated in the same framework, hence we deal with one general
construction for the TBO of branching programs. The TBO construction is secure under Ring LWE.

The construction for the TBO of branching programs builds on top of the same procedures as the TBO for
conjunctions discussed in Section IV and then adds an extra layer dealing with matrix branching programs.
Conceptually speaking, the TBO of conjunctions may be considered as a simple special case of the TBO for
branching programs. In this section we focus on the aspects specific to branching programs, implying that all other
underlying building blocks and parameters are the same as for the TBO of conjunctions.

Compared to the constructions in [24] and [20], our construction includes the following optimizations: (1)
significantly improved key generation and evaluation algorithms for the token generator (both runtime and storage
requirements are dramatically reduced), (2) much tighter correctness constraints (using lower values of main
parameters and Central Limit Theorem/subgaussian analysis), and (3) a larger alphabet for encoding input bits.
In addition to the above, we also present a ring variant of the general branching program construction (versus the
matrix one in [24]), providing a proof for the non-uniform Ring LWE problem in Appendix H.

3https://bitbucket.org/malb/lwe-estimator
4Private constrained PRF and constrained-hiding constrained PRF are two interchangeable terms referring to the same capability

11

A. Matrix Branching Programs

First we provide the main definitions of branching programs supported by our construction.

Definition 7. (Matrix branching programs [24]) Let l, L ∈ N be the bit-length of the input x ∈ {0, 1}l and the
index of the branching program. Let f : {0, 1}l → {0, 1}L be the input-to-index map and F : {0, 1}L → {0, 1}l be
the index-to-input map.

A dimension-u, length-L matrix branching program over l-bit inputs consists of an input-to-index map f , a
sequence of pairs of 0-1 matrices, and two disjoint sets of target matrices P0 and P1:

Γ =
{
f, {Mi,b ∈ {0, 1}u×u}i∈[L],b∈{0,1},P0,P1

}
.

This branching program decides the language L ⊆ {0, 1}l defined as

L(x) =

{
0 Mf(x) =

∏
i∈[L] Mi,F (i) ∈ P0,

1 Mf(x) =
∏
i∈[L] Mi,F (i) ∈ P1.

The dimension u and length L are typically referred to as the width and length of a matrix branching program.
Looking ahead, the applications in this paper may require additional constraint on the target sets P0,P1 to

perform the correct functionality.
The following 2 types are supported by our TBO construction.

Definition 8. (Permutation branching programs: Type II branching programs in [24])
1) Mi,b’s are permutation matrices
2) The target sets P0,P1 satisfy e1 ·P1 = {e1}; e1 ·P0 = {e2}, where ei ∈ {0, 1}1×u denotes the unit vector

with the ith coordinate being 1, and the rest being 0.

Permutation branching programs can be used to represent NC1 circuits. Barrington’s theorem converts any depth-
δ Boolean circuits into an oblivious branching program of length L ≤ 4δ composed of permutation matrices
{Mi,b}i∈[L],b∈{0,1} of dimension u (by default u = 5). Evaluation is done by multiplying the matrices selected
by input bits, with the final output Iu×u or a u-cycle Pi, where i ∈ {0, 1}, recognizing 0 and 1, respectively.
In practice, we can manually construct branching programs with shorter length L and smaller width u than those
provided by the general conversion of Barrington’s Theorem.

Note that the branching programs obtained by Barrington’s theorem directly satisfy Definition 8.

Definition 9. (General branching programs: Type I branching programs in [24]). For vector v ∈ {0, 1}1×u, the
target sets P0,P1 satisfy v ·P1 = {01×u}; v ·P0 ⊆ {0, 1}1×u \ {01×u}.

General branching programs can be used to represent formulas in Conjunctive Normal Form (CNF) (see [24] for
two specific representations of CNFs).

The relationships between these two types of branching programs are discussed in [24].

B. TBO Construction

At a high level, the TBO construction for branching programs has the same functions as the one for the TBO
of conjunctions. The main difference is in how the programs are encoded.

In the case of conjunctions, each bit is encoded as a short ring element s (we ignore here for simplicity the
larger-alphabet optimization). For branching programs, each bit is encoded as a square matrix of ring elements,
which is a tensor product of a matrix with 0’s and 1’s by a random short ring element.

We define the encoding function as γ(M, s). For permutation programs, we have γ(M, s) = M⊗ s. For general
branching programs, γ(M, s) = diag(s,M⊗ s), where diag refers to a function building a diagonal matrix. If u
is the dimension of the matrix M, then γ(M, s) for permutation branching programs is a u× u square matrix of
ring elements, and γ(M, s) for general branching programs is a (u+ 1)× (u+ 1) square matrix of ring elements.

Next we describe the TBO algorithms focusing on the discussion of differences brought about by the encoding
of matrix branching programs. To present the same procedures for both types of branching programs, we use d as
the dimension of γ(M, s) rather than the dimension u of the underlying matrix M.

12

The key generation algorithm is listed in Algorithm 6. The main differences compared to Algorithm 1 are (1)
the computation of AJ term, which is needed for the security of the construction for general branching programs
proposed in [24], and (2) the increased dimensions for both public key and secret trapdoors (a square d×d increase
as compared to the conjunction case). Note that J := (1,v) for general branching programs and J := Id for
permutation programs. The TRAPGEN algorithm used in this case is a generalization for the module-LWE probem,
which is discussed in Section VI-A and Appendix F.

Algorithm 6 Key generation for branching programs

function KEYGEN(1λ)
for i = 0..L do

Ai, T̃i := TRAPGEN(1λ), Ai ∈ Rqd×dm
end for
J := e1; AJ := JA0

for i = 1..L do
for b = 0..2w-1 do

si,b ← DR,σ
end for

end for
return KMSK :=(
{si,b}i∈{1,..,L},b∈{0,..,2w−1}, {Ai, T̃i}i∈{0,..,L},AJ

)
end function

The obfuscation and encoding procedures are presented in Algorithms 7 and 8. Conceptually the obfuscation
procedure is similar to Algorithm 2 but deals with the encoding of matrices of d×d short ring elements corresponding
to the matrix branching program, rather than individual short ring elements in the conjunction construction. This
implies that the storage requirements are at least d2 larger as compared to conjunctions (they are actually more due
to increased noise requirements). The M̂i,b is introduced to support a larger alphabet (word size) when encoding
the program, which is a major optimization compared to the constructons in [24] and [20].

Algorithm 7 Obfuscation for branching programs

function OBFUSCATE({Mi,b}i∈[L],b∈{0,1},KMSK , σ)
for i = 1..L do

for b = 0..2w-1 do
M̂i,b =

∏w
j=1 M(i−1)w+j,bj ∈ Rd×d

q

Di,b := EncodeAi−1→Ai
(T̃i−1, γ(M̂i,b, si,b), σ)

end for
end for
Πv :=

(
AJ, {Di,b}i∈[L],b∈{0,...,2w−1}

)
return Πv

end function

Algorithm 8 Directed encoding for matrices

function EncodeAi→Ai+1
(T̃i,S ∈ Rqd×d, σ)

Ei+1 ← Dd×dmR,σ ∈ Rqd×dm.
Bi+1 := SAi+1 + Ei+1 ∈ Rd×dmq

Ri+1 := GaussSamp(Ai, T̃i,Bi+1, σt, σs) ∈ Rdm×dmq

return Ri+1

end function

13

Algorithm 9 lists the pseudocode for TOKENGEN, the evaluation using unconstrained key. The computational
complexity is the same as for conjunctions, and O (dm) smaller than for the original branching program construc-
tion [24].

Algorithm 9 Evaluation by a trusted party (using the master secret key)

function TOKENGEN(x ∈ {0, 1}L, KMSK)
∆ := AL[1]

∏L
i=1 si,x[1+(i−1)w : iw]

y′ := b2
q∆e ∈ Zn2

return y′

end function

Algorithm 10 Evaluation using the obfuscated program

function EVAL(x ∈ {0, 1}L, Πv, y′)
DΠ := AJ

for i = 1..L do
DΠ := DΠ Di,x[1+(i−1)w : iw] ∈ Rq1×dm

end for
y := b2

qDΠ[1]e ∈ Zn2
return (y = y′)

end function

Algorithm 10 shows the pseudocode for the evaluation using the obfuscated program (constrained key). The
main difference compared to Algorithm 5 for conjunctions is that we multiply by AJ rather than A0 to satisfy the
security requirements for the TBO of general branching programs. The computational complexity is O(d2) higher
than in the case of conjunctions.

C. Security

The TBO construction for branching programs is secure under Definition 4 for query-revealing TBO under Ring
LWE. The proof is sketched in Appendix B.

D. Parameter Selection for Matrix Branching Programs

The correctness constraint for branching programs with L words (L ≥ 2) is expressed as q > 210P−1
e BJBe

(
6σs
√
dmn

)L−1
,

where Bj = d for general branching programs and Bj = 1 for permutation branching programs, and σs =

C0σσt

(√
dnκ+

√
2n+ 4.7

)
. All other parameters are the same as for the TBO of conjunctions. The derivation

details are presented in Appendix E.

E. Efficiency of Permutation and General Branching Programs

The general branching program represention is typically significantly more efficient than the permutation repre-
sentation [24]. The programs with l-bit input can be represented as general branching programs of length l. In the
case of permutation programs, the length of branching programs typically has to be at least l2 or the width has to
be set to at least 2l [24], which leads to a dramatic performance degradation when the length l is increased and
makes the permutation branching program approach nonviable for most useful practical scenarios. Hence in this
work we present experimental results only for general branching programs.

F. Application: Hamming Distance

To illustrate the TBO of general branching programs, we consider an example of obfuscating a procedure to
find whether the Hamming distance between two strings of equal length K is below a certain threshold T . The

14

Hamming distance is defined as the number of positions at which the corresponding symbols of the strings are
different. We denote as φ ∈ {0, 1, ?}l the l-bit string to be obfuscated. Note that wildcard values are allowed.

The following branching program can be used to represent this problem:
1) Initialization, for all i ∈ [K], b ∈ {0, 1}, let Mi,b := IT+1.
2) If φi = 0, set Mi,1 := N.
3) If φi = 1, set Mi,0 := N.
4) For b ∈ {0, 1}, set Ml,b := Ml,bR.
Here, N ∈ {0, 1}(T+1)×(T+1) is a matrix where Ni,i+1 = 1,

NT+1,T+1 = 1 and all other values are set to 0; R ∈ {0, 1}(T+1)×(T+1) is a matrix where RT+1,T+1 = 1 and all
other values are set to 0. The vector v ∈ {0, 1}T+1 is [1 0 0 . . . 0].

This branching program has the length of K and width of T + 1.

VI. EFFICIENT ALGORITHMS FOR THE RING CONSTRUCTIONS

A. Trapdoor Sampling for the Matrices of Ring Elements

Here we describe the trapdoor generation and sampling procedures, TRAPGEN and GAUSSSAMP, respectively.
For branching programs, we needed a new algorithm, SAMPLEMAT, which may be of independent interest. This
algorithm samples a discrete Gaussian perturbation with a covariance described as a general matrix over the ring
R.

The pseudocode for trapdoor generation and sampling is given in Appendix F. In short, TRAPGEN takes as input
a security parameter and outputs a (pseudo)random matrix A over Rq along with a trapdoor matrix T with small
entries over R. This trapdoor T allows us to sample discrete Gaussian vectors x over R such that Ax mod q = u
for u given as an input. Sampling a discrete Gaussian matrix X over R where AX = U mod q is done by
sampling each column of X independently.

Discrete Gaussian sampling, GAUSSSAMP, is broken into two subroutines. The first is a perturbation sampling
procedure, SAMPLEPERT, which outputs a perturbation to statistically hide the trapdoor, independent of the input u.
Second, the procedure samples a discrete Gaussian over a G-lattice represented by some gadget matrix. The output
of GAUSSSAMP is simply the sum of the perturbation and the gadget lattice sample (under a linear transformation
dependent on the trapdoor).

We implemented the trapdoor generation algorithm, TRAPGEN used in Algorithms 1 and 6, from [65] in the
computational instantiation (meaning pseudorandomness comes from RLWE).

In the case of branching programs, an extra layer is needed in the perturbation procedure to account for the
extra ring dimension d. This extra layer is given in the Appendix F as Algorithm 14, SAMPLEMAT. This algorithm
follows the same Schur-complement decomposition used in [36], but is applied to general matrices over the ring.

It breaks the covariance into four blocks, Σ =

[
A B

BT D

]
, and performs a discrete Gaussian convolution with

samples over R with covariances D and the Schur-complement A − BD−1BT . Notice that we can break the
covariance matrix Σ up into any blocks we choose, though we implemented halving the dimension each time since
it is asymptotically the most efficient approach.

B. RNS Algorithms

We implemented all procedures for the TBO constructions of conjunctions and branching programs in the
Double-CRT (RNS) representation, which supports parallel operations over vectors of fast native (64-bit for x86-64
architectures). There are many benefits of using the Double-CRT representation, and new algorithms have recently
been proposed [6], [8], [37], [48]. The two procedures that require special handling are the lattice trapdoor sampling
in ENCODE and the scale-and-round operation in TOKENGEN and EVAL.

Lattice trapdoor sampling calls digit decomposition for each polynomial coefficient in the G-sampling step. The
conventional digit decomposition is not compatible with RNS, and requires expensive conversion to the positional
(multi-precision) format to extract the digits. Instead, we use a CRT representation of the gadget matrix that was
recently proposed in [37], which allows us to perform “digit” decomposition directly in RNS. We discuss the

15

TABLE I: Execution times and program size for a 16-feature binary classifier; n=2048, dlog2 qe = 53, λ ≥ 128.

Feature Size Program size OBFUSCATE TOKENGEN EVAL
[bits] [KB] [s] [ms] [ms]

threads = 1
8 48 0.76 2.09 0.041
16 8,208 185 2.11 0.047

threads = 28
8 48 0.09 0.42 0.029
16 8,208 15.7 0.39 0.032
24 2,097,168 4,061 1.30 0.069

TABLE II: Execution times and program size for conjunction obfuscation; λ ≥ 80.

L # threads n dlog2 qe log2 t Program size OBFUSCATE TOKENGEN EVAL EVALTOTAL
[bits] [GB] [min] [ms] [ms] [ms]

Token-Based Obfuscation
32 1 4096 180 20 11.6 23.5 1.3 75.8 77.1
32 14 4096 180 20 11.6 5.1 0.6 11.0 11.6
64 28 8192 360 20 300 52.5 4.0 269.9 273.9

Optimized Distributional VBB Obfuscation [31]
32 14 4096 180 15 36.8 12.4 – – 53.0

changes introduced by the use of CRT representation for the gadget matrix, as compared to the trapdoor algorithms
in [31], in Appendix G.

For the scale-and-round operation, we utilize the RNS scaling procedure proposed in [48] for the decryption in
the Brakerski/Fan-Vercauteren homomorphic encryption scheme. The technique is based on the use of floating-point
operations for some intermediate computations.

VII. IMPLEMENTATION AND RESULTS

A. Software Implementation

We implemented the TBO constructions in PALISADE v1.3.1 [67], an open-source lattice cryptography library.
PALISADE uses a layered approach with four software layers, each including a collection of C++ classes to provide
encapsulation, low inter-class coupling and high intra-class cohesion. The software layers are as follows:
1) The cryptographic layer supports cryptographic protocols such as homomorphic encryption schemes through

calls to lower layers.
2) The encoding layer supports plaintext encodings for cryptographic schemes.
3) The lattice constructs layer supports power-of-two and arbitrary cyclotomic rings (coefficient, CRT, and double-

CRT representations). Lattice operations are decomposed into primitive arithmetic operations on integers, vectors,
and matrices here.

4) The arithmetic layer provides basic modular operations (multiple multiprecision and native math backends are
supported), implementations of Number-Theoretic Transform (NTT), Negacyclic Convolution NTT, and Bluestein
FFT. The integer distribution samplers are implemented in this layer.

Our TBO toolkit is a new PALISADE module called “tbo”, which includes the following new features broken
down by layer:
• TBO of linear functions (binary classifiers), conjunctions, and branching programs in the cryptographic layer.
• Variants of GGH15 encoding in the encoding layer.
• Trapdoor sampling for matrices of ring elements in the lattice layer.

Several lattice-layer and arithmetic-layer optimizations are also applied for runtime improvements. OpenMP loop
parallelization is used to achieve speedup in the multi-threaded mode.

B. Experimental Testbed

Experiments were performed using a server computing node with 2 sockets of Intel(R) Xeon(R) CPU E5-2680
v4 @ 2.40GHz, each with 14 cores. 500GB of RAM was accessible for the experiments. The node had Fedora 26
OS and g++ (GCC) 7.1.1 installed.

16

TABLE III: Execution times and program size for the obfuscation of the branching program that checks whether
two 24-bit strings (one of them is obfuscated) have a Hamming distance less than T ; # threads = 28, n = 4096,
dlog2 qe = 180, log2 t = 20, λ ≥ 80.

T d Program size OBFUSCATE TOKENGEN EVAL
[GB] [min] [ms] [ms]

1 3 76.6 26.9 0.6 55.0
2 4 136 44.8 0.6 66.6
3 5 213 72.6 0.9 133

C. TBO of Linear Functions (Binary Classifiers)

Table I shows both single- and multi-threaded results for the obfuscation of a binary classifier representing a
conjunction of 16 features, with the feature size being varied from 8 to 24 bits. This particular classifier can be
interpreted as an image classification algorithm for 16 blocks of pixels, with the block size being varied from 1
to 3 bytes. For the underlying linear-function TBO construction, we used the distibution parameter of 8/

√
2π and

p = 240.
The evaluation runtime, which is a sum of TOKENGEN and EVAL, is of the order of 1 millisecond (note that it

can be further improved by using a faster implementation of AES-CTR for generating secret keys on the fly) even
for the single-threaded case. As the evaluation runtime depends only on the number of features, it remains almost
the same when the feature size is increased from 8 to 24 bits.

The program size grows linearly with the dimension N (as predicted by our complexity analysis) and supports
a highly efficient obfuscation for 16-bit features, with the obfuscation runtime of 16 seconds and program size of
8MB. The obfuscation runtime gets a relatively high speed-up in the multi-threaded mode, namely speed-ups of
8.4 and 11.8 on a 28-core machine for 8-bit and 16-bit features, respectively.

The above results imply that the obfuscation of binary classifiers is already practical, as long as the number
of queries (and possibly the format of query inputs) is adequately restricted by the token generator based on the
statistical properties of the classifiers being obfuscated.

D. TBO of Conjunctions

Table II presents the peformance results for the TBO of 32-bit and 64-bit conjunctions, along with the results for
an optimized implementation of the distributional VBB obfuscation [19], [31] of 32-bit conjunctions for comparison.

The TBO of 32-bit conjunctions is close to being practical, with a total evaluation runtime of 11.6 milliseconds,
obfuscation runtime of 5.1 minutes, and program size of 11.6 GB for a setting with more than 80 bits of security. As
compared to the distributional VBB results presented in [31] for the same lattice parameters, the evaluation is 10.1x
faster, obfuscation is 7.4x faster, and program size is 3.3x smaller. As TBO provides a mechanism for bounding
the number of queries, this construction is also more secure. For a more complete picture, we also ran experiments
for the optimized distributional VBB implementation (using the same RNS and low-level optimizations as in our
TBO implementation) to provide a fair comparison of the runtimes for the TBO and distributional VBB security
models. The experimental speed-ups due to the use of the TBO model are 4.6x for evaluation time and 2.4x for
obfuscation time, which are somewhat higher than predicted by our high-level complexity analysis in Section IV.

We also examined the effect of OpenMP loop parallelization optimizations by comparing the results for single-
and multi-threaded scenarios (Table II). Here, we chose 14 (matching the number of cores per socket) as the number
of threads as the main parallelization dimension in both evaluation and obfuscation is m = 11, and increasing the
number of threads further than that degrades the performance due to multi-threading overhead. The speed-ups in
the evaluation and obfuscation runtimes are 6.6x and 4.6x, respectively, with the maximum theoretical limit for this
case being 11. This suggests there is room for further loop parallelization optimizations.

Our 64-bit conjunction obfuscation results are much further from being practical, mainly due to the large program
size requirement of 300 GB. On the other hand, they are significantly better than prior distributional VBB results
for the same lattice parameters. For instance, the evaluation is 9x faster, obfuscation is 7.7x faster, and program
size is 2.5x smaller.

17

E. TBO of Branching Programs

Table III shows the performance results for the TBO of general branching programs using the Hamming distance
problem as an example application. Note that d = 5 corresponds to the classical Barrington’s theorem permutation
branching program case. Hence these results can be used for benchmarking the TBO of both permutation and
general branching programs of length L = 24 bits.

The results suggest that the program size is the main efficiency limitation of the TBO for branching programs,
which is due to the large size of the GGH15 encoding matrices (in this case, we have 3d2×256 of m×m matrices
with ring elements of dimension n). Even for the case of the Hamming distance threshold of 3 and 24-bit strings,
the TBO construction requires 213 GB to store the obfuscated program. At the same time, the evaluation and
obfuscation runtimes are much closer to being practical.

Although our TBO construction for branching programs includes many major optimizations, our efficiency results
for general branching programs are still far from being practical. However, the functionality supported by our
construction is more advanced than for all prior implementations of non-trivial program obfuscation [4], [31], [47],
[54] under the VBB or IO models.

VIII. CONCLUSION

We have presented the implementation results for several TBO constructions. Some of these constructions are
practical (binary classifiers based on linear functions) or close to being practical (conjunctions) while the more
advanced (branching program) constructions are still far from being practical. The important benefit of the TBO
model is the ability to support the obfuscation of certain programs, such as some binary classifiers, that are not
secure under the non-interactive models of VBB or IO. This is solely from the token generator’s ability to limit
the number of queries and restrict allowed inputs.

The obfuscation of general branching programs is still not practical under both TBO and IO. Note that the IO
candidate based on the non-uniform LWE presented in [24], which is one of very few unbroken IO candidates,
would further degrade the performance, as compared to the TBO of general branching programs, due to the addition
of “bundling” matrices and other extra objects. It appears that a fundamental breakthrough comparable to Gentry’s
fully homomorphic encryption idea in 2009 is needed to make the general program obfuscation efficient and
secure. To make the TBO of general branching programs practical, either the GGH15 or multilinear approach has
to be replaced with a totally different approach, or a fundamentally new compact trapdoor construction has to be
proposed.

IX. ACKNOWLEDGEMENTS

We gratefully acknowledge the input and feedback from Vinod Vaikuntanathan and Shafi Goldwasser. This work
was sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Army Research Laboratory
(ARL) under Contract Numbers W911NF-15-C-0226 and W911NF-15-C-0233. The views expressed are those of
the authors and do not necessarily reflect the official policy or position of the Department of Defense or the U.S.
Government.

REFERENCES

[1] M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval, “Simple functional encryption schemes for inner products,” in Public-Key
Cryptography – PKC 2015, J. Katz, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 733–751.

[2] M. Albrecht, S. Scott, and R. Player, “On the concrete hardness of learning with errors,” Journal of Mathematical Cryptology, vol. 9,
no. 3, p. 169–203, 10 2015.

[3] D. Apon, N. Döttling, S. Garg, and P. Mukherjee, “Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13,” in 44th
International Colloquium on Automata, Languages, and Programming (ICALP 2017), vol. 80, 2017, pp. 38:1–38:16.

[4] D. Apon, Y. Huang, J. Katz, and A. J. Malozemoff, “Implementing cryptographic program obfuscation,” Cryptology ePrint Archive,
Report 2014/779, 2014, http://eprint.iacr.org/2014/779.

[5] B. Applebaum and Z. Brakerski, “Obfuscating circuits via composite-order graded encoding,” in Theory of Cryptography: 12th Theory
of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II, Y. Dodis and J. B. Nielsen, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 528–556.

[6] A. A. Badawi, Y. Polyakov, K. M. M. Aung, B. Veeravalli, and K. Rohloff, “Implementation and performance evaluation of rns variants
of the bfv homomorphic encryption scheme,” Cryptology ePrint Archive, Report 2018/589, 2018, https://eprint.iacr.org/2018/589.

18

[7] L. Bahler, G. Di Crescenzo, Y. Polyakov, K. Rohloff, and D. B. Cousins, “Practical implementation of lattice-based program
obfuscators for point functions,” in 2017 International Conference on High Performance Computing & Simulation, HPCS 2017,
Genoa, Italy, July 17-21, 2017, 2017, pp. 761–768. [Online]. Available: https://doi.org/10.1109/HPCS.2017.115

[8] J.-C. Bajard, J. Eynard, M. A. Hasan, and V. Zucca, “A full rns variant of fv like somewhat homomorphic encryption schemes,”
in Selected Areas in Cryptography – SAC 2016, R. Avanzi and H. Heys, Eds. Cham: Springer International Publishing, 2017, pp.
423–442.

[9] A. Banerjee, C. Peikert, and A. Rosen, “Pseudorandom functions and lattices,” in Advances in Cryptology - EUROCRYPT 2012 -
31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19,
2012. Proceedings, ser. Lecture Notes in Computer Science, D. Pointcheval and T. Johansson, Eds., vol. 7237. Springer, 2012, pp.
719–737. [Online]. Available: https://doi.org/10.1007/978-3-642-29011-4\ 42

[10] B. Barak, “Hopes, fears, and software obfuscation,” Commun. ACM, vol. 59, no. 3, pp. 88–96, Feb. 2016.
[11] B. Barak, S. Garg, Y. T. Kalai, O. Paneth, and A. Sahai, “Protecting obfuscation against algebraic attacks,” in Advances in Cryptology –

EUROCRYPT 2014: 33rd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings, P. Q. Nguyen and E. Oswald, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014,
pp. 221–238.

[12] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang, “On the (im)possibility of obfuscating programs,”
J. ACM, vol. 59, no. 2, pp. 6:1–6:48, May 2012.

[13] M. Bellare and I. Stepanovs, “Point-function obfuscation: A framework and generic constructions,” in Theory of Cryptography:
13th International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II, E. Kushilevitz
and T. Malkin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 565–594. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-662-49099-0 21

[14] A. Bishop, A. Jain, and L. Kowalczyk, “Function-hiding inner product encryption,” in Proceedings, Part I, of the 21st International
Conference on Advances in Cryptology – ASIACRYPT 2015 - Volume 9452. New York, NY, USA: Springer-Verlag New York, Inc.,
2015, pp. 470–491. [Online]. Available: https://doi.org/10.1007/978-3-662-48797-6 20

[15] N. Bitansky, R. Canetti, H. Cohn, S. Goldwasser, Y. T. Kalai, O. Paneth, and A. Rosen, “The impossibility of obfuscation with auxiliary
input or a universal simulator,” in Advances in Cryptology – CRYPTO 2014: 34th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2014, Proceedings, Part II, J. A. Garay and R. Gennaro, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 71–89.

[16] N. Bitansky, R. Canetti, S. Goldwasser, S. Halevi, Y. T. Kalai, and G. N. Rothblum, “Program obfuscation with leaky hardware,” in
Advances in Cryptology – ASIACRYPT 2011, D. H. Lee and X. Wang, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 722–739.

[17] D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan, “Key homomorphic prfs and their applications,” in Advances in
Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part
I, ser. Lecture Notes in Computer Science, R. Canetti and J. A. Garay, Eds., vol. 8042. Springer, 2013, pp. 410–428. [Online].
Available: https://doi.org/10.1007/978-3-642-40041-4\ 23

[18] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic encryption without bootstrapping,” in Innovations in
Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012, S. Goldwasser, Ed. ACM, 2012, pp. 309–325.
[Online]. Available: http://doi.acm.org/10.1145/2090236.2090262

[19] Z. Brakerski, V. Vaikuntanathan, H. Wee, and D. Wichs, “Obfuscating conjunctions under entropic ring lwe,” in Proceedings of the
2016 ACM Conference on Innovations in Theoretical Computer Science, ser. ITCS ’16, 2016, pp. 147–156.

[20] R. Canetti and Y. Chen, “Constraint-hiding constrained prfs for nc1 from lwe,” Cryptology ePrint Archive, Report 2017/143, 2017,
https://eprint.iacr.org/2017/143.

[21] B. Carmer, A. J. Malozemoff, and M. Raykova, “5gen-c: Multi-input functional encryption and program obfuscation for arithmetic
circuits,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, ser. CCS ’17. New
York, NY, USA: ACM, 2017, pp. 747–764. [Online]. Available: http://doi.acm.org/10.1145/3133956.3133983

[22] M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, J. Hoffstein, K. Lauter, S. Lokam, D. Moody, T. Morrison, A. Sahai, and
V. Vaikuntanathan, “Security of homomorphic encryption,” HomomorphicEncryption.org, Redmond WA, Tech. Rep., July 2017.

[23] Y. Chen, C. Gentry, and S. Halevi, “Cryptanalyses of candidate branching program obfuscators,” in Advances in Cryptology –
EUROCRYPT 2017: 36th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Paris,
France, April 30 – May 4, 2017, Proceedings, Part III, J.-S. Coron and J. B. Nielsen, Eds. Cham: Springer International Publishing,
2017, pp. 278–307. [Online]. Available: https://doi.org/10.1007/978-3-319-56617-7 10

[24] Y. Chen, V. Vaikuntanathan, and H. Wee, “Ggh15 beyond permutation branching programs: Proofs, attacks, and candidates,” in Advances
in Cryptology – CRYPTO 2018, H. Shacham and A. Boldyreva, Eds. Cham: Springer International Publishing, 2018, pp. 577–607.

[25] J. H. Cheon, P.-A. Fouque, C. Lee, B. Minaud, and H. Ryu, “Cryptanalysis of the new clt multilinear map over the integers,” in
Advances in Cryptology – EUROCRYPT 2016: 35th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I, M. Fischlin and J.-S. Coron, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 509–536.

[26] J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé, “Cryptanalysis of the multilinear map over the integers,” in Advances in
Cryptology – EUROCRYPT 2015: 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, E. Oswald and M. Fischlin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2015, pp. 3–12.

[27] C. S. Collberg and C. Thomborson, “Watermarking, tamper-proffing, and obfuscation: Tools for software protection,” IEEE Trans.
Softw. Eng., vol. 28, no. 8, pp. 735–746, Aug. 2002.

[28] J.-S. Coron, C. Gentry, S. Halevi, T. Lepoint, H. K. Maji, E. Miles, M. Raykova, A. Sahai, and M. Tibouchi, “Zeroizing without low-level
zeroes: New mmap attacks and their limitations,” in Advances in Cryptology – CRYPTO 2015: 35th Annual Cryptology Conference,

19

Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, R. Gennaro and M. Robshaw, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2015, pp. 247–266.

[29] J.-S. Coron, M. S. Lee, T. Lepoint, and M. Tibouchi, “Cryptanalysis of ggh15 multilinear maps,” in Advances in Cryptology –
CRYPTO 2016: 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part
II, M. Robshaw and J. Katz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 607–628.

[30] ——, “Zeroizing attacks on indistinguishability obfuscation over clt13,” in Public-Key Cryptography – PKC 2017: 20th IACR
International Conference on Practice and Theory in Public-Key Cryptography, Amsterdam, The Netherlands, March 28-31, 2017,
Proceedings, Part I, S. Fehr, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pp. 41–58.

[31] D. B. Cousins, G. D. Crescenzo, K. D. Gür, K. King, Y. Polyakov, K. Rohloff, G. W. Ryan, and E. Savas, “Implementing conjunction
obfuscation under entropic ring lwe,” in 2018 IEEE Symposium on Security and Privacy (SP), May 2018, pp. 354–371, cryptology
ePrint Archive, Report 2017/844, https://eprint.iacr.org/2017/844.

[32] G. D. Crescenzo, L. Bahler, B. A. Coan, Y. Polyakov, K. Rohloff, and D. B. Cousins, “Practical implementations of program
obfuscators for point functions,” in International Conference on High Performance Computing & Simulation, HPCS 2016, Innsbruck,
Austria, July 18-22, 2016. IEEE, 2016, pp. 460–467. [Online]. Available: http://dx.doi.org/10.1109/HPCSim.2016.7568371

[33] N. Eyrolles, L. Goubin, and M. Videau, “Defeating mba-based obfuscation,” in Proceedings of the 2016 ACM Workshop on Software
PROtection, ser. SPRO ’16, 2016, pp. 27–38.

[34] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters, “Candidate indistinguishability obfuscation and functional
encryption for all circuits,” SIAM Journal on Computing, vol. 45, no. 3, pp. 882–929, 2016.

[35] S. Garg, E. Miles, P. Mukherjee, A. Sahai, A. Srinivasan, and M. Zhandry, “Secure obfuscation in a weak multilinear map model,” in
Theory of Cryptography: 14th International Conference, TCC 2016-B, Beijing, China, October 31-November 3, 2016, Proceedings,
Part II, M. Hirt and A. Smith, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 241–268. [Online]. Available:
https://doi.org/10.1007/978-3-662-53644-5 10

[36] N. Genise and D. Micciancio, “Faster gaussian sampling for trapdoor lattices with arbitrary modulus,” in Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv,
Israel, April 29 - May 3, 2018 Proceedings, Part I, ser. Lecture Notes in Computer Science, J. B. Nielsen and V. Rijmen, Eds., vol.
10820. Springer, 2018, pp. 174–203. [Online]. Available: https://doi.org/10.1007/978-3-319-78381-9 7

[37] N. Genise, D. Micciancio, and Y. Polyakov, “Building an efficient lattice gadget toolkit: Subgaussian sampling and more,” Cryptology
ePrint Archive, Report 2018/946, 2018, https://eprint.iacr.org/2018/946.

[38] C. Gentry, S. Gorbunov, and S. Halevi, “Graph-induced multilinear maps from lattices,” in Theory of Cryptography: 12th Theory of
Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II, Y. Dodis and J. B. Nielsen, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 498–527.

[39] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the aes circuit,” in Advances in Cryptology – CRYPTO 2012:
32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, R. Safavi-Naini and R. Canetti, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 850–867. [Online]. Available: https://doi.org/10.1007/978-3-642-32009-5 49

[40] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard lattices and new cryptographic constructions,” in Proceedings of the
Fortieth Annual ACM Symposium on Theory of Computing, ser. STOC ’08. New York, NY, USA: ACM, 2008, pp. 197–206.

[41] S. Goldwasser and Y. T. Kalai, “On the impossibility of obfuscation with auxiliary input,” in 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’05), Oct 2005, pp. 553–562.

[42] S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich, “Reusable garbled circuits and succinct functional
encryption,” in Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, ser. STOC ’13. New York, NY,
USA: ACM, 2013, pp. 555–564. [Online]. Available: http://doi.acm.org/10.1145/2488608.2488678

[43] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich, “Reusable garbled circuits and succinct functional
encryption,” in Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, D. Boneh,
T. Roughgarden, and J. Feigenbaum, Eds. ACM, 2013, pp. 555–564. [Online]. Available: https://doi.org/10.1145/2488608.2488678

[44] S. Goldwasser and G. N. Rothblum, “On best-possible obfuscation,” in Theory of Cryptography: 4th Theory of Cryptography
Conference, TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007. Proceedings, S. P. Vadhan, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 194–213. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-70936-7 11

[45] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia, “Founding cryptography on tamper-proof hardware tokens,” in Theory of
Cryptography, D. Micciancio, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 308–326.

[46] S. Hada, “Zero-knowledge and code obfuscation,” in Advances in Cryptology — ASIACRYPT 2000: 6th International Conference on
the Theory and Application of Cryptology and Information Security Kyoto, Japan, December 3–7, 2000 Proceedings, T. Okamoto, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 443–457.

[47] S. Halevi, T. Halevi, V. Shoup, and N. Stephens-Davidowitz, “Implementing bp-obfuscation using graph-induced encoding,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, ser. CCS ’17. New York, NY, USA:
ACM, 2017, pp. 783–798. [Online]. Available: http://doi.acm.org/10.1145/3133956.3133976

[48] S. Halevi, Y. Polyakov, and V. Shoup, “An improved rns variant of the bfv homomorphic encryption scheme,” Cryptology ePrint
Archive, Report 2018/117, 2018, https://eprint.iacr.org/2018/117.

[49] Y. Hu and H. Jia, “Cryptanalysis of ggh map,” in Advances in Cryptology – EUROCRYPT 2016: 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I, M. Fischlin and
J.-S. Coron, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 537–565.

[50] S. Kim, K. Lewi, A. Mandal, H. Montgomery, A. Roy, and D. J. Wu, “Function-hiding inner product encryption is practical,” in Security
and Cryptography for Networks, D. Catalano and R. De Prisco, Eds. Cham: Springer International Publishing, 2018, pp. 544–562.

[51] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static disassembly of obfuscated binaries,” in USENIX Security Symposium, 2004.
[52] M. Kubat, An Introduction to Machine Learning, 1st ed. Springer Publishing Company, Incorporated, 2015.
[53] A. Langlois and D. Stehlé, “Worst-case to average-case reductions for module lattices,” Des. Codes Cryptography, vol. 75, no. 3, pp.

565–599, 2015. [Online]. Available: https://doi.org/10.1007/s10623-014-9938-4

20

[54] K. Lewi, A. J. Malozemoff, D. Apon, B. Carmer, A. Foltzer, D. Wagner, D. W. Archer, D. Boneh, J. Katz, and M. Raykova, “5gen:
A framework for prototyping applications using multilinear maps and matrix branching programs,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS ’16, 2016, pp. 981–992.

[55] H. Lin, “Indistinguishability obfuscation from sxdh on 5-linear maps and locality-5 prgs,” in Advances in Cryptology – CRYPTO 2017:
37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20–24, 2017, Proceedings, Part I, J. Katz and
H. Shacham, Eds. Cham: Springer International Publishing, 2017, pp. 599–629.

[56] H. Lin, R. Pass, K. Seth, and S. Telang, “Indistinguishability obfuscation with non-trivial efficiency,” in Public-Key Cryptography –
PKC 2016: 19th IACR International Conference on Practice and Theory in Public-Key Cryptography, Taipei, Taiwan, March 6-9, 2016,
Proceedings, Part II, C.-M. Cheng, K.-M. Chung, G. Persiano, and B.-Y. Yang, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2016, pp. 447–462.

[57] H. Lin and S. Tessaro, “Indistinguishability obfuscation from trilinear maps and block-wise local prgs,” in Advances in Cryptology –
CRYPTO 2017: 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20–24, 2017, Proceedings, Part
I, J. Katz and H. Shacham, Eds. Cham: Springer International Publishing, 2017, pp. 630–660.

[58] C. Linn and S. Debray, “Obfuscation of executable code to improve resistance to static disassembly,” in Proceedings of the 10th ACM
Conference on Computer and Communications Security, ser. CCS ’03, 2003, pp. 290–299.

[59] D. Low, “Protecting java code via code obfuscation,” Crossroads, vol. 4, no. 3, pp. 21–23, Apr. 1998.
[60] B. Lynn, M. Prabhakaran, and A. Sahai, “Positive results and techniques for obfuscation,” in Advances in Cryptology - EUROCRYPT

2004: International Conference on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004.
Proceedings, C. Cachin and J. L. Camenisch, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 20–39. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-24676-3 2

[61] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen, “SWIFFT: A modest proposal for FFT hashing,” in Fast Software
Encryption, 15th International Workshop, FSE 2008, Lausanne, Switzerland, February 10-13, 2008, Revised Selected Papers, 2008,
pp. 54–72. [Online]. Available: https://doi.org/10.1007/978-3-540-71039-4\ 4

[62] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning with errors over rings,” in Advances in Cryptology –
EUROCRYPT 2010: 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French
Riviera, May 30 – June 3, 2010. Proceedings, H. Gilbert, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 1–23.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-13190-5 1

[63] ——, “A toolkit for ring-LWE cryptography,” in EUROCRYPT, vol. 7881. Springer, 2013, pp. 35–54.
[64] D. Micciancio, “On the hardness of learning with errors with binary secrets,” Theory of Computing, vol. 14, no. 1, pp. 1–17, 2018.

[Online]. Available: https://doi.org/10.4086/toc.2018.v014a013
[65] D. Micciancio and C. Peikert, “Trapdoors for lattices: Simpler, tighter, faster, smaller,” in Advances in Cryptology–EUROCRYPT 2012.

Springer, 2012, pp. 700–718.
[66] E. Miles, A. Sahai, and M. Zhandry, “Annihilation attacks for multilinear maps: Cryptanalysis of indistinguishability obfuscation over

ggh13,” in Advances in Cryptology – CRYPTO 2016: 36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part II, M. Robshaw and J. Katz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp.
629–658. [Online]. Available: http://dx.doi.org/10.1007/978-3-662-53008-5 22

[67] Y. Polyakov, K. Rohloff, and G. W. Ryan, “PALISADE lattice cryptography library,” https://git.njit.edu/palisade/PALISADE, Accessed
November 2018.

[68] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,” J. ACM, vol. 56, no. 6, pp. 34:1–34:40, 2009.
[Online]. Available: http://doi.acm.org/10.1145/1568318.1568324

[69] S. Schrittwieser, S. Katzenbeisser, P. Kieseberg, M. Huber, M. Leithner, M. Mulazzani, and E. Weippl, “Covert computation: Hiding code
in code for obfuscation purposes,” in Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and Communications
Security, ser. ASIA CCS ’13, 2013, pp. 529–534.

[70] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Impeding malware analysis using conditional code obfuscation.” in NDSS, 2008.
[71] A. H. Sung, J. Xu, P. Chavez, and S. Mukkamala, “Static analyzer of vicious executables (save),” in 20th Annual Computer Security

Applications Conference, Dec 2004, pp. 326–334.
[72] S. K. Udupa, S. K. Debray, and M. Madou, “Deobfuscation: reverse engineering obfuscated code,” in 12th Working Conference on

Reverse Engineering (WCRE’05), Nov 2005, p. 10.
[73] G. Wroblewski, “General method of program code obfuscation,” Ph.D. dissertation, Citeseer, 2002.
[74] Y. Xiao, K. G. Mehrotra, and C. K. Mohan, “Efficient classification of binary data stream with concept drifting using conjunction

rule based boolean classifier,” in Current Approaches in Applied Artificial Intelligence: 28th International Conference on Industrial,
Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2015, Seoul, South Korea, June 10-12, 2015, Proceedings,
M. Ali, Y. S. Kwon, C.-H. Lee, J. Kim, and Y. Kim, Eds., 2015, pp. 457–467.

[75] Y. Zhou, A. Main, Y. X. Gu, and H. Johnson, “Information hiding in software with mixed boolean-arithmetic transforms,” in Proceedings
of the 8th International Conference on Information Security Applications, ser. WISA’07, 2007, pp. 61–75.

APPENDIX A
SECURITY PROOF FOR TBO OF LINEAR FUNCTIONS

Theorem 10. The LWE secret key scheme for evaluating linear weighted sums is secure under Definition 4.

Proof. The outline of the proof is as follows: first we sketch a transformation from our scheme to one which follows
the definition of TBO given in the preliminaries (Definition 4), including a simulation mode for token generation,
then we prove the distributions of (C, stA,O, {x}, {tkx}) are computationally close in both games.

21

General transformation. First we transform our construction to match the definition given in the preliminaries.
We fold PARAMGEN and KEYGEN into SETUP. Since EVAL is implicit, we now assume the scheme is described
as a tuple of PPT algorithms

(SETUP,OBFUSCATE, TOKENGEN).

Simulators. Next, we define the simulator S1(1λ, 1|C|) to sample a uniformly random S ∈ Zn×Nq , and encode
the 0-linear function (Õ)← OBFUSCATE(S,0). We assume a1 is invertible over Zq (the proof works as long some
index i has ai ∈ Z∗q , which is true with high probability). The state sts is the LWE public vector a and secret S.
S2(sts) simulates token keys by transforming S to

S′ := S− a−1
1

[
wT

0

]
mod q

and returns S′x mod q. Now we argue the distributions

{(C, stateA,O, {x}, {tkx}) : Expreal
tOB,A(1λ)}

and
{(C, stateA, Õ, {x}, {tk∗x}) : Expideal

tOB,S,A(1λ)}

are computationally indistinguishable. Swapping O for Õ is computationally indistinguishable by the pseudoran-
domness of N -secret LWE. Next, the distribution of queries and tokens is unchanged since each token is S′x for
a fixed, uniformly random S′ and evaluation reveals the same information as in the real game:

〈c,x〉 − 〈a, tk∗x〉 mod p

= (aTS + peT)x− aTSx + aT

(
a−1

1

[
wT

0

])
x mod p

= 〈w,x〉.

Notice, even if the adversary were to recover S′, bT − aTS′ mod p = wT , just as in the real game.

APPENDIX B
SECURITY PROOF FOR TBO OF BRANCHING PROGRAMS

Theorem 11. The constructions in Sections IV and V are secure under query-revealing TBO (Definition 4) under
RLWE.

Proof. (sketch) Simulators. Define the simulator S1(1λ, 1|C|) to sample a uniformly random A0, AJ := JA0, and
each D∗i,b ← D

dm×dm
Rq,σ

as discrete Gaussian ring matrices. Now, the simulated program is

Õ = Π̃v :=
(
AJ,

{
D∗i,b

}
i∈[L],b∈{0,...,2w−1}

)
,

and stS := Õ. Define the simulator S2(stS , C(x), x) to return a uniformly random vector y′ ∈ Zn2 if C(x) = 0 and
return y′ := b2

q∆e for ∆ = (AJ
∏
iD
∗
i,x[1+(i−1)w:iw])[1] when C(x) = 1.

Indistinguishable experiments. Next, we argue the real and ideal experiments are computationally indistin-
guishable. Starting with the real experiment, we can replace each Di,b generated by the GGH15 encoding with an
independently sampled D∗i,b ← D

dm×dm
Rq,σ

by Lemma 4.4 in [24] (adapted to its ring version).
The distribution of token queries are computationally indistinguishable in both games. The adversary sees a

pseudorandom binary vector when C(x) = 0 in the real game (ring learning with rounding samples or RLWR),
and a uniformly random binary vector in the ideal game when C(x) = 0. Lastly, the situation is the same when
she queries tokens satisfying C(x) = 1. She sees RLWR samples in the real game and uniformly random binary
vectors in the ideal game (by the leftover hash lemma). These random binary vectors are conditioned on matching
her obfuscated circuit evaluation as well. So, we can replace each token in the real game with a simulated token
in the ideal game.

22

APPENDIX C
COMPLEXITY OF TBO FOR BINARY CLASSIFIERS

We examine the complexity for the more general case of the conjunction of multiple attributes. Let P be the
number of features.

Storage. The size of the secret key is n integers of r bytes (in our implementation r = 8 as the correctness can
be achieved using native 64-bit arithmetic). The size of the obfuscated program is N + n integers. The size of w
and x is N integers. The token size is n integers.

Computational complexity. We focus on the computational complexity for OBFUSCATE, TOKENGEN, and EVAL

as the key generation time is negligible and this operation is done offline. The OBFUSCATE procedure computes
N inner products of n-sized vectors and has the complexity of O(N · n) integer multiplications and additions.
The TOKENGEN procedure adds P vectors of size n (all but P components of vector x are 0), i.e., it has the
complexity of O(P · n) additions. In practice, the TOKENGEN procedure may also compute the secret keys on the
fly. Note that only P such secret keys are needed. So the total compexity may be O(P · n) additions + O(P · n)
pseudorandom number generations. The EVAL procedure performs an inner product and P − 1 additions, i.e., it
has the complexity of O(n) integer multiplications.

Scalability. The storage requirements for an obfuscated program scale linearly with N . For example, if r = 8, then
a 16GB system can support N up to 2.15×109. The obfuscation time scales linearly with N . The two main (online)
operations TOKENGEN and EVAL do not depend on N and scale linearly with P . The above analysis suggests
that this obfuscator can efficiently support relatively large dimensions (up to 224–232), hence the classification for
32-bit features can be supported on modern server systems.

APPENDIX D
NOISE ANALYSIS FOR TOKEN-BASED OBFUSCATION OF CONJUNCTIONS

The bound B on the noise introduced by error terms in the GGH15 encoding (for the case of conjunctions) can
be estimated as follows: ∥∥∥∥∥A0

L∏
i=1

Di,xi
−
L∏
i=1

si,xi
·AL

∥∥∥∥∥
∞

=∥∥∥∥∥∥
L∑
j=1

j−1∏
i=1

si,xi
· ej,xj

·
L∏

k=j+1

Dk,xk
)

∥∥∥∥∥∥
∞

≤

6σL
(
6σs
√
mn
)L−1

.

Here, we used the Central Limit Theorem (subgaussian analysis) and the following bounds:

‖si,xi
‖∞ ≤ 6σ,

∥∥ej,xj

∥∥
∞ ≤ 6σ, ‖Dk,xk

‖∞ ≤ 6σs.

Using the fact that ‖Dk,xk
‖∞ � ‖si,xi

‖∞, yields the bound B := 12σ (6σs
√
mn)

L−1.
For the rounding to work correctly, we set q ≥ 2pαB/Pe, where α is the number of bits used in comparing

the PRF values and Pe is the probability of a rounding error for one polynomial coefficient. We set α = 128 and
Pe = 2−20, i.e., assume that the number of queries is bounded by 220.

APPENDIX E
NOISE ANALYSIS FOR TOKEN-BASED OBFUSCATION OF BRANCHING PROGRAMS

The bound B on the noise introduced by error terms in the GGH15 encoding (for the case of branching programs)
can be estimated as follows:

23

∥∥∥∥∥A0

L∏
i=1

Di,xi
−
L∏
i=1

γ(M̂i,xi
, si,xi

) ·AL

∥∥∥∥∥
∞

=∥∥∥∥∥∥
L∑
j=1

j−1∏
i=1

γ(M̂i,xi
, si,xi

) ·Ej,xj
·
L∏

k=j+1

Dk,xk
)

∥∥∥∥∥∥
∞

≤

6σL
(

6σs
√
dmn

)L−1
.

Here, we used the Central Limit Theorem (subgaussian analysis) and the following bounds:∥∥∥γ(M̂i,xi
, si,xi

)
∥∥∥
∞
≤ 6σ,

∥∥Ej,xj

∥∥
∞ ≤ 6σ, ‖Dk,xk

‖∞ ≤ 6σs.

Using the fact that ‖Dk,xk
‖∞ �

∥∥∥γ(M̂i,xi
, si,xi

)
∥∥∥
∞

and adding the multiplicative term J, yields the bound

B := 12σd
(

6σs
√
dmn

)L−1
for general branching programs (for permutation branching programs, the factor d is

removed).
For the rounding to work correctly, we set q ≥ 2pαB/Pe, where α is the number of bits used in comparing

the PRF values and Pe is the probability of a rounding error for one polynomial coefficient. We set α = 128 and
Pe = 2−20, i.e., assume that the number of queries is bounded by 220.

APPENDIX F
TRAPDOOR ALGORITHMS FOR MATRICES OF RING ELEMENTS

A. Preliminaries

1) Cyclotomic Fields: The perturbation generation procedure in trapdoor sampling utilizes cyclotomic fields
K2n = Q[x]/ 〈xn + 1〉, which are similar in their properties to the cyclotomic rings except that the coefficients/values
of the polynomials are rationals rather than integers. The elements of the cyclotomic fields also have coefficient
and evaluation (CRT) representation, and support fast polynomial multiplication using variants of the Fast Fourier
Transform (FFT). The evaluation representation of such rational polynomials in our implementation works with
complex primitive roots of unity.

2) Discrete Gaussians and G-Lattice Sampling: Let ρσ(x) = e−π‖x‖
2/σ2

be the Gaussian function. Then for any
discrete subset of euclidean space, S ⊂ Rn, the discrete Gaussian distribution over S of width σ > 0 has probability
mass function DS,σ(x) = ρσ(x)/(

∑
y∈S ρσ(y)) = ρσ(x)/ρσ(S). We will be sampling discrete Gaussians over

lattices and lattice cosets, whose width is larger than the smoothing parameter (defined below). Informally, the
smoothing parameter of a lattice is the smallest width for which a discrete Gaussian over the lattice behaves like a
continuous Gaussian. Efficiently sampling discrete Gaussians over lattices above the smoothing parameter was first
rigorously analyzed by Gentry et al. [40].

Definition 12. For an ε > 0 and a lattice L, the ε-smoothing parameter is the smallest s > 0 such that ρ(s ·L∗) ≤
1 + ε.

Let κ = dlogt qe, and let G = Il ⊗ gT ∈ Rql×lκ be the “power-of-t” G-matrix, a block diagonal matrix with
gT = (1, t, · · · , tκ−1) as the non-zero blocks. Then, the G-lattice is Λ⊥q (G) = {x ∈ Rκ : Gx = 0 ∈ Rql}. For
any u ∈ Rql, we have the coset Λ⊥u (G) = {x ∈ Rlκ : Gx = u ∈ Rql}. We will need the following, G-lattice
sampling lemma.

Lemma 13. ([36], [65]) For any σ > (t + 1)ω(
√

log nl), there is a probabilistic O(κ)-time algorithm whose
output is distributed statistically close to DΛ⊥u (G),σ.

24

B. Main Procedures

Here we describe the trapdoor generation and discrete Gaussian sampling procedures. The latter contains a new
algorithm for sampling perturbations with covariances described as d× d matrices over R (compared to only 2× 2
matrices as in [36]).

Our trapdoor construction is identical to the original MP12 construction [65] for RLWE. Specifically, we are
sampling the “computational instantiation” described in Section 5 of [65].

TRAPGEN simply takes as input a security parameter λ and performs the following:
1) Sample a uniformly random matrix Ā← U(Rd×dq).
2) Sample RLWE secrets R ∈ Rd×dκ and RLWE errors E ∈ Rd×dκ, both having discrete gaussian entries in R.
3) Return the trapdoor, T := (R,E), and the public matrix A = [A′|G−A′T] where G is the common “gadget”

matrix and A′ = (Ā, I).

Algorithm 11 Trapdoor generation using MLWE for G lattice; κ = logt q

function TRAPGEN(1λ)
Ā← Uq ∈ Rd×dq

R := [r1, . . . , rκ]← DRd×d,σ ∈ Rd×dκq

E := [e1, . . . , eκ]← DRd×d,σ ∈ Rd×dκq

A := [Ā, Id,G− (ĀR + E)] ∈ Rd×d(2+κ)
q

T := (R,E) ∈ R2d×dκ

return (A,T)
end function

Algorithm 12 Trapdoor Sampling

function GAUSSSAMP(A,T,b, σt, s)
Sample a perturbation p←SAMPLEPERT(Σd,T, s, η).
Set a G-lattice coset v← p−Ap ∈ Rqd.
Sample the G-lattice z←SAMPLEG(v).

return p +

[
T

I

]
z.

end function

We use a standard, t-ary definition of the gadget matrix G = Id ⊗ gT , where gT =
{

1, t, . . . , tκ−1
}

. This
generalizes to the RNS form in a straightforward manner, presented in [37].

1) Perturbation Sampling: Here we describe the perturbation algorithm, which takes as input a structured
covariance matrix Σ (described as ring elements/polynomials), and returns a discrete gaussian vector over the integers
with the input covariance. The algorithms presented here are the techniques of [36] adapted to larger matrices over
R. They use an FFT-like technique to sample smaller and smaller structured covariances. Our techniques differ in
that we introduce an intermediate algorithm SAMPLEMAT for this generalization.

The main algorithm is Algorithm 13, or SAMPLEPERT, which given a trapdoor matrix T over R and a bound
s, returns a discrete gaussian perturbation (p,q) with covariance

Σ =

[
s2I− η2TTT −η2T

−η2TT (s2 − η2)I

]
where s is greater than the largest singular value of the trapdoor T and η = ηε is the smoothing parameter of the G-
lattice [65]. It calls a subroutine, Algorithm 14 or SAMPLEMAT, which given a positive definite matrix Σd ∈ Fd×d,
returns a discrete gaussian perturbation with covariance Σd. In the case of SAMPLEPERT, Σd = s2I− η2TTT .

SAMPLEMAT is a recursive algorithm which calls a function SAMPLEF, Algorithm 15, at its base case. SAMPLEF
takes as input a field element f representing a covariance as well as a field element c and returns a discrete gaussian

25

sample with covariance f centered at c. SAMPLEF is identical to [36]. SAMPLEMAT, however, breaks its input
matrix into

Σd =

[
A B

BT D

]
and follows the Schur-complement sampling method from [36]. The matrices A,D,B ∈ Fd/2×d/2 for an even
dimension d. For an odd dimension, A ∈ Fdd/2e×dd/2e , D ∈ Fbd/2c×bd/2c, and B ∈ Fdd/2e×bd/2c. The last
algorithm called is a one-dimensional discrete gaussian sampler, SAMPLEZ.

a) Parameters: Here we give the parameters for which these trapdoor algorithms are correct. Let ε > 0 be

some error term and let Cε,N =

√
log(2N(1+1/ε))

π be our approximation for the smoothing parameter of ZN . The
G-lattice Gaussian width satisfies σt ≥ (t + 1)Cε,dκ [36]. Then, the parameter s in Algorithm 13 must satisfy
s2 ≥ σ2

t (s1(T)2 + 1) + C2
ε,d(2+κ), where s1(T) denotes the trapdoor’s largest singular value.

Algorithm 13 Perturbation Sampling
function SAMPLEPERT(Σd,T, s, η)

for i = 0, · · · , d2κn− 1 do
qi ←SampleZ(s2 − η2)

end for
c := −η2

s2−η2Tq
p←SampleMat(Σd, c)
return (p,q)

end function

Algorithm 14 Perturbation Sampling, Matrix
function SAMPLEMAT(Σ, c)

if d = 1 then
return SampleF(Σ, c)

end if
c = (c0, c1) ∈ Fd
q1 ← SampleMat(D, c1).
Σ′ := A−BD−1BT .
q0 ←SampleMat(Σ′, c0 + BD−1(q1 − c1)).
return (q0,q1)

end function

Algorithm 15 Perturbation Sampling, Field Element

function SAMPLEF(f, c)
if n = 1 then

return SampleZ(f, c)
end if
Let f(x) = f0(x2) + xf1(x2).
Let c(x) = c0(x2) + xc1(x2).
q1 ← SampleF(f0, c1).
c0 := c0 + f1f

−1
0 (q1 − c1).

q0 ← SampleF(f0 − xf2
1 f
−1
0 , c0).

return (q0, q1)
end function

26

APPENDIX G
TRAPDOOR ALGORITHMS IN CRT

A. Trapdoor Generation

The TRAPGEN procedure is the same as described in Algorithm 1 of [31] but w.r.t. the CRT gadget vector gTCRT
rather than the regular gadget vector gT =

{
1, t, t2, . . . , tκ

}
.

The CRT gadget vector gTCRT used in our implementation is described as follows. For each coprime factor
qi, fix the base-t gadget vector as gTi := (1, t, · · · , tκi−1) where κi = dlogt(qi)e. Let κ =

∑
i κi, q

∗
i = q/qi, and

q̂i = (q∗i)
−1 mod qi. We then define the CRT gadget vector gTCRT = (q∗1 q̂1 ·gT1 , · · · , q∗l q̂l ·gTl) mod q ∈ Z1×κ

q [37].
Note that in the implementation the q∗i q̂i factors are dropped because (q∗i q̂i) ≡ 1 mod qi. Hence, no precompu-

tations are needed.

B. Trapdoor Sampling

The GAUSSSAMP algorithm is the same as Algorithm 2 in [31] but the SAMPLEG operation is called inde-
pendently for each native-integer polynomial in the Double-CRT representation. The perturbation sampling is not
affected by the use of CRT gadget vectors.

APPENDIX H
NON-UNIFORM RING LWE

The security proof [Thm 7.5, CVW18] of private constrained PRFs assumes the hardness of RLWE with discrete
gaussian public samples, a ∈ Rq in the equation a ·s+e. In this section, we prove the security of a GLWE variant.
The proof of the following theorem is adapted from [17], Section 4, with slightly better parameters.

Theorem 14. (Discrete Gaussian Matrix GLWE) There is a probabilistic polynomial time reduction from the
generalized
(R, d,m, q, χ,U(Rq)) GLWE problem to the (R, d′,m, q, χ,DZm,s) GLWE problem for any d′ ≥ d logt q, q, m and
s ≥
√
t2 + 1ω(

√
log(nd)) for any t ≥ 2.

Proof. (of Theorem 14) We will simply map the uniformly random matrix A ∈ Rqd×m to a discrete gaussian
B ∈ Rqd

′×m, along with mapping a GLWE sample u with public matrix A to a GLWE sample v defined by B.
Further, uniform u will map to a new uniform vector under our mapping. The proof makes crucial use of discrete
gaussian G-lattice sampling algorithms, Lemma 13.

We can pad G = Id ⊗ gT with columns of all 0s in Rqd so Lemma 13 easily extends to an d′ ≥ d logt q.
Given an input (A,u) ∈ Rqd×m ×Rqm, we perform the following steps:

1) For each column ai ∈ Rqd of A = [a1, · · · ,am] ∈ Rqd×m, sample an independent discrete gaussian bi ←
G−1(ai). Assemble these vectors into a matrix B = [b1, · · · ,bm] ∈ Rqd

′×m. Notice A = GB.
2) Sample a uniformly random vector r ∼ U(Rqd

′
).

3) Return the tuple (B,vT = uT + rTB) ∈ Rqd
′×m ×Rqm.

Since we are sampling above the smoothing parameter of Λ⊥q (G), a consequence of Claim 3.8 in [68] is the
columns of B are i.i.d. vectors distributed as DRd′ ,s. Next, we see when u is uniformly random over Rqm vT

is as well. On the other hand, we have uT + rTB = eT + sTA + rTB = eT + (sTG + rT)B when u is a
(R, d,m, q, χ)LWE sample.

27

