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1 Introduction

In this work, we initiate the algorithmic study of cryptographic hardness that

may exist in general expanding families of low-degree polynomials over R. As

a result, we obtain strong attacks on certain pseudorandom generators whose

output is a “simple” function of the input. Such “simple” pseudorandom gener-

ators are interesting in their own right, but have recently become particularly

important because of their role in candidate constructions for Indistinguishabily

Obfuscators.

The question of whether Indistinguishabily Obfuscators (iO) exist is one of

the most consequential open questions in cryptography. On one hand, a sequence

of works [14,29] has shown that iO, if it exists, would imply a huge variety of

cryptographic objects, several of which we know of no other way to achieve.

On the other hand, the current candidate constructions for iO’s are not based

on well-studied standard assumptions, and there have been several attacks on

several iO constructions as well as underlying primitives.

A promising line of works [19,23,3,20,22] has aimed at basing iOs on more

standard assumptions, and in particular Lin and Tessaro [22] reduced construct-

ing iO to the combination following three assumptions:

1. The learning with errors (LWE) assumption.

2. Existence of three local pseudorandom generators with sufficiently large

super linear stretch. These are pseudorandom generators G : {0, 1}n →
{0, 1}n1+ε

(for arbitrarily small ε > 0) such that if we think of the input as

split into n/k blocks of length k each (for some k = no(1)) then every output

of G depends on at most three blocks of the input.

3. Existence of trilinear maps satisfying certain strengthening of the Decisional-

Diffie-Hellman assumption.

Of the three assumptions, the learning with errors assumption is well studied

and widely believed. The existence of local pseudorandom generators has also

been recently extensively studied; it also relates to questions on random con-

straint satisfaction problems that have been looked at by various communities.

Based on our current knowledge, it is reasonable to assume that such three-

local generators exist with stretch, say, n1.1 which would be sufficient for the

Lin-Tessaro construction.

The most problematic assumption is the existence of trilinear maps. Since

the seminal work of Garg, Gentry and Halevi [13], there have been some can-

didate constructions for (noisy) k-linear maps for k > 2, but these are not

based on any standard assumption, and in fact there have been several at-

tacks [8,6,10,18,7,17,9,26,25] showing that these construction fail to satisfy natu-

ral analogs of the Decisional Diffie Hellman assumption. This is in contrast to the
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k = 2 or bilinear case, where we have had constructions for almost 20 years that

are believed to be secure (with respect to classical polynomial-time algorithms)

based on elliptic curve groups that admit certain pairing operations [5]. Thus a

main open question has been whether one can achieve iO based only on cryp-

tographic bilinear maps as well as local (or otherwise “simple”) pseudorandom

generators that can be reasonably conjectured to be secure.

1.1 Basing iO on bilinear maps and our results

In the first version of their manuscript, Lin and Tessaro [22] gave a construction

of iO based on two local generators with a certain stretch, and a candidate con-

struction for the latter object based on a random two-local map with a certain

nonlinear predicate. Alas, Barak, Brakerski, Komargodski and Kothari, [4], as

well as Lombardi and Vaikuntanathan [24] showed that the Lin-Tessaro candi-

date construction, as well as any generator with their required parameters, can

be broken using semidefinite programming, and specifically the degree two sum

of squares program [4].

Very recently, the work of Ananth, Jain, and Sahai [2], followed shortly by

the independent works of Agrawal [1] and Lin and Matt [21], proposed a way

around that hurdle, obtaining constructions for iO where the role of the trilinear

map is replaced with objects that:

1. Satisfy security notions that are weaker than being a full fledged pseudoran-

dom generators.

2. Satisfy structural properties that are weaker than being two-local, and in

particular requiring the outputs only to be a degree two1 polynomial of the

input.

As such, these objects do not automatically fall under the attacks described

by [4,24]. However, in this work we show that:

– The specific candidate objects in all these three works (based on random

polynomials) can be broken using a distinguisher built on the same sum-of-

squares semidefinite program.

– Moreover, this results extends to other families of constructions, including

ones that are not based on random polynomials. In fact, we do not know of

any degree-2 construction that does not fall prey to a variant of the same

attack.

1 The work of Ananth, Jain, and Sahai [2] also considered degree-3 polynomials. We

do not have attacks on such degree-3 polynomials; we discuss this further below.
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The Ananth-Jain-Sahai “Cubic Assumption”. The work of [2] also obtained a

construction of iO based on a (variant of a) pseudorandom generator where every

output is a cubic polynomial of the input, but where some information about

the input is “leaked” in a way “masked” using instances of LWE2. Our attacks

in their current form are not applicable to this new construction. The question

of whether secure degree-3 ∆RGs exist, or whether an extended form of the sum

of squares algorithm can be applied to it, is one that deserves further study.

More generally, understanding the structure of hard distributions for expanding

families of constant-degree polynomials over the integers, is a fascinating and

important area of study, which is strongly motivated by the problem of securely

constructing iO. Taking inspiration from SoS lower bounds [15,30], we also sug-

gest a candidate for the same. Our candidate is inspired by the hardness of

refuting random satisfiable 3SAT instances. For further details, see Section 7.

1.2 Our Results

We consider the following general hypothesis that, if true, would rule out not

just the three proposed approaches based on quadratic polynomials for obtaining

iO, but also a great many potential generalizations of them. Below we say that

an n-variate polynomial q is Λ-bounded if all of q’s coefficients are integers in

the interval [−Λ,+Λ]. We say that a distribution X over Zn is Λ bounded if it

is supported over [−Λ,+Λ]n.

Hypothesis 1 (No expanding weak quadratic pseudorandom genera-

tors). For every ε > 0, polynomial Λ(n), sufficiently large n ∈ N, if:

– q1, . . . , qm : Rn → R are quadratic Λ(n)-bounded polynomials for m > n1+ε

– X is a Λ(n)-bounded distribution over Zn

– For every i, ∆i is a Λ(n) bounded distribution over Z such that P[∆i = z] <

0.9 for every z ∈ Z.

then there exists an algorithm A that can distinguish between the following

distributions with Ω(1) bias:

– (q1, . . . , qm, q1(x), . . . , qm(x)) for x ∼ X .

– (q1, . . . , qm, q1(x) + δ1, . . . , qm(x) + δm) where for every i, δi is drawn inde-

pendently from ∆i.

Note that this hypothesis would be violated by the existence of a pseudoran-

dom generator G : {0, 1}n → {0, 1}n1+ε

whose outputs are degree two polynomi-

als. It would also be violated if the distribution G(x) is indistinguishable from

2 This cubic version of their assumption was made explicit in an update to [2].
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the distribution (G(x) + δ′1, . . . , G(x) + δ′m) where δ′1, . . . , δ
′
m are drawn indepen-

dently from some distribution ∆ over integers that satisfies P[∆ = 0] 6 0.9.

An efficient algorithm to recover x from q1(x), . . . , qm(x) would allow to dis-

tinguish between the two distributions. However, generally speaking, it need not

even be information theoretically possible to recover x from this information.

Even if it is information-theoretically possible this can be computationally in-

tractable, as recovering x from q1(x), . . . , qm(x) is an instance of the NP hard

problem of Quadratic Equations.

In Hypothesis 1, the polynomials are arbitrary. However, the candidate con-

structions of pseudorandom generators considered so far used q1, . . . , qm that are

sampled independently from some distribution Q. This is natural, as intuitively

if we want q1(x), . . . , qm(x) to look like a product distribution, then the more

randomness in the choice of the qi’s the better.

However, in this work we give general attacks on candidates that have this

form. As these are some of the most natural approaches to refute Hypothesis 1,

our work can be seen as providing some (partial) evidence to its veracity. To

state our result, we need the following definition of “nice” distributions.

Definition 1 (Nice distributions). Let Q be a distribution over n-variate

quadratic polynomials with integer coefficients. We say that Q is nice if it satis-

fies that:

– There is a constant C = C(Q) = O(1) such that Q is supported on ho-

mogeneous (i.e. having no linear term) degree-2 polynomials q with ‖q‖22 6
C E ‖q‖22, where ‖q‖ is the `2-norm of the vector of coefficients of q.

– V ar(Qi,j) = 1 where Qi,j denotes the coefficient of xixj in a polynomial Q

sampled from Q.

– If {i, j} 6= {k, `} then the random variables Qi,j and Qk,` are independent

Roughly speaking, a distribution over quadratic polynomials is nice if it sat-

isfies certain normalization properties as well as pairwise independence of the

vectors of coefficients. Many natural distributions on polynomials are nice, and

in particular random dense as well as random sparse polynomials are nice.

The following theorem shows that it is always possible to recover x from a

superlinear number of quadratic observations, if the latter are chosen from a nice

distribution.

Theorem 2 (Recover from random quadratic observations). There

is a polynomial-time algorithm A (based on the sum of squares algorithm)

with the following guarantees. For every nice distribution Q and every t 6
nO(1), for large-enough n, with probability at least 1 − n− log(n) over x ∼
{−t,−t + 1, . . . , 0, . . . , t − 1, t}n and q1, . . . , qm ∼ Q, if m > n(log n)O(1) then

A(q1, . . . , qm, q1(x), . . . , qm(x)) = x.
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On “niceness”. The definition of “nice” distributions above is fairly natural, and

captures examples such as when the polynomials are chosen with all coefficients

as independent Gaussian or Bernoulli variables. In particular as a corollary of

Theorem 2 we break the candidate pseudorandom generator of Ananth et al (and

even its ∆-RG property). Moreover, we obtain such results even in the sparse

case where most of the coefficients of the polynomials q1, . . . , qm are zero.

At the moment however our theoretical analysis does not extend to the

“blockwise random” polynomials that were used by Lin and Matt which can

be thought of as a sum of random dense polynomial and a random sparse poly-

nomial. While this combination creates theoretical difficulty in the analysis, we

believe that it can be overcome and that it is possible to recover in this case as

well. In particular, we also have experimental results showing that we can break

the Lin-Matt generator as well.

Finally, we note that by Markov’s inequality for any Q we have P(‖q‖2 >
C E ‖q‖2) 6 1/C. Our niceness assumption just has the effect of restricting Q to

this relatively high-probability event. If Q is not pathological – that is, it is not

dominated by events with probability � 1/C for a large constant C – then this

kind of truncation will result in a nice distribution.3

On the distribution of x. For concreteness, we phrase Theorem 2 so that the

distribution of x is uniform over {−t, . . . , t}n. However, the proof of the theo-

rem allows x to be a more general Rn-valued random variable. In particular, x

may be any n-dimensional real-valued random vector which has Ex = 0 and is

O(E ‖x‖2/n)-sub-Gaussian. The coordinates of x need not even be independent:

for instance, x may be drawn from the uniform distribution on the unit sphere.

Experiments. We implement the sum-of-squares attack and verify that indeed

it efficiently breaks random dense quadratic polynomials. Furthermore, we im-

plement a variant of the attack that efficiently breaks the Lin-Matt candidate:

3 Along the same lines, we note that if Q is nice and Eq∼Q q = 0 (as we observe later,

the latter can be enforced without loss of generality) then Q is also Λ(n)-bounded

for Λ(n) 6 O(n). The reason is that if Q is nice and has E q = 0 then

E ‖q‖2 =
∑
i,j6n

EQ2
ij =

∑
i,j6n

V ar(Qij) = n2 .

For every i, j and every q in the support of Q, we have by niceness that |qij | 6
‖q‖2 6 Cn. Hence Q is O(n)-bounded.

One implication is that Q cannot be a distribution on where the all-zero polyno-

mial appears with probability, say, 1−1/n, as otherwise its support would also have

to contain polynomials with coefficients � n. Our main theorem could not apply

to such a distribution, since clearly at least Ω(n2) independent samples would be

needed to get enough information to recover x from {qi, qi(x)}, while we assume

m 6 n(logn)O(1) � n2.
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the Lin-Matt candidate is, roughly speaking, a sum of two independent poly-

nomials, where one is dense and one is sparse. Since the planted solution must

be composed of polynomially-bounded integers, we observe that it is possible

to efficiently guess the squared L2 norm of the portion of the planted solution

that corresponds to the sparse part of the polynomial. Given this guess, we can

introduce a new constraint into the semidefinite program that fixes the trace of

the portion of the semidefinite matrix that corresponds to the sparse matrix. We

show experimentally that this attack breaks the Lin-Matt candidate for moder-

ate values of n. In particular, in Figure 1 we plot the correlation between the

recovered solution with the planted solution, where the x-axis is labeled by the

ratio m/n showing the expansion needed for the attack to work, for n = 60 total

variables. More details can be found in Section 6.

In particular, we are not aware of any candidate construction of weak pseu-

dorandom generator computed by quadratic polynomials that is not broken ex-

perimentally by our algorithms.

Figure 1: Experimentally breaking Lin-Matt candidate. Graph shows quality of recov-

ered solution vs. planted solution, for various values of m/n shown in the x-axis. Let

v be the eigen vector with largest eigen value of the optimum matrix returned by the

SDP. Let x be the planted solution. Quality of solution is defined as 〈v,x〉

〈v,v〉
1
2 〈x,x〉

1
2
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2 Our techniques

Our algorithms use essentially the same semidefinite program constraints that

were used in the work of [4], namely the sum of squares program. However,

we use a different, simpler, objective function, and moreover we crucially use a

different analysis (which also inspired some tweaks to the algorithm that seem

to help in experiments). Specifically, consider the task of recovering an unknown

vector x ∈ Rn from the values (q1(x), . . . , qm(x)) where q1, . . . , qm are quadratic

polynomials. We focus on the case that the qi’s are homogenous polynomials,

which means that (thinking of x as a column vector), qi(x) = x>Qix for some

n× n matrix Qi. Another way to write this is that qi(x) = 〈Qi, X〉 where X is

the rank one matrix xx>.

In the above notation, our problem becomes the task of recovering a rank

one matrix X from the observations

〈Q1, X〉, . . . , 〈Qm, X〉 (2.1)

for some known n×n matrices Q1, . . . , Qm where m > n1+ε. Luckily, this task

has been studied in the literature and is known as the low rank recovery prob-

lem [28]. This can be thought of as a matrix version of the well known problem

of sparse recovery (a.k.a. compressed sensing) of recovering an k-sparse sparse

vector x ∈ Rn (for n � k) from linear observations of the form A1x, . . . , Ak′x

where k′ is not much bigger than k.

While the low rank recovery problem is NP hard in the worst-case, for many

inputs of interest it can be solved by a semidefinite program minimizing the

nuclear norm of a matrix. This semidefinite program can be thought of as the

matrix analog of the L1 minimization linear program used to solve the sparse

recovery problem. In particular, it was shown by Recht, Fazel and Parrilo [28]

that if the Qi’s are random (with each entry independently chosen from, say, a

random Gaussian or Bernoulli distribution), then they would satisfy a condition

known as matrix restricted isoperimetry property (matrix RIP) that ensures that

the semidefinite matrix recovers X in our regime of m > n1+ε.

This already rules out certain candidates, but more general candidates have

been considered. In particular, the results of Recht et al are not applicable when

the Qi’s are sparse random matrices, which have been used in some of the iO

constructions such Lin-Matt’s. Luckily, this problem has been studied by the

optimization community as well. The extremely sparse case, where each of the

Qi’s has just a single nonzero coordinate, is particularly well studied. In this case,

recovering X from (2.1) corresponds to completing X using m observations of

its entries, and is known as the matrix completion problem.

Specifically, a beautiful paper of Gross [16] gave quite general bounds

that in some sense interpolate between these two extremes. Specifically, Gross
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showed that it is possible to recover X from (2.1) as long as these observations

Q1, . . . , Qm are sampled independently from a collection {Q1, . . . , QN} that sat-

isfies certain “isotropy” and “incoherence with respect to X” properties. We

show that under the “niceness” conditions of Theorem 2, we can “massage” our

input so that it is of the form where Gross’s theorem applies. Once we do so

we can appeal to this theorem to obtain our result. A key property that we

use in our proof is that in the cryptographic setting, we do not need to recover

X = xx> for every x ∈ Zn but rather only for most x’s. This allows us to

achieve the incoherence property even in settings where it would not hold for a

worst-case choice of a vector.

3 Preliminaries

For a matrix X, we write ‖X‖ for its operator norm: supv:‖v‖2=1 |〈v,Xv〉.
We use the standard inner product on the Hilbert space of n × n matrices:

〈A,B〉 = tr(AB). The nuclear norm of a matrix X is defined by ‖X‖∗ =

supA:‖A‖61〈A,X〉. For a positive semidefinite matrix X, ‖X‖∗ = tr(X).

For any matrix Q ∈ Rn×n, vec(Q) denotes “vectorization” of the matrix Q

as a n2 dimensional vector.

For a matrix M ∈ Rn×n, we define the operator norm (also called the spectral

norm) of M as maxx∈Rn ‖Mx‖/‖x‖. The Frobenius norm of M is ‖M‖F =√∑
ij6nM

2
ij .

For a matrix M , we write M ∈ (1± ε) Id if ‖M − Id ‖ 6 ε, where ‖ · ‖ is the

operator norm.

3.1 ∆RGs (Ananth-Jain-Sahai)

Ananth-Jain-Sahai proposed a variant of (integer valued) PRG that such that

it is hard to distinguish between the output of a PRG and a small perturbation

of it. Specifically, the following definition describes the object they proposed.

Definition 2 ((n, λ,B, χ)-∆RG). Let f : χn → Zm be an integer valued func-

tion with the ith output described by fi : χn → Z and at any x ∈ χn, fi(x) = qi(x)

for quadratic polynomials qi for 1 6 i 6 m.

f is said to be a ∆RG, if for distributions D1, D2 on Zm defined below and

for any circuit A of size 2λ,

| P
z∼D1

[A(z) = 1]− P
z∼D2

[A(z) = 1]| < 1− 2/λ

Distribution D1

Sample x← χ. Output {qi, qi(x)}i∈[m]
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Distribution D2

Sample x← χ. Output {qi, qi(x) + δi}i∈[m]

Here δi ∈ Z are arbitrary perturbations such that |δi| < B for all i ∈ [m].

Concurrently and independently, [21] proposed Pseudo-Flawed Smudging

Generators which have similar security guarantees.

4 Candidates for Quadratic PRGs

In this section we formally describe the candidate polynomial and input distri-

butions proposed by [2,21,1] to realize corresponding notions of pseudo-random

generators of Z.

Note that any algorithm that given the polynomials q1, . . . , qm and measure-

ments q1(x), . . . qm(x) when x, q1, .., qm are sampled from required distributions

of the pseudorandom generator, successfully recovers x, also breaks the corre-

sponding candidate for the pseudorandom generator.

To be precise, we describe the candidate polynomials and input distributions

proposed by:

– Ananth et al. [2] to instantiate ∆RGs.

– Lin-Matt [21] to instantiate Pseudo Flawed-Smudging Generators.

– Agarwal [1] to instantiate Non-boolean PRGs.

Along with assumptions on cryptographic bilinear maps, learning with error

assumption and PRGs with constant block locality, either of these three as-

sumptions imply iO.

4.1 Candidate for ∆RG

Ananth-Jain-Sahai proposed the following candidate construction for a ∆RG.

Let χ be the uniform distribution in [−B1, B1]. Choose m = n1+ε for some

small enough constant ε > 0. Let C be some constant positive integer and B1

be a polynomial in λ, the security parameter.

Distribution Q: Sample each polynomial as follows. Let q(x1, ..., xn) =

Σi 6=jci,j · xi · xj , where each coefficient ci,j is chosen uniformly from [−C,C].

Distribution X: Inputs are sampled as follows. Sample xi for i ∈ [n]

uniformly from [−B1, B1]. Output x = (x1, ..., xn). Implicitly, [1] also considered

these polynomials for their notion of a non-boolean PRG.
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4.2 Candidate for Pseudo Flawed-Smudging Generators (Lin-Matt)

Lin and Matt [21] proposed a variant of pseudorandom generators with security

properties closely related to the notion of ∆RGs above. Here, we recall their

candidate polynomials.

Distribution Q: For each j ∈ [m],

qj(x1, ..., xn, x
′
1, ..., x

′
n′) = Sj(x1, ..., xn) +MQj(x

′
1, ..., x

′
n′)

Here we write more about polynomials Sj , MQj .

1. MQj Polynomials: MQj are random quadratic polynomials over

(x′1, ..., x
′
n′), where the coefficients of each degree two monomial x′ix

′
k and

degree one monomial x′i are integers chosen independently at random from

[−C,C].

2. Sj Polynomials: Sj are random quadratic polynomials over (x1, ..., xn) of

the form:

Sj(x1, ..., xn) = Σ
n/2
i=1αixσj(2·i)xσj(2·i−1) +Σn

i=1βixi + γ

Here each coefficient αi, βi and γ are random integers chosen independently

from [−C,C]. Here, σj is a random permutation from [n] to [n].

Distribution X:

1. Each xi for i ∈ [n] is chosen as a random integer sampled independently from

the distribution χB1,B2
. χB1,B2

samples a random integer from [−B1, B1]

with probability 0.5 and from [−B2, B2] with probability 0.5.

2. Distribution of inputs x′1, ..., x
′
n′ : Each x′i is chosen as a random integer

sampled independently from the distribution χB′ . χB′ samples a random

integer from [−B′, B′].

Parameters: Set B1, B2, B
′, n, n′ as follows:

– Set n = n′ and m = n1+ε, for some ε > 0.

– B1, B′ and C are set arbritarily.

– Set B2 = Ω(nB2 + nBB1).

Here B is some polynomial in the security parameter.

All the pseudorandom generators we consider are maps from Zn into Zm

where each of the m output is computed by a degree 2 polynomial with integer

coefficients in the input. Since any degree two polynomial in Rn can be seen

as a linear map on Rn×n4, one can equivalently think of such PRGs as linearly

mapping symmetric rank 1 matrices into Rm.

4 For any q(x) =
∑

i,j qi6jxixj , we define Q : Rn×n → R by Qi,j = Qj,i = qi,j/2.

Then, Q(X) = tr(QX) = 〈Q,X〉 is a linear map on Rn×n.
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5 Inverting Linear Matrix Maps

In this section, we describe the main technical tool that we rely on in this work

- an algorithm based on semidefinite programming for inverting linear matrix

maps.

Definition 3 (Linear Matrix Maps). A linear matrix map A : Rn×n → Rm

described by a collection of n× n matrices Q1, Q2, . . . , Qm is a linear map that

maps any matrix X ∈ Rn×n to the vector A(X) ∈ Rm such that A(X)i =

〈Qi, X〉.
We will use calligraphic letters such as A and B to denote such maps.

We are interested in the algorithmic problem of inverting such maps, that is,

finding X given A(X). If Qis are linearly independent and m � n2, then this

can be done by linear equation solvers. Our interest is in inverting such maps

for low rank matrices X with the “number of measurements” m � n2. Indeed,

our results will show that for various classes of linear maps A, we can efficiently

find a low-rank solution to A(X) = z, whenever it exists, for m = Õ(n).

Such problems have been well-studied in the literature and rely on a primitive

based on semidefinite programming called “nuclear norm minimization”. We will

use this algorithm and rely on various known results about the success of this

algorithm in our analysis.

Algorithm 3 (Trace Norm Minimization).

Given: – A described by Q1, Q2, . . . , Qm ∈ Rn×n.

– z ∈ Rm.

Operation: Output X = arg min X�0
A(X)=z

tr(X).

In what follows, we will give an analysis of this algorithm for a class of linear

matrix maps.

5.1 Incoherent Linear Measurements

In this section we describe a remarkably general result due to Gross on a class of

instances x,Q1, . . . , Qm for which trace norm minimization recovers x [16]. These

instances are called incoherent. Gross’s result is the main tool in the proof of our

main theorem, which will ultimately show that “nice” distributions Q produce

incoherent instances of trace norm minimization.

We note that many other sufficient conditions for the success of trace norm

minimization have been discussed in the literature. One prominent condition

is matrix-RIP (Restricted Isometry Property), analyzed in [27]. The restricted

isometry property is not known to apply in many natural settings for which

11



we would like to apply our main theorem – for example, if Q1, . . . , Qm have

independent entries with on average 1 nonzero entry per row.

Definition 4 (Incoherent Overcomplete Basis). Let B = {B1, B2, . . . , BN}
be a collection of matrices in Rn×n. For any rank 1 matrix X ∈ Rn×n , B is

said to be ν-incoherent basis for X if the following holds:

1. (1− o(1))1/n2In2×n2 � 1/N
∑N
i=1 vec(Bi)vec(Bi)

> � (1 + o(1))1/n2In2×n2 .

2. For each i 6 N , |〈X,Bi〉| 6 ν/n · ‖X‖F .

We can now define a ν-incoherent measurement.

Definition 5 (Incoherent Measurement). Let B be a ν-incoherent overcom-

plete basis for an n× n rank 1 matrix X, and suppose B has size N = poly(n).

Let A : Rn×n → Rm be a map obtained by choosing Qi for each i 6 m to be a

uniformly random and independently chosen element of B. Then, A is said to

be a ν-incoherent measurement of X.

The following result follows directly from the Proof of Theorem 3 in the

work of Gross [16]. While that work focuses on B being orthonormal - the proof

extends to approximately orthonormal basis (i.e., part 1 in the above definition)

in a straightforward way.

Theorem 4. Let B be a ν-incoherent basis for a rank 1 matrix X of size N =

poly(n). Let A : Rn×n → Rm be a map obtained by choosing Qi for each i 6 m

to be a uniformly random and independently chosen element of B. Then, for

large enough m = Θ(νnpoly log n), Algorithm 3, when given input A and A(X)

recovers X, with probability at least 1− n−10 log(n) over the choice of A.

5.2 Invertible Linear Matrix Maps

In this section we prove Theorem 2 on solving random quadratic systems.

Proof (Proof of Theorem 2). Fix t 6 nO(1) and a nice distribution Q.

Centering We may assume that EQQ = 0. Otherwise, we can replaceQ with

Q′ where Q′ = 1√
2
(Q0−Q1) for independent draws Q0, Q1 ∼ Q. This is because

Q′ remains nice if Q is, clearly EQ′ = 0, and given q1, . . . , qm, q1(x), . . . , qm(x)

our algorithm can pair i to i+ 1 (for even i) and instead consider m/2 samples

of the form (1/
√

2)(qi + qi+1), (1/
√

2)(qi(x) + qi+1(x)). Thus for the remainder

of the proof we assume EQ = 0.

Our goal is to establish that there is N 6 nO(1) such that if Q1, . . . , QN are

i.i.d. draws from Q, then (1/n)Q1, . . . , (1/n)QN are ν-incoherent with respect

to most x ∈ [−t, t]n.
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Incoherence part one: orthogonal basis First observe that since EQ = 0

and EQ2
ij = 1 and our pairwise independence assumption, we have

E vec(Q)vec(Q)> = Idn2×n2 .

Also, by niceness, every |Qij | 6 O(n) with probability 1, for every i, j.

Fix i, j, k, ` 6 n. By the Bernstein inequality, given N independent draws

Q(1), . . . , Q(N), for any s > 0,

P


∣∣∣∣∣∣ 1

N

∑
a6N

Q
(a)
ij Q

(a)
k` − EQijQk`

∣∣∣∣∣∣ > s

 6 exp

(
−CNs2

n4 + sn2

)

for some universal constant C. Take s = 1/n4 and N = n10, this probability is

at most exp(−O(n2)). Taking a union bound over i, j, k, ` ∈ [n], we find that

with probability at least 1− exp(−O(n2)),

(1− o(1)) Idn2×n2 � 1

N

∑
a6N

vec(Q(a))vec(Q(a))> � (1 + o(1)) Idn2×n2 .

Incoherence part two: small inner products Next we establish the other

part of incoherence: that 1
n2 〈x,Q(a)x〉 6 ν/n for all a 6 N . The coordinates of

the vector x are independent, and each is bounded by t. Thus x is sub-Gaussian,

with variance proxy O(t2). Since the coordinates of x have Ex2i > Ω(t2), the

random vector y with coordinates xi/
√
Ex2i has sub-Gaussian norm O(1).

Consider a fixed matrix M ∈ Rn×n, where M has Frobenius norm ‖M‖F
and spectral norm ‖M‖. By the Hansen-Wright inequality, for any s > 0,

P
y

{
|y>My − E y>My| > s

}
6 exp

(
−Cs2/(‖M‖2F + s‖M‖

)
for some constant C.

If Q is any matrix in the support of Q, then ‖Q/n‖F 6 O(1) by niceness,

and ‖Q‖ 6 ‖Q‖F . So for any such Q,

P
y

{
|y>(Q/n)y − E y>(Q/n)y| > s

}
6 exp

(
−Cs2/(1 +O(s))

)
.

Taking s = (log n)4, this probability is at most n−(logn)
2

for large-enough n.

Taking a union bound over N 6 nO(1) samples Q(a), with probability at least

1− n−(logn)1.5 over y (for large enough n), every Q(a) has∣∣∣∣x> · Q(a)

n
· x
∣∣∣∣ 6 (log n)O(1)

n
· ‖xx>‖F .

Putting it together, for N = nO(1), with probability at least 1 − n−(logn)1.4

for big-enough n, if x ∼ {−t, . . . , t}n then Q(1)/n, . . . , Q(N)/n are a (log n)O(1)-

incoherent basis for x. Thus with probability at least 1 − n−10 logn over
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Q(1), . . . , Q(N), we have Px(Q(1)/n, . . . , Q(N)/n is ν-incoherent for x) > 1 −
n−10 logn (again for large enough n).

From incoherence to recovery We can simulate the procedure of sampling

Q1, . . . , Qm as in the theorem statement by first sampling Q1, . . . , QN , then

randomly subsampling m of the Q’s. If Q1, . . . , QN are (log n)O(1)-incoherent for

xx>, then Theorem 4 shows that with probability 1 − n− logn over the second

sampling step, trace norm minimization recovers x, so long as the number of

samples m is at least n(log n)O(1). This finishes the proof.

6 Experiments

In this section, we describe the experiments that we performed on various classes

of polynomials and how well do they perform in practice. All the codes were run

and analysed on a MacBook Air (2013) laptop with 4GB 1600 Mhz DDR3 RAM

and an intel i5 processor with clock speed of 1.3 Ghz. We used Julia as our

programming language and the package “Mosek” for the implementation of an

SDP solver.

6.1 Experimental Cryptanalysis of Dense or Sparse Polynomials

First, we describe the setting of multivariate quadratic polynomials over the

integers where the coefficients of each monomial is chosen independently at ran-

dom from some distribution D. Such dense polynomials were considered in [2,1].

We denote such polynomials by MQ.

The function genmatrixDMQ takes as input number of variables n and a co-

efficient bound C, and does the following:

1. For every monomial xixj where i, j ∈ [n] and j > i, it samples a coefficient

as a uniformly random integer in [−C,C].

2. This coefficient is stored as V [i][j] inside the matrix V .

3. The entire coefficient matrix is then made symmetric by just computing sum

of itself with its transpose. Note that this quadratic form is the same as the

one obtained in step 2.

The code can be found in Section A

Having described how to sample a polynomial, now we turn to the procedure

to sample the input.

The function genxMQ on input number of variables n and a bound B, and

does the following:

1. It samples an input vector (x[1], ..., x[n]) where each x[i] is a sampled inde-

pendently as a random integer between [−B,B]
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The code of this function can be found in Section A.

Once we know how to sample polynomials and inputs we generate observa-

tions.

The function genobsMQ takes as input the number of input variables n, num-

ber of random polynomials m, coefficient bound C and bound on the planted

input B. The function does the following:

1. It generates m polynomials randomly as per the distribution given by func-

tion genmatrixDMQ and stores them inside the vector L.

2. Then, it samples a planted input vector x = (x1, ..., xn) given by the distri-

bution genxMQ.

3. Finally, it creates m observations of the form obs[i] = xTL[i]x for i ∈ [m]

where xT is the transpose of vector x.

4. It outputs polynomials, input and the observations.

This code can also be found in Section A

Once we have the observation we compute the function recoverMQ which

implements the attack.

This function recoverMQ takes as m input observations as a vector obs along

with the polynomial vector L. Then it finds a semi-definite matrix X constrained

to the linear constraints that Tr(L[i]∗X) = obs[i] for i ∈ [m], with the objective

to minimize Tr(X). Clearly, such an SDP is feasible as X = x · xT (product of

input vector with its transpose) satisfies the constraints.

Our experiments support the theorems given earlier in this paper. Indeed,

for m > 3n, the SDP successfully recovers x for MQ polynomials. We similarly

conducted experiments for sparse polynomials, where again the SDP successfully

recovers x for m > 3n in all experiments. We omit details of the sparse case to

avoid redundancy.

6.2 Attacking [Lin-Matt18] Candidate Polynomials

In this section, we mount an attack on systems of quadratic polynomials with

special structure. In particular, we consider the quadratic polynomials conjec-

tured to provide security by [21]. Recall that the polynomials described in [21]

are of the following structure. For each j ∈ [m],

qj(x1, ..., xn, x
′
1, ..., x

′
n′) = Sj(x1, ..., xn) +MQj(x

′
1, ..., x

′
n′)

Here we write more about polynomials Sj , MQj as well as the input vector

(x1, ..., xn, x
′
1, ..., x

′
n′).

1. MQj Polynomials: MQj are random quadratic polynomials over

(x′1, ..., x
′
n′), where the coefficients of each degree two monomial x′ix

′
k and

degree one monomial x′i are integers chosen independently at random from

[−C,C].
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2. Sj Polynomials: Sj are random quadratic polynomials over (x1, ..., xn) of

the form:

Sj(x1, ..., xn) = Σ
n/2
i=1αixσj(2∗i)xσj(2∗i−1) +Σn

i=1βixi + γ

Here each coefficient αi, βi and γ are random integers chosen independently

from [−C,C]. Here, σj is a random permutation from [n] to [n].

3. Distribution of inputs x1, ..., xn: Each xi is chosen as a random integer

sampled independently from the distribution χB1,B2
. χB1,B2

samples a ran-

dom integer from [−B1, B1] with probability 0.5 and from [−B2, B2] with

probability 0.5.

4. Distribution of inputs x′1, ..., x
′
n′ : Each x′i is chosen as a random integer

sampled independently from the distribution χB′ . χB′ samples a random

integer from [−B′, B′].
5. Set B1, B2, B

′, n, n′ as follows:

– Set n = n′ and m = n1+ε, for some ε > 0.

– B1, B′ and C are set arbritarily.

– Set B2 = Ω(nB2 + nBB1).

Here B is some polynomial in the security parameter.

The function genmatrixsmq generates polynomials of the form S + MQ.

Then, we sample inputs using the function genxdiscsmq. Note that, this function

samples input of length n+n′+2. Two special variables x[1] and x[n+2] are set

to 1 to achieve linear terms in the polynomials (as such xTV x is a homogeneous

degree two polynomial in x). Now we generate observation using the function

genobssmq, which is implemented similarly.

Changing the SDP. To attack these special polynomials, we modify the SDP

to introduce new constraints that help capture the structure of the polynomial.

Specifically, because we know that the values x1, . . . , xn take small polynomially

bounded values, we can enumerate over all possible “guesses” for Σi∈[n]x
2
i , and

be sure that one of these will be correct. Let val1 be this guess. As such, we

can add a constraint that Σi∈[n]X[i, i] = val1 to the SDP, where X is the SDP

matrix variable of size n + n′ by n + n′, and then solve. The code is formally

described in Section A.

The Figure 2 shows the plot of the ratio m/n versus the correlation of the

recovered solution with the planted solution, for n+n′ = 60 total variables, where

n = n′ = 30. Larger values of n that were still experimentally feasible, such as

n + n′ = 120 yielded similar graphs. We also remark that similar experimental

observations can be made if we replace polynomials S with randomly generated

sparse polynomials with O(n) monomials. As before, for m > 3(n + n′), in our

experiments, we always recover the correct solution.
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Figure 2: Experimentally breaking Lin-Matt candidate. Graph shows quality of recov-

ered solution vs. planted solution, for various values of m/n shown in the x-axis. Let

v be the eigen vector with largest eigen value of the optimum matrix returned by the

SDP. Let x be the planted solution. Quality of solution is defined as 〈v,x〉

〈v,v〉
1
2 〈x,x〉

1
2

6.3 Attacking polynomials of the form S + S +MQ

Now we consider attacking a more general form of systems where each polynomial

qj(x1,x2,x3) is of the following form:

– qj takes as input three input vectors x` = (x`,1, . . . , x`,n) for ` ∈ [3].

– Then, qj = Sj,1(x1) + Sj,2(x2) +MQj(x3)

Inputs x` for ` ∈ [3] are chosen as in the previous section. We observe that

when we constrain the sum Σ`∈[2],j∈[n]x
2
`,n, then SDP successfully recovers the

planted solution using about same number of samples (for the same size of input)

as for the previous case. This code of the recovery function recoverspecialssm

is given in Section A. Note that in the code, the sum val1 + val2 is used to

constrain this sum. This seems to generalise. If we consider a family where the

polynomials q are of the form S1 + . . .+Sk +MQ1 + . . .+MQk, for values of k

we could experimentally try (specifically k ∈ {1, 2, 3}) constraining the sum of

trace corresponding to inputs of S polynomials leads to a break with probability

1.
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7 Cubic Assumption

In this section, we discuss the cubic assumption proposed by [2]. Let us first recall

the cubic version of the ∆RG assumption considered by [2]. First, we define a

notion of a polynomial sampler Q

Definition 6. (Polynomial Sampler Q) A polynomial sampler Q is a probabilis-

tic polynomial time algorithm that takes as input n,B,∈ N along with a constant

1 > ε > 0 and outputs:

– Polynomials (q1, ..., qbn1+εc).

– Each polynomial qj(e1, ..., en, y1, ..., yn, z1, ..., zn) =

Σi1,i2,i3∈[n]ci1,i2,i3ei1yi2zi3 . Here, each coefficient ci1,i2,i3 are in-

tegers bounded in absolute value by a polynomial in n and

e1, ..., en, y1, .., yn, z1, ..., zn are the variables of the polynomials.

Cubic ∆RG Assumption. There exists a polynomial sampler Q and a constant

ε > 0, such that for every large enough λ ∈ N, and every polynomial bound

B = B(λ) there exist large enough polynomial nB = λc such that for every

positive integer n > nB there exists an efficiently samplable bounded distribution

χ that is bounded by some polynomial in λ, n such that for every collection of

integers {δi}i∈[bn1+εc] with |δi| 6 B, the following holds for the two distributions

defined below:

Distribution dist1:

– Fix a prime modulus p = O(2λ).

– (Sample Polynomials.) Run Q(n,B, ε) = (q1, ..., qbn1+εc).

– (Sample Secret.) Sample a secret s← Zλp
– Sample ai ← Zλp for i ∈ [n].

– (Sample LWE Errors.) For every i ∈ [n], sample ei, yi, zi ← χ. χ is

a bounded distribution with a bound poly(n) such that LWE assumption

holds with error distribution χ, modulus p and dimension λ.

– Output {ai, 〈ai, s〉+ei mod p}i∈[n], {qj , qj(e1, .., en, y1, ..., yn, z1, ..., zn)}j∈[bn1+εc]

Distribution dist2

– Fix a prime modulus p = O(2λ).

– (Sample Polynomials.) Run Q(n,B, ε) = (q1, ..., qbn1+εc).

– (Sample Secret.) Sample a secret s← Zλp
– Sample ai ← Zλp for i ∈ [n]

– (Sample LWE Errors). For every i ∈ [n], sample ei, yi, zi ← χ. χ is a

bounded distribution with a bound poly(λ) such that LWE assumption

holds with error distribution χ, modulus p and dimension λ.
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– Output {ai, 〈ai, s〉 + ei mod p}i∈[n], {qj , qj(e1, .., en, y1, ..., yn, z1, ..., zn) +

δj}j∈[bn1+εc]

The assumption states that there exists a constant εadv > 0 such that for

any adversary A of size 2λ
εadv , the following holds:

|P[A(dist1) = 1]− P[A(dist2) = 1]| < 1− 1/λ

Linearization Attack for n2 stretch. The assumption above is only required to

hold for stretch n1+ε for any small constant ε. However, we observe that the

assumption described above suffers from an attack if the stretch is O(λ · n2).

The attack is simple and is described below.

Theorem 5. The cubic ∆RG assumption does not hold with m = O(λ · n2)

polynomials q1, . . . qm.

Proof. Here is the breaking algorithm. For notational convenience, we only con-

sider homogenous degree-3 polynomials. In this case, we can set m = n2(λ+ 1).

However, the algorithm trivially generalizes to all degree-3 polynomials with

m = n2(λ+ 3) + 2n+ λ.

1. Consider a polynomial q`(e1, ..., en, y1, ..., yn, z1, ..., zn) = Σi,j,kci,j,k,`eiyjzk.

2. Rewrite q`(e1, ..., en, y1, ..., yn, z1, ..., zn) = Σi,j,kci,j,k,`(〈ai, s〉 + ei −
〈ai, s〉)yjzk. Now note that ai and bi = 〈ai, s〉+ ei is given. Set yjzk = wj,k
and sindyjzk = wind,j,k for ind ∈ [λ], j ∈ [n], k ∈ [n].

3. Note that since q`(e1, ..., en, y1, ..., yn, z1, ..., zn) = Σi,j,kci,j,k,`(bi −
〈ai, s〉)yjzk in Zp, the entire system of m = n1+ε samples can be written

as a system of linear equations over Zp in (λ + 1)n2 variables wind,j,k and

wj,k. A simple gaussian elimination then recovers the solution.

On the existence of hard degree-3 polynomials. Feige [12] conjectured that its

hard to distinguish a satisfiable random 3-SAT instance from a random 3-SAT

instance with C · n clauses. Each disjunction x1 ∨ x2 ∨ x3 corresponds to the

polynomial 1 − (1 − x1)(1 − x2)(1 − x3). This intuition gives rise to a set of

candidate polynomials qi,j , which depends on three randomly chosen variables

and maps {0, 1}n to {0, 1}. Each qi,j has at most 8 monomials. Intuitively speak-

ing, to choose clauses, instead of chosing clauses at random – something that is

known to lead to weak RANDOM 3SAT instances – we first choose a planted

boolean solution x∗ ∈ {0, 1}n, and always choose clauses such that exactly one

or all three literals in the clause evaluate to true. This has the property that

each clause individually induces a uniform constraint on any pair of variables xi
and xj . In the boolean case, this distribution of clauses is believed to give rise
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to hard distributions, which suggests that the expanding polynomial systems

corresponding to these clauses should be hard to solve in general.

To construct obfuscation, we need the stretch to be at least n1+ε for any

constant ε > 0. All known algorithms take exponential time as long as n1.5−ε

clauses are given out. This leads to a conjecture, which is also related to the

work of [11]. As a result, we conjecture that the following candidate expanding

family of degree-3 polynomials is hard to solve.

3SAT Based Candidate.. Let t = B2λ. Here, B(λ) is the magnitude of

the perturbations allowed. Sample each polynomial q′i for i ∈ [η] as follows.

q′i(x1, . . . ,xt,y1, . . . ,yt, z1, . . . , zt) = Σj∈[t]q
′
i,j(xj,yj, zj). Here xj ∈ χd×n and

yj , zj ∈ χn for j ∈ [t]. In other words, q′i is a sum of t polynomials q′i,j over t

disjoint set of variables. Let χ denote a discrete gaussian random variable with

mean 0 and standard deviation n. Now we describe how to sample q′i,j for j ∈ [η].

1. Sample randomly inputs x∗,y∗, z∗ ∈ {0, 1}n.

2. To sample q′i,j do the following. Sample three indices randomly and indepen-

dently i1, i2, i3 ← [n]. Sample three signs b1,i,j , b2,i,j , b3,i,j ∈ {0, 1} uniformly

such that b1,i,j ⊕ b2,i,j ⊕ b3,i,j ⊕ x∗[i1]⊕ y∗[i2]⊕ z∗[i3] = 1.

3. Set q′i,j(xj,yj, zj) = 1− (b1,i,j ·xj[i1]+(1−b1,i,j) · (1−xj[i1])) · (b2,i,j ·yj[i2]+

(1− b2,i,j) · (1− yj[i2])) · (b3,i,j · zj[i3] + (1− b3,i,j) · (1− zj[i3]))
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A Julia Code

function genmatrixDMQ(n, C)

V = randn(n,n)

for i in 1:n

for j in 1:n

V[i,j] = 0

end

end

for i in 1:n

for j in i:n

V[i,j] = nr.randint(-C, high=C+1)

end

end

(V’+V)/2

end
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function genxMQ(n ,B)

x = randn(n,1)

for i in 1:n

x[i] = nr.randint(-B, high=B+1)

end

x

end

function genobsMQ(n,m,C,B)

L = [genmatrixDMQ(n,C) for i in 1:m]

x = genxMQ(n,B)

obs = [x’*L[i]*x for i in 1:m]

L,obs,x

end

function recoverMQ(L,obs)

n = size(L[1])[1]

m = length(L)

model = Model(solver = MosekSolver())

@variable(model, X[1:n,1:n], SDP)

# let’s maximize the trace

@objective(model, Min, trace(X))

# this makes the constraints

for i in 1:m

@constraint(model, trace(L[i]*X).==obs[i])

end

# this solves the problem

solve(model)

getvalue(X)

end

function genmatrixsmq(n, n2, nprime, C)

V = randn(n+nprime+2,n+nprime+2)

Z = randn(n+nprime+2,n+nprime+2)

for i in 1:n+nprime+2
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for j in 1:n+nprime+2

V[i,j] = 0

end

end

a=randperm(n)

#sparse monomials

for i in 1:n2

V[ a[2*i-1]+1,a[2*i]+1] = rand(-C:C)

end

#MQ monomials

for i in n+3:n+nprime+2

for j in n+3:n+nprime+2

V[i,j] = rand(-C:C)

end

end

#Linear terms in S

for j in 2:n+1

V[1,j]=rand(-C:C)

end

#Linear terms in MQ

for j in n+3:n+nprime+2

V[n+2,j]=rand(-C:C)

end

Z=V’+V
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Z

end

function genxdiscsmq(n,n2,nprime,B1,B2,Bprime)

x = randn(n+nprime+2,1)

x[1]=1

x[n+2]=1

for i in n+3:n+nprime+2

x[i] = rand(-Bprime:Bprime)

end

for i in 2:n+1

temp1=rand(-B1:B1)

temp2=rand(-B2:B2)

temp3=rand(0:1)

x[i] = (temp3*temp1+(1-temp3)*temp2 )

end

x

end

function genobssmq(n,n2,nprime,m,C,B1,B2,Bprime)

L = [genmatrixsmq(n,n2,nprime,C) for i in 1:m]

x = genxdiscsmq(n,n2, nprime,B1,B2,Bprime)

obs = [x’*L[i]*x for i in 1:m]

L,obs,x

end

function recoverspecialsmq(L,obs,n,n2,nprime,m,val1)

model = Model(solver = MosekSolver())

@variable(model, X[1:nprime+n+2,1:nprime+n+2], SDP)

# let’s maximize the trace

@objective(model, Min, trace(X))

# this makes the constraints
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for i in 1:m

@constraint(model, trace(L[i]*X).==obs[i])

end

@constraint(model, X[1,1]==1)

@constraint(model, X[n+2,n+2]==1)

@constraint(model, trace(X[1:n+1,1:n+1])=val1[1])

# this solves the problem

solve(model)

getvalue(X)

end

function recoverspecialssm(L,obs,n,n2,nprime,m,val1, val2,val3)

model = Model(solver = MosekSolver())

@variable(model, X[1:nprime+2*n+3,1:nprime+2*n+3], SDP)

# let’s maximize the trace

@objective(model, Min, trace(X))

# this makes the constraints

for i in 1:m

@constraint(model, trace(L[i]*X).==obs[i])

end

@constraint(model, X[1,1]==1)

@constraint(model, X[n+2,n+2]==1)

@constraint(model, X[n*2+3,2*n+3]==1)

@constraint(model, trace(X[1:n+1,1:n+1]) + trace(X[n+2:2*n+2,n+2:2*n+2])

>= val1[1] + val2[1])

# this solves the problem

solve(model)

getvalue(X)

26



end

27


	Sum-of-Squares Meets Program Obfuscation, Revisited
	Introduction
	Basing iO on bilinear maps and our results
	Our Results

	Our techniques
	Preliminaries
	RGs (Ananth-Jain-Sahai)

	Candidates for Quadratic PRGs
	Candidate for RG
	Candidate for Pseudo Flawed-Smudging Generators (Lin-Matt)

	Inverting Linear Matrix Maps
	Incoherent Linear Measurements
	Invertible Linear Matrix Maps

	Experiments
	Experimental Cryptanalysis of Dense or Sparse Polynomials
	Attacking [Lin-Matt18] Candidate Polynomials
	Attacking polynomials of the form S+S+MQ

	Cubic Assumption
	References
	Julia Code


