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Abstract. Recent papers [42, 16] show how to construct polynomial in-
variant attacks for block ciphers, however almost all such results are
somewhat weak: invariants are simple and low degree and the Boolean
functions tend by very simple if not degenerate. Is there a better more
realistic attack, with invariants of higher degree and which is likely to
work with stronger Boolean functions? In this paper we show that such
attacks exist and can be constructed explicitly through on the one side,
the study of Fundamental Equation of [16], and on the other side, a
study of the space of Annihilators of any given Boolean function. Our
approach is suitable for backdooring a block cipher in presence of an ar-
bitrarily strong Boolean function not chosen by the attacker. The attack
is constructed using excessively simple paper and pencil maths.
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1 Introduction

In this paper we introduce a new type of attack on block ciphers. Not a new
attack - as such, attacks with non-linear1 invariants were known for decades
cf. [35, 36, 17]. The novelty is rather in the features of the attack and in the
general philosophy of how the attack works and how it is used. The attack we
present has unique interesting properties which we have never encountered be-
fore. We attempt to construct a higher degree polynomial invariant attack and
we discover that such properties may work well beyond just one cipher setup we
would like to break, but in a very large number of other cases. Imagine that we
could break AES in a way such that the exact specification of the S-box does
not really matter. Impossible? Furthermore, imagine that the S-box could be
maliciously crafted by the choice of the affine transformation inside the S-box
which makes the cipher breakable no matter what, and it is potentially hard to
defend against this attack, because even if the choice of a suitable linear trans-
formations is reduced, just a handful of good sparse and efficiently computable
linear transformations exist, the power of the attack is such that it just works
with high probability, for any choice of the internal non-linear component. Imag-
ine also that our attack belongs to a larger space with the number of possible

1 We consider that “nonlinear” and “non-linear” are synonyms the latter version being
less formal and more suitable for a larger audience rather than for specialists only.
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attacks growing as 22
n

. So that even if one attack accidentally does not work
for one S-box, another similar invariant property may work for this exact cipher
setup. Now of course we do not work on AES, which would be very ambitious.
For the sake of scientific research we need to test our ideas on a simpler cipher.
Numerous papers study attacks on toy ciphers [2, 32] however it is always better
to work on a real-life cipher. We work on an older block cipher T-310 used in
the 1980s to encrypt government communications.

1.1 Structural Non-Linear Attacks on Block Ciphers

Non-linear cryptanalysis was known for at least 20 years. What is new here is:

1. That such attacks may actually be found or constructed, with polynomials
of higher degree than before, e.g. (rather than quadratic or cubic cf. [42, 16,
17]) and that such attacks may actually exist at all, for any block cipher.

2. It is an attack which works for an arbitrarily large number of rounds (which
is rare but of course seen before cf. [34, 9, 4, 27]).

3. Finally it does something which is even more unique. Namely it is able to
somewhat ignore or circumvent the non-linear component(s) of the cipher in
a novel and powerful way: so that we obtain an almost purely “structural”
attack on a block cipher which makes our block cipher insecure, more or less
ignoring the non-linear components. An attack which is very likely to work
also when they are chosen to be extremely strong and also when they are
secret, unknown or key dependent [37]. This was seen before in stream cipher
cryptanalysis [14, 15] but it is new and unprecedented for block ciphers.

In this paper we assume that attacker cannot choose the non-linear component
(S-box or a Boolean function) but can make some “cipher wiring” choices of
the type “long-term key” and his goal is to make the cipher extremely weak on
purpose cf. [16, 1, 39, 3]. In other terms this paper is about whether block ciphers
can be backdoored even though many components and a number of rules have
already been imposed2 by the designers and are assumed to be as strong as
only possible. This is a realistic setting similar to what happens in real-life
situations: for example the S-boxes in Serpent have been built in order to avoid
any suspicion of backdooring. For the same reason some ciphers will have no S-
boxes whatsoever but may use some natural transformations such as rotations,
additions etc. (ARX philosophy). In AES potentially the affine transformation
inside the S-box could be manipulated, and in LFSR-based ciphers the LFSR
taps could be manipulated, yet the number of “good choices” is extremely small.
Then the question is can we make the cipher weak nevertheless, and with a
sufficiently large probability. As a proof of concept we will construct a round
invariant property which - modulo a number of appropriate connections inside
the cipher - works with probability of about 5 % over the choice of the non-linear
component inside the cipher.

2 The intention of the designers are on the contrary that there would be no way
whatsoever to make the cipher weak, once some strong components are mandated
like the S-boxes in DES which were designed using some classified knowledge and
expertise which could not be made public at the time, cf. [23, 20].
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1.2 What are we Looking for?

Block ciphers are in widespread use since the 1970s. Their iterated structure is
prone to numerous round invariant attacks for example in Linear Cryptanalysis
(LC). The next step is to look at non-linear polynomial invariants with Gener-
alised Linear Cryptanalysis (GLC) cf. Eurocrypt’95. A major open problem in
cryptanalysis is discovery of invariant properties of complex type. Researchers
have until 2018 found extremely few such attacks with some impossibility results
[5, 10]. Eventually recent papers [42, 16] show how to construct polynomial in-
variant attacks for block ciphers, however in almost all such results the Boolean
function is extremely weak [16] and invariants are simple and of low degree [42,
16]. Can we do better? What kind of better outcomes can we expect?

Most symmetric ciphers can be divided into two distinct parts: a set of rel-
atively simple [linear] transformations which mix bits together, and a set of
non-linear components (Boolean functions or S-boxes). We call a “Structural
Invariant Attack” an attack which does not depend a lot on the non-linear
components and depends strongly on the structure3 (i.e. wiring) of the cipher.
Most invariant attacks found to date can be seen as “Weak Structural Invariant
Attacks”: there is a cipher wiring and some special Boolean function such that
the cipher has an invariant property which propagates for an arbitrarily large
number of rounds. We call these attacks “weak”, because typically, the choice
of the Boolean function in these attacks is truly pathological: it is almost always
of low degree, frequently it does NOT depend on some inputs. For most of the
attacks in [16] very clearly, the probability that a cipher with a random Boolean
function would be weak in a way as to enable one of the attacks will be negligible
or close to zero. The recent paper [16] shows also the existence of polynomial
invariant attacks which work for any Boolean function, based on the fact that
all coefficients in a certain algebraic attack are equal to 0, cf. [16]. However
this attack is not very realistic either. Previous attacks working for any Boolean
function is an attack which would also work when the non-linear components
are secret or unknown were not very convincing. Designing such attacks seems
to impose too many strong constraints on other parts of the cipher so that it
becomes too weak (e.g. Appendix of [16]) and that maybe no one would accept
to use such a contrived cipher (e.g. weak ciphers in [18]). If a cipher has a back-
door, this fact should be well hidden and its components should not only look
very strong, but even actually should be very strong in terms of non-linearity
etc. [6].

At the end, we consider a more realistic attack scenario than in previous
works. We assume that the attacker knows the non-linear components [they
are public and were chosen to be very strong] and that he can now adapt his
attack to these components: for example look for weak keys and weak long-term
keys for a given Boolean function. This brings the question of the existence of
“Strong Structural Invariant Attacks”: which would work when the S-boxes

3 For example the block cipher GOST has a strong structural property: it splits very
neatly into two loosely connected parts, cf. Fig. 3 and Fig. 4 in [22] leading to
advanced structural truncated differential attacks [21, 23].
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or Boolean functions have not been chosen by the attacker, and are potentially
random or extremely strong, or just have no4 property which would be helpful
for the attacker (except properties which cannot be avoided).

Related Research. Some basic attacks in cryptanalysis such as study of
linear or differential properties propagating with probability 1 shows that such
properties are quite “fragile” in the sense that a tiny modification of a Boolean
function will ruin the attack and that cipher is simply secure in most cases. We
work somewhat at the opposite end of the spectrum which is not so unusual.
Several more advanced cryptanalytic attacks are less “fragile” and therefore
more “robust” or more “versatile” than basic LC and DC: they work more
frequently and it is hard to make they sure they do not work. For example
in GOST block cipher, it is illusory to try to secure S-boxes against advanced
forms of [Truncated] Differential Cryptanalysis, cf. [23]. In this paper we show
that similarly the Generalized Linear Cryptanalysis of [35, 36] is very “robust”
and more “versatile” and it works in a surprisingly large5 number of cases.

Expected Benefits. Frequently one attack hides another. Even if the prob-
ability that our “Strong Structural Invariant Attack” works is small say 5 %, this
could mean that another similar or slightly more general property exists which
covers maybe another 20 % of keys etc. At the end potentially we can hope to
attack or break some real-life keys.

1.3 Long Term and Short Term Keys vs. Malicious Cipher Wiring

Our attack is very different than what is typically called a weak-key attack: in
many weak key attacks the proportion of weak keys is negligible and therefore
such attacks are not very practical with some exceptions [31]. We are interested
in realistic attack scenarios where the proportion of weak keys is relatively large.

In our study of structural attacks on block ciphers we need to make a useful
difference between a “short term key” which will be typically different for each
transmission, and a “long term key” which will be used by all users for example
for one year. Many commercial block ciphers such as DES or AES do not have
such “long term key”, however ciphers for more serious say government security
purposes, tend to have a “long term key”. A modified DES which is a common
practice in the industry will have a long term key, an additional secret. A long-
term key is a standard feature in T-310, one of the most important block ciphers
of the Cold War [28, 41, 24, 40] and it takes a form of specifying the internal
connections of the cipher implemented as a printed circuit board with a typical
lifespan of one year. A related question is one of the feasibility of “backdooring”
a block cipher, or whether it is possible to make the cipher weak on purpose,
specifically through this type of “wiring” choice, such as for example the P-box
in DES. This sort of studies were always done in block cipher research except

4 A well-known folklore result (with endless variants) is that almost all Boolean func-
tions do not have any property we would wish to have, see for example [11, 12].

5 In general, in countless cryptanalystic attacks, there is something like a “phase tran-
sition” from “fragile” to “robust” and from “weak structural” to “strong structural”
etc., cf. Section 2.4 and [7, 8].
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that older literature would not use the word backdooring, but rather use more
politically correct terms such the “design” and “security analysis” of the cipher.
However the final objective yesterday and today is the same. We should observe
that either “backdooring” is possible OR the designers have done a good job
to made it strong in all6 cases. Overall for each cipher which has a “long term
key” and for many other where we can still modify the cipher wiring without
permission from the authors, the wiring can potentially be chosen maliciously.
We will then say that we have a “Strong Structural Invariant Attack” if
one can construct a “weak” wiring with a large broad applicability or/and large
success probability which is does not require the other (non-linear) components
of the cipher to be weak as well. In this paper we show how this can be done
for T-310. Our attacks are more realistic7 the previous “Weak”(er) structural
invariant attacks described in [16]. When like in T-310 the modification of the
long-term key is officially allowed and done on a regular basis, then a feasibility
of a weak or malicious choice is an important and eminently practical question.

2 Non-Linear Cryptanalysis

The concept of cryptanalysis with non-linear polynomials a.k.a. Generalized Lin-
ear Cryptanalysis (GLC) was introduced by Harpes, Kramer, and Massey at Eu-
rocrypt’95, cf. [35]. A key question is the existence of round-invariant I/O sums:
when a value of a certain polynomial is preserved after 1 round. Many researchers
have in the past failed to find any such properties, cf. for example Knudsen and
Robshaw at Eurocrypt’96 cf. [38]. Bi-Linear and Multi-Linear attacks were in-
troduced [17, 18] for Feistel ciphers branches specifically. The number of such
attacks grows as 22

n

, and many authors stress that systematic exploration is not
at all feasible [5]. For this reason, we there are extremely few positive results on
this topic [42, 16] and any method to approximate the solution is valuable, as
one working example as in this paper will typically allow the researchers to find
more similar examples.

In this paper and unlike in [42] we focus on invariants which work for 100 %
of the keys and we focus on stronger invariants which hold with probability 1. In
addition we look at a strong us case: an expensive government cipher in which
the block cipher is used for encryption in an extremely low-data rate mode, a lot
more costly than 3DES, AES, cf. [28]. Here most cryptanalytic attacks simply
do not work (!). However all this complexity is not that useful if we are able to
construct powerful non-linear invariants which work for any number of rounds.

6 Not quite true for T-310, for example in [26] we read that inside the so called class
of KT1 keys mandated by the designers, as many as 3 % of are weak w.r.t non-linear
cryptanalysis. This paper is about the remaining 97 % of KT1 keys.

7 Attacks where the Boolean function is very weak are easier to find as it seems, or a
plethora of such attacks exists [16]. Yet in practice they are rather irrelevant, as the
attacker just cannot hope to change the main non-linear components of a cipher to
become weaker.
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2.1 Mathematical Theory of Invariants.

In mathematics there exists an extensive theory of multivariate polynomial al-
gebraic invariants going back to 1850s [30] which deals almost always with in-
variants w.r.t. linear transformations(!) and has very rarely considered invariants
with more than 5 variables and in finite fields of small size. In our work we study
invariants w.r.t non-linear transformations and 36 or more variables over GF (2)
and those which simultaneously hold in more than one case [required]. More de-
tails about how this compares to what is done elsewhere in mathematics can be
found in Section 1.5 of [16].

A well-known polynomial invariant with applications in symmetric cryptog-
raphy is the cross-ratio, [18] and the “whitening paradox” cf. [18, 19].

2.2 Discovery of Advanced Invariant Attacks

The existence of some invariants does not imply that they can be found. Finding
such properties was so far considered as extremely hard. There are two major
approaches to our problem: combinatorial and algebraic. A nice algebraic ap-
proach it through solving the so called Fundamental Equation cf. [16]. Solving
such equation(s), or rather several such equations simultaneously, guarantees
that we obtain a Boolean function and the polynomial invariant P which prop-
agates for any number of rounds. However nothing guarantees that the FE
equation has any solutions. In this paper we show how to construct just one
higher degree invariant which has however the property that [with or without
some extra wiring adjustments] it frequently has solutions: it can work with a
high probability for any non-linear component used.

2.3 On the Bootstrapping Problem in Cryptanalysis.

This paper is not only about a very specific attack on a very specific cipher but
also about cryptanalysis of symmetric ciphers at large. Research in block cipher
cryptanalysis has suffered from a bootstrapping problem: we have hardly found
any invariant attacks ever except when the set of all possible attacks is not too
large, e.g. in Linear Cryptanalysis (LC). An excessively rich space of attacks
have been ignored, and we could not find new attacks because we failed to see or
imagine how new attacks could even look like. New examples of working attacks
(to adapt and imitate in further attacks) are crucial.

2.4 On Phase Transitions in Cryptanalysis

This paper provides a major example of a phase transition. A sort of holly grail or
highly desirable property in algebraic cryptanalysis at large, which researchers
have been aiming at for decades, cf. [8]. Phase transitions also happen with
SAT solvers [13, 7, 33]. The phase transition observed in this paper is as follows:
when the polynomial P is of degree 1, we get linear cryptanalysis which is not
excessively powerful, cf. [26]. Then when the degree is 2, we get attacks which
typically work only for a handful of very weak or degenerate Boolean functions,
if at all, and the proportion of Boolean functions for which the attack works is
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negligible or even somewhat double-negligible8. Then when increase the degree
to say 4, we can start “playing” with multiple solutions, for example see that
there are cases where some simple attacks of degrees say 1,2 can be removed but
an invariant property of degree 4 will remain, see Section 10 in [16]. Then at
degree 8 a strong phase transition happens: the attack become almost inevitable
or they work for almost any Boolean function (this paper).

3 Polynomial Invariant Attacks on Block Ciphers

We call P a polynomial invariant if the value of P is preserved after one round of
encryption, i.e. if P(Inputs) = P(Outputs). This concept can be applied to any
block cipher except that such attacks are notoriously hard to find cf. [5]. In this
paper we are going to work with one specific block cipher with 36-bit9 blocks.
The main point is that any block cipher round translates into relatively simple
Boolean polynomials, if we look at just one round. We follow the methodology
of [16] in order to specify the exact mathematical constraint, known as the
Fundamental Equation or FE, so that we could have a polynomial invariant
attack on our cipher. Such an attack will propagate for any number of rounds
(if independent of key and other bits). In addition it makes sense following [16]
to consider that the Boolean function is an unknown. We denote this function
by a special variable Z. We then see that our attack works if an only if Z is a
solution to a certain algebraic equation [with additional variables].

The main interest of making Z a variable is to see that even if Z is extremely
strong, our attack is likely to nevertheless work. Another benefit of studying the
FE in general is that This research is full of good surprises, there are numerous
things which work better than expected. For example in countless interesting
cases, the FE equation will not depend on F , and frequently will not depend on
K,L either, though sometimes the opposite is required, see [27]. Another major
case is when the FE reduces to zero, and the attack works for any Boolean
function, see Appendix of [16].

3.1 Notation and Methodology

In this paper the sign + denotes addition modulo 2, and frequently we omit the
sign * in products. Let x1, . . . , x36 be the inputs of our block cipher which are
bits ∈ {0, 1}. For the sake of compact notation we frequently use short or single
letter variable names and we follow the backwards numbering convention of [16]
with a = x36 till z = x11 and further we use M = x10 till V = x1 which allows
to avoid other capital letters such as F,K,L or W,X, Y, Z used elsewhere.

8 Which means that we get exactly one solution only inside a double exponential space
of possible Boolean functions, several examples where the solution Z is unique can
be found in Section 9 of [16].

9 Block size could be increased and our attacks and methods would work all the same.
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We consider that each round of encryption is identical except that they can
differ only in some “public” bits called F (and known to the attacker) and some
“secret” bits called S1 or K and S2 = L. Even though these bits ARE different in
different rounds we will omit to specify in which round we take them because our
work is about constructing one round invariants (extending to any number of
rounds). This framework covers most block ciphers ever made except that some
ciphers would have more “secret” or “public” bits in one round. The capital
letter Z is a placeholder for substitution of the following kind

Z(e1, e2, e3, e4, e5, e6)

where e1 . . . e6 will be some 6 of the other variables. In practice, the ei will
represent a specific subset of variables of type a-z, or other such as L. At the
end Z must be replaced by a formula like:

Z ← Z00 + Z01 ∗ L + Z02 ∗ c + Z03 ∗ Lc + . . . + Z62 ∗ cklfh + Z63 ∗ Lcklfh

Polynomial Invariants We are looking for arbitrary polynomial invariants.
For example combinations we could have a symmetric homogenous polynomial
like: P(a, b, . . .) = P42 ∗ (abc + abd + acd + bcd) + . . . In this paper polynomials
will be constructed primarily as simple products of super simple polynomials.
However in general solutions are frequently complex irreducible polynomials,
also far from being symmetric, cf. [16]. We simply study a tiny subcase of the
general attack of [16].

One of the main points in discovery of innovative attacks on block ciphers is
that most previous attacks polynomial invariants were of degree 2 [17, 16, 42]. In
this paper the degree of invariants is very high, for example 8.

3.2 Constructive Approach Given the Cipher Wiring

Our attack methodology starts10 from a given block cipher specified by its ANFs
for one round. Specific examples will be show for T-310, and old Feistel cipher
with 4 branches and undoubtedly the most important block ciphers of the Cold
War with some 3,800 cipher machines in active service in 1989 [28, 41, 24, 40].
This cipher offers great flexibility in the choice of the internal wiring and en-
tirely compatible with original historical hardware. The hardware encryption
cost with T-310 is hundreds of times bigger than AES or 3DES, cf. [28]. Does it
make this cipher very secure? Not quite, if we can construct algebraic invariants
which work for any number of rounds. The block size is 36 bits and the key has
240 bits.

3.3 ANF Coding of One Full Round

We number the cipher state bits from 1 to 36 where bits 1, 5, 9 . . . 33 are those
freshly created in one round, cf. Fig 1. Let x1, . . . , x36 be the inputs and let

10 Our approach is to find invariant attack starting from arbitrary rounds ANFs is at
the antipodes compared to [18, 19] where the ciphers are very special.
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y1, . . . , y36 be the outputs. One round of our the cipher can be described as 36
Boolean polynomials out of which only 9 are non-trivial:

y33 = F + xD(9)

Z1
def
= Z(S2, xP (1),. . . ,xP (5)))

y29 = F + Z1 + xD(8)

y25 = F + Z1 + xP (6) + xD(7)

Z2
def
= Z(xP (7), . . . , xP (12))

y21 = F + Z1 + xP (6) + Z2+ xD(6)

y17 = F + Z1 + xP (6) + Z2+ xP (13) + xD(5)

Z3
def
= Z(xP (14), . . . , xP (19))

y13 = F + Z1 + xP (6) + Z2+ xP (13) + S2 + Z3 + xD(4)

y9 = F + Z1 + xP (6) + Z2+ xP (13) + S2 + Z3 + xP (20) + xD(3)

Z4
def
= Z(xP (21), . . . , xP (26))

y5 = F + Z1 + xP (6) + Z2+ xP (13) + S2 + Z3 + xP (20)+Z4+xD(2)

y1 = F + Z1 + xP (6) + Z2+ xP (13) + S2 + Z3 + xP (20)+Z4+xP (27)+xD(1)

x0
def
= S1

yi+1 = xi for all other i 6= 4k ( with 1 ≤ i ≤ 36)

Two things remain unspecified: the P and D boxes or the internal wiring.
In T-310 this specification is called an LZS or Langzeitschlüssel which means a
long-term key setup. We simply need to specify two functions D : {1 . . . 9} →
{0 . . . 36}, P : {1 . . . 27} → {1 . . . 36}. For example D(5) = 36 will mean that
input bit 36 is connected to the wire which becomes U5 = y17 after XOR of Fig.
1. Then P (1) = 25 will mean that input 25 is connected as v1 or the 2nd input
of Z1. We also apply a special convention where the bit S1 is used instead of
one of the D(i) by specifying that D(i) = 0.

3.4 The Substitutions.

Overall one round can be described as 36 Boolean polynomials of degree 6; out
of which only 9 are non-trivial. One round of encryption is viewed as a sequence
of substitutions where an output variable is replaced by a polynomial algebraic
expression in the input variables. the full formulas in the general case are simply
obtained by hard coding all the P (i), D(j) values inside the formulas above.
Here below is a simplified concrete example following the cipher specification
step-by-step for the long-term key 551 used in [16]. More examples can be found
in [16].
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Fig. 1. T-310: a peculiar sort of Compressing Unbalanced Feistel scheme.

a← b

b← c

c← d

d← F + i

[. . .]

[. . .]

V ← F + Z1 + O + Z2 + q + L + Z3 + i + Z4 + k + K

In order to have shorter expressions to manipulate we frequently replace
Z1−Z4 by shorter abbreviations Z, Y,X,W respectively. We also replace S2 by
a single letter L (used at 2 places). The other key bits S1 = K will only be used
if some D(i) = 0.

4 The Fundamental Equation

In order to break our cipher we need to find a polynomial expression P say

P(a, b, c, d, e, f, g, h, . . .) = abcdijkl + efg + efh + egh + fgh

using any number between 1 and 36 variables such that if we substitute in
P all the variables by the substitutions defined we would get exactly the same
polynomial expression P, i.e. P(Inputs) = P(Outputs) are equal as multivariate
polynomials. We obtain:
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Definition 4.1 (Compact Uni/Quadri-variate FE). Our “Fundamental Equa-
tion (FE)” to solve is simply a substitution like:

P(Inputs) = P(Outputs)

or more precisely

P(a, b, c, d, e, f, g, h, . . .) = P(b, c, d, F + i, f, g, h, F + Z1 + e, . . .)

where again Z1−Z4 are replaced by Z, Y,X,W . In the next step, Z will be
replaced by an Algebraic Normal Form (ANF) with 64 binary variables which
are the coefficients of the ANF of Z, and there will be several equations, and
four instances Z, Y,X,W of the same Boolean function:

Definition 4.2 (A Multivariate FE). At this step we will rewrite FE as
follows. We will replace Z1 by:

Z ← Z00 + Z01 ∗ L + Z02 ∗ j + Z03 ∗ Lj + . . . + Z62 ∗ jhfpd + Z63 ∗ Ljhfpd

Likewise we will also replace Z2:

Y ← Z00 + Z01 ∗ k + Z02 ∗ l + Z03 ∗ kl + . . . + Z62 ∗ loent + Z63 ∗ kloent

and likewise for X = Z3 and W = Z4 and the coefficients Z00 . . . Z63 will be
the same inside Z1−Z4, however the subsets of 6 variables chosen out of 36 will
be different in Z1− Z4. Moreover, some coefficients of P may also be variable.

In all cases, all we need to do is to solve the equation above for Z, plus a variable
amount of extra variables e.g. Z63. This formal algebraic approach, if it has a
solution, still called Z for simplicity, or (P, Z) will guarantee that our invariant
P holds for 1 round. This is, and in this paper we are quite lucky, IF this equation
does not depend on three bits F,K,L. This is the discovery process of [16] which
we do not use here. We rather work with basic paper and pencil maths and build
our attack from scratch in stages.
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5 Construction of An Attack

Our approach is to try to build some simple invariant attacks which initially
will not work at all, but they will make us consider under which conditions they
might work. The sort of result we are looking for is that a certain polynomial is
an invariant if and only if a certain equation is true, the same as the FE approach
before, except that we want to help to make it happen in several stages with
some simplifications on the way. We recall that the Fundamental Equation FE
is an equation such that an invariant attack P → P for 1 round holds if and only
if FE is zero, cf. Def. 4.1 and Def. 4.2. We also consider more general transitions
of type

P → Q
and for any number of rounds, which should be interpreted as the value of P

for the input variables should be equal to the value of Q for the output variables.
In other terms the sum of these two values is zero, and informally we talk about
“I/O Sums” which we already had in linear cryptanalysis [ignoring key bits] and
here we do non-linear cryptanalysis (and we also try to eliminate all the key
bits). It is important to see that some transitions are obvious and unconditional.
For example in T-310, cf. Fig. 1, if bc denotes the product of variables 35 and
34 in our standard (backwards) numbering scheme, and cd is the product of
variables 34 and 33, we have:

cd→ bc

which is un unconditional transition true in all cases. Here the polynomial
P = cd taken and the input of the cipher is always equal to the value of the
polynomial Q = bc at the output of one round of encryption. Now some other
transitions are less obvious and will work if a certain I/O sum of two polynomials
will be zero [which will maybe never happen with certainty]. For example in T-
310 we always have the trivial transitions d→ c→ b→ a and at degree 2

cd→ bc→ ab

and we are likely to be trouble with the next step. The problem in T-310 is
actually that a is a multiple of 4, cf. Fig. 1. In general a is lost (erased) in the
next round and for example y33 = F + xD(9) is created cf. general formulas in
Section 3.3 where y33 is denoted by the letter d. Now imagine that D(9) = 36
and F = 0 which means that a → d and also ab → cd which happens when
F = 0, i.e. not always. In this case, in the same way as with FE, we will call
a Transition Equation or TE the sum of two polynomials for a transition of
type P → Q for any number of rounds (typically just 1 round) such that the
property works if and only if our equation is zero. Here our pre-condition is
D(9) = 36 and our Transition Equation or TE is simply TE = F . In other
terms if we insure that TE is 0 our two 4-round property works. Both our FE
and TE are just I/O sums or sums of two polynomials, the input polynomial and
the same polynomial after the substitutions defined on page 10: such as a ← b
and d ← F + a knowing that the pre-condition D(9) = 36 is what makes that
d← F + a here.
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Many further steps are needed in constructing the attack but they key point
is that we are going to try to make this polynomials do something interesting
and eventually construct a working invariant polynomial in several steps, while
trying to make as few assumptions as possible [e.g. D(9) = 36], so that our
attack will apply to a large class of keys. We will now start from scratch and we
do no longer assume that D(9) = 36.

5.1 Eliminating FKL

In this process there are some heuristics, for example we will try to eliminate
the secret key variables K,L and the IV or public round constant variable F to
be eliminated early on, an approach suitable for a human11. Instead we work by
paper and pencil. One of key problems with T-310 is that some sums are very
long, for example y9 = F + Z1 + xP (6) + Z2 + xP (13) + L + Z3 + xP (20) + xD(3)

and the most such expressions contain F and many of the Z1−Z4. A potential
solution is that we can eliminate many (but maybe not all) variables quite easily
by XORing together consecutive freshly created outputs for example 9 and 13.

We have for example:

y9 + y5 = xD(3) + W (xP (21), . . . , xP (26)) + xD(2).

and similarly

y25 + y21 = xD(7) + Y (xP (7), . . . , xP (12)) + xD(6).

where W is a shorter name for the function Z4 and Y is another name for
Z2 which functions are identical except that the inputs are typically connected
to two disjoint sets of variables.

Fig. 2. The internal structure of one round of T-310 block cipher.

11 Rather than having very complex polynomials where some variables would maybe
disappear at the end, which approach would be potentially more complex and suit-
able only if we used powerful formal algebra or constraint satisfaction tools to find
a solution.
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5.2 Connecting Z2 and Z4

A direct inspiration for our attack is the attack with key 799 described in Section
8.1 of [16]. This attack achieves something quite incredible which was previously
seen in stream cipher attacks cf. [14, 15] but seems very hard to achieve in block
cipher cryptanalysis. It manages to connect two remote parts on both sides of
the cipher, into an attack which eliminates everything else. This even though
variables uses in our attack can and do depend countless extra variables. Yet all
variables we do not want to see get eliminated. This attack is a model for us
except that we are aiming at an attack would work for a Boolean function which
would be infinitely more complex than the one obtained in Section 8.1 of [16].
Moreover we will work on the couple of Z2 and Z4 and avoid Z1 because one
of the inputs of Z1 is the key bit L = S2 which we want to avoid, (likewise we
avoid Z3 as the same key bit L is XORed to its output).

Looking at the two equations above, we will now connect Y and W in the
simplest possible way, we will assume that (order inside these two pairs does not
matter): {

{D(2), D(3)} = {6 · 4, 7 · 4}
{D(6), D(7)} = {2 · 4, 3 · 4}

where the numbers {6 ·4, 7 ·4} are simply the bits numbers obtained from the
second equation after 3 steps with trivial transitions like 25 → 26 → 27 → 28
later. Our goal is basically in some way connect these two equations to form a
closed cycle with 8 steps as follows, hypothetically:

5, 9→ 6, 10→ 7, 11→ 8, 12→?21, 25→ 22, 26→ 23, 27→ 24, 28→?5, 9

where the question marks relate to transitions which are not true and will
actually never become true. Now we define the following 8 polynomials:

A
def
= (i + m) which is bits 24, 28

B
def
= (j + n) which is bits 23, 27

C
def
= (k + o) which is bits 22, 26

D
def
= (l + p) which is bits 21, 25

E
def
= (y + O) which is bits 8, 12

F
def
= (z + P ) which is bits 7, 11

G
def
= (M + Q) which is bits 6, 10

H
def
= (N + R) which is bits 5, 9

and then our cycle becomes

H → G→ F → E →?D → C → B → A→?H

Now we are going to work on polynomials of type say BD and it easy to see
that BD → AC after one round, and again we are stuck because the polynomial
AC contains two multiples of 4 which are 8, 12 which are erased inside this round
so that we do not see an easy transition into something very simple.

Now we are ready for a big jump. As we cannot apparently achieve a lot with
low degree invariants, we will directly consider an invariant of degree 8.
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5.3 An Interesting Question

The question is assuming our 4 assumptions on D(2), D(3), D(6), D(7), under
what conditions we could have P = ABCDEFGH to be an invariant for 1
round, in other terms what is the FE? The answer is remarkably simple.

Theorem 5.4 (A Simple Degree 8 Attack). Let

P = ABCDEFGH

then P is a non-zero polynomial12 and it is a one-round invariant if and only if
the FE is equal zero for any input of the cipher and any F,K,L and this FE is
actually equal to

FE = BCDFGH · ((Y + E)W (.) + AY (.))

Note. Here the bits which are used as inputs to W () and Y () are exactly those
which would be used inside the cipher and we study them in more detail later.

Proof: When necessary we will distinguish input and output-side variables and
polynomials by an index in the exponent such as Ao vs. Ai. In fact in most cases
this is not even needed as there is no ambiguity: at the end the FE is expected to
be written using input side and internal secret/public variables FKL ONLY and
all the output-side variables must be eliminated, thus removing any ambiguity
(at later stages). We recall our assumption:{

{D(2), D(3)} = {6 · 4, 7 · 4}
{D(6), D(7)} = {2 · 4, 3 · 4}

and in Section 5.1 we have already established that

Ho = y9 + y5 = xD(3) + W (.) + xD(2) = W (.) + Ai

and

Do = y25 + y21 = xD(7) + Y (.) + xD(6) = Y (.) + Ei

which expressions can be reinterpreted as showing how the polynomials D
and H on the output side can be rewritten as expressions using only input-side
variables and the combination of bits used here were already chosen in Section
5.1 in such a way that all bits FKL are already eliminated. Following Def. 4.1
all we have to do is to add the polynomial ABCDEFGH to itself on the output
side after substitutions with input-side variables. This latter polynomial is equal
to:

AoBoCoDoEoF oGoHo = BiCiDi(Y (.) + Ei)F iGiHi(W (.) + Ai) =

BCDFGH(Y (.) + Ei)(W (.) + Ai) = BCDFGH(YW + Y A + EW + EA)

12 Important to check each time we multiply many terms.
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Finally we add the last expression to the input polynomial ABCDEFGH
and obtain that the FE is equal to (sum of input and output side polynomials)

ABCDEFGH + BCDFGH(YW + Y A + EW + EA) =

BCDFGH(AE)+BCDFGH(YW+EW+AY +AE) = BCDFGH((Y +E)W+AY )

which is the exact result we need:

FE = BCDFGH · ((Y (.) + E)W (.) + AY (.))

5.5 Solving the FE

In [16] constructing some invariants seems an extremely complex process. In this
paper everything seems just incredibly simple. We just need to make sure that
FE is equal to zero. We want to solve:

0 = BCDFGH·
(
(O + y + Y )W (xP (21), . . . , xP (26)) + (i + m)Y (xP (7), . . . , xP (12))

)
Interestingly in this expression we do not enumerate the inputs of the first

Y which are also Y (xP (7), . . . , xP (12)), which is because we aim at eliminating
the term (O + y + Y ) completely later on by making sure that the product
of other terms is always zero. We also have a polynomial where F,K,L are
already eliminated. However there are many other variables. At the first sight it
may seem that our equation which is polynomial of degree 18 in as many as 12
input variables plus 63 variables specifying the Boolean function is unlikely to
be systematically equal to 0. What we are going to show now is simply mind-
blowing: this polynomial can be made to be exactly zero in all 212 cases, even
though no effort will be made whatsoever to use a particularly simple Boolean
function or even to influence it. In fact we have chosen our example really well
and something incredible will happen. This equation will become solvable after
a certain choice of which 12 bits will be connected to the 12 inputs of Y () and
W () and then we will see that an exponentially large space of Boolean functions
will just disappear, they can be annihilated and our equation will be zero which
happens later in Section 6. Before we get there, the first step is to convert a
single equation which is a sum into insuring that both components are zero. For
example we will aim at insuring simultaneously that:{

CFH ·W (xP (21), . . . , xP (26)) = 0

BDG · Y (xP (7), . . . , xP (12)) = 0

which will imply that our FE is equal to 0 in all cases, i.e. our one round
invariant attack works for any key and any F . The choice of the two subsets
of BCDFGH is arbitrary. Moreover there are many solutions which work. At
this stage it may be hard to believe but we will see that it is sufficient to put as
inputs to W the 6 inputs of CFH in a well-chosen order, not every order works
but many do, and the inputs of Y needs to be the 6 inputs of BDG in another
order, and that both orders must be compatible (both functions W and Y are
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just two instances of the same Boolean function). Moreover this actually works
for any possible way to split the product BCDFGH in two products of degree 3
for example BCF ·DGH provided that later the inputs of W and Y are suitably
aligned. Here is for example one solution which works well as we will see later:

265: P=1,20,33,34,15,13,27,6,10,23,21,25,16,14,2,4,3,

19,35,29,26,9,5,22,7,11,17 D=36,28,24,32,20,8,12,16,4

below we explain is full detail how such a key can be created.

5.6 The Satisfiability Problem

Initially we want to do something quite which may seem extremely difficult. Make
sure that a polynomial equation of degree 18 in as many as 12 input variables
and 64 extra variables Z00−Z63 which represent the coefficients inside the ANF
of our Boolean function, cf. Def. 4.2 is systematically equal to 0 in all 212 cases,
and that we will do it for an absolutely general Boolean function in 6 variables
which can be random and is not chosen by the attacker, i.e. the solution should
work for as many choices of Z00−Z63 as only possible. The we made it harder
be requesting that the two terms of the equation are simultaneously zero. Overall
we recall that we decided to insure simultaneously that for example:{

CFH ·W (xP (21), . . . , xP (26)) = 0

BDG · Y (xP (7), . . . , xP (12)) = 0

and that the 6 inputs of CFH will become inputs of W and vice versa for Y .
For example with our example 265 above we have P (24) = 22, which corresponds
to the 4-th input d of W . In fact we have already assigned the right 12 variables
at some “right” 6+6 places inside LZS 265.

Now we need to see that this alone it not yet sufficient to make the attack
work. We need to make sure that the polynomial CFH is an annihilator of
the Boolean function W , and that simultaneously BDG is an annihilator for
the second instance of the same Boolean function [two conditions]. But is this
at all possible that a Boolean function chosen at random or not chosen by
the attacker would have such peculiar annihilators such as CFH? The answer
will be provided in the next section. At this moment we have reduced [module
checking that all the bits are at the right positions] the problem of backdooring
a block cipher to a problem of annihilating a Boolean function twice with two
annihilators of the form (a + b)(c + d)(e + f).

This is going to be a lot easier than one might expect.



18

6 Some Basic Results On Boolean Functions

Let Bn be the ring of all Boolean functions in n variables with n = 6 with the
usual addition and multiplication of polynomials modulo 2. We recall that an
annihilator of a Boolean function f ∈ Bn is a function g ∈ Bn such that the
product of these functions f · g is zero: i.e. ∀x∈{0,1}n f(x) · g(x) = 0. There
are countless divisors of zero in the ring Bn and annihilators exist in vast 13

quantities for any Boolean function. What is more surprising is that annihilators
with special properties which will be exactly those which we need in our attack
also exist with a large probability. First of all, is it normal that a Boolean function
of degree 6 would have an annihilator of degree 3? Yes, it is and we have:

Theorem 6.1 (Annihilator Degree Bound). Let Z be a Boolean function
with n = 6 variables abcdef . Then either Z of Z + 1 has at least one annihilator
of degree 3.

Proof: Following Thm 6.0.1 in [14] there exists a function g of degree at most 3
such that

gZ = h

where h has degree of at most 3. In addition following Theorem C.0.1. in the
Appendix, of [14], there exists a solutions g such that either h = 0 or h = g. In
the first case gZ = 0 and we found an annihilator g of degree 3. In the second
case gZ = g and so g(Z + 1) = g + g = 0 and we found an annihilator of degree
3 for Z+1.

Remark. It is NOT true however that every function Z has an annihilator
of degree 3, a nice counter-example is abcdef + 1 which has no annihilators at
any degree less than 6. Moreover such counterexamples are quite rare. In general
for most Boolean functions both Z and Z + 1 will have numerous annihilators
of degree 3.

6.2 Annihilators of a Special Form

In addition to the existence of annihilators of degree 3, and in addition to the
fact that h is likely to very special (or that there exists annihilators g s.t. h is
very special) it is interesting that with large probability there exist annihilators
such that g is also very special. In what follows we are going to establish some
simple yet significant results on this question showing that even though Z is an
arbitrary Boolean function, the space of annihilators is very likely to contain
some very interesting and highly symmetric polynomials. These facts are essen-
tially consequences of the fact that the space of annihilators of Z is an ideal, i.e.
if fZ = 0 then fgZ = 0, and it is also a highly structured finite partially ordered
set (for divisibility) which being finite is also a lattice, i.e. every two elements
have LUB/Sup and in GLB/Inf and where the top element which dominates all
the other is 0. This lattice contains many some special quite symmetric elements
which dominate many other in the partial order. We start by an auxiliary result.

13 For example for every function f ∈ Bn any multiple of f + 1 is an annihilator for f .
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Theorem 6.3 (Special Type of Annihilators). Let f be a Boolean function
with n = 6 variables abcdef chosen uniformly at random. We consider the fol-
lowing multiple of f : g = f(a + b)(c + d)(e + f). We do it many times and by
linear algebra [or by a careful study of how different monomials imply also the
presence of other monomials] we observe that this polynomial lives in a linear
space of dimension only 8. Consequently if f is chosen at random then g is equal
to 0 with high probability equal to 2−8.

Proof: This result comes from numerous symmetries imposed on g by the linear
factors. The linear space of all possible polynomials of type g = f(a + b)(c +
d)(e + f) is finite and a quick computation with SAGE maths software shows
that its dimension is only 8. This means that every polynomial in this space can
be seen as being of the form

a0G0 + . . . + a7G7

where ai ∈ {0, 1} and Gi are some polynomials forming a basis. Then we
need to see that the probability distribution of the 8-tuples ai must be uniform,
this is because it is an image of the input space Gn which is an Abelian group
for addition, through a linear application f 7→ f(a+ b)(c+d)(e+ f) and all pre-
images for any 8-tuple ai are cosets w.r.t. H defined as sub-group of annihilators
of (a+ b)(c+d)(e+f), which must be of equal sizes as they define a partition of
B6 and in fact any polynomial ∈ Bn can be viewed as bijection which maps one
coset into another coset. Given the uniform distribution, the probability that
our polynomial is zero is exactly 2−8.

Finally here is the main result which we need in block cipher cryptanalysis:

Theorem 6.4 (Existence of Structured 2x2x2 Annihilators). Let Z be a
Boolean function with n = 6 variables abcdef chosen uniformly at random. The
probability that Z(a+b)(c+d)(e+f) = 0 or similar for at least one permutation
of variables abcdef is approximately equal to 0.06.

Justification: For any 6 variables there are
(
6
2

)
·
(
4
2

)
/3! = 15 ways to select three

pairs of variables if we consider as identical all the 3! permutations of the three
sets of 2. In the first approximation, each of these choices has a probability of
2−8 of being zero, cf. Thm. 6.3 above. If all these 15 choices of a polynomial
of type say Q = (a + f)(c + b)(d + e) were independent we would obtain that
the probability that none of the 15 choices works is about (1 − 2−8)15 ≈ 0.94.
Therefore we would obtain a result Pr ≈ 0.057. A computer simulation shows
that the exact result is a bit smaller, we obtained approximately 5.1%.

7 Putting It All Together

We recall that in order for our invariant P to be preserved after one encryption
round, we need to solve [in terms of the wiring of the cipher and the choice of
the Boolean function] the following two equations:
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{
(a + b)(c + d)(e + f) ·W (a, b, c, d, e, f) = 0

(a′ + b′)(c′ + d′)(e′ + f ′) · Y (a′, b′, c′, d′, e′, f ′) = 0

In our solution we are going use the same annihilator for both W and Y ,
which is not even necessary or required (therefore there exist even more ways
of backdooring this cipher than the simple method we present here). Following
our Thm. 6.4, this works for 5%s of all Boolean functions, and all we need to do
is to assign in arbitrary way the 2 time 3 sets of 2 inputs inside each Boolean

function. For example, in order to identify C
def
= (k + o) = x22 + x26 to the sum

(a + b) for W we must insure that P (21) = 22 and P (22) = 26 or vice versa.
This must be done for all 12 variables a, b, c, d, e, assigned at P (7) to P (12) and
the variables a′, b′, c′, d′, e′, f ′ are assigned at P (21) to P (26). All this is actually
already done in key 265 above and there are numerous ways to do it. Actually a
careful reader will see that the order of bits inside LZS265 is such that our FE
requires to mandate rather that:{

(a + d)(b + b)(e + f) ·W (a, b, c, d, e, f) = 0

(a′ + d′)(b′ + c′)(e′ + f ′) · Y (a′, b′, c′, d′, e′, f ′) = 0

and this is actually what we do in our proof of concept example. This version
is preferred14 as it helps the reader to see that permuting a, b, c, d, e, f is part of
the game15.

7.1 The Bijectivity Problem

A slight technical difficulty is also that we want our long-term key to be a
bijection on 36 bits. The reason for this requirement is that if it is not bijective,
the cipher is already broken by a ciphertext-only attack, see [25]. This in practice
it not so difficult and we have used a version of a free open source tool described
in Appendix I.11 of [24] which allows to create many random bijective LZS keys
keys with arbitrary specific constraints on D() and P (). It appears that this
process works with probability 1, i.e. once we have specified our constraints as
above (four values for the D(i) and 12 values for the P (i)) there are still 5+15
coefficients being numbers between 0 and 36 which can be adjusted to make a
key which is bijective (and looks like a secure key w.r.t all previously known
attacks cf. [25]). The space of long-term keys is simply enormous and our attack
does not seem to contradict the bijectivity requirement in any way. We obtained
for example the following solution:
14 We could also have a version with (a+ b)(c+ d)(e+ f), all one needs to do to search

for bijective LZS with permuted constraints, see Section 7.1. It is also important to
see that there are many solutions, including making arbitrary splits of BCDFGH
as explained earlier. Now for example it is impossible to make a KT1 key work with
the present attack, this is because KT1 keys require that P (15) is an input of Z3,
and that P is injective, while here 21 must be an input of either Z2 or Z4.

15 It is easy to see that if due to some constraints permuting these bits is not allowed
our attack still works with a lower success probability, cf. footnotes in Section 10.
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265: P=1,20,33,34,15,13,27,6,10,23,21,25,16,14,2,4,3,

19,35,29,26,9,5,22,7,11,17 D=36,28,24,32,20,8,12,16,4

and there are plenty of other possibilities: we can also assign inputs a, b of
W to be D, or F etc and we are always as it seems able to adjust the missing
15+5 coefficients to form a bijective LZS.

7.2 How to Backdoor T-310

As any Boolean function works in our attack with large probability, cf. Thm. 6.4
all we have to do now is to try some super secure Boolean functions and expect
that the cipher will be broken sort of accidentally, well, the accident will happen
5 % of the time. For example with key 265 (and with any other variant of our
attack) we have for example the following solution:

Z ′(a, b, c, d, e, f) = ad + bc + be + de + ef + acd + acf + ade + bcf + bdf + cef+

abcd + abce + abef + bcdf + abcde + acdef + 1 + a + e + c

which differs from the original Boolean function by only one linear term, the
last letter was changed from f to c.

Remark 1: It is easy to verify that Z ′(a, b, c, d, e, f)(a+d)(b+c)(e+f) = 0.

Remark 2: We apologize that our attack does not work for the original
Boolean function but we believe that this accidental, not because this Boolean
function was well16 chosen or it is at all a secure choice17.

7.3 An Attack Can Hide Another

We do not only find the exact invariant P which was the intended property.
With this Boolean function Z ′ our cipher has a linear space of dimension as
high as 19 composed of various invariants being polynomials in A−D including
some complex invariants of degree 7 and probably many more which we are
unable18 to detect. The dimension of 19 is not constant and varies for different
LZS and different Boolean functions. This means that in addition to the attack
we have explicitly constructed, we ALWAYS obtain many other invariant attacks
the existence of which we have not anticipated, more complex, more sporadic.
This happens systematically without any exceptions as it seems. This is another
testimonial to how powerful high degree polynomial invariant attacks are in
practice, cf. also Section 2.4.

16 It is rather simply a mater of good versus bad luck, and the chances that the original
Boolean function would work without any modification were quite high, about 0.05.

17 In fact it is very likely that there exists a slight modification of the current attack
which also works with the original Boolean function.

18 It is infeasible to search the space of all possible invariants of degree 8.
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8 Cryptanalytic Relevance of Round Invariant Attacks

Many cryptanalytic attacks do not matter at all for the security of encryption
systems in real-life attacks scenarios. Or so it may seem initially. The T-310
cipher actually operates in a very secure and super-paranoid low-data rate en-
cryption mode which makes that many attacks even if they seem very strong,
still do not seem to break it in sense of decrypting some communications or re-
covering the secret key, cf. [26]. However if we dig a big deeper we will find that
we can actually break T-310 and recover the key and decrypt communications.

8.1 Decryption Oracle Attacks

We refer to [27] to see one major method in which round invariant attacks such
as studied and constructed in this paper affect the security of T-310 in real-life
attack scenarios. Such attacks exist, but they require a lot more work. The actual
attack is a certain type of long-distance19 slide attack with a decryption oracle,
which is far from being obvious and has additional requirements20. One example
of a relevant non-linear attack with LZS 771 is given in [27].

8.2 Higher-Order Correlation Attacks

A second major way to exploit these properties is to see that many such at-
tack create partitions of the space of 236 elements into two sets of unequal
sizes which inevitably leads to powerful ciphertext-only higher-order correlation
attacks. Basically we get partitions which will bias the cipher internally in a
pervasive way which works for any number of rounds. This modifies very deeply
the joint probability distributions for numerous sets of internal variables and is
likely to introduce some biases in such distributions. Given the fact that they
key bits are repeated in a periodic way in this cipher, and that the plaintext in
a natural language will also be strongly biased cf. [25], such biases lead directly
to ciphertext-only key recovery attacks. The actual exploitation requires many
additional technical steps. Several examples of such biases appear in a separate
paper. We given here one example which comes from the Section 10 of [16]. Let

P = eg + fh + eo + fp + gm + hn + mo + np

and we use LZS 55121 from [16]:

551: P=17,4,33,12,10,8,5,11,9,30,22,24,20,2,21,34,1,25,

13,28,14,16,36,29,32,23,27 D=0,12,4,36,16,32,20,8,24

This gives a remarkably simple FE being simply

Y g + Y o + gm + mo

19 As opposed to the shorter-distance 1-bit correlation attacks of [27].
20 Such as looking for invariants actually using some key bits in a very specific way

rather then totally eliminating them as we do here and in [16].
21 A strong example fully compliant with all the requirements of the KT1 class of keys

approved to protect government communications cf. [25, 41, 40].
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and one solution is Z = 1 + d + e + f + de + cde + def . This attack is
very different22 compared to what we see in this paper: P is irreducible and not
at all a product of linear terms like ABC. The invariant P as above has very
interesting properties: it does indeed divide the space of possible cipher states
into two unequal size sets and introduces strong biased on the various tuples of
internal variables (for subsets of 8 variables e − h and m − p actually used in
P). We have checked that already with N = 3 variables we obtain some strong
biases on N -tuples of variables which can be used in higher-order correlation
attacks. For example when P = 0 there are 40 events with efg = 1 but only
16 events with ef(g + 1) = 1. Here the main idea is that correlation attacks
involving N = 1 or N = 2 variables will not work, but starting from N = 3 we
have plenty of interesting correlations which may be exploited by the attacker
(which is not obvious in a well-designed cipher and leads to further technical
questions).

22 Actually Section 10 in [16] shows further keys such as 558 or 550 with more sophis-
ticated quartic invariants closer to what we see in present paper.
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9 Further Developments and Open Problems

We have just started to explore an incredibly rich space of new attacks and the
number of possibilities is overwhelming. We list here a few questions which we
would like to find answers to in the future:

Question 1. It it possible to find a modified version of the current attack
which also works23 with the exact original Boolean24 function? If so it can be
used directly to backdoor the original historical encryption hardware by inserting
a printed board with a malicious LZS.

Question 2. Is it possible to find strong keys against our attacks or guarantee
in any way that the attacks will not work, cf. [5, 10]? For example:

Question 2a. Are there some specific requirements in the style of KT1 or
KT2 classes cf. [25] which avoid polynomial invariant attacks?

Question 2b. Is it possible to find some super-strong Boolean functions
which can make T-310 secure against invariants attacks in the style of

Question 3. What about other block ciphers? DES? Ciphers not being Feis-
tel ciphers such as AES? In theory, as in [16] our attack is applicable directly
to many other ciphers. In practice, given the fact that most modern ciphers use
way more key material in one round than T-310 cf. [28], at some moment they
could become secure or maybe even provably secure against polynomial invariant
attacks, see Section 5.6 in [16] and [5, 10]. However there is no reason to believe
that this attack would not work for example for some other classical ciphers such
as triple DES. We just need to try and adapt the attack to other ciphers which
requires a bit of patience and some computer simulations.

Question 4. How to improve the attack: what sort of additional tricks or
extra cryptanalytic steps can be done in order to “shift” the phase transition or
to make it happen more easily, in order to increase the chances that our attacks
work in specific cases, cf. Section 2.4 and [7, 8, 29].

23 The probability it would is expected to be high very e.g. 5 % in our current attack.
24 It is important to see that a Boolean function has typically more than one special

or extremely simple annihilator, see Appendix I.19 in [24].
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10 Conclusion.

This paper proposes a new way of attacking block ciphers. A non-linear invariant
attack which has some unique features. Given a non-linear component not chosen
by the attacker, or rather largely ignoring the exact component, we show step
by step using simple by paper and pencil maths with multivariate polynomials,
how one can construct a polynomial invariant property of degree 8 which has the
ability to work in a large number of cases. It becomes than easy25 to make our
invariant work for an arbitrarily large number of rounds and for any key and any
IV. We impose very few constraints on internal cipher wiring (the LZS) and on
the Boolean function so that this or similar attack may also work accidentally25.

In the most recent paper on this topic [16] the Boolean functions were ex-
tremely weak and pathological in order to make the attack work. In contrast
our new attack is able to adapt to (or work directly) with arbitrary Boolean
functions. The success probability of our attack is surprisingly high: about 5
% modulo some adaptations in the cipher wiring (the LZS). This is due to the
fact that our invariant polynomial properties operate at a higher25 degree than
previously [16, 42], and also due to some surprising results on the existence of
symmetric annihilators of degree 3 with special properties for Boolean functions
with 6 variables.

In this paper we show that a block cipher can be insecure for almost entirely
structural reasons and that a good choice of complex highly-nonlinear Boolean
functions or S-boxes does not really help. A general attack (rich in possibilites)
with these characteristics was not seen before in block26 cipher cryptanalysis.
It is easy to see that the exact attacks described in this paper will work also
when the Boolean function is secret and unknown27 to the attacker. This even
though they work better if we know the Boolean function and we can and do
adapt28 to it. We have tried this with key 265: many of the degree 7 or 8 invari-
ants work nevertheless for arbitrary Boolean functions chosen at random. The
success probability is then lower, closer to 0.2 % than to 5 %. Now given the fact
that Boolean functions on 6 variables have frequently more than one interest-
ing annihilator, cf. Appendix I.19 in [24], we also systematically find numerous
additional invariants with degrees 7 and 8, we conjecture that the cumulative
power of the attack described in this paper is overall substantially29 higher.

25 Compared to earlier attacks which work only in very few cases, cf. [16] we achieved
here a phase transition from ‘hard” to “easy” see also Section 2.4.

26 In stream cipher cryptanalysis we have worst-case attacks mathematically proven to
work for 100 % or all Boolean functions for certain parameter choices, cf. [14, 15].

27 It is also able to work for several non-linear components used simultaneously, for
example imagine that Z1 6= Z2, or that they are key-dependent components [37].

28 The difference lies in accidental vs. deliberate wiring of inputs of W and Y , in this
paper we have adapted LZS 265 to our specific degree 8 invariant to work with one
(large) class of Boolean functions covering 5 % of all Boolean functions in B6.

29 We expect to obtain even more invariants such that if one does not work for a cipher,
another invariant may work, leading to a cumulative success rate closer to say 30
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