
Jevil’s Encryption Systems

Nadim Kobeissi

Symbolic Software
nadim@symbolic.software

Abstract. Imagine if, given a puzzle, you could encrypt a plaintext detailing
the location of a prize reward such that they who solves the puzzle can use this
solution to decrypt your prize information, without knowing the solution to the
puzzle yourself.
The Jevil1 family of encryption systems is a novel set of real-world encryp-
tion systems based on the promising foundation of witness encryption. The
first Jevil encryption systems comprise of Pentomino, Sudoku and Nonogram-
based encryption, allowing for the encryption of plaintext such that solving a
Pentomino, Sudoku or Nonogram puzzle yields to decryption. Jevil encryption
systems are shown to be correct, secure and to achieve high performance with
modest overhead.

1 Introduction

In 2013, Garg, Gentry, Sahai and Waters published the first formal definition of
witness encryption [2]. In their work, witness encryption is defined as an encryption
scheme for an NP language L with a corresponding “witness relation” R. The idea is
that a sender can encrypt a message M to a particular problem instance x, thereby
producing a ciphertext C. The recipient can decrypt C and obtain M if x is in the
language and they know a witness w where R(x,w) holds.

More practically, let’s imagine that Alphys is having trouble solving a Pentomino
(Fig. 1) puzzle which has a board N comprised of n squares and a set P comprised
of all the Pentomino pieces. Alphys can’t figure out the solution to her Pentomino
puzzle: she can’t fit all the pieces in P such that every square inN is covered exactly
once and every piece in P is used only once. However, she knows that her friend
Undyne is determined to solve any challenge; using witness encryption, Alphys can
encrypt a prize such that anyone who solves the Pentomino puzzle can obtain the
encryption key, despite the fact that Alphys herself doesn’t know the solution to the
puzzle.

1.1 Related Work

Despite the apparent novelty and uniqueness of the scheme proposed by Garg et al,
there appears to have been minimal interest in deriving real-world cryptographic

1 The name “Jevil” is inspired by a character in Toby Fox’s Deltarune fictional universe.
In this universe, Jevil is a jailed mad jester that challenges the player to reunite the keys
necessary to enter their cell so that theymay “play games” of Jevil’s design. Jevil is revealed
to have achieved surreal powers and to have turned his own jail cell into a world more
expansive than the one from which he was locked away. A piano rendition of Jevil’s theme
is available [1].

2 Nadim Kobeissi

Fig. 1. Pentomino [3] is a puzzle game where a given board must be completely filled by a
given set of pieces such that each shape is used exactly once and each square is filled exactly
once. In this example, we see a 8x8 board N with the four center squares removed (left)
being filled with twelve unique given Pentomino pieces from the set of pieces P (right.) The
board and the pieces represent the puzzle while the arrangement on the right represents the
solution.

systems from witness encryption. The research posited by Garg et al. relates wit-
ness encryption schemes to the exact cover problem, a well-known NP-complete
problem where a space and a set of elements are provided and where the goal is
to find exactly one subset such that the space is covered fully and without overlap.
Pentomino (and other popular puzzles, such as Sudoku) are actually exact cover
problems and this paper take advantage of this in order to translate them into cor-
rect, secure, usable and performant witness encryption systems.

Shortly after the introduction of witness encryption, Gentry et al expanded upon
the security foundations for witness encryption and introduced a new proof frame-
work for proving witness encryption schemes secure under instance independent
assumptions [4]. Bellare et al have expanded witness encryption towards potential
applications for password-based cryptography [5]. Liu, Jager, Kakvi and Warinschi
have expanded witness encryption in order to create “time-lock encryption” [6],
where ciphertext can only be decrypted at some specific point in the future (made
possible by the existence of a continuous public hash chain, such as the Bitcoin
blockchain).

1.2 Contributions

In this work, we introduce the Jevil family of real-world witness encryption systems.
We start with practical specifications for witness encryption based Pentomino, Su-
doku and Nonogram puzzles. Our hope is to draw more interest in the real-world
applicability of witness encryption and to progressively enlarge the Jevil’s encryp-
tion systems to include more different types of puzzles, including new ones based
on NP-complete problems that are not the exact cover problem and the subset-sum
problem.

In §2, we cover witness encryption preliminaries as established by Garg et al.
Based on these preliminaries, we introduce in §3 Pentomino-based witness encryp-
tion, in §4 Sudoku-based witness encryption and in §5 Nonogram-based witness en-
cryption. We formalize a real-world security model with concrete security bounds
and parameters for our encryption systems. §6 presents an argument for the secu-

Jevil’s Encryption Systems 3

rity of the Jevil encryption systems while §7 concludes with a discussion of future
work.

2 Preliminaries

Our preliminaries are precisely the same as those established by Garg et al in their
original research on witness encryption [2]. We relax the dependence on the defi-
nition for an ideal multilinear map [7] in an effort to make our witness encryption
primitives more relatable in terms of real-world implementation.

2.1 Exact Cover Problem

The exact cover problem is a well-known NP-complete [8] problem in computer
science. Described intuitively, it is the problem of covering some space with a col-
lection of shapes such that no two pieces overlap and such that the space is covered
fully.

Usefully, Pentomino, SudokuNonograms and other popular puzzles are reducible
to the exact cover problem. Garg et al base themselves around the exact cover prob-
lem when describing some elements of their witness encryption schemes [2] and in
this work we expand witness encryption based on the exact cover problem in order
to achieve real-world, implementable cryptographic systems.

Given an input x = (n,P1, . . . , Pl) where n is an integer and each Pi , i ∈ [l] is a
subset of [n], our goal is to find a subset of indices T ⊆ [l] that meets both of the
following conditions:

1. ∪i∈T Pi = [n]
2. ∀i, j ∈ T where i , j, Pi ∩ Pj ≡ ∅.

If such a T exists, then it is an exact cover of x.

2.2 n-MDDH Assumption

The n-Multilinear Decisional Diffie-Hellman [9] (n-MDDH) problem is defined by
Garg et al [2] as the following:

A challenger runs G(1λ,n) to generate groups and generators of order p. Then it
picks a random s, c1, . . . , cn ∈ Zp. The assumption then states that given g = g1, g

s, gc1 , . . . , gcn

it is hard to distinguish T = g
s
∏
j∈[1,n]cj

n from a random group element in Gn, with
better than negligible advantage in security parameter λ.

2.3 Decision Multilinear No-Exact-Cover Assumption

The Decision Multilinear No-Exact-Cover Assumption is defined by Garg et al [2]
as the following:

Let x = (n,P1, . . . , Pl) be an instance of the exact cover problem that has no so-
lution. Let param← G(11+n,n) be a description of a multilinear group family with

order p = p(λ). Let a1, . . . , an, r be uniformly random in Zp. For i ∈ [l], let ci = g
∏
j∈Pi

aj

|Pi |
.

For all adversaries A, the distinguishing advantage between the following two dis-
tributions is negligible:

(param, c1, . . . , cl , g
a1·...·an
n) and (param, c1, . . . , cl , grn)

4 Nadim Kobeissi

3 Jevil’s Pentomino Encryption System

Jevil’s Pentomino Encryption System (JPES) is a witness encryption system with the
following public, user-provided components:

– N , a Pentomino board of size n.
– P = {P1, . . . , P63}, a set of Pentomino pieces.2

(N,P) together constitute a full description of a specific Pentomino puzzle via
its board and its pieces.

Using JPES, the sender generates a key K using (N,P) which can then be used
for encryption (or anything else) and a set of public values S. JPES then allows the
recipient to obtain K by solving the Pentomino puzzle described by (N,P) and S.

When attempting to transform Pentomino puzzles into a witness encryption sys-
tem, there are a number of intuitive constraints inherent to the Pentomino puzzle
game that we must be able to mathematically capture. In order for a Pentomino
puzzle to be considered solved:

– N must be completely filled with no “empty” squares.
– Any one of the 12 pieces in P may not be used more than once and may be used

only in a single orientation.
– Squares in N cannot be filled more than once (i.e. pieces in P may not overlap

on N).

3.1 Key Generation

Step 1: JPES-GENBOARDEXP.

– Choose a prime p = p(λ) where λ is a strong security parameter and let gp be a
generator for the group G of prime order p.3

– ∀i ∈N , N x
i

R← {0,1}λ.

– ∀i ∈ P , P x
i

R← {0,1}λ.4

– K = HASH(g
(P x

1 ·...·P
x
12)·(N

x
1 ·...·N

x
n)

p).5

Step 2: JPES-CALCPOSEXP.

– S = {}.

2 If we consider all of the possible 90° rotations of the 12 unique Pentomino piece shapes,
we obtain 63 pieces in total.

3 In practice, we mean that p is a safe prime and that we are working in a secure Diffie-
Hellman field. If working with Elliptic-Curve Diffie-Hellman, for example, this could be
the prime order for the field of the Curve25519 [10] elliptic curve.

4 Elements of P that are rotations of the same piece share the same randomly generated
exponent. This means that in total, only 12 exponents are generated for the 63 rotations
contained in P .

5 Here, HASH is any secure hash function, such as for example BLAKE2 [11].

Jevil’s Encryption Systems 5

Fig. 2. The JPES-CALCPOSEXP step calculates the exponents for each possible position of a
particular Pentomino shape on the board. For example, for piece Pi , the top-left position will

generate the Pentomino value g
P x
i ·N

x
2 ·N

x
9 ·N

x
10·N

x
18

p .

– ∀i ∈ P , calculate every possible position of Pi on N as shown in Fig. 2. For each
position, insert a triple into the set S which links the resulting exponent with its
original shape in P as well as the position on N from which the exponent was
derived. For example, the value derived for the top-left position in Fig. 2 would

be added to S as (Pi × [2,9,10,18]→ g
P x
i ·N

x
2 ·N

x
9 ·N

x
10·N

x
18

p).

The sender is free to use the symmetric key K to encryptM as they please. They
then send the ciphertext along with public values (p,gp,N ,P ,S) to the recipient.

3.2 Key Derivation

The recipient attempts to fit a subset e ⊂ S onto N so that they obtain a solution of
the exact cover problem as described in §2.1. Once they believe they have a solution,
they calculate:

K = HASH(g
∏
i∈e

p) ≡ HASH(g
(P x

1 ·...·P
x
12)·(N

x
1 ·...·N

x
n)

p).
Note that for Pentomino puzzles with no solution, K can never be obtained by

the recipient. For Pentomino puzzles with multiple solutions, each solution will
result in the same value K .

3.3 Cost and Overhead

Key Generation. Given a security parameter λ of practical size 128 bits (16 bytes),
(n · 16) + (12 · 16) pseudorandom bytes must be generated for a board of size n. To
put this in perspective, for the puzzle shown in Fig. 1, (60 · 16) + (12 · 16) = 1152
pseudorandom bytes must be generated.
∀i ∈ P , modular exponentiations must be calculated for as many times as Pi

is possible to fit in N , which can vary greatly depending on the size and shape
of N . To put this in perspective, for the puzzle shown in Fig. 1, ≈ 1500 modular
exponentiations must be calculated.6 Of the values sent to the recipient, (p,gp,N ,P)

6 Modern implementations of Curve25519 can perform upwards of ≈ 26000 scalar multi-
plications per second on consumer hardware [12].

6 Nadim Kobeissi

1 7 3
8 4 6 2

6 5 8 7
2 5 9

8 3
7 6

1 2
8 3 7

4 5

8 1 2 4 7 6 9 3 5
5 3 7 8 9 1 4 6 2
6 4 9 2 5 3 8 1 7
3 2 5 6 8 9 7 4 1
4 6 8 3 1 7 2 5 9
9 7 1 5 2 4 3 8 6
1 5 4 9 3 2 6 7 8
2 8 3 7 6 5 1 9 4
7 9 6 1 4 8 5 2 3

Fig. 3. Sudoku is a puzzle where, in a 9x9 grid composed of nine 3x3 subgrids, each square
must be filled with a number between 1 and 9 such that the number is unique to its row,
column and subgrid. An unsolved puzzle is shown on the left with its solution to the right.
Sudoku has been shown to be a constraint problem [13].

are of negligible size. S however must contain all of the exponents calculated in this
step.

JPES’s key generation overhead is considered to be workable when dealing with
individual puzzles. However, in the (admittedly difficult to imagine) practical sce-
nario where keys must be generated on many different puzzles successively, a per-
formance bottleneck may be encountered.

Key Derivation. Key derivation costs and overhead are minimal. Essentially, a sin-
gle modular exponentiation step is carried out, with as many exponents as there are
pieces fitted on the board.

4 Jevil’s Sudoku Encryption System

Jevil’s Sudoku Encryption System (JSES) is a witness encryption system with the
following public, user-provided components:

– N , a Sudoku board of size n.
– P = {P1, . . . , P9}, a set of Sudoku pieces.7

(N,P) together constitute a full description of a specific Sudoku puzzle via its
board and its pieces.

Using JSES, the sender generates a key K using (N,P) which can then be used
for encryption (or anything else) and a set of public values S. JPES then allows the
recipient to obtain K by solving the Sudoku puzzle described by (N,P) and S.

When attempting to transform Sudoku puzzles (Fig. 3) into a witness encryption
system, there are a number of intuitive constraints inherent to the Sudoku puzzle
game that we must be able to mathematically capture. In order for a Sudoku puzzle
to be considered solved:

– N must be completely filled with no “empty” squares.
– Any column, row and subgrid in N may contain a certain number only once.
– Squares in N cannot be filled more than once (i.e. pieces in P may not overlap

on N).
7 {P1, . . . , P9} are commonly referred to in a Sudoku puzzle as the numbers 1 to 9.

Jevil’s Encryption Systems 7

+ + + + + + + + +
+ + +
+ + +
+
+
+
+
+
+

+ + + + + + + + +
+ + +
+ + +

+
+
+
+
+
+

+ + + + + + + + +
+ + +
+ + +

+
+
+
+
+
+

+ + +
+ + + + + + + + +
+ + +
+
+
+
+
+
+

+ + +
+ + + + + + + + +
+ + +

+
+
+
+
+
+

+ + +
+ + + + + + + + +
+ + +

+
+
+
+
+
+

+ + +
+ + +
+ + + + + + + + +
+
+
+
+
+
+

+ + +
+ + +
+ + + + + + + + +

+
+
+
+
+
+

+ + +
+ + +
+ + + + + + + + +

+
+
+
+
+
+

Fig. 4. The JSES-CALCPOSEXP step calculates the exponents for each possible “position” of a
particular Sudoku piece on the board such that its constraints are captured. For example,
for piece Pi when considered in the position col. 2, row 2 (i.e. N11), the value calculated

is g
P x
i ·N

x
1 ·N

x
2 ·N

x
3 ·N

x
10·N

x
11·N

x
12·N

x
13·N

x
14·N

x
15·N

x
16·N

x
17·N

x
18·N

x
19·N

x
20·N

x
21·N

x
29·N

x
38·N

x
47·N

x
56·N

x
65·N

x
74

p . This cor-
responds to the center example given in this figure, which demonstrates the squares of N
involved when calculating exponents for positions N1, N2, N3, N10, N11, N12, N19, N20 and
N21.

4.1 Key Generation

Step 1: JSES-GENBOARDEXP.

– Choose a prime p = p(λ) where λ is a strong security parameter and let gp be a
generator for the group G of prime order p.

– ∀i ∈N , N x
i

R← {0,1}λ.
– ∀i ∈ P , P x

i
R← {0,1}λ.

– K = HASH(gp
(P x

1 ·...·P
x
9)
|P |·(N x

1 ·...·N
x
n)

n
3).

Step 2: JSES-CALCPOSEXP.

– S = {}.

For all empty squares Ni in N :

– ∀i ∈ P , calculate the relevant exponent as shown in Fig. 4 but for the position
of the square Ni . Then, insert a triple into the set S which links the resulting
exponent with its original piece in P (i.e. the “number”) as well as the position
on N . For example, if Ni =N11, the following would be added to S:
(Pi × 11→
g
P x
i ·N

x
1 ·N

x
2 ·N

x
3 ·N

x
10·N

x
11·N

x
12·N

x
13·N

x
14·N

x
15·N

x
16·N

x
17·N

x
18·N

x
19·N

x
20·N

x
21·N

x
29·N

x
38·N

x
47·N

x
56·N

x
65·N

x
74

p).

8 Nadim Kobeissi

For all filled squares in N (we take as an example col. 2, row 1 in Fig. 3, i.e. N2):

– Since the square contains the piece P1, Calculate the relevant exponent as shown
in Fig. 4 but for the position col. 2, row 1. Do so only for P1. Then, insert a triple
into the set S which links the resulting exponent with its original piece in P (i.e.
the “number”) as well as the position on N . For example, the value derived for
this filled square would be added to S as:
(P1 × 2→
g
P x
1 ·N

x
1 ·N

x
2 ·N

x
3 ·N

x
4 ·N

x
5 ·N

x
6 ·N

x
7 ·N

x
8 ·N

x
9 ·N

x
10·N

x
11·N

x
12·N

x
19·N

x
20·N

x
21·N

x
29·N

x
38·N

x
47·N

x
56·N

x
65·N

x
74

p).

4.2 Key Derivation

The recipient attempts to fit a subset e ⊂ S onto N so that they obtain a solution of
the exact cover problem as described in §2.1. Once they believe they have a solution,
they calculate:

K = HASH(g
∏
i∈e

p) ≡ HASH(gp
(P x

1 ·...·P
x
9)
|P |·(N x

1 ·...·N
x
n)

n
3).

Note that for Sudoku puzzles with no solution, K can never be obtained by the
recipient. For Sudoku puzzles with multiple solutions, each solution will result in
the same value K .

4.3 Cost and Overhead

Key Generation. Given a security parameter λ of practical size 128 bits (16 bytes),
(n · 16) + (|P | · 16) pseudorandom bytes must be generated for a board of size n.
To put this in perspective, for a typical Sudoku puzzle where n = 81 and |P | = 9,
(81 · 16) + (9 · 16) = 1440 pseudorandom bytes must be generated.
∀i ∈ P , modular exponentiations must be calculated for as many times as Pi

is possible to fit in N . To put this in perspective, for a typical Sudoku puzzle,
(n = 81) · (|P | = 9) = 729 modular exponentiations must be calculated which each
exponent containing 28 multiples. Of the values sent to the recipient, (p,gp,N ,P)
are of negligible size. S however must contain all of the exponents calculated in
this step.

JSES’s key generation overhead is considered to be workable when dealing with
individual puzzles. However, in the (admittedly difficult to imagine) practical sce-
nario where keys must be generated on many different puzzles successively, a per-
formance bottleneck may be encountered.

Key Derivation. Key derivation costs and overhead are minimal. Essentially, a sin-
gle modular exponentiation step is carried out, with as many exponents as there are
pieces fitted on the board.

5 Jevil’s Nonogram Encryption System

Jevil’s Nonogram Encryption System (JNES) is a witness encryption system with the
following public, user-provided components:

– N , a Nonogram board of size n.
– P , a set of Nonogram row/column rules.

Jevil’s Encryption Systems 9

Fig. 5. Nonograms (also known as “Picross”) are puzzles where the board must be filled such
that the rules indicated above each row and column are respected. For example, the third
row must only include two filled-in squares and then one filled-in square, separated by an
arbitrary number of empty squares. Nonograms have been shown to be instances of an NP-
complete problem [14] and are reducible to an exact cover problem.

(N,P) together constitute a full description of a specific Nonogram puzzle via
its board and row/column rules.

Using JNES, the sender generates a key K using (N,P) which can then be used
for encryption (or anything else) and a set of public values S. JNES then allows the
recipient to obtain K by solving the Nonogram puzzle described by (N,P) and S.

When attempting to transformNonogram puzzles (Fig. 5) into a witness encryp-
tion system, there are a number of intuitive constraints inherent to the Nonogram
puzzle game that we must be able to mathematically capture. In order for a Nono-
gram puzzle to be considered solved:

– N must be fully completed with either blank squares or filled squares.
– Any column or row in N must contain filled-in squares in the pattern described

by the corresponding column or row rule in P .

5.1 Key Generation

Step 1: JNES-GENBOARDEXP.

– Choose a prime p = p(λ) where λ is a strong security parameter and let gp be a
generator for the group G of prime order p.

– ∀i ∈N , N x
i

R← {0,1}λ.
– ∀i ∈ P , determine the total number of filled-in squares8 and generate two sets

of random exponents such that each filled-in square has one random expo-
nent and each blank square has one random exponent. We represent these two
sets as P x

f = {P x
f 1 . . . P

x
f y} where y is the number of filled-in squares, and P x

e =
{P x

e1 . . . P
x
e(n−y)}.

– K = HASH(gp
(P x

f 1·...·P
x
f y)

2·(P x
e1·...·P

x
e(n−y))

2·(N x
1 ...N

x
n)

2
).

8 Determining the total number of filled-in squares necessary to successfully solve a Nono-
gram can be done simply by adding together the numbers appearing in the set of row rules
or the numbers appearing in the set of column rules.

10 Nadim Kobeissi

Step 2: JNES-CALCPOSEXP.

– S = {}.
– For each column inN , generate each possible combination of filled-in and empty

squares such that the column rules are satisfied. Add to S the multiplication of
the corresponding exponents for these filled-in and empty squares in P x

f and P x
e

as well as the exponents in Nx for the squares they cover on N .
– For each row in N , generate each possible combination of filled-in and empty

squares such that the row rules are satisfied. Add to S the multiplication of the
corresponding exponents for these filled-in and empty squares in P x

f and P x
e as

well as the exponents in Nx for the squares they cover on N .
– S will end up with “pieces” representing all the possible rule-abiding combina-

tions of filled-in and empty squares for each column and row inN in accordance
with the rules in P .

When performing the above, use the following to determine which exponent in
P x
f and P x

e to use for which square in N :

– For filled-in squares, skip as many indices in P x
f as the sum of the numbers in

the rules of preceding columns or rows, then start from that position in P x
f for

every filled-in square that appears.
– For empty squares, skip as many indices in P x

e as the sum of the empty squares
that must have appeared in the preceding columns on rows, then start from that
position in P x

e for every empty square that appears.

5.2 Key Derivation

The recipient attempts to fit a subset e ⊂ S onto N so that they obtain a solution of
the exact cover problem as described in §2.1. Once they believe they have a solution,
they calculate:

K = HASH(g
∏
i∈e

p) ≡ HASH(gp
(P x

f 1·...·P
x
f y)

2·(P x
e1·...·P

x
e(n−y))

2·(N x
1 ...N

x
n)

2
).

Note that for Nonogram puzzles with no solution, K can never be obtained by
the recipient. For Nonogram puzzles with multiple solutions, each solution will
result in the same value K .

6 Security Argument

JPES (§3), JSES (§4) and JNES (§5)’s security is founded entirely on the n-MDDH
problem (§2.2) and on the Decision Multilinear No-Exact-Cover Assumption (§2.3).
When considering the security of these systems, we concern ourselves mainly with
the claim that K can only be obtained by a party with knowledge of sets (N,P ,S)
if and only if the values within S are organized in such a way that a solution is
obtained for the puzzle described by (N,P).

6.1 Secrecy of JPES, JSES and JNES

Once K is generated using JSES, JPES or JNES, it is up to the user to employ that
value using their preferred symmetric encryption cipher9, which would have its
own set of security properties.

9 Any modern symmetric cipher, such as AES [15] or ChaCha20 [16], is suitable.

Jevil’s Encryption Systems 11

If the n-MDDH problem is hard, if the Decision Multilinear No-Exact-Cover
Assumption holds and if the generator of K is honest, our argument is that the
solver is constrained exclusively to e ⊂ S in order to obtain K . We term this as secrecy
for JPES, JSES and JNES.

6.2 Correctness of JPES, JSES and JNES

If the obtainability of K is accepted to be dependent on a “correct arrangement” e
of elements in S, the validity of our security argument shifts to become based on
whether the values within S are generated such that e does indeed always represent
a valid solution to the puzzle described by (N,P), and that no incorrect or invalid
solution to the puzzle (N,P) yields K . We term this as correctness for JPES, JSES and
JNES.

For JPES, K is calculated such that every exponent representing a piece (i.e.
(P x

1 . . . P x
|P |)) is contained once, and every square exponent (N x

1 . . .N
x
|N |) is also con-

tained once. Therefore, given that all exponents are random and given that the n-
MDDH assumption holds:

– g
∏
i∈e

p not containing an exponent of each unique piece in P used in at least one
rotation cannot lead to K since K contains each piece exponent exactly once.

– g
∏
i∈e

p containing a piece in P usedmore than once, or used in different rotations,
cannot lead to K since K contains each piece exponent exactly once.

– g
∏
i∈e

p not containing an exponent for a particular square in N cannot lead to K
since K contains each square exponent exactly once.

– g
∏
i∈e

p containing an exponent for a particular square in N more than once, can-
not lead to K since K contains each square exponent exactly once.

Given that S contains only elements that multiply piece exponents with valid
square exponents, the above points argue that K cannot be obtained unless each
unique piece in P is used exactly once and in one rotation, and unless every square
in N is covered exactly once, which fulfills the traditional problem definition for
Pentomino.

For JSES, K is calculated such that every exponent representing a piece (i.e.
(P x

1 . . . P x
|P |)) is contained |P | times, and every square exponent (N x

1 . . .N
x
|N |) is also con-

tained n
3 times. Therefore, given that all exponents are random and given that the

n-MDDH assumption holds:

– g
∏
i∈e

p not containing an exponent of each unique piece in P used exactly |P |
times cannot lead to K since K contains each piece exponent exactly |P | times.

– g
∏
i∈e

p not containing an exponent for a particular square in N n
3 times cannot

lead to K since K contains each square exponent exactly once. This is meant to
capture that we mean for a solution chosen from S to “cover” each square in N
exactly n

3 times.

Given that S contains only elements that multiply piece exponents with all the
square exponents such that they “cover” all of the squares that coincide with the
rules of Sudoku (a piece not occuring twice in the same column, row or subgrid),
the above points argue that K cannot be obtained unless each unique piece in P is
used exactly |P | times and such that the rules of Sudoku are respected.

12 Nadim Kobeissi

For JNES,K is calculated such that every exponent representing a filled-in square
(i.e. (Pf 1 . . . Pf |Pf |) is contained twice, and every square exponent (N x

1 . . .N
x
|N |) is also

contained twice. Therefore, given that all exponents are random and given that the
N -MDDH assumption holds:

– g
∏
i∈e

p containing a single invalid combination for a row or column in N ac-
cording to P will lead to an inexact cover for N under rules P , since the pieces
in (Pf , Pe) can only produce K by exactly covering (Pf 1 . . . Pf |Pf |) and (N x

1 . . .N
x
|N |)

once through columns and again through rows, which is only possible if they
are laid out such that the rules in P are met both column-wise and row-wise.

– g
∏
i∈e

p not containing an exponent for a particular square in N once for each
valid row combination and again for each valid column combination cannot
lead to K since K contains each square exponent exactly twice.

Given that S contains only valid column combinations or valid row combina-
tions that multiply filled-in or empty square exponents with their respective board
positions, the above points argue that K cannot be obtained unless the pieces in
e ⊂ S are selected such as the rules in P for board N are respected.

7 Discussion and Conclusion

In this work, we introduce the Jevil family of encryption systems and show that
it is possible to generalize witness encryption into relatable, interesting real-world
applications based on popular puzzles. The underlying promise of witness encryp-
tion is truly interesting: being able to propose a decryption based on an unsolved
problem could have serious consequences in the realm of finance and, if sufficiently
generalized, could profoundly affect how trustless trade occurs.

Adding new systems to the Jevil family of encryption systems and growing that
generalization should be the next step. Ideally, systems based on other fundamental
NP-complete problems, such as the subset-sum problem, would be added. Practical,
usable implementations should also be a focus especially given the simplicity of the
systems within the Jevil family. Finally, a great question can be seen on the horizon:
is there a formal language for automatically translating any NP-complete problem,
once described, into a practical witness encryption system?

We plan to keep track of Jevil development at this webpage:
https://jevil.info.

Acknowledgements

This paper is dedicated to composer Toby Fox and electric guitar player RichaadEB.

https://jevil.info

Bibliography

[1] Yvonne Van What and Toby Fox. The World Revolving (Jevil Secret Boss
Theme) Piano Tutorial. YouTube, 2018. https://www.youtube.com/watch?

v=yuZFHO3d9Tg. 1
[2] SanjamGarg, Craig Gentry, Amit Sahai, and BrentWaters. Witness Encryption

and its Applications. In Proceedings of the forty-fifth annual ACM symposium on
Theory of computing, pages 467–476. ACM, 2013. 1, 3

[3] William Kent Wadsworth. Pentomino Puzzles, June 22 1976. US Patent
3,964,749. 2

[4] Craig Gentry, Allison Lewko, and Brent Waters. Witness Encryption from
Instance Independent Assumptions. In International Cryptology Conference,
pages 426–443. Springer, 2014. 2

[5] Mihir Bellare and Viet Tung Hoang. Adaptive Witness Encryption and Asym-
metric Password-based Cryptography. In IACR International Workshop on Pub-
lic Key Cryptography, pages 308–331. Springer, 2015. 2

[6] Jia Liu, Tibor Jager, Saqib A. Kakvi, and Bogdan Warinschi. How to Build
Time Lock Encryption. Cryptology ePrint Archive, Report 2015/482, 2015.
https://eprint.iacr.org/2015/482. 2

[7] SanjamGarg, Craig Gentry, and Shai Halevi. CandidateMultilinearMaps from
Ideal Lattices. InAnnual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 1–17. Springer, 2013. 3

[8] Michael R Garey andDavid S Johnson. Computers and Intractability, volume 29.
W.H. Freeman, New York, 2002. 3

[9] Whitfield Diffie and Martin Hellman. New Directions in Cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976. 3

[10] Daniel J Bernstein. Curve25519: New Diffie-Hellman Speed Records. In Inter-
national Workshop on Public Key Cryptography, pages 207–228. Springer, 2006.
4

[11] Jean-Philippe Aumasson, Samuel Neves, ZookoWilcox-OHearn, and Christian
Winnerlein. BLAKE2: Simpler, Smaller, Fast as MD5. In International Confer-
ence on Applied Cryptography and Network Security, pages 119–135. Springer,
2013. 4

[12] Jason A. Donenfeld. kBench9000: Simple kernel land cycle counter. ZX2C4,
2018. https://git.zx2c4.com/kbench9000/about/. 5

[13] Helmut Simonis. Sudoku as a Constraint Problem. In CP Workshop on model-
ing and reformulating Constraint Satisfaction Problems, volume 12, pages 13–27.
Citeseer, 2005. 6

[14] Nobuhisa Ueda and Tadaaki Nagao. Np-completeness results for nonogram
via parsimonious reductions. preprint, 1996. 9

[15] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media, 2013. 10

[16] Daniel J Bernstein. Chacha, a variant of salsa20. In Workshop Record of SASC,
volume 8, pages 3–5, 2008. 10

https://www.youtube.com/watch?v=yuZFHO3d9Tg
https://www.youtube.com/watch?v=yuZFHO3d9Tg
https://eprint.iacr.org/2015/482
https://git.zx2c4.com/kbench9000/about/

	Introduction
	Related Work
	Contributions

	Preliminaries
	Exact Cover Problem
	n-MDDH Assumption
	Decision Multilinear No-Exact-Cover Assumption

	Jevil's Pentomino Encryption System
	Key Generation
	Step 1: JPES-GENBOARDEXP.
	Step 2: JPES-CALCPOSEXP.

	Key Derivation
	Cost and Overhead
	Key Generation.
	Key Derivation.

	Jevil's Sudoku Encryption System
	Key Generation
	Step 1: JSES-GENBOARDEXP.
	Step 2: JSES-CALCPOSEXP.

	Key Derivation
	Cost and Overhead
	Key Generation.
	Key Derivation.

	Jevil's Nonogram Encryption System
	Key Generation
	Step 1: JNES-GENBOARDEXP.
	Step 2: JNES-CALCPOSEXP.

	Key Derivation

	Security Argument
	Secrecy of JPES, JSES and JNES
	Correctness of JPES, JSES and JNES

	Discussion and Conclusion

