
XMSS and Embedded Systems
XMSS Hardware Accelerators for RISC-V

Wen Wang1, Bernhard Jungk2, Julian Wälde3, Shuwen Deng1, Naina
Gupta4, Jakub Szefer1 and Ruben Niederhagen3

1 Yale University, New Haven, CT, USA
{wen.wang.ww349,shuwen.deng,jakub.szefer}@yale.edu

2 Independent Researcher
bernhard@projectstarfire.de

3 Fraunhofer SIT, Darmstadt, Germany
ruben@polycephaly.org

4 Fraunhofer Singapore, Singapore
naina.gupta@fraunhofer.sg

Abstract. We describe a hardware-software co-design for the hash-based post-quantum
signature scheme XMSS on a RISC-V embedded processor. We provide software
optimizations for the XMSS reference implementation for SHA-256 parameter sets
and several hardware accelerators that allow to balance area consumption and
performance based on individual needs. The version with the best time-area product
for key generation gives a 47× speedup in wall-clock time at 5.1× larger resource
requirements; the best speedup of 52× is achieved at a higher resource cost. For
signing, we achieve a maximum speedup of over 23× and for verification of over 18×.
We tested and measured the cycle counts of our implementation on Intel (Altera) and
Xilinx FPGAs. The integration of our XMSS accelerators into an embedded RISC-V
processor enables post-quantum secure signatures for a large variety of embedded
applications.
Keywords: XMSS · hash-based signatures · post-quantum cryptography · hardware
accelerator · FPGA · RISC-V

1 Introduction
Due to the continued computerization and automation of our society, more and more
systems from consumer products and Internet-of-Things (IoT) devices to cars, high-speed
trains and even nuclear power plants are controlled by embedded computers that often
are connected to the Internet. Such devices can have a severe impact not only on our
information security but increasingly also on our physical safety. Therefore, embedded
devices must provide a high level of protection against cyber attacks — despite their
typically restricted computing resources. If an attacker is able to disrupt the authenticity
of transmitted data, he or she can undermine security of the system in many ways, e.g.,
malicious firmware can be loaded, or contents of a digital document can be changed without
being detected. Authenticity of the data is commonly ensured using digital signature
schemes, often based on the DSA and ECDSA algorithms [NIS13].

Commonly used cryptographic algorithms, however, are vulnerable to attacks using
quantum computers: Shor’s algorithm [Sho94, Sho99] is able to factor integers and com-
pute discrete logarithms in polynomial time and Grover’s algorithm [Gro96] provides a
quadratic speedup for brute-force search. In light of recent advances in quantum-computer
development and increased research interest in bringing practical quantum computers to

{wen.wang.ww349,shuwen.deng,jakub.szefer}@yale.edu
bernhard@projectstarfire.de
ruben@polycephaly.org
naina.gupta@fraunhofer.sg


2 XMSS and Embedded Systems

life, a new field of post-quantum cryptography (PQC) has evolved [BBD09], which provides
cryptographic algorithms that are believed to be secure against attacks using quantum
computers. Among these PQC algorithms are a number of algorithms for signing (and
verification) of data. This paper focuses on one of these algorithms, the eXtended Merkle
Signature Scheme (XMSS), which has recently been standardized by the IETF [HBG+18].

XMSS is a stateful hash-based signature scheme proposed in 2011 by Buchmann,
Dahmen and Hülsing [BDH11]. It is based on the Merkle signature scheme [Mer90]
and proven to be a forward-secure post-quantum signature scheme with minimal security
assumptions: Its security is solely based on the existence of a second pre-image resistant hash
function family and a pseudorandom function (PRF) family. Both of these function families
can be efficiently constructed even in the presence of large quantum computers [BDH11].
Therefore, XMSS is considered to be a practical post-quantum signature scheme. Due to
its minimal security assumptions and its well understood security properties, XMSS is
regarded as one of the most confidence-inspiring post-quantum secure signature schemes.

Embedded devices will need to use algorithms such as XMSS to make them future-proof
and to ensure their security even in the light of practical quantum computers. One of
the increasingly popular processor architectures for embedded devices is the RISC-V
architecture. For example, RISC-V is used as a control processor in GPUs and storage
devices [Hig18]. It is an open and free architecture that is proving to be a practical
alternative to close-source designs. Consequently, this work uses a RISC-V-based system
on chip (SoC) called Murax (see Section 2.3.1) as a representative for embedded system
architectures and shows how to efficiently deploy the post-quantum secure signature scheme
XMSS on an embedded device.

Hash-based signature schemes like XMSS have relatively high resource requirements.
They need to perform thousands of hash-computations for key generation, signing and
verification and need sufficient memory for their relatively large signatures. Therefore,
running such post-quantum secure signature schemes efficiently on a resource-constrained
embedded system is a difficult task. This work introduces a number of hardware accelerators
that provide a good time-area trade-off for implementing XMSS on RISC-V.

1.1 Related Work
There is currently a small number of publications focusing on FPGA hardware implemen-
tations of hash-based signature schemes:

The classic Merkle signature scheme has been investigated and implemented for FPGAs,
e.g., in [SH10, Sho10, SHM11]. These implementations, however, are no longer state-of-
the-art: they provide none of the additional security features that have been developed
for modern hash-based signature schemes like XMSS, LMS [MCF18], and the SPHINCS
family [BHH+15].

The stateless hash-based signature scheme SPHINCS-256 [BHH+15] has been imple-
mented in [ACZ18]. This signature scheme is closely related to XMSS and is a predecessor
of the SPHINCS+ signature scheme1, which is one of the submissions in NIST’s PQC
standardization process2. SPHINCS-256 requires the cryptographic primitives BLAKE-256,
BLAKE-512, and ChaCha12. The authors provide efficient hardware implementations
for these primitives and control logic to enable signing, key generation, and signature
verification. They report timings of 1.53 ms for signing and 65 µs for verification, but no
timings for key generation. Their source code is not freely available.

Our Contributions. We provide software optimizations and hardware accelerators for a
software-hardware co-design of XMSS on a RISC-V-based embedded system by developing:

1https://sphincs.org/
2https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

https://sphincs.org/
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography


Wang, Jungk, Wälde, Deng, Gupta, Szefer, Niederhagen 3

• SHA-256-specific software optimizations for the XMSS reference implementation and
• hardware accelerators with improved time-area trade-off for XMSS:

– a general-purpose SHA-256 accelerator,
– a SHA-256 accelerator with XMSS-specific optimizations,
– a WOTS-chain accelerator, and
– an XMSS-leaf generation accelerator.

We will release our software-hardware co-design under an open source license to enable
academia and industry to fully exploit the benefits of our work.

1.2 Structure of the Paper

The following section provides some background information on the XMSS signature
scheme, the hash function SHA-256, the RISC-V architecture, and our FPGA setup that
we used for testing. Then, in Section 3, we introduce our software optimizations for
the XMSS reference implementation. In Section 4, we describe the dedicated hardware
modules we developed for accelerating XMSS computations. Details about the design of the
interfaces between the RISC-V software and the hardware accelerators are also provided.
A performance evaluation of our XMSS software-hardware co-design on a RISC-V Murax
SoC is provided in Section 5.

2 Preliminaries
In this section, we give an introduction to the relevant aspects of the XMSS signature
scheme, briefly recapitulate the functionalities of SHA-256, and give a brief introduction
to the RISC-V ISA and the Murax SoC implementation of this ISA. Finally, we briefly
describe the FPGA setup that we are using for our evaluation.

2.1 XMSS

The eXtended Merkle Signature Scheme (XMSS) [HBG+18] is a stateful signature scheme
based on the Merkle signature scheme [Mer90]. Similar to the Merkle signature scheme,
XMSS uses the Winternitz one-time signature scheme (WOTS or Winternitz-OTS) to sign
individual messages [Mer90]. One private/public WOTS key pair is used to sign one single
message (with the private secret key) and to verify the signature (with the corresponding
public verification key). To be able to sign up to 2h messages, XMSS uses 2h pairs of
WOTS secret and verification keys. To reduce the size of the public key, a Merkle hash tree
and binary L-trees are used to reduce the authenticity of many WOTS verification keys to
one XMSS public key. Since each WOTS key must only be used once, the signer needs
to remember which WOTS keys already have been used. Hence, the scheme is stateful.
Figure 1 shows the overall structure of XMSS.

The XMSS standard also defines multi-tree versions of XMSS (XMSS^MT) where the
leaf nodes of a higher-level tree are used to sign the root of another tree. In this paper, we
only consider single-tree XMSS. However, our results can be mapped to multi-tree XMSS
in a straightforward way. For a detailed description of XMSS (and XMSS^MT) please
refer to IETF RFC 8391 [HBG+18] and to [BDH11].

In the following we briefly introduce the XMSS address scheme, WOTS, the L-tree
construction, and the procedure for constructing the Merkle tree. We also give an
introduction to XMSS key generation, signing, and verification.



4 XMSS and Embedded Systems

l chains l chains l chains l chains l chains

. . .

. . .

. . .

2h WOTS key pairs and L-trees

WOTS

L-Tree

Merkle
Tree

w − 1 steps

height
dlog(l)e

height h

Figure 1: XMSS tree with binary Merkle hash tree and L-tree plus WOTS instances as
leafs. Red nodes are the WOTS private key and blue nodes are the WOTS public key
values. Green nodes are the L-Tree roots and the gray node is the XMSS public key root.

2.1.1 Address Scheme

XMSS uses a hash function address scheme throughout the Merkle tree, L-tree, and
WOTS computations to uniquely identify each individual step in the overall graph. These
addresses are used to derive keys for keyed hash functions that are unique for each specific
location in the graph. Each address is composed of eight 32 bit fields, with fields for,
e.g., the level within a tree and the leaf index. In total, an XMSS address has a size of
256 bit. For more details about the hash function address scheme, please refer to IETF
RFC 8391 [HBG+18, Sect. 2.5].

2.1.2 Winternitz OTS

The WOTS scheme was first mentioned in [Mer90]. For signing a message digest D of
n-byte length, WOTS uses a cryptographically secure hash function with n-byte output
strings to compute hash chains. The message digest is interpreted as binary representation
of an integer d. First, d is split into l1 = d8n/ log2(w)e base-w words di, 0 ≤ i < l1 and
a checksum c =

∑l1
i=0 w − 1 − di is computed for these base-w words (w is called the

“Winternitz parameter”). The checksum c is split into l2 = blog2(l1(w− 1))/ log2(w)) + 1c
base-w words ci, 0 ≤ i < l2 as well. WOTS key generation, signing, and verification are
performed as follows:
• To create a private/public WOTS key pair, Alice computes l = l1 + l2 secret strings

s0,0, s0,1, . . . , s0,l−1, each of n-byte length (for example using a secret seed and a
PRF). These l n-byte strings are the private WOTS key. Then, Alice uses a chaining
function to compute l hash chains of length w− 1, hashing each s0,i iteratively w− 1
times. The resulting chain-head values sw−1,i, 0 ≤ i < l of n-byte length are the
public WOTS key and are published by Alice.

• To sign a message digest D split into l1 base-w words together with l2 base-w
checksum values computed as described above, Alice (re-)computes the intermediate
chain values (sd0,0, sd1,1, . . . , sdl1−1,l1−1, sc0,0, sc1,1, . . . , scl2−1,l2−1) starting from her
private key values. These l = l1 + l2 values are the signature.

• When Bob wants to verify the signature, he recomputes the remaining chain steps
by applying, e.g., w − 1− d0 hash-function iterations to signature value sd0,0 and
compares the resulting values with the corresponding public key values. If all
chain-head values match the public WOTS key, the signature is valid.



Wang, Jungk, Wälde, Deng, Gupta, Szefer, Niederhagen 5

XMSS uses a modified WOTS scheme, sometimes referred to as WOTS+ or as
W-OTS+ [Hül13]; we use the term WOTS+ only when a explicit distinction from “original”
WOTS is required for clarification. WOTS+ uses a function chain() as chaining function
that is a bit more expensive than the simple hash-chain function described above. The
function chain() uses a keyed pseudo-random function prfk : {0, 1}256 7→ {0, 1}8n and a
keyed hash-function fk′ : {0, 1}8n 7→ {0, 1}8n. Within each chain step, the function chain()
first computes a unique n-byte key k′ and a unique n-byte mask using the prfk() function.
The input to prfk() is the hash function address of the current step (including the chain
step and a marker for the usage as key or as mask). The key k for prfk() is a seed that
is part of the XMSS public key. The mask is then XOR-ed with the n-byte output from
the previous chain-function call (or the initial WOTS+ chain n byte input string) and the
result is used as input for the hash-function f() under the key k′, which gives the n-byte
output of the chaining function chain() in the last iteration step.

The WOTS+ secret key consists of l (l is defined as described above for WOTS) pseudo-
random strings of n-bytes in length. The XMSS specification does not demand a certain
function to compute the WOTS+ private key. In the XMSS reference implementation, they
are generated using the prfk() function with the local address (including the chain index)
as input and keyed with the XMSS secret key seed. Each WOTS+ secret key maps to one
corresponding WOTS+ public key, which is computed by calling the chaining function
chain() with w − 1 iteration steps. Signing and verification in WOTS+ work as described
above for WOTS using the WOTS+ chaining function. The more complex structure of the
chaining function of WOTS+ compared to WOTS is required for multi-target resistance
and within the XMSS security proof.

2.1.3 L-tree

The leaf nodes of an XMSS tree are computed from the WOTS+ public keys by using an
unbalanced binary tree of l leaf nodes (one leaf node for each WOTS+ public key value),
hence called L-tree. The nodes on each level of the L-tree are computed by hashing together
two nodes from the lower level. A tree hash function hashrand : {0, 1}8n × {0, 1}8n 7→
{0, 1}8n is used for this purpose.

The function hashrand() uses the keyed pseudo-random function prfk() and a keyed
hash-function hk′′ : {0, 1}16n 7→ {0, 1}8n. First, an n-byte key k′′ and two n-byte masks
are computed using the prfk() with the address (including the L-tree level and node index)
as input and the same public seed as used for WOTS+ as key. The masks are then each
XOR-ed to the two n-byte input strings representing the two lower-level nodes and the
results are concatenated and used as input for the hash-function h() keyed with k′′, which
gives the n-byte output of the tree hash function hashrand().

To be able to handle the pairwise hashing at levels with an odd number of nodes, the
last node on these levels is lifted to a higher level until another single node is available.
The root of the L-tree gives one single hash-value, combining the l WOTS+ public keys
into one WOTS+ verification key.

2.1.4 XMSS Merkle Tree

In order to obtain a small public key, the authenticity of many WOTS verification keys (i.e.,
L-tree root keys) is reduced to one XMSS public key using a binary Merkle tree. Similar
to the L-tree construction described above, on each level of the binary tree, neighbouring
nodes are pairwise hashed together using the hashrand() function to finally obtain one
single root node that constitutes the XMSS public key root (see Figure 1).



6 XMSS and Embedded Systems

2.1.5 XMSS Key Generation

XMSS key generation is quite expensive: In order to compute the XMSS public key, i.e., the
root node of the Merkle tree, the entire XMSS tree needs to be computed. Depending on
the height h of the tree, thousands to millions of hash-function calls need to be performed.
XMSS key generation starts by generating 2h leaf nodes of the Merkle tree. Each leaf node
consists of an WOTS+ instance together with an L-Tree. For each WOTS+ instance, first
l WOTS+ private keys are generated. These are then used to compute the l WOTS+
chains to obtain l WOTS+ public keys and then the L-trees on top of these. Once all 2h

L-tree root nodes have been computed, the Merkle tree is computed to obtain the XMSS
public key.

The XMSS public key consists of the n-byte Merkle tree root node and of the n-byte
public seed required by the verifier to compute masks and public hash-function keys using
the prfk() within the chain, L-tree, and Merkle tree computations. The XMSS standard
does not define a format for the XMSS private key. In the XMSS reference implementation
that accompanies the standard, an n-byte secret seed is used to generate the WOTS secrets
using a pseudo random function (e.g., the prfk()).

2.1.6 XMSS Signature Generation

XMSS is a stateful signature scheme: Each WOTS+ private/public key pair must be used
only once; otherwise, the scheme is not secure. In order to determine which WOTS+ key
pair already has been used, an n-byte leaf index (the state) is stored with the private key.
The index defines which WOTS+ key pair will be used for the next signature; after each
signature generation, the index must be increased.

Similar to most signature schemes, for signing an arbitrary length message or doc-
ument M , first a message digest of M is computed; details can be found in [HBG+18,
Sect. 4.1.9]. The digest M ′ is then signed using the selected WOTS+ instance. This
results in l n-byte values corresponding to the base-w decomposition of M ′ including the
corresponding check sum. Furthermore, in order to enable the verifier to recompute the
XMSS public root key from a leaf node of the Merkle tree, the signer needs to provide the
verification path in the Merkle tree, i.e., h n-byte nodes that are required for the pair-wise
hashing in the binary Merkle tree, one node for each level in the Merkle tree.

Therefore, in the worst case, the signer needs to recompute the entire XMSS tree in
order to select the required values for the verification path. There are several optimization
strategies using time-memory trade-offs to speed up signature generation. For example,
the signer can store all nodes of the Merkle tree up to level h′ alongside the private key.
Then, when signing, he only needs to compute a (h − h′)-height sub-tree including the
WOTS leafs and can reproduce the signature path for the remaining h′ levels from the
stored data. Other algorithms with different trade-offs exist; for example the BDS tree
traversal algorithm targets at reducing the worst case runtime of signature generation by
computing a certain amount of nodes in the Merkle tree at each signature computation
and by storing them alongside the XMSS state [BDS08].

2.1.7 XMSS Signature Verification

Compared to key generation, XMSS signature verification is fairly cheap: An XMSS public
key contains the Merkle root node and the public seed. An XMSS signature contains the
WOTS leaf index, l WOTS-signature chain values, and the verification path consisting of
h Merkle-tree pair values, one for each level in the tree. The verifier computes the message
digest M ′ and then recomputes the WOTS verification key by completing the WOTS
chains and computing the L-tree. He then uses the Merkle-tree pair values to compute the
path through the Merkle tree and finally compares the Merkle tree root node he obtains



Wang, Jungk, Wälde, Deng, Gupta, Szefer, Niederhagen 7

with the root node of the sender’s public key. If the values are equal, verification succeeds
and the signature is sound; otherwise verification fails and the signature is rejected.

2.1.8 Parameter Set

RFC 8391 defines parameter sets for the hash functions SHA-2 and SHAKE targeting
classical security levels of 256 bit and 512 bit in order to provide 128 bit and 256 bit of
security respectively against attackers in possession of a quantum computer [HBG+18,
Sect. 5]. Parameter sets with n = 32 provide a classical security level of 256 bit while
those with n = 64 provide a classical security level of 512 bit.

For this work, we focus on the SHA-256 hash function, thus n = 32. In this case,
the keyed hash functions prfk : {0, 1}256 7→ {0, 1}256, fk′ : {0, 1}256 7→ {0, 1}256, and
hk′′ : {0, 1}512 7→ {0, 1}256, are implemented by computing the input to SHA-256 as
concatenation of:
• a 256 bit hash-function specific domain-separator,
• the 256 bit hash-function key, and
• the 256 bit or 512 bit hash-function input.
For SHA-256, there are three different parameter sets provided in RFC 8391 [HBG+18,

Sect. 5.3], all with n = 32 and w = 16 but with h = 10, h = 16, or h = 20. Since the tree
height h has a significant impact on the cost of key generation, signing, and verification,
one of the questions we want to answer in this work is what tree height is feasible for
resource-restricted embedded systems.

2.2 SHA-256
The hash function SHA-256 [NIS12] computes a 256 bit hash value from a variable-length
input. SHA-256 uses a 256 bit internal state that is updated with 512 bit blocks of the
input. Therefore, SHA-256 defines a padding scheme in order to extend variable-length
inputs to be a multiple of 512 bit. SHA-256 works as follows:

1. Initialize the internal state with a well-defined IV (see [NIS12, Sect. 4.2.2]).
2. Extend the `-bit input message with a padding to make the length of the padded

input a multiple of 512 bit:
• append a single 1 bit to the input message, then
• append 0 ≤ k 0 bit such that ` + 1 + k + 64 is minimized and is a multiple of
512, and finally
• append ` as a 64 bit big-endian integer.

3. Iteratively apply a compression function to all 512 bit blocks of the padded input
and the current internal state to obtain the next updated internal state.

4. Once all 512 bit blocks have been processed, output the current internal state as the
hash value.

The compression function uses the current internal state and a 512 bit input block and
outputs a new internal state. For SHA-256, the compression function is composed of 64
rounds.

2.3 RISC-V
The RISC-V instruction set architecture (ISA) is a free and open architecture, overseen by
the RISC-V Foundation with more than 100 member organizations3. The RISC-V ISA

3https://riscv.org/

https://riscv.org/


8 XMSS and Embedded Systems

has been designed based on well-established reduced instruction set computing (RISC)
principles. It has a modular structure: There are base-sets for 32-bit (RV32I and RV32E),
64-bit (RV64I), and 128-bit (RV128I) instructions. In addition, there are instruction set
extensions, e.g., instructions for integer multiplication and division (M), single and double
precision floating-point operations (F, D), and SIMD operations (P).

Due to its modular design, the RISC-V ISA is an increasingly popular architecture
for embedded systems. It is used, e.g., as a control processor in GPUs and in storage
devices [Hig18], for secure boot and as USB security dongle [Mer18], and for building
trusted execution environments (TEE) with secure hardware enclaves 4. Since the RISC-V
ISA is an open standard, researchers and industry can easily extend and adopt it in their
designs without IP constraints.

2.3.1 VexRiscv and Murax SoC

VexRiscv5 is a 32-bit RISC-V CPU implementation written in SpinalHDL6. It supports the
RV32IM instruction set and implements a 5-stage in-order pipeline. All complementary
and optional components are implemented as plugins and therefore can easily be integrated
and adapted into specific processor setups as needed. VexRiscv also provides memories
and caches, IO peripherals, and buses, which can be chosen and combined as required.

The VexRiscv project provides a predefined processor setup called “Murax SoC” that
aims at small resource usage. The Murax SoC integrates the VexRiscv CPU with a shared
instruction and data memory, an Advanced Peripheral Bus (APB), a JTAG programming
interface, a UART interface, and further optional peripherals. The Murax SoC has very low
resource requirements (e.g., only 1380 ALMs on a Cyclone V FPGA) and can operate on its
own without any further external components. Therefore, it is a good representative for an
embedded system processor with low resources. The Murax SoC can be extended with new
hardware accelerators using the APB bus. We used this feature for our XMSS accelerators.
Murax SoC designs can be synthesized for FPGAs and with small modifications for ASICs
as well.

2.4 Setup
We evaluated our design using a DE1-SoC evaluation board from Terasic as test-platform.
This board has an Intel (formerly Altera) Cyclone V SoC 5CSEMA5F31C6 device with
about 32,000 adaptive logic modules (ALMs) and about 500 KB of on-chip memory
resources. (We do not use the DSP resources or the ARM Cortex-A9 CPU of the device.)
We used Intel Quartus Software Version 16.1 (Standard Edition) for synthesis. On the
DE1-SoC, we are running the Murax RISC-V SoC described in Section 2.3.1 with additional
accelerators that will be described in Section 4. The DE1-SoC board is connected to a
host computer by a USB-JTAG connection for programming the FPGA, a USB-serial
connection for IO of the Murax SoC, and a second USB-JTAG connection for programming
and debugging the software on the Murax SoC.

We configured the on-chip RAM size of the Murax SoC to 128 kB, which is sufficient
for our all our experiments. We tested our implementations on the DE1-SoC board at its
default clock frequency of 50 MHz; however, to achieve a fair comparison, our speedup
reports presented in the following sections are based on the maximum frequency reported
by the synthesis tools.

Our implementation is neither platform-specific nor dependent on a specific FPGA
vendor; we also successfully tested our implementations with very similar results on an

4https://keystone-enclave.org/
5https://github.com/SpinalHDL/VexRiscv/
6https://spinalhdl.github.io/SpinalDoc/

https://keystone-enclave.org/
https://github.com/SpinalHDL/VexRiscv/
https://spinalhdl.github.io/SpinalDoc/


Wang, Jungk, Wälde, Deng, Gupta, Szefer, Niederhagen 9

Arty S7 development board from Digilent with a medium-size Xilinx Spartan 7 FPGA
with part number XC7S50-1CSGA324C.

3 Software Implementation and Optimization
We used the official XMSS reference implementation7 as software-basis for this work. The
reference implementation is using OpenSSL for the hash functions. We applied minor
modifications to the XMSS reference code to link against the mbed TLS library8 instead,
because mbed TLS generally is more suitable for resource-restricted embedded platforms
like the Murax RISC-V platform and its SHA-256 implementation has less library-internal
dependencies than that of OpenSSL, which simplifies stand-alone usage of SHA-256.

The tree-hash algorithm [HBG+18] used for computing the XMSS public key and
the authentication path within the Merkle tree requires an exponential number of 2h

WOTS operations for computing tree leafs. However, key generation and signing is not
memory intensive when the tree is computed with a depth-first strategy. The XMSS
reference implementation provides two algorithms for signature generation. The first
approach (implemented in file “xmss_core.c”) straightforwardly re-computes all tree leaf
nodes in order to compute the signature authentication path and therefore has essentially
the same cost as key-generation. This approach does not require to store any further
information. The second approach (implemented in file “xmss_core_fast.c”) uses the BDS
algorithm [BDS08] to make a trade-off between computational and memory complexity. It
requires to additionally store a state along the private key. Both versions can be used with
our hardware accelerators. Since the runtime of the basic signature algorithm is almost
identical to key generation (also when using our hardware accelerators), we are using the
fast BDS version of the signature algorithm for our performance reports.

To have a fair reference point for the comparison of a pure software implementation
with our hardware accelerators, we implemented two software optimizations for the XMSS
reference software implementation as described in the following sub-sections. These
optimizations are also helpful on other processor architectures but only work for SHA-256
parameter sets, because they depend on the specific SHA-256 block size and padding
scheme. We are going to provide our software optimizations to the maintainers of the
XMSS reference implementation so they can integrate them if they wish to.

3.1 Fixed Input Length
Within the XMSS scheme, overall the most time is spent inside the hash-function
calls. Therefore, the SHA-256 function is most promising for optimization efforts. The
main interface to SHA-256 in mbed TLS has three functions, mbedtls_sha256_init,
mbedtls_sha256_update, and mbedtls_sha256_finish. The “init”-function ini-
tializes the internal state of the SHA-256 implementation. The “update”-function allows
to feed in message chunks of arbitrary size and updates the internal state accordingly.
The “finish” function finally adds the padding and returns the message digest. Internally,
these functions need to adapt arbitrary-length message chunks to the SHA-256 input block
size of 512 bit: If the size of message-chunk input to mbedtls_sha256_update is not a
multiple of 512 bit, the remaining data is buffered alongside the internal state and used
either in the next “update” or in the final “finish” call.

The SHA-256 implementation of mbed TLS is intended to hash messages of an arbitrary
length: When the “finish” function is called, the actual length of the entire message is
computed as sum over the lengths of all individual message chunks and the padding
is generated accordingly. However, within the XMSS scheme, the inputs of almost all

7https://github.com/joostrijneveld/xmss-reference/, commit 06281e057d9f5d22
8https://tls.mbed.org/

https://github.com/joostrijneveld/xmss-reference/
https://tls.mbed.org/


10 XMSS and Embedded Systems

256-bit hash768-padding:

0x80 0x00 . . . 0x00 0x03 0x00

512-bit hash1024-padding:

0x80 0x00 . . . 0x00 0x00 0x00 0x00 . . . 0x00 0x04 0x00

7 0 15 8 239 232 247 240 255 248

7 0 15 8 239 232 247 240 255 248 263 256 495 448 503 496 511 504

Figure 2: Fixed padding for hash768 and hash1024.

SHA-256 calls have a well-known, fixed length: A general, arbitrary-length SHA-256
computation is only required when computing the actual hash digest of the input message,
which is called only once for signing and once for verifying. For all the other SHA-256 calls,
the length of the input data is either 768 bit or 1024 bit depending on where SHA-256 is
called within the XMSS scheme: An input length of 768 bit is required within the PRF
and within the WOTS-chain computation; an input length of 1024 bit is required within
the Merkle tree and the L-trees to hash two nodes together. Therefore, we can eliminate
the overhead for the padding computation of the SHA-256 function by “hardcoding” the
two required message paddings, given that their length is known beforehand.

Implementation: We implemented two specialized SHA-256 functions: hash768 tar-
gets messages with a fixed length of 768 bit and hash1024 targets messages with fixed
length of 1024 bit. Figure 2 shows the padding for hash768 and hash1024. Since
SHA-256 has a block size of 512 bit, two blocks are required to hash a message of length
768 bit. Therefore, we need to hardcode a 256 bit padding for hash768 to fill up the
second block to 512 bit. When a 768 bit message is fed to the hash768 function, the
256 bit padding is appended to the message. Then, the new 1024 bit padded message is
divided into two 512 bit blocks and the compression function is performed on each of them
one by one. Once the compression function on the second message block has finished, the
internal state is read out and returned as the output.

The SHA-256 standard always demands to append a padding even if the input length is
a multiple of 512 bit. Therefore, for the hash1024 function a 512 bit padding is hardcoded
similarly to hash768 and three calls to the compression function are performed.

Evaluation: Table 1 shows a comparison of the original XMSS reference implementation
with an optimized version making use of the “fixed input lengths” optimization on the Murax
SoC. The speedup for 768 bit inputs is about 1.07× and for 1024 bit inputs about 1.04×.
The use of 768 bit inputs is more common during the XMSS computations. Therefore,
we see an about 1.06× speedup for WOTS computations, key generation, signing, and
verification. We observed a similar speedup in an Intel CPU.

3.2 Pre-Computation
Within XMSS, SHA-256 is used to implement four different keyed hash-functions, the
function F for computing f() in the WOTS-chains, the function H for h() in the tree hashing,
and the function PRF for computing the prf(), generating masks and hash-function keys.
Furthermore, SHA-256 is used to compute the message digest that is signed using a WOTS
private key. The domain separation between and the keying for these four functions are
achieved by computing the input to SHA-256 as the concatenation of a 256 bit domain
separator value (distinct for these four functions), the 256 bit hash key, and the hash-
function input. Since SHA-256 operates on 512 bit blocks, one entire block is required for



Wang, Jungk, Wälde, Deng, Gupta, Szefer, Niederhagen 11

“original” + “fixed input length” + “pre-computation”
Cycles Cycle Speedup Cycles Speedup Speedup
(A) (B) (AB) (C) (BC) (AC)

hash768 11.5× 103 10.7× 103 1.07 5.87× 103 1.83 1.95
hash1024 16.2× 103 15.6× 103 1.04 — — —
WOTS-chain 571 × 103 530 × 103 1.08 371 × 103 1.43 1.54
WOTS-leaf 42.2× 106 39.8× 106 1.06 27.7 × 106 1.44 1.53
key generation 43.3× 109 40.8× 109 1.06 28.3 × 109 1.44 1.53
signing 58.3× 106 55.0× 106 1.06 38.4 × 106 1.43 1.52
verification 26.7× 106 25.2× 106 1.06 17.4 × 106 1.45 1.54

Table 1: Cycle count and speedup of the “fixed input length” optimization and for both,
the “fixed input length” and the “pre-computation” optimizations, on the Murax SoC (all
rounded to 3 significant digits).

domain separation and keying of the respective hash function.
In case of the PRF, for all public-key operations when generating masks and hash-

function keys for the WOTS chain, the L-tree and Merkle tree operations, the key to the
PRF is the 256 bit XMSS public seed. Thus, both the 256 bit domain separator and the
256 bit hash-function key are the same for all these calls for a given XMSS key pair. These
two parts fit exactly into one 512 bit SHA-256 block. Therefore, the internal SHA-256 state
after processing the first 512 bit block is the same for all these calls to the PRF and based on
this fact, we can save one SHA-256 compression function call per PRF-call by pre-computing
and replaying this internal state. The internal state can either be computed once and
stored together with the XMSS key or each time an XMSS operation (key generation,
signing, verification) is performed. A similar optimization was also implemented in the
reference implementation9 of the hash-based signature scheme LMS [MCF18].

Implementation: At the first call to PRF, we store the SHA-256 context of mbed TLS
for later usage after the first compression function computation. The state includes the
internal state and further information such as the length of the already processed data.

When the PRF is called during XMSS operations, we first create a copy of the initially
stored PRF SHA-256 context and then perform the following prf() operations based on this
state copy, skipping the first input block. The cost for the compression function call on
the first SHA-256 block within the PRF is therefore reduced to a simple and inexpensive
memory-copy operation.

Evaluation: Performance measurements and speedup for our pre-computation opti-
mization are shown in Table 1. For hash768 used in the PRF, we achieve an 1.83×
speedup over the “fixed input length” optimization (column “Speedup (BC)”), because
only one SHA-256 block needs to be processed instead of two. Compared to the original
non-optimized version, with both optimizations (including “fixed input length”) enabled
we achieve an almost 2× speedup (column “Speedup (AC)”).

The function F for computing WOTS-chains requires two calls to the PRF (each on
two SHA-256 blocks) for generating a key and a mask and one call to hash768 (on
two SHA-256 blocks). Without pre-computation, six calls to the SHA-256 compression
function are required. With a pre-computed initial state for the PRF, only four calls to the
SHA-256 compression function are required, saving one third of the compression function
calls. This optimization leads to a 1.43× speedup for WOTS-chain computations (row

9https://github.com/cisco/hash-sigs

https://github.com/cisco/hash-sigs


12 XMSS and Embedded Systems

VexRiscv

On-Chip RAM

APB Bridge A
PB

D
ec
od

er

HW
Accelerator

UART

. . .

Inst.
Bus

Data
Bus

JTAG

UART

Murax

Figure 3: Schematic of the Murax SoC with hardware accelerators connected to the APB.

“WOTS-chain”, column “Speedup (BC)”). The overall speedup including both optimizations
“pre-computation” and “fixed input length” is 1.54×.

For L-tree computations, within the randomized tree hashing function H, there are
three calls to the PRF (each on two SHA-256 blocks) for computing two masks and
one hash-function key and one call to hash1024 (on three SHA-256 blocks). Without
pre-computation, nine calls to the SHA-256 compression function are required. With a
pre-computed initial state for the PRF, only six calls to the SHA-256 compression function
are required, again saving one third of the compression function calls. This optimization
leads to a 1.44× speedup for the overall XMSS leaf computations (see Table 1, row
“WOTS-leaf”). The speedup for both optimizations together including “fixed input length”
is around 1.53×.

The expected speedup for Merkle tree computations is about the same as for the L-tree
computations since the trees are constructed in a similar way. Table 1 shows that we
achieve an overall speedup of more than 1.5× also for the complete XMSS operations, i.e.,
key generation, signing, and verification.

4 Hardware Acceleration
To further accelerate the XMSS computations, we developed several dedicated hardware
modules together with software interfaces for the XMSS software. As shown in Figure 3,
the Murax SoC uses an APB for connecting peripherals to the main CPU core. The
peripheral can be accessed by the software running on the Murax SoC via control and
data registers that are mapped into the address space. Therefore, the software interface
can simply use read and write instructions to communicate with a hardware module. Due
to the modularity of the VexRiscv implementation, dedicated hardware modules can be
easily added to and removed from the APB before synthesis of the SoC (see Section 2.4).

We developed a general-purpose SHA-256 accelerator for accelerating the compression
function of SHA-256 in hardware and the following XMSS-specific hardware accelerators:
an XMSS-specific SHA-256 accelerator with fixed-length SHA-256 padding and an optional
internal storage for pre-computation, a WOTS-chain accelerator for the WOTS computa-
tions, and an XMSS-leaf generation accelerator for WOTS and L-tree computations.

4.1 General-Purpose SHA-256 Accelerator
Since hash-function calls are the most frequent operation in the XMSS scheme, the first
hardware module we developed is the SHA256 module which is a general-purpose hash
accelerator that accepts variable length inputs. The hardware module SHA256 has a similar
interface as the generic SHA-256 compression function in software: It receives a 512 bit
data block as input and computes the compression function, updating an internal 256 bit



Wang, Jungk, Wälde, Deng, Gupta, Szefer, Niederhagen 13

state. This state can be read out as the 256 bit digest when the SHA-256 computation is
finished. Padding is performed in software as before.

Implementation: We developed the module SHA256 by implementing an iterative ver-
sion of SHA-256. This provides a good trade-off between the throughput and the area
consumption of the implementation [HRG11]. The iterative approach implements a single
round of SHA-256 and a repeated usage of the same hardware. Therefore, the number of
clock cycles to process one SHA-256 message block is 64.

The SHA256 module is connected to the APB using a module called Apb3SHA256 as
bridge. The Apb3SHA256 module connects on one side to the 32 bit data bus and the
control signals of the APB and on the other side to the SHA256 module. It provides
one 32 bit control register and a 512 bit data register. The control register and the data
register are mapped to the APB as 32 bit words using a multiplexer, selected by the APB
address port on APB write. The 512 bit data registers are also directly connected to the
512 bit data_in port of the SHA256 module. The data_out port of the SHA256 module is
directly multiplexed to the APB bus, selected by the APB address port on APB read. The
Apb3SHA256 module takes care of forwarding control signals written by software to the
32 bit control register to the SHA256 module and the output signals of the SHA256 module
to the software-readable control register.

The software optimization of SHA-256 exploiting fixed input lengths of the SHA-256
function described in Section 3.1 can be mapped in a straightforward way to the SHA256
module. The software prepares the SHA-256 input chunks with pre-defined paddings just
as before and then transfers each chunk to the SHA256 module for processing. Therefore,
the speedup achieved for the pure software version can also be exploited for this hardware
accelerator.

In order to support the “pre-computation” optimization (Section 3.2), we added an
interface to the SHA256 module that allows to set the internal state of the SHA256 module
from software. Reading the internal state is the same as reading the SHA-256 message
digest after the last compression function computation.

We modified the function mbedtls_sha256_init from mbed TLS to replace the
software implementation of the SHA-256 compression function with a call to our hardware
accelerator as follows: The function first sets the INIT bit to high in the control register.
When this bit is received as high by the Apb3SHA256 module, it raises the init_message
signal of the SHA256 module, which resets the values of internal state registers to the
SHA-256 initialization values. In order to set the internal state for the pre-computation
optimization, the software writes a previously stored state to the data registers and then
sets the control register bit LOAD_IV to high. Once the APB interface sees this bit as
high, it sets the init_iv signal to high and the SHA256 module sets the internal state to
the 256 least significant bits of the input signal data_in. When the compression function
is called in software, the 512 bit input message block is sent to the SHA256 module via
the APB bus in words of width 32 bit. Then, the SHA256 computation is triggered by
setting the COMP bit in the control register to high. When this bit is received as high, the
SHA-256-to-APB interface toggles the start signal and the SHA256 module begins the
compression-function computation. Once the SHA256 module is finished, it raises the done
signal and the APB interface sets the DONE bit in the control register to high.

While the hardware is performing the hash computation, the software can go on doing
useful stuff in parallel, e.g., transfer the next data block to the SHA256 module. Once the
software is ready to read the result, it polls the control register until the DONE bit is set
high. The software then can read the 256 bit results via the APB in words of 32 bit.

Evaluation: Table 2 shows performance, resource requirements, and maximum frequency
of the SHA256 module. The module requires 64 cycles (one cycle per round) for computing



14 XMSS and Embedded Systems

Design Cycles Area Reg. Fmax Time Time×Area Speedup
(ALM) (MHz) (µs) (relative)

one 512 bit block
SHA256 64 1180 1550 101 0.636 — —

hash768 with pre-computation (one 512 bit block)
Murax 4950 1380 1680 136 36.3 9.10 1.00
+ SHA256 253 2970 3990 99.7 2.54 1.00 14.3

hash768 without pre-computation (two 512 bit blocks)
Murax 10,700 1380 1680 136 78.6 8.65 1.00
+ SHA256 576 2970 3990 99.7 5.78 1.00 13.6

hash1024 (three 512 bit blocks)
Murax 15,600 1380 1680 136 114 10.3 1.00
+ SHA256 700 2970 3990 99.7 7.02 1.00 16.3

Table 2: Performance of the hardware module SHA256 and comparisons of performing the
SHA-256 compression function on different numbers of 512 bit blocks when called from
the RISC-V software on a Murax SoC and on a Murax SoC with a SHA256 accelerator.
(all using the “fixed input length” optimization, i.e., no SHA-256 padding is computed).

the compression function on one 512 bit input block. It occupies about 1180 ALMs and
uses about 1550 registers. The maximum frequency is reported by the synthesis tool as
about 101MHz.

Table 2 also shows a comparison of computing one SHA-256 compression function call
in software (design “Murax”) with calling the hardware module from the software (design
“Murax + SHA256”). Transferring data to the SHA256 accelerator module and reading back
the results contributes a significant overhead: The entire computation on a 512 bit input
block (without SHA-256 padding computation) requires 253 cycles. This overhead is due
to the simple bus structure of the Murax SoC; a more sophisticated bus (e.g., an AXI
bus) may have a lower overhead — at a higher cost on resources. However, we achieve
an almost 14.3× speedup over the software implementation of the SHA-256 compression
function from the mbed TLS library which requires about 4950 cycles on the Murax SoC.

For one regular hash768 function call, the SHA-256 compression function needs to
be performed on two 512 bit blocks, while for one hash1024 function call, three 512 bit
blocks are needed. When the “pre-computation” optimization is enabled in the software,
only one 512 bit block needs to be compressed in a hash768 function call.

Table 6 shows the performance impact of the SHA256 module on XMSS key generation,
signing, and verification (designs “Murax” and “Murax + SHA256”, including both “fixed
input length” and “pre-computation” software optimizations). For these operations, the
SHA256 module accounts for an about 4.2× speedup for the key generation, signing and
verification operations in the XMSS scheme.

To further accelerate the XMSS computations in an efficient way, in the following we first
describe an XMSS-specific SHA-256 accelerator, which performs fixed-length SHA-256
padding and provides internal storage for one pre-computed state in hardware. Then, we
describe how we use this XMSS-specific SHA-256 accelerator as building-block for larger
hardware accelerators, an accelerator for WOTS-chain computations and an accelerator
for XMSS-leaf generation including both WOTS-chain and L-tree computations.



Wang, Jungk, Wälde, Deng, Gupta, Szefer, Niederhagen 15

4.2 XMSS-Specific SHA-256 Accelerator
In Section 3, we proposed two software optimizations for the XMSS scheme: “fixed
input lengths” for accelerating SHA-256 computations on 768 bit and 1024 bit inputs and
“pre-computation” for acceleration of the function prf(). For hardware acceleration, we
introduced a general-purpose SHA-256 hardware module in Section 4.1, which replaces
the SHA-256 compression function and thus naturally supports the “fixed input-lengths”
optimization and the “pre-computation” optimization of the software implementation.
However, the “pre-computation” optimization requires to transfer the pre-computed internal
state from main memory to the SHA256 module for each prf() computation. This data
transfer introduces an overhead. To eliminate this communication overhead and as building
block for the following hardware accelerator modules, we developed an XMSS-specific
SHA-256 accelerator, the SHA256XMSS module. It has a similar functionality as the
general SHA256 module; however, the SHA256XMSS module supports both of the software
optimizations: It only accepts complete input data blocks of size 768 bit or 1024 bit and
adds the SHA-256 padding in hardware. In addition, it provides an internal 256 bit register
for storing and replaying a pre-computed state.

Implementation: We used the SHA256 module as basis for the implementation of the
SHA256XMSS module. In order to handle larger input blocks, the data_in port of the
SHA256XMSS module is 1024 bit wide. The SHA256XMSS module has an additional state
machine to autonomously perform two or three compression-function iterations (depending
on the input length). The state machine also takes care of appending the pre-computed SHA-
256 padding to the input data before the last compression function computation. In addition
to the SHA256 module, the SHA256XMSS module has a message_length input signal that
selects the required input length (low for 768 bit, high for 1024 bit), a store_intermediate
input signal for requesting to store the result of the first compression-function iteration in
the internal 256 bit register, and a continue_intermediate input signal for requesting
to use the previously stored internal state instead of the first compression iteration. The
pre-computation functionality can be enabled (marked as “PRECOMP” in the tables) or
disabled at synthesis time in order to save hardware resources for a time-area trade-off.

The SHA256XMSS module is connected to the APB using the module Apb3SHA256XMSS
as bridge, which works similarly to the Apb3SHA256 module. It provides one 32 bit control
register and a 1024 bit data register.

We replaced most of the SHA-256 function calls in the XMSS reference implementation with
calls to the SHA256XMSS module. The software interface to SHA256XMSS is implemented in
a function sha256xmss, which takes a data_in pointer to the input data block, a mes-
sage_length flag, a store_intermediate flag, and a continue_intermediate
flag as input and returns the 256 bit result in a data_out buffer.

When the function sha256xmss is called from the XMSS software, the 768 bit (256 bit
if PRECOMP is used) or 1024 bit input data block (depending on the message_length
flag) is sent to the SHA256XMSS module in 32 bit words via the APB. Then the soft-
ware concatenates the inputs flags message_length, store_intermediate, con-
tinue_intermediate, and a high start bit to signal the start of the computation and
writes them to the control register of the Apb3SHA256XMSS module, which dispatches them
to the corresponding input ports of the SHA256XMSS module. On receiving a start signal,
the SHA256XMSS module begins the hash computation. Once the hash computation is
finished, the end of the computation is reported back to the software and the software
reads the 256 bit result in 32 bit words via the APB.

Evaluation: Table 3 shows the performance, resource requirements, and maximum
frequency of the SHA256XMSS module. When the pre-computation functionality is not



16 XMSS and Embedded Systems

Design Cycles Area Reg. Fmax Time Time×Area Speedup
(ALM) (MHz) (µs) (relative)

two 512 bit blocks
SHA256XMSS 128 1410 2060 104 1.23 1.60 1.00
+ PRECOMP 64 1770 2320 95.3 0.672 1.00 1.83

three 512 bit blocks
SHA256XMSS 192 1410 2060 104 1.85 — —

hash768

Murax 10,700 1380 1680 136 78.6 15.1 1.00
+ SHA256XMSS 512 3370 4920 103 4.97 1.76 15.8

+ PRECOMP 276 3540 5140 95.3 2.90 1.00 27.1
hash1024

Murax 15,600 1380 1680 136 114 9.73 1.00
+ SHA256XMSS 657 3370 4920 103 6.38 1.00 17.9

Table 3: Performance of hardware module SHA256XMSS and performance comparisons of
SHA-256 computations for 768 bit and 1024 bit (functions hash768 and hash1024 when
called from the RISC-V software on a Murax SoC and on a Murax SoC with a SHA256XMSS
accelerator.

enabled, it requires 128 cycles and 192 cycles respectively (one cycle per round) for
computing the hash digests for input messages of size 768 bit and 1024 bit. 1410 ALMs
and 2060 registers are required according to the synthesis report; the synthesis tools report
a maximum frequency of around 104 MHz. When the pre-computation functionality of the
SHA256XMSS module is enabled, the cycle count for computing the hash digests for input
messages of size 768 bit is halved, because only one 512 bit block needs to be compressed
instead of two. However, storing the pre-computed state to achieve this speedup increases
ALM and register requirements and causes a slight drop in the maximum frequency.

A comparison of the performance and resource requirements of the hash768 and
hash1024 function calls for the plain Murax design with the “Murax + SHA256XMSS” design
is also shown in Table 3. When the pre-computation functionality of the SHA256XMSS
module is enabled, one hash768 call within design “Murax + SHA256XMSS + PRECOMP”
achieves a speedup of around 27.1× over the plain Murax design. However, the time-area
product only improves by a factor of about 15.1×.

Table 6 shows the performance impact of the SHA256XMSS module on XMSS key gener-
ation, signing, and verification (Murax compared to “Murax + SHA256XMSS + PRECOMP”).
For these operations, the SHA256XMSS module accounts for an about 5.4× speedup with
pre-computation enabled.

4.3 WOTS-chain Accelerator
The SHA256XMSS module provides a significant speedup to the XMSS computations. How-
ever, since inputs and outputs need to be written to and read from the SHA256XMSS module
frequently, the raw speedup of the SHA-256 accelerator cannot fully be exploited: It actu-
ally takes more time to send the inputs to and to read the results from the accelerator than
the accelerator requires for the SHA-256 operations. This IO overhead can significantly be
reduced by performing several SHA-256 operations consecutively in hardware. In this case,
the hardware accelerator needs to be able to prepare some of the inputs by itself.

The WOTS chain computations are an ideal candidate for such an optimization, because



Wang, Jungk, Wälde, Deng, Gupta, Szefer, Niederhagen 17

the prf() computations performed in each chain step share a large amount of their inputs
(only a few bytes are modified in the address fields for each prf() computation) and the f()
computations use previous hash-function outputs. Therefore, we implemented the hardware
module Chain as dedicated hardware accelerator for WOTS chain computations.

Implementation: One building block of the WOTS-chain hardware module Chain
is the module Step, which implements the prf() and the keyed hash-function f() (see
Section 2.1.2) in hardware. The Step module has an input port key_in for the 256 bit
XMSS public seed, an input port data_in for the 256 bit data string and an input port
address_in for the 256 bit address string. The hash result is returned over an 256 bit
output port. Within the hardware module Step, two prf() computations and one f()
computation are carried out one by one. These computations are realized by interfacing
with a SHA256XMSS module described in Section 4.2. When module Step is triggered by
a start signal, the input data (the address and the XMSS public key) for the first prf()
computation is prepared and concatenated to the domain-separator of the prf(). Then the
input data is delivered to the SHA256XMSS module.

When the SHA256XMSS module has finished the hash computations, the output is
buffered in an 256 bit register KEY to be used later as the hash function key. At the same
time, the second prf() computations begins (with a modified address as input) and its
output is buffered in an 256 bit register MASK and the 256 bit input data of Step is XOR-ed
to the value in register MASK. Then, the domain-separator for function f(), the value stored
in register KEY, and the XOR-result are concatenated and sent to the SHA256XMSS module.
The output of the SHA256XMSS module is returned as the result of the module Step.

The hardware chain module Chain repeatedly uses the module Step. The Chain
module has two input ports chain_start and chain_end, which define the start and end
step for the chain computation, e.g., 0 and w − 1 respectively for key generation. Each
step in Chain uses a different address (chain step) and the output of the Step module
from the previous step (or the value from port data_in of Chain) as input data. The
result from the last step is returned via the output port of Chain.

The “pre-computation” optimization (see Section 3.2) can be enabled for the Chain
module in the SHA256XMSS module before synthesis. In this case, the store_intermediate
port of the SHA256XMSS module is set to high for the very first prf() computation of each
WOTS chain computation. Therefore, the SHA256XMSS module stores the result of the
first compression-function iteration in its internal 256 bit register. For all the following
prf() computations, the input port continue_intermediate of the SHA256XMSS module
is set to high. Therefore, the previously stored internal state is used instead of triggering
the first compression iteration.

The Chain module is connected to the APB using a module called Apb3Chain as
bridge, which works similarly to the APB bridge modules discussed before. It provides
one 32 bit control register and three 256 bit data registers, which are directly connected
to the 256 bit data_in, key_in, and address_in input ports of the Chain module. The
output is directly read from the output port of the Chain module.

We integrated the call to the Chain module into the function gen_chain of the XMSS
reference implementation, replacing the entire software implementation of the WOTS
chain computation. The software interface is similar to the previously defined interfaces:
The function chain has as arguments a data pointer to the input data string, a key
pointer to the input key, and an address pointer to the address array for the inputs and
a data_out pointer to the output buffer for the results. The chain function transfers
the input data in 32 bit words via the APB bus to the Chain module, sends a start signal
using the control register, and waits for the completion of the hardware module by polling
the control register. Finally, it reads the 256 bit result in 32 bit words back via the APB
and writes the 256 bit result into the data_out buffer.



18 XMSS and Embedded Systems

Design Cycles Area Reg. Fmax Time Time×Area Speedup
(ALM) (MHz) (µs) (relative)

Chain 5880 2530 4120 96.0 61.2 1.41 1.00
+ PRECOMP 4030 2630 4380 91.9 43.8 1.00 1.40
Murax 530,000 1380 1680 136 3890 32.8 1.00
+ Chain 6830 4280 6730 87.5 78.1 1.31 49.8

+ PRECOMP 4980 4480 6900 93.5 53.3 1.00 73.0

Table 4: Performance of the hardware module Chain and comparisons of performing the
chain function when called from the RISC-V software on a Murax SoC and on a Murax
SoC with a Chain accelerator.

Evaluation: Table 4 shows performance, resource requirements, and maximum frequency
of the Chain module. Enabling the “pre-computation” optimization (“+ PRECOMP”) results
in a 1.4× speedup for the chain computations in hardware.

A comparison between the pure software and the software/hardware performance of the
function chain is also provided in Table 4. When chain is called in the design “Murax +
Chain + PRECOMP”, a speedup of around 73.0× is achieved compared to the pure software
implementation using the Murax design. This speedup is much higher than the speedup we
achieved by only accelerating single hash function calls (Table 3, “Murax + SHA256XMSS +
PRECOMP”), because the communication overhead is significantly reduced.

Table 6 shows the performance impact of the Chain module on XMSS key generation,
signing, and verification (Murax compared to “Murax + Chain + PRECOMP”). The accelera-
tion of Chain module leads to a 5.3× speedup for key generation, a 5.8× speedup for signing
and a 4× speedup for verification when the pre-computation functionality is enabled. To
further accelerate the rest of the operations, i.e., the L-tree and Merkle tree operations, we
can add a SHA256 accelerator to the Murax SoC, e.g., SHA256 or SHA256XMSS. By adding a
SHA accelerator, a much higher speedup can be achieved: For example, within the “Murax
+ Chain + SHA256XMSS” design, a 23.4× speedup is achieved for key generation with the
pre-computation functionality enabled. For signing and verification, a 23.3× speedup and
a 18.8× speedup is achieved respectively.

4.4 XMSS-leaf Generation Accelerator
When the Chain module is used to compute WOTS chains, the IO requirements are still
quite high: For each of the l WOTS chains of one WOTS key generation, the 256 bit
WOTS private key and a starting address need to be transferred to the Chain module and
l WOTS chain public keys of 256 bit length need to be transferred back, although their
inputs only differ in the address. To further reduce the IO requirements and thus increase
the performance, we implemented a WOTS-leaf generation accelerator in hardware. The
Leaf module requires a 256 bit address (leaf index), an 256 bit secret seed, and an 256 bit
XMSS public seed as input. When the Leaf module finishes computation, an 256 bit leaf
value (the L-tree root hash value) is returned as the output.

Implementation: The Leaf module uses two sub-modules: a WOTS module and an
L-tree module. The WOTS module uses the Chain module described in the previous section
to compute the WOTS chains and returns l 256 bit strings as the WOTS public key. Then,
these l values are pairwise hashed together as described in Section 2.1.3 by the L-tree
module. Finally, the output of the L-tree module (the root of the L-tree) is returned as
the output of the Leaf module.

The WOTS module first computes the secret keys for each WOTS chain using a module



Wang, Jungk, Wälde, Deng, Gupta, Szefer, Niederhagen 19

mem SHA256XMSS

WOTS

Chain

F PRF

PRF_priv

L-tree

H PRF
leaf

secret_seed

public_seed, address

Leaf

Figure 4: Diagram of the Leaf hardware module (control logic is not shown).

PRF_priv iteratively for l times. As opposed to the prf() computations during the WOTS
chain, L-tree, and Merkle tree computations, the PRF_priv module takes a private, not
a public seed as input. For each iteration, the corresponding address is computed and
sent to the PRF_priv module as input as well. When the PRF_priv module has finished
its computation, its output is written to a dual-port memory mem, which has depth l and
width 8n. Once the secret keys for the l WOTS chains have been computed and written to
mem, the WOTS public key computation begins. This is done by using the Chain module
described in Section 4.3. The l WOTS-chains are computed in sequence. First, a read
request with the chain index as address is issued to mem, then the output of the memory is
sent to the data_in port of the Chain module together with an address (with an individual
chain index) and the XMSS public seed. The output of the Chain module is written back
to mem, overwriting the previously stored secret chain key.

Once the WOTS public key computation is finished for all chains, the L-tree module
begins its work. The building block of the L-tree module is a RAND_HASH module which
implements the tree-hash function as described in Section 2.1.3. It takes in an 256 bit
XMSS public seed, two 256 bit data strings, and a 256 bit address string as input and
returns an 256 bit output. Within the hardware module RAND_HASH, three prf() and one
h() computations are carried out in sequence using the modules PRF and H. The result
generated by the first prf() computation is buffered as the 256 bit key while the results from
the following prf() computations are buffered as the two 256 bit masks. The two 256 bit
input data strings then get each XOR-ed with a mask and sent to the final h() computation
together with the previously computed key and the address (tree layer, node index). The
result of the h() computation is returned as the output of the module RAND_HASH.

The L-tree module constructs the nodes on the first level by first reading out two
adjacent leaf nodes from the dual-port memory mem by issuing two simultaneous read
requests to adjacent memory addresses. The memory outputs are sent to data input ports
of the RAND_HASH module. Once RAND_HASH finishes computation, the result is written
back to mem in order (starting from memory address 0). Since the L-tree is not a binary
hash tree, it occasionally happens that there is a last node on one level that does not have
a sibling node. This node is read out from mem and immediately written back to the next
available memory address. This pattern of computation is repeated until the root of the
L-tree is reached. This root is returned as the output of the Leaf module.

In order to minimize the resource usage of the Leaf module, all of the modules PRF_priv,
Chain, and RAND_HASH are using one single SHA256XMSS module together. Figure 4 shows
a diagram of the main building blocks of the Leaf module. The “pre-computation”
optimization for the prf() computations again can be enabled for the SHA256XMSS module
before synthesis.



20 XMSS and Embedded Systems

Design Cycles Area Reg. FMax Time Time×Area Speedup
(ALM) (MHz) (ms) (relative)

Leaf 442 × 103 5130 8280 80.2 5.51 1.46 1.00
+ PRECOMP 296 × 103 5230 8540 71.8 4.12 1.00 1.34
Murax 27.7× 106 1380 1680 136 203 17.6 1.00
+ Leaf 455 × 103 6830 10,900 78.4 5.80 1.43 35.0

+ PRECOMP 309 × 103 7010 11,100 79.9 3.87 1.00 52.5

Table 5: Performance of the hardware module Leaf and comparisons of performing the
leaf function when called from the RISC-V software on a Murax SoC and on a Murax
SoC with a Leaf accelerator.

The Leaf module is connected to the APB using a module called Apb3Leaf as bridge,
which works similarly to the previously described APB bridge modules. It provides one
32 bit control register and three 256 bit data registers, which are directly connected to the
256 bit secret_seed, public_seed, and address ports of the Leaf module.

The Leaf module is called in the function gen_leaf_wots of the XMSS reference
implementation. As interface to the Leaf module, we provide the software function leaf.
This function has as arguments a secret_seed pointer to the secret key for PRF_priv,
a public_seed pointer to the XMSS public seed, and a address pointer to the address
array for the inputs and a pointer data_out for the result. The input values are sent
to the Leaf module in 32 bit words via the APB bus and the start signal is sent via the
control register. Then the software polls the control register until the computation is
signaled as finished by the hardware module and reads back the result.

Evaluation: Table 5 shows performance, resource requirements, and maximum frequency
of the Leaf module. Enabling the “pre-computation” optimization (design “Leaf +
PRECOMP”) gives a 1.3× speedup at the cost of only a small area overhead.

Comparisons of the software and hardware performance of one leaf computation are also
provided in Table 5. The hardware implementation “Murax + Leaf + PRECOMP” achieves
a 52.5× speedup over the pure software implementation using the plain Murax design.

Table 6 shows the performance impact of the Leaf module on XMSS key generation
and signing (Murax and “Murax + Leaf + PRECOMP”). For the key-generation operation,
the Leaf module accounts for an 47× speedup with PRECOMP enabled. The Leaf module
is not useful for verification, since it computes a complete WOTS key generation, which is
not required for verification. The BDS signing algorithm can make use of this accelerator;
for signing the first 16 XMSS leaves, on average a 2.8× speedup is achieved. To further
accelerate the rest of the hash-function-based operations, a SHA256 or SHA256XMSS can be
added to the Murax SoC in addition to the Leaf accelerator. In this case, a speedup of up
to 52× is achieved with pre-computation optimization enabled for key generation and a
speedup of over 16× for signing.

5 Performance Evaluation and Conclusion
Table 6 shows performance, resource requirements, and maximum frequency of different
designs for the XMSS operations key generation, signing, and verification. Since the
signature runtime of the BDS algorithm varies depending on the leaf index, we report the
average timing for the first 16 signature leaves of the XMSS tree.

To accelerate the key generation, signing and verification operations in the XMSS
scheme, the hardware accelerators we developed (“SHA256”, “SHA256XMSS”, “Chain” and



Wang, Jungk, Wälde, Deng, Gupta, Szefer, Niederhagen 21

“Leaf”) can be used separately or in a combined way for the acceleration, which leads
to good speedups as we can see from Table 6. In general, from Table 6 we can see that
the more computations we delegate to hardware accelerators, the more speedup we can
achieve. However, at the same time, more overhead is introduced in the hardware resource
usage, which is a trade-off users can choose depending on their needs. The best time-area
product for key generation is achieved for “Murax + Leaf” with “PRECOMP” enabled.

The maximum frequency for the designs is heavily impacted by our hardware accelerators
(which is accounted for in our speedup and time-area reports), dropping from 135 MHz
down to as low as 71.6 MHz. If a high instruction throughput of the Murax SoC is required
for an embedded application that is using our XMSS accelerators, a clock-frequency bridge
between the APB and our accelerators might be necessary to enable independent clocks;
however, this does not have an impact on the wall-clock speedup of our accelerators.

We measured a peak stack memory usage of 10.7 kB while the total memory usage
is below 110 kB (including the binary code with stdlib and the stack; we do not use a
heap). For a tree hight of h = 10, i.e., a maximum number of 2h = 1024 signatures per
signature key, the time for XMSS key generation can be as short as only 4 s using our
hardware accelerators. Even more signatures per signature key are conceivably possible
using multi-tree XMSS. Signing takes only 21 ms and signature verification only 7 ms. This
shows that using XMSS is very much feasible on a resource restricted embedded device
like the RISC-V Murax SoC with the help of efficient dedicated hardware accelerators.
Acknowledgments. This work was supported in part by NSF grant 1716541. Part of the
research was performed when the second author was affiliated at Fraunhofer Singapore.

References
[ACZ18] Dorian Amiet, Andreas Curiger, and Paul Zbinden. FPGA-based accelerator

for post-quantum signature scheme SPHINCS-256. IACR Transactions on
Cryptographic Hardware and Embedded Systems – CHES 2018, 2018(1):18–39,
Feb. 2018. Open Access.

[BBD09] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen, editors. Post-
Quantum Cryptography. Springer, Heidelberg, 2009.

[BDH11] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS – a practical
forward secure signature scheme based on minimal security assumptions. In
Bo-Yin Yang, editor, Post-Quantum Cryptography – PQCrypto 2011, volume
7071 of LNCS, pages 117–129. Springer, 2011. Second Version, IACR ePrint
Report 2011/484.

[BDS08] Johannes Buchmann, Erik Dahmen, and Michael Schneider. Merkle tree
traversal revisited. In Johannes Buchmann and Jintai Ding, editors, Post-
Quantum Cryptography – PQCrypto 2008, volume 5299 of LNCS, pages 63–78.
Springer, 2008.

[BHH+15] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben
Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and
Zooko Wilcox-O’Hearn. SPHINCS: practical stateless hash-based signatures.
In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology –
EUROCRYPT 2015, volume 9056 of LNCS, pages 368–397. Springer, 2015.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Symposium on the Theory of Computing – STOC 1996, pages 212–219. ACM,
1996.

https://tches.iacr.org/index.php/TCHES/article/view/831
https://eprint.iacr.org/2011/484


22 XMSS and Embedded Systems

Design Cycles Area BRAM FMax Time Time× Speedup
(ALM) (Blocks) (MHz) Area

(relative)

key generation

Murax 28.3 × 109 1380 132 136 208 s 9.27 1.00
+ SHA256 4.87 × 109 2970 132 99.7 48.9 s 4.69 4.25
+ SHA256XMSS 5.58 × 109 3370 132 103 54.2 s 5.89 3.83

+ PRECOMP 3.65 × 109 3540 132 95.3 38.3 s 4.38 5.43
+ Chain 3.76 × 109 4280 132 87.5 43.0 s 5.94 4.83

+ PRECOMP 3.64 × 109 4480 132 93.5 38.9 s 5.63 5.34
+ SHA256 1.02 × 109 5910 132 90.9 11.2 s 2.14 18.5

+ PRECOMP 894 × 106 6100 132 92.9 9.63 s 1.89 21.6
+ SHA256XMSS 1.08 × 109 6360 132 91.3 11.8 s 2.42 17.6

+ PRECOMP 773 × 106 6650 132 86.8 8.90 s 1.91 23.4
+ Leaf 502 × 106 6830 145 78.4 6.41 s 1.41 32.5

+ PRECOMP 353 × 106 7010 145 79.9 4.42 s 1.00 47.0
+ SHA256 462 × 106 8380 145 71.6 6.45 s 1.75 32.2

+ PRECOMP 313 × 106 8560 145 77.9 4.01 s 1.11 51.8
+ SHA256XMSS 462 × 106 8770 145 76.7 6.03 s 1.71 34.5

+ PRECOMP 311 × 106 9150 145 77.9 3.99 s 1.18 52.1

signing (average of the first 16 XMSS leaf signatures)

Murax 64.8 × 106 1380 132 136 475 ms 5.03 1.00
+ SHA256 11.2 × 106 2970 132 99.7 112 ms 2.55 4.24
+ SHA256XMSS 12.8 × 106 3370 132 103 124 ms 3.20 3.83

+ PRECOMP 8.39 × 106 3540 132 95.3 88.0 ms 2.39 5.40
+ Chain 7.98 × 106 4280 132 87.5 91.2 ms 2.99 5.21

+ PRECOMP 7.69 × 106 4480 132 93.5 82.2 ms 2.82 5.78
+ SHA256 2.28 × 106 5910 132 90.9 25.1 ms 1.14 18.9

+ PRECOMP 1.99 × 106 6100 132 92.9 21.4 ms 1.00 22.2
+ SHA256XMSS 2.38 × 106 6360 132 91.3 26.1 ms 1.27 18.2

+ PRECOMP 1.77 × 106 6650 132 86.8 20.4 ms 1.04 23.3
+ Leaf 13.8 × 106 6830 145 78.4 176 ms 9.22 2.70

+ PRECOMP 13.6 × 106 7010 145 79.9 170 ms 9.09 2.80
+ SHA256 3.09 × 106 8380 145 71.6 43.2 ms 2.77 11.0

+ PRECOMP 2.82 × 106 8560 145 77.9 36.1 ms 2.37 13.2
+ SHA256XMSS 3.40 × 106 8770 145 76.7 44.4 ms 2.98 10.7

+ PRECOMP 2.28 × 106 9150 145 77.9 29.3 ms 2.05 16.2

verification

Murax 17.4 × 106 1380 132 136 127 ms 3.90 1.00
+ SHA256 2.99 × 106 2970 132 99.7 30.0 ms 1.98 4.25
+ SHA256XMSS 3.46 × 106 3370 132 103 33.7 ms 2.51 3.79

+ PRECOMP 2.24 × 106 3540 132 95.3 23.5 ms 1.85 5.41
+ Chain 3.05 × 106 4280 132 87.5 34.9 ms 3.31 3.65

+ PRECOMP 2.98 × 106 4480 132 93.5 31.9 ms 3.17 3.99
+ SHA256 764 × 103 5910 132 90.9 8.41 ms 1.10 15.2

+ PRECOMP 692 × 103 6100 132 92.9 7.44 ms 1.01 17.1
+ SHA256XMSS 856 × 103 6360 132 91.3 9.38 ms 1.32 13.6

+ PRECOMP 589 × 103 6650 132 86.8 6.78 ms 1.00 18.8

Table 6: Time and resource comparison for key generation, signing and verification on a
Cyclone V (5CSEMA5F31C6) FPGA. “Time” is computed as quotient of “Cycles” and
”FMax”; “Time×Area” is computed based on “Area” and “Time” relative to the time-area
product of the respective most efficient design (gray rows); “Speedup” is computed based
on “Time” relative to the respective Murax design.



Wang, Jungk, Wälde, Deng, Gupta, Szefer, Niederhagen 23

[HBG+18] Andreas Hülsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld, and Aziz
Mohaisen. XMSS: eXtended Merkle Signature Scheme. RFC, 8391:1–74, 2018.

[Hig18] Stacey Higginbotham. The rise of RISC - [opinion]. IEEE Spectrum, 55(8):18,
Aug 2018.

[HRG11] Ekawat Homsirikamol, Marcin Rogawski, and Kris Gaj. Throughput vs. area
trade-offs in high-speed architectures of five round 3 SHA-3 candidates imple-
mented using Xilinx and Altera FPGAs. In Bart Preneel and Tsuyoshi Takagi,
editors, Cryptographic Hardware and Embedded Systems – CHES 2011, volume
6917 of LNCS, pages 491–506. Springer, 2011.

[Hül13] Andreas Hülsing. W-OTS+ – shorter signatures for hash-based signature
schemes. In Amr Youssef, Abderrahmane Nitaj, and Aboul Ella Hassanien,
editors, Progress in Cryptology – AFRICACRYPT 2013, volume 7918 of LNCS,
pages 173–188. Springer, 2013.

[MCF18] David McGrew, Michael Curcio, and Scott Fluhrer. Hash-based signatures.
cfrg, draft-mcgrew-hash-sigs-1:1–60, 2018.

[Mer90] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor,
Advances in Cryptology – CRYPTO 1989, volume 435 of LNCS, pages 218–238.
Springer, 1990.

[Mer18] Rick Merritt. Microsoft and Google planning silicon-level security. EE
Times Asia, Aug. 2018. url: https://www.eetasia.com/news/article/
18082202-microsoft-and-google-planning-silicon-level-security.

[NIS12] NIST. FIPS PUB 180-4: Secure Hash Standard. National Institute of Standards
and Technology, 2012.

[NIS13] NIST. FIPS PUB 186-4: Digital Signature Standard. National Institute of
Standards and Technology, 2013.

[SH10] Abdulhadi Shoufan and Nico Huber. A fast hash tree generator for Merkle
signature scheme. In International Symposium on Circuits and Systems –
ISCAS 2010, pages 3945–3948. IEEE, 2010.

[SHM11] Abdulhadi Shoufan, Nico Huber, and H. Gregor Molter. A novel cryptopro-
cessor architecture for chained Merkle signature scheme. Microprocessors and
Microsystems, 35(1):34–47, 2011.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In Foundations of Computer Science – FOCS ’94, pages 124–134.
IEEE, 1994.

[Sho99] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[Sho10] Abdulhadi Shoufan. An FPGA accelerator for hash tree generation in the
Merkle signature scheme. In Phaophak Sirisuk, Fearghal Morgan, Tarek El-
Ghazawi, and Hideharu Amano, editors, Applied Reconfigurable Computing –
ARC 2010, volume 5992 of LNCS, pages 145–156. Springer, 2010.

https://www.eetasia.com/news/article/18082202-microsoft-and-google-planning-silicon-level-security
https://www.eetasia.com/news/article/18082202-microsoft-and-google-planning-silicon-level-security

	Introduction
	Related Work
	Structure of the Paper

	Preliminaries
	XMSS
	Address Scheme
	Winternitz OTS
	L-tree
	XMSS Merkle Tree
	XMSS Key Generation
	XMSS Signature Generation
	XMSS Signature Verification
	Parameter Set

	SHA-256
	RISC-V
	VexRiscv and Murax SoC

	Setup

	Software Implementation and Optimization
	Fixed Input Length
	Pre-Computation

	Hardware Acceleration
	General-Purpose SHA-256 Accelerator
	XMSS-Specific SHA-256 Accelerator
	WOTS-chain Accelerator
	XMSS-leaf Generation Accelerator

	Performance Evaluation and Conclusion

