
FACCT: FAst, Compact, and Constant-Time
Discrete Gaussian Sampler over Integers

Raymond K. Zhao, Ron Steinfeld and Amin Sakzad

Faculty of Information Technology, Monash University,
{raymond.zhao,ron.steinfeld,amin.sakzad}@monash.edu

Abstract. The discrete Gaussian sampler is one of the fundamental tools in imple-
menting lattice-based cryptosystems. However, a naive discrete Gaussian sampling
implementation suffers from side-channel vulnerabilities, and the existing counter-
measures usually introduce significant overhead in either the running speed or the
memory consumption.
In this paper, we propose a fast, compact, and constant-time implementation of the
binary sampling algorithm, originally introduced in the BLISS signature scheme.
Our implementation adapts the Rényi divergence and the transcendental function
polynomial approximation techniques. The efficiency of our scheme is independent of
the standard deviation, and we show evidence that our implementations are either
faster or more compact than several existing constant-time samplers. In addition, we
show the performance of our implementation techniques applied to and integrated
with two existing signature schemes: qTesla and Falcon. On the other hand, the
convolution theorems are typically adapted to sample from larger standard deviations,
by combining samples with much smaller standard deviations. As an additional
contribution, we show better parameters for the convolution theorems.
Keywords: Lattice-based crypto · discrete Gaussian sampling · constant-time · imple-
mentation · efficiency

1 Introduction
1.1 Background
The discrete Gaussian sampler over integers is an important tool in implementing lattice-
based cryptosystems, especially lattice-based signature schemes [DDLL13, BAA+17]. How-
ever, typical discrete Gaussian sampling implementations usually suffer from side-channel
vulnerabilities. The straightforward Knuth-Yao [Knu98] or binary-search Cumulative
Distribution Table (CDT) [Dev86] approaches are not constant-time, due to the branch
conditions. For the binary sampling algorithm from the BLISS signature [DDLL13], the
non-constant time implementation recently became the target of several side-channel
attacks [BHLY16, PBY17, EFGT17, BDE+18] to recover the signing key. Therefore, it is
important to implement discrete Gaussian samplers in cryptosystems, using constant-time
algorithms.

Unfortunately, existing constant-time sampling methods are usually inefficient in either
the running speed or the memory consumption. Let σ be the standard deviation of
the discrete Gaussian distribution. For typical countermeasures applied to table-based
sampling algorithms, such as the full-table access CDT approach [BCNS15], the running
time is proportional to the table size O(τσ), where τ is the tail-cut factor (typically
about 10~12). Thus, the straightforward constant-time sampling algorithms are inefficient
in both timing and memory consumption for large σ. To handle this scenario more

mailto:raymond.zhao@monash.edu,ron.steinfeld@monash.edu,amin.sakzad@monash.edu

2 FACCT: FAst, Compact, and Constant-Time Discrete Gaussian Sampler over Integers

efficiently, typically one employs a sampler (called a base sampler) to generate samples
from a much smaller standard deviation σ0, then use an expander to combine those
samples together into a sample with the larger standard deviation σ. However, two major
approaches for expander algorithms, namely the binary sampling implementation with
constant-time countermeasures [PBY17, EFGT17, BAA+17] and the convolution scheme
[PDG14, MW17], both have drawbacks: For the first binary sampling expander approach,
existing constant-time countermeasures either introduce significant overhead in the running
speed [PBY17, EFGT17] or add large look-up tables [BAA+17]. The convolution expander
approach can achieve σ0 about O(log log σ) in theory, but the total running time is still
relatively large in practice, due to the fact that the base sampler needs to run 2l times to
generate a sample with standard deviation σ, where l is the number of convolution levels.
For example, in [PDG14, KHR+18], where σ0 ≈ 6.18 and l = 2, the table-based base
sampler has about 60 table entries, and to generate each sample with standard deviation
σ, the sampling scheme needs to fully access this table 4 times. A recent bitslicing
base sampler implementation [KRR+18] significantly improve the running speed, but at
the expense of huge code size. Even worse, for cryptosystems requiring samples from
several different standard deviations, such as [ESS+18], the two existing methods need to
implement different tables or base samplers for each σ.

Due to the difficulty of implementing the sampler both efficiently and securely, some re-
cent signature schemes [DLL+17] moved away from using the discrete Gaussian distribution,
at the expense of larger signature size.

1.2 Contribution

In this paper, we introduce several new constant-time implementation techniques to address
the above efficiency issues in existing discrete Gaussian sampling implementations. In
particular, we make the following contributions:

• Our main contribution is to show that instead of storing many pre-computed exp(x)
evaluations [BAA+17] or combining many Bernoulli samples [PBY17, EFGT17],
the exp(x) polynomial approximation techniques with a carefully chosen precision
can achieve faster and more compact constant-time implementations of the binary
sampling expander. To minimise the required polynomial approximation precision,
we show how to apply the Rényi divergence analysis to the binary sampling algorithm.
Previous works on the Rényi divergence used a different order [BLL+15], only applied
this technique to the rejection in the BLISS signing algorithm [Pre17], or applied
to a different sampling method [MR18]. As opposed to [DG14], where the authors
discussed the simple polynomial approximation to the exp(x) function but discarded
it as inefficient in discrete Gaussian sampling, we show that with carefully chosen
polynomial approximation parameters, our constant-time implementation techniques
can actually be more efficient than other methods.

• We show that our scheme enjoys the property that the implementation efficiency is
independent of the standard deviation. In addition, we show that our implementation
techniques are flexible to integrate with existing cryptosystems, such as qTesla
[BAA+17] and Falcon [PFH+17].

• As an additional independent contribution, we show how to adapt the Rényi diver-
gence analysis to the convolution sampling algorithm and achieve smaller σ0 for the
base sampler, compared to the existing Kullback-Leibler Divergence (KLD) based
algorithms [PDG14, KHR+18].

Raymond K. Zhao, Ron Steinfeld and Amin Sakzad 3

2 Preliminaries
Let ρσ (x) = exp

(
−x2/2σ2) be the (continuous) Gaussian function with zero mean and

standard deviation σ. We denote the corresponding discrete Gaussian distribution on inte-
ger lattices with center zero and standard deviation σ as: DZ,σ (x) = ρσ (x) /

∑
k∈Z ρσ (k).

We omit the lattice notation (i.e. Dσ) if sampling from Z. We denote D+
σ as the distri-

bution of x ←↩ Dσ for all x ∈ Z+ (i.e. D+
σ (x) = ρσ (x) /

∑
k∈Z+ ρσ (k)). In addition, we

denote the uniform distribution on set S as U(S) and the Bernoulli distribution with bias
p as Bp (i.e. the probability distribution with Pr(X = 1) = p and Pr(X = 0) = 1 − p).
A distribution is B-bounded for some B ∈ R+, if its support is in the interval [−B,B]
[BLL+15]. Also, for a lattice Λ and any ε ∈ R+, we denote the smoothing parameter ηε(Λ)
as the smallest s ∈ R+ such that ρ1/(s·√2π) (Λ∗ \ {0}) ≤ ε, where Λ∗ is the dual lattice
of Λ: Λ∗ = {~w ∈ Rn : ∀~x ∈ Λ, ~x · ~w ∈ Z} [Pei10]. An upper bound on ηε (Z) is given by
[Pei10]: ηε(Z) ≤

√
ln(2 + 2/ε)/π.

Definition 1 (Relative Error). For two distributions P and Q such that Supp(P) =
Supp(Q), the relative error between P and Q is defined as:

∆(P||Q) = max
x∈Supp(P)

|P(x)−Q(x)|
Q(x) .

Definition 2 (Kullback-Leibler Divergence [PDG14]). For two discrete distributions P
and Q such that Supp(P) ⊆ Supp(Q), the Kullback-Leibler divergence (KLD) is defined
as:

KL(P||Q) =
∑

x∈Supp(P)

P(x) ln P(x)
Q(x) .

Definition 3 (Rényi Divergence [BLL+15, Pre17]). For two discrete distributions P and
Q such that Supp(P) ⊆ Supp(Q), the Rényi divergence (RD) of order α ∈ (1,+∞) is
defined as:

Rα(P||Q) =

 ∑
x∈Supp(P)

P(x)α

Q(x)α−1

 1
α−1

.

In addition, for α = +∞, we have:

R∞(P||Q) = max
x∈Supp(P)

P(x)
Q(x) .

Definition 4 (Max-log Distance [MW17]). For two discrete distributions P and Q such
that Supp(P) = Supp(Q), the max-log distance is defined as:

ML(P||Q) = max
x∈Supp(P)

|lnP(x)− lnQ(x)| .

For tighter bounds, we use the following theorems in this paper:

Theorem 1 (Tail-cut Bound, Adapted from [BLL+15], Thm. 2.11). Let D′σ be the
B-bounded distribution of Dσ by cutting its tail. For M independent samples, we have
R∞

(
(D′σ)M || (Dσ)M

)
≤ exp(1) if B ≥ σ ·

√
2 ln(2M).

Theorem 2 (Relative Error Bound, Adapted from [Pre17], Lemma 3 and Eq. 4). For
two distributions P and Q such that Supp(P) = Supp(Q), we have:

Rα(P||Q) ≤
(

1 + α(α− 1) · (∆ (P||Q))2

2(1−∆ (P||Q))α+1

) 1
α−1

.

4 FACCT: FAst, Compact, and Constant-Time Discrete Gaussian Sampler over Integers

The right-hand side is asymptotically equivalent to 1 + α · (∆ (P||Q))2
/2 as ∆(P||Q)→ 0.

In addition, if a signature scheme using M independent samples from Q is (λ+1)-bit secure,
then the signature scheme sampling from P will be λ-bit secure if R2λ(P||Q) ≤ 1 + 1/(4M).

Typically we have M = m · qs, where m is the dimension of the lattice and qs is the
number of queries.

3 Review of Discrete Gaussian Sampling Schemes
To sample from Dσ for large σ, typically one generates samples from a base sampler with
much smaller standard deviations, then combines the samples together with an expander.
We review two commonly used expanding approaches in this section: the binary sampling
algorithm [DDLL13] and the convolution methods [PDG14, MW17].

3.1 Binary Sampling Method
The original binary sampling method was proposed by [DDLL13] in the BLISS signature
scheme. Let σ = kσ0, k ∈ Z+, and σ0 =

√
1/ (2 ln 2). This algorithm samples from

D+
σ by first generating a sample x ←↩ D+

σ0
from the base sampler and an integer y ←↩

U ({0, . . . , k − 1}), then performing a rejection sampling on z = kx+y, with the acceptance
rate:

p = exp
(
−y(y + 2kx)

2σ2

)
. (1)

To generate negative samples, one can sample and apply a random sign bit, with the
expection of rejection with probability 1/2 when z = 0.

Theorem 3 (Adapted from [DDLL13], Thm. 6.6). Given x ←↩ D+
σ0

and y ←↩
U ({0, . . . , k − 1}), the probability to output some integer z = kx + y is proportional
to:

ρσ0(x) · p = exp
(
− x2

2σ2
0
− −y(y + 2kx)

2(kσ0)2

)
= exp

(
− (kx+ y)2

2(kσ0)2

)
= ρkσ0(z) = ρσ(x).

The rejection framework of the binary sampling algorithm is shown in Algorithm 1.
The rejection sampling itself will not leak any secret information, if the underlying base
sampler and the Bernoulli sampler are side-channel resistant. Unfortunately, to achieve
efficient algorithms, the original sampler implementations in the BLISS signature are not
constant-time (see Algorithm 2 and Algorithm 3, respectively). When attacking signature
schemes similar to the BLISS, the attacker can gather the discrete Gaussian vectors, or the
intermediate base samples and Bernoulli samples, by exploiting the side-channels, such as
the cache [BHLY16], or timing and power [EFGT17], and then recover the signing key by
using the leaked information. These attacks only require about several thousand signatures
and the corresponding samples to succeed.

To mitigate these side-channel attacks, several efforts have been proposed. We review
them now.

3.2 Existing Timing/Cache Attack Countermeasures for the Binary
Sampling Method

3.2.1 Random Shuffle

One commonly used heuristic countermeasure is performing the Fisher-Yates random
shuffle (or Knuth shuffle) [Knu98], to mask the relation between the retrieved side-channel
information of the samples and the secret, after performing non-constant time sampling

Raymond K. Zhao, Ron Steinfeld and Amin Sakzad 5

Algorithm 1 Binary sampling scheme [DDLL13].
Output: A sample from D+

σ .
function BinarySampler(k)

Let x←↩ D+
σ0
.

Let y ←↩ U ({0, . . . , k − 1}).
Let z = kx+ y.
Let t = y (y + 2kx).
Let b←↩ Bexp(−t/2σ2).
if b = 0 then

Restart BinarySampler.
end if
return z.

end function

Algorithm 2 Base sampler from BLISS [DDLL13].
Output: A sample from D+

σ0
.

function BaseSampler
Sample b←↩ U ({0, 1}).
if b = 0 then

return 0.
end if
i = 1
while true do

Sample (b1, b2, . . . , b2i−1)←↩ (U ({0, 1}))2i−1.
if (b1, b2, . . . , b2i−2) 6= (0, 0, . . . , 0) then

Restart BaseSampler.
end if
if b2i−1 = 0 then

return i.
end if
i = i+ 1.

end while
end function

Algorithm 3 Bernoulli sampler from BLISS [DDLL13].
Input: Integer t = y (y + 2kx) with 0 ≤ t < 2l and binary form t = tl−1 . . . t0, where
x←↩ D+

σ0
and y ←↩ U ({0, . . . , k − 1}). Pre-computed table pi = exp

(
−2i/2σ2) for i < l.

Output: A sample from Bp, where p = exp(−t/2σ2).
function BernoulliSampler(t)

for i = l − 1 downto 0 do
if ti = 1 then

Sample a←↩ Bpi .
if a = 0 then

return 0.
end if

end if
end for
return 1.

end function

6 FACCT: FAst, Compact, and Constant-Time Discrete Gaussian Sampler over Integers

Algorithm 4 Constant-time Bernoulli sampler [PBY17, EFGT17].
Input: Integer t = y (y + 2kx) with 0 ≤ t < 2l and binary form t = tl−1 . . . t0, where
x←↩ D+

σ0
and y ←↩ U ({0, . . . , k − 1}). Pre-computed table pi = exp

(
−2i/2σ2) for i < l.

Output: A sample from Bp, where p = exp(−t/2σ2).
function BernoulliSampler(t)

Let r = 1.
for i = l − 1 downto 0 do

Sample a←↩ Bpi .
Set r = r · (1− ti + ati).

end for
return r.

end function

schemes [RRVV14, Saa16]. However, in the above mentioned attacking scenarios, the
random permutation cannot totally hide the statistical features of the distributions in
the attacked vector. By performing statistical analysis, it was shown in [Pes16] that an
attacker only requires marginally larger yet still practical number of samples to rearrange
the coordinates and “undo” the shuffle.

3.2.2 Constant-time Base/Bernoulli Sampler

The base sampler can be implemented in constant-time, by using a full-table access
Cumulative Distribution Table (CDT) sampler [BCNS15]. A recent work [HKR+18]
suggested using a binary search CDT sampler with constant number of iterations O(logB)
on hardware, where B is the tail-cut bound. However, the memory access in this approach is
not constant, which might cause potential cache timing leakage in software implementations
[KRR+18]. On the other hand, for the table-based Bernoulli sampler, several works
[BHLY16, PBY17, EFGT17] suggested the countermeasure of removing the branches
and performing full-table access (see Algorithm 4). However, this countermeasure adds
significant overhead, since it requires additional randomness for each table entry. A recent
lattice-based signature scheme in the NIST PQC submission [NIS16], qTesla [BAA+17],
suggested a more efficient approach that the sampler computes the bias p in (1) by
multiplying table entries from each subtable based on the binary representation of the
input, where every subtable Bi has 32 ·8 = 256 bytes (see Algorithm 5). However, although
the number of iterations in this sampler is constant, the memory access pattern depends
on the size of the underlying CPU cachelines. This could cause a potential leakage via
cache timing side-channels on some architectures.

3.3 Convolution Methods
Previous works [PDG14, KHR+18] suggested applying the following KLD-based convolu-
tion theorem to construct discrete Gaussian sampling algorithms:

Theorem 4 (KLD-based Convolution Theorem, Adapted from [PDG14], Lemma 3).
Let x1 ←↩ DZ,σ1 and x2 ←↩ DkZ,σ2 for some σ1, σ2 ∈ R+. Let σ−2

3 = σ−2
1 + σ−2

2 and
σ2 = σ2

1 + σ2
2. For any ε ∈ (0, 1/2), if σ1 ≥ ηε(Z)/

√
2π and σ3 ≥ ηε(kZ)/

√
2π, then the

distribution P of x1 + x2 satisfies:

KL(P||Dσ) ≤ 2
(

1−
(

1 + ε

1− ε

)2
)2

≈ 32ε2.

For the deviation σ ≈ 215 in the BLISS-I parameter set, one can generate x1, x2 ←↩ Dσ1

and compute x1 + k1x2, where σ1 = σ/
√

1 + k2
1 ≈ 19.53 and k1 = 11. Sampling from Dσ1

Raymond K. Zhao, Ron Steinfeld and Amin Sakzad 7

Algorithm 5 Bernoulli sampler with constant number of iterations [BAA+17].
Input: Integer t = y (y + 2kx) with 0 ≤ t < 215, where x ←↩ D+

σ0
and y ←↩

U ({0, . . . , k − 1}). Pre-computed Bernoulli table entries Bi,j = exp
(
−2(j·32i)/2σ2

)
,

where i, j ∈ Z+, 0 ≤ i < 3, and 0 ≤ j < 32. Each Bi,j has 8 bytes.
Output: A sample from Bp, where p = exp(−t/2σ2).
function BernoulliSampler(t)

Sample r ←↩ U
(
{0, 1}62).

Let c = 262.
Let s = t.
for i = 0 to 2 do

Set c = c · Bi,s mod 32.
Set s = s/32.

end for
if r ≥ bce then

return 0.
else

return 1.
end if

end function

Algorithm 6 KLD-based convolution sampling scheme [PDG14, KHR+18].
Output: A sample from Dσ, where σ ≈ 215.
function ConvolutionSampler

Sample x1, x2, x3, x4 ←↩ Dσ0 , where σ0 ≈ 6.18.
Let y = (x1 + 3x2) + 11 · (x3 + 3x4).
return y.

end function

can be further decomposed into x3 + k2x4, where x3, x4 ←↩ Dσ2 , σ2 = σ1/
√

1 + k2
2 ≈ 6.18,

and k2 = 3 (see Algorithm 6). If the sampling algorithm of Dσ2 (or Dσ1) is constant-time,
then the whole sampling scheme will be constant-time. To sample from Dσ2 , a recent
work [KRR+18] adapted the bitslicing method to implement the Knuth-Yao algorithm
[KY76] more efficiently in constant-time, compared to the previous full-table access CDT
approach.

Meanwhile, a recent work [MW17] proposed the following max-log based convolution
theorems:

Theorem 5 (Adapted from [MW17], Cor. 4.1). Let ~z = (z1, . . . , zn) ∈ Zn be a nonzero
vector with gcd(z1, . . . , zn) = 1 and ~σ = (σ1, . . . , σn) ∈ Rn with σi ≥ ‖~z‖∞ · ηε(Z)/

√
π for

all i ≤ n. Let ~y ←↩
(
D′σi

)n, with ML
(
D′σi ||Dσi

)
≤ µi for all i. Let σ2 =

∑
z2
i σ

2
i and P

be the distribution of
∑
ziyi. Then ML(P||Dσ) ≤ 2ε+

∑
µi.

Theorem 6 (Adapted from [MW17], Cor. 4.2). Let x1 ←↩ D′Z,σ1
and x2 ←↩ D′kZ,σ2

for some σ1, σ2 ∈ R+. Let σ−2
3 = σ−2

1 + σ−2
2 and σ2 = σ2

1 + σ2
2. If σ1 ≥ ηε(Z)/

√
2π,

σ3 ≥ ηε(kZ)/
√

2π, ML
(
D′Z,σ1

||DZ,σ1

)
≤ µ1, and ML

(
D′kZ,σ2

||DkZ,σ2

)
≤ µ2, then the

distribution P of x1 + x2 satisfies ML(P||Dσ) ≤ 4ε+ µ1 + µ2.

8 FACCT: FAst, Compact, and Constant-Time Discrete Gaussian Sampler over Integers

Algorithm 7 exp(x) [PFH+17].
Input: x ∈ R, such that |x| ≤ ln 2.
Output: ex with about 50-bit precision.
function exp(x)

Let p1 = 1.66666666666666019037 · 10−1.
Let p2 = −2.77777777770155933842 · 10−3.
Let p3 = 6.61375632143793436117 · 10−5.
Let p4 = −1.65339022054652515390 · 10−6.
Let p5 = 4.13813679705723846039 · 10−8.
Let s = x/2.
Let t = s2.
Let c = s− t · (p1 + t · (p2 + t · (p3 + t · (p4 + t · p5)))).
Let r = 1− ((s · c) / (c− 2)− s).
return r2.

end function

4 Proposed Constant-time Implementation Techniques
4.1 Directly Approximating the Exp Function
The Bernoulli bias p in (1) can be directly computed within double precision (53 bits), if
the RD-based relative error bound (Theorem 2) is adapted [Pre17]. Falcon [PFH+17], a
recent lattice-based signature scheme in the NIST PQC submission, applied this approach
to compute the rejection bias when sampling from the arbitrary-centered discrete Gaus-
sian distribution, by using an exp(x) implementation similar to the C standard library
(see Algorithm 7). However, the floating-point division instructions on the Intel CPUs
have various latency and throughput [Int]. Furthermore, the compiler may replace the
division operation with its own arithmetic library routine, which may not be constant-time
[Sei18]. Therefore, the division arithmetic should be generally avoided in constant-time
implementation.

We compute the exp(x) by evaluating a polynomial at point x instead, where only
the floating-point additions and multiplications are involved. Both the addition and
the multiplication instructions on the Intel CPUs have constant latency and throughput
[Int]. To find such an exp(x) approximation with sufficient precision, we use the following
approach:

1. Let t = y(y + 2kx). First, we observe that since σ0 =
√

1/ (2 ln 2) and σ = kσ0, the
Bernoulli bias p in (1) can be re-written as:

p = exp
(
−t/2σ2) = exp

(
− ln 2 · t/k2) = 2−t/k

2
.

Therefore, we can find a polynomial approximation of 2−t/k2 for t ≥ 0.

2. Second, we adapt the method from [MBdD+10]. Let a = −t/k2. We get:

2a = 2bac+z = 2bac · 2z,

for 0 ≤ z < 1, where z is the remaining part of rounding operation. We can directly
get 2bac by changing the exponent of a double precision variable. To approximate
2z, we use the sollya tool [CJL10] to find a polynomial with sufficient number of
terms, such that the minimax error is within the RD-based relative error bound.

According to the manual of the sollya tool [CLJ], we use the following three functions
to get such a polynomial and verify its precision:

Raymond K. Zhao, Ron Steinfeld and Amin Sakzad 9

guessdegree. The guessdegree(f, I, δ, ω) function finds the minimal degree sufficient for the
polynomial approximation P of function f over the interval I, such that ‖Pω−f‖∞ <
δ. For example, we use the command guessdegree(1,[0,1],1b-45,1/2^x) to
estimates the minimal degree of polynomial approximation P (x) over the interval
[0, 1], such that:

‖P/2x − 1‖∞ < 2−45 =⇒ ∆ (P ||2x) < 2−45.

fpminimax. The fpminimax(f, n, L, I, floating, relative) function performs the heuristic
from [BC07] to find a degree-n polynomial approximation P of function f over
the interval I, such that P has the minimal minimax relative error, with the i-th
floating-point coefficient ci having precision Li for all i ≤ n. For example, we use
the command fpminimax(2^x,9,[|1,D...|],[0,1],floating,relative) to find
the polynomial approximation P (x) of 2x over the interval [0, 1], with degree 9 (the
result from the previous guessdegree command) and double precision coefficients
(“D” represents double precision in this command). To make sure P (0) = 1, we set
L0 = 1 (1-bit precision), which results in coefficient c0 = 1.

supnorm. The supnorm(p, f, I, relative, accuracy) function computes the interval bound
r = [l, u] for the supremum norm of the relative error ∆ = |p/f − 1| over the interval
I, such that supx∈I{∆(x)} ⊆ r and 0 ≤ |u/l − 1| ≤ accuracy. For example, we use
the command supnorm(P,2^x,[0,1],relative,1b-128) to verify ∆(P ||2x) over
the interval [0, 1] is smaller than the required relative error bound, where P is the
polynomial approximation computed in the previous fpminimax command.

4.2 FACCT Algorithm
Our constant-time Bernoulli sampler adapting the exp(x) approximation approach above
is shown in Algorithm 8. Let the standard deviation σ = kσ0, where k ∈ Z+ and
σ0 =

√
1/(2 ln 2). Let P (z) be the polynomial approximation of 2z with δP -bit precision

for 0 ≤ z < 1. Given an integer t = y (y + 2kx), where x ←↩ D+
σ0

with tail-cut bound
B and y ←↩ U ({0, . . . , k − 1}), this algorithm generates a sample from Bp, where p =
exp(−t/2σ2) = 2−t/k2 . We assume an IEEE-754 floating-point value f ∈ (0, 1] with
(δf + 1)-bit precision is represented by f =

(
1 +mantissa · 2−δf

)
· 2exponent, where integer

mantissa has δf bits and exponent ∈ Z−.

4.2.1 FACCT Relative Error Analysis

Here, we analyse the relative error of Algorithm 8. Since the algorithm will output 1 when
f = 1.0, we only consider the case when f ∈ (0, 1), which implies exponent < 0. Let
PFACCT and PIDEAL represent the distribution of the FACCT Bernoulli sampler and the
ideal Bernoulli sampler, respectively. Since a = −t/k2 and z = a− bac, we have:

PIDEAL(bac, z) = exp(−t/2σ2) = 2a = 2z+bac.

Since we represent f = P (z) ·2bac as f =
(
1 +mantissa · 2−δf

)
·2exponent with (δf +1)-bit

precision, we have:

PFACCT(bac, z) =
(
mantissa+ 2δf

)
2δf+1 · 2l+exponent+1

2l
=
(
1 +mantissa · 2−δf

)
· 2exponent

= f

≤
(

1 + 2−(δf+1)
)(

P (z) · 2bac
)
,

10FACCT: FAst, Compact, and Constant-Time Discrete Gaussian Sampler over Integers

Algorithm 8 FACCT Bernoulli sampler.
Input: Deviation σ = kσ0, where k ∈ Z+ and σ0 =

√
1/(2 ln 2). Integer t = y (y + 2kx),

where x←↩ D+
σ0

with tail-cut bound B and y ←↩ U ({0, . . . , k − 1}). Polynomial approxi-
mation P (z) of 2z with δP -bit precision for 0 ≤ z < 1. Bit length l ≥ 2B + 1.

Output: A sample from Bp, where p = exp(−t/2σ2) = 2−t/k2 .
function BernoulliSampler(t)

Let a = −t/k2.
Let z = a− bac.
Evaluate s = P (z) on point z.
Let f = s · 2bac.
Let represent f by f =

(
1 +mantissa · 2−δf

)
· 2exponent, with δf -bit mantissa.

Sample rm ←↩ U
(
{0, 1}δf+1).

Sample re ←↩ U
(
{0, 1}l

)
.

if
(
rm < mantissa+ 2δf and re < 2l+exponent+1) or f = 1.0 then
return 1.

else
return 0.

end if
end function

where the last inequality follows because the ideal f = P (z) · 2bac and the actual f has
(δf + 1)-bit precision. Then, the relative error between PFACCT and PIDEAL is:

∆(PFACCT||PIDEAL) = max
bac,z

∣∣∣∣PFACCT(bac, z)
PIDEAL(bac, z) − 1

∣∣∣∣
≤ max
bac,z

∣∣∣∣∣
(
1 + 2−(δf+1)) (P (z) · 2bac

)
2z+bac − 1

∣∣∣∣∣
≤
(

1 + 2−(δf+1)
) (

1 + 2−δP
)
− 1 (by definition of δP)

= 2−δP + 2−(δf+1) + 2−(δP+δf+1). (2)

We also need to make sure that l + exponent + 1 ≥ 0 during the comparison in
Algorithm 8. Let ∆ be the relative error in (2). Since a = −t/k2, by definitions of
exponent and ∆ from (2), we have:

exponent ≥
⌊
log2

(
(1−∆) · 2−t/k

2
)⌋

≥
⌊
−1− t/k2⌋ (we choose parameters such that ∆ ≤ 1/2)

≥
⌊
−1− y(y + 2kx)

k2

⌋
(by definition of t)

≥
⌊
−1− y2

k2 −
2kxy
k2

⌋
≥ −2B − 2. (by definitions of x and y)

Therefore, if l + exponent+ 1 ≥ 0, we have:

l ≥ 2B + 1. (3)

To ensure that the compiler will not replace any floating-point arithmetic with its own
library implementation, we manually write the arithmetic in the source code by using the
Intel intrinsics. This also enables the Single Instruction Multiple Data (SIMD) instruction

Raymond K. Zhao, Ron Steinfeld and Amin Sakzad 11

sets, such as the AVX2, which computes 4x double precision floating-point arithmetic in
parallel.

Compared with the previous table-based constant-time Bernoulli sampling techniques
[BHLY16, PBY17, EFGT17, BAA+17], where the number of table entries is proportional
to the bit length of t, our implementation is more compact in terms of the memory
consumption, since we only need to store a small number of polynomial coefficients. For
example, in the BLISS-I parameter set, k = 254, which implies 0 ≤ t < 221. This requires
at least 21 table entries in the previous techniques, compared to only 9 coefficients for
about 45-bit precision in our implementation (see Section 4.4). Also, our implementation
is more efficient for large standard deviations, since the code is independent of σ (assuming
−1/k2 is a pre-computed constant), while the number of iterations (proportional to the
number of table entries) relies on k in previous table-based approaches. In addition, if the
application requires samples from several different standard deviations, our implementation
does not need additional pre-computed tables for each different k.

4.3 Concrete Rényi Divergence Based Convolution Sampling
Previous works [Pre17] only implied the potentially tighter parameters for the convolution
theorem based samplers by adapting the Rényi divergence. In this section, we discuss the
concrete parameter choice for the RD-based convolution sampling scheme.

Theorem 7 (Adapted from [Pre17], Lemma 4). For two distributions P and Q such that
Supp(P) = Supp(Q), we have:

Rα(P||Q) ≤
(

1 +
α(α− 1) ·

(
eML(P||Q) − 1

)2

2
(
2− eML(P||Q)

)α+1

) 1
α−1

.

The right-hand side is asymptotically equivalent to 1+α ·(ML (P||Q))2
/2 as ML(P||Q)→

0.

Recall that ML(P||Q) ≈ ∆(P||Q) when ∆(P||Q) → 0 (Lemma 4.2, [MW17]). Also,
in the convolution sampler adapting Theorem 5, typically ~z = (k − 1, k) for some k ≥ 4
[MW17]. Therefore, by applying Theorem 2, we provide the following concrete RD-based
parameter choice lemmas:

Lemma 1. Let x1, x2 ←↩ D′σ0
, with σ0 = σ/

√
(k − 1)2 + k2 for some σ ∈ R+ and k ≥ 4.

If σ0 ≥ kηε(Z)/
√
π and ∆

(
D′σ0
||Dσ0

)
≤ µ, then for M independent samples, sampling

from the distribution P of (k − 1)x1 + kx2 will be λ-bit secure, if ∆(P||Dσ) ≤ 2ε+ 2µ ≤√
1/ (4λ ·M).

Lemma 2. Let x1, x2 ←↩ D′σ0
, with σ0 = σ/

√
1 + k2 for some σ ∈ R+ and k ≥ 2. If:

σ0 ≥ ηε(Z)/
√

2π,√
1

σ−2
0 + (kσ0)−2 ≥ kηε(Z)/

√
2π,

and ∆
(
D′σ0
||Dσ0

)
≤ µ, then for M independent samples, sampling from the distribution P

of x1 + kx2 will be λ-bit secure, if ∆(P||Dσ) ≤ 4ε+ 2µ ≤
√

1/ (4λ ·M).

Proof. We show that for distributions P and Q, and M independent samples, sampling
from P will be λ-bit secure, if ML(P||Q) ≤

√
1/ (4λ ·M). Let α = 2λ. By combining

Theorem 2 and Theorem 7, we get:

R2λ(P||Q) ≤ 1 + λ · (ML (P||Q))2 ≤ 1 + 1/(4M) =⇒ ML(P||Q) ≤
√

1/ (4λ ·M).

12FACCT: FAst, Compact, and Constant-Time Discrete Gaussian Sampler over Integers

Table 1: Total Relative Errors for Different Number of Convolution Levels.

~z 1 Level 2 Levels 3 Levels
(k − 1, k) 2ε+ 2∆ 6ε+ 4∆ 14ε+ 8∆

(1, k) 4ε+ 2∆ 12ε+ 4∆ 28ε+ 8∆
Mixed-k 4ε+ 2∆ 10ε+ 4∆ 22ε+ 8∆

Table 2: Convolution Parameters for σ ≈ 215.

Method l σ0 ~zi
KLD [PDG14] 1 19.53 ~z1 = (1, 11)

KLD [KHR+18, KRR+18] 2 6.18 ~z1 = (1, 11), ~z2 = (1, 3)
RD (k − 1, k) 1 17.92 ~z1 = (8, 9)

RD (1, k) 2 5.67 ~z1 = (1, 12), ~z2 = (1, 3)
RD Mixed-k 2 5.67 ~z1 = (8, 9), ~z2 = (1, 3)

Then, let σ0 = σ/
√

(k − 1)2 + k2, ~z = (k− 1, k), and ~σ = (σ0, σ0) in Theorem 5 to get
∆(P||Dσ) ≤ 2ε+ 2µ. Let σ0 = σ/

√
1 + k2, σ1 = σ0, and σ2 = kσ0 in Theorem 6, we get

∆(P||Dσ) ≤ 4ε+ 2µ. We replace ML with ∆ in both Theorem 5 and Theorem 6, then get
Lemma 1 and Lemma 2, respectively.

Since the constraint for σ0 in Lemma 2 is looser than in Lemma 1 (about
√

2 times), but
σ0 shrinks faster in Lemma 1 instead, one can apply both lemmas on different recursion
levels. For example, one may adapt Lemma 1 on all the intermediate levels and use
Lemma 2 on the bottom level, to achieve possibly smaller base sampler deviation.

The total relative errors for different number of convolution levels are shown in Table 1.
Typically, the standard deviations in lattice-based cryptosystems require 3 levels at
maximum. Let ∆ be the relative error of the base sampler. The “Mixed-k” in Table 1
represents the example we discussed above.

For σ ≈ 215 in the BLISS-I parameter set, the base sampler deviation σ0 and convolution
parameters ~zi are shown in Table 2 for i ≤ l, where l is the number of convolution levels.
We assume M = m · qs with m = 1024, qs = 264, λ = 128, and ∆ ≤ 2−53. Compared
with the KLD-based convolution schemes [PDG14, KHR+18, KRR+18], our RD-based
convolution parameter choice lemmas generate smaller base sampler deviations for the
same number of convolution levels.

4.4 Performance
We implement the binary sampling scheme (Algorithm 1) by combining the constant-time
CDT base sampler with the FACCT Bernoulli sampler (Algorithm 8). We choose the
tail-cut bound B by Theorem 1, which guarantees that the R∞ between the tail-cut and
the ideal discrete Gaussian is ≤ exp(1) over all M = m · qs samples, corresponding to
a loss of at most log2 (exp(1)) ≈ 1.44 bits of security for the tail-cut samples relative
to the ideal discrete Gaussian sampling case. On the other hand, we choose ∆D+

σ0
and

∆Bp by Theorem 2, which guarantees that we lose at most 1 bit of security due to the
relative precision errors, respectively. Hence overall our choice of tail-cut and precision
parameters ensure that we lose at most 1 + 1 + 1.44 = 3.44 bits of security with respect
to the ideal discrete Gaussian sampling over M samples. Since our FACCT Bernoulli
sampler is independent of σ, we pick the precision δP of the polynomial approximation
and bit length l in Algorithm 8 by using (2) and (3), respectively. We use double precision
floating-point, where the mantissa has δf = 52 bits, and we fix the parameters in Table 3
for our implementations in the benchmarks.

Raymond K. Zhao, Ron Steinfeld and Amin Sakzad 13

Table 3: Parameters for Implementations.

Parameter Description Value
m Dimension of the lattice 1024
qs Number of queries 264

λ Security level 128
B Tail-cut bound 9
δP Precision of the polynomial approximation (bits) 45
δf Number of bits in the mantissa 52
l Bit length in Algorithm 8 19

∆D+
σ0

Relative error of the base sampler 2−46

∆Bp Relative error of the Bernoulli sampler 2−44.99

> guessdegree(1,[0,1],1b-45,1/2^x);
[9;9]
> P=fpminimax(2^x,9,[|1,D...|],[0,1],floating,relative);
> P;
1 + x * (0.69314718056193380668617010087473317980766296386719
+ x * (0.24022650687652774559310842050763312727212905883789 + x
* (5.5504109841318247098307381293125217780470848083496e-2 + x
* (9.6181209331756452318717975913386908359825611114502e-3 + x
* (1.3333877552501097445841748978523355617653578519821e-3 + x
* (1.5396043210538638053991311593904356413986533880234e-4 + x
* (1.5359914219462011698283041005730353845137869939208e-5 + x
* (1.2303944375555413249736938854916878938183799618855e-6 + x *
1.43291003789439094275872613876154915146798884961754e-7))))))))
> supnorm(P,2^x,[0,1],relative,1b-128);
[1.4918069016855064039857437282944775430163557005892e-14;
1.4918069016855064039857437282944775430206027262258424e-14]

Figure 1: The polynomial approximation P in the FACCT sampler implementation.

We employ the full-table access CDT base sampler. We select the parameters in Table 3
such that the base sampler has about 126-bit absolute precision. We store each CDT entry
in two 63-bit integers, then the constant-time comparison of x < y, where 0 ≤ x, y < 263,
can be performed by a 64-bit signed integer subtraction, since the sign bit of x− y will be 1
when x < y. We compute the CDT in reversed order such that P(i) = CDT [i]−CDT [i+1]
for i ∈ [0, B], where the subtraction only enlarges the relative error by a factor of about
σ0 [PDG14, MR18]. For the uniform sampling over the range [0, k − 1], we adapt similar
techniques as in [SSZ] to reduce the rejection rate. We generate random integers over a
larger range [0, 2l − 1] instead, where 2l > k, and then perform the modulo k operations.
In addition, we show how to get the polynomial approximation P in our FACCT sampler
implementation by using the sollya tool in Figure 1, and we verify ∆(P ||2x) < 2−45.9

over the interval [0, 1].
For the benchmarks, we select σ ≈

{
25, 215, 211, 17900, 217, 220}, where 215 (approxi-

mately 27.7) and 17900 (approximately 214.1) are the standard deviations from the BLISS-I
[DDLL13] and the Dilithium-G [DLL+17] recommended parameter sets, respectively. We
compare the running time of our implementations with the binary sampling scheme from
[BAA+17] and the countermeasures from [PBY17, EFGT17]. Since the countermeasures
did not have a full implementation code available, we simply replace the Bernoulli sampling
subroutine in our non-AVX2 reference implementation with the countermeasures. Because
the optimal convolution sampling scheme [KRR+18] requires major refactoring of the
bitslicing base sampler for each different σ, we exclude it from this benchmark. We use

14FACCT: FAst, Compact, and Constant-Time Discrete Gaussian Sampler over Integers

Figure 2: Comparison of the CPU cycles for different σ.

Figure 3: Comparison of the Bernoulli table size for different σ.

hardware AES instructions to generate the randomness in all the implementations. We
use clang 7.0.0 to compile our AVX2 implementation, and use gcc 7.4.1 to compile all
the other implementations, with the compiling options -O3 -march=native enabled for
both compilers. The benchmark is running on an Intel i7-7700K CPU at 4.2GHz, with the
Hyperthreading and the Turbo Boost disabled. We generate m = 1024 samples for 1000
times and measure the median number of the consumed CPU cycles. The comparison
results are shown in Figure 2. The “Ref” in the following figures and tables represents
non-AVX2 reference implementations.

We measure the table size of the Bernoulli sampler by computing the number of table
entries times the size of the variable type (in bytes) for each implementation. Since we
store vectors instead of single values in our AVX2 implementation, the table size is 4x our
non-AVX2 reference implementation. The comparison results are shown in Figure 3.

From Figure 2, compared to the countermeasures, our non-AVX2 reference implemen-
tation is 1.3x~3.2x faster, and our AVX2 implementation is 3.5x~8.1x faster, respectively,
especially for the larger σ. In addition, our AVX2 implementation is 1.7x~1.9x faster than
the qTesla sampler. Note that our non-AVX2 reference implementation is suboptimal
on the running speed, since the floating-point arithmetic instructions for a single value
have similar latencies and throughputs as their SIMD counterparts on the Intel CPUs
[Int]. Therefore, our optimal AVX2 implementation should be used if running speed is
concerned.

From Figure 3, our implementations have much smaller table sizes than the qTesla

Raymond K. Zhao, Ron Steinfeld and Amin Sakzad 15

Table 4: Comparison of the CPU Cycles for Generating m = 1024 Samples from DZ,σ,
with σ ≈ 215.

Scheme CPU cycles (Ref) CPU cycles (AVX2)
qTesla [BAA+17] 146437 −

Bitslicing [KRR+18] ≈ 521472 ≈ 240084
Countermeasure [PBY17, EFGT17] 365423 −

FACCT 210312 77175

Table 5: Comparison of the Memory Consumptions for σ ≈ 215.

Scheme Base Bernoulli Code Total
qTesla [BAA+17] 192 1280 608 2080

Bitslicing [KRR+18] − − ≈ 99744 ≈ 99744
Countermeasure [PBY17, EFGT17] 144 168 446 758

FACCT (Ref) 144 80 679 903
FACCT (AVX2) 576 320 1275 2171

sampler (9.6x~28.8x for our non-AVX2 reference implementation and 2.4x~7.2x for our
AVX2 implementation), especially for the larger σ. In addition, compared to the counter-
measures, our non-AVX2 reference implementation has 1.5x~4.5x smaller table size, and
our AVX2 implementation has similar table size, respectively.

From both Figure 2 and Figure 3, we also verify that the efficiency of our implementa-
tions is independent of σ.

5 Applications
In this section, we show the performance of our implementations in actual cryptosystems.1

5.1 Sampling from the BLISS-I Standand Deviation
We show more performance details for k = 254 and σ ≈ 215 in the BLISS-I parameter set.
We use the similar benchmark setup as Section 4.4, where λ = 128, m = 1024, and qs = 264.
In addition, we include the convolution scheme with the bitslicing base sampler (128-bit
absolute precision) from [KRR+18] in this benchmark. For the convolution scheme, we
directly use the benchmark script2 from the authors to measure the number of the CPU
cycles of generating 64 base samples, and scale the result up to 4m = 4096 base samples.
We also scale this number by the same factor as in [KRR+18] to retrieve the AVX2 result.
The CPU cycles are shown in Table 4.

To measure the memory consumption of each implementation, we compute the table
sizes for both the base samplers and the Bernoulli samplers by using similar approaches as
in Section 4.4. Since the bitslicing approach does not require a table, but has a rather large
code size [KRR+18], for a fair comparison, we also measure the assembly code size (in bytes)
of the sampling functions. We compile the source codes by using the compiling options -Os
-march=native to generate more compact assembly code, and use the objdump command
to perform the disassembly. The memory consumption comparison results are shown in
Table 5. The “Base” and “Bernoulli” represent the table size of the base sampler and
the Bernoulli sampler, respectively. The “Code” represents the code size, and the “Total”
represents the sum of the base sampler table size, the Bernoulli sampler table size, and
the code size. All the numbers in Table 5 are in bytes.

1The implementation source codes are available at https://github.com/raykzhao/gaussian
2https://github.com/Angshumank/const_gauss

https://github.com/raykzhao/gaussian
https://github.com/Angshumank/const_gauss

16FACCT: FAst, Compact, and Constant-Time Discrete Gaussian Sampler over Integers

Table 6: Comparison of the CPU Cycles for qTesla Keygen.

Scheme Orig. (cSHAKE) [BAA+17] Orig. (AES-NI) FACCT (AVX2+AES-NI)
I 1138520 480970 389497

III-size 2376550 1062369 726504
III-speed 3452067 1486056 1017370

p-I 6445054 3067462 2090132
p-III 30748522 14025412 10334475

Table 7: Signing Speed Comparison for Falcon.

N Orig. (sig/s) Our Impl. (sig/s)
256 17326.542 16057.534
384 10188.836 9465.415
512 8548.610 7893.910
768 5251.137 4885.237
1024 4311.670 3993.353

From Table 4, in addition to the results from Figure 2, our implementations significantly
outperform the bitslicing convolution scheme (2.4x for the reference implementation and
3.1x for the AVX2 implementation).

From Table 5, in addition to the results from Figure 3, our non-AVX2 reference
implementation consumes 2.3x smaller memory space than the qTesla sampler, and has
similar memory consumption compared to the countermeasures, respectively. Our AVX2
implementation has similar memory consumption compared to the qTesla sampler. However,
for larger σ, as shown in Figure 3, the qTesla sampler will consume significantly more
memory space to store the Bernoulli table, while our implementations maintain similar
memory consumptions. Both of our implementations consume much smaller memory space
than the bitslicing convolution scheme (110.4x for the non-AVX2 reference implementation
and 45.9x for the AVX2 implementation).

5.2 qTesla
To test the running speed of our sampler in a cryptosystem, we replace the sampler in
qTesla with our AVX2 implementation. Since the cSHAKE software random generator is
much slower than hardware AES instructions, we measure the performance after changing
the random generator of the sampler to hardware AES in the implementations. The CPU
cycles measured by the benchmark script from qTesla are shown in Table 7. The qTesla
Keygen with our AVX2 sampler is 1.2x~1.4x faster than the original implementations (with
hardware AES instructions). Note that the standard deviations in qTesla (σ ≈ 7.64~22.93)
is smaller than the deviations in previous benchmarks. Therefore, our implementation
maintains good performance even for smaller σ.

5.3 Falcon
To test the performance of our proposed constant-time exp(x) implementation in Section
4.1, we replace the exp(x) in Falcon with our non-AVX2 reference implementation. Since
the exp(x) is used when performing the rejection sampling from the arbitrary-centered
discrete Gaussian in the signing, we measure the signing speed by using the benchmark
script from Falcon. The results are shown in Table 7. Our constant-time exp(x) reference
implementation only adds very slight overhead (6.9%~7.6%) to the signing (However, the
rejection rate of sampling may still be secret dependent).

Raymond K. Zhao, Ron Steinfeld and Amin Sakzad 17

6 Conclusion
In conclusion, we present fast, compact, and constant-time (FACCT) centered discrete
Gaussian sampler over integers, by implementing the Bernoulli sampler in the binary sam-
pling scheme with a constant-time exp(x) polynomial approximation. Our implementation
is faster than previous countermeasures [PBY17, EFGT17], more compact than the qTesla
sampler [BAA+17], and outperforms the bitslicing convolution scheme [KRR+18] in both
timing and memory consumption. Our implementation techniques are also independent of
the standard deviation, and have good flexibility and performance in various applications.
In addition, we show the smaller base sampler deviations for the convolution schemes by
adapting the Rényi divergence.

A recent side-channel attack [BDE+18] against the BLISS signature [DDLL13] exploited
the cosh(x) function instead, where the exp(x) is used as the subroutine in the implemen-
tation. For future works, an interesting question is, could our proposed constant-time
exp(x) implementation be applicable as a countermeasure in this scenario? Another open
question is, how to adapt our proposed techniques to implement constant-time sampling
algorithms over arbitrary-centered discrete Gaussian distributions.

References
[BAA+17] Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Barreto, Johannes

Buchmann, Edward Eaton, Gus Gutoski, Juliane Kramer, Patrick Longa,
Harun Polat, Jefferson E. Ricardini, and Gustavo Zanon. Submission to
NIST’s post-quantum project: lattice-based digital signature scheme qTESLA.
https://qtesla.org/, 2017. Accessed: 2018-11-03.

[BC07] Nicolas Brisebarre and Sylvain Chevillard. Efficient polynomial l-
approximations. In IEEE Symposium on Computer Arithmetic, pages 169–176.
IEEE Computer Society, 2007.

[BCNS15] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-
quantum key exchange for the TLS protocol from the ring learning with errors
problem. In IEEE Symposium on Security and Privacy, pages 553–570. IEEE
Computer Society, 2015.

[BDE+18] Jonathan Bootle, Claire Delaplace, Thomas Espitau, Pierre-Alain Fouque,
and Mehdi Tibouchi. LWE without modular reduction and improved side-
channel attacks against BLISS. In ASIACRYPT (1), volume 11272 of Lecture
Notes in Computer Science, pages 494–524. Springer, 2018.

[BHLY16] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom.
Flush, gauss, and reload - A cache attack on the BLISS lattice-based signature
scheme. In CHES, volume 9813 of Lecture Notes in Computer Science, pages
323–345. Springer, 2016.

[BLL+15] Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron Stein-
feld. Improved security proofs in lattice-based cryptography: Using the rényi
divergence rather than the statistical distance. In ASIACRYPT (1), volume
9452 of Lecture Notes in Computer Science, pages 3–24. Springer, 2015.

[CJL10] Sylvain Chevillard, Mioara Joldes, and Christoph Quirin Lauter. Sollya: An
environment for the development of numerical codes. In ICMS, volume 6327
of Lecture Notes in Computer Science, pages 28–31. Springer, 2010.

https://qtesla.org/

18FACCT: FAst, Compact, and Constant-Time Discrete Gaussian Sampler over Integers

[CLJ] Sylvain Chevillard, Christoph Lauter, and Mioara Joldes. Users‘ manual
for the sollya tool. https://gforge.inria.fr/frs/download.php/file/
37750/sollya.pdf. Accessed: 2018-11-19.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal gaussians. In CRYPTO (1), volume 8042 of
Lecture Notes in Computer Science, pages 40–56. Springer, 2013.

[Dev86] Luc Devroye. Non-Uniform Random Variate Generation. Springer-Verlag,
New York, NY, USA, 1986.

[DG14] Nagarjun C. Dwarakanath and Steven D. Galbraith. Sampling from discrete
gaussians for lattice-based cryptography on a constrained device. Appl. Algebra
Eng. Commun. Comput., 25(3):159–180, 2014.

[DLL+17] Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. CRYSTALS - dilithium: Digital signatures from
module lattices. IACR Cryptology ePrint Archive, 2017:633, 2017.

[EFGT17] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi.
Side-channel attacks on BLISS lattice-based signatures: Exploiting branch
tracing against strongswan and electromagnetic emanations in microcon-
trollers. In CCS, pages 1857–1874. ACM, 2017.

[ESS+18] Muhammed F. Esgin, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, and
Dongxi Liu. Short lattice-based one-out-of-many proofs and applications to
ring signatures. IACR Cryptology ePrint Archive, 2018:773, 2018.

[HKR+18] James Howe, Ayesha Khalid, Ciara Rafferty, Francesco Regazzoni, and Máire
O’Neill. On practical discrete gaussian samplers for lattice-based cryptography.
IEEE Trans. Computers, 67(3):322–334, 2018.

[Int] Intel. Intel intrinsics guide. https://software.intel.com/sites/
landingpage/IntrinsicsGuide/. Accessed: 2018-10-31.

[KHR+18] Ayesha Khalid, James Howe, Ciara Rafferty, Francesco Regazzoni, and Máire
O’Neill. Compact, scalable, and efficient discrete gaussian samplers for
lattice-based cryptography. In ISCAS, pages 1–5. IEEE, 2018.

[Knu98] Donald Ervin Knuth. The art of computer programming, Volume II: Seminu-
merical Algorithms, 3rd Edition. Addison-Wesley, 1998.

[KRR+18] Angshuman Karmakar, Sujoy Sinha Roy, Oscar Reparaz, Frederik Ver-
cauteren, and Ingrid Verbauwhede. Constant-time discrete gaussian sampling.
IEEE Trans. Computers, 67(11):1561–1571, 2018.

[KY76] D. E. Knuth and A. C. Yao. The complexity of non-uniform random number
generation. Algorithms and Complexity: New Directions and Recent Results,
pages 357–428, 1976.

[MBdD+10] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre
Jeannerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien
Stehlé, and Serge Torres. Handbook of Floating-Point Arithmetic. Birkhäuser,
2010.

[MR18] Carlos Aguilar Melchor and Thomas Ricosset. Cdt-based gaussian sampling:
From multi to double precision. IEEE Trans. Computers, 67(11):1610–1621,
2018.

https://gforge.inria.fr/frs/download.php/file/37750/sollya.pdf
https://gforge.inria.fr/frs/download.php/file/37750/sollya.pdf
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Raymond K. Zhao, Ron Steinfeld and Amin Sakzad 19

[MW17] Daniele Micciancio and Michael Walter. Gaussian sampling over the integers:
Efficient, generic, constant-time. In CRYPTO (2), volume 10402 of Lecture
Notes in Computer Science, pages 455–485. Springer, 2017.

[NIS16] NIST. NIST post-quantum competition. http://csrc.
nist.gov/groups/ST/post-quantum-crypto/documents/
call-for-proposals-final-dec-2016.pdf, 2016. Accessed: 2018-10-31.

[PBY17] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To BLISS-B or not
to be: Attacking strongswan’s implementation of post-quantum signatures.
In CCS, pages 1843–1855. ACM, 2017.

[PDG14] Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced lattice-based
signatures on reconfigurable hardware. In CHES, volume 8731 of Lecture
Notes in Computer Science, pages 353–370. Springer, 2014.

[Pei10] Chris Peikert. An efficient and parallel gaussian sampler for lattices. In
CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages 80–97.
Springer, 2010.

[Pes16] Peter Pessl. Analyzing the shuffling side-channel countermeasure for lattice-
based signatures. In INDOCRYPT, volume 10095 of Lecture Notes in Com-
puter Science, pages 153–170, 2016.

[PFH+17] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. Falcon: Fast-Fourier lattice-based compact
signatures over NTRU. https://falcon-sign.info/, 2017. Accessed: 2018-
10-31.

[Pre17] Thomas Prest. Sharper bounds in lattice-based cryptography using the rényi
divergence. In ASIACRYPT (1), volume 10624 of Lecture Notes in Computer
Science, pages 347–374. Springer, 2017.

[RRVV14] Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren, and Ingrid Ver-
bauwhede. Compact and side channel secure discrete gaussian sampling.
IACR Cryptology ePrint Archive, 2014:591, 2014.

[Saa16] Markku-Juhani O. Saarinen. Arithmetic coding and blinding countermeasures
for ring-lwe. IACR Cryptology ePrint Archive, 2016:276, 2016.

[Sei18] Gregor Seiler. Faster AVX2 optimized NTT multiplication for ring-lwe lattice
cryptography. IACR Cryptology ePrint Archive, 2018:39, 2018.

[SSZ] Ron Steinfeld, Amin Sakzad, and Raymond K. Zhao. Titanium: Proposal for a
nist post-quantum public-key encryption and kem standard specifications doc-
ument version 1.1. http://users.monash.edu.au/~rste/Titanium_v11.
pdf. Submitted to NIST Post-Quantum Competition. Accessed: 2019-01-08.

http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
https://falcon-sign.info/
http://users.monash.edu.au/~rste/Titanium_v11.pdf
http://users.monash.edu.au/~rste/Titanium_v11.pdf

	Introduction
	Background
	Contribution

	Preliminaries
	Review of Discrete Gaussian Sampling Schemes
	Binary Sampling Method
	Existing Timing/Cache Attack Countermeasures for the Binary Sampling Method
	Convolution Methods

	Proposed Constant-time Implementation Techniques
	Directly Approximating the Exp Function
	FACCT Algorithm
	Concrete Rényi Divergence Based Convolution Sampling
	Performance

	Applications
	Sampling from the BLISS-I Standand Deviation
	qTesla
	Falcon

	Conclusion

