
Further Lower Bounds for Structure-Preserving
Signatures in Asymmetric Bilinear Groups

Essam Ghadafi

University of the West of England, Bristol, UK
essam.ghadafi@gmail.com

Abstract. Structure-Preserving Signatures (SPSs) are a useful tool for
the design of modular cryptographic protocols. Recent series of works
have shown that by limiting the message space of those schemes to the
set of Diffie-Hellman (DH) pairs, it is possible to circumvent the known
lower bounds in the Type-3 bilinear group setting thus obtaining the
shortest signatures consisting of only 2 elements from the shorter source
group. It has been shown that such a variant yields efficiency gains for
some cryptographic constructions, including attribute-based signatures
and direct anonymous attestation. Only the cases of signing a single DH
pair or a DH pair and a vector from Zp have been considered. Signing
a vector of group elements is required for various applications of SPSs,
especially if the aim is to forgo relying on heuristic assumptions. Example
applications where it is required to sign a vector of group elements include
group, attribute-based and proxy signatures, and k-times anonymous
authentication.

An open question is whether such an improved lower bound also applies
to signing a vector of ` > 1 messages. We answer this question neg-
atively for schemes existentially unforgeable under an adaptive chosen-
message attack (EUF-CMA) whereas we answer it positively for schemes
existentially unforgeable under a random-message attack (EUF-RMA)
and those which are existentially unforgeable under a combined chosen-
random-message attack (EUF-CMA-RMA). The latter notion is a leeway
between the two former notions where it allows the adversary to adap-
tively choose part of the message to be signed whereas the remaining
part of the message is chosen uniformly at random by the signer.

Another open question is whether strongly existentially unforgeable un-
der an adaptive chosen-message attack (sEUF-CMA) schemes with 2-
element signatures exist. We answer this question negatively, proving it
is impossible to construct sEUF-CMA schemes with 2-element signatures
even if the signature consists of elements from both source groups. On the
other hand, we prove that sEUF-RMA and sEUF-CMA-RMA schemes
with 2-element (unilateral) signatures are possible by giving construc-
tions for those notions.

Keywords. Digital Signatures, Structure-Preserving Signatures, Bilin-
ear Groups.



1 Introduction

Structure-Preserving Signatures (SPSs) [4] are signature schemes over bilinear
groups where the messages, the verification key and the signatures consist of
only group elements from either/both source groups. Verification of signatures
in those schemes only involves evaluating Pairing-Product Equations (PPEs)
and checking group memberships. Such properties make them compatible with
widely used constructs such as ElGamal encryption [23] and Groth-Sahai proofs
[39]. Hence, they are an ideal building block for designing cryptographic proto-
cols not relying on heuristic assumptions such as random oracles [26]. They have
numerous applications which include group signatures, e.g [4, 43], blind signa-
tures, e.g. [4, 29], attribute-based signatures, e.g. [25], tightly secure encryption,
e.g. [40, 3], malleable signatures, e.g. [11], anonymous credentials, e.g. [28, 18],
network coding, e.g. [11], oblivious transfer, e.g. [36], direct anonymous attesta-
tion, e.g. [15, 33], and e-cash, e.g. [12].

Related Work. The notion was coined by Abe et al. [4] but earlier constructions
conforming to the definition were given by [37, 36]. The notion has been exten-
sively studied. Constructions in the Type-3 setting (cf. Section 2.1) include [4,
5, 32, 7, 21, 38, 34, 35]. The vast majority of those constructions rely on security
proofs in the generic group model [47, 46]. Abe et al. [5] proved that signatures
of schemes over Type-3 bilinear groups must contain at least 3 elements, which
must include elements from both source groups, and require at least 2 PPEs for
verification. This ruled out the existence of schemes with unilateral signatures,
i.e. where all signature’s components are from one of the source groups.

Constructions relying on non-interactive assumptions were given by [20, 2, 17,
3, 42, 43, 41, 9, 31]. Abe et al. [6] proved that it is impossible to base the security
of an optimal Type-3 scheme (i.e. with 3-element signatures) on non-interactive
intractability assumptions. This in essence means that schemes based on non-
interactive assumptions cannot be as efficient as their counterparts relying on
interactive assumptions or those proven secure directly in the generic group
model. More recently, Abe et al. [1] proved lower bounds for schemes signing
bilateral messages and based on non-interactive intractability assumptions.

Ghadafi [33] gave a randomizable scheme yielding 3-element unilateral signa-
tures and requiring the evaluation of 2 PPEs, excluding the cost for checking the
well-formedness of the message, to verify signatures. His scheme can only sign
a single Diffie-Hellman (DH) (cf. Section 2.1) pair. In terms of signature size,
signatures of his scheme are shorter than those of optimal schemes for unilateral
messages. More recently, Ghadafi [34] gave constructions for a single DH pair
yielding signatures consisting of only 2 elements from the shorter source group
and requiring besides checking the well-formedness of the message, the evalua-
tion of a single PPE for verification. He argued that restricting the message space
to the set of DH pairs does not restrict applicability of the schemes and used
direct anonymous attestation [16], which is a protocol deployed in practice, and
attribute-based signatures [44] as an example. Even though [34] gave a partially
structure-preserving scheme which can sign a vector of field elements along the
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single DH pair, it was left as an open problem to investigate the case of structure-
preserving signatures for a vector of group elements. More recently, Ghadafi [35]
gave EUF-CMA constructions for a vector of DH pairs with 2-element bilateral
signatures.

Constructions in the Type-2 setting (where there is an efficiently computable
unidirectional homomorphism between the source groups) were given in [8, 21,
13, 1].

Fully structure-preserving schemes where even the secret key consists of only
group elements from the source groups were recently given by [10, 38, 49].

Motivation & Contribution. Many applications of SPSs require signing a vec-
tor of group elements. For instance, consider the case when certifying the public
keys of encryption or signature schemes. This is, for instance, required for con-
structing various variants of anonymous signatures, including group signatures
[22], attribute-based signatures [44], proxy signatures [45], k-times anonymous
authentication [48], and direct anonymous attestation [16]. This is particularly
important when the aim is to dispense with relying on random oracles as in such
cases one cannot use standard signature schemes which hinder the structure of
the message, e.g. by hashing or requiring knowledge of their discrete logarithm.
Therefore, the design of efficient SPS schemes for a vector of messages would
have implications for various applications.

SPS schemes on DH pairs have rendered themselves as a tool to get around
the known lower bounds for SPS schemes thus improving efficiency without being
too restrictive as they suffice for many applications of SPS schemes. Examples
of where SPS schemes on DH pairs provide better efficency than optimal SPS
schemes on unilateral messages include [34, 24]. Also, as argued by [34], optimal
SPS schemes on DH pairs outperform some widely used non-structure-preserving
schemes in terms of efficiency.

A first intriguing open question is whether EUF-CMA SPS schemes for a
vector of group elements with 2-element unilateral signatures are possible. We
answer this question negatively by proving the impossibility of the existence of
such schemes. However, we show that EUF-RMA and EUF-CMA-RMA (cf. Sec-
tion 2.2) schemes are possible. The latter is a leeway between EUF-RMA and
EUF-CMA where it allows the adversary to adaptively choose some part of the
message whereas the remaining part of the message is chosen uniformly at ran-
dom by the signer. While EUF-RMA and EUF-CMA-RMA are both weaker
notions than EUF-CMA since unlike the latter, they restrict part of the message
to being chosen uniformly at random, we argue that EUF-CMA-RMA may suf-
fice to replace EUF-CMA for some applications. Consider, for instance, κ-times
anonymous authentication schemes [45], where an authority provides users with
κ credentials which allow them to anonymously authenticate themselves κ times.
The underlying idea for some of the existing constructions is that the credential
is a signature by the authority on the user’s public key/ID along with a random
element chosen by the authority. For instance, we envisage that EUF-CMA-RMA
security can be ideal for such applications since part of the message is adaptively
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chosen by the adversary, whereas the remaining part of the message is a random
element chosen by the authority.

Another open question is whether strongly existentially unforgeable schemes
under an adaptive chosen-message attack (sEUF-CMA) with 2-element (whether
unilateral or bilateral) signatures exist. Strong unforgeability is essential for
some applications of SPSs, e.g. in e-cash where deterring or preventing double-
spending of coins is desirable, or in constrained anonymous credential systems
where it is not desirable to give users the ability to derive further credentials from
a given one. Optimal Type-3 sEUF-CMA SPS schemes for unilateral messages,
e.g. [21, 7, 38], have a lower bound of 3-element bilateral signatures, thus, investi-
gating whether the improved lower bound that exploits a special structure of the
message also applies to strong unforgeability would have implications for applica-
tions of SPSs requiring strong unforgeability. We prove that sEUF-CMA schemes
with 2-element signatures are not possible. This holds even if the signature is
bilateral. On the other hand, we show that sEUF-RMA and sEUF-CMA-RMA
schemes with 2-element (unilateral) signatures exist by giving constructions.

Our results highlight a gap between random-message/combined chosen-random-
message security and chosen-message security in this setting.

Paper Organization. We provide some preliminary definitions in Section 2. In
Section 3 we prove the impossibility of the existence of EUF-CMA schemes for
a vector of ` > 1 messages with 2-element unilateral signatures. In Section 4 we
prove the impossibility of the existence of sEUF-CMA schemes with 2-element
signatures regardless of whether the signatures are unilateral or bilateral. Finally,
in Section 5 we construct a sEUF-CMA-RMA scheme for a vector of messages
with 2-element unilateral signatures.

Notation. We write y = A(x; r) when algorithm A on input x and randomness
r outputs y. We write y ← A(x) for the process of setting y = A(x; r) where
r is sampled at random. We also write y ← S for sampling y uniformly at
random from a set S. A function ν(.) : N → R+ is negligible (in n) if for every
polynomial p(.) and all sufficiently large values of n, it holds that ν(n) < 1

p(n) . By

PPT we mean running in probabilistic polynomial time in the relevant security
parameter. We use [k] to denote the set {1, . . . , k}.

2 Preliminaries

In this section we provide some preliminary definitions.

2.1 Bilinear Groups

A bilinear group is a tuple P := (G,H,T, p,G, H̃, e) where G, H and T are
groups of a prime order p, and G and H̃ generate G and H, respectively. The
function e is a non-degenerate bilinear map e : G × H −→ T. We refer to G
and H as the source groups whereas we refer to T as the target group. We use
multiplicative notation for all the groups. For clarity we will accent elements of H
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with .̃ We let G× := G\{1G} and H× := H\{1H}. We limit our attention to the
efficient Type-3 setting [30], where G 6= H and there is no efficiently computable
homomorphism between the source groups in either direction. We assume there
is an algorithm BG that on input a security parameter κ, outputs a description
of bilinear groups.

The message space of the schemes we consider is the set of elements of the

subgroup ĜH of G×H defined as the image of the map ψ : x 7−→ (Gx, H̃x) for

x ∈ Zp. One can efficiently test whether (M, Ñ) ∈ ĜH by checking

e(M, H̃) = e(G, Ñ) ·

Such pairs were called Diffie-Hellman pairs in [27, 4]. An important observation
here is that techniques used for batch verification, e.g. [14, 19], can be applied
when verifying the well-formedness of a vector of Diffie-Hellman pairs. This
reduces the cost for verifying a vector of ` pairs from 2` pairings to 2 pairings.

2.2 Digital Signatures

A digital signature scheme DS over a bilinear group P generated by BG for a
message space M consists of the following algorithms:

KeyGen(P): On input P, this algorithm outputs a pair of signing/verification
keys (sk, vk).

Sign(sk,m): On input the secret signing key sk and a message m ∈ M, this
algorithm outputs a signature σ on m.

Verify(vk,m, σ): On input the verification key vk, a message m ∈ M and a
signature σ, this algorithm outputs 0/1 indicating the invalidity/validity of
σ on m w.r.t. vk.

Definition 1 (Correctness). A signature scheme DS over a bilinear group
generator BG is (perfectly) correct if for all κ ∈ N:

Pr

[
P ← BG(1κ); (sk, vk)← KeyGen(P);m←M;σ ← Sign(sk,m)

: Verify(vk,m, σ) = 1

]
= 1.

A signature scheme is said to be existentially unforgeable if it is hard to
forge a signature on a new message that has not been signed before where the
adversary may see signatures on other messages before outputting her forgery.
We distinguish between adaptive chosen-message (EUF-CMA), random-message
(EUF-RMA) and combined chosen-random-message (EUF-CMA-RMA) variants
of existential unforgeability as defined below.

Definition 2 (EUF-CMA). A signature scheme DS over a bilinear group gen-
erator BG is Existentially Unforgeable under an adaptive Chosen-Message At-
tack if for all κ ∈ N for all PPT adversaries A, the following is negligible (in
κ):

Pr

[
P ← BG(1κ); (sk, vk)← KeyGen(P); (σ∗,m∗)← ASign(sk,·)(P, vk)

: Verify(vk,m∗, σ∗) = 1 ∧ m∗ /∈ QSign

]
,

where QSign is the set {mi}qi=1 of messages queried to Sign.
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Strong Existential Unforgeability under an adaptive Chosen-Message Attack
(sEUF-CMA) is defined similarly and requires that the adversary cannot even
output a new signature on a message that was queried to the sign oracle.

Definition 3 (EUF-RMA). A signature scheme DS over a bilinear group gen-
erator BG is Existentially Unforgeable under a Random-Message Attack if for
all κ ∈ N for all PPT adversaries A, the following is negligible (in κ):

Pr

[
P ← BG(1κ); (sk, vk)← KeyGen(P); (σ∗,m∗)← ASign(sk)(P, vk)

: Verify(vk,m∗, σ∗) = 1 ∧ m∗ /∈ QSign

]
,

where Sign uniformly samples a message m from M and returns m and a sig-
nature σ on it, and QSign is the set {mi}qi=1 of messages returned by Sign.

Strong Existential Unforgeability under a Random-Message Attack (sEUF-
RMA) is defined similarly and requires that the adversary cannot even output
a new signature on a message that was chosen by Sign.

The following variant lies in between the two previous notions where it al-
lows the adversary to adaptively choose some part of the message whereas the
remaining part of the message is chosen uniformly at random by the sign oracle.

Definition 4 (EUF-CMA-RMA). A signature scheme DS over a bilinear
group generator BG for a message space M = MC ×MR is Existentially Un-
forgeable under a combined Chosen-Random-Message Attack if for all κ ∈ N for
all PPT adversaries A, the following is negligible (in κ):

Pr

[
P ← BG(1κ); (sk, vk)← KeyGen(P); (σ∗,m∗,m′∗)← ASign(sk,·)(P, vk)

: Verify(vk, (m∗,m′∗), σ∗) = 1 ∧ (m∗,m′∗) /∈ QSign

]
,

where when queried on a message mi ∈MC, Sign uniformly samples a message
m′i from MR and returns m′i and a signature σ on (mi,m

′
i), and QSign is the set

{(mi,m
′
i)}

q
i=1 of pairs queried to Sign.

Strong Existential Unforgeability under a combined Chosen-Random-Message
Attack (sEUF-CMA-RMA) requires that the adversary cannot even output a
new signature on a message pair on which she has obtained a signature from
Sign.

2.3 Structure-Preserving Signatures

Structure-preserving signatures [4] are signature schemes defined over bilinear
groups where the messages, the verification key and signatures are all group
elements from either or both source groups, and verifying signatures only involves
deciding group membership of the signature components and evaluating PPEs
of the form of Equation (1).∏

i

∏
j

e(Ai, B̃j)
ci,j = 1T, (1)
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where Ai ∈ G and B̃j ∈ H are group elements appearing in P,m, vk, σ, whereas
ci,j ∈ Zp are public constants.

Generic Signer. We refer to a signer that can only decide group membership,
evaluate the bilinear map e, compute the group operations in groups G,H and
T, and compare group elements as a generic signer.

3 Impossibility of generic-signer EUF-CMA SPS
Schemes for a vector of ` > 1 Messages with 2-element
Unilateral Signatures

Ghadafi [34] constructed optimal EUF-CMA SPS schemes for a single DH pair
with 2-element unilateral signatures. An intriguing open question is whether
there exist EUF-CMA SPS schemes for a vector of ` > 1 DH pairs with 2-
element unilateral signatures. We remark that [35] gave schemes for a vector
of ` > 1 DH pairs with 2-element bilateral signatures. Since elements of one of
the source groups have size twice of those from the opposite source group, the
size of the signatures of the schemes in [35] is equivalent to 3-element unilateral
signatures from the shorter source group.

We start by proving the following theorem which is a generalization of Lemma
1 from [8] for SPS schemes for unilateral messages.

Theorem 1. A generic-signer EUF-RMA SPS scheme for a vector of ` ≥ 1
DH pairs must have for any message vector superpolynomially many potential
signatures.

Proof. Since the signer is generic, the signature σ = (R, S̃) ∈ Gn × Hñ on

the message vector
(

(Mi, M̃i)
)`
i=1

is computed via entry-wise exponentiation as

σ = (R, S̃) := (Gα
∏`
i=1M

α′i
i , H̃β

∏`
i=1 M̃

β′i
i ) for some vectors (α,α′1, . . . ,α

′
`,

β,β′1, . . . ,β
′
`) ∈ Z(`+1)n

p × Z(`+1)ñ
p .

Let’s assume for contradiction that a scheme has a polynomial number of
potential signatures. This means there is a polynomial set {(αi,α′i,1, . . . ,α′i,`,
βi,β

′
i,1, . . . ,β

′
i,`)}

poly(κ)
i=1 for some polynomial ploy corresponding to the list of

potential signatures. Now given signatures σ1 = (R1, S̃1) and σ2 = (R2, S̃2)
on (random) DH vectors (M1,M̃1) and (M2,M̃2), respectively, we have with
probability 1

poly(κ)2 that those signatures were constructed using the same vector(
αi,α

′
i,1, . . . ,α

′
i,`,βi,β

′
i,1, . . . ,β

′
i,`

)
for some i ∈ [ploy(κ)]. Thus, we have that

σ∗ = (R∗, S̃∗) := (R1−γ
1 Rγ

2 , S̃
1−γ
1 S̃γ2)

=
(

(Gα
∏̀
i=1

M
α′i
1,i )

1−γ(Gα
∏̀
i=1

M
α′i
2,i )

γ , (H̃β
∏̀
i=1

M̃
β′i
1,i)

1−γ(H̃β
∏̀
i=1

M̃
β′i
2,i)

γ
)

=
(
Gα

∏̀
i=1

(
M

(1−γ)
1,i Mγ

2,i

)α′i , H̃β ∏̀
i=1

(
M̃

(1−γ)
1,i M̃γ

2,i

)β′i)
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is a valid forgery on the DH vector
(
M1−γ

1 Mγ
2 ,M̃

1−γ
1 M̃γ

2

)
for any γ ← Z×p .

This means such a scheme is not EUF-RMA secure against an adversary which
makes 2 signing queries. ut

We now proceed to proving the impossibility of the existence of generic-
signer EUF-CMA (against q > 1 sign queries) SPS schemes for a vector of ` > 1
messages with 2-element unilateral signatures. We prove that such schemes even
for the simpler case where ` = 2 cannot exist.

Theorem 2. There is no generic-signer EUF-CMA (against q > 1 sign queries)
SPS scheme for a vector of 2 DH pairs with 2-element unilateral signatures.

Proof. We start by proving the following lemma regarding the number of verifi-
cation equations required for schemes with 2-element signatures.

Lemma 1. One verification equation (excluding the cost for verifying the well-
formedness of the messages) is sufficient for a generic-signer SPS scheme with
2-element signatures.

Proof. Assume a scheme has 2 verification equations. Both equations must pose
non-trivial constraint on the signature components as otherwise we can reduce
them to a single equation. Since each verification equation must involve at least
1 signature component, we have 3 cases:

• Both equations involve both signature components: This means we have 2
quadratic/linear equations in the discrete logarithm of the signature compo-
nents. Such an equation system have at most 4 distinct solutions implying
that there are at most 4 potential signatures for the message vector which
contradicts the proof of Theorem 1.

• One equation involves both signature components whereas the other equa-
tion involves only one signature component: This means one equation is
quadratic/linear involving both signature components, whereas the remain-
ing equation is linear in one of the signature components. By substituting the
value of the signature component in the linear equation into the other equa-
tion we end up with one verification equation that is sufficient for verifying
the signature.

• Each verification equation involves a single signature component: Since the
other constants (the verification key, the public parameters (if any) and
the messages) are fixed, we have that each verification equation is a linear
equation in one of the signature components, i.e. each equation is a linear
equation in one unknown. Thus, there is exactly 1 potential signature for
the message vector which contradicts the proof of Theorem 1.

ut

Now let’s assume WLOG that the signature is of the form σ = (S1, S2) ∈ G2,
whereas the verification key is of the form (X, Ỹ ) ∈ Gn × Hn′ . The proof for
the case where σ = (S̃1, S̃2) ∈ H2 is similar.

A generic signer (who does not know the discrete logarithms m1 and m2

of the messages (M1, M̃1) and (M2, M̃2), respectively) computes the signature
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as Si := G
αi(x,y)

α′
i
(x,y)M

βi,1(x,y)

β′
i,1

(x,y)

1 M

βi,2(x,y)

β′
i,2

(x,y)

2 for some multivariate polynomials αi,, α
′
i,

βi,1, β
′
i,1, βi,2, β

′
i,2 ∈ Zp[x,y] for i ∈ {1, 2}. Note that none of those polynomials

has a term in m1 or m2, i.e. they are independent of the messages. Thus, it
is infeasible for a generic signer to compute a non-trivial signature component
where its discrete logarithm si contains a message mi (for any i ∈ {1, 2}) in a
term in the denominator. This means that we must have that the verification
equation does not contain the pairings e(Si, M̃j) for all j ∈ [2] and some i ∈
[2], i.e. either S1 or S2 is independent of the messages as otherwise this would
mean that mi appears in the denominator of one of the signature components.
Let’s assume WLOG that S1 is independent of the messages, i.e. the verification
equation does not contain the pairings e(S1, M̃i) for i = 1, 2. This means the
scheme has a verification equation of the form of Equation (2).

e(S1,
n′∏
i=1

Ỹ
ai
i )

2∏
i=1

e(
n∏

j=1

X
ci,j
j , M̃i)

2∏
i=1

e(Mi,
n′∏
j=1

Ỹ
ei,j
j

2∏
j=1

M̃
ui,j
j )e(S2,

n′∏
i=1

Ỹ
bi
i

2∏
i=1

M̃
di
i ) =

n∏
i=1

n′∏
j=1

e(Xi, Ỹj)
ti,j

(2)

A generic signer (who does not know the discrete logarithms m1 and m2 of
the messages) cannot produce a signature component whose discrete logarithm
has a term with any of the monomials: m2

1, m1m2, or m2
2. Thus, WLOG we can

also assume that the verification equation does not contain a pairing of the form
e(Mi, M̃j) for all i, j ∈ [2], i.e. ui,j = 0 for all i, j ∈ [2]. This means the scheme
has a verification equation of the form of Equation (3).

e(S1,

n′∏
i=1

Ỹ
ai
i )

2∏
i=1

e(

n∏
j=1

X
ci,j
j , M̃i)

2∏
i=1

e(Mi,

n′∏
j=1

Ỹ
ei,j
j )e(S2,

n′∏
i=1

Ỹ
bi
i

2∏
i=1

M̃
di
i ) =

n∏
i=1

n′∏
j=1

e(Xi, Ỹj)
ti,j

(3)

Lemma 2 below proves that a scheme with a verification equation of the form
of Equation (3) is not EUF-CMA against an adversary that makes 2 chosen-
message sign queries, whereas Lemma 3 proves that even if we consider a scheme
with a verification equation of the form of Equation (2), such a scheme is not
EUF-CMA against an adversary that makes 3 chosen-message sign queries, which
concludes the proof of the theorem.

Lemma 2. A SPS scheme for 2 DH pairs with a verification equation of the
form of Equation (3) is not EUF-CMA against 2 (non-adaptive) chosen-message
sign queries.

Proof. We have 2 cases as follows:

• Case d2 6= 0 : Choose any 2 distinct messages (M1,1, M̃1,1), (M∗1 , M̃
∗
1 ) and set

(M1,2, M̃1,2) := (M1,1, M̃1,1)
−d1
d2 , (M2,1, M̃2,1) := (M∗1

1
γM

γ−1
γ

1,1 , M̃∗1
1
γ M̃

γ−1
γ

1,1 )

and (M2,2, M̃2,2) := (M∗1
−d1
d2γM

d1(1−γ)
d2γ

1,1 , M̃∗1

−d1
d2γ M̃

d1(1−γ)
d2γ

1,1 ).
After getting signatures σ1 = (S1,1, S1,2) and σ2 = (S2,1, S2,2) on the mes-

sages
(
(M1,1, M̃1,1), (M1,2, M̃1,2)

)
and

(
(M2,1, M̃2,1), (M2,2, M̃2,2)

)
, respec-

tively, we can compute a forgery σ∗ = (S∗1 , S
∗
2 ) := (S1−γ

1,1 Sγ2,1, S
1−γ
1,2 Sγ2,2) on
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the message
(
(M∗1 , M̃

∗
1 ), (M∗2 , M̃

∗
2 ) := (M∗1 , M̃

∗
1 )
−d1
d2

)
. This is a valid signa-

ture and we have that
(
(M∗1 , M̃

∗
1 ), (M∗2 , M̃

∗
2 )
)
/∈
{(

(M1,1, M̃1,1), (M1,2, M̃1,2)
)
,(

(M2,1, M̃2,1), (M2,2, M̃2,2)
)}

for any γ ∈ Z×p \ {1}.
• Case d2 = 0: Choose random distinct messages (M1,2, M̃1,2), (M2,2, M̃2,2)

and (M∗1 , M̃
∗
1 ) and set (M∗2 , M̃

∗
2 ) := (M1−γ

1,2 Mγ
2,2, M̃

1−γ
1,2 M̃γ

2,2). Query the

sign oracle on
(
(M∗1 , M̃

∗
1 ), (M1,2, M̃1,2)

)
and

(
(M∗1 , M̃

∗
1 ), (M2,2, M̃2,2)

)
to get

signatures σ1 = (S1,1, S1,2) and σ2 = (S2,1, S2,2), respectively. We have that

σ∗ = (S∗1 , S
∗
2 ) := (S1−γ

1,1 Sγ2,1, S
1−γ
1,2 Sγ2,2) is a valid forgery on

(
(M∗1 , M̃

∗
1 ),

(M∗2 , M̃
∗
2 )
)

for any γ ← Z×p \ {1}. We have that
(
(M∗1 , M̃

∗
1 ), (M∗2 , M̃

∗
2 )
)
/∈{(

(M∗1 , M̃
∗
1 ), (M1,2, M̃1,2)

)
,
(
(M∗1 , M̃

∗
1 ), (M2,2, M̃2,2)

)}
.

This concludes the proof. ut
Lemma 3. A SPS scheme for 2 DH pairs with a verification equation of the
form of Equation (2) is not EUF-CMA against 3 (non-adaptive) chosen-message
sign queries.

Proof. We have 2 cases as follows:

• Case d2 6= 0 : Choose any distinct messages: (M∗1 , M̃
∗
1 ), (M∗2 , M̃

∗
2 ) and

(M3,1, M̃3,1). Set:

(M1,1, M̃1,1) := (M∗1
γ−1
2γ M

γ+1
2γ

3,1 , M̃∗1

γ−1
2γ M̃

γ+1
2γ

3,1 )

(M1,2, M̃1,2) := (M∗1
d1(γ+1)

2d2γ M
−d1(γ+1)

2d2γ

3,1 M∗2 , M̃
∗
1

d1(γ+1)
2d2γ M̃

−d1(γ+1)
2d2γ

3,1 M̃∗2 )

(M2,1, M̃2,1) := (M∗1
γ+1
2γ M

γ−1
2γ

3,1 , M̃∗1

γ+1
2γ M̃

γ−1
2γ

3,1 )

(M2,2, M̃2,2) := (M∗1
d1(γ−1)

2d2γ M
d1(1−γ)

2d2γ

3,1 M∗2 , M̃
∗
1

d1(γ−1)
2d2γ M̃

d1(1−γ)
2d2γ

3,1 M̃∗2 )

(M3,2, M̃3,2) := (M∗1
d1
d2M

−d1
d2

3,1 M∗2 , M̃
∗
1

d1
d2 M̃

−d1
d2

3,1 M̃∗2 )

Now query the sign oracle on the messages
(
(M1,1, M̃1,1), (M1,2, M̃1,2)

)
,(

(M2,1, M̃2,1), (M2,2, M̃2,2)
)

and
(
(M3,1, M̃3,1), (M3,2, M̃3,2)

)
, to get the sig-

natures σ1 = (S1,1, S1,2), σ2 = (S2,1, S2,2) and σ3 = (S3,1, S3,2), respectively.
We can now compute a forgery σ∗ = (S∗1 , S

∗
2 ) := (S−γ1,1S

γ
2,1S3,1, S

−γ
1,2S

γ
2,2S3,2)

on the message
(
(M∗1 , M̃

∗
1 ), (M∗2 , M̃

∗
2 )
)
. This is a valid signature and we have

that
(
(M∗1 , M̃

∗
1 ), (M∗2 , M̃

∗
2 )
)
/∈
{(

(M1,1, M̃1,1), (M1,2, M̃1,2)
)
,
(
(M2,1, M̃2,1),

(M2,2, M̃2,2)
)
,
(
(M3,1, M̃3,1), (M3,2, M̃3,2)

)}
for any γ ∈ Z×p \ {−1, 1}.

• Case d2 = 0: Choose any distinct messages: (M∗1 , M̃
∗
1 ), (M2,2, M̃2,2) and

(M3,2, M̃3,2). Set

(M1,1, M̃1,1) = (M2,1, M̃2,1) = (M3,1, M̃3,1) := (M∗1 , M̃
∗
1 )

(M∗2 , M̃
∗
2 ) := (M

γ+1
2

2,2 M
1−γ
2

3,2 , M̃
γ+1
2

2,2 M̃
1−γ
2

3,2 )

(M1,2, M̃1,2) := (M
1−γ
2

2,2 M
γ+1
2

3,2 , M̃
1−γ
2

2,2 M̃
γ+1
2

3,2 )

10



Now query the sign oracle on the messages
(
(M1,1, M̃1,1), (M1,2, M̃1,2)

)
,(

(M2,1, M̃2,1), (M2,2, M̃2,2)
)

and
(
(M3,1, M̃3,1), (M3,2, M̃3,2)

)
, to get the sig-

natures σ1 = (S1,1, S1,2), σ2 = (S2,1, S2,2) and σ3 = (S3,1, S3,2), respectively.
We can now compute a forgery σ∗ = (S∗1 , S

∗
2 ) := (S1,1S

γ
2,1S

−γ
3,1 , S1,2S

γ
2,2S

−γ
3,2 )

on the message
(
(M∗1 , M̃

∗
1 ), (M∗2 , M̃

∗
2 )
)
. This is a valid signature and we have

that
(
(M∗1 , M̃

∗
1 ), (M∗2 , M̃

∗
2 )
)
/∈
{(

(M1,1, M̃1,1), (M1,2, M̃1,2)
)
,
(
(M2,1, M̃2,1),

(M2,2, M̃2,2)
)
,
(
(M3,1, M̃3,1), (M3,2, M̃3,2)

)}
for any γ ∈ Z×p \ {−1, 1}.

This concludes the proof. ut

The following corollary follow from Theorem 2.

Corollary 1. There is no generic-signer EUF-CMA SPS scheme for a vector
of ` > 1 DH pairs with 2-element unilateral signatures.

4 Impossibility of sEUF-CMA (against q > 1 sign
queries) SPS Schemes with 2-Element Signatures

Optimal sEUF-CMA SPS schemes for unilateral messages, e.g.[5, 7], have a lower
bound of 3 elements for the signature size where 1 element at least must be from
group H. Also, there are EUF-CMA SPS schemes (for DH pairs) with 2-element
signatures, e.g. [34, 35]. An intriguing open question is whether it is possible
to construct sEUF-CMA SPS schemes with 2-element (unilateral/bilateral) sig-
natures. We prove in Theorem 3 that such schemes are impossible. In Section
5 we show that sEUF-RMA and sEUF-CMA-RMA with 2-element (unilateral)
signatures are possible by giving concrete constructions.

Having proved that sEUF-CMA schemes with 2-element signatures cannot
exist, the remaining hope to construct sEUF-CMA SPS schemes with signatures
shorter than those of optimal sEUF-CMA SPS schemes for unilateral messages
is to investigate the existence of schemes with 3-element unilateral signatures.
Ghadafi [34] proved the impossibility of the existence of sEUF-CMA SPS schemes
with unilateral signatures regardless of the number of group elements in the sig-
nature. His result was only proven in the restricted setting where the verification
key is also unilateral, i.e. all elements of the verification key lie in the same source
group. We strengthen his result by proving the impossibility of the existence of
sEUF-CMA SPS schemes with unilateral signatures even if we allow the verifica-
tion key and public parameters (if any) to be bilateral. In essence, this means the
most efficient sEUF-CMA SPS scheme in terms of signature size must have at
least 3 elements in the signature which must be bilateral which matches optimal
sEUF-CMA SPS schemes for unilateral messages.

If one is willing to impose restrictions on the messages the adversary can
query to the sign oracle, sEUF-CMA schemes with 2-element signatures are
possible. For instance, Ghadafi [34] gave a sEUF-CMA scheme with 2-element
unilateral signatures under the restriction that the adversary can obtain at most
a single signature on any message.
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Theorem 3. There is no generic-signer sEUF-CMA (against q > 1 sign queries)
SPS scheme with 2-element signatures.

Proof. Lemma 1 proved that 1 PPE, excluding the cost for verifying the well-
formedness of the messages, is sufficient for verifying signatures of a generic-
signer SPS scheme. The following 2 lemmata complete the proof, where the
first deals with the case of bilateral signatures whereas the second deals with
unilateral signatures.

Lemma 4. There is no generic-signer sEUF-CMA (against q > 1 sign queries)
SPS scheme with 2-element bilateral signatures.

Proof. Let’s WLOG assume that the signature is of the form σ = (S1, S̃2) ∈
G×H, whereas the verification key (including any public parameters) is of the
form (X, Ỹ ) ∈ Gn ×Hn′ .

A generic signer (who does not know the discrete logarithm m of the mes-

sage (M, M̃)) computes the signature as S1 := M
α1(x,y)

α′1(x,y)G
β1(x,y)

β′1(x,y) and S̃2 :=

M̃
α2(x,y)

α′2(x,y) H̃
β2(x,y)

β′2(x,y) for some polynomials α1, α
′
1, β1, β

′
1, α2, α

′
2, β2, β

′
2 ∈ Zp[x,y].

Note that none of those polynomials has a term in m. Without knowledge of the
discrete logarithm of the message m, it is infeasible for a generic signer to com-
pute a non-trivial signature component where its discrete logarithm si contains
the message m in a term in the denominator. Thus, we must have that either
e(S1, M̃) or e(M, S̃2) does not feature in the verification equation. WLOG let’s
assume that e(S1, M̃) does not appear in the verification equation. The proof
for the other case where e(M, S̃2) does not appear in the verification equation
is similar.

Such a scheme would have a verification equation of the following form:

e(S1,

n′∏
i=1

Ỹ cii S̃
d
2 )e(

n∏
i=1

Xbi
i , M̃)e(M,

n′∏
i=1

Ỹ eii S̃f2 M̃
k)e(

n∏
i=1

Xai
i , S̃2) =

n∏
i=1

n′∏
j=1

e(Xi, Ỹj)
ti,j

(4)

We have 3 cases as follows:

• For some i ∈ [n′], ci 6= 0: After getting a signature σ = (S1, S̃2) on a
(random) message (M,M̃), fix any i ∈ [n′] where ci 6= 0, we can compute a
new signature σ∗ = (S∗1 , S̃

∗
2 ) on the random message (M, M̃) as follows:

S∗1 := M
−γf
ci+γdS

ci
ci+γd

1

n∏
j=1

X
−ajγ
ci+γd

j

S̃∗2 := S̃
ci+γd

ci
2 Y γi

∏
j 6=i

Yj
cjγ

ci

The new signature is a valid forgery and we have σ∗ 6= σ for any γ ∈ Z×p .

12



• ci = 0 for all i ∈ [n′] but d 6= 0: After getting a signature σ = (S1, S̃2) on a
(random) message (M,M̃), we can compute a new signature σ∗ = (S∗1 , S̃

∗
2 )

on the random message (M, M̃) as follows:

S∗1 := M
f−γf
γd S

1
γ

1

n∏
i=1

X
ai−aiγ
γd

i

S̃∗2 := S̃γ2

The new signature is a valid forgery and we have that σ∗ 6= σ for any
γ ∈ Z×p \ {1}.

• ci = 0 for all i ∈ [n′] and d = 0: This means the verification equation does
not involve the component S1 and hence the signature consists of only 1
element. In other words, the verification equation is a linear equation in s2
(the discrete logarithm of S̃2). This means for any message there is exactly 1
potential signature and as proved Theorem 1 such a scheme is not EUF-RMA
secure against q > 1 sign queries. In particular, by assuming WLOG that f =
0 (since a generic signer cannot compute a signature where the denominator
contains the discrete logarithm of the message m) and k = 0 (since a generic
signer cannot compute a signature which has a degree > 1 of the discrete
logarithm of the messagem), anyone can compute a forgery on a new message
(M∗, M̃∗) = (Mγ

1M
1−γ
2 , M̃γ

1 M̃
1−γ
2 ) for any γ ∈ Z×p \ {1} by computing

σ∗ = S̃∗2 := S̃γ1,2S̃
1−γ
2,2 given two signatures σ1 = S̃1,2 and σ2 = S̃2,2 on any

two random messages (M1, M̃1) and (M2, M̃2), respectively. Thus, such a
scheme is not secure against an adversary which makes 2 random-message
queries. We remark that even if we allow k 6= 0, one can forge a signature
on a new message after 3 chosen-message queries.

This concludes the proof. ut

Lemma 5. There is no generic-signer sEUF-CMA (against q > 1 sign queries)
SPS scheme with 2-element unilateral signatures.1

Proof. WLOG let’s count any public parameters (if any) as part of the verifica-
tion key vk. Such a scheme would have signatures of the form σ = (S1, S2) ∈ G2,
a verification key of the form (X,Y ) ∈ Gn×Hn′ , and a verification equation of
the following form:

2∏
i=1

e(Si,

n′∏
j=1

Ỹ
ci,j
j M̃di)e(

n∏
i=1

Xai
i , M̃)e(M,

n′∏
i=1

Ỹ bii M̃
f ) =

n∏
i=1

n′∏
j=1

e(Xi, Ỹj)
ti,j (5)

As proved by Theorem 1, for the scheme to be EUF-RMA secure (against q > 1
sign queries), it must have superpolynomially many potential signatures. After
obtaining any 2 distinct signatures σ = (S1, S2) and σ′ = (S′1, S

′
2) on any message

(M,M̃) in the message space, we have that σ∗ = (S∗1 , S
∗
2 ) := (Sγ1S

′1−γ
1 , Sγ2S

′1−γ
2 )

is with overwhelming probability a new valid signature on (M, M̃) for any γ ∈
Z×p \ {1}. ut
1 Our result is stronger than that of [34] since we consider bilateral verification keys.
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This concludes the proof. ut

5 sEUF-CMA-RMA Scheme for Diffie-Hellman Vectors

Here we construct a sEUF-CMA-RMA scheme with 2-element unilateral signa-

tures for the message spaceM =MC×MR whereMC = ĜH andMR = ĜH
η

for any η ≥ 1. This also implies the existence of sEUF-RMA schemes with
2-element unilateral signatures.

Given the description of Type-3 bilinear groups P output by BG(1κ), the
scheme is as follows:

• KeyGen(P): Select u,w1, w2, x, y1, . . . , yη ← Zp. Set X := Gx, Yi := Gyi for

all i ∈ [η], U := Gu, W̃1 := H̃w1 and W̃2 := H̃w2 . Set sk := (w1, w2, u, x, y1,
. . . , yη) and vk := (W̃1, W̃2, U,X, Y1, . . . , Yη ) ∈ H2 ×G2+η.

• Sign
(
sk,
(
M,M̃

)
,
(

(M ′1, M̃
′
1), . . . , (M ′η, M̃

′
η)
))

: To sign
((
M,M̃

)
,
(
(M ′1, M̃

′
1),

. . . , (M ′η, M̃
′
η)
))
∈ ĜH

1+η
, select r ← Zp and set R := Gr, and S :=

(Mr+x
η∏
i=1

M ′i
r+yiRw1U)

1
w2 . Return σ := (R,S) ∈ G2.

• Verify
(
vk,
(

(M,M̃),
(

(M ′1, M̃
′
1), . . . , (M ′η, M̃

′
η)
))

, σ = (R,S)
)

: Return 1 only

if R,S ∈ G, (M,M̃) ∈ ĜH, for all i ∈ [η] : (M ′i , M̃
′
i) ∈ ĜH, and

e(S, W̃2) = e(R, M̃

η∏
i=1

M̃ ′iW̃1)e(X, M̃)

η∏
i=1

e(Yi, M̃
′
i)e(U, H̃),

otherwise, return 0.

Remark 1. Note that we can set Y1 = G which means the size of the verification
key can be reduced by one group element.

Security of the Scheme. Correctness of the scheme follows by inspection and
is straightforward to verify. The following theorem proves sEUF-CMA-RMA
security of the scheme.

Theorem 4. The scheme is sEUF-CMA-RMA secure in the generic group model.

Proof. We proceed by proving that no linear combinations which represent Lau-
rent polynomials (of degrees ranging from −1 to 2 after q sign queries) in the
discrete logarithms of the group elements the adversary sees in the game corre-
spond to a forgery on a new message.

At the start of the game, the only elements in H the adversary sees are
H̃, W̃1, W̃2 which correspond to the discrete logarithms 1, w1, w2, respectively,
whereas the only elements in G the adversary sees are G, X,Y1, . . . , Yη , U which
correspond to the discrete logarithms 1, x, y1, . . . , yη , u, respectively.

Note that the only elements of H the q sign queries return are the uniformly
random parts of the message {M̃ ′

i,j} for i ∈ [q] and j ∈ [η]. Thus, at the i-th sign

14



query on the message (Mi, Ñi) ∈ ĜH, mi and ni the discrete logarithms of Mi

and Ñi, respectively, can only be linear combinations of the discrete logarithms
of the elements in G and H, respectively, the adversary sees up to that point of
time. Thus, we have

mi = am
i

+ bmiu+ cmix+

η∑
k=1

dmi,kyk +

i−1∑
`=1

η∑
k=1

emi,`,km
′
`,k +

i−1∑
j=1

fmi,jrj

+

i−1∑
j=1

gmi,j

(mj(rj + x) +
η∑
k=1

m′
j,k

(rj + yk) + rjw1 + u

w2

)

ni = an
i

+ bniw1 + cniw2 +

i−1∑
`=1

η∑
k=1

dni,`,km
′
`,k

Since for all i ∈ [q], we must have that (Mi, Ñi) ∈ ĜH, i.e. mi = ni, we have:

mi = ni = am
i

+

i−1∑
`=1

η∑
k=1

emi,`,km
′
`,k

If the message is well-formed, then at the i-th sign query, the adversary will
receive a signature of the form σi = (ri, si), where si is of the following form:

si =

mi(ri + x) +
η∑
j=1

m′
i,j

(ri + yj) + riw1 + u

w2

At the end of the game (after at most q sign queries), we must have

m∗ = n∗ = am +

q∑
`=1

η∑
k=1

em`,km
′
`,k

m′∗j = n′∗j = am′j +

q∑
`=1

η∑
k=1

em′j,`,km
′
`,k for all j ∈ [η]

Similarly, since the adversary can only construct her forgery as linear combina-
tions of the Laurent polynomials she sees in the game, we have at the end of the
game that r∗ and s∗ must be linear combinations of the Laurent polynomials in
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G. Thus, we have:

r∗ = ar + bru+ crx+

η∑
i=1

driyi +

q∑
i=1

η∑
j=1

eri,jm
′
i,j +

q∑
i=1

friri

+

q∑
i=1

gri

(mi(ri + x) +
η∑
j=1

m′
i,j

(ri + yj) + riw1 + u

w2

)
s∗ = as + bsu+ csx+

η∑
i=1

dsiyi +

q∑
i=1

η∑
j=1

esi,jm
′
i,j +

q∑
i=1

fsiri

+

q∑
i=1

gsi

(mi(ri + x) +
η∑
j=1

m′
i,j

(ri + yj) + riw1 + u

w2

)

Since by the verification equation we must have that:

s∗w2 = r∗(m∗ +

η∑
j=1

m′∗
j

+ w1) +m∗x+

η∑
j=1

m′∗
j
yj + u

Thus, we must have that:

asw2 + bsuw2 + csxw2 +

η∑
i=1

dsiyiw2 +

q∑
i=1

η∑
j=1

esi,jm
′
i,jw2 +

q∑
i=1

fsiriw2

+

q∑
i=1

gsi

(
mi(ri + x) +

η∑
j=1

m′
i,j

(ri + yj) + riw1 + u
)

=
(
ar + bru+ crx+

η∑
i=1

driyi +

q∑
i=1

η∑
j=1

eri,jm
′
i,j +

q∑
i=1

friri

+

q∑
i=1

gri

(mi(ri + x) +
η∑
j=1

m′
i,j

(ri + yj) + riw1 + u

w2

))(
m∗ +

η∑
i=1

m′i
∗

+ w1

)
+m∗x+

η∑
i=1

m′i
∗
yi + u

There is no term of the form uw1

w2
on the LHS, so we must have that for all i ∈ [q]

that gri = 0. Also, for all i ∈ [η], there are no terms of the form xw1, yiw1, uw1

or w1 on the LHS so we must have that cr = 0, dri = 0 for all i ∈ [η], br = 0
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and ar = 0. Thus, we have:

asw2 + bsuw2 + csxw2 +

η∑
i=1

dsiyiw2 +

q∑
i=1

η∑
j=1

esi,jm
′
i,jw2 +

q∑
i=1

fsiriw2

+

q∑
i=1

gsi

(
mi(ri + x) +

η∑
j=1

m′
i,j

(ri + yj) + riw1 + u
)

=
( q∑
i=1

η∑
j=1

eri,jm
′
i,j +

q∑
i=1

friri

)(
m∗ +

η∑
i=1

m′i
∗

+ w1

)
+m∗x+

η∑
i=1

m′i
∗
yi + u

There are no terms on the RHS with any of the monomials w2, uw2, xw2, yiw2

for any i ∈ [η], riw2 for any i ∈ [q], or m′i,jw2 for any i ∈ [q] and j ∈ [η]. Thus,
we must have that as = 0, bs = 0, cs = 0, dsi = 0 for all i ∈ [η], fsi = 0 for all
i ∈ [q] , and for all i ∈ [q] and all j ∈ [η] that esi,j = 0. Thus, we have:

q∑
i=1

gsi

(
mi(ri + x) +

n∑
j=1

m′
i,j

(ri + yj) + riw1 + u
)

=
( q∑
i=1

η∑
j=1

eri,jm
′
i,j +

q∑
i=1

friri

)(
m∗ +

η∑
i=1

m′i
∗

+ w1

)
+m∗x+

η∑
i=1

m′i
∗
yi + u

There are no terms of the form m′i,jw1 for any i ∈ [q] and any j ∈ [η] on the
LHS. Thus, we must have that eri,j = 0 for all i ∈ [q] and all j ∈ [η] and hence
we must have that:

q∑
i=1

gsi

(
mi(ri + x) +

η∑
j=1

m′
i,j

(ri + yj) + riw1 + u
)

=

q∑
i=1

fririm
∗ +

q∑
i=1

friri

η∑
i=1

m′i
∗

+

q∑
i=1

fririw1 +m∗x+

η∑
i=1

m′i
∗
yi + u

By the term u we have that
q∑
i=1

gsi = 1 and we must have that there is at least

one value of gsi 6= 0. Also, by the term riw1 we have that gsi = fri for all i ∈ [q].
Note that m′

i,j
for all i ∈ [q] and all j ∈ [η] on the LHS are all chosen uniformly

at random by the sign oracle. Also, there is no term on the LHS containing the
monomial m

i,j
rk for any k 6= i. Thus, we cannot have for any i, j ∈ [q] where

i 6= j that fri 6= 0 and frj 6= 0. This means we must have for some i ∈ [q] that:

gsimi(ri + x) + gsi

η∑
j=1

m′
i,j

(ri + yj) + gsiriw1 + gsiu

=fririm
∗ + friri

η∑
i=1

m′i
∗

+ fririw1 +m∗x+

η∑
i=1

m′i
∗
yi + u
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Since we must have that
q∑
i=1

gsi = 1 and for all i ∈ [q] that gsi = fri . Thus, we

must have:

mi(ri + x) +

η∑
j=1

m′
i,j

(ri + yj) + riw1 + u

= rim
∗ + ri

η∑
i=1

m′i
∗

+ riw1 +m∗x+

η∑
i=1

m′i
∗
yi + u

By the monomial x, we must have that m∗ = mi, whereas by the monomial yj
we must have that m′

i,j
= m′j

∗
for all j ∈ [η]. The above also means we have

r∗ = ri and s∗ = si. This means (r∗, s∗) is not a valid forgery.

Remark 2. The proof holds even if we have that y1 = 1 which means we can
reduce the size of the verification by eliminating 1 group element.

This concludes the proof. ut
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