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Abstract. We describe a hardware-software co-design for the hash-
based post-quantum signature scheme XMSS on a RISC-V embedded
processor. We provide software optimizations for the XMSS reference
implementation for SHA-256 parameter sets and several hardware accel-
erators that allow to balance area consumption and performance based
on individual needs. By integrating hardware accelerators to the RISC-V
processor, the version with the best time-area product for key generation
gives a 41.7× speedup in wall-clock time at 5.1× larger resource require-
ments; the best speedup of 46.6× is achieved at a higher resource cost,
compared to the pure software version. Similarly, for signing, we achieve
a maximum speedup of over 21× and for verification of 18×. We tested
and measured the cycle counts of our implementation on Intel (Altera)
and Xilinx FPGAs. The integration of our XMSS accelerators into an
embedded RISC-V processor enables post-quantum secure signatures for
a large variety of embedded applications.

Keywords: XMSS · Hash-based signatures · Post-quantum cryptogra-
phy · Hardware accelerator · FPGA · RISC-V

1 Introduction

Due to the continued computerization and automation of our society, more and
more systems from consumer products and Internet-of-Things (IoT) devices to
cars, high-speed trains and even nuclear power plants are controlled by embed-
ded computers that often are connected to the Internet. Such devices can have
a severe impact not only on our information security but increasingly also on
our physical safety. Therefore, embedded devices must provide a high level of
protection against cyber attacks — despite their typically restricted computing
resources. If an attacker is able to disrupt the authenticity of transmitted data,
he or she can undermine security of the system in many ways, e.g., malicious



firmware can be loaded, or contents of a digital document can be changed with-
out being detected. Authenticity of the data is commonly ensured using digital
signature schemes, often based on the DSA and ECDSA algorithms [19].

Commonly used cryptographic algorithms, however, are vulnerable to attacks
using quantum computers: Shor’s algorithm [21,22] is able to factor integers and
compute discrete logarithms in polynomial time and Grover’s algorithm [8] pro-
vides a quadratic speedup for brute-force search. In light of recent advances
in quantum-computer development and increased research interest in bringing
practical quantum computers to life, a new field of post-quantum cryptogra-
phy (PQC) has evolved [3], which provides cryptographic algorithms that are
believed to be secure against attacks using quantum computers. Among these
PQC algorithms are a number of algorithms for signing (and verification) of data.
This paper focuses on one of these algorithms, the eXtended Merkle Signature
Scheme (XMSS), which has been standardized by the IETF [13].

XMSS is a stateful hash-based signature scheme proposed in 2011 by Buch-
mann, Dahmen and Hülsing [5]. It is based on the Merkle signature scheme [16]
and proven to be a forward-secure post-quantum signature scheme with mini-
mal security assumptions: Its security is solely based on the existence of a second
pre-image resistant hash function family and a pseudorandom function (PRF)
family. Both of these function families can be efficiently constructed even in the
presence of large quantum computers [5]. Therefore, XMSS is considered to be a
practical post-quantum signature scheme. Due to its minimal security assump-
tions and its well understood security properties, XMSS is regarded as one of
the most confidence-inspiring post-quantum signature schemes.

Embedded devices will need to use algorithms such as XMSS to make them
future-proof and to ensure their security even in the light of practical quantum
computers. One of the increasingly popular processor architectures for embedded
devices is the RISC-V architecture. It is an open and free architecture that is
proving to be a practical alternative to close-source designs. Consequently, this
work uses a RISC-V-based system on chip (SoC) called Murax (see Section 3) as
a representative for embedded system architectures and shows how to efficiently
deploy the post-quantum signature scheme XMSS on an embedded device.

Hash-based signature schemes like XMSS have relatively high resource re-
quirements. They need to perform thousands of hash-computations for key gen-
eration, signing and verification and need sufficient memory for their relatively
large signatures. Therefore, running such post-quantum secure signature schemes
efficiently on a resource-constrained embedded system is a difficult task. This
work introduces a number of hardware accelerators that provide a good time-area
trade-off for implementing XMSS on RISC-V.

1.1 Our Contributions

Our contributions are fourfold. We first provide SHA-256-specific software op-
timizations for the XMSS reference implementation. Based on the optimized
XMSS software implementation, we then develop several hardware accelerators
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to speed up the most expensive operations in XMSS. Then we integrate the ded-
icated hardware accelerators into the RISC-V processor and present a software-
hardware co-design of XMSS on a RISC-V-based embedded system. Our ex-
perimental results show a significant speedup running XMSS on our software-
hardware co-design compared to the pure software version. Finally, our work is
open-source and can be used and extended freely in research and industry.

Software Optimizations. We propose two software optimizations targeting
the most frequently used SHA-256 function in XMSS. First, for most of the
hash calls, the length of the input data is fixed and known before the function
call. Therefore, the padding for the input data can be hardcoded given the
known input data length. This optimization eliminates the cycles needed for
run-time padding computations. The second optimization is based on the fact
that for many hash function calls in XMSS, the first block of the input data
is fixed. Therefore, the result after the hash computations on the first block is
always the same for these cases. This leads to our optimization to store this
fixed result after the first hash function call, to reload the stored result for the
following calls, and then to finish computations on the rest of the input data.
These two software optimizations together bring an over 1.5× speedup to the
XMSS reference software implementation.

Hardware Accelerators. We develop several hardware accelerators to speed
up the most expensive operations in XMSS. Profiling results of the XMSS ref-
erence software implementation show that around 90% of the time is spent
performing the SHA-256 computations. Therefore, we first integrate a general-
purpose SHA-256 accelerator into the RISC-V processor. Then we develop an
XMSS-specific SHA-256 accelerator that adapts the two software optimizations
proposed for the XMSS software implementation to hardware. This XMSS-
specific SHA-256 accelerator is then used as a building block for two more acceler-
ators each accelerating larger parts of the XMSS computations. These hardware
accelerators achieve a significant speedup compared to running the correspond-
ing functions in the optimized XMSS reference implementation in software. Our
work is the first that presents these XMSS-specific hardware accelerators.

Software-Hardware Co-Design of XMSS. We develop a software-hardware
co-design of XMSS on a RISC-V-based embedded system, running some parts
of the computations in software and using hardware accelerators for compu-
tationally intensive parts of the XMSS algorithms. Our experimental results
with a tree height h = 10 (see Section 2.1 for details) on the RISC-V Mu-
rax SoC with a performance of 4.1 s for key generation and around 20.5 ms
and 6.5 ms respectively for signing and verification show that XMSS is usable
even on resource-restricted embedded platforms using hardware acceleration.
Our software-hardware co-design can be integrated into other hardware archi-
tectures with small adaptations as well.

Open Source. We will release our software-hardware co-design under an open
source license to enable academia and industry to fully exploit the benefits of
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Fig. 1: XMSS tree with binary Merkle hash tree and L-tree plus WOTS instances
as leaves. Red nodes are the WOTS private key and blue nodes are the WOTS
public key values. Green nodes are the L-Tree roots and the gray node is the
XMSS public key.

our work. The SHA-256-specific software optimizations, hardware accelerators as
well as the software-hardware co-design architectures can be applied to accelerate
other cryptosystems whenever applicable.

2 Preliminaries

In this section, we give an introduction to the relevant aspects of the XMSS
signature scheme and briefly recapitulate the functionalities of SHA-256.

2.1 XMSS

The eXtended Merkle Signature Scheme (XMSS) [13] is a stateful signature
scheme based on the Merkle signature scheme [16]. Similar to the Merkle sig-
nature scheme, XMSS uses the Winternitz one-time signature scheme (WOTS
or Winternitz-OTS) to sign individual messages [16]. One private/public WOTS
key pair is used to sign one single message (with the private secret key) and to
verify the signature (with the corresponding public verification key). To be able
to sign up to 2h messages, XMSS uses 2h pairs of WOTS secret and verifica-
tion keys. To reduce the size of the public key, a Merkle hash tree and binary
L-trees are used to reduce the authenticity of many WOTS verification keys
to one XMSS public key. Since each WOTS key must only be used once, the
signer needs to remember which WOTS keys already have been used. Hence, the
scheme is stateful. Figure 1 shows the overall structure of XMSS.

The XMSS standard also defines multi-tree versions of XMSS (XMSSˆMT)
where the leaf nodes of a higher-level tree are used to sign the root of another
tree. In this paper, we only consider single-tree XMSS. However, our results
can be mapped to multi-tree XMSS in a straightforward way. For a detailed

4



description of XMSS (and XMSSˆMT) please refer to IETF RFC 8391 [13] and
to [5].

In the following we briefly introduce the XMSS address scheme, WOTS, the
L-tree construction, and the procedure for constructing the Merkle tree. We also
give an introduction to XMSS key generation, signing, and verification.

Address Scheme. XMSS uses a hash function address scheme throughout the
Merkle tree, L-tree, and WOTS computations to uniquely identify each individ-
ual step in the overall graph. These addresses are used to derive keys for keyed
hash functions that are unique for each specific location in the graph. Each ad-
dress is composed of eight 32 bit fields, with fields for, e.g., the level within a
tree and the leaf index. In total, an XMSS address has a size of 256 bit. For
more details about the hash function address scheme, please refer to IETF RFC
8391 [13, Sect. 2.5].

Winternitz OTS. The WOTS scheme was first mentioned in [16]. For signing
a message digest D of n-byte length, WOTS uses a cryptographically secure hash
function with n-byte output strings to compute hash chains. The message digest
is interpreted as binary representation of an integer d. First, d is split into l1 =
d8n/ log2(w)e base-w words di, 0 ≤ i < l1 and a checksum c =

∑l1
i=0 w − 1− di

is computed for these base-w words (w is called the “Winternitz parameter”).
The checksum c is split into l2 = blog2(l1(w − 1))/ log2(w)) + 1c base-w words
ci, 0 ≤ i < l2. WOTS key generation, signing, and verification are performed as
follows:

– To create a private/public WOTS key pair, Alice computes l = l1 + l2 secret
strings s0,0, s0,1, . . . , s0,l−1, each of n-byte length (for example using a secret
seed and a PRF). These l n-byte strings are the private WOTS key. Then,
Alice uses a chaining function to compute l hash chains of length w − 1,
hashing each s0,i iteratively w − 1 times. The resulting chain-head values
sw−1,i, 0 ≤ i < l of n-byte length are the public WOTS key and are published
by Alice.

– To sign a message digest D split into l1 base-w words together with l2 base-w
checksum values computed as described above, Alice (re-)computes the inter-
mediate chain values (sd0,0, sd1,1, . . . , sdl1−1,l1−1, sc0,0, sc1,1, . . . , scl2−1,l2−1)
starting from her private key values. These l = l1+l2 values are the signature.

– When Bob wants to verify the signature, he recomputes the remaining chain
steps by applying, e.g., w−1−d0 hash-function iterations to signature value
sd0,0 and compares the resulting values with the corresponding public key
values. If all chain-head values match the public WOTS key, the signature
is valid.

XMSS uses a modified WOTS scheme, sometimes referred to as WOTS+ or
as W-OTS+ [11]; we use the term WOTS+ only when a explicit distinction from
“original” WOTS is required for clarification. WOTS+ uses a function chain()
as chaining function that is a bit more expensive than the simple hash-chain
function described above. The function chain() uses a keyed pseudo-random
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function prfk : {0, 1}256 7→ {0, 1}8n and a keyed hash-function fk′ : {0, 1}8n 7→
{0, 1}8n. Within each chain step, the function chain() first computes a unique
n-byte key k′ and a unique n-byte mask using the prfk() function. The input to
prfk() is the hash function address of the current step (including the chain step
and a marker for the usage as key or as mask). The key k for prfk() is a seed
that is part of the XMSS public key. The mask is then XOR-ed with the n-byte
output from the previous chain-function call (or the initial WOTS+ chain n byte
input string) and the result is used as input for the hash-function f() under the
key k′, which gives the n-byte output of the chaining function chain() in the last
iteration step.

The WOTS+ secret key consists of l (l is defined as described above for
WOTS) pseudo-random strings of n-bytes in length. The XMSS specification
does not demand a certain function to compute the WOTS+ private key. In
the XMSS reference implementation, they are generated using the prfk() func-
tion with the local address (including the chain index) as input and keyed with
the XMSS secret key seed. Each WOTS+ secret key maps to one correspond-
ing WOTS+ public key, which is computed by calling the chaining function
chain() with w − 1 iteration steps. Signing and verification in WOTS+ work
as described above for WOTS using the WOTS+ chaining function. The more
complex structure of the chaining function of WOTS+ compared to WOTS is
required for multi-target resistance and within the XMSS security proof.

L-tree. The leaf nodes of an XMSS tree are computed from the WOTS+ public
keys by using an unbalanced binary tree of l leaf nodes (one leaf node for each
WOTS+ public key value), hence called L-tree. The nodes on each level of the
L-tree are computed by hashing together two nodes from the lower level. A tree
hash function hashrand : {0, 1}8n × {0, 1}8n 7→ {0, 1}8n is used for this purpose.

The function hashrand() uses the keyed pseudo-random function prfk() and
a keyed hash-function hk′′ : {0, 1}16n 7→ {0, 1}8n. First, an n-byte key k′′ and
two n-byte masks are computed using the prfk() with the address (including
the L-tree level and node index) as input and the same public seed as used
for WOTS+ as key. The masks are then each XOR-ed to the two n-byte input
strings representing the two lower-level nodes and the results are concatenated
and used as input for the hash-function h() keyed with k′′, which gives the n-byte
output of the tree hash function hashrand().

To be able to handle the pairwise hashing at levels with an odd number of
nodes, the last node on these levels is lifted to a higher level until another single
node is available. The root of the L-tree gives one single hash-value, combining
the l WOTS+ public keys into one WOTS+ verification key.

XMSS Merkle Tree. In order to obtain a small public key, the authenticity
of many WOTS verification keys (i.e., L-tree root keys) is reduced to one XMSS
public key using a binary Merkle tree. Similar to the L-tree construction de-
scribed above, on each level of the binary tree, neighbouring nodes are pairwise
hashed together using the hashrand() function to finally obtain one single root
node that constitutes the XMSS public key root (see Figure 1).
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XMSS Key Generation. XMSS key generation is quite expensive: In order
to compute the XMSS public key, i.e., the root node of the Merkle tree, the
entire XMSS tree needs to be computed. Depending on the height h of the tree,
thousands to millions of hash-function calls need to be performed. XMSS key
generation starts by generating 2h leaf nodes of the Merkle tree. Each leaf node
consists of an WOTS+ instance together with an L-Tree. For each WOTS+
instance, first l WOTS+ private keys are generated. These are then used to
compute the l WOTS+ chains to obtain l WOTS+ public keys and then the
L-trees on top of these. Once all 2h L-tree root nodes have been computed, the
Merkle tree is computed to obtain the XMSS public key.

The XMSS public key consists of the n-byte Merkle tree root node and of
the n-byte public seed required by the verifier to compute masks and public
hash-function keys using the prfk() within the chain, L-tree, and Merkle tree
computations. The XMSS standard does not define a format for the XMSS pri-
vate key. In the XMSS reference implementation that accompanies the standard,
an n-byte secret seed is used to generate the WOTS secrets using a pseudo ran-
dom function (e.g., the prfk()).

XMSS Signature Generation. XMSS is a stateful signature scheme: Each
WOTS+ private/public key pair must be used only once; otherwise, the scheme
is not secure. In order to determine which WOTS+ key pair already has been
used, an n-byte leaf index (the state) is stored with the private key. The index
defines which WOTS+ key pair will be used for the next signature; after each
signature generation, the index must be increased.

Similar to most signature schemes, for signing an arbitrary length message or
document M , first a message digest of M is computed; details can be found in [13,
Sect. 4.1.9]. The digest M ′ is then signed using the selected WOTS+ instance.
This results in l n-byte values corresponding to the base-w decomposition of
M ′ including the corresponding checksum. Furthermore, in order to enable the
verifier to recompute the XMSS public root key from a leaf node of the Merkle
tree, the signer needs to provide the verification path in the Merkle tree, i.e.,
h n-byte nodes that are required for the pairwise hashing in the binary Merkle
tree, one node for each level in the Merkle tree.

Therefore, in the worst case, the signer needs to recompute the entire XMSS
tree in order to select the required values for the verification path. There are sev-
eral optimization strategies using time-memory trade-offs to speed up signature
generation. For example, the signer can store all nodes of the Merkle tree up to
level h′ alongside the private key. Then, when signing, he only needs to compute
an (h−h′)-height sub-tree including the WOTS leafs and can reproduce the sig-
nature path for the remaining h′ levels from the stored data. Other algorithms
with different trade-offs exist; for example the BDS tree traversal algorithm tar-
gets at reducing the worst case runtime of signature generation by computing a
certain amount of nodes in the Merkle tree at each signature computation and
by storing them alongside the XMSS state [6].
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XMSS Signature Verification. Compared to key generation, XMSS signature
verification is fairly cheap: An XMSS public key contains the Merkle root node
and the public seed. An XMSS signature contains the WOTS leaf index, l WOTS-
signature chain values, and the verification path consisting of h Merkle-tree pair
values, one for each level in the tree. The verifier computes the message digest
M ′ and then recomputes the WOTS verification key by completing the WOTS
chains and computing the L-tree. He then uses the Merkle-tree pair values to
compute the path through the Merkle tree and finally compares the Merkle tree
root node he obtains with the root node of the sender’s public key. If the values
are equal, verification succeeds and the signature is sound; otherwise verification
fails and the signature is rejected.

Parameter Set. RFC 8391 defines parameter sets for the hash functions SHA-
2 and SHAKE targeting classical security levels of 256 bit and 512 bit in order to
provide 128 bit and 256 bit of security respectively against attackers in possession
of a quantum computer [13, Sect. 5]. Parameter sets with n = 32 provide a
classical security level of 256 bit while those with n = 64 provide a classical
security level of 512 bit.

For this work, we focus on the SHA-256 hash function, thus n = 32. In this
case, the keyed hash functions prfk : {0, 1}256 7→ {0, 1}256, fk′ : {0, 1}256 7→
{0, 1}256, and hk′′ : {0, 1}512 7→ {0, 1}256, are implemented by computing the
input to SHA-256 as concatenation of:

– a 256 bit hash-function specific domain-separator,

– the 256 bit hash-function key, and

– the 256 bit or 512 bit hash-function input.

For SHA-256, there are three different parameter sets provided in RFC
8391 [13, Sect. 5.3], all with n = 32 and w = 16 but with h = 10, h = 16,
or h = 20. Since the tree height h has a significant impact on the running
time of key generation, signing, and verification, we choose h = 10 in all of our
experiments.

2.2 SHA-256

The hash function SHA-256 [18] computes a 256 bit hash value from a variable-
length input. SHA-256 uses a 256 bit internal state that is updated with 512 bit
blocks of the input. Therefore, SHA-256 defines a padding scheme in order to
extend variable-length inputs to be a multiple of 512 bit. SHA-256 works as
follows:

1. Initialize the internal state with a well-defined IV (see [18, Sect. 4.2.2]).

2. Extend the `-bit input message with a padding to make the length of the
padded input a multiple of 512 bit:

– append a single 1 bit to the input message, then

– append 0 ≤ k 0 bit such that `+1+k+64 is minimized and is a multiple
of 512, and finally
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– append ` as a 64 bit big-endian integer.

3. Iteratively apply a compression function to all 512 bit blocks of the padded
input and the current internal state to obtain the next updated internal
state.

4. Once all 512 bit blocks have been processed, output the current internal state
as the hash value.

The compression function uses the current internal state and a 512 bit input
block and outputs a new internal state. For SHA-256, the compression function
is composed of 64 rounds.

3 Setup

Software-hardware co-design has been adopted as a common discipline for de-
signing embedded system architectures since the 1990s [25]. By combining both
software and hardware in an embedded system, a trade-off between software flex-
ibility and hardware performance can be achieved depending on the user’s needs.
To accelerate XMSS computations, we developed a software-hardware co-design
of XMSS by moving the most compute-intensive operations to hardware while
keeping the rest of the operations running in software. Our software-hardware
co-design of XMSS is developed based on a RISC-V platform.

RISC-V. The RISC-V instruction set architecture (ISA) is a free and open
architecture, overseen by the RISC-V Foundation with more than 100 member
organizations5. The RISC-V ISA has been designed based on well-established
reduced instruction set computing (RISC) principles. It has a modular design,
consisting of base sets of instructions with optional instruction set extensions.
Due to its modular design, the RISC-V ISA is an increasingly popular architec-
ture for embedded systems. It is used, e.g., as a control processor in GPUs and
in storage devices [9], for secure boot and as USB security dongle [17], and for
building trusted execution environments (TEE) with secure hardware enclaves6.
Since the RISC-V ISA is an open standard, researchers and industry can easily
extend and adopt it in their designs without IP constraints.

VexRiscv. VexRiscv7 is a 32-bit RISC-V CPU implementation written in
SpinalHDL8, which is is an open source high-level hardware description lan-
guage. It supports the RV32IM instruction set and implements a 5-stage in-order
pipeline. All complementary and optional components are implemented as plu-
gins and therefore can easily be integrated and adapted into specific processor
setups as needed. VexRiscv also provides memories and caches, IO peripherals,
and buses, which can be chosen and combined as required.

5 https://riscv.org/
6 https://keystone-enclave.org/
7 https://github.com/SpinalHDL/VexRiscv/
8 https://spinalhdl.github.io/SpinalDoc/

9

https://riscv.org/
https://keystone-enclave.org/
https://github.com/SpinalHDL/VexRiscv/
https://spinalhdl.github.io/SpinalDoc/


Murax SoC. The VexRiscv project provides a predefined processor setup called
“Murax SoC” that aims at small resource usage. It is the smallest open-source
SoC that fits to our target of embedded applications based on our knowledge.
The Murax SoC integrates the VexRiscv CPU with a shared instruction and data
memory, an Advanced Peripheral Bus (APB), a JTAG programming interface,
a UART interface, and further optional peripherals. It has very low resource
requirements (e.g., only 1360 ALMs on a Cyclone V FPGA) and can operate
on its own without any further external components. Therefore, it is a good
representative for an embedded system processor with low resources. Apart from
small resource usage, another advantage of the Murax SoC is that extending the
SoC with new hardware accelerators using the APB bus can be implemented
easily in a modular way since it is written in SpinalHDL. We used this feature
for our XMSS accelerators. Murax SoC designs can be synthesized for FPGAs
and with small modifications for ASICs as well. Depending on different use cases,
our open-source software-hardware co-design of XMSS can be migrated to other
RISC-V architectures with small changes to the interface.

FPGA Setup. We evaluated our design using a DE1-SoC evaluation board
from Terasic as test-platform. This board has an Intel (formerly Altera) Cy-
clone V SoC 5CSEMA5F31C6 device with about 32,000 adaptive logic modules
(ALMs) and about 500 KB of on-chip memory resources. (We do not use the
DSP resources or the ARM Cortex-A9 CPU of the device.) We used Intel Quar-
tus Software Version 16.1 (Standard Edition) for synthesis. On the DE1-SoC, we
are running the Murax RISC-V SoC described above with additional accelerators
that will be described in Section 5. The DE1-SoC board is connected to a host
computer by a USB-JTAG connection for programming the FPGA, a USB-serial
connection for IO of the Murax SoC, and a second USB-JTAG connection for
programming and debugging the software on the Murax SoC.

We configured the on-chip RAM size of the Murax SoC to 128 kB, which is
sufficient for all our experiments. We tested our implementations on the DE1-
SoC board at its default clock frequency of 50 MHz; however, to achieve a fair
comparison, our speedup reports presented in the following sections are based
on the maximum frequency reported by the synthesis tools.

Our implementation is neither platform-specific nor dependent on a specific
FPGA vendor; we also successfully tested our implementations with very similar
results on an Arty S7 development board from Digilent with a medium-size Xilinx
Spartan 7 FPGA with part number XC7S50-1CSGA324C.

4 Software Implementation and Optimization

We used the official XMSS reference implementation9 as software-basis for this
work. The reference implementation is using OpenSSL for the hash functions.
We applied minor modifications to the XMSS reference code to link against the
mbed TLS library10 instead, because mbed TLS generally is more suitable for

9 https://github.com/joostrijneveld/xmss-reference/, commit 06281e057d9f5d
10 https://tls.mbed.org/
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resource-restricted embedded platforms like the Murax RISC-V platform and
its SHA-256 implementation has less library-internal dependencies than that of
OpenSSL, which simplifies stand-alone usage of SHA-256.

The tree-hash algorithm [13] used for computing the XMSS public key and
the authentication path within the Merkle tree requires an exponential number
of 2h WOTS operations for computing tree leafs. However, key generation and
signing is not memory intensive when the tree is computed with a depth-first
strategy. The XMSS reference implementation provides two algorithms for signa-
ture generation. The first approach (implemented in file “xmss core.c”) straight-
forwardly re-computes all tree leaf nodes in order to compute the signature au-
thentication path and therefore has essentially the same cost as key-generation.
This approach does not require to store any further information. The second
approach (implemented in file “xmss core fast.c”) uses the BDS algorithm [6]
to make a trade-off between computational and memory complexity. It requires
to additionally store a state along the private key. Both versions can be used
with our hardware accelerators. Our experiments show that both versions of the
signature generation algorithm run smoothly on the Murax SoC. Even with the
additional storage requirement, running all the operations of XMSS with the
BDS-based signature algorithm leads to reasonable memory usage, as shown in
Section 6. Since the runtime of the basic signature algorithm is almost identical
to key generation (also when using our hardware accelerators), we are using the
fast BDS version of the signature algorithm for our performance reports.

To have a fair reference point for the comparison of a pure software imple-
mentation with our hardware accelerators, we implemented two software opti-
mizations for the XMSS reference software implementation as described in the
following sub-sections. These optimizations are also helpful on other processor
architectures but only work for SHA-256 parameter sets, because they depend
on the specific SHA-256 block size and padding scheme. We are going to provide
our software optimizations to the maintainers of the XMSS reference implemen-
tation so they can integrate them if they wish to.

Figure 2 shows the XMSS call in the original version and the changes that
we applied for optimization as described in the following sections (dotted nodes
and edges are removed during optimization).

4.1 Fixed Input Length

In the XMSS software reference implementation, around 90% of the time is spent
inside the hash-function calls. Therefore, the SHA-256 function is most promis-
ing for optimization efforts. The main interface to SHA-256 in mbed TLS has
three functions, mbedtls_sha256_init, mbedtls_sha256_update, and
mbedtls_sha256_finish (combined and simplified to SHA256 in Figure 2).
The “init”-function initializes the internal state of the SHA-256 implementa-
tion. The “update”-function allows to feed in message chunks of arbitrary size
and updates the internal state accordingly. The “finish” function finally adds the
padding and returns the message digest. Internally, these functions need to adapt
arbitrary-length message chunks to the SHA-256 input block size of 512 bit: If the
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Fig. 2: Simplified XMSS call graph. Functions and function calls that have been
removed during software optimization (i.e., calls to SHA256 including init, up-
date, and finish) are displayed with dotted nodes and arrows. Functions that
have been added for the fixed-padding optimization are displayed as dashed
nodes and function calls that are due to the pre-computation optimization are
displayed as dashed arrows.

size of message-chunk input to the update function mbedtls_sha256_update
is not a multiple of 512 bit, the remaining data is buffered alongside the internal
state and used either in the next “update” or in the final “finish” call.

The SHA-256 implementation of mbed TLS is intended to hash messages
of an arbitrary length: When the “finish” function is called, the actual length
of the entire message is computed as sum over the lengths of all individual
message chunks and the padding is generated accordingly. However, within the
XMSS scheme, the inputs of almost all SHA-256 calls have a well-known, fixed
length: A general, arbitrary-length SHA-256 computation is only required when
computing the actual hash digest of the input message, which is called only once
for signing and once for verifying. For all the other SHA-256 calls, the length
of the input data is either 768 bit or 1024 bit depending on where SHA-256 is
called within the XMSS scheme: An input length of 768 bit is required within
the PRF and within the WOTS-chain computation; an input length of 1024 bit
is required within the Merkle tree and the L-trees to hash two nodes together.
Therefore, we can eliminate the overhead for the padding computation of the
SHA-256 function by “hardcoding” the two required message paddings, given
that their length is known beforehand.

Implementation. We implemented two specialized SHA-256 functions: the
function hash768 targets messages with a fixed length of 768 bit and hash1024
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256-bit hash768-padding:

0x80 0x00 . . . 0x00 0x03 0x00

512-bit hash1024-padding:

0x80 0x00 . . . 0x00 0x00 0x00 0x00 . . . 0x00 0x04 0x00

7 0 15 8 239 232 247 240 255 248

7 0 15 8 239 232 247 240 255 248 263 256 495 448 503 496 511 504

Fig. 3: Fixed padding for hash768 and hash1024.

targets messages with fixed length of 1024 bit. Figure 3 shows the padding for
hash768 and hash1024. Since SHA-256 has a block size of 512 bit, two blocks
are required to hash a message of length 768 bit. Therefore, we need to hard-
code a 256 bit padding for hash768 to fill up the second block to 512 bit. When
a 768 bit message is fed to the hash768 function, the 256 bit padding is ap-
pended to the message. Then, the new 1024 bit padded message is divided into
two 512 bit blocks and the compression function is performed on each of them
one by one. Once the compression function on the second message block has
finished, the internal state is read out and returned as the output.

The SHA-256 standard always demands to append a padding even if the input
length is a multiple of 512 bit. Therefore, for the hash1024 function a 512 bit
padding is hardcoded similarly to hash768 and three calls to the compression
function are performed.

Evaluation. Table 1 shows a comparison of the original XMSS reference im-
plementation with an optimized version making use of the “fixed input lengths”
optimization on the Murax SoC with parameters n = 32, w = 16 and h = 10.
The speedup for 768 bit inputs is about 1.07× and for 1024 bit inputs about
1.04×. The use of 768 bit inputs is more common during the XMSS computa-
tions. Therefore, we see an about 1.06× speedup for WOTS computations, key
generation, signing, and verification. We observed a similar speedup on an Intel
CPU.

4.2 Pre-Computation

Pre-computation is commonly referred to as the act of performing an initial
computation before runtime to generate a lookup table to avoid repeated com-
putations during runtime. This technique is useful in improving real-time per-
formance of algorithms at the expense of extra memory and extra preparatory
computations [2]. In XMSS, a variant of this idea can be applied to improve the
performance of the hash functions.

Within XMSS, SHA-256 is used to implement four different keyed hash-
functions, the function thash_f for computing f() in the WOTS-chains, the
function thash_h for h() in the tree hashing, and the function prf for comput-
ing the prf(), generating masks and hash-function keys. Furthermore, SHA-256
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“original” + “fixed input length” + “pre-computation”
Cycles Cycle Speedup Cycles Speedup Speedup

(A) (B) (AB) (C) (BC) (AC)

hash768 11.5× 103 10.7× 103 1.07 5.87× 103 1.83 1.95
hash1024 16.2× 103 15.6× 103 1.04 — — —

WOTS-chain 571 × 103 530 × 103 1.08 371 × 103 1.43 1.54
WOTS-leaf 42.2× 106 39.8× 106 1.06 27.7 × 106 1.44 1.53

key generation 43.3× 109 40.8× 109 1.06 28.3 × 109 1.44 1.53
signing 58.3× 106 55.0× 106 1.06 38.4 × 106 1.43 1.52
verification 26.7× 106 25.2× 106 1.06 17.4 × 106 1.45 1.54

Table 1: Cycle count and speedup of the “fixed input length” optimization and
for both, the “fixed input length” and the “pre-computation” optimizations, on
the Murax SoC (all rounded to 3 significant digits), with parameters n = 32,
w = 16 and h = 10.

is used to compute the message digest that is signed using a WOTS private
key. The domain separation between and the keying for these four functions are
achieved by computing the input to SHA-256 as the concatenation of a 256 bit
domain separator value (distinct for these four functions), the 256 bit hash key,
and the hash-function input. Since SHA-256 operates on 512 bit blocks, one en-
tire block is required for domain separation and keying of the respective hash
function.

In case of the prf, for all public-key operations when generating masks and
hash-function keys for the WOTS chain, the L-tree and Merkle tree operations,
the key to the prf is the 256 bit XMSS public seed. Thus, both the 256 bit
domain separator and the 256 bit hash-function key are the same for all these
calls for a given XMSS key pair. These two parts fit exactly into one 512 bit
SHA-256 block. Therefore, the internal SHA-256 state after processing the first
512 bit block is the same for all these calls to the prf and based on this fact, we
can save one SHA-256 compression function call per prf-call by pre-computing
and replaying this internal state. The internal state can either be computed once
and stored together with the XMSS key or each time an XMSS operation (key
generation, signing, verification) is performed.

Implementation. At the first call to prf, we store the SHA-256 context of
mbed TLS for later usage after the first compression function computation. The
state includes the internal state and further information such as the length of
the already processed data.

When the prf is called during XMSS operations, we first create a copy of
the initially stored prf SHA-256 context and then perform the following prf()
operations based on this state copy, skipping the first input block. The cost
for the compression function call on the first SHA-256 block within the prf is
therefore reduced to a simple and inexpensive memory-copy operation.
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Evaluation. Performance measurements and speedup for our pre-computation
optimization are shown in Table 1. For hash768 used in the prf, we achieve
an 1.83× speedup over the “fixed input length” optimization (column “Speedup
(BC)”), because only one SHA-256 block needs to be processed instead of two.
Compared to the original non-optimized version, with both optimizations (in-
cluding “fixed input length”) enabled we achieve an almost 2× speedup (column
“Speedup (AC)”).

The function thash_f for computing WOTS-chains requires two calls to
the prf (each on two SHA-256 blocks) for generating a key and a mask and
one call to hash768 (on two SHA-256 blocks). Without pre-computation, six
calls to the SHA-256 compression function are required. With a pre-computed
initial state for the prf, only four calls to the SHA-256 compression function are
required, saving one third of the compression function calls. This optimization
leads to a 1.43× speedup for WOTS-chain computations (row “WOTS-chain”,
column “Speedup (BC)”). The overall speedup including both optimizations
“pre-computation” and “fixed input length” is 1.54×.

For L-tree computations within the randomized tree-hash function thash_h,
there are three calls to the prf (each on two SHA-256 blocks) for computing
two masks and one hash-function key and one call to hash1024 (on three SHA-
256 blocks). Without pre-computation, nine calls to the SHA-256 compression
function are required. With a pre-computed initial state for the prf, only six
calls to the SHA-256 compression function are required, again saving one third
of the compression function calls. This optimization leads to a 1.44× speedup
for the overall XMSS leaf computations (see Table 1, row “WOTS-leaf”). The
speedup including both optimizations is around 1.53×.

The expected speedup for Merkle tree computations is about the same as
for the L-tree computations since the trees are constructed in a similar way.
Table 1 shows that we achieve an overall speedup of more than 1.5× also for the
complete XMSS operations, i.e., key generation, signing, and verification.

5 Hardware Acceleration

To further accelerate the XMSS computations, we developed several dedicated
hardware modules together with software interfaces for the XMSS software. As
shown in Figure 4, the Murax SoC uses an APB for connecting peripherals to
the main CPU core. The peripheral can be accessed by the software running
on the Murax SoC via control and data registers that are mapped into the
address space. Therefore, the software interface can simply use read and write
instructions to communicate with a hardware module. Due to the modularity of
the VexRiscv implementation, dedicated hardware modules can be easily added
to and removed from the APB before synthesis of the SoC (see Section 3).

We developed a general-purpose SHA-256 accelerator for accelerating the
compression function of SHA-256 in hardware and the following XMSS-specific
hardware accelerators: an XMSS-specific SHA-256 accelerator with fixed-length
SHA-256 padding and an optional internal storage for pre-computation, a WOTS-
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Fig. 4: Schematic of the Murax SoC. Hardware accelerators are connected to the
APB.

chain accelerator for the WOTS chaining computations, and an XMSS-leaf gen-
eration accelerator combining WOTS and L-tree computations.

5.1 General-Purpose SHA-256 Accelerator

Since around 90% of the time is spent performing the SHA-256 computations
in the XMSS reference software implementation, the first hardware module we
developed is the SHA256 module, which is a general-purpose hash accelerator
that accepts variable length inputs. The hardware module SHA256 has a similar
interface as the generic SHA-256 compression function in software: It receives a
512 bit data block as input and computes the compression function, updating an
internal 256 bit state. This state can be read out as the 256 bit digest when the
SHA-256 computation is finished. Padding is performed in software as before.

Implementation. We developed the module SHA256 by implementing an itera-
tive version of SHA-256. This provides a good trade-off between the throughput
and the area consumption [10]. The iterative approach implements a single round
of SHA-256 and repeatedly uses the same hardware. Therefore, the number of
clock cycles to process one SHA-256 message block is 64.

The SHA256 module is connected to the APB using the module Apb3SHA256

as bridge. The Apb3SHA256 module connects on one side to the 32 bit data bus
and the control signals of the APB and on the other side to the SHA256 module.
It provides one 32 bit control register and a 512 bit data register. The control
register and the data register are mapped to the APB as 32 bit words using a
multiplexer, selected by the APB address port on APB write. The 512 bit data
register is also directly connected to the 512 bit data in port of the SHA256

module. The data out port of the SHA256 module is directly multiplexed to the
APB bus, selected by the APB address port on APB read. The Apb3SHA256

module takes care of forwarding control signals written by software to the 32 bit
control register to the SHA256 module and the output signals of the SHA256

module to the memory-mapped control register.

The software optimization of SHA-256 exploiting fixed input lengths of the SHA-
256 function described in Section 4.1 can be mapped in a straightforward way
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to the SHA256 module. The software prepares the SHA-256 input chunks with
pre-defined paddings just as before and then transfers each chunk to the SHA256

module for processing. Therefore, the speedup achieved for the pure software
version can also be exploited for this hardware accelerator.

In order to support the “pre-computation” optimization (Section 4.2), we
added an interface to the SHA256 module that allows to set the internal state
of the SHA256 module from software. Reading the internal state is the same as
reading the SHA-256 message digest after the last compression function compu-
tation.

We modified the function mbedtls_sha256_init from mbed TLS to re-
place the software implementation of the SHA-256 compression function with a
call to our hardware accelerator as follows: The function first sets the INIT bit to
high in the control register. When this bit is received as high by the Apb3SHA256

module, it raises the init message signal of the SHA256 module, which resets the
values of internal state registers to the SHA-256 initialization values. In order to
set the internal state for the pre-computation optimization, the software writes
a previously stored state to the data registers and then sets the control register
bit LOAD_IV to high. Once the APB interface sees this bit as high, it sets the
init iv signal to high and the SHA256 module sets the internal state to the 256
least significant bits of the input signal data in. When the compression function
is called in software, the 512 bit input message block is sent to the SHA256 mod-
ule via the APB bus in words of width 32 bit. Then, the SHA256 computation
is triggered by setting the COMP bit in the control register to high. When this
bit is received as high, the SHA-256-to-APB interface toggles the start signal
and the SHA256 module begins the compression-function computation. Once the
SHA256 module is finished, it raises the done signal and the APB interface sets
the DONE bit in the control register to high.

While the hardware is performing the hash computation, the software can
go on transferring the next data block to the SHA256 module. This reduces the
communication overhead due to data transfer. Once the software is ready to
read the result, it polls the control register until the DONE bit is set high. The
software then can read the 256 bit results via the APB in words of 32 bit.

Evaluation. Table 2 shows performance, resource requirements, and maximum
frequency of the SHA256 module. The module requires 64 cycles (one cycle per
round) for computing the compression function on one 512 bit input block.

Table 2 also shows a comparison of computing one SHA-256 compression
function call in software (design “Murax”) with calling the hardware module from
the software (design “Murax + SHA256”). Transferring data to the SHA256 accel-
erator module and reading back the results contributes a significant overhead:
The entire computation on a 512 bit input block (without SHA-256 padding com-
putation) requires 253 cycles. This overhead is due to the simple bus structure
of the Murax SoC; a more sophisticated bus (e.g., an AXI bus) may have a lower
overhead — at a higher cost on resources. However, we achieve an almost 14.3×
speedup over the software implementation of the SHA-256 compression function
from the mbed TLS library which requires about 4950 cycles on the Murax SoC.
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Design Cycles Area Reg. Fmax Time Time×Area Speedup
(ALM) (MHz) (µs) (relative)

one 512 bit block
SHA256 64 1180 1550 101 0.636 — —

hash768 with pre-computation (one 512 bit block)
Murax 4950 1360 1690 147 33.6 9.24 1.00
+ SHA256 253 2880 3930 95.8 2.64 1.00 12.7

hash768 without pre-computation (two 512 bit blocks)
Murax 10,700 1360 1690 147 72.7 8.78 1.00
+ SHA256 576 2880 3930 95.8 6.02 1.00 12.1

hash1024 (three 512 bit blocks)
Murax 15,600 1360 1690 147 106 10.5 1.00
+ SHA256 700 2880 3930 95.8 7.31 1.00 14.5

Table 2: Performance of the hardware module SHA256 and comparisons of per-
forming the SHA-256 compression function on different numbers of 512 bit blocks
when called from the RISC-V software on a Murax SoC and on a Murax SoC
with a SHA256 accelerator. (all using the “fixed input length” optimization, i.e.,
no SHA-256 padding is computed).

For one regular hash768 function call, the SHA-256 compression function
needs to be performed on two 512 bit blocks, while for one hash1024 function
call, three 512 bit blocks are needed. When the “pre-computation” optimization
is enabled in the software, only one 512 bit block needs to be compressed in a
hash768 function call.

Table 6 shows the performance impact of the SHA256 module on XMSS com-
putations (designs “Murax” and “Murax + SHA256”, including both “fixed input
length” and “pre-computation” software optimizations). For the key generation,
signing and verification operations, the SHA256 module accounts for an about
3.7× speedup in the XMSS scheme.

To further accelerate the XMSS computations in an efficient way, in the following
we first describe an XMSS-specific SHA-256 accelerator, which performs fixed-
length SHA-256 padding and provides internal storage for one pre-computed
state in hardware. Then, we describe how we use this XMSS-specific SHA-256
accelerator as building-block for larger hardware accelerators, an accelerator for
WOTS-chain computations and an accelerator for XMSS-leaf generation includ-
ing both WOTS and L-tree computations.

5.2 XMSS-Specific SHA-256 Accelerator

In Section 4, we proposed two software optimizations for the XMSS scheme:
“fixed input lengths” for accelerating SHA-256 computations on 768 bit and
1024 bit inputs and “pre-computation” for acceleration of the function prf().
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For hardware acceleration, we introduced a general-purpose SHA-256 hardware
module in Section 5.1, which replaces the SHA-256 compression function and
thus naturally supports the “fixed input-lengths” optimization and the “pre-
computation” optimization of the software implementation. However, both of the
optimizations require to transfer data from main memory to the SHA256 module,
e.g. the “pre-computation” optimization requires to transfer the pre-computed
internal state for each prf() computation. These data transfers introduce an
overhead. To eliminate these communication overhead and as building block
for the following hardware accelerator modules, we developed an XMSS-specific
SHA-256 accelerator, the SHA256XMSS module. It has a similar functionality as
the general SHA256 module; however, the SHA256XMSS module supports both of
the software optimizations: It only accepts complete input data blocks of size
768 bit or 1024 bit and adds the SHA-256 padding in hardware. In addition, it
provides an internal 256 bit register for storing and replaying a pre-computed
state.

Implementation. We used the SHA256 module as basis for the implementa-
tion of the SHA256XMSS module. The SHA256XMSS module is connected to the
APB using the module Apb3SHA256XMSS as bridge, which works similarly to the
Apb3SHA256 module. In order to handle larger input blocks, the data in port
of the SHA256XMSS module is 1024 bit wide. The SHA256XMSS module has an
additional state machine to autonomously perform two or three compression-
function iterations (depending on the input length). The state machine also
takes care of appending the pre-computed SHA-256 padding to the input data
before the last compression function computation. In addition to the SHA256

module, the SHA256XMSS module has a message length input signal that selects
the required input length (low for 768 bit, high for 1024 bit). To support the
“pre-computation” optimization (Section 4.2), the SHA256XMSS module has a
similar interface as described for the SHA256 module in Section 5.1, which allows
to set the internal state from software.

To further support the pre-computation functionality in hardware, an input
signal store intermediate is added for requesting to store the result of the first
compression-function iteration in the internal 256 bit register. An input signal
continue intermediate is added for requesting to use the previously stored
internal state instead of the first compression iteration. The pre-computation
functionality can be enabled (marked as “PRECOMP” in the tables) or disabled at
synthesis time in order to save hardware resources for a time-area trade-off.

To reduce the latency of data transfer between the SHA256XMSS module and
the software, the SHA256XMSS module starts computation once the first input
data block (512 bit) is received. Once the SHA256XMSS module starts compu-
tation, the software starts sending the rest of the input data. An input signal
second block available is added which goes high when the rest of the input
data is received. When a valid second block available signal is received, the
SHA256XMSS module starts the computation on the rest of the input data once
it finishes the previous computation.
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Design Cycles Area Reg. Fmax Time Time×Area Speedup
(ALM) (MHz) (µs) (relative)

two 512 bit blocks
SHA256XMSS 128 1660 2070 95.4 1.34 1.95 1.00
+ PRECOMP 64 1700 2320 93.6 0.683 1.00 1.96

three 512 bit blocks
SHA256XMSS 192 1660 2070 95.4 2.01 — —

hash768
Murax 10,700 1360 1690 147 72.7 17.1 1.00
+ SHA256XMSS 274 3370 4930 99.6 2.75 1.09 26.4

+ PRECOMP 247 3440 5220 101 2.43 1.00 29.9

hash1024
Murax 15,600 1360 1690 147 106 13.7 1.00
+ SHA256XMSS 458 3370 4930 99.6 4.60 1.00 23.0

Table 3: Performance of hardware module SHA256XMSS and performance com-
parisons of SHA-256 computations for 768 bit and 1024 bit (functions hash768
and hash1024 when called from the RISC-V software on a Murax SoC and on
a Murax SoC with a SHA256XMSS accelerator.

We replaced most of the SHA-256 function calls in the XMSS reference im-
plementation with calls to the SHA256XMSS module. The software interface to
SHA256XMSS is implemented in a function called sha256xmss. This function
takes a data_in pointer to the input data block, a message_length flag, a
store_intermediate flag, and a continue_intermediate flag as input
and returns the 256 bit result in a data_out buffer.

Evaluation. Table 3 shows the performance, resource requirements, and maxi-
mum frequency of the SHA256XMSS module. When the pre-computation function-
ality is not enabled, it requires 128 cycles and 192 cycles respectively (one cycle
per round) for computing the hash digests for input messages of size 768 bit and
1024 bit. When the pre-computation functionality of the SHA256XMSS module is
enabled, the cycle count for computing the hash digests for input messages of
size 768 bit is halved, because only one 512 bit block needs to be compressed
instead of two. However, storing the pre-computed state to achieve this speedup
increases ALM and register requirements and causes a slight drop in the maxi-
mum frequency.

A comparison of the performance and resource requirements of the hash768
and hash1024 function calls for the plain Murax design with the “Murax +
SHA256XMSS” design is also shown in Table 3. When the pre-computation func-
tionality of the SHA256XMSS module is enabled, one hash768 call within design
“Murax + SHA256XMSS + PRECOMP” achieves a speedup of around 29.9× over the
plain Murax design. However, the time-area product only improves by a factor
of about 17.1×.
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Table 6 shows the performance impact of the SHA256XMSS module on XMSS
key generation, signing, and verification (row Murax compared to row “Murax
+ SHA256XMSS + PRECOMP”). For these operations, the SHA256XMSS module ac-
counts for an about 5.8× speedup with pre-computation enabled.

5.3 WOTS-chain Accelerator

The SHA256XMSS module provides a significant speedup to the XMSS computa-
tions. However, since inputs and outputs need to be written to and read from
the SHA256XMSS module frequently, the raw speedup of the SHA-256 accelera-
tor cannot fully be exploited: It actually takes more time to send the inputs to
and to read the results from the accelerator than the accelerator requires for
the SHA-256 operations. This IO overhead can significantly be reduced by per-
forming several SHA-256 operations consecutively in hardware. In this case, the
hardware accelerator needs to be able to prepare some of the inputs by itself.

The WOTS chain computations are an ideal candidate for such an optimiza-
tion, because the prf() computations performed in each chain step share a large
amount of their inputs (only a few bytes are modified in the address fields for
each prf() computation) and the f() computations use previous hash-function
outputs. Therefore, we implemented the hardware module Chain as dedicated
hardware accelerator for WOTS chain computations.

Implementation. One building block of the Chain module is the module Step,
which implements the prf() and the keyed hash-function f() (see Section 2.1) in
hardware. The Step module takes in a 256 bit XMSS public seed, a 256 bit data
string and a 256 bit address string as input and returns a 256 bit output. Within
the hardware module Step, two prf() computations and one f() computation
are carried out in sequence using the modules PRF and F. Modules PRF and F

are further implemented by interfacing with a SHA256XMSS module described in
Section 5.2.

When the Step module is triggered by a start signal, the input data for
the first prf() computation is prepared by concatenating the input XMSS public
seed and the input address string to the domain-separator of the prf(). Then
the input data is sent to the SHA256XMSS module. Once the SHA256XMSS module
finishes, the output is buffered in a 256 bit register KEY to be used later in f() as
the hash function key. At the same time, the second prf() computations begins
(with a modified address as input) and its output is buffered in a 256 bit register
MASK. Then, the 256 bit input data of the Step module is XOR-ed with the value
of MASK, further gets concatenated with the domain-separator for function f()
and the hash function key KEY. and sent to the SHA256XMSS module. The output
of the SHA256XMSS module is returned as the result of the module Step.

The hardware module Chain repeatedly uses the module Step. It has two
input ports chain start and chain end, defining the start and end step for
the chain computation respectively, e.g., 0 and w − 1 when used in the XMSS
key generation. Each step in the Chain module uses its step index as its input
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address and the output from the previous step as its input data. The result from
the last step is returned as the result of the Chain module.

The “pre-computation” optimization (see Section 4.2) can be optionally en-
abled in the Chain module since the first 512 bit block of the input is the same for
all the prf() computations. To enable the optimization , the store intermediate

port of the SHA256XMSS module is set to high for the very first prf() computation
to request the SHA256XMSS module to store the result of the first compression-
function in its internal 256 bit register. For all the following prf() computations,
the input port continue intermediate of the SHA256XMSS module is raised high
to request for the usage of the previously stored internal state.

The Chain module is connected to the APB using a module called Apb3Chain

as bridge, which works similarly to the APB bridge modules discussed before.

We replaced all the WOTS-chain function calls in function gen_chain of the
XMSS reference implementation (see Figure 2) with calls to the Chain module.
The software interface is similar to the previously defined interfaces: The function
chain has as arguments a data pointer to the input data string, a key pointer
to the input key, and an address pointer to the address array for the inputs
and a data_out pointer to the output buffer for the results.

Evaluation. Table 4 shows performance, resource requirements, and maximum
frequency of the Chain module. Enabling the “pre-computation” optimization
(“+ PRECOMP”) results in a 1.4× speedup for the chain computations in hardware.

A comparison between the pure software and the software/hardware per-
formance of the function chain is also provided in Table 4. When chain is
called in the design “Murax + Chain + PRECOMP”, a speedup of around 62.2× is
achieved compared to the pure software implementation using the Murax design.
This speedup is much higher than the speedup we achieved by only accelerating
single hash function calls (Table 3, “Murax + SHA256XMSS + PRECOMP”), because
the communication overhead is significantly reduced.

Table 6 shows the performance impact of the Chain module on XMSS key
generation, signing, and verification (Murax compared to “Murax + Chain +
PRECOMP”). The acceleration of Chain module leads to a 4.5× speedup for key
generation, a 4.9× speedup for signing and a 3.4× speedup for verification when
the pre-computation functionality is enabled. To further accelerate the rest of
the operations, i.e., the L-tree and Merkle tree operations, we can add a SHA256
accelerator to the Murax SoC, e.g., SHA256 or SHA256XMSS. By adding a SHA
accelerator, a much higher speedup can be achieved: For example, within the
“Murax + Chain + SHA256XMSS” design, a 21.5× speedup is achieved for key
generation with the pre-computation functionality enabled. For signing and ver-
ification, a 21.5× speedup and a 18.0× speedup is achieved respectively.

5.4 XMSS-leaf Generation Accelerator

When the Chain module is used to compute WOTS chains, the IO requirements
are still quite high: For each WOTS key generation, the 256 bit WOTS private
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Design Cycles Area Reg. Fmax Time Time×Area Speedup
(ALM) (MHz) (µs) (relative)

Chain 5880 2530 4120 102 57.9 1.44 1.00
+ PRECOMP 4030 2570 4380 91.8 43.8 1.00 1.32

Murax 530,000 1360 1690 147 3600 32.9 1.00
+ Chain 6930 4240 6720 90.0 77.0 1.34 46.8

+ PRECOMP 5010 4370 6900 86.7 57.8 1.00 62.3

Table 4: Performance of the hardware module Chain and comparisons of calling
the chain function from the RISC-V software on a Murax SoC and on a Murax
SoC with a Chain accelerator, with parameters n = 32 and w = 16.

key and a 256 bit starting address need to be transferred to the Chain module for
l times, although their inputs only differ in few bytes of the address. Moreover,
l WOTS chain public keys each of 256 bit need to be transferred back.

To further reduce the IO requirements and thus increase the performance, we
implemented a WOTS-leaf generation accelerator in hardware. The Leaf module
requires a 256 bit address (leaf index), a 256 bit secret seed, and a 256 bit XMSS
public seed as input. After the Leaf module finishes computation, a 256 bit leaf
value (the L-tree root hash value) is returned as the output.

Implementation. The Leaf module is built upon two sub-modules: a WOTS

module and an L-tree module. The WOTS module uses the Chain module de-
scribed in the previous section to compute the WOTS chains and returns l 256 bit
strings as the WOTS public key. Then, these l values are pairwise hashed to-
gether as described in Section 2.1 by the L-tree module. Finally, the output of
the L-tree module (the root of the L-tree) is returned as the output of the Leaf

module.
The WOTS module first computes the secret keys for each WOTS chain using

a module PRF priv iteratively for l times. As opposed to the prf() computations
during the WOTS chain, L-tree, and Merkle tree computations, the PRF priv

module takes a private, not a public seed as input. For each iteration, the corre-
sponding address is computed and sent to the PRF priv module as input as well.
When the PRF priv module has finished its computation, its output is written
to a dual-port memory mem, which has depth l and width 256 bit. Once the se-
cret keys for the l WOTS chains have been computed and written to mem, the
WOTS public key computation begins. This is done by using the Chain module
described in Section 5.3. The l WOTS-chains are computed in sequence. First, a
read request with the chain index as address is issued to mem, then the output of
the memory is sent to the input data port of the Chain module together with an
address (the chain index) and the XMSS public seed. The output of the Chain

module is written back to mem, overwriting the previously stored secret key.
Once the WOTS public key computation is finished for all chains, the L-tree

module begins its work. The building block of the L-tree module is a RAND HASH

module which implements the tree-hash function as described in Section 2.1. It
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Fig. 5: Diagram of the Leaf hardware module (control logic is not shown).

takes in an 256 bit XMSS public seed, two 256 bit data strings, and a 256 bit
address string as input and returns a 256 bit output. Within the hardware mod-
ule RAND HASH, three prf() and one h() computations are carried out in sequence
using the modules PRF and H. The result generated by the first prf() compu-
tation is buffered as the 256 bit key while the results from the following prf()
computations are buffered as the two 256 bit masks. The two 256 bit input data
strings then get each XOR-ed with a mask and sent to the final h() computation
together with the previously computed key and the address (tree layer, node in-
dex). The result of the h() computation is returned as the output of the module
RAND HASH.

The L-tree module constructs the nodes on the first level by first reading
out two adjacent leaf nodes from the dual-port memory mem by issuing two
simultaneous read requests to adjacent memory addresses. The memory outputs
are sent to data input ports of the RAND HASH module. Once RAND HASH finishes
computation, the result is written back to mem in order (starting from memory
address 0). Since the L-tree is not a binary hash tree, it occasionally happens
that there is a last node on one level that does not have a sibling node. This
node is read out from mem and immediately written back to the next available
memory address. This pattern of computation is repeated until the root of the
L-tree is reached. This root is returned as the output of the Leaf module.

In order to minimize the resource usage of the Leaf module, all of the mod-
ules PRF priv, Chain, and RAND HASH are using one single SHA256XMSS module
together. Figure 5 shows a diagram of the main building blocks of the Leaf

module. The “pre-computation” optimization for the prf() computations again
can be enabled for the SHA256XMSS module before synthesis.

The Leaf module is connected to the APB using a module called Apb3Leaf as
bridge, which works similarly to the previously described APB bridge modules.
It provides one 32 bit control register and three 256 bit data registers, which are
directly connected to the 256 bit secret seed, public seed, and address ports
of the Leaf module.
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Design Cycles Area Reg. FMax Time Time×Area Speedup
(ALM) (MHz) (ms) (relative)

Leaf 448 × 103 5210 8280 79.7 5.63 1.52 1.00
+ PRECOMP 298 × 103 5150 8550 80.5 3.71 1.00 1.52

Murax 27.7× 106 1360 1690 147 188 17.5 1.00
+ Leaf 461 × 103 6870 10,900 83.1 5.55 1.48 33.8

+ PRECOMP 311 × 103 6880 11,100 77.0 4.04 1.00 46.5

Table 5: Performance of the hardware module Leaf and comparisons of calling
the leaf function from the RISC-V software on a Murax SoC and on a Murax
SoC with a Leaf accelerator, with parameters n = 32 and w = 16.

The Leaf module is called from treehash (or the respective BDS functions)
instead of functions wots_pkgen and l_tree in the XMSS reference imple-
mentation (see Figure 2). As interface to the Leaf module, we provide the soft-
ware function leaf. This function has as arguments a secret_seed pointer
to the secret key for PRF_priv, a public_seed pointer to the XMSS public
seed, and a address pointer to the address array for the inputs and a pointer
data_out for the result.

Evaluation. Table 5 shows performance, resource requirements, and maximum
frequency of the Leaf module. Enabling the “pre-computation” optimization
(design “Leaf + PRECOMP”) gives a 1.5× speedup at the cost of only a small
area overhead.

Comparisons of the software and hardware performance of one leaf computa-
tion are also provided in Table 5. The hardware implementation “Murax + Leaf

+ PRECOMP” achieves a 46.5× speedup over the pure software implementation
using the plain Murax design.

Table 6 shows the performance impact of the Leaf module on XMSS key
generation and signing (Murax and “Murax + Leaf + PRECOMP”). For the key-
generation operation, the Leaf module accounts for an 41.7× speedup with
PRECOMP enabled. The Leaf module is not useful for verification, since it com-
putes a complete WOTS key generation, which is not required for verification.
The BDS signing algorithm can make use of this accelerator; for signing the first
16 XMSS leaves, on average a 2.5× speedup is achieved. To further accelerate
the rest of the hash-function-based operations, a SHA256 or SHA256XMSS can be
added to the Murax SoC in addition to the Leaf accelerator. In this case, a
speedup of up to 46.6× is achieved with pre-computation optimization enabled
for key generation and a speedup of over 15.6× for signing.

6 Performance Evaluation

Table 6 shows performance, resource requirements, and maximum frequency of
different designs for the XMSS operations key generation, signing, and verifica-
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Design Cycles Area BRAM FMax Time Time× Speedup
(ALM) (Blocks) (MHz) Area

key generation
Murax 28.3 × 109 1360 132 147 192 s 8.23 1.00
+ SHA256 4.87× 109 2880 132 95.8 50.9 s 4.61 3.78
+ SHA256XMSS 3.81× 109 3370 132 99.6 38.3 s 4.06 5.03

+ PRECOMP 3.35× 109 3440 132 101 33.0 s 3.58 5.83
+ Chain 3.77× 109 4240 132 90.0 41.9 s 5.59 4.59

+ PRECOMP 3.64× 109 4370 132 86.7 42 s 5.78 4.58
+ SHA256 1.03× 109 5810 132 92.5 11.1 s 2.03 17.3

+ PRECOMP 896 × 106 5980 132 84.9 10.6 s 1.99 18.2
+ SHA256XMSS 913 × 106 6310 132 90.2 10.1 s 2.01 19.0

+ PRECOMP 739 × 106 6530 132 82.6 8.95 s 1.84 21.5
+ Leaf 509 × 106 6870 145 83.1 6.13 s 1.32 31.4

+ PRECOMP 356 × 106 6880 145 77.0 4.62 s 1.00 41.7
+ SHA256 468 × 106 8420 145 71.6 6.55 s 1.73 29.4

+ PRECOMP 315 × 106 8380 145 74.7 4.22 s 1.11 45.7
+ SHA256XMSS 467 × 106 8880 145 74.1 6.30 s 1.76 30.6

+ PRECOMP 313 × 106 8840 145 75.6 4.13 s 1.15 46.6

signing (average of the first 16 XMSS leaf signatures)
Murax 64.8 × 106 1360 132 147 440 ms 4.26 1.00
+ SHA256 11.2 × 106 2880 132 95.8 117 ms 2.39 3.77
+ SHA256XMSS 8.75× 106 3370 132 99.6 87.9 ms 2.11 5.01

+ PRECOMP 7.70× 106 3440 132 101 75.8 ms 1.86 5.80
+ Chain 7.99× 106 4240 132 90.0 88.8 ms 2.68 4.95

+ PRECOMP 7.69× 106 4370 132 86.7 88.7 ms 2.77 4.96
+ SHA256 2.29× 106 5810 132 92.5 24.8 ms 1.03 17.7

+ PRECOMP 1.99× 106 5980 132 84.9 23.5 ms 1.00 18.8
+ SHA256XMSS 2.07× 106 6310 132 90.2 23.0 ms 1.03 19.1

+ PRECOMP 1.69× 106 6530 132 82.6 20.5 ms 0.954 21.5
+ Leaf 13.8 × 106 6870 145 83.1 166 ms 8.15 2.64

+ PRECOMP 13.6 × 106 6880 145 77.0 176 ms 8.63 2.50
+ SHA256 3.10× 106 8420 145 71.6 43.3 ms 2.60 10.2

+ PRECOMP 2.82× 106 8380 145 74.7 37.7 ms 2.25 11.7
+ SHA256XMSS 2.63× 106 8880 145 74.1 35.4 ms 2.24 12.4

+ PRECOMP 2.14× 106 8840 145 75.6 28.3 ms 1.78 15.6

verification
Murax 17.4 × 106 1360 132 147 118 ms 3.75 1.00
+ SHA256 2.61× 106 2880 132 95.8 27.2 ms 1.84 4.33
+ SHA256XMSS 2.06× 106 3370 132 99.6 20.7 ms 1.63 5.70

+ PRECOMP 1.80× 106 3440 132 101 17.8 ms 1.43 6.64
+ Chain 3.02× 106 4240 132 90.0 33.6 ms 3.34 3.51

+ PRECOMP 2.96× 106 4370 132 86.7 34.1 ms 3.50 3.45
+ SHA256 731 × 103 5810 132 92.5 7.91 ms 1.08 14.9

+ PRECOMP 668 × 103 5980 132 84.9 7.87 ms 1.10 15.0
+ SHA256XMSS 650 × 103 6310 132 90.2 7.21 ms 1.06 16.4

+ PRECOMP 540 × 103 6530 132 82.6 6.54 ms 1.00 18.0

Table 6: Time and resource comparison for key generation, signing and verifi-
cation on a Cyclone V (5CSEMA5F31C6) FPGA. “Time” is computed as quo-
tient of “Cycles” and ”FMax”; “Time×Area” is computed based on “Area” and
“Time” relative to the time-area product of the respective most efficient design
(gray rows); “Speedup” is computed based on “Time” relative to the respective
Murax design. All with parameters n = 32, w = 16 and h = 10.
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tion. Since the signature runtime of the BDS algorithm varies depending on the
leaf index, we report the average timing for the first 16 signature leaves of the
XMSS tree.

To accelerate the key generation, signing and verification operations in the
XMSS scheme, our hardware accelerators (“SHA256”, “SHA256XMSS”, “Chain”
and “Leaf”) can be used separately or in a combined way, which leads to good
speedups as shown in Table 6. In general, from Table 6 we can see that the more
computations we delegate to hardware accelerators, the more speedup we can
achieve. However, at the same time, more overhead is introduced in the hardware
resource usage, which is a trade-off users can choose depending on their needs.
The best time-area product for the most expensive key generation operation is
achieved in “Murax + Leaf” with “PRECOMP” enabled.

The maximum frequency for the designs is heavily impacted by our hardware
accelerators (which is accounted for in our speedup and time-area reports), drop-
ping from 147 MHz down to as low as 71.6 MHz. If a high instruction through-
put of the Murax SoC is required for an embedded application that is using our
XMSS accelerators, a clock-frequency bridge between the APB and our acceler-
ators might be necessary to enable independent clocks; however, this does not
have an impact on the wall-clock speedup of our accelerators.

We measured a peak stack memory usage of 10.7 kB while the total memory
usage is below 110 kB (including the binary code with stdlib and the stack; we
do not use a heap). For a tree hight of h = 10, i.e., a maximum number of
2h = 1024 signatures per signature key, the time for XMSS key generation can
be as short as only 4.1 s using our hardware accelerators. Even more signatures
per signature key are conceivably possible using multi-tree XMSS. Signing takes
only 20.5 ms and signature verification only 6.5 ms. This shows that using XMSS
is very much feasible on a resource restricted embedded device like the RISC-V
Murax SoC with the help of efficient dedicated hardware accelerators.

7 Related Work

To the authors’ knowledge, this is the first reported hardware-based XMSS im-
plementation. Therefore, direct comparisons between our implementation and
other XMSS hardware architectures are not possible. However, three other kinds
of comparisons are presented in this section: In Section 7.1, we summarize all the
existing FPGA-based implementations on other hash-based signatures. In Sec-
tion 7.2, a short discussion on the SHA-256 hardware module is provided. Finally,
comparisons with implementations of XMSS on other platforms are provided in
Section 7.3.

7.1 XMSS vs. Other Hash-Based Signature Schemes

There is currently a small number of publications focusing on FPGA hardware
implementations of hash-based signature schemes:
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The classic Merkle signature scheme (MSS) has been investigated and im-
plemented on FPGAs. In 2010, Shoufan presented an FPGA-based accelerator
for generating the Merkle public key in MSS [23]. A SHA-512 hardware module
is developed for the hash function computations in MSS. Their hardware accel-
erator takes 8.2 s to generate the Merkle public key with parameters w = 8 and
h = 10 using one SHA-512 module, leading to an around 11× speedup compared
to the software implementation. Later in 2011, Shoufan, Huber and Molter fur-
ther presented a cryptoprocessor architecture for the chained Merkle signature
scheme (CMSS) [24], which is a successor of MSS. All the operations, i.e., key
generation, signing, and verification are implemented on an FPGA platform,
acting as coprocessors. By use of these coprocessors, for parameters w = 8, tree
height on a CMSS level h = 10 and total CMSS levels T = 3, the authors report
timings of 6.9 s for key generation, 21.5 ms for signing and 13.2 ms for verifica-
tion. In their design, 12 SHA-512 modules in total are used to parallelize the
design for better speedups.

These implementations, however, are no longer state-of-the-art: they provide
none of the additional security features that have been developed for modern
hash-based signature schemes like XMSS, LMS [15], and the SPHINCS fam-
ily [4]. The straighforward hash-based operations are all replaced with more
complex operations involving masks and keys computed by pseudorandom func-
tions. Therefore, direct comparisons between the hardware modules among MSS
and XMSS cannot be fairly done.

For modern hash-based signature schemes, in 2018, an implementation of
the stateless hash-based signature scheme SPHINCS-256 [4] was proposed in [1].
This signature scheme is closely related to XMSS and is a predecessor of the
SPHINCS+ signature scheme11, which is one of the submissions in NIST’s PQC
standardization process12. SPHINCS-256 requires the cryptographic primitives
BLAKE-256, BLAKE-512, and ChaCha12. The authors provide efficient hard-
ware implementations for these primitives and control logic to enable signing,
key generation, and signature verification. They report timings of 1.53 ms for
signing and 65 µs for verification, but no timings for key generation.

The source code of all these works [1,23,24] is not freely available. The de-
tailed performance data for the main hardware modules is not provided in the
paper. Lack of access to the source code and detailed performance results make
comparisons unfruitful.

7.2 SHA-256

We provided a generic SHA-256 hardware module without platform-specific op-
timizations that runs on any FPGA platform. Developing a SHA-256 core is not
the main goal of this work. Users can easily use a platform-optimized SHA-256
core within our hardware modules, e.g. [7,14,20].

11 https://sphincs.org/
12 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
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7.3 XMSS on RISC-V vs. XMSS on Other Platforms

We first tested the optimized XMSS software implementation (linked against the
mbed TLS library) on an Intel i5-4570 CPU clocked at 3.2 GHz. Our experiments
show that the key generation operation takes 8.5× 109 cycles, while signing and
verification take 18.6×106 and 4.4×106 cycles respectively. As shown in Table 6,
when running the same implementation on a “Murax + Chain + SHA256XMSS +
PRECOMP” SoC, only 7.7 × 108 cycles are required for key generation, 1.7 × 106

cyels are taken in signing and 5.8×105 cycles are taken in verification. Therefore,
running the optimized XMSS software implementation on our software-hardware
co-design leads to an over 10× speedup in terms of cycles compared to running
the implementation on a off-the-shelf Intel i5 CPU.

There are a few hash-based implementations on microcontrollers. In 2012,
Hülsing, Busold, and Buchmann presented an XMSS-based implementation for
smart cards [12], including key generation, signing and verification. Their im-
plementation runs on an Infineon SLE78 microcontroller consisting of a 16-bit
CPU running at 33 MHz in its core. The hash functions are implemented by
use of the embedded AES-128 co-processor. Their experiments show that for
n = 16, h = 10 and w = 16 (maintaining a classical security level of 78 bit), the
key generation operation takes 18.8 s while the signing and verification opera-
tions in the XMSS scheme take 100 ms and 17 ms respectively.

As shown in Table 6, our software-hardware co-design for the XMSS scheme
on a RISC-V embedded processor outperforms their microcontroller-based im-
plementation in terms of running time, despite the lower security levels in their
designs. However, direct comparisons are not feasible due to the variances in the
designs, e.g. security parameters, platform architectures, etc.

8 Conclusion

In this paper, we presented the first software-hardware co-design for the XMSS
scheme on a RISC-V-based embedded system. We first proposed two software
optimizations targeting the SHA-256 function for the XMSS reference software
implementation, and then developed several hardware accelerators to speed up
the most expensive operations in XMSS, including a general-purpose SHA-256
accelerator, an XMSS-specific SHA-256 accelerator, a WOTS-chain accelerator
and a WOTS-leaf accelerator. The integration of these hardware accelerators
to the RISC-V processor brings a significant speedup in running XMSS on our
software-hardware co-design compared to the pure software version. Our work
shows that embedded devices can remain future-proof by using algorithms such
as XMSS to ensure their security, even in the light of practical quantum com-
puters.
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