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Abstract. In relay attacks, a man-in-the-middle attacker gains access to a service by relaying the
messages between two legitimate parties. Distance-bounding protocols are a countermeasure to
relay attacks, whereby a verifier measures the round-trip time in exchanges with a prover. Inspired
by application-security definitions, we propose a new security model, OracleDB, distinguishing
two prover-corruption types: black-box and white-box. We use this distinction to settle the
long-lasting arguments about terrorist-fraud resistance, by showing that it is irrelevant in both
the black-box and white-box corruption models. We then exhibit a security flaw in the PayPass
protocol with relay protection, used in EMV contactless payments. We propose an extension
to this industry-standard protocol, with only small modifications, and prove its security in our
strongest adversary model. Finally, we exhibit a new generalised distance-fraud attack strategy
that defeats the security claims of at least 12 existing distance-bounding protocols.

1 Introduction

In 2015, the most widely used contactless electronic-payment protocol, EMV (Europay, Mas-
tercard and Visa), was shown susceptible to relay attacks [19]. In 2016, the EMV standard
included relay-protection for the contactless protocol PayPass [35]. The relay-countermeasure
imposes an upper-bound on the round-trip times (RTTs) of message-exchanges. This mecha-
nism is often referred to as proximity-checking : a prover (e.g., contactless card) proves that it is
within close distance to a given verifier (e.g., EMV reader). Often, within the proximity-proof,
the former also authenticates itself to the latter. This primitive where proximity-checking
is composed with a unilateral authentication or identification mechanism bares the name of
distance-bounding (DB) [16].

A Recap of the DB Threats. In DB, the tag and the reader are often referred to as the
prover and the verifier. In the vast literature covering DB protocols [2], three “classical” types
of attacks have been distinguished. In a distance-fraud (DF), a dishonest prover P ∗ tries to
prove that he is within the distance bound when in fact he is not. A mafia-fraud (MF) attack
involves three entities: a honest prover P , far-away from an honest verifier V , and an adversary
A; A tries to authenticate as P . Finally, in a terrorist-fraud (TF), a dishonest prover P ∗

colludes with an accomplice A so that this accomplice authenticates as P , while P is outside
of the distance bound. The fraud is considered successful only if A cannot impersonate P
in a latter session. This excludes the trivial and difficult to counter attack in which P gives
his credentials to A. In recent years, the DB threat model has been widened: [23] coined
impersonation attacks, [20] presented distance hijacking — which extends distance fraud by
letting P ∗ exploit honest provers located near V , [14] gives further generalisations of these:
e.g., mafia-fraud captured via more powerful men-in-the-middle (MiM) and terrorist-fraud



up-cast to collusion-fraud, which considers repeated collusions between P ∗ and A. The notion
of provable terrorist fraud resistance is yet notoriously hard to capture in a sensible way [27,49].

The Rise of Application-Level Distance-Bounding. Contactless EMV with relay
protection is being studied as a DB protocol in [22,36]. At Usenix 2018, Chothia et al. [18]
presented a hierarchy of properties against which PayPass with relay protection was analysed.
These recent security analyses also look at other application-level DB, such as the Mifare
protocol from NXP. In this trend, we argue that a finer threat model is necessary to analysis
application-level DB.

Contributions. 1. We propose OracleDB, a new security model for distance bounding.
Inspired by real-life implementations, this model explicitly distinguishes specification and
implementation of DB protocols, and black- and white-box provers. Our model covers all DB
threats with 3 attacks: a black-box threat called secret-extraction, a white-box generalised
distance fraud, and a generalised mafia fraud.
2. We show that terrorist-fraud resistance is irrelevant: we exhibit a generic TF in the white-
box model, and show that TF-resistance is meaningless in the black-box model.
3. We use OracleDB to show that the current version of the EMV contactless protocol PayPass
with relay protection is insecure. We propose a minor modification, and prove the security of
the resulting protocol secure in our strongest adversarial setting.
4. We use OracleDB to exhibit a generalised distance-fraud on 13 existing protocols.

2 OracleDB: A Refined Provable-Security Model for Distance Bounding

2.1 Protocols & Distance-related Aspects
Security Parameter. Security measures are given depending on a security parameter s. The
associated notions, such as polynomial probabilistic time (ppt), negligible, overwhelming, and
others (such as Interactive Turing Machines (ITMs) [48]) are considered commonplace; we do
not remind their definitions.

Definition 1 (Specification of a DB Protocol.). A specification Π of a DB protocol is
a tuple Π = (P,V, idents, s, dist-bound), where:
– s is a variable to hold the values of the security parameter;
– dist-bound is a variable to hold the values of the distance bound allowed by Π (which may
vary with s);

– The prover algorithm P and verifier algorithm V are ITMs running probabilistic polynomial
time algorithms in s;
– P and V run an identification/authentication scheme which uses the identities idents;
– V contains measurements of the round-trip communication times which it compares against
dist-bound, and outputs 0 or 1, denoting respectively failure or success.

Definition 1 corresponds to how formal models introduce a DB protocol: it encodes its
algorithmic specification.
Parties or Devices. We take the view that for a more faithful security-analysis we should move
beyond Definition 1 into explicitly capturing the fact that a DB protocol is realised via actual
implementations of the P and V. In this sense, we use the notion of a “party” or “device” to
denote as the implementation of an algorithm (in hardware or software). This algorithm can
be that of a prover, verifier, or adversary. Def. 2 below will leave the implementation of V
open (since herein we will not focus on corruptions coming from this ITM). Instead, Def. 2
nominates two classes of implementations for P.



Definition 2 (Protocol Parties and DB Realisation.). A realisation Πreal of a specifi-
cation Π of a DB protocol is a tuple Πreal=(Setup, PXB, V,B, s), where:

– s is the variable to hold the values of the security parameter as per Π and it is left free (i.e.,
uninstantiated);

– B is an actual value of the distance bound allowed by Π (which may be given as function of
s);

– Setup is an algorithm that instantiates Π ′s idents by generating or pulling from a database
long-term identifiable information (typically cryptographic keys and/or PUF challenge/response
pairs), where the size/security of this identifiable information depends on s. This procedure is
an abstraction for the procedures used to make a new prover and/or verifier join the system,
obtain long-term identifiable information, and be recognised by the previously instantiated par-
ties. It can be called several times.
– a verifier-party/ verifier-device V is an implementation identical to the Π-specified V together
with Setup-instantiated long-term identifiable information;

– a prover-party/ prover-device PXB is an implementation of P with its own Setup-instantiated
long-term identifiable information, accordingly to one of the two possible types of implemen-
tation {PXB | XB ∈ {WB,BB}} for P: white-box (WB) and black-box (BB), respectively.

• If the prover-party is realised in the white-box manner, i.e., PXB=PWB, then there exists
an algorithm ppt. in s that can retrieve the long-term identifiable information (created by
Setup), found on the device realising P.

• If the prover-party is realised in the black-box manner, i.e., PXB=PBB, then any ppt.
algorithm in s will interact with PBB only in the same way any ppt. ITM interacts with P.

We stress that Def. 2 per se does not give one specific implementation of a specification Π of
a DB protocol. Instead, Def. 2 stipulates that there is an algorithm called Setup which can be
used to produce correct implementations of the verifier algorithm, as well as implementations
of the prover algorithm that can be either white-box (WB) or black-box (BB). On the one
hand, if an implementation produced is of the BB-type, then it is one of the many possible
correct implementation which cannot be altered or tampered with. In fact, the last bullet
point in Def. 2 denotes that we assume, that the black-box implementations simply ignore
all messages that do not conform with the protocol specification. On the other hand, if an
implementation is of WB-type, then it is one of the many possible implementations that can
be fully read and altered by an third party.

The Setup Procedure. One important point of Def. 2 is its inner Setup procedure. We
mean for this procedure to encode the creation of real-life prover-devices/verifier-devices
and managing their identities/enrolment into a back-end system. This typically consists in
generating appropriate cryptographic keys such that each prover can communicate with each
verifier, be it symmetric keys or public/private key pairs. We do not expand further on the
details of Setup, as we believe that –for the purpose of this material– modelling the “backend”
of registering real-life provers and verifiers is not necessary.
Uniquely Identifiable Devices. As per Definition 2, each party carries uniquely identifiable
and secret, long-term information on it, such as private keys or PUFs (Physically Unclonable
Functions). We assume that each such secret information is mapped by a non-invertible
function to a publicly disclosable, unique identifier denoted id. For a party X, we write X.id to
directly refer to its publicly disclosable identifier id. Alternatively, we sometimes write party
Pi or Vj to mean that it is a prover-device with publicly disclosable identifier i or, respectively,
a verifier-party with publicly disclosable identifier j. From now on, we use simply “identifier”
instead of “publicly disclosable identifier”.



Device Holders. Prover-devices are necessarily held by a holder. A holder h holding a prover
PXB is denoted as hPXB . The holder is an entity, which can be assumed to be a human, a
robot, a car, etc. We also allow holders to hold several devices {P1, P2, . . .}, up to a polynomial
number in the security parameter s. In this case, we write h{P1,P2,...} or simply h{P}. We only
deal with protocols that cannot identify holders4.

Locations. Each party B, and therefore the holder hB of any prover-device, occupy one
position posB within an Euclidean space, i.e., a point in the space. In a protocol realisation,
we say that two parties are close if the Euclidean distance between their positions is at most
B, and far otherwise. More specifically, we operate a notion of location, which allows us to
define a party being close or far to an area of interest.

Definition 3. Location. Let Πreal be a realisation of a DB protocol. Let P be a set parties
and let them be respectively fixed at positions in the Euclidean space. By abuse of notation,
let the resulting set of positions also be called P. A P-location, or simply location, is a B-
neighbourhood of P, which is the set of all Euclidean points (i.e., positions) that are at distance
at most B from P (or, the union of all the open balls of radius B that are centred at a point
in P.

If a party E found in a location loc, we often write Eloc.

Definition 4. Distance between locations. The distance between a P1-location loc1 and
a P2-location loc2 is the shortest distance between a party in P1 and a party in P2.

Let us explain Def. 3. We fix a set P of parties, and we are interested in singling out all
the possible positions of other parties which are no further than B from devices in P. All
these close-by positions give us the notion of P-location, formalised in Def. 3. We simply write
location, when the set P is implicit or un-important. Parties can be found only inside locations,
i.e., we always reason over one or several locations.

An illustration is presented in Figure 1, where B=1 and the parties are A,B,C. The
{A,B,C}-location therefore is the union of the three circles of radius 1. One set P may be
formed, for instance, of just one verifier-party, and therefore the location may be just one circle.

Fig. 1. An {A,B,C}-Location (Def. 3): Portion of the space no further than B from A, portion of the space
no further than B from B, portion of the space no further than B from C.

4 If verifier-devices can reliably ascertain the exact holder of the device in contactless settings, then relay
attacks would hardly be a problem.



The notion of location is quite general. The specific ways in which we use it are restricted
via the definition below.

Definition 5. Appropriate Universe of Locations. Let Πreal be a realisation of a DB
protocol, with two apriorily fixed sets P1 and P2 of parties. An appropriate universe of locations
U = (loc1, loc2) is formed of a P1-location loc1 and a P2-location loc2 such that:
1. any two parties in each locations are close together, i.e., within the bound from one another;
2. these two locations are the closest two locations such that the distance between loc1 and loc2
is larger than B.

A

B

P1-location: loc1with property (1) in Def. 5P2-location: loc2with property (1) in Def. 5

C

D

dist(loc1, loc2) > B

far apart, but with prop. (2) in Def. 5

Fig. 2. An appropriate universe of locations. A full arrow denotes a distance lower than B, and a dotted arrow
denotes a distance larger than B.

Figure 2 illustrates Def. 5: parties A and B are in one location and are close to each other,
and parties C and D are close to each other in another location (condition one in Def. 5).
Party A is further than B from party C and from party D, and party B is further than B
from party C and party D (condition two in Def. 5). Note that condition two in Def. 5 is an
over-approximation of the concept of parties being far apart, as it demands that any party in
loc1 is far away from any party in loc2.

There may multiple valid appropriate universes of locations, depending on which parties
we chose to include. For instance, in Fig. 2, the set P1 could as well contain only A or B. The
set of parties that we consider depends on the security property we study: we restrict ourselves
to the set of parties that are relevant. This typically includes a honest holder, a set of verifiers
and an adversary, because the presence of other honest holders nearby is generally irrelevant.

2.2 Communication & Threat Models

Communication Model. Let U = (loc1, loc2) be an appropriate universe of locations. As
ITMs, the realisation of P and V can exchange messages. These messages are subject to a
time of flight. There exists a time-bound tB, such that a message from a party C will reach a
party D within the time tB if and only if party C is close to party D (i.e., both in the same
loc). Hence, if party A is in loc1 and C is in loc2, then a message from party A takes longer
than tB to reach party C, and vice versa.

All messages sent by honest parties are broadcast.

We assume that, at both on the prover and the verifier’s side of a timed round trip, the
computation of message is instantaneous.

Threat Model. Def. 2 introduced prover- and verifier-parties. We now introduce a new type
of party: the adversary.



Definition 6. Adversary. Let Πreal be the realisation of a DB protocol Π, and let U =
(loc1, loc2) be an appropriate universe of locations.

The adversary A = (Aloc1 ,Aloc2) is a party formed of two sub-parties Aloc1 and Aloc2 , such
that:
(1). Each device, Aloc1 and Aloc2, implements an arbitrary ppt. algorithm in the security
parameter of Πreal.
(2). Devices Aloc1 and Aloc2 may be respectively present or absent from the two locations loc1
and loc2.
(3). If one such adversarial device is not present at its associated location loc, we consider
the algorithm Aloc to be void.
(4). Aloc1 and Aloc2 operate as ITMs too ( i.e., they collaborate and communicate).
(5). The communication between Aloc1 and Aloc2 follow the communication model: they cannot
send/receive messages faster than tB.
(6). A cannot change the corruption level of a realised party, i.e., he cannot change a PBB

into PWB or vice versa.
(7). A interacts with the verifier parties by sending them messages, and they reply honestly
as per the specification Π.
(8). In addition, when a prover party is white-box, i.e. PXB = PWB, A can read its memory
(but not modify it).
(9). Aloc1 and Aloc2 can act as holders5 for prover-devices. In this case, we use a notation
similar to that of honest holders: AP

loc denotes that Aloc holds the prover-party P .
(10). A can move prover-parties, i.e., change their holder.
(11). A can send unicast messages, which can only be read by their intended target, e.g., using
directional antennas [1].
(12). A can block any message from being received by a party of his choice, irrespectively of
their position.6.
(13). A can modify messages on the fly, i.e., read and flip bits without introducing a delay to
the communication.
(14). Messages sent by A have priority, i.e., if a bit b sent by A arrives to a honest party B
at the same time as another bit b′ sent by a honest party C, then B ignores b′ and reads b 7.

2.3 Concurrent-Execution Model

Now, we define what we consider in terms of possible executions of a realised DB protocol.

Definition 7. Execution Environments. Let Πreal be a realisation of a DB protocol and
let U = (loc1, loc2) be an appropriate universe of locations. An execution environment for
Πreal
U at the universe of locations U denotes a polynomial number of (possibly concurrent)

executions by a polynomial number of prover-parties and verifier-parties, positioned in the
universe of locations U .

If neither Aloc1 nor Aloc2 is present in U , then the environment is said to be basic.
Otherwise, the environment is extended.

5 We are aware that devices (i.e., actual implementation of algorithmic specifications) may be able to distinguish
a holder (e.g., via a fingerprint reader). However, we deliberately choose to have a strong adversary model,
in which an adversary is able to operate such a device without restrictions.

6 In line with the threats defined in [41] and the adversary model of [22].
7 This is known as overshadowing, see [41] for more details



Figure 3 illustrates an example of extended environment. As mentioned in the previous
sections, we restrict ourselves to the parties that are relevant to a given security property
(defined in Sec. 4.2) when building the corresponding extended environment. For instance, in
the definition of the secret extraction resistance property, one of the two locations is empty.
And, for our generalised distance fraud, during the attack phase, loc1 contains no adversary.

Also note that the execution environment is modulo an apriorily fixed universe of locations:
if we change the universe of locations, we produce a different environment.

{V }

A{PXB}h{PXB}

loc1 loc2

{V }

A{PXB}h{PXB}far

Fig. 3. An example of extended execution environment. h denotes a honest holder, A is the adversary, {V } is
a set of verifiers, and {PXB} is a set of provers which are either black-box or white-box.

Concurrency. Def. 7 allows for concurrent executions of the protocol. More specifically,
as in other formal security models such as Bellare-Rogaway formalisms [9], we allow devices
to run their algorithm several times, in interleaved fashion: one execution may start while
another one is still in progress. We additionally allow several executions of one prover-device
to happen concurrently, with one or several verifier-devices. Hence, in this concurrency model,
we can have several prover-sessions from multiple prover-devices and several verifier sessions
from multiple verifier-devices, interleaved in any possible way.

Sessions. As usual, we call each such execution a session: if one execution is run on a
prover-device then it is a prover session; if it is run on a verifier-device then it is verifier
session. A session is full if its transcript contains the last message of the ITM specification;
otherwise, it is partial.

The chronologically-ordered list of the messages sent and received in a session is called the
transcript of the session.
A session can be identified pseudo-uniquely (e.g., via the application of the pseudorandom
function to the transcript). As such, we write Xi for the i-th session of a party X.

In an legitimate execution, each prover session has a corresponding verifier session, and
vice versa. To denote this, we write verifier-sessions as (V i, P ), and prover-sessions as (V, P j).
As per Bellare-Rogaway models [9], we call two corresponding sessions (V i, P ) and (V, P j)
partnered sessions. If the transcript of a verifier-session V i and a prover-session P j are the
same, then V i and P j have matching conversations.

Master Sessions. Adversaries may interfere in a session, such that the conversations are
not matching anymore.

Definition 8. Master Sessions. We say that the adversary A disrupts partnering (over a
session (V i, P )) if A is involved in an extended execution environment such that there is a
verifier-session (V i, P ) but this session V i has no partner (V, P j) with which it is engaged in
a matching conversation.



A master session is a set of sessions needed for the adversary to disrupt partnering. We
consider that master sessions are also identifiable uniquely and we use mid to denote master-
session identifiers. Also, the chronologically-ordered list of all messages in the master session
gives the transcript of the master session.

Several master sessions may lead to the same disruption of partnering. In this case, if we
need to nominate one such master session, we randomly choose one of several possible for the
same disruption.

Note that, unlike in classical Bellare-Rogaway models, Def. 8 does not require that (V i, P )
output 1 for a disrupted partnering. By Def. 8, we only mean to gather in a master-session
all the sessions that the attacker interleaves in order to mount his attack.

Notation. If we mean to be specific that it is a verifier-party with id m and a prover-party
with id k that are communicating, then instead of (V i, P ) and (V, P j) we write: (Vm

i, Pk)
and (Vm, Pk

j) to clearly mean that the i-th session of the verifier-party Vm is partnered with
the j-th session of the prover-party Pk. We try to omit the party identifiers for readability
purposes.

2.4 OracleDB: Game-based Model for DB

We gave the high level description of the adversary capabilities. We now provide a game-based
security model to define these capacities formally.

The Challenger. The challenger generates an execution environment, the properties of
which depend on the security game. For instance, in a strong generalised mafia fraud game, the
challenger does not need to add any white-box prover to the environment. After generating
an execution environment, he provides oracles to the adversary, as an interface to interact
with the environment. Whenever an adversary wants to interact with a party, the challenger
simulates it. The challenger keeps track of all sessions and master sessions.

Definition 9. The Challenger. Let Π be a specification of a DB protocol. A challenger
Ch is a ppt. algorithm, which does the following. The challenger Ch picks an arbitrarily fixed
number of appropriate universes of locations U=(loc1, loc2). The challenger Ch runs the Setup
algorithm multiple times to realise Π. Then, for each appropriate universe U , the challenger
Ch creates an execution environment for Πreal

U at the universe of locations U .

Each party involved in each Πreal
U has a status, which denotes if it is active or not. When

a prover or verifier is inactive, it ignores all incoming messages. Initially, all are inactive. If
one is active, then it means it executes at least one session.

For each Πreal
U , the following holds:

A. the challenger Ch maintains a prover-list PL of (the polynomial number of) prover-
parties present in Πreal

U .

1. The prover-list PL contains tuples of the form (Pk.id, xb, status, {Pjk.sid}j∈sessions, secret)
where: Pk.id is the identifier of a prover-party Pk; xb ∈ {WB,BB} denoting if the prover-party
is white-box or black-box; status is either inactive or active; {P j

k .sid}j∈sessions is the set of
session identifiers for all the sessions j that the prover-party Pk are running by/at this time8;
if xb=WB, then secret is formed of all the identifiable, inner material of the prover; if xb=BB,
then secret is null.
2. The prover-list PL is indexed over P.id.

8 This set is the empty set is the prover-party is inactive.



B. the challenger Ch maintains a verifier-list VL of (the polynomial number of) verifiers
present in Πreal

U . The verifier-list V L contains tuples of the form (Vm.id, status, {Vim.sid}i∈sessions),
where: Vm.id is the identifier of a verifier-party Vm; status is either inactive or active;
{V i

m.sid}i∈sessions is the set of session identifiers for all the sessions i that the verifier-party
Vm is running by/at this time9.

We recall that X.id and X both denote the uniquely identifiable party X, with the first just
being more specific than the second. The same is the case for Xi.sid vs. Xi, w.r.t. to the ith
session of the party X. To simplify notations, from here on, we do not always index parties:
i.e., instead of writing Vm and Pk, we just write a generic V and P meaning any arbitrary
verifier party V or prover party P .

C. the challenger Ch stores a listmasterL of master-sessions present in the Πreal
U environ-

ment, with masterL containing tuples (E, mid, t, out, E′), where: E, E′ are prover-sessions or
verifier-sessions such that E,E′ ∈ ∪i,j{(V, P j), (V i, P ) | (V, P j) partnered with (V i, P )} and
E 6= E′; mid is the identifier of the master-session in which E and E′ are involved and the
whole master session is kept in the list; t is the corresponding transcript of the master-session;
out is the result of the protocol as seen by E: −1 for unfinished protocol, 0 for failure, 1 for
success. This list is in sync with the PL and VL lists.

D. for the universe U=(loc1, loc2) determining the execution environment Πreal
U , the chal-

lenger Ch creates a locations’ list LOCL, which indicates the position of each prover, ver-

ifier and adversary entity. It is defined as (h
{P}
loc1

,A{P}loc1
, {Vloc1}, h

{P}
loc2

,A{P}loc2
, {Vloc2}), where

h
{P}
loc1

,A{P}loc1
, {Vloc1} respectively denote the set of provers held by honest holders at location loc1,

the set of prover-parties held by the adversary at location loc1, the set of verifiers found at
location loc1, and the same respectively for location loc2. These sets might be empty.

Adversary vs. Challenger: The Oracles Accessible to A. The adversary has access
to the prover-list PL, the verifier-list V L and the sessions’ list masterL in that he can read
them, but A cannot modify them directly. He can however inflict modifications on them via
oracles. These oracles provided to A are defined below.
init(P, V ): If both P and V are inactive, this sets the status of P and V to active. It then
opens a new session running as (V, P j) and (V i, P ). Either P or V can be omitted, in which
case only one record is added to masterL. Otherwise, 2 records are added to masterL: one
with E = V i, and one with E = P j . Once the session is created, it is recorded in the relevant
lists PL, VL, masterL. The session identifier is given to A slightly before the session actually
starts, so that A can use it directly with the oracles that take a session identifier as input.
term(P i

k): If the prover-party Pk is inactive, then this oracle has no effect. If both Pk is
active, then this oracle terminates the i-th sessions of this prover-party. The call deletes the
corresponding entry from PL, for the i-th session P i

k.sid of the prover-party Pk. If needed,
then it adjusts the masterL list to state, e.g., the outcome of the protocol as viewed by the
i-th session P i

k of the prover-party Pk within the master-session that P i
k may be involved in,

etc.
term(V j

m): If the verifier-party Vm are inactive, then this oracle has no effect. If Vm is
active, then this oracle terminates the j-th sessions of this verifier-party. The call deletes the
corresponding entry from V L , for the j-th session V j

m.sid of the verifier-party Vm. If the case,
then it adjusts the masterL list, e.g., to set the outcome of the protocol as viewed by the j-th
session V j

m, etc.
term(P i

k, V
j
m): This oracle combines the two oracles above, i.e., both the i-th session P i

k.sid

9 This set is the empty set is the verifier-party is inactive.



of the prover-party Pk and the j-th session V j
m of the verifier-party Vm are terminated at once.

attach(P , h): If the status of P is inactive, then it attaches the prover-party P to a holder
h, where h is either a honest holder or an adversary, in loc1or loc2 of some universe U used
in the lists LOCL. The list LOCL is updated as such. This encodes moving P to a specific
location.
send(A, Ei,m): Via this oracle, the adversary A ∈ {Aloc1 ,Aloc2} sends the message m to
the session i of party E. If the party E is not specified, the message is broadcast i.e., sent to
all parties and all their sessions.
block(Ej ,B, {Sk | S party }): Let M = M0 . . .Mk denote all the bits sent by the party E
during a honest protocol execution. The oracle checks if E is active by looking up in the PL,
V L lists and if it has one running session Ej . If it does not, the oracle aborts. If it does, then
the oracle blocks the transmission of bits {Mi|i ∈ B}, in such a way that only the parties S
(and their sessions {Sk}) receive it.
result(sid): If there exists session sid included in a master session mid inside a tuple

(V,mid, t, out, P ) ∈ masterL with V being a verifier-party, then this oracle returns out.
ident(sid): If there exists session sid included in a master session mid inside a tuple

(V,mid, t, out, P ) ∈ masterL with V being a verifier-party, then this oracle returns P . Other-
wise, it returns error.

Note that if these oracles are called on prover (resp. verifier) identities that do not belong to
PL (resp. V L), then the calls do nothing. The last two oracles are not useful to the adversary
in practice, but allow to define the security goals in a more convenient way. In some of the
oracles, some parameters are optional; this is implicit from their description.

3 Real-World Terrorist Frauds via OracleDB

In Sec. 2, we put forward a much closer to real-world corruption model for prover-devices
whereby they can be white-box or black-box. We now show this solves the controversial
problems of formal analysis of terrorist-frauds in DB. The take-away message of the section is
that TF-analysis needs not be considered in the OracleDB model, or in any formal
DB-security model. Sec. 3.1 discusses our corruption model w.r.t. a specific class of DB
protocols. Sec. 3.2 gives the main result: in real-life cases, TF attacks are unavoidable.

3.1 White/Black-box Identification

In our model (Def. 1), the algorithms of the provers P -alg make use cryptographic identifi-
cation mechanisms (called idents) which are left under-specified: idents can be for instance
cryptographic keys, physically unclonable functions10 (PUF). The question naturally arising
is how to treat PUFs with regards to the white-box/black-box corruption model.

PUFs in the White-box and Black-box Corruption Models. In the DB literature, protocols
that use PUFs [33,30] use their uncloneability, and implicitly consider the provers using PUFs
as black-box. This treatment is however unfair to DB protocols where cryptographic keys are
used, instead of PUFs, for prover-authentication purposes; in this case, the default option
is to consider these provers as white-box. So, the current state of affairs it to compare the
security of protocols using prover-devices considered fully-corruptible (for which the key is
known to the adversary) with protocols where prover-devices that are considered to behave
honestly. However, security models in which the PUF are corrupted exist. In particular, in the

“simulatable PUF” [43] model, the PUF can be maliciously replaced by a PRF, for instance by

10 Recall that there are two DB protocols [33,30] that use PUFs as the prover’s identification mechanisms.



the manufacturer. It remains indistinguishable from an actual PUF for everyone who does not
know the key to the PRF. However, the user who corrupted the device has access to the key,
and can therefore simulate, or even clone, the resulting function. The notion of simulatable
PUF fits the white-box corruption model, and we believe that protocols using PUFs should
be analysed in this model, rather than in a black-box manner.

Therefore, in the rest of this section, in the white-box case, we operate in the simulatable
PUF model where corrupted, white-box provers can simulate the PUF’s behaviour via a PRF.
In the black-box case, a PUF is an non-simulatable, honest PUF.

3.2 Terrorist Frauds with Real-World Provers

In DB, a man-in-the-middle attacker AMiM has the goal to authenticate as a legitimate, far-
away prover-device P in a session sid, without knowing a-priori the authentication details
(i.e., idents) of P . A terrorist-fraud (TF) attacker ATF has the same goal as a MiM attacker
AMiM , but ATF is allowed to be helped by P in the session sid, as long as this help does not
permit ATF to authenticate in future sessions unaided. Section 4 will further formalise the
MiM notion in our model. However, Section 4 will not formalise further the TF notion, as we
argue in this section that the TF notion is unnecessary.

To be able to show that a formal TF notion and analysis is not necessary, we now give a high-
level formulation of terrorist-fraud resistance, which is in line with traditional definitions of this
type. Again, this is not a formalisation of TF in our formal model (even though, for continuity,
it uses terminology we introduced in previous section). It is a standard expression of TF taken
which can be cast in any commonplace model for DB, whereby one has encodings of time,
distance, and accomplices to mount such collusion-based attacks over proximity measurements.

General Acceptation in DB. TF-resistance. Let Π be a specification of a DB protocol
and Πreal be its realisation.

We say that a prover-device P in Πreal helps an adversary if any ppt. algorithm is allowed
to interact with P and give its outputs to A. Any prover-device P who helps is called a
TF-prover.

We say that Πreal is TF-resistant if the following holds: for any white-box or black-box
prover-device P found far-away11 from a given verifier-party V , for any ppt. adversary A,
if P helps A, and makes the verifier-party V output 1 in a master-session (in which V be-
lieves to have a partnered session with a session of P ’s), with overwhelming probability, then
there exist an adversary (who can use A’s knowledge) and make the verifier V output 1
without P ’s help or the inadvertent help of any other prover, in another master-session mid′

appearing after the master-session mid in the masterL list (in which V believes to have a
partnered session is an execution of P ), with overwhelming probability.

The tuple (P,A) is called a TF-attacker. We say that a TF-attacker succeeds if Πreal is
not TF-resistant. Otherwise, we say that all TF-attackers fail.

Note that in the above formulation, we stipulated “without P ’s help or the inadvertent help
of any other prover”. This means that in the second run of the TF-attack, when the attacker
A is trying to impersonate the prover a second time, no prover can take part unwillingly
in some form of MiM mounted by A. This is restriction compared to existing work, where
in the second attempt of impersonation by A, provers can be unknowingly/unwillingly take
part. However, this restriction is only in place for the sake of an easy-to-understand proof

11 I.e., P and V are at different locations in a universe of location used in the execution environment.



for Proposition 10. In fact, as the rest of the section will show, our results do hold for the
extended case where honest provers can be present and unknowingly/unwillingly take part in
subsequent attempts by A to impersonate the initially collusive prover P .

No Terrorist Frauds with Black-box Provers We prove that if we consider a DB threat-
model where prover-devices are black-box, then TF-resistance is an unnecessary security
property.

Indeed, if provers P are black-box, then all the help they may give to adversaries is nothing
beyond a normal protocol execution and so it is futile, i.e., if P is afar, the help cannot
authenticate. We state this formally in Proposition 20 which we also prove in Appendix B.

Another way of stating the above result is this. An attacker can hold a far-away black-box
prover and communicate with a second adversarial device found near the verifier. This MiM
attacker is clearly equivalent with a terrorist-fraud where the TF-prover is black-box. We state
this formally in Lemma 21 which we also prove in Appendix B.

So, from the above, if the provers are black-box, then the following is the case:
— terrorist-fraud resistance is conceptually irrelevant (as a malicious prover cannot help an
accomplice);

— the security notion of terrorist-fraud resistance is shown to be redundant, as it is a subset of
MiM attacks (which constitute a more generic notion).

Always Terrorist Frauds with White-box Provers If white-box provers can be copied
into black-box provers, then a terrorist-fraud attack is always possible, with the exception of
some uninteresting cases. These uninteresting cases are:
(a) if protocols identify the holders of devices (which we already argued as a measure that
counteracts relaying per se and as such has no place in DB);
(b) if protocols are not MiM-resistant (which is un-interesting as that would make the protocols
already widely insecure, so the point of being TF-resistant or not becomes mute). So, if white-
box provers can be copied into black-box provers, then a protocol which is widely
accepted as secure w.r.t. authentication (against MiM) will never be TF-resistant.
This is formally stated in Lemma 10.

Proposition 10. [TF-attacks with White-box Provers.] Let Π be a specification of a
DB protocol and Πreal be its realisation in an execution environment. Assume Πreal is resistant
to MiM attacks.

If white-box provers can be copied into black-box provers, then Πreal is not TF-resistant.
Synonymously, if WB provers can be copied into BB provers, then there exists a TF-attacker

(P,A) which succeeds against Πreal with P being a white-box TF-prover.

The proof of Proposition 10 is non-technical and exhibits such a terrorist-fraud attack
which is always possible against a MiM-secure protocol if the TF-prover is white-box.

Proof. The TF-attacker (P,A) is as follows: a device terrorist–device is produced (e.g., by
P ’s holder or by A) as a black-box copy of P . The terrorist–device is programmed to self-
destruct (i.e., wipe its memory) after a successful authentication. The help B by P to A is the
terrorist–device itself (which is passed to A e.g., by P ’s holder, at any point before the attack-
session mid). Then, A (or the part of A that is close to V ) executes P -alg via terrorist–device
to authenticate in session mid. Since terrorist–device is black-box, A learns nothing other than
in a honest session of the protocol. Since terrorist–device wipes its memory after one use, A
cannot use it to authenticate in a post-help session mid′.



We call the attack in the proof of Lemma 10 white-box terrorist-fraud (WB-TF) . The
WB-TF attack works on all protocols of the literature. WB-TF circumvents the formal
models, such as [13,23], as those did not consider a black-box cloned terrorist–device as a means
towards a TF-attack.

White-box Terrorist-frauds. WB-TF differs from traditional terrorist frauds, in the sense
that the accomplice can authenticate at any time whilst he holds the terrorist–device and the
terrorist–device has not wiped itself. Instead, traditionally TF attacks are performed online: the
accomplice needs to be able to query the far away prover during the authentication. However,
this behaviour can be emulated with a WB-TF by integrating a remote activation/deactivation
mechanism to the terrorist–device, so that it only works when the holder intends it to. Adding
a remote activation mechanism to the terrorist–device even permits to perform more advanced
types of terrorist frauds. For instance, the holder can permit his accomplice to impersonate him
at will, but only during certain time periods, by removing the self-destruction mechanism, and
activating the terrorist–device only during the desired time-slots. Such control over the actions
of the accomplice could be particularly relevant, for instance, if the holder of the prover-device
P wants to delegate his access to a facility to his accomplice A only when he is not present.
Note that since the accomplice A only observes a protocol execution every time he uses the
terrorist–device, as long as the protocol is resistant to MiM attacks, A never becomes able to
impersonate the prover-device P when the terrorist–device is not active.

WB-TF was presented w.r.t. our definition of terrorist-fraud resistance, which requires just
one successful authentication outside of the the helped session. However, WB-TF can be made
more generic as follows. Instead of self-destructing after one authentication, the terrorist–device
can be programmed to self-destruct after the kth successful authentication. This modification
accommodates the definition for terrorist fraud given in [13], whereby the adversary is helped
k times instead of just one.

Finally, WB-TF can be adapted, as the terrorist–device can embed any algorithm. The
terrorist–device does not necessarily need to be a copy of the terrorist-device P as per the
original description of WB-TF. Actually, whenever there exists any terrorist fraud against a
protocol in previous security models, it can be emulated with such a slightly-adapted WB-TF:

Proposition 11. Let Π be a specification of a DB protocol and Πreal be its realisation in an
execution environment. Assume Πreal is resistant to MiM attacks, and that white-box provers
can be copied into black-box provers. If Π is vulnerable to a terrorist-fraud attack in any
existing formal model, then there is a white-box terrorist-fraud against. Πreal.

Proof. Let B be the ppt. algorithm terrorist-fraud attack in another formal model.

Let terrorist–device be a black-box device which is produced as in Proposition 10 but
now contains this new ppt. B. By the fact that B amounts in a valid TF-attack, when
A uses terrorist–device to authenticate, A does not gain a significant advantage for latter
authentications. The rest stays the same as in Proposition 10.

So, this section formally proves that:
– in the black-box setting, there is no TF attack that is relevant;
– in the white-box setting, if the protocol is MiM-resistant, then there is no way
to protect against TF-attacks.
As such, we argue that the TF analyses matter is closed and formal models, including ours,
should discard the analysis of this threat.



Kilinc and Vaudenay [31] also looked at the equivalence between terrorist fraud and
MiM attacks in the black-box corruption-model. However, they interpreted their conclusion
differently to us. They do not deem TF irrelevant, instead they consider it as the strongest
possible threat (in the black-box corruption-model). Due to the fact that MiM-security and
TF-security are equivalent in the black-box corruption-model, our viewpoint and their are
synonymous, as far as far models are concerned. However, our additional observations about
the irrelevance of TF-resistance in the white-box model leads us to militate that TF-resistance
ought to be scrapped as a DB security requirement.

4 DB Security Requirements in OracleDB

4.1 Threat Model: High-level Descriptions

We now study which security goals should be achieved when the provers are black-box vs.
white-box.

Corruption Models. We distinguish two corruption modes: strong corruption, and weak
corruption. In the strong corruption case, all provers (except, depending on the attack type,
for the attacked prover) are white-box. This corresponds, for instance, to a situation where
an adversary registers corrupted devices into the system.

In the weak corruption case, only the attacked prover may (or may not, depending on
the attack type) be white-box, whereas the other provers are all black-box. This corresponds,
for instance, to an adversary performing an expensive side-channel attack on one prover to
recover its secret material, but not willing to do the same for other devices.

Our formalisation only considers 3 types of attacks: secret-extraction, generalised
mafia fraud (GMF), and generalised distance fraud (GDF).

Secret extraction. Secret extraction (Definition 12), is a new property for distance bound-
ing, that concerns black-box provers. Black-box provers are meant to be temper-proof, and
a protocol that leaks secret material violates this temper-proofness. The protocols in the
literature that are vulnerable to secret extraction attacks, such as the ones descibed in [7],
are typically also vulnerable to a MiM attack as a conseauence. On the other hand, secret
extraction does not necessarily imply that the adversary can authenticate. For instance, if we
add an additional long-term dummy key that is sent in clear at the beginning of a MiM-secure
protocol, then it becomes vulnerable to a secret-extraction attack, as the protocol reveals a
long-term secret. However, it is still MiM-resistant. We formalise this notion in Definition 12.

Generalised mafia-fraud (GMF). GMF (Definition 14), covers both MiM and distance-
fraud/hijacking for black-box provers, and corresponds to the traditional MiM attack for
white-box provers. Indeed, if the provers are black-box, then the adversary gains no additional
knowledge by holding the prover. Hence, a distance fraud/hijacking adversary can be modeled
as a far-away adversary holding a prover. In a mafia-fraud context, a second adversary is
located near the verifier. Hence, a mafia-fraud adversary has more resources than a distance
fraud/hijacking adversary, and is more general.

Since we exclude terrorist fraud resistance from our model, GMF generalises all classical
attacks for black-box provers. However, for white box provers, we need an additional property,
defined below.

Generalised distance-fraud. Adding white-box capabilities to the adversary allows him to
perform more advanced attacks. In particular, in the white-box context, distance-fraud and
distance-hijacking differ from mafia fraud, since the adversary can, for instance maliciously
pick nonces, possibly depending on the secret key (for instance, to mount PRF programming



attacks [12]). Hence, in the white-box case, we need to consider another property: generalised
distance-fraud (Definition 13).

For white-box provers, generalised mafia-fraud and generalised distance-fraud are enough
to cover all the usual security properties, except for terrorist fraud, which we need not to
consider (as per Section 3).

4.2 Threat Model: Formal Definitions

By using security games G, we now formally define the DB-security properties informally
introduced above.

Definition 12. Secret-extraction. Let Γ real be the realisation of a DB protocol Γ in an
appropriate universe of locations, such that in one location there is the an adversary holding
provers and a set of verifiers, and there is no one in the second location. Let P be a set of
prover-devices in Γ real which have idents being cryptographic keys. Let G be a security game
against a protocol Γ in which the challenger C gives the adversary A access to all the oracles.
The game G is a secret-extraction game, if the play is as follows: 1. A choses a prover P ∈ P;
2. A outputs a key-name k and a bitstring x.

The winning condition in G is that x is the correct value for the key k of the prover P . The
advantage of the adversary A in winning G with probability α in the secret-extraction game is
defined as |α− 1

2|x|
|. The protocol Γ is secure against secret-extraction if the advantage of an

adversary A in the secret-extraction game is negligible in the security parameter defining Γ .
If all provers are black-box, then the game is a weak secret-extraction game. Otherwise, it is
a strong secret-extraction game.

Note that this notion can be easily extended to idents which are PUFs or other types as
well. However, for this manuscript, due to the protocols we analyse herein, we focus on idents
which are keys.

Definition 13. Generalised Distance-fraud. Let Γ real be the realisation of a DB protocol
Γ in an appropriate universe of locations U = (loc1, loc2) such that:

– initially, loc1 contains an adversary Aloc1 , a designated verifier dV, as well as other verifiers
and a honest holder, and loc2 contains a honest holder, an adversary Aloc2 and a set of verifiers.
– later, in what is called below the attack phase, Ala is removed from loc1.

Let G be a security game against a protocol Γ in which the challenger C gives the adversary
A access to all the oracles. The game G is a generalised distance-fraud (GDF) game, if the
play is in the two phases below:
1. Learning phase. 1. A outputs a prover identifier P , and a designated verifier identifier
dV, such that P is in loc2 and dV is in loc1;
2. Attack phase. 1. The adversary Aloc1 is removed from loc1: only Aloc2 is left in loc2 2. C
checks the location of P in LOCL. If it is close to dV(i.e., the holder is hloc1), or if P is not
in PL, then the game G is aborted. Similarly, if dV is not in Vloc1, then the game is aborted.

The winning condition in an un-aborted generalised distance-fraud game G is as follows:
in the attack phase, there must exist a session identified as sid such that ident(sid) = P
and result(sid) = 1 (as per C checking the records in masterL). Equivalently, A wins if he
disrupts partnering over a verifier-session (dVsid, P ) and result(sid) = 1. The advantage of
an adversary A in the GDF game is his success probability α. The protocol Γ is secure against
GDF if the advantage of an adversary A in the generalised distance-fraud game is negligible



in the security parameter defining Γ . If all provers but P are black-box, then the game is a
weak distance-fraud game. Otherwise, it is a strong distance-fraud game.

For this generalised distance-fraud property in the WB model, as per Definition 13 above,
no adversarially-controlled entity are allowed near to the prover. Yet, honest holders are
allowed near the verifier. Hence, our Definition 13 also covers the threat of distance-hijacking
(DH) [20].

Definition 14. Generalised Mafia-fraud. Let Γ real be the realisation of a DB protocol Γ
in an appropriate universe of locations U = (loc1, loc2) such that:

– loc1 contains an adversary Aloc1, a designated verifier dV, as well as other verifiers and a
honest holder, and loc2 contains a honest holder, an adversary Aloc2 and a set of verifiers.

Let G be a DB security game against a protocol Γ in which the challenger C gives the
adversary A access to all the oracles. The game G is a generalised mafia-fraud (GMF) game,
if the play is in two phases, as follows.
1. Learning phase. 1. A outputs a prover identifier P , and a designated verifier dV ∈ Vloc1 ;
2. Attack phase. 1. A loses access to the oracle attach, 2. C checks the characteristics of
P in PL: if it is close to dV ( i.e., its holder is hloc1 or Aloc1), or if it is white-box, then the
game G is aborted.

The winning condition on an un-aborted generalised mafia-fraud game G is as follows:
in the attack phase, there must exist a session identified as sid such that ident(sid) = P
and result(sid) = 1 (as per C checking the records in masterL). Equivalently, A wins if he
disrupts partnering over a verifier-session (dVsid, P ) and result(sid) = 1. The advantage of
an adversary A in the gmf game is his success probability α. The protocol Γ is secure against
generalised mafia-fraud if the advantage of an adversary A in the generalised mafia-fraud game
is negligible in the security parameter defining Γ . If all provers are black-box, then the game is
a weak generalised mafia fraud game. Otherwise, it is a strong generalised mafia fraud game.

In this game’s formalisation in Definition 14, like in [14], prior to the execution of the
attack phase whereby the fraudulent authentication is attempted, the adversary is given access
to a learning phase. During this phase, he can place the target-prover close to the verifier. We
mean that this learning phase is typically used to recover some secret material, by modifying
messages during the challenge response part of the protocol, which is possible if both the
prover and the adversary are close to the verifier.

5 Protocol Analyses in OracleDB

We now show first that the ubiquitous electronic payment protocol EMV (Europay, MasterCard
and Visa) in this variant PayPass protocol with relay protection (which we simply call PayPass )
is vulnerable to proximity-based attacks. Then, we propose a simple modification of PayPass
and prove it fully secure in our strongest corruption model.

The PayPass Protocol. The PayPass protocol with relay protection is an industry stan-
dard for relay-attack protection in contactless payments. It is used by Mastercard, and described
in the EMV book C-2, Kernel 2 specification 2.5. It is depicted in figure 4, and a more complete
high-level description can be found in [47].

Note that the correctness of the MAC is irrelevant to (the distance-bounding component
of) the protocol, as the reader does not have the key to verify it, and this verification is
performed by the bank.

Note: From here on, we use interchangeably the words: a). card and prover ; b). reader
and verifier.



Verifier Prover
PubCA KM , PrivC

CertPrivCA(PubB)
CertPrivB(PubC, SSAD)

SSAD = H(PAN, exDate . . .)

pick UN ∈ {0, 1}`nonce SELECT 2PAY.SYS.DDF01←−−−−−−−−−−−−−−−−−−−−−−−−− pick Nonce ∈ {0, 1}`nonce

AID1,AID2,...
←−−−−−−−−−−−−−−−−−−−−−−−−−

SELECT PayPass AID
−−−−−−−−−−−−−−−−−−−−−−−−−→

SELECTED←−−−−−−−−−−−−−−−−−−−−−−−−−
GPO−−−−−−−−−−−−−−−−−−−−−−−−−→

AIP, AFL←−−−−−−−−−−−−−−−−−−−−−−−−−

Start timer
EXCHANGE RELAY RESISTANCE DATA(UN)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Stop timer
Nonce,Timing Info←−−−−−−−−−−−−−−−−−−−−−−−−−
READ RECORD−−−−−−−−−−−−−−−−−−−−−−−−−→

CertPrivCA(PubB)
←−−−−−−−−−−−−−−−−−−−−−−−−−

READ RECORD−−−−−−−−−−−−−−−−−−−−−−−−−→
CertPrivB(PubC,SSAD),PAN, CDOL1, . . .
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

GENERATE AC−−−−−−−−−−−−−−−−−−−−−−−−−→
KS = EncKM

(ATC)

AC = MACKS
(amount,ATC,UN, . . .)

SDAD = SignPrivC(AC,UN,Nonce,
SDAD(AC), ATC

←−−−−−−−−−−−−−−−−−−−−−−−−− Timing Info, amount, currency, ATC, . . .)

Fig. 4. Contactless PayPass with Relay Protection.

5.1 Insecurities in the Contactless Payments

While PayPass is secure against generalised mafia fraud, it fails to protect users against
generalised distance fraud. However, distance frauds can be costly for the card issuer. Imagine
a malicious user A, mounting a distance fraud to pay in store A, and paying in a far away
store B at the same time. A could claim that his card was hacked, because it appears to be
in two locations at the same time, and ask for reimbursement of both his purchases to the
bank. Since the contactless payment limit can sometimes be bypassed [24], the attacker could
claim reimbursement for a very expensive goods. Such fraudulent operations can actually be
prevented with minor modifications to the PayPass protocol.

The Attack on PayPass In the PayPass protocol with relay attack protection, the response
of the prover in the timed phase is independent of the challenge. Hence, a malicious prover can
send this response in advance, to meet the time bound [11]. To counter such attacks, a first step
is to include UN in the response due by the prover, so that the malicious prover cannot send
the response before receiving UN . However, this is not sufficient to prevent distance-hijacking
style attacks. Indeed, a distant GDF adversary A can do the following:

– replace the messages that a card C found close to the reader R sends to the reader R with
his own during the non-timed parts of the protocol;
– overwrite the nonce from C with his own, while not interfering with the UN part of the
message;

– send the correct MAC/signature to the reader R (i.e., the one containing A’s injected nonce,
and A’s SSAD).

In this way, A will be accepted by the reader. To prevent this type of attacks, we propose
to tie UN with something identifying P , so that A cannot anymore claim the message as his
own. To this end, we consider a (unique) identifier ID, with same length as UN.



5.2 Securing Contactless Payments

We now present our protocol PayPass+ which –with the modification briefly described above–
becomes provably secure against generalised distance frauds.

The PayPass+ Protocol Our protocol is part-depicted in Fig. 5

Verifier Prover
PubCA KM , PrivC

CertPrivCA(PubB)
CertPrivB(PubC, SSAD)

SSAD = H(PAN, exDate, ID . . .)

. . .

. . .

Start timer
EXCHANGE RELAY RESISTANCE DATA(UN)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Stop timer
UN⊕ID,Nonce,Timing Info←−−−−−−−−−−−−−−−−−−−−−−−−−

. . .

. . .

Fig. 5. The PayPass+ Distance-Bounding Protocol.

It differs from PayPass only in that, during the timed phase, the card responds with
(UN ⊕ ID,Nonce,Timing Info) instead of just (Nonce,Timing Info), i.e., UN ⊕ ID is added;
this is marked with red on Figure 5. The ID bitstring is a public, pseudo-unique identifier
written on the card and in its SSAD. Therefore, the card’s certificate certifies this ID too.
Moreover, the lengths of nonces be becomes a variable `nonce, with values depending on the
security parameter; this is to be able to formally prove the security of our protocol.

Security Analysis of PayPass+ We now analyse the security of our protocol w.r.t. our
security properties, given in Sec. 4.

In PayPass+, the prover has 2 cryptographic keys, KM and PrivC, that are of interest for
our secret-extraction definition introduced in Sec. 4. Each of them is used only once.

Encryption-driven security. We first define a secret recovery (SR) experiment for symmet-
ric encryption. Informally, an encryption scheme is SR-secure if no polynomially bounded
adversary can recover the secret key used for the encryption of messages of his choice. Any
reasonable encryption scheme, with a reasonable key size, should be SR secure. Similarly to
other security definitions for block ciphers, e.g. [8], security is not considered in an asymptotic
fashion, since practical symmetric key schemes do not have a security parameter. However, we
assume that the key size that is used in the protocol is chosen to be in line with the security
parameter.

Definition 15. Secret recovery security. Let E be a symmetric encryption scheme, for
which we write Ek(m) to denote that message m is encrypted with the key k. The SR security
experiment is defined as follows. A challenger picks a random key K, and gives A an encryption
oracle EO(· · · ), such that EO(m) = EK(m) for any message m. The adversary outputs a
bitstring K ′, and wins if K ′ = K. E is SR-secure if no practical adversary wins this game.

Signature-driven security. In our security proofs, we need the signature scheme to be secure
in a multi-user setting, since we allow for several provers with different keys. Hence, we use
the multi-user security definition for digital signatures given in [38]. In particular, we use the



GMR-SKS security notion. In this security model, the adversary is given access to a signature
oracle S corresponding to a public key y. This oracle takes as input a message m, and returns
a signature s, such that s is valid with regards to m and y. A signature scheme is GMR-SKS
secure if no polynomially bounded adversary can output a triple t = (y′,m′, s′) such that the
signature s′ is valid for the message m′ and the public key y′, and either of the two following
conditions hold: (1) m was not sent to S, y′ = y and s is correct for m′ and y′, or (2) m′ has
been sent to S, s′ = s, y′ 6= y, and s′ is correct for y′ and m′.

Theorem 16. Secret-Extraction Security. Let S and E respectively denote the signature
and encryption scheme used in PayPass. If the E is SR secure, and S is GMR-SKS secure,
then PayPass+ is strong secret-extraction secure.

Proof. We start with the key KM . Assume the adversary A wins the secret extraction game for
KM . Then, we can use A to build an adversary B against the SR experiment. The construction
is as follows: for each prover, B starts a new SR experiment, uses the corresponding encryption
oracle EO to produce KS = E·(ATC). When the adversary A, placed in the environment
simulated by B, outputs a value forKM ,B returns this value to the corresponding SR challenger.

Hence, its success probability in the SR experiment pA

qp
, where pA is the success probability

of A, and qp is the (polynomial) number of provers. Therefore, if pA is non negligible, then B
breaks the SR security of E.

We now prove the security for the security for PrivC. Assume A wins the secret extraction
game for PrivC. Then we can use A to to build an adversary B that wins the forgery game
against the signature scheme. First, the B creates a new forgery experiment for each prover,
and uses the corresponding signing oracles to generate the messages SDAD. When A outputs
a value PrivC ′, B picks a random message m (which was not previously queried to the oracle),
computes σ = SPrivC′(m), and returns (m,σ) to the forgery challenger. If A recovered the
correct signature key, then (y,m, σ) (where y is the public key of P) is a valid forgery. Hence,

the success probability in the GMR-SKS experiment is pA

qp
.

Theorem 17. Generalised Mafia-Fraud Security. Let S be the signature scheme used
in PayPass. If S is GMR-SKS secure, then PayPass+ is strong generalised mafia-fraud secure.

Proof. This is a game-based proof [44]

G1: This game is the initial game G0, where no Nonce value is indeed used more than
once by any prover.

Let qn be the number of Nonce values issued by provers, during the experiment encap-

sulating this game. The probability that one Nonce repeats is upper bounded by qn2

2`nonce
. G0

and G1 are identical except for the failure event that two identical Nonce values are used, so

we have Pr[G1]− Pr[G0] ≤ qn2

2`nonce
, which is negligible.

G2: This game is the game G1, where no UN value is indeed used more than once by any
verifier.

Let qun be the number of UN values issued by provers, during the experiment encapsulating

this game. The probability that one UN repeats is upper bounded by qun2

2`nonce
. G1 and G2

are identical except for the failure event that two identical UN values are used, so we have

Pr[G2]− Pr[G1] ≤ qun2

2`nonce
, which is negligible.

G3: This game is the same as G2, except that the verfier never sends a value UN that has
previously been sent by an adversary through the send oracle. Additionally, the experiment



is aborted if a prover located in a different location than the verifier who sent a given value
UN receives it before a time corresponding to B

2 .
The aim of this transition is to eliminate the failure event Eguess that A randomly guesses a

value UN in advance. Let qs denote the (polynomial) number of calls to the send oracle, and qv
the (polynomial) number of executions of the verifier algorithm: we have Pr[Eguess] ≤ qs·qn

2`nonce
.

Hence, Pr[G3]− Pr[G2] ≤ qs·qn
2`nonce

, which is negligible.
We now prove that the success probability of A in G3 is negligible. Remark that in G3, A

cannot relay UN to a distant prover and receive its response and the corresponding Nonce
in time to be accepted by dV. Hence, either A sends a random UN ′ in advance to obtain
Nonce in time, or it receives UN and replies with a random Nonce. In the first case, we
have UN 6= UN ′, due to the transition of G2. In the second case, the probability that A’s
guess is correct is negligible ( qv

2`nonce
). Hence, except with negligible probability, the signature

SDAD provided by the attacked prover is not related to both UN and Nonce. However, to be
accepted by dV, the signature needs to be correct. Hence, the authentication is only accepted
if A forges a correct signature on (Nonce, UN,AC, . . .), corresponding to the public key of
the attacked prover, which contradicts the hypothesis on the signature scheme.

For distance-fraud resistance, the ID values need to be pseudo-unique, i.e., generated in
such a way that any two IDs have a high hamming distance.

Definition 18. Pseudo-unique identifiers. Let s be a security parameter. A set of identi-
fiers I is set to have the pseudo-unique property if, for any pair of identifiers (a, b) ∈ I2, such
that d = HD(a, b) (where HD is the hamming distance), it holds that 2−d is negligible in s.

Pseudo-unique identifiers can be instantiated with Reed-Solomon codes [42]: any two
codewords have a minimum hamming distance d = n − k − 1, where n is the length of the
codeword, and k is the length of the message (identifiers). If we fix k to an arbitrarily large
constant, and n varying with the security parameter, then 2−d is negligible, which satisfies
the definition.

Theorem 19. Generalised Distance-Fraud Security. If the UN values sent by the reader
are random and uniformly distributed, and the identifiers ID are pseudo unique, then PayPass+

has strong generalised distance-fraud security.

Proof. The value UN ⊕ ID uniquely identifies the prover running the protocol for a given
UN . In a GDF, A is at a distance greater than B, so that if he waits until he receives UN to
send a response, then the elapsed time will be larger than 2 · B, and dV will reject A. Hence,
to be accepted, the response needs to either (1) be sent in advance by A or (2) be sent by a
closeby prover P , or (3) be a composition of a message from P and a message from A. Let qv
denote the number of verifier sessions started during the attack phase. In case (1), A needs to
guess UN for his response to be correct, which succeeds with a probability upper bounded by

qv
2`nonce

. In case (2), the response of P is UN ′ ⊕ IDP , where UN ′ is sent by either a verifier
or A. Let qp denote the number of prover sessions started by A during the attack phase. The
probability for a random UN ′ to satisfy UN ′ ⊕ IDP = UN ⊕ IDA, where UN is sent by dV,
is upper bounded by nbP ·nv

2`nonce
, where nbP is the total number of prover IDs. Finally, for case 3,

A could overwrite parts of the response from a closeby prover P : since A knows the ID values,
he knows which bits of the IDP ⊕UN differ from the corresponding ones in IDA⊕UN . Hence,
A only needs to guess the send these bits and can let P send the other ones. He therefore has x
bits to guess, where x = HD(IDA, IDP ). Due to the pseudo unique property of the identifiers,
2−x is negligible, so the probability for A to properly guess these x bits is negligible.



6 Generic Distance-Fraud Attacks

In this section, we introduce a generalised distance fraud (similar to a distance-hijacking) that
works on most symmetric-key distance bounding protocols using a PRF. Our attack is similar
in nature to attacks presented in symbolic-verification formalisms [22,36], but uses the notion
of “programmable PRF” [12], and is therefore applicable to more protocols.

6.1 PRF Programming

“Programmable PRFs” [12], which are at the basis of our attack, underline a loophole in the
security claims of many distance bounding protocols: the security property for a PRF is that it
behaves randomly to someone who does not know the key, but not to someone who knows the
key. In other words, there exist functions that are secure PRFs, but that contain trapdoors,
i.e., input values derived from the key, and for which the output is not random. Dishonest
provers do know their keys, so they can exploit programmable PRFs. Suchs trapdoors can be
implemented, for instance by the manufacturer of the device implementing it. We define the
programmed PRF PPRF that we use for our attack. Let fx be a PRF keyed with a key x, and
R be a constant.

PPRFx(NP,NV ) =


R if NP = g(x)

R if NV = h(x)

fx(NP,NV ) otherwise,

where g and h are arbitrary functions functions from {0, 1}|x| to {0, 1}|nonce|. For clarity, we
use g(x) = h(x) = x but other functions could be used, for instance hash functions. The
function PPRF is a PRF: for a PRF adversary, guessing a value that triggers a non-random
behaviour accounts to guessing the key. Using this PRF, we can mount a distance-hijacking
attack against a wide range of distance bounding protocols.

Description of Our Generic Attack We illustrate the attack on the DB3 protocol [15].
The DB3 (q=2) protocol works as follows. The verifier sends a nonce NV , the prover replies
with a nonce NV . Both compute a = fx(NP , NV ), where fx is a PRF keyed with the shared key
x. Then, in n timed rounds, the verifier sends a random bit ci, expects a response ri = ai ⊕ ci.
Finally, the prover sends tag = fx(MP , NV , c) (where c is the concatenation of all ci values).
The verifier accepts if the times, ri and tag are correct.

We consider a generalised distance-fraud scenario, with an adversary Aloc2 in location
loc2, far from the location of the designated verifier dV. Let Px and Py be WB provers, using
respectively secret keys x and y. The attack goes as follows, and is illustrated on Figure 6:
1. A reads the secrets x, y from Px, Py; 2. A uses Move to move Px far from dV, and Py close
to dV; 3. Aloc2 sends NPx = x to dV; 4. A uses his Launch oracle to make ¶y start a session
with dV by sending a message NPy, which A redirects to Aloc2 with the ChangeDestination
oracle; 5. Aloc2 receives a message NVx from dV, and sends a message NVy = y to Py; 6. Py

computes ay = PRFy(NPy, y) = R, and dV computes ax = PRFx(x,NVx) = R; 7. dV sends
n challenges, to which Py replies using ay = ax = R; 8. Aloc2 sends the final message tag,
computed with the key x; 9. dV accepts the auhentication of Px, and A wins.

While we used the DB3 protocol to illustrate our attack, it applies to several protocols of the
literature. For some protocols, NV is sent before NP, but a similar attack applies. Vulnerable
protocols include: Kim and Avoine [32], Benfarah et al. [10] (both versions), TMA [46], Hancke
and Kuhn [29], Munilla et Peinado [40], Avoine et Tchamkerten [5], Poulidor [45], NUS [28],
Lee et al. [34], LPDB [39], EBT [25], Baghernejad et al. [26]. This list is not exhaustive.



Verifier V Prover P Adversary A
secret: x, y secret: y secret:x, y

initialization phase

pick NV ∈ {0, 1}`
NAP←−−−−−−−−−−−−−−−−−−−−−−−−−−−− pick NAP = x

NV−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

X
NP

P←−−−−−−− pick NP
P ∈ {0, 1}

`

NP
V←−−−−−−− pick NP

V = y

a = fx(x,NV ) = R a = fy(N
P
P , y) = R a = fx(x,NV ) = R

distance bounding phase
for i = 1 to n

pick ci ∈ {0, 1}
start timeri

ci−−−−−−−→ receive c′i

receive ri, stop timeri
r′i←−−−−−−− r′i = ai ⊕ c′i

verification phase

c′,tag←−−−−−−−−−−−−−−−−−−−−−−−−−−−− tag = fx(NAP , NV , c)

Fig. 6. Generalised distance-fraud on the DB3 (q=2) protocol [15]. The cross indicates a message blocked by
A.

7 Conclusions

We proposed a new application-oriented security model for distance-bounding. Using our
adversary model, we exhibit flaws in 13 protocols of the literature, previously believed to
be secure. One of them is the EMV protocol called PayPass with relay protection. We also
propose a backwards-compatible version of PayPass, which we show fully secure in our strongest
collusion model. This is the first practical DB protocol shown secure in a provable-security
model. Moreover, our model completely eliminates terrorist-fraud, as irrelevant to any concrete
implementation of a DB protocol. This underlines the need for fully secure protocols for real-
life applications. We aimed to end the debate about how terrorist-fraud resistance should be
formalised, and bring hope for a unified model in which real-life protocols can actually be
proven secure. Our results pave the way for exciting research directions, such as the design
of optimal application-oriented DB protocols, filling the long-lasting gap between academic
protocols and practical applications/implementations. Finally, we built this model closes to
the formalisms used in automatic tools to soon yield mechanised cryptographic proofs for DB.
As future work, we aim to extend this with dishonest verifiers and with privacy/anonymity
requirements, both of which are needed in some application-level DB.
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17. X. Bultel, S. Gambs, D. Gérault, P. Lafourcade, C. Onete, and J.-M. Robert. A prover-anonymous and
terrorist-fraud resistant distance-bounding protocol. In WISEC 2016, New York, NY, USA, 2016. ACM.

18. T. Chothia, J. de Ruiter, and B. Smyth. Modelling and analysis of a hierarchy of distance bounding attacks.
In W. Enck and A. P. Felt, editors, 27th USENIX Security Symposium, USENIX Security 2018, Baltimore,
MD, USA, August 15-17, 2018., pages 1563–1580. USENIX Association, 2018.

19. T. Chothia, F. D. Garcia, J. de Ruiter, J. van den Breekel, and M. Thompson. Relay cost bounding for
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A Related Work

Provable-Security Models for DB. The formalisation effort for distance bounding began with
a first classification of attacks by Avoine et al. [3]. The authors distinguished black- and
white-box provers, but did not provide a formal security model. Later, two main computa-
tional models were proposed: the DFKO model [23], and the BMV model [13]. They were
further refined with different flavour of terrorist-fraud resistance: three different definitions
for terrorist fraud in the DFKO model are given in [27], and even more in the successors of
the BMV model. Terrorist-fraud resistance is generally achieved through artificial mechanisms
(extractors, leakage schemes, backdoors . . .), around which the definition is specifically designed.
More recently, Kilinç and Vaudenay proposed a new provable-security model, which considers
black-box provers [31]. In particular, they state that in a black-box context, terrorist-fraud
resistance is the strongest and most generic property. Traditionally, these provable-security
models have been used to study protocols from the academia, rather than practical ones. Our
model is the first provable-security formalism to study practical, real-life protocols. Our model
is most inspired by the initial framework of Avoine et al. [3], which it extends substantially.

Symbolic-Verification Models for DB. On the symbolic-verification side, where the crypto-
graphic aspects are idealised, a first model was proposed in 2007 by Meadows et al. [37]. Later,
Basin et al. proposed an Isabelle/HOL formalisation in [6]. This formalisation was extended
by Cremers et al. [21] to include advanced message-manipulation, such as overshodowing,
which permitted to discover distance -ijacking attacks. Last year, at Usenix, Chothia et al. [18]
proposed a full DB formalisation, with a hierarchy of attacks, and used it to analyse real-world
protocols: Mastercard’s PayPass with relay protection, and NXP’s relay-resistant protocol.
This formalisation does however not consider dishonest provers. The same year, Mauw et
al. [36] and Debant et al. [22] proposed other symbolic models for analysing distance-bounding
protocols. In the last two lines, adversary model differs more widely from other works in
formal DB: in particular, they allow for dishonest verifiers, and permit the adversary to block
messages from afar. With this modified adversary model, they exhibit new attacks on recent
protocols, such as [17,4]. In our new model, we also allow for such blocking of messages by the
attacker, but we do not allow for dishonest verifiers. We add more finesse to the corruption
of the provers and, as such, we exhibit new attacks, that no other model has found thus-far.
Some of these are on practical protocols such as PayPass.

B Proofs for Section 3

Lemma 20. Let Π be a specification of a DB protocol and Πreal be its realisation in an
execution environment. If TF-provers are black-box, then Πreal is TF-resistant.

Proof. Let P be a black-box TF-prover, far-away from a given verifier-party V . From Def 2, P
being black-box means that any algorithm B that interacts with it follows the ITM specification
in Π. So, P ’s help is the adversary A having B, which equates to A interacting in the session
mid with a far-away prover P . According to the communication model and adversarial model,
V cannot accept P in mid (as P is far-away). So, Π is TF-resistant by trivial implications:
i.e., “ if P helps A make the verifier-party V output 1...” is always false.

Lemma 21. Let Π be a specification of a DB protocol and Πreal be its realisation in an
execution environment. If TF-provers are black-box, then a TF-attacker (P,A1) succeeds against
Πreal if and only if there is a successful MiM attacker A against Πreal.



Proof. Assume a TF-attacker (P,A1) where P is black-box. Let us consider an arbitrary
universe of locations (loc1, loc2) in the execution environment such that, w.l.o.g.,that the
verifier-party V in the TF attack is found in location loc2 and P is therefore found in loc1.

Let A=(Aloc1 ,Aloc2) be an arbitrary adversary in our model. Let the adversarial party
Aloc1 hold the black-box prover P (which is allowed in our model). And let Aloc1 communicate
with Aloc2 found at the same location as V , as per our communication model. So, if TF-attacker
(P,A1) succeeds, since P is black-box, so does (Aloc1 ,Aloc2).

If (Aloc1 ,Aloc2) authenticates as P , then let (Aloc1 , advloc2) be the help that P gives A1.
And so, (P,A1) succeeds.
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