
Fully Bideniable Interactive Encryption

Ran Canetti∗ Sunoo Park† Oxana Poburinnaya‡

January 1, 2019

Abstract

While standard encryption guarantees secrecy of the encrypted plaintext only against an attacker that
has no knowledge of the communicating parties’ keys and randomness of encryption, deniable encryption
[Canetti et al., Crypto’96] provides the additional guarantee that the plaintext remains secret even in face
of authoritative entities that attempt to coerce (or bribe) communicating parties to expose their internal
states, including the plaintexts, keys and randomness. To achieve this guarantee, deniable encryption is
equipped with a faking algorithm which allows parties to generate fake keys and randomness that make
the ciphertext appear consistent with any plaintext of the parties’ choice.

To date, only partial results were known: either deniability against coercing only the sender, or against
coercing only the receiver [Sahai-Waters, STOC ‘14] or schemes satisfying weaker notions of deniability
[O’Neil et al., Crypto ‘11].

In this paper we present the first fully bideniable interactive encryption scheme, thus resolving the
20-years-old open problem. Our scheme also satisfies an additional, incomparable to standard deniability,
property called off-the-record deniability, which we introduce in this paper. This property guarantees that,
even if the sender claims that one plaintext was used and the receiver claims a different one, the adversary
has no way of figuring out who is lying - the sender, the receiver, or both. This is useful when parties
don’t have means to agree on what fake plaintext to claim, or when one party defects against the other.

Our protocol has three messages, which is optimal [Bendlin et al., Asiacrypt’11], and works in a CRS
model. We assume subexponential indistinguishability obfuscation (iO) and one way functions.
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1 Introduction

Standard encryption guarantees that parties can communicate in secrecy even when an adversary can see
their communication transcript. However, this secrecy guarantee holds only as long as the private keys and
randomness used for encryption remain secret. If an authoritative entity bribes or even coerces the parties to
disclose their secret keys and randomness — for instance, under threats or subpoena — secrecy is no longer
guaranteed. In fact, with common encryption schemes the ciphertext is often a “commitment” to the plaintext,
in the sense that there is often only a single way to convincingly demonstrate secret keys and randomness that
are consistent with the ciphertext.

To address this issue, Canetti et al. [CDNO96] introduced the notion of deniable encryption, in which a
party may send a ciphertext c which is an encryption of message m, and later, for any plaintext m′ 6= m, the
party can reveal fake keys and randomness with respect to which c appears to be an encryption of m′.1 When
the communicating parties have common secret key, deniable encryption can be simple2. For instance, the
one-time pad (OTP) scheme is perfectly deniable: having sent c = k⊕m, the parties can claim that they sent
any plaintext m′ by claiming that k′ = c⊕m′ is their true key. In fact, it turns out that the key size in any
deniable encryption scheme has to be at least as large as the size of a plaintext (since there should exist a
different key for any possible fake plaintext), and in this sense OTP is “the best possible” symmetric-key
deniable encryption.

But what if no pre-shared secret key is available? Is it possible to communicate fully deniably even in this
case?

In the non-interactive case, this notion corresponds to deniable public-key encryption. Such an encryption
scheme, in addition to standard algorithms Gen(r), Enc(pk,m; s), and Dec(sk, c) (for key generation,
encryption, and decryption, respectively), also has “faking algorithms” SFake(s,m,m′, (pk, c); ρS) → s′

and RFake(r,m,m′, (pk, c); ρR)→ r′. They take as input the true random coins of the sender or receiver,
real and fake messages m,m′, communication transcript (pk, c), and random coins ρS or ρR, in case these
algorithms are randomized. Their outputs s′ and r′ respectively are “fake sender randomness” and “fake
receiver randomness” which explain (pk, c) as a transcript transmitting m′.

There are three natural notions of deniability, depending on whether the adversary gets access to (possibly
fake) randomness of the sender, receiver, or both. They are called sender-, receiver-, and sender-and-receiver-
deniability, respectively. Sender-and-receiver deniability is often called bideniability, which is the strongest
notion among the three. It requires that for any plaintexts m,m′:

(pk, c = Enc(pk,m′; s), s, r) ≈c (pk, c = Enc(pk,m; s), s′, r′), (1)

where ≈c denotes computational indistinguishability, s, r are uniformly chosen, (pk, sk) ← Gen(r), s′ =
SFake(s,m,m′, (pk, c); ρS), r′ = RFake(r,m,m′, (pk, c); ρR). The probabilities are taken over the random
choice of s, r, ρS , ρR. In other words, bideniable encryption guarantees that an adversary, who sees (possibly
fake) encryption and generation randomness consistent with m′, cannot tell whether m′ or m was really

1Deniable encryption should not be confused with deniable authentication, which allows a party to deny that it participated in the
communication.

2Note that such key has to be shared in a way which is out of the coercer’s view, e.g. physically. Key exchange protocols do not
help, unless these protocols are already incoercible themselves, i.e. allow to lie about the resulting key upon coercion. But such
protocols are equivalent to interactive deniable encryption, i.e. in this paper we essentially build the first incoercible key exchange.
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sent.3 Sender deniability (respectively, receiver deniability) is a relaxation of the above definition where the
the internal randomness of the receiver (respectively, sender) is removed from both sides of (1).

While all variants are meaningful, it should be stressed that bideniability provides a qualitatively stronger
guarantee than either sender deniability or receiver deniability alone: it leaves the coercer no way of figuring
out what the plaintext really was, even if all parties involved are coerced: the plaintext becomes “virtually
erased” from the system. And while sender-deniable encryption was built in [SW14], perhaps it shouldn’t
come as a surprise that non-interactive bideniable, and even receiver-deniable, encryption was shown to be
impossible, i.e. the definition above is not satisfiable [BNNO11].

However, the [BNNO11] impossibility only holds for two-message protocols. But the notions of sender-,
receiver-, and bideniable encryption can be easily extended to a multi-round setting. Indeed, [CDNO96]
already demonstrate how to turn any sender-deniable encryption scheme to a receiver-deniable interactive
encryption protocol at the expense of one more round. Still, the following question has remained wide open:

Can parties communicate bideniably without any pre-established secrets?

A positive answer to this question may seem somewhat unexpected. For instance, in key exchange protocols -
another setting where secrecy is required without any pre-shared secrets - security crucially relies on the fact
that parties keep their internal state, e.g. discrete log, hidden from the eavesdropper. Among other things,
the missing variable prevents the eavesdropper from running algorithms of the scheme, thus making the
eavesdropper inherently less powerful than parties and guaranteeing that the parties can learn the key while
the eavesdropper cannot. In contrast, in bideniable encryption (or, incoercible key exchange) the adversary
is as powerful as parties, since it knows all variables which honest parties would know, and therefore can
compute any function which honest parties could compute. Thus, security of bideniable encryption (or,
incoercible key exchange) hinges on a delicate distinction between knowing the right internal state and the
wrong one.

Nevertheless, we show that interactive bideniable encryption, and therefore incoercible key exchange, exists.
Concretely, we show a 3-message protocol which allows to transmit 1-bit plaintexts bideniably. Our protocol
works in a CRS model and assumes subexponential iO and OWFs. In addition to standard deniability, it also
provides a different guarantee which we call off-the-record deniability, as we explain next.

Off-the-record deniability. Besides standard deniability as defined by [CDNO96], we additionally
consider a different form of deniability, incomparable to the standard one, which we call off-the-record
deniability. Off-the-record deniability guarantees that the plaintext remains hidden even when both parties are
coerced, and one party gives randomness consistent with one plaintext and the other party gives randomness
consistent with another plaintext. Further, this should hold no matter whether both random coins given to the
coercer are fake, or one of them is real. That is, with an off-the-record deniable scheme the coercer cannot
tell which party - if any - is telling the truth.

Such a guarantee may be useful in a number of situations. One example is when the parties do not have the
ability to agree on a fake message, or when they cannot even coordinate whether they should lie or tell the
truth. Another example is when one party defects against the other party and discloses its own randomness
for a sole purpose of demonstrating that the other party sent, or received, a sensitive plaintext.

3Note that this definition implies that (pk, c = Enc(pk,m′; s)) ≈c (pk, c = Enc(pk,m; s)), and therefore any deniable
encryption is also semantically secure.
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Type of deniability Secure against adversaries that may...
I. Sender-deniable coerce S but not R
II. Receiver-deniable coerce R but not S
III. Sender-or-receiver deniable coerce either S or R but not both
IV. bideniable coerce both S and R, who claim the same plaintext
V. Off-the-record deniable coerce S and R, who claim two different plaintexts

Table 1: A taxonomy of deniability. In each case, the adversary is acting with respect to a given communication
transcript between sender S and receiver R. “Coercion” means the adversary may demand from a party an
explanation consistent with a plaintext m of the adversary’s choice. Note that (IV)∨(V)⇒(I)∧(II)∧(III).

Note that off-the-record deniability is incomparable to standard deniability, which in fact does not give
any guarantee in a situation where parties’ claimed plaintexts are inconsistent, or even when plaintexts are
consistent but one party provides true randomness and the other provides fake randomness for the same true
plaintext. In other words, if a scheme only satisfies standard definition of deniability, each party’s security
fully relies on correct actions of the other party, which is undesirable. However, if the scheme is in addition
off-the-record deniable, then parties can still have some protection independently of actions of the other party
- but course only as much as it could possibly be guaranteed with an ideal secure channel, given that parties’
claimed plaintexts are inconsistent with each other.

1.1 Discussion

In this section we discuss a number of issues such as applicability of deniable encryption, possible variations
in the definition, and some related notions.

When is deniable encryption useful? Note that, no matter how good deniable encryption is, the original
randomness and plaintexts in most cases remain in the memory of machines of the parties. If the adversary
has the ability to seize these machines without any prior notice, deniable encryption clearly cannot help.
Further, even if parties expect their machines to be seized, replacing their true randomness and plaintext with
fake ones requires secure erasures.

That is, deniable encryption is useful in a setting when the adversary doesn’t have direct access to parties’
machines, and instead encourages parties to disclose their state themselves. Examples include an attempt to
learn the content of communication via bribes or threats, an obligation to disclose the keys as part of the legal
process, or vote selling.

Deniability is guaranteed only assuming the correct execution of the protocol. We cannot stress
enough that deniability protects parties only as long as parties correctly run the protocol: that is, choose their
random coins truly at random and generate messages according to instructions of a protocol. This is generally
not an issue when parties want protection against an external coercer who could demand their keys later, and
therefore are themselves interested in following the protocol honestly.

However, in some scenarios parties themselves should be treated as malicious: for instance, a government
agent who was offered bribes for revealing the content of sensitive communication, or a voter who is planning
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to sell its vote, or any other person who intends to prove its plaintext in a situation where it better doesn’t.
Clearly, if a party is already malicious during the protocol execution, it can always set its randomness s to be,
e.g., digits of π, and then use it as a proof that it knows the true plaintext. In some applications this issue can
be solved using physical setup assumptions. For instance, [BT94] argues that a physical booth is required to
achieve receipt-free voting; if such a booth is available, one could use it to generate randomness for voters
and give it to them (rather than letting voters pick it themselves, potentially in a malicious way), thus making
deniable encryption sufficient.

However, even when such a setup is not available, deniable encryption still guarantees some security - that
parties cannot prove their plaintext as long as they followed the protocol, even if later their intentions become
malicious. Indeed, any “proof of plaintext” computed using their true random coins could be also computed
from fake coins and fake plaintext.

Possible variants of the definition. The definition of deniable encryption can be parametrized in a number
of ways, e.g.:

• Post-execution vs adaptive coercion. In this paper we consider the setting where coercion happens
after the protocol is executed. One can consider a broader definition of adaptive coercion which can
happen at arbitrary moment during the protocol execution (and with the other party being aware or
unaware of the coercion).

• Time when the fake plaintext is chosen. In this paper we avoid this issue by considering bit encryption
only. If one considers encrypting longer messages, there are several possible levels of how adaptive the
choice of fake plaintext is:

The weakest notion is to require that the fake plaintext m′ should be chosen already at the time of
encryption and supplied to the encryption algorithm: this is called plan-ahead deniability in [CDNO96].
Another definition (commonly used) requires encryption process to be independent of fake plaintext;
however, note that both real and fake plaintexts have to be chosen by the adversary at the time of
encryption in order for deniability game to be well-defined. Another option is to consider a simulation-
based definition of deniable encryption (discussed later), and let the environment choose fake messages
for parties as late as at the time of coercion. Finally, in a CRS model there is one more level of
adaptivity, where both real and fake plaintexts are chosen before the CRS is fixed.

• Ind-based vs sim-based definition. One could define incoercible encryption as an encryption which
implements ideal secure channels under coercion, similarly to how [CG96] (and its follow-up [CGP15])
define incoercible computation (there are also other definitions, e.g. [UM10, AOZZ15]). The idea
behind the definition is that the simulator should be able to simulate random coins, given only the
plaintext, but not the information whether this plaintext is real or fake - which implies that in the
real world the adversary doesn’t know this either. (Both real and fake plaintexts are chosen by the
environment, and fake plaintexts of the sender and the receiver do not have to be consistent).

It is easy to show that in the semi-honest model (i.e. when parties follow the protocol) with post-
execution coercion only, encryption is incoercible if and only it is both bideniable and off-the-record
deniable4. Intuitively, the simulator can always simulate the communication by generating an encryp-

4It is important that both properties hold with respect to the same faking algorithms, i.e. that parties do not have to choose
whether they want standard deniability or off-the-record deniability.
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tion of 0, and simulate random coins by running faking algorithm for a given plaintext.

• Deterministic or randomized faking algorithms. We note that faking algorithms could be determin-
istic (i.e. the only randomness they take as input is true randomness of the sender s, which we treat
as non-random input since it is picked once and reused across different algorithms of the sender) or
randomized (when they additionally take as input fresh random coins ρ which are not used anywhere
else). For instance, the syntax of SFake could be both SFake(s,m,m′, tr) and SFake(s,m,m′, tr; ρS),
where tr is the transcript of communication. In our construction SFake is deterministic and RFake is
randomized.

• Private and public deniability. We say that deniability of the sender (or receiver, or both) is public
([SW14]), if the corresponding faking algorithm doesn’t take the true randomness and the true plaintext
as input. For instance, our scheme has public deniability of the receiver, i.e. RFake has syntax
RFake(m′, tr; ρR). This means that anyone, not just the receiver, can produce fake random coins of the
receiver. Note that in this case RFake has to be randomized, otherwise the coercer could easily check if
claimed r is fake by comparing it to RFake(m′, tr).

• “Coordinated” scheme. One can also consider a “coordinated” scheme ([OPW11]) where faking
algorithm takes as input true coins of both the sender and the receiver at the same time, thus requiring
coordination between the sender and the receiver in order to compute fake randomness. Our scheme
doesn’t require such coordination, but we note that prior to this work even coordinated fully bideniable
schemes were not known.

Related concepts.

• Incoercible key exchange is equivalent to deniable encryption: indeed, given the former, one can
always encrypt messages deniably under one-time pad. Given deniable encryption, one can always
pick a random key and send it to the receiver deniably.

• Non-committing encryption (NCE, [CFGN96]) may sound similar to deniable encryption; it requires
that the simulator can generate dummy ciphertexts that can later be opened to any given plaintext. The
differences are twofold. First, in deniable encryption a ciphertext that carries a plaintext can be faked,
while in NCE ciphertexts either can be faked (if they are simulated) or carry a plaintext (if they are
real). In other words, parties cannot fake; only the simulator can. Second, fake opening on behalf
of the sender and the receiver in NCE is done by the same entity - the simulator - while in deniable
encryption parties fake on their own.

Bideniable encryption is strictly stronger than NCE, since bideniable encryption implies NCE
([CDNO96]), and since there exist two-message NCE schemes ([CDMW09]) which provably cannot
be bideniable due to the 3-message lower bound ([BNNO11]).

• Deniable authentication. Deniable encryption should not be confused with deniable authentication.
In the latter, the goal is to allow the receiver of a message to authenticate the source and contents of the
message, while providing the sender with a guarantee that the receiver is unable to convincingly prove
to an external entity, that did not directly witness the communication, that the message has been indeed
received from the sender (see e.g. [DKSW09]). In contrast, in the setting of deniable encryption the
external entity is assumed to have directly witnessed the communicated ciphertext and concern is for
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both parties to maintain secrecy of the plaintext, even when coerced (separately or jointly) to provide
their internal secrets.

1.2 Related work

Prior work on deniable encryption. The notion of deniable encryption was first introduced in 1996
in the work of [CDNO96]. However, techniques of that time fell short of achieving deniability: indeed,
[CDNO96] present a construction where the distinguishing advantage between real and fake opening was
inversely proportional to the length of the ciphertext, thus requiring superpolynomially-long ciphertexts in
order to achieve deniability. It was not until 2014 when Sahai and Waters presented the first (and, to date, the
only) construction of sender-deniable encryption [SW14], and their construction was based on assumptions
as strong as indistinguishability obfuscation. (In fact, to the best of our knowledge, their approach gives the
only known way of “inverting” generic programs, i.e. coming up with consistent random coins for a different
input-output pair, which is necessary for deniable encryption).

The construction of [SW14] can be transformed into 3-message receiver-deniable protocol using generic
transformation of [CDNO96], by letting the receiver send random bit b to the sender deniably in rounds 1
and 2, and then letting the sender send b⊕m back in round 3. In fact, the sender, instead of sending b⊕m
in the clear, can send it encrypted under deniable encryption, and the resulting 3-message scheme will be
sender-or-receiver-deniable - that is, the adversary is allowed to obtain randomness of any party of its choice,
but only one of the two5. However, all these constructions heavily rely on the fact that internal state of one of
the parties remains hidden, and therefore fail to achieve deniability for both parties at the same time.

Several works focused on proving lower bounds for deniable encryption. [CDNO96] show that a certain
class of schemes cannot achieve better distinguishing advantage than inverse polynomial. [Dac12] extends
this result to a broader class of constructions, showing that the same holds for any black-box construction of
sender-deniable encryption from simulatable encryption. [Nie02] show that any non-committing encryption,
including bideniable encryption, can only reuse its public key a priori bounded number of times; and therefore
it has to be an interactive protocol, even if it requires two messages. Using different techniques, [BNNO11]
show that receiver-deniable scheme cannot even be a 2-message protocol: at least 3 messages are required.
The same holds for bideniable encryption.

A number of works build deniable schemes under a weaker definition called flexible, or multi-distributional,
deniability. However, there was a lot of debate regarding the meaningfulness of this notion. We give our view
on this subject in section 1.3.

5In fact, this is an example of the scheme, asked by [OPW11], which is sender-or-receiver-deniable, but provably not bideniable.
Indeed, for this scheme to be bideniable, both parties should simultaneously lie about either plaintext b of the first encryption, or
plaintext b⊕m of the second encryption - otherwise true values of b and b⊕m reveal true m. This in turn implies that at least one
of the two deniable schemes is receiver-deniable, which is impossible due to lower bound of [BNNO11] for 2 messages. Similarly,
this scheme is not off-the-record deniable. Indeed, the adversary can xor the plaintext claimed to be received by the sender at round 2
(which is the true value of b) with the plaintext claimed to be received by the receiver at round 3 (which is the true value of b⊕m) to
learn the true plaintext.
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1.3 Full Deniability versus Flexible Deniability.

In addition to full deniability, [CDNO96] also introduced a weaker notion of deniability, sometimes called
multi-distributional deniability ([OPW11, BNNO11, Dac12, AFL16, CIO16]), or dual-scheme deniability
([GKW17]). Under this definition, there are two schemes, S and S′, where S is “deniable with respect to S′”.
That is, parties who used deniable scheme S can convincingly claim that they sent a different plaintext, but
under the non-deniable scheme S′. However, if parties truly used S′, they cannot lie about the plaintext.

On a positive side, this definition already guarantees plausible deniability, since the coercer cannot prove
that S was used - even though it may have reasons to believe so. Thus, flexible deniability already protects
parties in many scenarios where plausible deniability suffices, e.g. in court. But even in cases when plausible
deniability is not enough, having a partial solution is much better than nothing - especially given a very
slow progress on fully deniable schemes. Moreover, the efficiency gap between fully and flexibly deniable
schemes seems tremendous: unlike fully deniable schemes (including this work and [SW14]), known flexibly
deniable schemes can be implemented in practice.

But even from a theoretical prospective, a weaker definition of flexible deniability allows for fewer rounds,
more efficiency, and weaker assumptions than fully deniable schemes, and requires no setup. For instance,
[OPW11] build a 2-message flexibly bideniable encryption from LWE and from simulatable encryption. In
fact we even have more advanced encryption schemes (like identity-based encryption [OPW11], functional
encryption [CIO16], and attribute-based encryption ([AFL16])) with flexible deniability, and we have flexibly
deniable encryption scheme with succinct keys [GKW17], where the size of a key is proportional to the
number of possible fake messages (which can be smaller than the total number of possible plaintexts).

However, flexible notion of deniability has significant drawbacks. Indeed, having two different algorithms,
which have two different security guarantees and which are up to the parties to choose, leaves room for
suspicion, misuse, and can even cause harm to parties themselves. It also requires additional coordination
between parties. But most importantly, flexible deniability doesn’t provide perhaps the most desirable benefit
of deniability - preventing coercion in the first place by making it useless. Below we explain these issues in
more detail.

First, refusal to provide keys for deniable version could significantly increase the adversary’s certainty that
parties are lying - compared to the ideal channels case where the coercer has nothing besides parties’ claims.
Indeed, in the real world the opinion of the coercer will be shifted by its certainty that deniable version was
used. However, this is not captured by security definition of flexible deniability, which doesn’t take into
account how exactly parties choose an algorithm, e.g. by assuming some distribution on the choices of S
and S′, or considering rational behavior. For instance, one could argue that rational players would prefer S
over S′ because of better security guarantees, which is further aggravated by the fact that flexible deniability
could actually harm those who use the non-deniable version. Indeed, as [CHK+08], who analyze plausible
deniability of TrueCrypt hidden volume, put it, “deniability cuts both ways, and sometimes that’s not a
benefit”.

Second, note that fully deniable encryption doesn’t allow parties to prove what their plaintext was even if
they want to6. This is crucial in preventing bribery or vote selling. In contrast, in flexibly deniable encryption
parties can choose whether they want it or not by choosing deniable or non-deniable algorithm. As a result,
with fully deniable encryption one could set up receipt-free voting scheme using a physical booth which, for

6As discussed before, this property only holds if parties execute the protocol correctly.
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instance, provides parties with randomness (so that they can still lie about their vote, but cannot use preset
randomness to sell their vote). But if flexible scheme is used, then voters can lie about their vote but at the
same time sell their true vote if they want (if deniable version is used), or can do neither (if non-deniable
version is used).

Another important issue which arises in flexible setting is the need for coordination. That is, parties need a
way to agree whether they run S or S′, and do so by the time of encryption7. It is not clear how to do such
coordination without another deniable channel. As a result, well-being of each party is in the other party’s
hands: e.g. the sender’s claim will look credible only as long as the receiver also used deniable algorithm
at time of encryption, also decided to fake at time of coercion, and used the same fake plaintext. This is a
problem not only when the receiver turns against the sender, but also when the receiver remains honest but
doesn’t know what actions to take out of lack of coordination.

Finally and most importantly, as already pointed out by [OPW11], deniable encryption not only allows to
withstand coercion, but also makes in useless in the first place - just like it is useless in the ideal world, where
there is no way of verifying parties’ claims. However, flexible deniability doesn’t give this guarantee: the
coercer (who suspects that deniable version could be used) can gradually increase the pressure - be it a sum
of money or “enhanced interrogation” - until the parties find it more preferable to prove what their plaintext
was by disclosing keys of deniable version, S.

To summarize this discussion, we think that flexible deniability as a real-life application already suffices in
many cases - e.g. when plausible deniability is sufficient, or when the coercer is not aware of the concept of
deniable encryption and will be satisfied by seeing some working key. However, to obtain security guarantees
of the ideal channel, one should use encryption which is (fully) deniable and off-the-record deniable.

Needless to say, we still believe that flexible deniability is a fascinating concept to explore. For instance,
coming up with flexible scheme where S′ is some standard encryption, e.g. RSA, would mitigate some issues
mentioned above, thus making flexible deniability as good as full deniability for many practical purposes.
Further, flexibly deniable encryption is an interesting primitive whose connections to non-committing
encryption and full deniability are yet to be explored.

1.4 Our results: interactive deniable encryption

We show a 3-message deniable encryption scheme from subexponential iO and subexponential one-way
functions in a non-programmable CRS model8. The CRS consists of obfuscated programs which everyone
(including parties and adversaries) has access to. The CRS has to be generated by some trusted entity ahead
of time, but this entity doesn’t need to participate in the protocol. The programs are reusable an arbitrary
polynomial number of times by arbitrarily many pairs of communicating parties. We stress again that the
adversary has access to the same programs and thus has exactly the same power as honest parties do: in
particular, parties do not receive any help (in generating fake randomness) from external incoercible authority,
and can disclose their full internal state, including the faking key, to the adversary (unlike in flexible deniable

7However coordination is not required for correctness and semantic security, since these properties hold even if the sender and
the receiver use different schemes [OPW11].

8The standard definition of deniable encryption ([CDNO96]) is game-based (there is no notion of simulation), and for both
challenge bits b = 0, 1 the CRS has to be generated in the same way. Thus the CRS is inherently non-programmable.
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encryption)9.

Our scheme, besides being bideniable, also provides off-the-record guarantees. More concretely, the adversary
cannot distinguish between the following three cases: (1) seeing a transcript for plaintext 0, true randomness of
the sender (consistent with 0), and fake randomness of the receiver consistent with 1; (2) seeing a transcript for
plaintext 1, fake randomness of the sender consistent with 0, and true randomness of the receiver (consistent
with 1); and (3) seeing a transcript for any plaintext (even different from 0 or 1 when longer plaintexts are
allowed), fake randomness of the sender consistent with 0, and fake randomness of the receiver consistent
with 1.

Theorem 1. Assuming subexponentially-secure indistinguishability obfuscation and subexponentially-secure
one-way functions, there exists a three-message bideniable and off-the-record-deniable interactive encryption
for 1-bit plaintexts in the common reference string model. In addition, the receiver’s deniability is public, i.e.
true random coins of the receiver are not required to compute fake randomness of the receiver.

Our scheme instructs parties to run programs in the CRS in order to compute protocol messages, decrypt, or
fake: that is, all the computation happening in the scheme is hidden even from the parties themselves, and
choosing initial random coins is the only thing parties do themselves.

The challenges we are facing are two-fold. First, deniable encryption is not easy to build even when parties
have only oracle access to the programs; in fact, throughout the introduction we mostly explain how to build
deniable encryption in this setting. It turns out that even in this setting deniable encryption should have a
special hidden logic which thwarts all potential adversarial recombinations of the transcript and claimed
randomness of the parties. Second, in our actual construction parties (and an attacker) have access to the
actual code of programs, protected by indistinguishability obfuscation; thus we need to argue that security
still holds with weaker guarantees of indistinguishability obfuscation. To achieve this we use techniques
commonly used in settings where the adversary can run programs on outputs of other programs iteratively,
like in garbled TMs and RAM from iO ([KLW15, CHJV14]), or the construction of trapdoor permutations
from iO ([BPR15, BPW16]).

Although we state and prove the theorem for 1-bit encryption, our construction can be used to encrypt and
deny longer messages, albeit with additional multiplicative factor in security loss, equal to the cube of the
size of the message space.

1.5 A very brief overview of the scheme

Our starting point is a special mechanism built by [SW14] which allows to make any randomized algorithm
deniable - that is, it is possible to come up with fake random coins for this algorithm which are consistent with
any input-output pair, even if such an input normally doesn’t result in such output. In particular, this means
that we can take any protocol and equip parties with a way to “explain”, separately, each of the messages they
send to the other party - that is, come up with fake randomness which makes, say, the first message sent from
the sender to the receiver consistent with any plaintext of parties’ choice.

However, this mechanism works out of the box only when applied to independent algorithms, which is
definitely not the case for next message functions of a protocol. Indeed, otherwise we could simply apply the

9In fact, in our scheme there is no separate faking key: the same randomness r is used by the receiver to generate its messages,
decrypt, and fake. Upon coercion, the adversary gets access to (possibly fake) r.
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mechanism of [SW14] to any public-key encryption and get a two-message bideniable encryption, which
is impossible [BNNO11]. The problem here is that the joint behavior of key generation, encryption, and
decryption algorithm by itself reveals too much - no matter how innocently-looking fake randomness we
create for each algorithm. Namely, the adversary can play with the given transcript and randomness to
generate certain “related” transcripts and randomness, and then try to run the decryption algorithm on
different combinations of them. To get some intuition for why this is a problem, consider the following. Fake
r can be viewed as a string which “remembers”, explicitly or implicitly, a single instruction to decrypt a
certain transcript to a certain fake plaintext. The adversary can try to run RFake many times on (claimed
to be real) r and related transcripts, hoping that each new application of RFake will add a new instruction
into the “memory” of r. Since r is a bounded-length string which can “remember” only a fixed amount of
information, sooner or later the very first instruction will be erased from the “memory” of r. In other words,
if r is fake, then by running RFake many times it is possible to come up with some different r̃ which doesn’t
have the instruction r has and thus decrypts the transcript in question honestly. (In fact, this is the high-level
idea of the impossibility argument of [BNNO11]; see more details in section 2.1).

Thus our plan is to first design a protocol that doesn’t allow the coercer to compute related transcripts, and
then to put [SW14] mechanism on top of it to achieve input-output consistency. We first do it in “oracle-access
model” - a model where everyone (both parties and adversaries) has black-box access to specially designed
programs - and then adapt the construction to the setting where everyone gets access to the actual code of
programs, obfuscated under indistinguishability obfuscation.

The first part of our plan - designing a protocol free from related transcripts - itself consists of two major
steps:

Step 1: We design a “base” protocol as follows: we give parties (and the coercer) an access to specially
designed programs for all algorithms of deniable encryption, i.e. for generating messages, decrypting, and
faking; parties are not supposed to do anything by themselves - they only pick their random coins and
run corresponding programs. We set the programs such that the first message µ1 is a PRF of the sender
randomness s and its plaintext m, the second message µ2 is a PRF of the receiver randomness r and µ1, and
the third message µ3 is an encryption of m,µ1, µ2. (All keys, e.g. for PRFs and encryption, are hidden inside
these programs and not known to anyone, including parties.) Then the receiver can use its decryption program
which decrypts the ciphertext and outputs m. In addition, we add certain consistency checks to the programs
to make sure that decryption program returns the output only if it gets the correct r (i.e. consistent with µ2),
and the program for the third message only returns the output if it gets the correct s (i.e. consistent with µ1).

In other words, in the first two messages parties essentially exchange “hashes” of their internal state so
far. Intuitively, this guarantees (or, rather, should guarantee) that the adversary cannot compute related
transcripts - for instance, cannot reuse µ1, µ2 from transcript (µ1, µ2, µ3) and compute some new µ3

′ such
that (µ1, µ2, µ3

′) is also a valid transcript with respect to the same r.

Step 2: We show that the intuition from the step 1 is only partially correct: namely, it turns out that, despite
all precautions, there always exists a certain, very specific algorithm to compute related transcripts, in
any 3-message bideniable encryption scheme. This algorithm, given any transcript (µ1, µ2, µ3), and run
iteratively, allows to compute transcripts (µ1, µ2, µ3

(1)), (µ1, µ2, µ3
(2)), and so on, with the same first and

second messages, but different third message. This allows to produce “a chain” of related transcripts tr1, tr2,
and so on. (However, the scheme from step 1 is still useful, since it protects from all other attempts to
compute related transcripts, except for this algorithm).
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To make sure that the adversary cannot use this chain of related transcripts to learn the true plaintext (like in
2-message case), we augment the base scheme with “levels”: that is, we set up the scheme in such a way that
µ3

(i), generated using that algorithm, “knows” its own index i, i.e. it is an encryption of (m,µ1, µ2, i); we
call this index i a level. (This is possible to do since the algorithm to generate related transcripts is inherently
sequential, and in particular index i of each transcript is well defined.) Further, we let the fake randomness
r′ (generated by running RFake on (µ1, µ2, µ3

(i))) also “know” index i of the transcript which was used to
generate this r′. (We make sure that this number i is hidden from parties and the adversary, but programs still
have a way to learn it). With this in place, we can set up decryption algorithm such that any fake r′ associated
with some index i can be used to decrypt correctly transcripts with µ3

(j) where j > i, but cannot be used to
decrypt transcripts with µ3

(j) where j < i. We refer to this as “comparison-based decryption behavior”. As
we will show later, such a setup allows to design a scheme and prove its security. In particular, it avoids the
attack described before, where the adversary takes (fake) r and uses it to run RFake multiple times on related
transcripts in an attempt to “erase” an instruction for the challenge transcript.

As mentioned above, we then put [SW14] mechanism on top of this protocol to allow to generate consistent
fake randomness. Finally, we need to show security of the protocol while only relying on iO. This comes
with its own set of challenges. First, security argument in “oracle-access” setting relies a lot on the fact that
certain outputs of programs are hard to find, as long as corresponding inputs are hard to find. In contrast,
to make the same reasoning in iO setting we need to show that such inputs don’t exist (rather than being
hard to find). Second, it turns out that as part of our construction we have to build a special primitive
which somewhat resembles “deterministic order-revealing encryption”: concretely, no one should be able
to tell between Enc(0) and Enc(1), even given programs which homomorphically increment ciphertexts
(producing Enc(2),Enc(3) and so on up to some superpolynomial bound) and homomorphically compare
them. (Intuitively, homomorphic comparison is required to implement comparison-based decryption behavior;
we give more details in section 2).

This concludes the brief overview of our scheme. For a more detailed explanation of challenges and techniques
we refer the reader to section 2. An impatient reader can directly look up the description of programs on fig.
2, fig. 3 in the introduction, or read the construction in the body of the paper (section 6, fig. 79, fig. 80).

Organization. The rest of the paper is organized as follows. In section 2 we give an informal yet almost
complete description of the scheme, starting with the base scheme and then augmenting it with levels. We
also outline main steps of the proof, and explain the challenges coming from the use of indistinguishability
obfuscation.

Next we proceed with a formal presentation. In sections 3 and 4 we formally define deniability and other
required primitives. In section 5 we define and build the level system - an important building block in our
scheme. The scheme itself is described in section 6. Next in section 7 we list the hybrids and reductions for
the proof of bideniability, and then in section 8 explain what changes to the main proof are required to prove
off-the-record deniability.

2 Informal overview of our scheme

In this section we give informal yet almost complete overview of the scheme. We start by explaining that
the scheme should decrypt related transcripts according to a certain comparison-based logic in section 2.1.
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Next in section 2.2 we design the scheme such that decryption algorithm has necessary information to follow
this logic on sequentially-generated related transcripts (and at the same time we make sure that the scheme
doesn’t allow to generate related transcripts in any other way). Finally in section 2.3 we describe the changes
to the scheme due to the use of indistinguishability obfuscation.

2.1 Decryption behavior on related transcripts

In order to understand how to set decryption behavior for our 3-message scheme, it is instructive to recall
why receiver-deniable encryption cannot exist in two messages.

Impossibility result of the 2-message case ([BNNO11]), and related transcripts. [BNNO11] show that
any 2-message receiver-deniable encryption scheme, even for a single-bit plaintext, can be used to deniably
send any polynomial number of plaintexts, simply by reusing the first message (pk) and sending multiple
second messages c1, . . . , cN (where N is an arbitrary polynomial); they show that all these ciphertexts can
be faked simultaneously using a single fake decryption key. This in turn implies that any string can be
compressed beyond information-theoretic bound. This compression is done as follows. The protocol to
compress any random string b1, . . . , bN from N bits (where N is an arbitrary number larger than |sk|) to |sk|
bits is the following: first, ahead of time prepare N encryptions of 0 - let us call them c1, . . . , cN - under
the same pk. (Note that these ciphertexts do not depend on the string to be compressed and thus can be
thought of as public parameters of the compression protocol.) Then, to compress b1, . . . , bN , compute fake
sk(N) by mapping each ci to bi, that is, compute sk(1) ← RFake(sk, c1, b1), sk(2) ← RFake(sk(1), c2, b2),
. . . , sk(N) ← RFake(sk(N−1), cN , bN ). The string sk(N) is a compressed description of b1, . . . , bN , since it
is shorter than N and since the original string can be recovered by decrypting each bi as Dec(sk(N), ci). 10

An important property of the 2-message scheme which allows this proof to go through (concretely, to reduce
single-bit deniability to multi-bit deniability) is that given some transcript tr1 = (pk, c1), it is easy to compute
another transcript which is consistent with the same receiver randomness r and contains a possibly different
plaintext. Indeed, it is easy to compute another transcript tr2 = (pk, c2) simply by reusing pk and encrypting
any plaintext of one’s choice under fresh encryption randomness. Further, note that transcripts generated this
way are “symmetric” - meaning that not only it is easy to compute tr2 from tr1, but it is also easy to compute
(the right distribution of) tr1 from tr2. Next, note that it is possible to generate polynomially many transcripts
this way, which encrypt arbitrary plaintexts of one’s choice. Finally and most importantly, from the point of
view of sk all these transcripts could be transcripts in an honest execution of the protocol, and therefore sk
has to “work” on each of them: that is, it has to decrypt them correctly, it has to produce valid fake key on
them, and so on. We call such transcripts related.

Similarly, in the 3-message case, given some transcript tr(s∗, r∗,m) for randomly chosen sender and receiver
coins s∗, r∗, one can consider a set of related transcripts, i.e. transcripts on which r∗ also has to “work”. For
instance, transcripts of the form tr(s′, r∗,m′), wherem′ is arbitrary and s′ is random, could be themselves the
result of the honest execution of the protocol, and therefore such transcripts are related transcripts. Similarly,
transcripts where s′ is not random but is indistinguishable from random are also related.

10Since any bideniable encryption is also receiver-deniable, this impossibility of 2-message receiver-deniable encryption immedi-
ately implies impossibility of 2-message bideniable encryption as well.
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We say that a scheme allows to construct related transcripts, if, given tr(s∗, r∗,m) but not r∗, it is possible
to compute related transcripts in polynomial time.This property is important because by indistinguishability
of real and fake randomness, fake receiver randomness also has to work on related transcripts - at least on
those which can be computed from a challenge transcript11. Intuitively, this imposes too many requirements
on the scheme, leading to impossibility in the 2-message case and requiring special decryption logic in
the 3-message case. Let us first analyze what goes wrong in the 2-message case, in what is essentially a
reformulation of the intuition behind the proof of [BNNO11]:

It is helpful to view fake r′ (produced by running RFake on some transcript tr1, plaintext m′1 and real r) as
having “memory” where RFake records the mapping tr1 → m′1

12. However, what happens if we run RFake
on already-fake r′ and some tr2,m

′
2? Since r′ already remembers a mapping tr1 → m′1, and RFake now

asks it to remember another mapping tr2 → m′2, it is not clear what should happen. Intuitively, there are 3
possible ways of how the scheme could handle this: remember both mappings, or only the last one, or abort:

• Option 1: RFake outputs ⊥ (or any other value which is not a “valid” fake randomness, i.e. which
doesn’t remember the last mapping tr2 → m′2 and therefore doesn’t decrypt tr2 to m′2). In other words,
the scheme only allows to run RFake once. Such behavior immediately leads to an attack: assume
the adversary is given tr1 and fake receiver randomness r′ as a challenge. It can compute tr2 and run
RFake on it. If r′ randomness was real, then RFake would work and output randomness which decrypts
tr2 to m′2; if this doesn’t happen when r′ is already fake, then this can be used to distinguish between
real and fake r′.

Note that for this argument it is crucial that given tr1, it is easy to compute tr2.

• Option 2: RFake “forgets” the previous mapping, i.e. outputs fake randomness which only memorizes
the new mapping tr2 → m′2 (but not the old mapping tr1 → m′1)13. Such behavior leads to an
attack: assume the adversary is given tr1 and fake receiver randomness r′ (which maps tr1 to m′1) as a
challenge. It can compute tr2 and run RFake on r′ and tr2, and use the resulting randomness (which
doesn’t remember the mapping tr1 → m′1 anymore) to decrypt tr1 honestly and learn the true plaintext
of tr1.

Note that decrypting tr1 should indeed result in the true plaintext (as opposed to aborting, for example).
Indeed, if r′ was real randomness of tr1, then the adversary could compute fake randomness with
respect to tr2, which should still decrypt tr1 correctly (otherwise, if randomness fake with respect to tr2

decrypts tr1 incorrectly, then it is possible to win deniability game when tr2 is a challenge transcript -
as long as tr1 can be computed from tr2). Therefore the same should hold if r′ is already fake with
respect to tr1.

Note that for this argument it is crucial that tr1 can be computed from tr2, and tr2 can be computed
from tr1.

• Option 3: RFake “appends” the new mapping to all previous ones, i.e. outputs fake randomness which
11Requirement that r∗ shouldn’t be used when computing related transcripts comes from the fact that in deniability game the

adversary doesn’t necessarily get real randomness r∗ and has to generate related transcripts without it. Also, note that with r∗ related
transcripts would be always easy to find simply by computing tr(s′, r∗,m′) for random s′ and any m′; for this reason, when we talk
about finding related transcripts, we always implicitly assume that r∗ shouldn’t be used.

12The proof of [BNNO11] essentially shows that in any 2-message scheme r′ has to memorize this mapping, explicitly or
implicitly.

13 Note that we consider remembering only 1 mapping for simplicity. This argument can be easily extended to the case when
randomness can remember some fixed polynomial number of mappings.
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memorizes both mappings tr2 → m′2, tr1 → m′1. Then by repeating the process more than |r| times
we can force r to remember more than |r| mappings, which is information-theoretically impossible.

Summarizing this discussion, the following properties make a scheme insecure:

1. Assume a scheme allows to construct multiple (more than |r|) related transcripts tr1, tr2, . . ., for
possibly different plaintexts m1,m2, . . .;

2. further, assume that the procedure to construct them is “symmetric” - that is, if trj can be constructed
using tri, then (the correct distribution of) tri can also be constructed using trj ;

then this scheme - even if it is interactive - is subject to the same impossibility result as in [BNNO11].

Comparison-based decryption behavior. As we explain in more detail in section 2.2, any 3-message
bideniable scheme allows to construct related transcripts; however, the algorithm to generate them is not
“symmetric”. That is, this algorithm allows to generate tr1 → tr2 → tr3 → . . . but only in a sequential
way: it is easy to compute them “forward”, but in general it could be hard, given trj , to generate (the correct
distribution of) tri where i < j - i.e. hard to compute them “backward”.

To understand how the scheme should behave on related transcripts in the 3-message case, let’s reconsider
options 1 - 3 mentioned above, keeping in mind that related transcripts are easy to compute forward but hard
to compute backward, i.e. that trj is easy to build from tri if and only i < j.

Let r′ be fake with respect to tri, and assume RFake is run on already-fake r′ and a different transcript trj .
Then:

• Option 1 (RFake gives invalid output, e.g. ⊥) is still insecure for j > i, but possible for j < i.

• Option 2 (new fake randomness only remembers the last mapping and forgets the previous one) is now
possible, but only as long as decrypting “backwards”, i.e. using r′ to decrypt transcripts trj for j < i,
outputs ⊥; otherwise this option has the same issue as in 2-round case. (In contrast, note that r′ should
decrypt “forward”, i.e. trj for j > i, correctly, since this is what r′ would do if it was real).

• Option 3 (new fake randomness remembers all previous mappings and the new one) is still information-
theoretically impossible.

These options tell us that the scheme should exhibit a different behavior depending on whether r′ is used
“forward” or “backward” (i.e. if it is used to decrypt/fake trj for j > i or j < i). Perhaps the most natural logic
consistent with options described above is to do everything correctly “forward”, but output ⊥ “backward”,
that is:

1. When j > i, r′ should decrypt trj correctly, and RFake(r′, trj ,m
′
j) should output new fake randomness

which only remembers trj → m′j (but not the previous mapping with tri);

2. When j < i, both Dec and RFake on inputs r′, trj should output ⊥;

However, we elect to change this logic slightly in order to make deniability of the receiver public, meaning
that RFake(tr,m) doesn’t take receiver randomness as input. Indeed, note that the previous mapping is
discarded by RFake anyway and thus RFake can work without knowledge of receiver randomness. Thus in
our scheme we adopt the following comparison-based decryption behavior, slightly different from the one
described above:
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1. When j > i, Dec on inputs r′, trj should decrypt trj correctly;

2. When j < i, Dec on inputs r′, trj should output ⊥;

3. For all j RFake(trj ,m
′
j) outputs fake randomness which remembers trj → m′j .

It remains to mention that by definition of related transcripts, the original, truly random r∗ should decrypt
each one of them correctly. This concludes the description of the logic which we incorporate into programs
Dec and RFake.

In the next section we design a scheme which only allows to compute related transcripts sequentially, and
where Dec has all necessary information in order to decide if it should decrypt honestly or output⊥, according
to the rule above.

2.2 Description of the scheme for the case when programs are given as oracles

Notation. Before proceeding further, we fix some notation. We denote by s and r variables corresponding
to randomness of the sender and the receiver, respectively, and µ1, µ2, µ3 denote the three messages of the
protocol. P1,P2,P3,Dec,SFake,RFake are the programs of the deniable encryption. More specifically:

P1(s,m) takes as input sender randomness s and plaintextm and outputs the first message µ1. P2(r, µ1) takes
as input receiver randomness r and first message µ1 and outputs the second message µ2. P3(s,m, µ1, µ2)
takes as input sender randomness s, plaintext m, and protocol messages µ1, µ2 and outputs the last message
µ3. Dec(r, µ1, µ2, µ3) takes as input receiver randomness r and protocol messages µ1, µ2, µ3 and outputs
the plaintext m. SFake(s,m, m̂, µ1, µ2, µ3) takes as input sender randomness s, true plaintext m, new (fake)
plaintext m̂, and protocol messages µ1, µ2, µ3 and outputs fake randomness s′ which makes µ1, µ2, µ3

look consistent with m̂. RFake(m̂, µ1, µ2, µ3) takes as input new (fake) plaintext m̂ and protocol messages
µ1, µ2, µ3 and outputs fake randomness r′ which makes µ1, µ2, µ3 look consistent with m̂ (note that receiver-
deniability is public, that is, anyone can create fake r′ since the knowledge of true r is not required to run
RFake).

The base scheme. We start with the base scheme where the goal is to make sure that related transcripts
are hard to compute, unless a certain algorithm is used.

Programs of the scheme are presented on fig. 1. Programs P1,P2,P3 normally output messages µ1, µ2, µ3

computed as µ1 = PRF(s,m), µ2 = PRF(r, µ1), µ3 = EncK(m,µ1, µ2)14. Here Enc is a deterministic
encryption scheme, and its key K is hardwired inside programs P3 and Dec. (All keys involved in the
construction are only known to the programs, but not known to parties.) Program Dec(r, µ1, µ2, µ3) can
verify that PRF(r, µ1) = µ2 and then decrypt µ3 and output m.

In addition, programs P1,P2,P3,Dec have a “hidden trigger” mechanism ([SW14]) which allows to create
fake, but random-looking s and r with a certain value encrypted inside (which can be read by the programs).
Such fake s and r are encryptions under keys KS ,KR of an instruction for the program - e.g. s which is an
encryption of (µ1,m) tells program P1 to output µ1 on input m. The encryption scheme used should have
pseudorandom ciphertexts; since its keys KS ,KR are hidden inside the programs, to an external observer

14Note that s,m (and r, µ1) are both inputs to the PRF, not keys; we omit PRF keys in order to not overload the notation.
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Programs of the base scheme.
Program P1(s,m)

1. Trapdoor step: if DecKS (s) = (m′, µ1
′, µ2

′, µ3
′) and m′ = m, then return µ1

′ //if s is fake and
encodes m, output encoded µ1

′

2. Main step: Return µ1 ← PRF(s,m). //otherwise output PRF(s,m)

Program P2(r, µ1)
1. Trapdoor step: if DecKR(r) = (m′, µ1

′, µ2
′, µ3

′) and µ1
′ = µ1, then return µ2

′. //if r is fake and
encodes µ1, output encoded µ2

′

2. Normal step: else return PRF(r, µ1). //otherwise output PRF(r, µ1)

Program P3(s,m, µ1, µ2)
1. Validity check: if P1(s,m) 6= µ1, then abort;
2. Trapdoor step: if DecKS (s) = (m′, µ1

′, µ2
′, µ3

′) and (m′, µ1
′, µ2

′) = (m,µ1, µ2), then return µ3
′.

//if s is fake and encodes correct (m,µ1, µ2), output encoded µ3
′

3. Normal step: else return EncK(m,µ1, µ2).//otherwise encrypt m

Program Dec(r, µ1, µ2, µ3)
1. Validity check: if P2(r, µ1) 6= µ2, then abort;
2. Trapdoor step: if DecKR(r) = (m′, µ1

′, µ2
′, µ3

′) and (µ1
′, µ2

′, µ3
′) = (µ1, µ2, µ3), then return m′.

//if r is fake and encodes correct (µ1, µ2, µ3), output encoded m′

3. Normal step: else decrypt (m′′, µ1
′′, µ2

′′)← DecK(µ3). If (µ1
′′, µ2

′′ = µ1, µ2) then output m′′, else
abort. //otherwise decrypt honestly

Program SFake(s,m, m̂, µ1, µ2, µ3; ρS)
1. Validity check: if P1(s,m) 6= µ1, then abort;
2. Normal step: else return EncKS (m̂, µ1, µ2, µ3, ρS) // output fake s with fake plaintext and the tran-

script inside.
Program RFake(m̂, µ1, µ2, µ3; ρR)

1. Normal step: return EncKR(m̂, µ1, µ2, µ3, ρR) // output fake r with fake plaintext and the transcript
inside

Figure 1: Programs of the base scheme (note that this scheme is not secure yet and will be augmented later).
Programs P1,P2,P3,Dec are deterministic (we treat s, r as part of the normal input, even though they are
randomly chosen, since they are reused across different programs). Programs SFake, RFake are randomized.

such fake randomness looks like a uniformly chosen string. The sender and the receiver can compute such
fake randomness by running SFake and RFake.

In addition, program P3, before producing the output, performs a validity check which aims to make sure
that µ3 which it will output corresponds to the same plaintext as µ1. It does so by verifying that input s
is a correct preimage of µ1 with respect to m under program P1 (possibly fake). Similarly the decryption
program Dec only gives the output if randomness r is a consistent (possibly fake) preimage for the second
message µ2 under P2.

Communication in this protocol consists of µ1 = PRF(s,m), µ2 = PRF(r, µ1), and µ3 = EncK(m,µ1, µ2).
If the sender and receiver want to claim they transmitted m̂ instead, they can use SFake, RFake to compute
fake s′ and r′, which are random-looking strings with (m̂, µ1, µ2, µ3, ρ) hardwired inside (ρ is just for
randomizing, and is ignored by the programs). In particular, if the adversary tries to decrypt the transcript
µ1, µ2, µ3 with fake r′ = EncKR(m̂, µ1, µ2, µ3, ρR), it will get m̂ as a result (via trapdoor step of the
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decryption program). Similarly, other programs, given fake s′ or r′ as input, use trapdoor step as well, making
the transcript look consistent with m̂.

Note that the current scheme at the very least guarantees consistent input-output behavior of programs on
fake randomness s′, r′.

How the base scheme protects from related transcripts. Recall that in previous subsection we wanted
related transcripts to be hard to find: i.e. given tr∗ = (µ1

∗, µ2
∗, µ3

∗) = tr(s∗, r∗,m), it should be hard to
come up with another transcript tr = (µ1, µ2, µ3) = tr(s, r∗,m′) for the same r∗.

The base scheme partially prohibits computing related transcripts. Indeed, let’s divide all related transcripts
into two groups: transcripts with with µ1 = µ1

∗ (and therefore µ2 = µ2
∗, since µ2 only depends on µ1

and r∗), and transcripts with µ1 6= µ1
∗ (and therefore, in general, µ2 6= µ2

∗). We describe how the above
construction deals with each case:

Case µ1 6= µ1
∗: Finding such a transcript (in particular, µ2) requires coming up with µ2 = P2(r∗, µ1)

without knowing r∗, which is hard due to the fact that P2 computes a PRF.

Case µ1 = µ1
∗: Unlike the previous case, related transcripts with µ1 = µ1

∗ also have µ2 = µ2
∗, and thus

one can always reuse µ2 = µ2
∗ in such a transcript. However, to compute the transcript of this form, it still

remains to compute µ3, such that µ1
∗, µ2

∗, µ3 is a valid transcript with respect to r∗.

Recall that µ3 is an encryption under a hidden key K and therefore can be only computed by running the
corresponding program, P3. Further, recall that there is a validity check in P3 which guarantees that the
program produces the output only if we give it a consistent s for µ1 (by checking that P1(s,m) = µ1).
Finally, note that P1(s,m) = µ1 can be satisfied in one of the two ways: either s is indeed a correct PRF
preimage of µ1, or s is fake and contains µ1. Thus, if we wish to compute a different µ3 6= µ3

∗ (potentially
for a different plaintext m′) for the same µ1

∗, µ2
∗, we need to give P3 as input some string s′ such that:

• either s′ is a valid PRF preimage (that is, PRF(s′,m′) = µ1
∗);

• or s′ is fake randomness containing m′, µ1
∗.

Intuitively, finding a valid PRF preimage is hard since the key of the PRF is hidden inside the program. Note
however that finding fake s′ with m′, µ1

∗ inside is very easy - in fact, SFake will readily output such s′!
However, note that finding such s′ cannot be done without running SFake (again, since the key KS is hidden
inside the programs).

To summarize this part, we now have a scheme which doesn’t allow to compute related transcripts but only
as long as SFake is not used to find them. Needless to say, SFake is readily available to the adversary, and
therefore the current scheme does allow to construct related transcripts (and is not secure yet). However, as
we see next, executing SFake only allows to compute related transcripts in inherently sequential way, and
therefore we can make the scheme secure by implement the comparison-based decryption logic which we
discussed in the previous subsection.

Computing related transcripts using SFake. Assume the adversary is given the challenge transcript
tr∗ = (µ1

∗, µ2
∗, µ3

∗), randomness s∗, r∗ which can be real or fake, and plaintext m∗ (which this transcript is
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claimed to encrypt). We now explain how to compute related transcripts tr1, tr2, and so on, using tr∗ and
s∗15. Each related transcript tri will be of the form (µ1

∗, µ2
∗, µ3

(i)).

The idea is to force P3 to output a different µ3
(1) by giving it randomness s1 which passes validity check

with respect to µ1
∗,m1 (where m1 is an arbitrary plaintext, possibly different from the plaintext m∗ of tr∗).

This can be done by using SFake to generate fake s1 which contains m1, µ1
∗. However, if we just compute

s1 by running SFake on s∗, tr∗, and m1, it won’t do us any good: while s1 generated this way passes validity
check, it will make P3 simply output hardwired µ3

∗ and thus we won’t get a new third message. The idea is
to get fake s1 which contains m1, µ1

∗, but different µ̃2 6= µ2
∗, which can be done as follows:

1. Compute an auxiliary transcript t̃r = (µ1
∗, µ̃2, µ̃3) with the same first message µ1

∗, but different
second message µ̃2 by choosing fresh randomness r̃ of the receiver and setting t̃r ← tr(s∗, r̃,m∗).
Note that the first message of this transcript is P1(s∗,m∗) = µ1

∗.

2. Compute s1 ← SFake(s∗,m∗,m1, µ1
∗, µ̃2, µ̃3). Note that s1 is fake randomness which remembers

m1, µ1
∗ but different µ̃2 6= µ2

∗.

3. Compute µ3
(1) ← P3(s1,m1, µ1

∗, µ2
∗). Set tr1 = (µ1

∗, µ2
∗, µ3

(1)). Note that µ1
∗ = P1(s1,m1)

and therefore tr1 = tr(s1, r
∗,m1); it follows from sender-deniability that s1 is indistinguishable from

random, and therefore tr1 is a related transcript.

An important thing to note is that program P3 can detect when it is being used to produce related transcripts
the way described above. Indeed, in this case the input to program P3, (s,m, µ1, µ2), is such that s is fake
and contains m,µ1, but some different µ̃2 6= µ2; we will refer to this case as mixed case. Further, we claim
that the procedure above (or its variations, e.g. repeating SFake several times) is the only way to compute
related transcripts in our scheme - which means that P3 can always detect when it is computing related
transcript. Intuitively, this is because the only way to compute valid third message is to run P3, which in turn
requires some s which passes validity check, which in turn requires fake s with m1 and µ1

∗ inside (recall
that it is hard to find a PRF preimage of µ1

∗), which in turn requires to run RFake on some (not necessarily
valid) transcript with the same µ1

∗ but different µ̃2 6= µ2
∗ - which can be detected by P3.

Note that this procedure can then be repeated (this time starting from s1 instead of s∗) to generate s2 and
corresponding tr2, s3 and tr3 and so on16.

For our scheme this means that the adversary can generate many third messages of the form
EncK(mi, µ1

∗, µ2
∗). Note that, just like with ciphertexts in the 2-message scheme, these third messages are

“symmetric” and therefore our base scheme is insecure because of the same reasons as 2-message schemes.
(In fact, the base scheme is badly broken because of a simpler reason: the adversary can test whether tr∗

encrypts m1 or not simply by checking whether µ3
∗ = µ3

(1) or not. However, the latter issue could be easily
fixed, while the former is substantial.)

Next we are going to change the scheme so that the procedure above indeed generates transcripts in “one-way”
manner - such that they are hard to compute backwards - and allows program Dec to decrypt according to
comparison-based rule discussed before.

15Recall that previously we required that related transcripts are hard to find given only the transcript tr∗, and now we additionally
allow to use (real or fake) s∗ in order to generate them. The reason is that in many cases everything we said above about impossibility
of all three options can be extended to the case where related transcripts are generated using s∗ and tr∗ (as opposed to just tr∗).

16One can show, by a reduction to sender-deniability, that this procedure generates related transcripts in any 3-message scheme.
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Augmenting the scheme with levels. First we briefly describe the idea. Recall that according to
comparison-based logic program Dec should correctly decrypt forward, i.e. for j > i it should correctly
decrypt trj using ri (which is fake with respect to tri), but if i < j it should output bot. To let program Dec
decide whether i < j or not (and therefore whether it should decrypt correctly or output ⊥), we modify the
base scheme such that both the transcript and fake randomness know their index, which we call a level: that
is, we change the third message µ3 of the transcript trj to be an encryption of (m,µ1, µ2, j), and we let fake
r′ = RFake(tri,m

′
i) remember not only the mapping tri → m′i, but also i (this can be achieved by making

RFake decrypt the third message of tri and write its level into memory of r′). Then program Dec can decrypt
both µ3 and r′, compare their levels i and j and make a decision whether to decrypt honestly or output ⊥.

It remains to describe how to make sure that µ3 encrypts the correct level i (i.e. which indeed corresponds to
the index of its transcript in the chain of related transcripts). In other words, why does program P3 know
that now it is producing the message belonging to the transcript number i? Indeed, this program needs to
somehow learn i from its inputs s,m, µ1, µ2. Recall that the algorithm to compute related transcript trj in
fact does so by running this program on fake s which was faked j times. If we change the format of fake s to
additionally encrypt a number representing how may times SFake was executed to produce this s, then the
program for the third message can learn this number from s and copy it into µ3.

More concretely, we are going to do the following changes to the base scheme: first, we change the format of
fake randomness. Recall that in the base scheme fake randomness was an encryption of (m,µ1, µ2, µ3, ρ)
under the corresponding key (KS or KR). In the augmented scheme we set fake randomness to be an
encryption of (m,µ1, µ2, µ3, `) for sender randomness and (m,µ1, µ2, µ3, `, ρ) for receiver randomness,
where ` is a number between 0 and some superpolynomial upper bound T , which we call a level. Further, we
let the third message also contain a level, i.e. be EncK(m,µ1, µ2, `); in the honest execution the level of the
transcript is always set to 0.

Below we outline required modifications to the programs. The programs themselves can be found in fig. 2
(programs of the sender) and fig. 3 (programs of the receiver).

• Program SFake now additionally increments the level. That is, if it is given real s as input, it treats it as
having level 0 and outputs fake randomness with ` = 1. If it gets already fake randomness with some
level `, it outputs fake randomness with level ` + 1 (unless the upper bound T is reached, in which
case it aborts). Note that this modification makes SFake “one-way”, since it is hard, given fake s with
level `, to compute fake s with level smaller than `.

Recall that SFake in the base scheme was randomized; in the final scheme we make it deterministic:
since incremented level guarantees that fake s changes with each application of SFake, there is no need
for randomization anymore.

• Program P3 now additionally encrypts a level, i.e. it outputs EncK(m,µ1, µ2, 0) in the main step
(where 0 is a level). Further, program P3 now has a “mixed input” step where it checks that s is fake
and contains the same m,µ1 as the input, but some other µ2 (recall that this condition was a warning
that P3 is being used to compute a related transcript). In this case it outputs EncK(m,µ1, µ2, i), where
i is a level in fake s. This guarantees that related transcript tri, computed using the procedure described
above, will have its index i encrypted in its third message µ3

(i).

• Program RFake now also copies the level from µ3 into the fake randomness.

• Program Dec now also has “mixed input” step, which happens when fake r contains the same µ1, µ2 as
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Programs P1,P3,SFake.
Program P1(s,m)

1. Trapdoor step:
(a) out← DecKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′; //if s is fake and encodes m, output encoded µ1
′

2. Main step:
(a) Return µ1 ← PRFkS (s,m). //otherwise output PRF(s,m)

Program P3(s,m, µ1, µ2)
1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← DecKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′; //if s is fake and encodes correct (m,µ1, µ2), output

encoded µ3
′

3. Mixed input step: If m,µ1 = m′, µ1
′ but µ2 6= µ2

′ then return µ3 ← EncK(m,µ1, µ2, `
′); //if s is

fake and encodes correct (m,µ1) but incorrect µ2
′, encrypt m with level copied from s

4. Main step:
(a) Return µ3 ← EncK(m,µ1, µ2, 0). //otherwise encrypt m with level 0

Program SFake(s,m, m̂, µ1, µ2, µ3)
1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← DecKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. If ` ≥ T then abort;
ii. Return EncKS (m̂, µ1, µ2, µ3, `+ 1). //if input s is already fake then output new fake s with

fake plaintext, the transcript, and incremented level
3. Main step:

(a) Return EncKS (m̂, µ1, µ2, µ3, 1). //otherwise output fake s with fake plaintext, the transcript, and
level 1

Figure 2: Programs P1,P3, SFake.
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Programs P2,Dec,RFake.
Program P2(r, µ1)

1. Trapdoor step:
(a) out← DecKR(r); if out = ′fail′ then goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, L′, ρ̂);
(b) If µ1 = µ1

′ then return µ2
′; //if r is fake and encodes µ1, output encoded µ2

′

2. Main step:
(a) Return µ2 ← PRFkR(r, µ1). //otherwise output PRF(r, µ1)

Program Dec(r, µ1, µ2, µ3)
1. Validity check: if P2(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) out← DecKR(r); if out′ = ′fail′ then goto main step; else parse out′ as (m′, µ1
′, µ2

′, µ3
′, `′, ρ̂);

(b) if µ1, µ2, µ3 = µ1
′, µ2

′, µ3
′ then return m′; //if r is fake and encodes correct (µ1, µ2, µ3), output

encoded m′

(c) out← DecK(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1
′′, µ2

′′, `′′);
3. Mixed input step: If µ1, µ2 = µ1

′, µ2
′ but µ3 6= µ3

′ then
(a) If (µ1

′, µ2
′) = (µ1

′′, µ2
′′) and `′ < `′′ then return m′′; //if r is fake and encodes correct (µ1, µ2)

but incorrect µ3
′, decrypt honestly or abort, depending on whether the level in r is smaller than in

µ3 or not
(b) Else abort.

4. Main step:
(a) out← DecK(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1

′′, µ2
′′, `′′);

(b) If (µ1, µ2) = (µ1
′′, µ2

′′) then return m′′; //otherwise decrypt honestly
(c) Else abort.

Program RFake(m̂, µ1, µ2, µ3; ρ)
1. out← DecK(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1

′′, µ2
′′, `′′);

2. Return r′ ← EncKR(m̂, µ1, µ2, µ3, `
′′, prg(ρ)). // output fake r with fake plaintext, the transcript, and

the level copied from µ3

Figure 3: Programs P2,Dec,RFake.
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in its input, but some different µ3. This condition indicates that Dec is being used to test the behavior
of the scheme on related transcripts - i.e. that some fake ri (fake with respect to transcript tri) is used to
decrypt trj . In this case Dec follows the comparison-based decryption logic we described above: that
is, it learns the level i of receiver randomness and the level j of the transcript, and decrypts honestly
when i < j or outputs ⊥ otherwise.

This concludes the description of our scheme in the model where parties only have oracle access to the
programs. It remains to explain why the resulting scheme indeed doesn’t allow to compute related transcripts
backwards. Roughly, this is because computing the third message can only be done by running P3 on fake s,
but computing fake s is possible only in one direction: that is, one can repeatedly apply SFake to generate
fake s with higher and higher levels, but given some fake s with level i, it is hard to find any fake s with
levels below i17.

Summary. To summarize, we designed the scheme in such a way that related transcripts are hard to
compute unless SFake-based procedure is used. Further, we added a counter called “level” into fake s and
transcripts in such a way that related transcripts tr1, tr2, . . . carry their index 1, 2, . . . inside them. Finally, we
let fake r remember the index of the transcript which was used to generate that r. If the adversary decides to
play with related transcripts - e.g. take randomness r′ (fake with respect to tri) and decrypt trj using r′ - the
decryption algorithm can compare i and j and make the decision whether to decrypt or abort.

Finally, recall that the comparison-based logic of the decryption program was designed in such a way that
fake r, on one hand, doesn’t remember too much to violate the information-theoretic bound, and on the other
hand, doesn’t decrypt too much to reveal the true plaintext of the challenge transcript. Such logic is possible
in the 3-message case as long as related transcripts cannot be computed “backward” (e.g. tr1 cannot be
computed from tr2). Our scheme forces this property by making sure that tri can only be computed using
i-times-fake s, and that given i-times-fake s it is hard to compute the right distribution of i− 1-times-fake s.
The latter is due to the fact that SFake increments the counter of how many times s was faked, all the way to
some unreachable in polynomial time bound T .

Finally, let us describe how the programs behave in the normal execution, on fake randomness, and when the
adversary generates related transcripts:

• Normal execution of the protocol: executing programs on randomly chosen s∗, r∗ and plaintext m∗0
makes programs execute the main step and output µ1

∗ = PRF(s∗,m∗0), µ2
∗ = PRF(r∗, µ1

∗), and
µ3
∗ = EncK(m∗0, µ1

∗, µ2
∗, 0); Dec, given the resulting transcript as input, outputs m∗0 via main step.

• Fake randomness of parties: executing programs on fake s′ (which encodes (m∗1, µ1
∗, µ2

∗, µ3
∗, 1)),

fake r′ (which encodes (m∗1, µ1
∗, µ2

∗, µ3
∗, 0)), and m∗1 makes programs execute trapdoor step, which

tells them to output a hardwired value and abort. Thus, P1 will output µ1
∗, P2 will output µ2

∗, P3
will output µ3

∗, and Dec will output m∗1 via trapdoor step, making the transcript for plaintext m∗0 look
consistent with m∗1.

17Formally speaking, the procedure to generate related transcripts actually allows to generate a tree of transcripts, not just a chain.
This is because the procedure can be repeated several times (with different r̃), starting with the same level-0 transcript, to obtain
several level-1 transcripts, and then each level-1 transcript can produce several level-2 transcripts, and so on. However, randomness
and transcripts from different branches don’t have to “work” together (e.g. Dec can output ⊥), and the comparison-based decryption
should hold only on each separate branch of the tree of any polynomial length.
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• Efficiently computable related transcripts: it is only possible to compute related transcripts of the
form (µ1

∗, µ2
∗, µ3), where µ3 = EncK(m,µ1

∗, µ2
∗, `), ` ≥ 1; moreover, the only way of doing so is

to follow the procedure described above (which includes running SFake). Trying to compute µ3 for
such transcript will make program P3 execute “mixed input step”, making sure that such µ3 indeed
receives level ` ≥ 1; for this mechanics it is important that SFake increments the level inside s. Trying
to decrypt such related transcript (µ1

∗, µ2
∗, µ3) will make program Dec execute “mixed input step”,

making sure that the correct decryption behavior is observed (that fake r decrypts correctly transcripts
with larger level, but refuses to decrypt transcripts with smaller level); for this mechanics it is important
that RFake copies the level from the transcript to r.

Security proof when programs are given as oracles. Since the proof even in this simpler model is
somewhat lengthy, we only outline main steps and give the intuition for why each step holds. The proof
proceeds in 4 main steps. We start with a real execution corresponding to plaintext m∗0, where the adversary
receives real randomness s∗, r∗. The proof proceeds as follows:

• Step 1. Instead of giving the adversary real s∗, we give it s′ = EncKS (m∗0, µ1
∗, µ2

∗, µ3
∗, ` = 0) (note

that this s′ contains level 0, unlike fake randomness produced by SFake which contains level at least 1).

Intuitively, the reason why we can switch from s∗ to s′ indistinguishably is because all programs treat
them in the same way. That is:

– either the programs output the same value, possibly using different parts of the program (e.g. P1
on input (s∗,m∗0) outputs µ1

∗ via main step and on input (s′,m∗0) it outputs µ1
∗ via trapdoor

step),

– or the programs execute the same code, possibly outputting different result (e.g. P1 on input
(s∗,m∗1) and (s′,m∗1) outputs a PRF of its input).

This observation, together with the fact that the ciphertext s′ is pseudorandom, allows us to change s∗

to s′, in a manner similar to the proof of deniable encryption of [SW14].

• Step 2. Instead of giving the adversary real r∗, we give it fake r′, i.e. r′ =
EncKR(m∗0, µ1

∗, µ2
∗, µ3

∗, ` = 0, ρR). The proof is analogous to the previous case - with the dif-
ference that there exist an input on which r∗ and r′ behave differently.

Indeed, recall that r∗ decrypts honestly all related transcripts, while r′ decrypts honestly only “forward”,
i.e. related transcripts with level ` ≥ 1. Thus, transcripts with level 0 are at risk of being treated
differently. Indeed, consider a transcript (µ1

∗, µ2
∗, µ3

∗), where µ3
∗ = EncK(m∗1, µ1

∗, µ2
∗, ` = 0) is

like µ3
∗ except that it encrypts the wrong plaintext m∗1. Such transcript is decrypted correctly to m∗1 by

r∗, but decrypting it with r′ returns ⊥ since comparison of levels fails.

This single transcript makes r∗ and r′ look different enough so that we cannot do the proof like in step
1. Therefore, we first move to a hybrid where this “differing” transcript doesn’t exist. This is done as
follows. First, since s∗ - the preimage of a PRF value µ1

∗ - is not part of the distribution anymore, we
can move µ1

∗ outside of the PRF image. Then we can argue that P3 never outputs µ3
∗:

– The main step cannot output µ3
∗, since the main step is executed only if validity check is passed

via a correct PRF preimage, which now doesn’t exist.
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– The mixed step cannot output µ3
∗. To make the mixed step output a ciphertext with level 0

(like µ3
∗), one has to give P3 as input randomness with level 0. However, it is hard to find such

randomness since SFake never outputs randomness with level 0.

– The trapdoor step can only output µ3
∗ if we give P3 fake randomness with µ3

∗ inside to begin
with. Since there are no other means of computing µ3

∗, such randomness is also hard to find and
therefore this step also doesn’t output µ3

∗.

Once the differing transcript (µ1
∗, µ2

∗, µ3
∗) is eliminated, we can switch r∗ to r′ similar to the previous

step.

• Step 3. The next step is to switch µ3
∗ from encrypting m∗0 to m∗1. This is done by “detaching” µ3

∗

from its key K in programs P3 and Dec. Concretely, note that:

– P3 can only output µ3
∗ via the trapdoor thread (which doesn’t use the key K). The reason is very

similar to the case-by-case analysis of P3 above: the main step requires the preimage of the PRF,
which doesn’t exist, and the mixed step requires sender randomness with level 0, which is hard to
find.

– Dec can only “decrypt” µ3
∗ via the trapdoor thread (which, again, doesn’t use K). To guarantee

this, we first move µ2
∗ outside of the image of the PRF (this is possible since r∗ is not part of the

distribution anymore). As a result, µ3
∗ is never decrypted via the main step because the preimage

for µ2
∗ doesn’t exist. Further, µ3

∗ cannot be decrypted in the mixed step either, because, due to
“forward decryption” rule, it requires receiver randomness with level smaller than level in µ3

∗ -
which doesn’t exist since µ3

∗ has the smallest possible level, 0.

In other words, neither P3 nor Dec need to use K to encrypt or decrypt µ3
∗. Therefore we can “detach”

K and µ3
∗ and change the plaintext to m∗1.

Note that the transcript now contains m∗1, and both randomness s′, r′ are consistent with m∗0. However,
the proof is not finished yet since parties cannot produce such s′ themselves (since it contains level 0
instead of 1).

• Step 4. The last step is to change the level inside s′ from 0 to 1, i.e. generate s′ =
EncKS (m∗0, µ1

∗, µ2
∗, µ3

∗, ` = 1). To understand the challenge of this step, it is instructive to take
a “level-centric” point of view: let’s forget that the scheme is about transmitting the plaintext, and
instead think about fake s as an encryption of level (0 or 1), think about µ3

∗ as an encryption of level 0,
and think about programs of deniable encryption as programs which allow homomorphic operations
on encrypted levels. For example, program SFake outputs fake randomness which is an encryption
of incremented level, thus providing homomorphic Increment operation. Program Dec compares
levels inside µ3 and r and based on that decides whether to decrypt or not, thus providing access to
homomorphic isLess function which tells (in the clear) if one level is smaller than the other.

In other words, step 4 essentially requires to switch s′ from encryption of 0 to encryption of 1, while
giving the adversary an access to homomorphic functions Increment and isLess18. In the oracle model
it can be easily shown that polynomially-bounded adversary cannot distinguish between Enc(0) and
Enc(1), even given access to isLess and Increment oracles, as long as the largest allowed level is
superpolynomial. Indeed, the adversary can only generate polynomially-many subsequent encryptions

18Recall that the adversary also has µ3
∗ which is an encryption of level 0. For simplicity, we ignore this fact in this high-level

overview.
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Enc(1),Enc(2), . . . or Enc(2),Enc(3), . . . (depending on whether the challenge ciphertext was Enc(0)
or Enc(1)) and compare them, but the result of comparison will be exactly the same in both cases.

This concludes the proof in the model where programs are given as oracles.

2.3 Changes to the construction and the proof when obfuscated code of programs is given.

There are two major changes:

ACE. First, instead of using symmetric-key encryption scheme for generating fake randomness of the
sender and the receiver (keys KS ,KR), as well as the main encryption scheme which is used to compute µ3

(key K), we are using special public key encryption scheme called asymmetric constrained encryption (ACE)
from of [CHJV14] (with keys EKS ,DKS ; EKR,DKR; EK,DK, respectively).

To understand why ACE is required, note that in many places of the security proof we used the fact that
the only way to obtain some value is to run a corresponding program on some inputs. If those inputs are
themselves provably hard to find, in the oracle setting it is usually easy to argue that outputs are hard to find
as well. Everything changes when parties have access to obfuscated programs, as opposed to just oracles.
First, such reasoning becomes more difficult because the keys are now fixed inside programs and therefore are
part of the distribution. Second, iO guarantees security only when two programs are identical, and therefore
in most cases it is not enough to show that some inputs are hard to find: we need to show they don’t exist.

ACE proved to be an indispensable tool in adapting our proof from the oracle-based setting to the iO-
based setting. At a high level, ACE is a deterministic, public-key encryption scheme with special security
requirements, which essentially allows to switch any ciphertext from “hard to find” to “doesn’t exist”. More
concretely, its security requirement says that, given punctured encryption key EK{m} (which outputs ⊥ on
attempt to encrypt m), nobody can distinguish between DK and DK{m} (which outputs ⊥ on attempt to
decrypt Enc(m), and besides that, doesn’t reveal Enc(m) itself). As an example, recall that program SFake
never encrypts level 0. Thus, we can puncture EKS at all strings ending with level 0, relying on iO. Next we
can puncture DKS at all such strings, relying on security of ACE. Now we are in a hybrid where fake sender
randomness with level 0 is non-existent, since punctured decryption key DK never decrypts to level 0. Next
in a similar manner we can puncture EK and then DK to argue that µ3

∗ is non-existent, like we did in step 2
in the proof in the oracle setting.

The level system. The second change is that instead of using plain numbers 0, . . . , T as levels, we use
what we call a level system. That is, we use encrypted numbers Enc(0), . . . ,Enc(T ) as levels, and, since
programs of deniable encryption should be able to increment and compare levels, we also provide obfuscated
programs which homomorphically increment and compare them. Security requirement of the level system
says that Enc(0) is indistinguishable from Enc(1) even given programs for homomorphic increment and
compare functions.19

19In our actual construction, to account for the fact that the adversary also has an encryption of level 0 (µ3
∗), we use two different

types of levels. Also, each level, in addition to encryption of a number, contains some auxiliary information which “ties” this level to
a particular transcript of the protocol. We also provide programs to sample level 0 and transform between different types of levels.
Actual security requirement is slightly more complicated that what we have stated in this introduction. However, those modifications
are mostly technical: the main ideas are as described.
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However, the proof of step 4 - that is, the proof of security of the level system - turns out to be quite involved
when programs for homomorphic increment and comparison are given. Roughly, our proof proceeds as
follows:

1. First we change Enc(0) to Enc(1) by changing the whole chain from Enc(0),Enc(1), . . . ,Enc(T )
to Enc(1),Enc(2), . . . ,Enc(T + 1). This is done in T big steps and therefore incurs security loss
proportional to T (recall that T has to be superpolynomial to make sure that the adversary cannot reach
the end).

2. The inadvertent result of the previous step is that in program Increment the upper bound is changed
from T to T + 1 (that is, if previously Increment returned ⊥ on inputs Enc(T ),Enc(T + 1) and so
on, now it returns ⊥ on inputs Enc(T + 1),Enc(T + 2) and so on). Recall that program Increment is
part of the code of SFake, and recall that in the proof of security of deniable encryption we need to
start and finish with exactly the same CRS, and therefore the same program Increment. Therefore we
need to change the upper bound in Increment back to T . This is done by arguing that it is hard for the
adversary to reach the end (i.e. find Enc(T )) - similar to how [BPR15] argue that the adversary cannot
reach the end of the line - and then using the properties of ACE and iO to change the upper bound back
to T .

3 Preliminaries

3.1 Indistinguishability Obfuscation for Circuits

Definition 1 (Indistinguishability Obfuscation (iO)). A uniform PPT machine iO is called an indistinguisha-
bility obfuscator if the following conditions are satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(1λ, C)] = 1

• There is a polynomial p such that for every circuit C ∈ Cλ, it holds that |iO(c)| ≤ p(|C|).

• For any (not necessarily uniform) PPT distinguisher D, there exists a negligible function α such that
the following holds: For all security parameters λ ∈ N, for all circuit families C0 = {C0

λ}λ∈N, C1 =
{C1

λ}λ∈N of size |C0
λ| = |C1

λ|, we have that if C0
λ(x) = C1

λ(x) for all inputs x, then

∣∣∣Pr
[
D(iO(1λ, C0

λ)) = 1
]
− Pr

[
D(iO(1λ, C1

λ)) = 1
]∣∣∣ ≤ negl(λ).

We say that indistinguishability obfuscation is (t(λ), ε(λ))-secure if the distinguishing advantage of all
distinguishers of size t(λ) is at most ε(λ).

3.2 Equivalence of iO and diO for programs differing on one point

In the proof of security of the level system we use the following lemma from [BPR15] (which is a special
case of theorem 6.2 from [BCP14], with exact parameters):
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Lemma 1. ([BPR15, BCP14]) Let iO be a (t, δ)-secure indistinguishability obfuscator for P/poly. There
exists a PPT oracle-aided extractor E, such that for any tO(1)-size distinguisher D, and two equal-size
circuits C0, C1 differing on exactly one input x∗, the following holds. Let C ′0, C

′
1 be padded versions

of C0, C1 of size s ≥ 3 · |C0|. If |Pr[D(iO(C ′0)) = 1] − Pr[D(iO(C ′1)) = 1]| = η ≥ δ(s)o(1), then
Pr[x∗ ← ED(·)(11/η, C0, C1)] ≥ 1− 2−Ω(s).

3.3 Puncturable Pseudorandom Functions and their variants

Puncturable PRFs. In puncrurable PRFs it is possible to create a key that is punctured at a set S of
polynomial size. A key k punctured at S (denoted k{S}) allows evaluating the PRF at all points not in S.
Furthermore, the function values at points in S remain pseudorandom even given k{S}.

Definition 2. A puncturable pseudorandom function family for input size n(λ) and output size m(λ) is a
tuple of algorithms {Sample,Puncture,Eval} such that the following properties hold:

• Functionality preserved under puncturing: For any PPT adversary A which outputs a set S ⊂
{0, 1}n, for any x 6∈ S,

Pr[Fk(x) = Fk{S}(x) : k ← Sample(1λ), k{S} ← Puncture(k, S)] = 1.

• Pseudorandomness at punctured points: For any PPT adversaries A1, A2, define a set S and state
state as (S, state)← A1(1λ). Then

Pr[A2(state, S, k{S}, Fk(S))]− Pr[A2(state, S, k{S}, U|S|·m(λ))] < negl(λ),

where Fk(S) denotes concatenated PRF values on inputs from S, i.e. Fk(S) = {Fk(xi) : xi ∈ S}.

The GGM PRF [GGM84] satisfies this definition.

Statistically injective puncturable PRFs. Such PRFs are injective with overwhelming probability over
the choice of a key. Sahai and Waters [SW14] show that if F is a puncturable PRF with arbitrary input
length n and output length m ≥ 2n+ λ, and h is 2-universal hash function, then F′k,h = Fk(x)⊕ h(x) is a
statistically injective puncturable PRF with probability 1− 2−λ over the choice of a key.

Extracting puncturable PRFs. Such PRFs have a property of a strong extractor: even when a full key is
known, the output of the PRF is statistically close to uniform, as long as there is enough min-entropy in the
input. Sahai and Waters [SW14] show that if the input has min-entropy at least m+ 2λ+ 2 (where m is the
output size), then such PRF can be constructed from any puncturable PRF F as F′k,h = h(Fk(x)), where h is
2-universal hash function; it can be shown that the output of this PRF together with the key is 2−λ-close to
the uniform distribution.

Sparse computationally extracting puncturable PRFs. We need a slightly modified version of extract-
ing PRFs: we relax the extracting requirement from statistical to computational, but require our PRF to have
a sparse image. Such a PRF can be built from computationally extracting PRF by applying a prf on top of it
[CPR17].
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Definition 3. A PRF family with a key k mapping {0, 1}n(λ) to {0, 1}l(λ) is a sparse computationally
extracting family for min-entropy t(λ), if, in addition to the standard definition of a puncturable PRF, the
following two conditions hold:

• Sparseness: Pr[r ∈ Im(Fk) : k ← Sample(1λ), r ← Ul] < ν(λ) for some negligible function ν;

• Computational extractor: If distribution X has min-entropy at least t(λ), then with overwhelming
probability over the choice of key k for any PPT adversary A

| Pr [ A(k,Fk(x)) = 1 | x← X ]− Pr [ A(k, r) = 1 | r ← UI ] | < negl(λ).

We say that such a PRF is (t(λ), ε(λ))-secure, if for any t-sized distinguishers the distinguishing advantage in
the puncturable PRF game and in the computational extractor game is at most ε, and sparsness ν(λ) < ε(λ).

[CPR17] show that, assuming one-way functions, such PRFs exists if t(λ), the entropy of the input, is at
least m/2 + 2λ + 2, and m is superlogarithmic. We note that their construction uses a PRF with security
parameter λ and a prg with security parameter m/2 and therefore the construction can be made exponentially
secure, by requiring (possibly stronger) subexponential security of the underlying PRF and prg.

3.4 Asymmetrically constrained encryption (ACE) and its relaxed variant

ACE at a high level. Asymmetrically constrained encryption ([CHJV14], see also the journal version
[BCG+18]), or ACE for short, is a public-key, deterministic encryption scheme with special security prop-
erties. Intuitively, it allows to puncture both the public key and the secret key, at possibly different sets,
such that EK{m} doesn’t allow to compute the encryption of m, and DK{m} doesn’t allow to decrypt the
encryption of m. The scheme has to satisfy the following security properties, which we only roughly outline
in this paragraph (see the formal definition below for precise correctness and security requirements):

• Indistinguishability of ciphertexts: EncEK(m0) and EncEK(m1) are indistinguishable even given
punctured EK{m0,m1}, DK{m0,m1} (or given EK,DK punctured at bigger sets including m0,m1).
Intuitively, the adversary can neither encrypt m0,m1 nor decrypt EncEK(m0) and EncEK(m1), and
thus cannot distinguish between encryptions of m0,m1.

• Security of constrained decryption: Given EK{U}, it is hard to distinguish between DK{S0} and
DK{S1}, where S0 ⊆ S1 ⊆ U . Intuitively, the adversary cannot distinguish between these two cases
since it is hard to find a “differing ciphertext” EncEK(m), m ∈ S1 \ S0, which DK{S0} and DK{S1}
decrypt differently (to m and ⊥). Such ciphertexts are hard to find since such m ∈ U , and EK is
punctured at U .

Relaxed ACE at a high level. In addition to ACE, we require a slightly different version of it, which we
call a relaxed ACE. In relaxed ACE indistinguishability of ciphertexts doesn’t necessarily hold. Instead, we
require a different property called symmetry, and we show how to modify the construction of [CHJV14] to
build relaxed ACE with small security loss in constrained decryption game for certain sets. More concretely,
we have the following differences:

• In [CHJV14], security of constrained decryption allows for security loss proportional to the size of
S1 \ S0, since they change DK{S0} to DK{S1}, one point at a time. This is too much in our case,
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since our sets have size 2O(λ). However, our sets have nice structure (e.g. all strings ending with the
same suffix, or all such strings except one), and we can slightly modify the construction such that
security loss is only polynomial on such sets. Essentially, our ciphertexts, instead of having a single
signature of a plaintext like in [CHJV14], have signatures of each prefix of the plaintext, which allows
to puncture DK at a lot of points at once (this technique is similar to [GPS16]).

• We require additional property which we call symmetry. To define it, we first need a syntactically
different way of puncturing the decryption key. In [CHJV14] puncturing is plaintext-based (i.e. the
punctured key DK{m} has the description of the plaintext but not the ciphertext). We need, in
addition to that, a ciphertext-based way to puncture (we denote it as DK{c}). Symmetry then says
that distributions (c∗, c′,EK{m},DK{c∗, c′}) and (c′, c∗,EK{m},DK{c∗, c′}) are indistinguishable,
where m is an arbitrary plaintext, c′ is its ciphertext, and c∗ is randomly chosen. We note that for
ciphertext-based punctured key symmetry is the only required security property, although we still
require all applicable correctness properties.

Definition of ACE. Now we present a formal definition:

Definition 4. [CHJV14], [BCG+18] An asymmetrically constrained encryption (ACE) scheme is a 5-tuple
of PPT algorithms (Setup,GenEK,GenDK,Enc,Dec) satisfying syntax, correctness, security of constrained
decryption, and selective indistinguishability of ciphertexts as described below.

Syntax. The algorithms (Setup,GenEK,GenDK,Enc,Dec) have the following syntax.

• Setup: Setup(1λ, 1n, 1s) is a randomized algorithm that takes as input the security parameter λ, the
message length n, and a “circuit succinctness” parameter s, all in unary. Setup then outputs a secret
key SK. We think of secret keys as consisting of two parts: an encryption key EK and a decryption
key DK.

LetM = {0, 1}n denote the message space.

• (Constrained) Key Generation: Let S ⊂M be any set whose membership is decidable by a circuit
CS . We say that S is admissible if |CS | ≤ s. Intuitively, the set size parameter s denotes the upper
bound on the size of circuit description of sets to which encryption and decryption keys can be
constrained.

– GenEK(SK,CS) takes as input the secret key SK of the scheme and the description of circuit
CS for an admissible set S. It outputs an encryption key EK{S}. We write EK to denote
EK{∅}.

– GenDK(SK,CS) also takes as input the secret key SK of the scheme and the description of
circuit CS for an admissible set S. It outputs a decryption key DK{S}. We write DK to denote
DK{∅}.

Unless mentioned otherwise, we will only consider admissible sets S ⊂M.

• Encryption: Enc(EK ′,m) is a deterministic algorithm that takes as input an encryption key EK ′

(that may be constrained) and a message m ∈M and outputs a ciphertext c or the reject symbol ⊥.
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• Decryption: Dec(DK ′, c) is a deterministic algorithm that takes as input a decryption key DK ′ (that
may be constrained) and a ciphertext c and outputs a message m ∈M or the reject symbol ⊥.

Correctness. An ACE scheme is correct if the following properties hold:

1. Correctness of Decryption: For all n, all m ∈M, all sets S, S′ ⊂M s.t. m /∈ S ∪ S′,

Pr

Dec(DK,Enc(EK,m)) = m

∣∣∣∣∣∣
SK ← Setup(1λ),
EK ← GenEK(SK,CS′),
DK ← GenDK(SK,CS)

 = 1.

Informally, this says that Dec ◦ Enc is the identity on messages which are in neither of the punctured
sets.

2. Equivalence of Constrained Encryption: Let SK ← Setup(1λ). For any message m ∈ M and any
sets S, S′ ⊂M with m not in the symmetric difference S∆S′ (i.e., we are requiring that m is in both
S and S′ or m is in neither S nor S′).

Pr

Enc(EK,m) = Enc(EK ′,m)

∣∣∣∣∣∣
SK ← Setup(1λ),
EK ← GenEK(SK,CS),
EK ′ ← GenEK(SK,CS′)

 = 1.

3. Unique Ciphertexts: With high probability over SK ← Setup(1λ), it holds for any c and c′ that if
Dec(DK, c) = Dec(DK, c′) 6= ⊥, then c = c′.

4. Safety of Constrained Decryption: For all strings c, all S ⊂M,

Pr
[
Dec(DK, c) ∈ S

∣∣ SK ← Setup(1λ), DK ← GenDK(SK,CS)
]

= 0

This says that a punctured key DK{S} will never decrypt a string c to a message in S.

5. Equivalence of Constrained Decryption: If Dec(DK{S}, c) = m 6= ⊥ and m /∈ S′, then
Dec(DK{S′}, c) = m.

Security of Constrained Decryption. Intuitively, this property says that for any two sets S0, S1, no
adversary can distinguish between the constrained key DK{S0} and DK{S1}, even given additional
auxiliary information in the form of a constrained encryption key EK ′ and ciphertexts c1, . . . , ct. To rule
out trivial attacks, EK ′ is constrained at least on S0∆S1. Similarly, each ci is an encryption of a message
m /∈ S0∆S1.

Formally, we describe security of constrained decryption as a multi-stage game between an adversary adv
and a challenger.

• Setup: A chooses sets S0, S1, U s.t. S0∆S1 ⊆ U ⊆ M and sends their circuit descriptions
(CS0 , CS1 , CU ) to the challenger. adv also sends arbitrary polynomially many messages m1, . . . ,mt

such that mi /∈ S0∆S1.

The challenger chooses a bit b ∈ {0, 1} and computes the following:
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1. SK ← Setup(1λ),

2. DK{Sb} ← GenDK(SK,CSb),

3. EK ← GenEK(SK, ∅),

4. ci ← Enc(EK,mi) for every i ∈ [t], and

5. EK{U} ← GenEK(SK,CU ).

Finally, it sends the tuple (EK{U}, DK{Sb}, {ci}) to adv.

• Guess: A outputs a bit b′ ∈ {0, 1}.

The advantage ofA in this game (on security parameter λ) is defined as advA =
∣∣Pr[b′ = b]− 1

2

∣∣. We require
that for all PPT A, advA(λ) is negl(λ)|S1 \ S0| .

Selective Indistinguishability of Ciphertexts. Intuitively, this property says that no adversary can
distinguish encryptions of m0 from encryptions of m1, even given certain auxiliary information. The
auxiliary information corresponds to constrained encryption and decryption keys EK ′, DK ′, as well as
some ciphertexts c1, . . . , ct. In order to rule out trivial attacks, EK ′ and DK ′ should both be punctured
on at least {m0,m1}, and none of c1, . . . , ct should be an encryption of m0 or m1. Let both F1 and F2 be
sub-exponentially secure.

Formally, we require that for all sets S,U ⊂ M, for all m∗0,m
∗
1 ∈ S ∩ U , and all m1, . . . ,mt ∈ M \

{m∗0,m∗1}, the distribution
EK{S}, DK{U}, c∗0, c∗1, c1, . . . , ct

is computationally indistinguishable from

EK{S}, DK{U}, c∗1, c∗0, c1, . . . , ct

in the probability space defined by sampling SK ← Setup(1λ), EK ← GenEK(SK, ∅), EK{S} ←
GenEK(SK,CS), DK{U} ← GenDK(SK,CU ), c∗b ← Enc(EK,m∗b), and ci ← Enc(EK,mi).

As shown in [CHJV14], there exists subexponentially secure ACE assuming subexponentially secure injective
PRGs and iO. We note that their construction and the proof can be based on injective OWFs instead of
injective PRGs, similar to the proof of our relaxed ACE (section B).

Definition of relaxed ACE. As noted earlier, we also consider a relaxed ACE where indistinguishability
of ciphertexts doesn’t necessarily hold. Instead, we require a different property called symmetry, and we show
how to modify the construction of [CHJV14] to build relaxed ACE with small secuirty loss in constrained
decryption game for certain sets.

Definition 5. A relaxed asymmetrically constrained encryption (relaxed ACE) scheme for message space
{0, 1}n and suffix parameter t is a 6-tuple of PPT algorithms (Setup,GenEK,GenDK,Enc,Dec,Puncture)
satisfying the the following:
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1. Syntax: Setup,GenEK,GenDK,Enc,Dec) have syntax as in the definition of ACE. Ciphertext-based
puncturing algorithm Puncture(SK, c1, c2) is an algorithm which takes as input the secret key SK,
a ciphertext c2 and a random string c1 of the same length and outputs a ciphertext-based punctured
key DK{c1, c2}. (We use this notation to distinguish ciphertext-based puncturing DK{c1, c2} from
plaintext-based puncturing DK{S}, where S is a set of plaintexts).

2. Correctness: We require all correctness properties as in ACE definition. In addition, we require
correctness of decryption and equivalence of constrained decryption to hold even for ciphertext-
based punctured decryption keys. Namely, if DK{c1, c2} = Puncture(SK, c1, c2)) where c1 is
random and c2 is Enc(EK,m), then we require that the mentioned properties hold for the constrained
set S = {m}.

3. Security: We require security of constrained decryption (from the definition of ACE) to hold for
the case when there are no plaintext queries, and only for the case when S1 \ S0 is either of the form
Ssuf (that is, a set of all strings ending with arbitrary, but the same for all strings, suffix suf of length t),
or of the form Ssuf \ {m∗} (where again suf has the size t, and m∗ also ends with suf). Further, we
require that distinguishing advantage depends on |S1 \ S0| at most logarithmically; in particular, it
should be negligible even when |S1 \ S0| = O(2λ) (alternatively, we can require that the advantage is
smaller than a concrete negligible function).

In addition, for ciphertext-based punctured key we require a property called symmetry, which is
defined as follows:

1. A chooses plaintext m and sends it to the challenger. Let U = Ssuffixt(m) be the set of all strings ending
with the same t bits as m. the challenger computes the following:

2. SK ← Setup(1λ),

3. c1 is chosen at random from {0, 1}|c|;

4. EK ← GenEK(SK, ∅),

5. EK{U} ← GenEK(SK,U),

6. c2 ← Enc(EK,m)

7. DK{c1, c2} ← Puncture(SK, c1, c2),

8. Finally the challenger chooses random b and gives the adversary (c1, c2, EK{U}, DK{c1, c2}) if
b = 0 and (c2, c1, EK{U}, DK{c1, c2}) if b = 1;

9. A outputs a bit b′ ∈ {0, 1}.

The advantage ofA in this game (on security parameter λ) is defined as advA =
∣∣Pr[b′ = b]− 1

2

∣∣. We require
that for all PPT A, advA(λ) is negligible in λ (alternatively, we can require that it is smaller than a concrete
negligible function).

In the appendix (section B) we show that there exists subexponentially secure relaxed ACE assuming
subexponentially secure OWFs and iO.

Sparse relaxed ACE. We remark that our relaxed ACE from appendix B has sparse image, that is, the
probability that a randomly chosen string of a proper length is a valid ACE ciphertext is at most 2−λ.
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4 Defining bideniable and off-the-record-deniable encryption

In this section we present the definition of interactive deniable encryption, or, more formally, interactive
bideniable message transmission.

Syntax. An interactive deniable encryption scheme π consists of seven algorithms π =
(Setup,P1,P2,P3,Dec,SFake,RFake), where Setup is used to generate the public programs (i.e. the CRS),
programs P1, P3 and SFake are programs of the sender, and programs P2, Dec and RFake are programs of the
receiver. We let the transcript tr = π(s, r,m) of an execution of the scheme on inputs m and random input s
of the sender, and random input r of the receiver denote the sequence of three messages sent in this execution.
That is, π(s, r,m) = tr = (µ1, µ2, µ3), where µ1 = P1(s,m), µ2 = P2(r, µ1), and µ3 = P3(s,m, µ1, µ2).

The faking algorithms have the following syntax: SFake(s,m,m′, tr; ρ) expects to take a transcript tr along
with the true random coins s and true plaintext m, which were used to compute tr. It also needs the desired
fake plaintext m′, and its own randomness ρ. RFake follows the same syntax except that it expects the
receiver randomness r instead of sender randomness s.

Bideniable and off-the-record-deniable encryption in the CRS model. Below we define standard and
off-the-record deniability for interactive deniable encryption in the CRS model. For simplicity, we concentrate
on bit encryption. The definitions can be naturally extended to multi-bit plaintexts.

Note that formally algorithms of deniable encryption should take the CRS as input, but we omit this to keep
the syntax close to the syntax in our construction (where the CRS contains the programs, and those programs
do not take the CRS as input).

Definition 6. Bideniable bit encryption in the CRS model. π = (Setup,P1,P2,P3, Dec, SFake,RFake)
is a 3-message bideniable interactive encryption scheme for message spaceM = {0, 1}, if it satisfies the
following correctness and bideniability properties:

• Correctness: There exists negligible function ν(λ) such that for at least (1−ν)-fraction of randomness
rSetup, drawn at random from {0, 1}|rSetup|, the following holds: let CRS← Setup(rSetup). Then for
any m ∈ M Pr[m′ 6= m : s ← {0, 1}|s| , r ← {0, 1}|r| , tr ← π(s, r,m),m′ ← Dec(r, tr)] ≤ ν(λ),
where the probability is taken over the choices of s and r.

• Bideniability: No PPT adversary Adv wins with more than negligible advantage in the following
game, for any m0,m1 ∈M:

1. The challenger chooses random rSetup and generates CRS← Setup(rSetup). It also chooses a
bit b at random.

2. If b = 0, then the challenger generates the following variables:

(a) It chooses random s∗, r∗ and computes tr∗ = π(s∗, r∗,m0).

(b) It gives the adversary (CRS,m0,m1, s
∗, r∗, tr∗).

3. If b = 1, then the challenger generates the following variables:

(a) It chooses random s∗, r∗ and computes tr∗ ← π(s∗, r∗,m1);
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(b) It sets s′ ← SFake(s∗,m1,m0, tr∗; ρS) and r′ ← RFake(r∗,m1,m0, tr∗; ρR), for randomly
chosen ρS , ρR.

(c) It gives the adversary (CRS,m0,m1, s
′, r′, tr∗).

4. Adv outputs b′ and wins if b = b′.

Next we define off-the-record deniability. We define it for an arbitrary message space, since having |M| > 2
allows for an extra case when plaintexts claimed by the sender, by the receiver, and the real plaintext are three
different strings (case b = 2 in the definition below).

Definition 7. Off-the-record deniable encryption in the CRS model. We say that a scheme is off-the-
record-deniable, if it satisfies correctness as above and has the following property:

Off-the-record deniability: No PPT adversary Adv wins with more than negligible advantage in the
following game, for any m0,m1,m2 ∈M:

1. The challenger chooses random rSetup and generates CRS← Setup(rSetup). It also chooses random
b ∈ {0, 1, 2}.

2. If b = 0, then the challenger generates the following variables:

(a) The challenger chooses random s∗, r∗ and computes tr∗ ← π(s∗, r∗,m0);

(b) It sets r′ ← RFake(r∗,m0,m1, tr∗; ρR) for randomly chosen ρR.

(c) It gives the adversary (CRS,m0,m1,m2, s
∗, r′, tr∗).

3. If b = 1, then the challenger generates the following variables:

(a) The challenger chooses random s∗, r∗ and computes tr∗ ← π(s∗, r∗,m1);

(b) It sets s′ ← SFake(s∗,m1,m0, tr∗; ρS) for randomly chosen ρS .

(c) It gives the adversary (CRS,m0,m1,m2, s
′, r∗, tr∗).

4. If b = 2, then the challenger generates the following variables:

(a) The challenger chooses random s∗, r∗ and computes tr∗ ← π(s∗, r∗,m2);

(b) It sets s′ ← SFake(s∗,m2,m0, tr∗; ρS) for randomly chosen ρS .

(c) It sets r′ ← RFake(r∗,m2,m1, tr∗; ρR) for randomly chosen ρR.

(d) It gives the adversary (CRS,m0,m1,m2, s
′, r′, tr∗).

5. Adv outputs b′ and wins if b = b′.

We say that an encryption scheme is bideniable (resp, off-the-record deniable) with (t, ε)-security, if for any
size-t adversary distinguishing advantage in bideniability (resp., off-the-record deniability) game is at most ε.

Single-execution security implies multi-execution security. We observe that in the case of definitions 6
and 7 the CRS is global (i.e., non-programamble). Indeed, these definitions do not involve simulation and the
same set of programs is used throughout. Furthermore, even though definitions 6 and 7 only talk about one
execution of the protocol, it can be shown via a simple hybrid argument that security of a single execution
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of the protocol implies security of any (unbounded) polynomially many executions with the same set of
programs.20

Definition 8. Public receiver-deniability. We say that a bideniable scheme has public receiver-deniability,
if the receiver faking algorithm RFake takes as input only the transcript tr and fake plaintext m′ (but not true
random coins of the receiver r∗ and true plaintext m).

5 Level System

Motivation and overview. The idea of a level system is to have an encryption scheme which allows to
increment ciphertexts and compare them homomorphically. However, in order for this encryption to be useful
in our construction of deniable protocol, we require the following properties of this "encryption scheme":21

• There should be two types of ciphertexts, which we call single-tag levels and double-tag levels;

• A single-tag level is an encryption of number i between 0 and upper bound T , together with some
string m1 ∈ M1, which we call a tag. (In our construction of deniable encryption, we use the first
message of the deniable protocol as a tag. This is done to “tie” the level to the instance of the protocol).

• A double-tag level is an encryption of number i between 0 and upper bound T , together with two tags
m1 ∈ M1,m2 ∈ M2. (In our construction of deniable encryption, we use the first and the second
messages of the deniable protocol as tags. This, again, is done to “tie” the level to the instance of the
protocol).

• It should be possible to perform the following operations:

1. Sample a single-tag level 0 for any tag m1;

2. Homomorphically increment the value inside any single-tag level (keeping its tag the same);

3. Transform any single-tag level into a double-tag level, for any second tag m2 (the value and the
first tag remain the same);

4. Compare two double-tag levels, as long as their both tags are the same;

5. Given any level, retrieve its tag(s).

Notation. We use notation [i,m1] to denote a single-tag level with value i and tag m1. We also use `i to
denote a single-tag level with value i, when the tag is clear from the context.

We use notation [i,m1,m2] to denote a double-tag level with value i and tags m1,m2. We also use Li to
denote a double-tag level with value i, when its tags are clear from the context.

20Indeed, we can change all executions from real to fake one by one, where the reduction from a single-execution security will
generate other executions on its own, using the fact that knowing the CRS (but not its generation randomness) is enough to run all
programs.

21Note that even though we call it encryption, we don’t require this primitive to have decryption.
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Security property. Security requirement says that it should be hard to distinguish between `∗0 =
[0,m∗1], L∗0 = [0,m∗1,m

∗
2] and `∗1 = [1,m∗1], L∗0 = [0,m∗1,m

∗
2], even given (limited) ability to perform

homomorphic operations described above.

This will be used in the proof of security of deniable encryption scheme as follows. Recall that in that proof
we need to start with the real transcript and real randomness s, r (having levels L∗0, `

∗
0, L

∗
0, respectively) and

eventually switch to the (same) real transcript but fake randomness s′, r′ (with levels L∗0, `
∗
1, L

∗
0). We can use

security of the level system in the proof of deniable encryption as follows: given challenge `∗b , L
∗
0 (where

`∗b = [b,m∗1], b ∈ {0, 1}, L∗0 = [0,m∗1,m
∗
2]), we use `∗b inside fake s and we use L∗0 inside the transcript and

fake r. Since security of levels only holds when programs are punctured, in the proof of deniable encryption
we first move to a hybrid where we use only punctured level programs, and then use security of the level
system.

5.1 Definition

We start with describing a syntax of the level system for tag space M and upper bound T :

• Setup(1λ;T ; GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags; rSetup) → PP =
(PGenZero,PIncrement,PTransform,PisLess,PRetrieveTag,PRetrieveTags) is a randomized algorithm which
takes as input security parameter, the largest allowed level T , description of programs, and randomnes.
It uses random coins to sample all necessary keys for each program22, and outputs those programs
obfuscated under iO.

• GenZero(m1)→ ` is a deterministic algorithm which takes message m1 ∈M as input and outputs a
string ` = [0,m1], which is a single-tag level with tag m1 and value 0. We also require that there exists
a punctured version of this algorithm denoted GenZero[m∗1](m1) which outputs ′fail′ on input m∗1.

• Increment(`) → `′ is a deterministic algorithm which takes a single-tag level ` = [i,m1] for some
0 ≤ i ≤ T − 1,m1 ∈M , and outputs a single-tag level with the same tag and incremented value, i.e.
`′ = [i+ 1,m1]. If i ≥ T , it instead outputs ′fail′.

• Transform(`,m2)→ ` is a deterministic algorithm which takes a single-tag level ` = [i,m1] for some
0 ≤ i ≤ T,m1 ∈M , and some message m2 ∈M , and outputs L = [i,m1,m2], which is a double-tag
level with tags m1,m2, and value i. We also require that there exists a punctured version of this
algorithm denoted Transform[(`∗,m∗2)](`,m2) which outputs ′fail′ on input (`∗,m∗2).

• isLess(L′, L′′)→ out ∈ {true, false} is a deterministic algorithm which takes as input public parame-
ters PP and two double-tag levels L′ = [i′,m′1,m

′
2] and L′′ = [i′′,m′′1,m

′′
2]. If (m′1,m

′
2) 6= (m′′1,m

′′
2),

then it outputs ′fail′. Otherwise it outputs true if i′ < i′′ and false if i′ ≥ i′′.

• RetrieveTag(`)→ m is a deterministic algorithm which takes a single-tag level ` and outputs its tag.

• RetrieveTags(L)→ m is a deterministic algorithm which takes a double-tag level L and outputs boths
tags.

We underline that all programs except Setup are deterministic.

22We assume that Setup is implicitly given generation algorithms for all underlying primitives of the programs.
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Definition 9. A tuple of parametrized, deterministic23 algorithms
(GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags, GenZero[m∗1],Transform[l∗,m∗2])
is a level system for tag space M , if algorithms have syntax described above, and the correctness and
security properties described below hold.

Notation: Let T be superpolynomial in λ, and PP = (PGenZero, PIncrement, PTransform, PisLess,PRetrieveTag,
PRetrieveTags) ← Setup(1λ; T ; GenZero, Increment, Transform, isLess, RetrieveTag,RetrieveTags; rSetup)
for randomly chosen rSetup.

Next, let m∗1 ∈ M , m∗2 ∈ M , and let `∗ be an arbitrary string (not necessarily a level). Let
PP′ = (P′GenZero, P′Increment, P′Transform, P′isLess, P′RetrieveTag, P′RetrieveTags) ← Setup(1λ, T,GenZero[m∗1],
Increment, Transform[(`∗,m∗2)], isLess, RetrieveTag, RetrieveTags; rSetup) with the same randomness
rSetup as above.

For any fixed rSetup consider the following notation:

• For every m1 ∈M denote [0,m1] = PGenZero(m1);

• For every m1 ∈M , 1 ≤ i ≤ T denote [i,m] = PIncrement([i− 1,m]);

• For every m2 ∈ M and every [i,m1], where 0 ≤ i ≤ T,m1 ∈ M , denote [i,m1,m2] =
PTransform([i,m1],m2).

Correctness: The following properties should hold, except with negligible probability over the choice of
rSetup:

• Uniqueness of leves:

– For all ` /∈ {[i,m1] : 0 ≤ i ≤ T,m1 ∈M}:

∗ PIncrement(`) = ′fail′;

∗ PTransform(`,m2) = ′fail′ for any m2 ∈M ;

∗ PRetrieveTag(`) = ′fail′.

– For all L /∈ {[i,m1,m2] : 0 ≤ i ≤ T,m1 ∈M,m2 ∈M}:

∗ PisLess(L,L
′) = ′fail′, PisLess(L

′, L) = ′fail′ for any string L′;

∗ PRetrieveTags(L) = ′fail′.

• Upper bound is respected: For every m1 ∈M PIncrement([T,m1]) = ′fail′.

• Correctness of comparison: For every m1,m2 ∈M and for every 0 ≤ i, j ≤ T :

– PisLess([i,m1,m2], [j,m1,m2]) = true for i < j,

– PisLess([i,m1,m2], [j,m1,m2]) = false for i ≥ j.
23We prefer to use the notion of parametrized, deterministic algorithms to keep the definition simple. To formally define this

notion, consider a randomized Turing machine with the restriction that the number of random bits written on its random tape is fixed
and independent of input (only dependent on security parameter λ). Such a Turing machine can first use these random coins to
generate all necessary parameters (e.g. keys) and then run the actual code of the algorithm using generated parameters. In particular,
we assume that this TM has the code of all necessary generation algorithms.
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• Comparison is possible only on matching levels: If (m′1,m
′
2) 6= (m′′1,m

′′
2), then

PisLess([i,m
′
1,m

′
2], [j,m′′1,m

′′
2]) = ′fail′.

• Correctness of tags retrieval: For every m1,m2 ∈M and for every 0 ≤ i ≤ T :

– PRetrieveTag([i,m1]) = m1,

– PRetrieveTags([i,m1,m2]) = (m1,m2).

• Functionality is preserved under puncturing:

– PGenZero(m) = P′GenZero(m) for all m ∈M , m 6= m∗1;

– PIncrement(`) = P′Increment(`) for all strings `;

– PTransform(`,m2) = P′Transform(`,m2) for all strings l and for all m2 ∈M , except (`∗,m∗2);

– PisLess(L
′, L′′) = P′isLess(L

′′, L′′) for all strings L′, L′′;

– PRetrieveTag(`) = P′RetrieveTag(`) for all strings `;

– PRetrieveTags(L) = P′RetrieveTags(L) for all strings L.

Note that it follows from the correctness properties that [i,m1] = [i′,m′1] if and only (i,m1) = (i′,m′1), and
[i,m1,m2] = [i′,m′1,m

′
2] if and only (i,m1,m2) = (i′,m′1,m

′
2).

Security: For any m∗1 ∈M,m∗2 ∈M , the following distributions are computationally indistinguishable:

(`∗0, L
∗
0,PP0) ≈ (`∗1, L

∗
0,PP1),

where rSetup is randomly chosen, PP = (PGenZero,PIncrement,PTransform,PisLess,PRetrieveTag,PRetrieveTags)←
Setup(GenZero, Increment,Transform, isLess,RetrieveTag, RetrieveTags; rSetup),

`∗0 ← PGenZero(m∗1), `∗1 ← PIncrement(`
∗
0), L∗0 ← PTransform(`∗0,m

∗
2),

PPb ← Setup(GenZero[m∗1], Increment,Transform[(`∗b ,m
∗
2)], isLess,RetrieveTag,RetrieveTags; rSetup).

5.2 Construction

We implement a level system in a natural way: we let levels to be ciphertexts (encrypting the value and the
tag in a single-tag level, and the value and both tags in a double-tag level) under special encryption scheme
called asymmetric constrained encryption, or ACE (4). For single-tag and double-tag levels we use two
different instances of ACE, with keys EK1,DK1 for single-tag levels and EK2,DK2 for double-tag levels.
We let programs of the level system (fig. 4) perform required “homomorphic” operations in a natural way,
by decrypting the ciphertext and learning its value and tag, checking validity of the operation, and then
outputting the result (reencrypted, when applicable).
Theorem 2. Let:

• λ be a security parameter;

• iO be (poly(λ), 2−Ω(νiO(λ)))-secure indistinguishability obfuscation;
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• ACE be an asymmetric constrained encryption scheme with (poly(λ), 2−Ω(νACE.Indist(λ)))-secure indis-
tinguishability of ciphertexts and (poly(λ), 2−Ω(νACE.ConstrDec(λ))) security of decryption;

• g be a (2O(νOWF(λ′)), 2−Ω(νOWF(λ′)))-secure injective one-way function mapping λ′ = log T (λ)-bit
inputs to poly(λ′)-bit outputs;

• γ(λ) be a function satisfying the following conditions:

– γ(λ) = O(νiO(λ));

– 2γ(λ)poly(λ) log T = O(2νOWF(log T ));

Then the scheme described on fig. 4 is a level system for upper bound T (λ), tags of length τ(λ), which is
(poly(λ), 2−νlevels(λ))-secure, where 2−νlevels(λ) is equal to the following:

2−Ω(γ(λ))+T−1(λ)+T (λ)2−Ω(νACE.ConstrDec(λ))+2τ(λ)(T (λ)·2−Ω(νiO(λ))+T (λ)·2−Ω(νACE.Indist(λ))+2−Ω(νACE.ConstrDec(λ)))).

Note: Here γ(λ) represents distinguishing advantage between two obfuscated programs differing on one
input (which is a preimage of the OWF g). The two conditions on γ are set to satisfy the requirements of
theorem 1, and say that the inverter’s size is small enough, and that distinguishing advantage is big enough
compared to the indistinguishability guarantee of iO.

By using subexponentially-secure primitives, we obtain the following corollary:
Corollary 1. Let:

• λ be a security parameter;

• iO be (poly(λ), 2−Ω(λε))-secure indistinguishability obfuscation;

• ACE be an asymmetric constrained encryption scheme with (poly(λ), 2−Ω(λε))-secure indistinguisha-
bility of ciphertexts and (poly(λ), 2−Ω(λε)) security of decryption;

• g be a (2Ω(λ′ε), 2−Ω(λ′ε))-secure injective one-way function mapping λ′ = λε/2-bit inputs to poly(λ′)-
bit outputs;

• γ(λ) = λε
2/2;

Then the scheme described on fig. 4 is a level system for upper bound T (λ) = 2λ
ε/2

, tags of length

τ(λ) = λε/2, which is (poly(λ), 2−Ω(λε
2/2))-secure.

5.3 Overview of the proof

Correctness. Correctness properties of our level scheme immediately follow from statistical correctness
of iO and correctness and uniqueness properties of ACE.

For security, we first informally describe the structure of the proof, and then give the sequence of hybrids in
section 5.4 and security reductions in section 5.5. Recall that security definition requires that (`∗0, L

∗
0,PP0) ≈

(`∗1, L
∗
0,PP1), where PPb are punctured, obfuscated programs. Starting from the distribution (`∗0, L

∗
0,PP0),

our proof proceeds in 3 main steps:
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Program GenZero(m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE.

1. output l← ACE.EncEK1(0,m1).
Program Increment(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program Transform(l,m2)
Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. output L← ACE.EncEK2(i,m1,m2).

Program isLess(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or or i′ < 0 or i′′ < 0 (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.
Program RetrieveTag(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTags(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 4: Programs in our level system
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1. Switching from `∗0 = [0,m∗
1] to `∗1 = [1,m∗

1]. Programs GenZero and Increment define a chain
[0,m1]→ [1,m1]→ . . .→ [T,m1]→ ⊥ for each tag m1. In a sequence of hybrids we switch from
[0,m∗1] to [1,m∗1] by switching the whole chain from [0,m∗1] → [1,m∗1] → . . . → [T,m∗1] → ⊥ to
[1,m∗1]→ [2,m∗1]→ . . .→ [T + 1,m∗1]→ ⊥.

As a result of this change, `∗0 is switched to `∗1 as desired (and in particular, the punctured point in
Transform is switched from `∗0 to `∗1 as well). However, this change also affects the programs in the
following two ways (resulting programs are in fig. 6) :

• Wrong upper bound: programs Increment, Transform, and RetrieveTag now have an upper
bound T + 1 (instead of T ) for the case m1 = m∗1,

• Incorrect reencryption: program Transform, given [i,m∗1] for 0 ≤ i ≤ T + 1, outputs [i −
1,m∗1,m2] instead of [i,m∗1,m2].

2. Restoring correct upper bound in Increment,Transform, and RetrieveTag. In a sequence of
hybrids we change the wrong upper bound T + 1 to the correct upper bound T in relevant programs.

Resulting programs are in fig. 7. This part of the proof uses ideas from [BPR15] to argue that
the adversary can never reach the upper bound and thus the upper bound can be decreased by 1
indistinguishably.

3. Restoring correct reencryption in Transform. In a sequence of hybrids we make program Transform
output the correct value [i,m∗1,m2], for all 0 ≤ i ≤ T and for all m2.

The proof of this step follows a by-now-standard puncturing technique (which allows to change the
ciphertext in a PRF-based encryption from one plaintext to another), except that we also have to deal
with program isLess which has decryption inside it.

At the end of this step, we obtain original punctured programs, thus proving security of our level
system.

Security loss. Steps 1 and 2 require number of hybrids proportional to the upper bound T , and step 3
requires number of hybrids proportional to 2|m2|T . In addition, in the proof of step 2 we also lose 1/T , thus
requiring T and 2|m2| to be superpolynomial.

Now we describe the proof in each step in more detail (recall that complete list of hybrids can be found in
section 5.4):

Step 1: Switching `∗ from [0,m∗
1] to [1,m∗

1].

1. We first change the chain to [0,m∗1]→ [1,m∗1]→ . . .→ [T − 1,m∗1]→ [T + 1,m∗1]→ ⊥, creating
a gap between T − 1 and T + 1. This is done by first hardwiring the ciphertext l∗T = [T,m∗1] into
relevant programs, then puncturing keys corresponding to both [T,m∗1] and [T + 1,m∗1] (the latter
can be punctured since they are never used due to upper bound T ), and finally switching hardwired
ciphertext to l∗T+1 = [T + 1,m∗1] and unpuncturing keys at [T + 1,m∗1]24.

24Note that it is crucial for switching the ciphertext that keys are punctured at both points, and only one of the two ciphertexts is
present in the distribution.
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Note that the keys remain punctured at the point [T,m∗1], which essentially means that from the point
of view of programs there doesn’t exist a valid encryption of (T,m∗1).

Finally, note that switching the hardwired ciphertext from [T,m∗1] to [T + 1,m∗1] changes the upper
bound from T to T + 1 in programs Transform and RetrieveTag.

2. Then in a sequence of hybrids we move the gap from T down to 0 a follows. Let j-th hybrid be a
hybrid where the gap is at j + 1, i.e. Increment defines a chain [0,m∗1]→ [1,m∗1]→ . . .→ [j,m∗1]→
[j+2,m∗1]→ . . .→ [T,m∗1]→ [T +1,m∗1], and keys are punctured at [j+1,m∗1], meaning that there
doesn’t exist a valid encryption of (j + 1,m∗1). We move the gap to j by first hardwiring the ciphertext
l∗j = [j,m∗1] into relevant programs, then puncturing keys corresponding to [j,m∗1] (recall that keys are
already punctured at [j + 1,m∗1]), and finally switching hardwired ciphertext to l∗j+1 = [j + 1,m∗1] and
unpuncturing keys at [j + 1,m∗1].

Note that the keys remain punctured at the point [j,m∗1], enabling the next step.

In addition, note that in the first step the upper bound in Increment is switched from T to T + 1. This
is due to the fact that this step switches the hardwired ciphertext from [T − 1,m∗1] to [T,m∗1], and due
to the fact that there is a hardwired instruction to output [T + 1,m∗1], given hardwired ciphertext as
input (indeed, while in the original Increment input [T,m∗1] results in ⊥, after the change input [T,m∗1]
results in [T + 1,m∗1]).

Finally, note that the last step switches challenge level `∗0 = [0,m∗1] to `∗1 = [1,m∗1].

3. As a result, we obtain Increment which defines a chain 1→ 2→ . . .→ T → T + 1→ ⊥ for the tag
m∗1, and keys are punctured at [0,m∗1]. We remove the puncturing using the fact that keys for [0,m∗1]
are never used, since GenZero doesn’t have to work on input m∗1.

Resulting programs are in fig. 6).

Step 2: Restoring the correct upper bound of Increment, Transform, and RetrieveTag on m∗
1.

Intuitively, nobody can tell whether these programs have an upper bound T or T + 1, since the only way to
test this is to check if, starting with level [1,m∗1], Increment fails after T − 1 or T executions, which requires
superpolynomial time to compute. To turn this intuition into a formal argument, we follow the proof of
[BPR15]:

1. We cut the chain 1 → 2 → . . . → T → T + 1 → ⊥ (we omit the tag m∗1 for simplicity and
compactness) at a random point as follows. We add a check “if prg(i) = S then abort” to Increment,
where S is randomly chosen. If the prg is expanding enough, then with overwhelming probability S
is outside of the prg image, and adding this line doesn’t change the functionality. However, next we
change S to be prg(s) for some random s, which cuts the line at point s: that is, Increment now defines
the chain 1→ . . . s→ ⊥, s+ 1→ . . .→ T + 1→ ⊥.

2. In a sequence of hybrids we cut the line in all points after s, obtaining the following chain: 1→ . . .→
s → ⊥, s + 1 → ⊥, s + 2 → ⊥, . . ., T → ⊥, T + 1 → ⊥. Intuitively, once Increment outputs ⊥
given [s,m∗1], it becomes impossible for an adversary to obtain [s+ 1,m∗1], and therefore behavior of
Increment at [s+ 1,m∗1] can be changed to ⊥ as well. The process can be continued. This intuition is
captured by the security of constrained decryption of ACE.
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As the result, we move to a hybrid where valid encryptions of (s + 1,m∗1), . . . , (T + 1,m∗1) do not
exist.

3. Then we can move the upper bound from T + 1 back to T for the case m1 = m∗1, since programs
output ⊥ on input [T + 1,m∗1] anyway. Thus, changing T + 1 to T doesn’t affect the functionality of
the programs.

4. Then we can reverse all previous steps, restore the chain and eventually get original programs with
correct upper bound T (except Transform, which now has the correct upper bound T , but still has
incorrect behavior on inputs of the form ([i,m∗1],m2)).

Resulting programs are in fig. 7).

Step 3: Restoring the correct reencryption behaviour in Transform. Note that TransformB

(fig. 7) defines the set of outputs [0,m1,m2], . . . , [T,m1,m2] (corresponding to inputs
([0,m1],m2), . . . , ([T,m1],m2)) for the case m1 6= m∗1, and the set of outputs [−1,m∗1,m2], . . . , [T −
1,m∗1,m2] (corresponding to inputs ([0,m∗1],m2), . . . , ([T,m∗1],m2)) for the case m1 6= m∗1. We change
the set of outputs from [−1,m∗1,m2], . . . , [T − 1,m∗1,m2] to [0,m∗1,m2], . . . , [T,m∗1,m2] by running the
following sequence of steps for each possible second tag m2:

1. We first change the set of outputs from [−1,m∗1,m2], . . . , [T − 1,m∗1,m2] to [−1,m∗1,m2], . . . , [T −
2,m∗1,m2], [T,m∗1,m2], creating a gap between T − 2 and T . This is done by first hardwiring the
ciphertext L∗T−1 = [T−1,m∗1,m2] into relevant programs (Transform, isLess, and RetrieveTags), then
puncturing keys corresponding to both [T − 1,m∗1,m2] and [T,m∗1,m2] (the latter can be punctured
since they are never used due to the upper bound T ), and finally switching hardwired ciphertext to
L∗T = [T,m∗1,m2] and unpuncturing keys at [T,m∗1,m2]25.

Note that the keys remain punctured at the point [T − 1,m∗1,m2], which essentially means that from
the point of view of programs there doesn’t exist a valid encryption of (T − 1,m∗1,m2).

2. Then in a sequence of hybrids we move the gap from T − 1 down to −1 a follows. Let j-th hybrid
be a hybrid where the gap is at j + 1, i.e. Transform outputs [−1,m∗1,m2], . . . , [j,m∗1,m2], [j +
2,m∗1,m2], . . . , [T,m∗1,m2], and keys are punctured at [j + 1,m∗1,m2], meaning that there doesn’t
exist a valid encryption of (j + 1,m∗1,m2). We move the gap to j by first hardwiring the ciphertext
L∗j = [j,m∗1,m2] into relevant programs, then puncturing keys corresponding to [j,m∗1,m2] (recall
that keys are already punctured at [j + 1,m∗1,m2]), and finally switching hardwired ciphertext to
L∗j+1 = [j + 1,m∗1,m2] and unpuncturing keys at [j + 1,m∗1,m2].

Note that the keys remain punctured at the point [j,m∗1,m2], enabling the next step.

An important property of program isLess which enables switching [j,m∗1,m2] to [j + 1,m∗1,m2] at
each step is that isLess treats both [j,m∗1,m2] and [j + 1,m∗1,m2] in the same way. That is, both
[j,m∗1,m2] and [j + 1,m∗1,m2] are larger than [0,m∗1,m2], . . . , [j − 1,m∗1,m2], and both are smaller
than [j + 2,m∗1,m2], . . . , [T,m∗1,m2]. Finally, both are equal when compared to themselves. These
inputs are the only valid inputs, since the other point (i.e. [j + 1,m∗1,m2] or [j,m∗1,m2], respectively)
is punctured out.

25Note that it is crucial for switching the ciphertext that keys are punctured at both points, and only one of the two ciphertexts is
present in the distribution.
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Finally, note that we don’t perform two last steps, i.e. switching from 0 to 1 and from −1 to 0,
for the case m2 = m∗2 (indeed, that would switch the challenge value from L∗0 = [0,m∗1,m

∗
2] to

L∗1 = [1,m∗1,m
∗
2], but it has to remain L∗0 = [0,m∗1,m

∗
2] in both experiments). In fact, we don’t

have to switch from 0 to 1 since Transform is punctured at [l∗1,m
∗
2] and outputs ′fail′ on this input

anyway. Further, since [0,m∗1] is hard to obtain for the adversary, we argue that Transform may be
indistinguishably changed from outputting [−1,m∗1,m

∗
2] to [0,m∗1,m

∗
2] on input [0,m∗1],m∗2.
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Programs in HybA
Program GenZero[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1(0,m1).

Program Increment(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program Transform[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗0 =
ACE.EncEK1(0,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. return L← ACE.EncEK2(i,m1,m2).

Program isLess(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTag(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTags(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 5: Programs in HybA. In addition, in this hybrid the adversary gets l∗0 = ACE.EncEK1(0,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB
Program GenZeroB[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1(0,m1).

Program IncrementB(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, tag m∗1, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program TransformB[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i,m1,m2).

Program isLessB(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagB(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, tag m∗1, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i > T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i > T or i < 0) then output ′fail′;
4. Output m1.

Program RetrieveTagsB(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 6: Programs in HybB. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). 46



Programs in HybC .
Program GenZeroC [m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1(0,m1).

Program IncrementC(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program TransformC [(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 return L← ACE.EncEK2(i− 1,m1,m2);
5. Return L← ACE.EncEK2(i,m1,m2).

Program isLessC(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagC(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTagsC(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 7: Programs in HybC . In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybD
Program GenZero[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1(0,m1).

Program Increment(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program Transform[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. return L← ACE.EncEK2(i,m1,m2).

Program isLess(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTag(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTags(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 8: Programs in HybD. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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5.4 List of hybrids

For any messages m∗1,m
∗
2, consider the following distributions for randomly chosen rSetup:

• HybA = (PP, `∗0, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1], Increment,Transform[`∗0,m

∗
2],

isLess,RetrieveTag,RetrieveTags; rSetup) (fig. 5), `∗0 = GenZero(m∗1), L∗0 = Transform(`∗0,m
∗
2).

• HybB = (PP, `∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB[m∗1], IncrementB,TransformB[`∗1,m

∗
2],

isLessB,RetrieveTagB,RetrieveTagsB; rSetup) (fig. 6), `∗0 = GenZero(m∗1), `∗1 = Increment(`∗0),
L∗0 = Transform(`∗0,m

∗
2).

• HybC = (PP, `∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroC [m∗1], IncrementC ,TransformB[`∗1,m

∗
2],

isLessC ,RetrieveTagC ,RetrieveTagsC ; rSetup) (fig. 7), `∗0 = GenZero(m∗1), `∗1 = Increment(`∗0),
L∗0 = Transform(`∗0,m

∗
2).

• HybD = (PP, `∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1], Increment,Transform[`∗1,m

∗
2],

isLess,RetrieveTag,RetrieveTags; rSetup) (fig. 8), `∗0 = GenZero(m∗1), `∗1 = Increment(`∗0), L∗0 =
Transform(`∗0,m

∗
2).

Note that HybA is the distribution from security game for b = 0 and HybD is the distribution from security
game for b = 1. To prove security of the level system, we need to show that HybA ≈ HybD, which we do in
the following lemmas:
Lemma 2. (Switching from `∗0 to `∗1) For any PPT adversary A,

advHybA,HybB (λ) ≤ T · 2−Ω(νiO(λ)) + T · 2−Ω(νACE.Indist(λ)) + 2−Ω(νACE.ConstrDec(λ)).

Lemma 3. (Changing the upper bound from T + 1 to T ) For any PPT adversary A,

advHybB ,HybC (λ) ≤ 2−Ω(γ(λ)) +
1

T
+ T · 2−Ω(νiO(λ)) + T · 2−Ω(νACE.ConstrDec(λ)).

Lemma 4. (Restoring behavior of Transform) For any PPT adversary A,

advHybC ,HybD(λ) ≤ 2τ(λ)(T · 2−Ω(νiO(λ)) + T · 2−Ω(νACE.Indist(λ)) + 2−Ω(νACE.ConstrDec(λ))).

5.4.1 Proof of lemma 2 (Switching from `∗0 to `∗1).

As described earlier, we are going to shift levels [i,m∗1] to [i+ 1,m∗1] one by one, starting from i = T . We
start from HybA.

• HybA,1,1. We give the adversary (PP, l∗0, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,1,1[m∗1],

IncrementA,1,1, TransformA,1,1[(l∗0,m
∗
2)], isLess, RetrieveTagA,1,1, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 9.

That is, we puncture ACE key EK1 at point pT+1 = (T + 1,m∗1) in programs Increment and GenZero,
since these programs never run encryption on pT+1. Indistinguishability holds by iO.

• HybA,1,2. We give the adversary (PP, l∗0, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,1,2[m∗1],

IncrementA,1,2, TransformA,1,2[(l∗0,m
∗
2)], isLess, RetrieveTagA,1,2, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 10.
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That is, we puncture ACE key DK1 at the same point pT+1 = (T + 1,m∗1) in programs Increment,
Transform, and RetrieveTag. Indistinguishability holds by security of constrained decryption of ACE,
since corresponding encryption key is already punctured at pT+1.

Next we consider the following sequence of hybrids for j = T, . . . , 1. Programs for the case j = T and
j = T − 1 are written separately in order to track how the upper bound in programs is changed from T to
T + 1.

• HybA,2,j,1. We give the adversary (PP, l∗0, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,2,j,1[m∗1],

IncrementA,2,j,1, TransformA,2,j,1[(l∗0,m
∗
2)], isLess, RetrieveTagA,2,j,1, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 10 (for the case j = T ), fig. 13 (for j = T − 1), fig. 17 (for
j = T − 2, . . . , 1).

That is, in this hybrid EK1 and DK1 are punctured at pj+1 = (j + 1,m∗1). In addition, program
Increment, given [j,m∗1], outputs [j + 2,m∗1]. Program Transform, given ([i,m∗1],m2) for i > j,
outputs [i− 1,m∗1,m2].

Note that HybA,2,j,1 = HybA,1,2 for j = T .

• HybA,2,j,2. We give the adversary (PP, l∗0, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,2,j,2[m∗1],

IncrementA,2,j,2, TransformA,2,j,2[(l∗0,m
∗
2)], isLess, RetrieveTagA,2,j,2, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 11 (for the case j = T ), fig. 14 (for j = T − 1), fig. 18 (for
j = T − 2, . . . , 1).

That is, we additionally puncture ACE keys EK1,DK1 at the point pj = (j,m∗1) and hardwire l∗j =
ACE.EncEK1(j,m∗1) to eliminate the need to encrypt or decrypt pj in programs GenZero, Increment,
Transform, and RetrieveTag. Indistinguishability holds by iO.

• HybA,2,j,3. We give the adversary (PP, l∗0, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,2,j,3[m∗1],

IncrementA,2,j,3, TransformA,2,j,3[(l∗0,m
∗
2)], isLess, RetrieveTagA,2,j,3, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 12 (for the case j = T ), fig. 15 (for j = T − 1), fig. 19 (for
j = T − 2, . . . , 1).

That is, we replace l∗j = ACE.EncEK1(j,m∗1) with l∗j+1 = ACE.EncEK1(j + 1,m∗1) in programs
Increment, Transform, and RetrieveTag. Indistinguishability holds by security of ACE for punctured
points pj , pj+1.

• HybA,2,j,4. We give the adversary (PP, l∗0, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,2,j,4[m∗1],

IncrementA,2,j,4, TransformA,2,j,4[(l∗0,m
∗
2)], isLess, RetrieveTagA,2,j,4, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 13 (for the case j = T ), fig. 16 (for j = T − 1), fig. 20 (for
j = T − 2, . . . , 1).

That is, we unpuncture ACE keys EK1,DK1 at the point pj+1 = (j + 1,m∗1) and remove hardwired
l∗j+1 = ACE.EncEK1(j + 1,m∗1) in programs GenZero, Increment, Transform, and RetrieveTag.
Indistinguishability holds by iO.

Note that HybA,2,j,4 = HybA,2,j−1,1 for 2 ≤ j ≤ T .
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Next we change l∗0 to l∗1 as follows:

• HybA,2,0,1. We give the adversary (PP, l∗0, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,2,0,1[m∗1],

IncrementA,2,0,1, TransformA,2,0,1[(l∗0,m
∗
2)], isLess, RetrieveTagA,2,0,1, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 21.

That is, in this hybrid EK1 and DK1 are punctured at p1 = (1,m∗1). In addition, program Increment,
given [0,m∗1], outputs [2,m∗1]. Program Transform, given ([i,m∗1],m2) for i > 0, outputs [i −
1,m∗1,m2].

Note that HybA,2,0,1 = HybA,2,j,4 for j = 1.

• HybA,2,0,2. We give the adversary (PP, l∗0, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,2,0,2[m∗1],

IncrementA,2,0,2, TransformA,2,0,2[(l∗0,m
∗
2)], isLess, RetrieveTagA,2,0,2, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 22.

That is, we additionally puncture ACE keys EK1,DK1 at the point p0 = (0,m∗1) and hardwire l∗0 =
ACE.EncEK1(0,m∗1) to eliminate the need to encrypt or decrypt p0 in programs GenZero, Increment,
Transform, and RetrieveTag. Indistinguishability holds by iO.

• HybA,2,0,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,2,0,3[m∗1],

IncrementA,2,0,3, TransformA,2,0,3[(l∗1,m
∗
2)], isLess, RetrieveTagA,2,0,3, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 23.

That is, we replace l∗0 = ACE.EncEK1(0,m∗1) with l∗1 = ACE.EncEK1(1,m∗1) in programs Increment,
Transform, and RetrieveTag, and give l∗1 instead of l∗0 to the adversary. Indistinguishability holds by
security of ACE for punctured points p0, p1.

• HybA,3,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,3,1[m∗1],

IncrementA,3,1, TransformA,3,1[(l∗1,m
∗
2)], isLess, RetrieveTagA,3,1, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 24.

That is, we unpuncture ACE keys EK1,DK1 at the point p1 = (1,m∗1) and remove hardwired
l∗1 = ACE.EncEK1(1,m∗1) in programs GenZero, Increment, Transform, and RetrieveTag. Indis-
tinguishability holds by iO.

• HybA,3,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,3,2[m∗1],

IncrementA,3,2, TransformA,3,2[(l∗1,m
∗
2)], isLess, RetrieveTagA,3,2, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 25.

That is, we unpuncture ACE decryption key DK1 at the point p0 = (0,m∗1) in programs Increment,
Transform, and RetrieveTag. Indistinguishability holds by security of constrained decryption of ACE,
since corresponding encryption key is punctured at p0.

• HybA,3,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,3,3[m∗1],

IncrementA,3,3, TransformA,3,3[(l∗1,m
∗
2)], isLess, RetrieveTagA,3,3, RetrieveTags; rSetup) for ran-
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domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 26.

That is, we unpuncture ACE encryption key EK1 at the point p0 = (0,m∗1) in programs GenZero,
Increment. Indistinguishability holds by iO, since these programs never encrypt p0.

Note that HybA,3,3 is the same as HybB .

Thus, the the advantage of the PPT adversary in distinguishing between HybA and HybB is at most

(2T + 4) · 2−Ω(νiO(λ)) + (T + 1) · 2−Ω(νACE.Indist(λ)) + 2 · 2−Ω(νACE.ConstrDec(λ)) =

T · 2−Ω(νiO(λ)) + T · 2−Ω(νACE.Indist(λ)) + 2−Ω(νACE.ConstrDec(λ)).
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Programs in HybA,1,1
Program GenZeroA,1,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pT+1} of ACE punctured at the point pT+1 = (T + 1,m∗1), tag
m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Return l← ACE.EncEK1{pT+1}(0,m1).

Program IncrementA,1,1(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pT+1},DK1 of ACE punctured at pT+1 = (T +
1,m∗1), upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. Return l+1 ← ACE.EncEK1{pT+1}(i+ 1,m1).

Program TransformA,1,1[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗0 =
ACE.EncEK1(0,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. Return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,1,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Return m1.

Figure 9: Programs in HybA,1,1. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,1,2 (same as HybA,2,T,1)
Program GenZeroA,2,T,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pT+1} of ACE punctured at the point pT+1 = (T + 1,m∗1), tag
m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Return l← ACE.EncEK1{pT+1}(0,m1).

Program IncrementA,2,T,1(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pT+1},DK1{pT+1} of ACE punctured at pT+1 =
(T + 1,m∗1), upper bound T .

1. out← ACE.DecDK1{pT+1}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then return ′fail′;
3. Return l+1 ← ACE.EncEK1{pT+1}(i+ 1,m1).

Program TransformA,2,T,1[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pT+1} of ACE punctured at the point pT+1 = (T + 1,m∗1),
encryption key EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{pT+1}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. Return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,T,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pT+1} of ACE punctured at the point pT+1 = (T + 1,m∗1), upper
bound T .

1. out← ACE.DecDK1{pT+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then return ′fail′;
3. Return m1.

Figure 10: Programs in HybA,1,2 (same as HybA,2,T,1). In addition, in this hybrid the adversary gets
unmodified obfuscated programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 =
ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,T,2
Program GenZeroA,2,T,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pT , pT+1} of ACE punctured at points pT = (T,m∗1), pT+1 =
(T + 1,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pT ,pT+1}(0,m1).

Program IncrementA,2,T,2(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pT , pT+1},DK1{pT , pT+1} of ACE punctured at
pT = (T,m∗1), pT+1 = (T + 1,m∗1), single-tag level l∗T = ACE.EncEK1(T,m∗1), upper bound T .

1. If l = l∗T then output ′fail′;
2. out← ACE.DecDK1{pT ,pT+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If i ≥ T or i < 0 then output ′fail′;
4. If i = T − 1 and m1 = m∗1 then output l∗T ;
5. output l+1 ← ACE.EncEK1{pT ,pT+1}(i+ 1,m1).

Program TransformA,2,T,2[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pT , pT+1} of ACE punctured at points pT = (T,m∗1), pT+1 =
(T + 1,m∗1), encryption key EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, single-tag level
l∗T = ACE.EncEK1(T,m∗1), upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. If l = l∗T then output L← ACE.EncEK2(T,m∗1,m2);
3. out← ACE.DecDK1{pT ,pT+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
4. If i > T or i < 0 then output ′fail′;
5. output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,T,2(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pT , pT+1} of ACE punctured at points pT = (T,m∗1), pT+1 =
(T + 1,m∗1), single-tag level l∗T = ACE.EncEK1(T,m∗1), upper bound T .

1. If l = l∗T then output m∗1;
2. out← ACE.DecDK1{pT ,pT+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then output ′fail′;
4. Output m1.

Figure 11: Programs in HybA,2,T,2. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,T,3
Program GenZeroA,2,T,3[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pT , pT+1} of ACE punctured at points pT = (T,m∗1), pT+1 =
(T + 1,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pT ,pT+1}(0,m1).

Program IncrementA,2,T,3(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pT , pT+1},DK1{pT , pT+1} of ACE punctured at
pT = (T,m∗1), pT+1 = (T + 1,m∗1), single-tag level l∗T+1 = ACE.EncEK1(T + 1,m∗1), upper bound T .

1. If l = l∗T+1 then output ′fail′;
2. out← ACE.DecDK1{pT ,pT+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If i ≥ T or i < 0 then output ′fail′;
4. If i = T − 1 and m1 = m∗1 then output l∗T+1;
5. output l+1 ← ACE.EncEK1{pT ,pT+1}(i+ 1,m1).

Program TransformA,2,T,3[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pT , pT+1} of ACE punctured at points pT = (T,m∗1), pT+1 =
(T + 1,m∗1), encryption key EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, single-tag level
l∗T+1 = ACE.EncEK1(T + 1,m∗1), upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. If l = l∗T+1 then output L← ACE.EncEK2(T,m∗1,m2);
3. out← ACE.DecDK1{pT ,pT+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
4. If i > T or i < 0 then output ′fail′;
5. output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,T,3(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pT , pT+1} of ACE punctured at points pT = (T,m∗1), pT+1 =
(T + 1,m∗1), single-tag level l∗T+1 = ACE.EncEK1(T + 1,m∗1), upper bound T .

1. If l = l∗T+1 then output m∗1;
2. out← ACE.DecDK1{pT ,pT+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then output ′fail′;
4. Output m1.

Figure 12: Programs in HybA,2,T,3. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,T,4 (same as HybA,2,T−1,1).
Program GenZeroA,2,T−1,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pT } of ACE punctured at the point pT = (T,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pT }(0,m1).

Program IncrementA,2,T−1,1(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pT },DK1{pT } of ACE punctured at pT = (T,m∗1),
upper bound T .

1. out← ACE.DecDK1{pT }(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. If i = T − 1 and m1 = m∗1 then output ACE.EncEK1{pT }(i+ 2,m1);
4. output l+1 ← ACE.EncEK1{pT }(i+ 1,m1).

Program TransformA,2,T−1,1[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pT } of ACE punctured at the point pT = (T,m∗1), encryption key
EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. out← ACE.DecDK1{pT }(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1 and i = T + 1 then output L← ACE.EncEK2(T,m∗1,m2);
4. If i > T or i < 0 then output ′fail′;
5. output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,T−1,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pT } of ACE punctured at the point pT = (T,m∗1), upper bound T .

1. out← ACE.DecDK1{pT }(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m∗1.

3. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 13: Programs in HybA,2,T,4 (same as HybA,2,T−1,1). In addition, in this hybrid the adversary
gets unmodified obfuscated programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,T−1,2

Program GenZeroA,2,T−1,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pT−1, pT } of ACE punctured at points pT−1 = (T − 1,m∗1), pT =
(T,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pT−1,pT }(0,m1).

Program IncrementA,2,T−1,2(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pT−1, pT },DK1{pT−1, pT } of ACE punctured at
points pT−1 = (T − 1,m∗1), pT = (T,m∗1), single-tag level l∗T−1 = ACE.EncEK1(T − 1,m∗1), upper bound
T ,

1. If l = l∗T−1 then output ACE.EncEK1{pT−1,pT }(T + 1,m∗1);
2. out← ACE.DecDK1{pT−1,pT }(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If i ≥ T or i < 0 then output ′fail′;
4. If i = T − 2 and m1 = m∗1 then output l∗T−1;
5. output l+1 ← ACE.EncEK1{pT−1,pT }(i+ 1,m1).

Program TransformA,2,T−1,2[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pT−1, pT } of ACE punctured at points pT−1 = (T − 1,m∗1), pT =
(T,m∗1), encryption key EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, single-tag level
l∗T−1 = ACE.EncEK1(T − 1,m∗1), upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. If l = l∗T−1 then output L← ACE.EncEK2(T − 1,m∗1,m2);
3. out← ACE.DecDK1{pT−1,pT }(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
4. If m1 = m∗1 and i = T + 1 then output L← ACE.EncEK2(T,m∗1,m2);
5. If i > T or i < 0 then output ′fail′;
6. output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,T−1,2(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pT−1, pT } of ACE punctured at points pT−1 = (T − 1,m∗1), pT =
(T,m∗1), single-tag level l∗T−1 = ACE.EncEK1(T − 1,m∗1), upper bound T .

1. If l = l∗T−1 then output m∗1;
2. out← ACE.DecDK1{pT−1,pT }(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m∗1.

4. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 14: Programs in HybA,2,T−1,2. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,T−1,3

Program GenZeroA,2,T−1,3[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pT−1, pT } of ACE punctured at points pT−1 = (T − 1,m∗1), pT =
(T,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pT−1,pT }(0,m1).

Program IncrementA,2,T−1,3(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pT−1, pT },DK1{pT−1, pT } of ACE punctured at
points pT−1 = (T − 1,m∗1), pT = (T,m∗1), single-tag level l∗T = ACE.EncEK1(T,m∗1) , upper bound T .

1. If l = l∗T then output ACE.EncEK1{pT−1,pT }(T + 1,m∗1);
2. out← ACE.DecDK1{pT−1,pT }(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If i ≥ T or i < 0 then output ′fail′;
4. If i = T − 2 and m1 = m∗1 then output l∗T ;
5. output l+1 ← ACE.EncEK1{pT−1,pT }(i+ 1,m1).

Program TransformA,2,T−1,3[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pT−1, pT } of ACE punctured at points pT−1 = (T − 1,m∗1), pT =
(T,m∗1), encryption key EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, single-tag level
l∗T = ACE.EncEK1(T,m∗1), upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. If l = l∗T then output L← ACE.EncEK2(T − 1,m∗1,m2);
3. out← ACE.DecDK1{pT−1,pT }(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
4. If m1 = m∗1 and i = T + 1 then output L← ACE.EncEK2(T,m∗1,m2);
5. If i > T or i < 0 then output ′fail′;
6. output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,T−1,3(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pT−1, pT } of ACE punctured at points pT−1 = (T − 1,m∗1), pT =
(T,m∗1), single-tag level l∗T = ACE.EncEK1(T,m∗1), upper bound T .

1. If l = l∗T then output m∗1;
2. out← ACE.DecDK1{pT−1,pT }(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m∗1.

4. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 15: Programs in HybA,2,T−1,3. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,T−1,4

Program GenZeroA,2,T−1,4[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pT−1} of ACE punctured at the point pT−1 = (T − 1,m∗1), tag
m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pT−1}(0,m1).

Program IncrementA,2,T−1,4(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pT−1},DK1{pT−1} of ACE punctured at the point
pT−1 = (T − 1,m∗1), upper bound T .

1. out← ACE.DecDK1{pT−1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. If i = T − 2 and m1 = m∗1 then output ACE.EncEK1{pT−1}(i+ 2,m1);
5. output l+1 ← ACE.EncEK1{pT−1}(i+ 1,m1).

Program TransformA,2,T−1,4[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pT−1} of ACE punctured at the point pT−1 = (T − 1,m∗1),
encryption key EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. out← ACE.DecDK1{pT−1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1 and i = T + 1 then output L← ACE.EncEK2(T,m∗1,m2);
4. If m1 = m∗1 and i = T then output L← ACE.EncEK2(T − 1,m∗1,m2);
5. If i > T or i < 0 then output ′fail′;
6. output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,T−1,4(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pT−1} of ACE punctured at the point pT−1 = (T − 1,m∗1), upper
bound T .

1. out← ACE.DecDK1{pT−1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m∗1.

3. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 16: Programs in HybA,2,T−1,4. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,j,1
Program GenZeroA,2,j,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pj+1} of ACE punctured at the point pj+1 = (j + 1,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pj+1}(0,m1).

Program IncrementA,2,j,1(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pj+1},DK1{pj+1} of ACE punctured at pj+1 =
(j + 1,m∗1), index j, upper bound T .

1. out← ACE.DecDK1{pj+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. If i = j and m1 = m∗1 then output ACE.EncEK1{pj+1}(i+ 2,m∗1);
5. output l+1 ← ACE.EncEK1{pj+1}(i+ 1,m1).

Program TransformA,2,j,1[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pj+1} of ACE punctured at the point pj+1 = (j + 1,m∗1), encryp-
tion key EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, index j, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. out← ACE.DecDK1{pj+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) If i > j + 1 then output L← ACE.EncEK2(i− 1,m1,m2);
(c) If i = j + 1 then output ′fail′;
(d) If i < j + 1 then output L← ACE.EncEK2(i,m1,m2).

4. If m1 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,j,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pj+1} of ACE punctured at the point pj+1 = (j + 1,m∗1), upper
bound T .

1. out← ACE.DecDK1{pj+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m∗1.

3. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 17: Programs in HybA,2,j,1. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,j,2
Program GenZeroA,2,j,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pj , pj+1} of ACE punctured at points pj = (j,m∗1), pj+1 =
(j + 1,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pj ,pj+1}(0,m1).

Program IncrementA,2,j,2(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pj , pj+1},DK1{pj , pj+1} of ACE punctured at
points pj = (j,m∗1), pj+1 = (j + 1,m∗1), single-tag level l∗j = ACE.EncEK1(j,m∗1), index j, upper bound T ,

1. If l = l∗j then output ACE.EncEK1{pj ,pj+1}(j + 2,m∗1);
2. out← ACE.DecDK1{pj ,pj+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
4. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
5. If i = j − 1 and m1 = m∗1 then output l∗j ;
6. output l+1 ← ACE.EncEK1{pj ,pj+1}(i+ 1,m1).

Program TransformA,2,j,2[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pj , pj+1} of ACE punctured at points pj = (j,m∗1), pj+1 =
(j + 1,m∗1), encryption key EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, single-tag level
l∗j = ACE.EncEK1(j,m∗1), index j, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. If l = l∗j then output L← ACE.EncEK2(j,m∗1,m2);
3. out← ACE.DecDK1{pj ,pj+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
4. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) If i > j + 1 then output L← ACE.EncEK2(i− 1,m1,m2);
(c) If i = j + 1 then output ′fail′;
(d) If i = j then output ′fail′;
(e) If i < j then output L← ACE.EncEK2(i,m1,m2).

5. If m1 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,j,2(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pj , pj+1} of ACE punctured at points pj = (j,m∗1), pj+1 =
(j + 1,m∗1), single-tag level l∗j = ACE.EncEK1(j,m∗1), upper bound T .

1. If l = l∗j then output m∗1;
2. out← ACE.DecDK1{pj ,pj+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m1.

4. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 18: Programs in HybA,2,j,2. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,j,3
Program GenZeroA,2,j,3[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pj , pj+1} of ACE punctured at points pj = (j,m∗1), pj+1 =
(j + 1,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pj ,pj+1}(0,m1).

Program IncrementA,2,j,3(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pj , pj+1},DK1{pj , pj+1} of ACE punctured at
points pj = (j,m∗1), pj+1 = (j + 1,m∗1), single-tag level l∗j+1 = ACE.EncEK1(j + 1,m∗1) , index j, upper
bound T .

1. If l = l∗j+1 then output ACE.EncEK1{pj ,pj+1}(j + 2,m∗1);
2. out← ACE.DecDK1{pj ,pj+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
4. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
5. If i = j − 1 and m1 = m∗1 then output l∗j+1;
6. output l+1 ← ACE.EncEK1{pj ,pj+1}(i+ 1,m1).

Program TransformA,2,j,3[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pj , pj+1} of ACE punctured at points pj = (j,m∗1), pj+1 =
(j + 1,m∗1), encryption key EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, single-tag level
l∗j+1 = ACE.EncEK1(j + 1,m∗1), index j, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. If l = l∗j+1 then output L← ACE.EncEK2(j,m∗1,m2);
3. out← ACE.DecDK1{pj ,pj+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
4. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) If i > j + 1 then output L← ACE.EncEK2(i− 1,m1,m2);
(c) If i = j + 1 then output ′fail′;
(d) If i = j then output ′fail′;
(e) If i < j then output L← ACE.EncEK2(i,m1,m2).

5. If m1 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,j,3(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pj , pj+1} of ACE punctured at points pj = (j,m∗1), pj+1 =
(j + 1,m∗1), single-tag level l∗j+1 = ACE.EncEK1(j + 1,m∗1), upper bound T .

1. If l = l∗j+1 then output m∗1;
2. out← ACE.DecDK1{pj ,pj+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m1.

4. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 19: Programs in HybA,2,j,3. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,j,4.
Program GenZeroA,2,j,4[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pj} of ACE punctured at the point pj = (j,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pj}(0,m1).

Program IncrementA,2,j,4(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pj},DK1{pj} of ACE punctured at pj = (j,m∗1),
index j, upper bound T .

1. out← ACE.DecDK1{pj}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. If i = j − 1 and m1 = m∗1 then output ACE.EncEK1{pj}(i+ 2,m∗1);
5. output l+1 ← ACE.EncEK1{pj}(i+ 1,m1).

Program TransformA,2,j,4[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pj} of ACE punctured at the point pj = (j,m∗1), encryption key
EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, index j, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. out← ACE.DecDK1{pj}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) If i > j then output L← ACE.EncEK2(i− 1,m1,m2);
(c) If i = j then output ′fail′;
(d) If i < j then output L← ACE.EncEK2(i,m1,m2).

4. If m1 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,j,4(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pj} of ACE punctured at the point pj = (j,m∗1), upper bound T .

1. out← ACE.DecDK1{pj}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m∗1.

3. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 20: Programs in HybA,2,j,4. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,0,1
Program GenZeroA,2,0,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p1} of ACE punctured at the point p1 = (1,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{p1}(0,m1).

Program IncrementA,2,0,1(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p1},DK1{p1} of ACE punctured at p1 = (1,m∗1),
upper bound T .

1. out← ACE.DecDK1{p1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. If i = 0 and m1 = m∗1 then output ACE.EncEK1{p1}(i+ 2,m∗1);
5. output l+1 ← ACE.EncEK1{p1}(i+ 1,m1).

Program TransformA,2,0,1[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p1} of ACE punctured at the point p1 = (1,m∗1), encryption key
EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. out← ACE.DecDK1{p1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) If i > 1 then output L← ACE.EncEK2(i− 1,m1,m2);
(c) If i = 1 then output ′fail′;
(d) If i < 1 then output L← ACE.EncEK2(i,m1,m2).

4. If m1 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,0,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p1} of ACE punctured at the point p1 = (1,m∗1), upper bound T .

1. out← ACE.DecDK1{p1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m∗1.

3. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 21: Programs in HybA,2,0,1. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,0,2
Program GenZeroA,2,0,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0, p1} of ACE punctured at points p0 = (0,m∗1), p1 = (1,m∗1),
tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{p0,p1}(0,m1).

Program IncrementA,2,0,2(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0, p1},DK1{p0, p1} of ACE punctured at points
p0 = (0,m∗1), p1 = (1,m∗1), single-tag level l∗0 = ACE.EncEK1(0,m∗1), upper bound T ,

1. If l = l∗0 then output ACE.EncEK1{p0,p1}(2,m
∗
1);

2. out← ACE.DecDK1{p0,p1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
4. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
5. output l+1 ← ACE.EncEK1{p0,p1}(i+ 1,m1).

Program TransformA,2,0,2[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0, p1} of ACE punctured at points p0 = (0,m∗1), p1 = (1,m∗1),
encryption key EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. If l = l∗0 then output L← ACE.EncEK2(0,m∗1,m2);
3. out← ACE.DecDK1{p0,p1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
4. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) If i > 1 then output L← ACE.EncEK2(i− 1,m1,m2);
(c) If i = 1 then output ′fail′;
(d) If i = 0 then output ′fail′;

5. If m1 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,0,2(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0, p1} of ACE punctured at points p0 = (0,m∗1), p1 = (1,m∗1),
single-tag level l∗0 = ACE.EncEK1(0,m∗1), upper bound T .

1. If l = l∗0 then output m∗1;
2. out← ACE.DecDK1{p0,p1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m1.

4. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 22: Programs in HybA,2,0,2. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,0,3
Program GenZeroA,2,0,3[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0, p1} of ACE punctured at points p0 = (0,m∗1), p1 = (1,m∗1),
tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{p0,p1}(0,m1).

Program IncrementA,2,0,3(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0, p1},DK1{p0, p1} of ACE punctured at points
p0 = (0,m∗1), p1 = (1,m∗1), single-tag level l∗1 = ACE.EncEK1(1,m∗1), upper bound T ,

1. If l = l∗1 then output ACE.EncEK1{p0,p1}(2,m
∗
1);

2. out← ACE.DecDK1{p0,p1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
4. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
5. output l+1 ← ACE.EncEK1{p0,p1}(i+ 1,m1).

Program TransformA,2,0,3[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0, p1} of ACE punctured at points p0 = (0,m∗1), p1 = (1,m∗1),
encryption key EK2 of ACE, single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then output ′fail′;

2. If l = l∗1 then output L← ACE.EncEK2(0,m∗1,m2);
3. out← ACE.DecDK1{p0,p1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
4. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) If i > 1 then output L← ACE.EncEK2(i− 1,m1,m2);
(c) If i = 1 then output ′fail′;
(d) If i = 0 then output ′fail′;

5. If m1 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,0,3(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0, p1} of ACE punctured at points p0 = (0,m∗1), p1 = (1,m∗1),
single-tag level l∗1 = ACE.EncEK1(1,m∗1), upper bound T .

1. If l = l∗1 then output m∗1;
2. out← ACE.DecDK1{p0,p1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m1.

4. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 23: Programs in HybA,2,0,3. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,3,1.
Program GenZeroA,3,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at the point p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{p0}(0,m1).

Program IncrementA,3,1(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1{p0} of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program TransformA,3,1[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0} of ACE punctured at the point p0 = (0,m∗1), encryption key
EK2 of ACE, single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then output ′fail′;

2. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) output L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,3,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0} of ACE punctured at the point p0 = (0,m∗1), upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m∗1.

3. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 24: Programs in HybA,3,1. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,3,2
Program GenZeroA,3,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at the point p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{p0}(0,m1).

Program IncrementA,3,2(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1 of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program TransformA,3,2[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then output ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) output L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,3,2(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m∗1.

3. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 25: Programs in HybA,3,2. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,3,3
Program GenZeroA,3,3[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1(0,m1).

Program IncrementA,3,3(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program TransformA,3,3[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then output ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) output L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,3,3(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m∗1.

3. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 26: Programs in HybA,3,3. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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5.4.2 Proof of lemma 3 (Changing the upper bound from T + 1 to T ).

As described earlier, we will fix upper bounds in programs by cutting the sequence of encryptions [1,m∗1]→
. . .→ [T + 1,m∗1] at a random place and then cutting the sequence in all subsequent positions, then changing
the upper bound, and finally restoring the line. We cut the line at a random place in the following sequence of
hybrids, starting from HybB:

• HybB,1,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,1,1[m∗1],

IncrementB,1,1, TransformB,1,1[(l∗1,m
∗
2)], isLess, RetrieveTagB,1,1, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 28.

That is, in program Increment we add an instruction to abort if m1 = m∗1 and g(i) = I∗, where g
is an injective OWF and I∗ is a random image of g. Indistinguishability holds by security of iO and
OWF: since OWF is injective, the two programs differ only at a single point; as shown in [BCP14],
any adversary which can distinguish between the two programs, can be also used to find the differing
point, which can be used to break one-wayness of g (see lemma 1).

• HybB,1,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,1,2[m∗1],

IncrementB,1,2, TransformB,1,2[(l∗1,m
∗
2)], isLess, RetrieveTagB,1,2, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 29.

That is, in programs Increment and GenZero we puncture ACE encryption key EK1 at the point
(i∗ + 1,m∗1). Indistinguishability holds by iO, since Increment never needs to encrypt this point,
because it aborts earlier on input [i∗,m∗1]. GenZero never needs to encrypt (i∗,m∗1) as well, since it
only encrypts value 0, and i∗ = 0 only with negligible probability.

Next we run the following sequence of hybrids for j = i∗, . . . , T in order to cut the chain at all points after
i∗:

• HybB,2,j,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,2,j,1[m∗1],

IncrementB,2,j,1, TransformB,2,j,1[(l∗1,m
∗
2)], isLess, RetrieveTagB,2,j,1, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 30.

That is, in programs GenZero, Increment, Transform, and RetrieveTag ACE encryption key EK1 is
punctured at the set {(i∗ + 1,m∗1), . . . , (j + 1,m∗1)}, and its decryption key DK1 is punctured at the
set {(i∗ + 1,m∗1), . . . , (j,m∗1)}.

Note that HybB,2,j,1 = HybB,1,2 for j = i∗.

• HybB,2,j,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,2,j,2[m∗1],

IncrementB,2,j,2, TransformB,2,j,2[(l∗1,m
∗
2)], isLess, RetrieveTagB,2,j,2, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 31.

That is, in programs Increment, Transform, and RetrieveTag we additionally puncture ACE decryption
key DK1 at the point (j + 1,m∗1). Indistinguishability holds by security of constrained decryption of
ACE, since EK1 is already punctured at the set which includes (j + 1,m∗1).
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• HybB,2,j,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,2,j,3[m∗1],

IncrementB,2,j,3, TransformB,2,j,3[(l∗1,m
∗
2)], isLess, RetrieveTagB,2,j,3, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 32.

That is, we additionally puncture ACE encryption key EK1 at the point (j + 2,m∗1) in programs
GenZero and Increment. Indistinguishability holds by iO, since DK1 is punctured at the set which
includes (j + 1,m∗1), and thus program Increment never tries to encrypt (j + 2,m∗1), aborting earlier;
GenZero never needs to encrypt (j + 2,m∗1) either since j + 2 6= 0.

Note that HybB,2,j,3 = HybB,2,j+1,1 for j = i∗, . . . , T .

Next we change the upper bound as follows:

• HybB,3,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,3,1[m∗1],

IncrementB,3,1, TransformB,3,1[(l∗1,m
∗
2)], isLess, RetrieveTagB,3,1, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 33.

That is, in programs GenZero, Increment, Transform, and RetrieveTag EK1,DK1 are punctured at the
set {[i∗ + 1,m∗1], . . . , [T + 1,m∗1]}.

Note that HybB,3,1 = HybB,2,T,2.

• HybB,3,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,3,2[m∗1],

IncrementB,3,2, TransformB,3,2[(l∗1,m
∗
2)], isLess, RetrieveTagB,3,2, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 34.

That is, in program Increment and Transform we change the upper bound from T + 1 to T . Indistin-
guishability holds by iO, since DK1 is punctured at the set which includes (T,m∗1), (T + 1,m∗1), and
thus Increment anyways outputs ′fail′ on input [T,m∗1], and Transform anyway outputs ′fail′ on input
[T + 1,m∗1].

Next we run the following sequence of hybrids for j = T, . . . , i∗ in order to restore the chain:

• HybB,4,j,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,4,j,1[m∗1],

IncrementB,4,j,1, TransformB,4,j,1[(l∗1,m
∗
2)], isLess, RetrieveTagB,4,j,1, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 35.

That is, in programs GenZero, Increment, Transform, and RetrieveTag ACE key EK1,DK1 are punc-
tured at the set {(i∗ + 1,m∗1), . . . , (j + 1,m∗1)}.

Note that HybB,4,j,1 = HybB,3,2 for j = T .

• HybB,4,j,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,4,j,2[m∗1],

IncrementB,4,j,2, TransformB,4,j,2[(l∗1,m
∗
2)], isLess, RetrieveTagB,4,j,2, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 36.
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That is, we unpuncture DK1 in Increment, Transform, and RetrieveTag at the point (j + 1,m∗1).
Indistinguishability holds by security of constrained decryption of ACE, since EK1 is punctured at the
set which includes (j + 1,m∗1).

• HybB,4,j,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,4,j,3[m∗1],

IncrementB,4,j,3, TransformB,4,j,3[(l∗1,m
∗
2)], isLess, RetrieveTagB,4,j,3, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 37.

That is, we unpuncture EK1 in GenZero and Increment at the point (j + 1,m∗1). Indistinguishability
holds by iO, since GenZero never encrypts (j + 1,m∗1) where j + 1 6= 0, and since Increment never
encrypts (j + 1,m∗1), since it aborts on input [j,m∗1] due to punctured DK1.

Note that HybB,4,j,3 = HybB,4,j−1,1 for j = T, . . . , i∗ + 1.

Finally we remove the last remaining cut in the chain as follows:

• HybB,5,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,5,1[m∗1],

IncrementB,5,1, TransformB,5,1[(l∗1,m
∗
2)], isLess, RetrieveTagB,5,1, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 38.

That is, in programs Increment and GenZero ACE encryption key EK1 is punctured at the point
(i∗ + 1,m∗1).

Note that HybB,5,1 = HybB,4,j,2 for j = i∗.

• HybB,5,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,5,2[m∗1],

IncrementB,5,2, TransformB,5,2[(l∗1,m
∗
2)], isLess, RetrieveTagB,5,2, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 39.

That is, in program Increment we add an instruction to abort if m1 = m∗1 and g(i) = I∗, where
I∗ = g(i∗) for randomly chosen i∗. In addition, we remove the puncturing from EK1 in all programs.
Indistinguishability holds by iO, since Increment outputs ′fail′ on [i∗,m∗1] in both cases, and since
GenZero never needs to encrypt (i∗ + 1,m∗1).

• HybB,5,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,5,3[m∗1],

IncrementB,5,3, TransformB,5,4[(l∗1,m
∗
2)], isLess, RetrieveTagB,5,3, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 40.

That is, in program Increment we remove an instruction to abort if m1 = m∗1 and g(i) = I∗.
Indistinguishability holds by security of iO and OWF: since OWF is injective, the two programs differ
only at a single point; as shown in [BCP14], any adversary which can distinguish between the two
programs, can be also used to find the differing point, which can be used to break one-wayness of g
(see lemma 1).

Note that HybB,5,3 = HybC .

Note that this reduction works only as long as i∗ 6= 0, which happens with probability 1
T . Thus, the the
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advantage of the PPT adversary in distinguishing between HybB and HybC is at most

1

T
+ 2 · 2−Ω(γ(λ)) + (2(T − i∗ + 1) + 3) · 2−Ω(νiO(λ)) + 2(T − i∗ + 1) · 2−Ω(νACE.ConstrDec(λ)) ≤

1

T
+ 2−Ω(γ(λ)) + T · 2−Ω(νiO(λ)) + T · 2−Ω(νACE.ConstrDec(λ)).
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Programs in HybB
Program GenZeroB[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1(0,m1).

Program IncrementB(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, tag m∗1, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program TransformB[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i,m1,m2).

Program isLessB(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagB(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, tag m∗1, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i > T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i > T or i < 0) then output ′fail′;
4. Output m1.

Program RetrieveTagsB(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 27: Programs in HybB. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). 75



Programs in HybB,1,1.
Program GenZeroB,1,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1(0,m1).

Program IncrementB,1,1(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, tag m∗1, OWF g, I∗ = g(i∗) for
random i∗, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 = m∗1 and g(i) = I∗) then output ′fail′;
4. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
5. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program TransformB,1,1[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,1,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, tag m∗1, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i > T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i > T or i < 0) then output ′fail′;
4. Output m1.

Figure 28: Programs in HybB,1,1. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,1,2.
Program GenZeroB,1,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values:punctured encryption key EK1{pi∗+1} of ACE, punctured at the point pi∗+1 = (i∗ +
1,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pi∗+1}(0,m1).

Program IncrementB,1,2(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pi∗+1},DK1 of ACE, punctured at pi∗+1 =
(i∗ + 1,m∗1), tag m∗1, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. output l+1 ← ACE.EncEK1{pi∗+1}(i+ 1,m1).

Program TransformB,1,2[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,1,2(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, tag m∗1, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i > T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i > T or i < 0) then output ′fail′;
4. Output m1.

Figure 29: Programs in HybB,1,2. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,2,j,1.
Program GenZeroB,2,j,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: punctured encryption key EK1{Si∗+1,j+1} of ACE, tag m∗1. Here Sa,b =
{(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{Si∗+1,j+1}(0,m1).

Program IncrementB,2,j,1(l)
Inputs: single-tag level l
Hardwired values: punctured encryption and decryption keys EK1{Si∗+1,j+1}, DK1{Si∗+1,j} of ACE, tag
m∗1, set Si∗,j , upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,j}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. output l+1 ← ACE.EncEK1{Si∗+1,j+1}(i+ 1,m1).

Program TransformB,2,j,1[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{Si∗+1,j} of ACE, encryption key EK2 of ACE, single-tag level
l∗1 = ACE.EncEK1(1,m∗1), tagm∗1, tagm∗2, upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)}
if b ≥ a and {∅} otherwise.

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{Si∗+1,j}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,2,j,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{Si∗+1,j} of ACE, punctured at the set Si∗+1,j , tag m∗1, upper bound
T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,j}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i > T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i > T or i < 0) then output ′fail′;
4. Output m1.

Figure 30: Programs in HybB,2,j,1. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,2,j,2.
Program GenZeroB,2,j,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: punctured encryption key EK1{Si∗+1,j+1} of ACE, tag m∗1. Here Sa,b =
{(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{Si∗+1,j+1}(0,m1).

Program IncrementB,2,j,2(l)
Inputs: single-tag level l
Hardwired values: punctured encryption and decryption keys EK1{Si∗+1,j+1}, DK1{Si∗+1,j+1} of ACE,
tag m∗1, set Si∗,j , upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅}
otherwise.

1. out← ACE.DecDK1{Si∗+1,j+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. output l+1 ← ACE.EncEK1{Si∗+1,j+1}(i+ 1,m1).

Program TransformB,2,j,2[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{Si∗+1,j+1} of ACE, encryption key EK2 of ACE, single-tag level
l∗1 = ACE.EncEK1(1,m∗1), tagm∗1, tagm∗2, upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)}
if b ≥ a and {∅} otherwise.

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{Si∗+1,j+1}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,2,j,2(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{Si∗+1,j+1} of ACE, punctured at the set Si∗+1,j+1, tag m∗1, upper
bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,j+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i > T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i > T or i < 0) then output ′fail′;
4. Output m1.

Figure 31: Programs in HybB,2,j,2. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,2,j,3.
Program GenZeroB,2,j,3[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: punctured encryption key EK1{Si∗+1,j+2} of ACE, tag m∗1. Here Sa,b =
{(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{Si∗+1,j+2}(0,m1).

Program IncrementB,2,j,3(l)
Inputs: single-tag level l
Hardwired values: punctured encryption and decryption keys EK1{Si∗+1,j+2}, DK1{Si∗+1,j+1} of ACE,
tag m∗1, set Si∗,j , upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅}
otherwise.

1. out← ACE.DecDK1{Si∗+1,j+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. output l+1 ← ACE.EncEK1{Si∗+1,j+2}(i+ 1,m1).

Program TransformB,2,j,3[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{Si∗+1,j+1} of ACE, encryption key EK2 of ACE, single-tag level
l∗1 = ACE.EncEK1(1,m∗1), tagm∗1, tagm∗2, upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)}
if b ≥ a and {∅} otherwise.

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{Si∗+1,j+1}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,2,j,3(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{Si∗+1,j+1} of ACE, punctured at the set Si∗+1,j+1, tag m∗1, upper
bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,j+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i > T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i > T or i < 0) then output ′fail′;
4. Output m1.

Figure 32: Programs in HybB,2,j,3. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,3,1.
Program GenZeroB,3,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: punctured encryption key EK1{Si∗+1,T+1} of ACE, tag m∗1. Here Sa,b =
{(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{Si∗+1,T+1}(0,m1).

Program IncrementB,3,1(l)
Inputs: single-tag level l
Hardwired values: punctured encryption and decryption keys EK1{Si∗+1,T+1}, DK1{Si∗+1,T+1} of ACE,
tag m∗1, set Si∗,T , upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅}
otherwise.

1. out← ACE.DecDK1{Si∗+1,T+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. output l+1 ← ACE.EncEK1{Si∗+1,T+1}(i+ 1,m1).

Program TransformB,3,1[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{Si∗+1,T+1} of ACE, encryption key EK2 of ACE, single-tag level
l∗1 = ACE.EncEK1(1,m∗1), tagm∗1, tagm∗2, upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)}
if b ≥ a and {∅} otherwise.

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{Si∗+1,T+1}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,3,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{Si∗+1,T+1} of ACE, punctured at the set Si∗+1,T+1, tag m∗1, upper
bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,T+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i > T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i > T or i < 0) then output ′fail′;
4. Output m1.

Figure 33: Programs in HybB,3,1. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,3,2.
Program GenZeroB,3,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: punctured encryption key EK1{Si∗+1,T+1} of ACE, tag m∗1. Here Sa,b =
{(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{Si∗+1,T+1}(0,m1).

Program IncrementB,3,2(l)
Inputs: single-tag level l
Hardwired values: punctured encryption and decryption keys EK1{Si∗+1,T+1}, DK1{Si∗+1,T+1} of ACE,
tag m∗1, set Si∗,T , upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅}
otherwise.

1. out← ACE.DecDK1{Si∗+1,T+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{Si∗+1,T+1}(i+ 1,m1).

Program TransformB,3,2[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{Si∗+1,T+1} of ACE, encryption key EK2 of ACE, single-tag level
l∗1 = ACE.EncEK1(1,m∗1), tagm∗1, tagm∗2, upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)}
if b ≥ a and {∅} otherwise.

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{Si∗+1,T+1}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 6= m∗1 return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,3,2(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{Si∗+1,T+1} of ACE, punctured at the set Si∗+1,T+1, upper bound
T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,T+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 34: Programs in HybB,3,2. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,4,j,1.
Program GenZeroB,4,j,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: punctured encryption key EK1{Si∗+1,j+1} of ACE, tag m∗1. Here Sa,b =
{(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{Si∗+1,j+1}(0,m1).

Program IncrementB,4,j,1(l)
Inputs: single-tag level l
Hardwired values: punctured encryption and decryption keys EK1{Si∗+1,j+1}, DK1{Si∗+1,j+1} of ACE,
tag m∗1, set Si∗,j , upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅}
otherwise.

1. out← ACE.DecDK1{Si∗+1,j+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{Si∗+1,j+1}(i+ 1,m1).

Program TransformB,4,j,1[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{Si∗+1,j+1} of ACE, encryption key EK2 of ACE, single-tag level
l∗1 = ACE.EncEK1(1,m∗1), tagm∗1, tagm∗2, upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)}
if b ≥ a and {∅} otherwise.

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{Si∗+1,j+1}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 6= m∗1 return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,4,j,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{Si∗+1,j+1} of ACE, punctured at the set Si∗+1,j+1, upper bound T .
Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,j+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 35: Programs in HybB,4,j,1. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,4,j,2.
Program GenZeroB,4,j,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: punctured encryption key EK1{Si∗+1,j+1} of ACE, tag m∗1. Here Sa,b =
{(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{Si∗+1,j+1}(0,m1).

Program IncrementB,4,j,2(l)
Inputs: single-tag level l
Hardwired values: punctured encryption and decryption keys EK1{Si∗+1,j+1}, DK1{Si∗+1,j} of ACE, tag
m∗1, set Si∗,j , upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,j}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{Si∗+1,j+1}(i+ 1,m1).

Program TransformB,4,j,2[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{Si∗+1,j} of ACE, encryption key EK2 of ACE, single-tag level
l∗1 = ACE.EncEK1(1,m∗1), tagm∗1, tagm∗2, upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)}
if b ≥ a and {∅} otherwise.

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{Si∗+1,j}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 6= m∗1 return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,4,j,2(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{Si∗+1,j} of ACE, punctured at the set Si∗+1,j , upper bound T .
Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,j}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 36: Programs in HybB,4,j,2. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,4,j,3.
Program GenZeroB,4,j,3[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: punctured encryption key EK1{Si∗+1,j} of ACE, tag m∗1. Here Sa,b =
{(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{Si∗+1,j}(0,m1).

Program IncrementB,4,j,3(l)
Inputs: single-tag level l
Hardwired values: punctured encryption and decryption keys EK1{Si∗+1,j}, DK1{Si∗+1,j} of ACE, tag
m∗1, set Si∗,j , upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,j}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{Si∗+1,j}(i+ 1,m1).

Program TransformB,4,j,3[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{Si∗+1,j} of ACE, encryption key EK2 of ACE, single-tag level
l∗1 = ACE.EncEK1(1,m∗1), tagm∗1, tagm∗2, upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)}
if b ≥ a and {∅} otherwise.

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{Si∗+1,j}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 6= m∗1 return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,4,j,3(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{Si∗+1,j} of ACE, punctured at the set Si∗+1,j , upper bound T .
Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,j}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 37: Programs in HybB,4,j,3. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,5,1.
Program GenZeroB,5,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: punctured encryption key EK1{pi∗+1} of ACE, punctured at the point pi∗+1 = (i∗ +
1,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pi∗+1}(0,m1).

Program IncrementB,5,1(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pi∗+1}, DK1 of ACE, punctured at the point
pi∗+1 = (i∗ + 1,m∗1), tag m∗1, , upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{pi∗+1}(i+ 1,m1).

Program TransformB,5,1[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 6= m∗1 return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,5,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 38: Programs in HybB,5,1. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,5,2.
Program GenZeroB,5,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1(0,m1).

Program IncrementB,5,2(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1, DK1 of ACE, tag m∗1, OWF g, I∗ = g(i∗) for
random i∗, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. If m1 = m∗1 and g(i) = I∗ then output ′fail′;
4. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program TransformB,5,2[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 6= m∗1 return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,5,2(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 39: Programs in HybB,5,2. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,5,3.
Program GenZeroB,5,3[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1(0,m1).

Program IncrementB,5,3(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program TransformB,5,3[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 6= m∗1 return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,5,3(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 40: Programs in HybB,5,3. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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5.4.3 Proof of lemma 4 (Restoring behavior of Transform).

Starting from HybC , we first change outputs of Transform from [i− 1,m∗1,m2] to [i,m∗1,m2] for different
m2 6= m∗2 one by one, by considering the following sequence of hybrids for q = 0, . . . , ν2, q 6= m∗2, where
ν2 = 2|m2|:

• HybC,1,q. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,1,q[(l
∗
1,m

∗
2)], isLessC,1,q, RetrieveTag, RetrieveTagsC,1,q, l∗1 =

ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the programs can be

found on fig. 42.

That is, program Transform on input ([i,m∗1],m2) outputs [i − 1,m∗1,m2] for m2 ≥ q or m2 = m∗2
and [i,m∗1,m2] otherwise.

Note that HybC = HybC,1,q for q = 0.

In the following sequence of hybrids we change the output at m2 = q from [i− 1,m∗1, q] to [i,m∗1, q]:

• HybC,1,q,1,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,1,q,1,1[(l∗1,m
∗
2)], isLessC,1,q,1,1, RetrieveTag, RetrieveTagsC,1,q,1,1, l∗1 =

ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the programs can be found

on fig. 43.

That is, in program Transform we puncture ACE encryption key EK2 at the point pT,q = (T,m∗1, q).
Indistinguishability holds by iO, since Transform never encrypts this plaintext.

• HybC,1,q,1,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,1,q,1,2[(l∗1,m
∗
2)], isLessC,1,q,1,2, RetrieveTag, RetrieveTagsC,1,q,1,2; rSetup) for

randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 44.

That is, in programs isLess and RetrieveTags we puncture ACE decryption key DK2 at the point
pT,q = (T,m∗1, q). Indistinguishability holds by security of constrained ACE key, since EK2 is already
punctured at the same point.

We consider the following hybrids for j = T −1, . . . , 0, switching the output from [j,m∗1, q] to [j+ 1,m∗1, q]:

• HybC,1,q,2,j,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,1,q,2,j,1[(l∗1,m
∗
2)], isLessC,1,q,2,j,1, RetrieveTag, RetrieveTagsC,1,q,2,j,1; rSetup)

for randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description

of the programs can be found on fig. 45.

That is, in this hybrid EK2,DK2 are punctured at the point pj+1,q = (j + 1,m∗1, q).

Note that HybC,1,q,1,2 = HybC,1,q,2,j,1 for j = T − 1.

• HybC,1,q,2,j,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,1,q,2,j,2[(l∗1,m
∗
2)], isLessC,1,q,2,j,2, RetrieveTag, RetrieveTagsC,1,q,2,j,2; rSetup)

for randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description

of the programs can be found on fig. 46.
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That is, we additionally puncture ACE keys EK2,DK2 at the point pj,q = (j,m∗1, q) and hardwire
L∗j,q = ACE.EncEK2(j,m∗1, q) to eliminate the need to encrypt or decrypt pj,q in programs Transform,
isLess, and RetrieveTags. Indistinguishability holds by iO.

Note that in program isLess we instruct the program to use the value pj+1,q = (j + 1,m∗1, q) on input
L∗j,q (instead of correct value pj,q = (j,m∗1, q)). However, this doesn’t change the overall functionality
of the program: using pj+1,q instead of pj,q could change the result of comparison only if the other
input was an encryption of pj+1,q (since comparison will result in true when pj,q is used and false
when pj+1,q is used). However, DK2 is punctured at a set which includes pj+1,q, and thus no ciphertext
is decrypted to pj+1,q. Thus programs isLess12,q,2,j,1 and isLess12,q,2,j,0 have the same functionality.

• HybC,1,q,2,j,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,1,q,2,j,3[(l∗1,m
∗
2)], isLessC,1,q,2,j,3, RetrieveTag, RetrieveTagsC,1,q,2,j,3; rSetup)

for randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description

of the programs can be found on fig. 47.

That is, we replace L∗j,q = ACE.EncEK2(j,m∗1, q) with L∗j+1,q = ACE.EncEK2(j + 1,m∗1, q) in
programs Transform, isLess and RetrieveTags. Indistinguishability holds by security of ACE for
punctured points pj,q, pj+1,q.

• HybC,1,q,2,j,4. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,1,q,2,j,4[(l∗1,m
∗
2)], isLessC,1,q,2,j,4, RetrieveTag, RetrieveTagsC,1,q,2,j,4; rSetup)

for randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description

of the programs can be found on fig. 48.

That is, we unpuncture ACE keys EK2,DK2 at the point pj+1,q = (j+1,m∗1, q) and remove hardwired
L∗j+1,q = ACE.EncEK2(j+1,m∗1, q) in programs Transform, isLess, and RetrieveTags. Indistinguisha-
bility holds by iO.

Note that HybC,1,q,2,j,4 = HybC,1,q,2,j−1,1 for j = T − 1, . . . , 1.

Next we separately consider the case j = −1, switching the output from [−1,m∗1, q] to [0,m∗1, q]:

• HybC,1,q,2,−1,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZero[m∗1], Increment, TransformC,1,q,2,−1,1[(l∗1,m
∗
2)], isLessC,1,q,2,−1,1, RetrieveTag,

RetrieveTagsC,1,q,2,−1,1; rSetup) for randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be found on fig. 49.

That is, in this hybrid EK2,DK2 are punctured at the point p0,q = (0,m∗1, q).

Note that HybC,1,q,2,−1,1 = HybC,1,q,2,j,4 for j = 0.

• HybC,1,q,2,−1,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZero[m∗1], Increment, TransformC,1,q,2,−1,2[(l∗1,m
∗
2)], isLessC,1,q,2,−1,2, RetrieveTag,

RetrieveTagsC,1,q,2,−1,2; rSetup) for randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be found on fig. 50.

That is, we additionally puncture ACE keys EK2,DK2 at the point p−1,q = (−1,m∗1, q) and hardwire
L∗−1,q = ACE.EncEK2(−1,m∗1, q) to eliminate the need to encrypt or decrypt p−1,q in programs
Transform, isLess, and RetrieveTags. Indistinguishability holds by iO.

90



Note that in programs isLess and RetrieveTags we instruct the program to output fail, given L∗−1,q =
ACE.EncEK2(−1,m∗1, q) as input, since both programs treat levels with i < 0 as invalid.

• HybC,1,q,2,−1,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZero[m∗1], Increment, TransformC,1,q,2,−1,3[(l∗1,m
∗
2)], isLessC,1,q,2,−1,3, RetrieveTag,

RetrieveTagsC,1,q,2,−1,3; rSetup) for randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be found on fig. 51.

That is, we replace L∗−1,q = ACE.EncEK2(−1,m∗1, q) with L∗0,q = ACE.EncEK2(0,m∗1, q) in programs
Transform, isLess and RetrieveTags. Indistinguishability holds by security of ACE for punctured
points p−1,q, p0,q.

Next we clean up punctured keys:

• HybC,1,q,3,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,1,q,3,1[(l∗1,m
∗
2)], isLessC,1,q,3,1, RetrieveTag, RetrieveTagsC,1,q,3,1; rSetup) for

randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 52.

That is, we unpuncture ACE keys EK2,DK2 at the point p0,q = (0,m∗1, q) and remove hardwired
L∗0,q = ACE.EncEK2(0,m∗1, q) in programs Transform, isLess, and RetrieveTags. Indistinguishability
holds by iO.

• HybC,1,q,3,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,1,q,3,2[(l∗1,m
∗
2)], isLessC,1,q,3,2, RetrieveTag, RetrieveTagsC,1,q,3,2; rSetup) for

randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 53.

That is, we unpuncture ACE key DK2 at the point p−1,q = (−1,m∗1, q) in programs Transform, isLess,
and RetrieveTags. Indistinguishability holds by security of a constrained ACE key, since EK2 is
punctured at p−1,q.

• HybC,1,q,3,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,1,q,3,3[(l∗1,m
∗
2)], isLessC,1,q,3,3, RetrieveTag, RetrieveTagsC,1,q,3,3; rSetup) for

randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 54.

That is, we unpuncture ACE key EK2 at the point p−1,q = (−1,m∗1, q) in program Transform. Indis-
tinguishability holds by iO, since Transform never encrypts this value.

Note that programs isLess and RetrieveTags now output ′fail′ on input [0,m∗1, q]. We fix this in the following
hybrids:

• HybC,1,q,4,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZeroC,1,q,4,1[m∗1], IncrementC,1,q,4,1, TransformC,1,q,4,1[(l∗1,m
∗
2)], isLessC,1,q,4,1,

RetrieveTagC,1,q,4,1, RetrieveTagsC,1,q,4,1; rSetup) for randomly chosen rSetup, l∗1 =
ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be

found on fig. 55.

That is, in this hybrid we puncture ACE encryption key EK1 at p0 = (0,m∗1) in programs GenZero
and Increment. Indistinguishability holds by iO, since these programs never encrypt p0.
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• HybC,1,q,4,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZeroC,1,q,4,2[m∗1], IncrementC,1,q,4,2, TransformC,1,q,4,2[(l∗1,m
∗
2)], isLessC,1,q,4,2,

RetrieveTagC,1,q,4,2, RetrieveTagsC,1,q,4,2; rSetup) for randomly chosen rSetup, l∗1 =
ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be

found on fig. 56.

That is, in this hybrid we puncture ACE decryption key DK1 at the same point p0 = (0,m∗1) in
programs Increment, Transform, and RetrieveTag. Indistinguishability holds by security of constrained
decryption of ACE, since corresponding encryption key EK1 is already punctured at p0.

• HybC,1,q,4,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZeroC,1,q,4,3[m∗1], IncrementC,1,q,4,3, TransformC,1,q,4,3[(l∗1,m
∗
2)], isLessC,1,q,4,3,

RetrieveTagC,1,q,4,3, RetrieveTagsC,1,q,4,3; rSetup) for randomly chosen rSetup, l∗1 =
ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be

found on fig. 57.

That is, in this hybrid we puncture ACE encryption key EK2 at p0,q = (0,m∗1, q) in program Transform.
Indistinguishability holds by security of iO, since, due to punctured DK1{p0}, this program always
outputs ′fail′ on input ([0,m∗1], q) and thus never needs to encrypt p0,q.

• HybC,1,q,4,4. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZeroC,1,q,4,4[m∗1], IncrementC,1,q,4,4, TransformC,1,q,4,4[(l∗1,m
∗
2)], isLessC,1,q,4,4,

RetrieveTagC,1,q,4,4, RetrieveTagsC,1,q,4,4; rSetup) for randomly chosen rSetup, l∗1 =
ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be

found on fig. 58.

That is, in this hybrid we puncture ACE decryption key DK2 at the same point p0,q = (0,m∗1, q) in
programs isLess and RetrieveTags. Indistinguishability holds by security of constrained decryption of
ACE, since corresponding encryption key EK2 is already punctured at p0,q.

• HybC,1,q,4,5. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZeroC,1,q,4,5[m∗1], IncrementC,1,q,4,5, TransformC,1,q,4,5[(l∗1,m
∗
2)], isLessC,1,q,4,5,

RetrieveTagC,1,q,4,5, RetrieveTagsC,1,q,4,5; rSetup) for randomly chosen rSetup, l∗1 =
ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be

found on fig. 59.

That is, we remove instructions to output ′fail′ in programs isLess and RetrieveTags on input [0,m∗1, q].
Indistinguishability holds by iO, since these instructions are never executed due to the fact that DK2 is
punctured at p0,q = (0,m∗1, q) and thus the programs output ′fail′ during decryption.

• HybC,1,q,4,6. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZeroC,1,q,4,6[m∗1], IncrementC,1,q,4,6, TransformC,1,q,4,6[(l∗1,m
∗
2)], isLessC,1,q,4,6,

RetrieveTagC,1,q,4,6, RetrieveTagsC,1,q,4,6; rSetup) for randomly chosen rSetup, l∗1 =
ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be

found on fig. 60.

That is, in this hybrid we unpuncture ACE decryption key DK2 at p0,q = (0,m∗1, q) in programs isLess
and RetrieveTags. Indistinguishability holds by security of constrained decryption of ACE, since
corresponding encryption key EK2 is punctured at p0,q.
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• HybC,1,q,4,7. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZeroC,1,q,4,7[m∗1], IncrementC,1,q,4,7, TransformC,1,q,4,7[(l∗1,m
∗
2)], isLessC,1,q,4,7,

RetrieveTagC,1,q,4,7, RetrieveTagsC,1,q,4,7; rSetup) for randomly chosen rSetup, l∗1 =
ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be

found on fig. 61.

That is, in this hybrid we unpuncture ACE encryption key EK2 at p0,q = (0,m∗1, q) in program
Transform. Indistinguishability holds by security of iO, since, due to punctured DK1{p0}, this program
always outputs ′fail′ on input ([0,m∗1], q) and thus never needs to encrypt p0,q.

• HybC,1,q,4,8. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZeroC,1,q,4,8[m∗1], IncrementC,1,q,4,8, TransformC,1,q,4,8[(l∗1,m
∗
2)], isLessC,1,q,4,8,

RetrieveTagC,1,q,4,8, RetrieveTagsC,1,q,4,8; rSetup) for randomly chosen rSetup, l∗1 =
ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be

found on fig. 62.

That is, in this hybrid we unpuncture ACE decryption key DK1 at p0 = (0,m∗1) in programs Increment,
Transform, and RetrieveTag. Indistinguishability holds by security of constrained decryption of ACE,
since corresponding encryption key EK1 is punctured at p0.

• HybC,1,q,4,9. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZeroC,1,q,4,9[m∗1], IncrementC,1,q,4,9, TransformC,1,q,4,9[(l∗1,m
∗
2)], isLessC,1,q,4,9,

RetrieveTagC,1,q,4,9, RetrieveTagsC,1,q,4,9; rSetup) for randomly chosen rSetup, l∗1 =
ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be

found on fig. 63.

That is, in this hybrid we unpuncture ACE encryption key EK1 at p0 = (0,m∗1) in programs GenZero
and Increment. Indistinguishability holds by iO, since these programs never encrypt p0.

This concludes fixing behavior of Transform for the case m2 6= m∗2. Next we fix the case m2 = m∗2 in a
similar manner, except that we need different hybrids for the case j = −1, 0 (to prevent switching L∗0 to L∗1):

• HybC,2,1,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,2,1,1[(l∗1,m
∗
2)], isLessC,2,1,1, RetrieveTag, RetrieveTagsC,2,1,1, l∗1 =

ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the programs can be found

on fig. 64.

Note that HybC,1,q,4,9 = HybC,2,1,1 for q = 2|m2|.

• HybC,2,1,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,2,1,2[(l∗1,m
∗
2)], isLessC,2,1,2, RetrieveTag, RetrieveTagsC,2,1,2, l∗1 =

ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the programs can be found

on fig. 65.

That is, in program Transform we puncture ACE encryption key EK2 at the point pT,m∗2 = (T,m∗1,m
∗
2).

Indistinguishability holds by iO, since Transform never encrypts this plaintext.

• HybC,2,1,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,2,1,3[(l∗1,m
∗
2)], isLessC,2,1,3, RetrieveTag, RetrieveTagsC,2,1,3; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the
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programs can be found on fig. 66.

That is, in programs isLess and RetrieveTags we puncture ACE decryption key DK2 at the point
pT,m∗2 = (T,m∗1,m

∗
2). Indistinguishability holds by security of constrained ACE key, since EK2 is

already punctured at the same point.

We consider the following hybrids for j = T − 1, . . . , 1, switching the output from [j,m∗1,m
∗
2] to [j +

1,m∗1,m
∗
2]:

• HybC,2,2,j,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,2,2,j,1[(l∗1,m
∗
2)], isLessC,2,2,j,1, RetrieveTag, RetrieveTagsC,2,2,j,1; rSetup) for

randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 67.

That is, in this hybrid EK2,DK2 are punctured at the point pj+1,m∗2
= (j + 1,m∗1,m

∗
2).

Note that HybC,2,1,3 = HybC,2,2,j,1 for j = T − 1.

• HybC,2,2,j,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,2,2,j,2[(l∗1,m
∗
2)], isLessC,2,2,j,2, RetrieveTag, RetrieveTagsC,2,2,j,2; rSetup) for

randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 68.

That is, we additionally puncture ACE keys EK2,DK2 at the point pj,m∗2 = (j,m∗1,m
∗
2) and hardwire

L∗j,m∗2
= ACE.EncEK2(j,m∗1,m

∗
2) to eliminate the need to encrypt or decrypt pj,m∗2 in programs

Transform, isLess, and RetrieveTags. Indistinguishability holds by iO.

Note that in program isLess we instruct the program to use the value pj+1,m∗2
= (j + 1,m∗1,m

∗
2) on

input L∗j,m∗2 (instead of correct value pj,m∗2 = (j,m∗1,m
∗
2)). However, this doesn’t change the overall

functionality of the program: using pj+1,m∗2
instead of pj,m∗2 could change the result of comparison

only if the other input was an encryption of pj+1,m∗2
(since comparison will result in true when pj,m∗2

is used and false when pj+1,m∗2
is used). However, DK2 is punctured at a set which includes pj+1,m∗2

,
and thus no ciphertext is decrypted to pj+1,m∗2

. Thus programs isLessC,2,2,j,1 and isLessC,2,2,j,2 have
the same functionality.

• HybC,2,2,j,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,2,2,j,3[(l∗1,m
∗
2)], isLessC,2,2,j,3, RetrieveTag, RetrieveTagsC,2,2,j,3; rSetup) for

randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 69.

That is, we replace L∗j,m∗2 = ACE.EncEK2(j,m∗1,m
∗
2) with L∗j+1,m∗2

= ACE.EncEK2(j + 1,m∗1,m
∗
2)

in programs Transform, isLess and RetrieveTags. Indistinguishability holds by security of ACE for
punctured points pj,m∗2 , pj+1,m∗2

.

• HybC,2,2,j,4. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,2,2,j,4[(l∗1,m
∗
2)], isLessC,2,2,j,4, RetrieveTag, RetrieveTagsC,2,2,j,4; rSetup) for

randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 70.

That is, we unpuncture ACE keys EK2,DK2 at the point pj+1,m∗2
= (j + 1,m∗1,m

∗
2) and remove

hardwired L∗j+1,m∗2
= ACE.EncEK2(j + 1,m∗1,m

∗
2) in programs Transform, isLess, and RetrieveTags.
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Indistinguishability holds by iO.

Note that HybC,2,2,j,4 = HybC,2,2,j−1,1 for j = T − 1, . . . , 2.

Finally we consider the case j = −1, switching the output from [−1,m∗1,m
∗
2] to [0,m∗1,m

∗
2] and cleaning up

any left puncturing:

• HybC,2,3,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,2,3,1[(l∗1,m
∗
2)], isLessC,2,3,1, RetrieveTag, RetrieveTagsC,2,3,1; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 71.

In this hybrid EK2,DK2 are punctured at the point p1,m∗2
= (1,m∗1,m

∗
2).

Note that HybC,2,3,1 = HybC,2,2,j,4 for j = 1.

• HybC,2,3,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,2,3,2[(l∗1,m
∗
2)], isLessC,2,3,2, RetrieveTag, RetrieveTagsC,2,3,2; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 72.

That is, we unpuncture ACE key DK2 at the point p1,m∗2
= (1,m∗1,m

∗
2). in programs isLess and

RetrieveTags. Indistinguishability holds by security of a constrained ACE key, since EK2 is punctured
at p1,m∗2

.

• HybC,2,3,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroC,2,3,3[m∗1],

IncrementC,2,3,3, TransformC,2,3,3[(l∗1,m
∗
2)], isLess, RetrieveTagC,2,3,3, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 73.

That is, we change the following: first, we puncture ACE key EK1 at the point p0 = (0,m∗1) in
programs GenZero and Increment: this is without changing the functionality of those programs, since
then never need to encrypt p0. Second, we unpuncture ACE key EK2 at point p1,m∗2

= (1,m∗1,m
∗
2) in

program Transform, since this program never needs to encrypt p1,m∗2
due to the first instruction (which

tells the program to output ′fail′ if it gets ([1,m∗1],m∗2) as input)). Indistinguishability holds by iO.

• HybC,2,3,4. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroC,2,3,4[m∗1],

IncrementC,2,3,4, TransformC,2,3,4[(l∗1,m
∗
2)], isLess, RetrieveTagC,2,3,4, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 74.

That is, in programs Increment and RetrieveTag we puncture ACE decryption key DK1 at the point
p0 = (0,m∗1). Indistinguishability holds by security of constrained ACE key, since EK1 is already
punctured at the same point.

• HybC,2,3,5. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroC,2,3,5[m∗1],

IncrementC,2,3,5, TransformC,2,3,5[(l∗1,m
∗
2)], isLess, RetrieveTagC,2,3,5, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 75.

That is, we let program Transform output [0,m∗1,m
∗
2] (instead of [−1,m∗1,m

∗
2]) on input ([0,m∗1],m∗2).

This doesn’t change the functionality of the program, since DK1 is punctured the point p0 = (0,m∗1),
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thus no valid encryption of (0,m∗1) exists, and Transform aborts on input [0,m∗1],m∗2. Indistinguisha-
bility holds by iO.

• HybC,2,3,6. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroC,2,3,6[m∗1],

IncrementC,2,3,6, TransformC,2,3,6[(l∗1,m
∗
2)], isLess, RetrieveTagC,2,3,6, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 76.

That is, in programs Increment and RetrieveTag we unpuncture ACE decryption key DK1 at the point
p0 = (0,m∗1). Indistinguishability holds by security of constrained ACE key, since EK1 is already
punctured at the same point.

• HybC,2,3,7. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroC,2,3,7[m∗1],

IncrementC,2,3,7, TransformC,2,3,7[(l∗1,m
∗
2)], isLess, RetrieveTagC,2,3,7, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 77.

That is, we unpuncture ACE key EK1 at the point p0 = (0,m∗1) in programs GenZero and Increment.
Indistinguishability holds by iO, since neither program encrypts this value.

Note that HybC,2,3,7 = HybD.

Thus, the the advantage of the PPT adversary in distinguishing between HybC and HybD is at most

(2τ(λ) − 1)((2T + 9) · 2−Ω(νiO(λ)) + (T + 1) · 2−Ω(νACE.Indist(λ)) + 6 · 2−Ω(νACE.ConstrDec(λ)))+

(2(T − 1) + 4) · 2−Ω(νiO(λ)) + (T − 1) · 2−Ω(νACE.Indist(λ)) + 4 · 2−Ω(νACE.ConstrDec(λ)) =

2τ(λ)(T · 2−Ω(νiO(λ)) + T · 2−Ω(νACE.Indist(λ)) + 2−Ω(νACE.ConstrDec(λ))).
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Programs in HybC .
Program GenZeroC [m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1(0,m1).

Program IncrementC(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program TransformC [(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 return L← ACE.EncEK2(i− 1,m1,m2);
5. Return L← ACE.EncEK2(i,m1,m2).

Program isLessC(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagC(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTagsC(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 41: Programs in HybC . In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q.
Program TransformC,1,q[(l

∗
1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q return L← ACE.EncEK2(i− 1,m1,m2);
6. Return L← ACE.EncEK2(i,m1,m2);

Program isLessC,1,q(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 42: Programs in HybC,1,q. In addition, in this hybrid the adversary gets unmodified obfus-
cated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,1,1.
Program TransformC,1,q,1,1[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pT,q} of ACE punctured at pT,q =
(T,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{pT,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q return L← ACE.EncEK2{pT,q}(i− 1,m1,m2);
6. Return L← ACE.EncEK2{pT,q}(i,m1,m2);

Program isLessC,1,q,1,1(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,1,1(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 43: Programs in HybC,1,q,1,1. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,1,2.
Program TransformC,1,q,1,2[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pT,q} of ACE punctured at pT,q =
(T,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{pT,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q return L← ACE.EncEK2{pT,q}(i− 1,m1,m2);
6. Return L← ACE.EncEK2{pT,q}(i,m1,m2);

Program isLessC,1,q,1,2(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{pT,q} of ACE punctured at pT,q = (T,m∗1, q), upper bound T .
1. out′ ← ACE.DecDK2{pT,q}(L

′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m
′
2).

2. out′′ ← ACE.DecDK2{pT,q}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,1,2(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{pT,q} of ACE punctured at pT,q = (T,m∗1, q), upper bound T .

1. out← ACE.DecDK2{pT,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 44: Programs in HybC,1,q,1,2. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,2,j,1.
Program TransformC,1,q,2,j,1[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pj+1,q} of ACE punctured at pj+1,q =
(j + 1,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{pj+1,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 > q return L← ACE.EncEK2{pj+1,q}(i− 1,m1,m2);
6. If m1 = m∗1, m2 = q, and i ≤ j + 1 return L← ACE.EncEK2{pj+1,q}(i− 1,m1,m2);
7. Return L← ACE.EncEK2{pj+1,q}(i,m1,m2).

Program isLessC,1,q,2,j,1(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{pj+1,q} of ACE punctured at pj+1,q = (j+ 1,m∗1, q), upper bound
T .

1. out′ ← ACE.DecDK2{pj+1,q}(L
′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2{pj+1,q}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,2,j,1(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{pj+1,q} of ACE punctured at pj+1,q = (j+ 1,m∗1, q), upper bound
T .

1. out← ACE.DecDK2{pj+1,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 45: Programs in HybC,1,q,2,j,1. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,2,j,2.
Program TransformC,1,q,2,j,2[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pj,q, pj+1,q} of ACE punctured at
pj,q = (j,m∗1, q), pj+1,q = (j + 1,m∗1, q), double-tag level L∗j,q = ACE.EncEK2(j,m∗1, q), single-tag level
l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{pj,q ,pj+1,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 > q return L← ACE.EncEK2{pj,q ,pj+1,q}(i− 1,m1,m2);
6. If m1 = m∗1, m2 = q, and i = j + 1 return L∗j,q;
7. If m1 = m∗1, m2 = q, and i < j + 1 return L← ACE.EncEK2{pj,q ,pj+1,q}(i− 1,m1,m2);
8. Return L← ACE.EncEK2{pj,q ,pj+1,q}(i,m1,m2).

Program isLessC,1,q,2,j,2(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{pj,q, pj+1,q} of ACE punctured at pj,q = (j,m∗1, q), pj+1,q =
(j + 1,m∗1, q), double-tag level L∗j,q = ACE.EncEK2(j,m∗1, q), upper bound T .

1. If L′ = L∗j,q then set (i′,m′1,m
′
2) = (j + 1,m∗1, q),

else out′ ← ACE.DecDK2{pj,q ,pj+1,q}(L
′); if out′ = ′fail′ then output ′fail′; else parse out′ as

(i′,m′1,m
′
2).

2. If L′′ = L∗j,q then set (i′′,m′′1,m
′′
2) = (j + 1,m∗1, q),

else out′′ ← ACE.DecDK2{pj,q ,pj+1,q}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as

(i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,2,j,2(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{pj,q, pj+1,q} of ACE punctured at pj,q = (j,m∗1, q), pj+1,q =
(j + 1,m∗1, q), double-tag level L∗j,q = ACE.EncEK2(j,m∗1, q), upper bound T .

1. If L = L∗j,q then return (m∗1, q);
2. out← ACE.DecDK2{pj,q ,pj+1,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
3. If i > T or i < 0 then output ′fail′;
4. Return (m1,m2).

Figure 46: Programs in HybC,1,q,2,j,2. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,2,j,3.
Program TransformC,1,q,2,j,3[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pj,q, pj+1,q} of ACE punctured at
pj,q = (j,m∗1, q), pj+1,q = (j + 1,m∗1, q), double-tag level L∗j+1,q = ACE.EncEK2(j + 1,m∗1, q), single-tag
level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{pj,q ,pj+1,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 > q return L← ACE.EncEK2{pj,q ,pj+1,q}(i− 1,m1,m2);
6. If m1 = m∗1, m2 = q, and i = j + 1 return L∗j+1,q;
7. If m1 = m∗1, m2 = q, and i < j + 1 return L← ACE.EncEK2{pj,q ,pj+1,q}(i− 1,m1,m2);
8. Return L← ACE.EncEK2{pj,q ,pj+1,q}(i,m1,m2).

Program isLessC,1,q,2,j,3(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{pj,q, pj+1,q} of ACE punctured at pj,q = (j,m∗1, q), pj+1,q =
(j + 1,m∗1, q), double-tag level L∗j+1,q = ACE.EncEK2(j + 1,m∗1, q), upper bound T .

1. If L′ = L∗j+1,q then set (i′,m′1,m
′
2) = (j + 1,m∗1, q),

else out′ ← ACE.DecDK2{pj,q ,pj+1,q}(L
′); if out′ = ′fail′ then output ′fail′; else parse out′ as

(i′,m′1,m
′
2).

2. If L′′ = L∗j+1,q then set (i′′,m′′1,m
′′
2) = (j + 1,m∗1, q),

else out′′ ← ACE.DecDK2{pj,q ,pj+1,q}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as

(i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,2,j,3(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{pj,q, pj+1,q} of ACE punctured at pj,q = (j,m∗1, q), pj+1,q =
(j + 1,m∗1, q), double-tag level L∗j+1,q = ACE.EncEK2(j + 1,m∗1, q), upper bound T .

1. If L = L∗j+1,q then return (m∗1, q);
2. out← ACE.DecDK2{pj,q ,pj+1,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
3. If i > T or i < 0 then output ′fail′;
4. Return (m1,m2).

Figure 47: Programs in HybC,1,q,2,j,3. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,2,j,4.
Program TransformC,1,q,2,j,4[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pj,q} of ACE punctured at pj,q =
(j,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{pj,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 > q return L← ACE.EncEK2{pj,q}(i− 1,m1,m2);
6. If m1 = m∗1, m2 = q, and i ≤ j return L← ACE.EncEK2{pj,q}(i− 1,m1,m2);
7. Return L← ACE.EncEK2{pj,q}(i,m1,m2).

Program isLessC,1,q,2,j,4(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{pj,q} of ACE punctured at pj,q = (j,m∗1, q), upper bound T .
1. out′ ← ACE.DecDK2{pj,q}(L

′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m
′
2).

2. out′′ ← ACE.DecDK2{pj,q}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,2,j,4(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{pj,q} of ACE punctured at pj,q = (j,m∗1, q), upper bound T .

1. out← ACE.DecDK2{pj,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Return (m1,m2).

Figure 48: Programs in HybC,1,q,2,j,4. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,2,−1,1.
Program TransformC,1,q,2,−1,1[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{p0,q} of ACE punctured at p0,q =
(0,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 > q return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
6. If m1 = m∗1, m2 = q, and i ≤ 0 return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
7. Return L← ACE.EncEK2{p0,q}(i,m1,m2).

Program isLessC,1,q,2,−1,1(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{p0,q} of ACE punctured at p0,q = (0,m∗1, q), upper bound T .
1. out′ ← ACE.DecDK2{p0,q}(L

′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m
′
2).

2. out′′ ← ACE.DecDK2{p0,q}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,2,−1,1(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{p0,q} of ACE punctured at p0,q = (0,m∗1, q), upper bound T .

1. out← ACE.DecDK2{p0,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 49: Programs in HybC,1,q,2,−1,1. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,2,−1,2.
Program TransformC,1,q,2,−1,2[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{p−1,q, p0,q} of ACE punctured at
p−1,q = (−1,m∗1, q), p0,q = (0,m∗1, q), double-tag level L∗−1,q = ACE.EncEK2(−1,m∗1, q), single-tag level
l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{p−1,q ,p0,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 > q return L← ACE.EncEK2{p−1,q ,p0,q}(i− 1,m1,m2);
6. If m1 = m∗1, m2 = q, and i = 0 return L∗−1,q;
7. If m1 = m∗1, m2 = q, and i < 0 return L← ACE.EncEK2{p−1,q ,p0,q}(i− 1,m1,m2);
8. Return L← ACE.EncEK2{p−1,q ,p0,q}(i,m1,m2).

Program isLessC,1,q,2,−1,2(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{p−1,q, p0,q} of ACE punctured at p−1,q = (−1,m∗1, q), p0,q =
(0,m∗1, q), double-tag level L∗−1,q = ACE.EncEK2(−1,m∗1, q), upper bound T .

1. If L′ = L∗−1,q then output ′fail′;
else out′ ← ACE.DecDK2{p−1,q ,p0,q}(L

′); if out′ = ′fail′ then output ′fail′; else parse out′ as
(i′,m′1,m

′
2).

2. If L′′ = L∗−1,q then output ′fail′;
else out′′ ← ACE.DecDK2{p−1,q ,p0,q}(L

′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as
(i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,2,−1,2(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{p−1,q, p0,q} of ACE punctured at p−1,q = (−1,m∗1, q), p0,q =
(0,m∗1, q), double-tag level L∗−1,q = ACE.EncEK2(−1,m∗1, q), upper bound T .

1. If L = L∗−1,q then output ′fail′;
2. out← ACE.DecDK2{p−1,q ,p0,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
3. If i > T or i < 0 then output ′fail′;
4. Return (m1,m2).

Figure 50: Programs in HybC,1,q,2,−1,2. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,2,−1,3.
Program TransformC,1,q,2,−1,3[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{p−1,q, p0,q} of ACE punctured at
p−1,q = (−1,m∗1, q), p0,q = (0,m∗1, q), double-tag level L∗0,q = ACE.EncEK2(0,m∗1, q), single-tag level
l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{p−1,q ,p0,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 > q return L← ACE.EncEK2{p−1,q ,p0,q}(i− 1,m1,m2);
6. If m1 = m∗1, m2 = q, and i = 0 return L∗0,q;
7. If m1 = m∗1, m2 = q, and i < 0 return L← ACE.EncEK2{p−1,q ,p0,q}(i− 1,m1,m2);
8. Return L← ACE.EncEK2{p−1,q ,p0,q}(i,m1,m2).

Program isLessC,1,q,2,−1,3(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{p−1,q, p0,q} of ACE punctured at p−1,q = (−1,m∗1, q), p0,q =
(0,m∗1, q), double-tag level L∗0,q = ACE.EncEK2(0,m∗1, q), upper bound T .

1. If L′ = L∗0,q then output ′fail′;
else out′ ← ACE.DecDK2{p−1,q ,p0,q}(L

′); if out′ = ′fail′ then output ′fail′; else parse out′ as
(i′,m′1,m

′
2).

2. If L′′ = L∗0,q then output ′fail′;
else out′′ ← ACE.DecDK2{p−1,q ,p0,q}(L

′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as
(i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,2,−1,3(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{p−1,q, p0,q} of ACE punctured at p−1,q = (−1,m∗1, q), p0,q =
(0,m∗1, q), double-tag level L∗0,q = ACE.EncEK2(0,m∗1, q), upper bound T .

1. If L = L∗0,q then output ′fail′;
2. out← ACE.DecDK2{p−1,q ,p0,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
3. If i > T or i < 0 then output ′fail′;
4. Return (m1,m2).

Figure 51: Programs in HybC,1,q,2,−1,3. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,3,1.
Program TransformC,1,q,3,1[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{p−1,q} of ACE punctured at p−1,q =
(−1,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{p−1,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2{p−1,q}(i− 1,m1,m2);
6. Return L← ACE.EncEK2{p−1,q}(i,m1,m2).

Program isLessC,1,q,3,1(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{p−1,q} of ACE punctured at p−1,q = (−1,m∗1, q), message q, tag
m∗1, upper bound T .

1. out′ ← ACE.DecDK2{p−1,q}(L
′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2{p−1,q}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If (i′,m′1,m
′
2) = (0,m∗1, q) then output ′fail′;

5. If (i′′,m′′1,m
′′
2) = (0,m∗1, q) then output ′fail′;

6. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,3,1(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{p−1,q} of ACE punctured at p−1,q = (−1,m∗1, q), message q, tag
m∗1, upper bound T .

1. out← ACE.DecDK2{p−1,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. If (i,m1,m2) = (0,m∗1, q) then output ′fail′;
4. Return (m1,m2).

Figure 52: Programs in HybC,1,q,3,1. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,3,2.
Program TransformC,1,q,3,2[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{p−1,q} of ACE punctured at p−1,q =
(−1,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{p−1,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2{p−1,q}(i− 1,m1,m2);
6. Return L← ACE.EncEK2{p−1,q}(i,m1,m2).

Program isLessC,1,q,3,2(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, message q, tag m∗1, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If (i′,m′1,m
′
2) = (0,m∗1, q) then output ′fail′;

5. If (i′′,m′′1,m
′′
2) = (0,m∗1, q) then output ′fail′;

6. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,3,2(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, message q, tag m∗1, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. If (i,m1,m2) = (0,m∗1, q) then output ′fail′;
4. Return (m1,m2).

Figure 53: Programs in HybC,1,q,3,2. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,3,3.
Program TransformC,1,q,3,3[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2(i− 1,m1,m2);
6. Return L← ACE.EncEK2(i,m1,m2).

Program isLessC,1,q,3,3(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, message q, tag m∗1, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If (i′,m′1,m
′
2) = (0,m∗1, q) then output ′fail′;

5. If (i′′,m′′1,m
′′
2) = (0,m∗1, q) then output ′fail′;

6. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,3,3(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, message q, tag m∗1, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. If (i,m1,m2) = (0,m∗1, q) then output ′fail′;
4. Return (m1,m2).

Figure 54: Programs in HybC,1,q,3,3. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,4,1.
Program GenZeroC,1,q,4,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,1,q,4,1(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1 of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program TransformC,1,q,4,1[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2(i− 1,m1,m2);
6. Return L← ACE.EncEK2(i,m1,m2).

Program isLessC,1,q,4,1(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, message q, tag m∗1, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If (i′,m′1,m
′
2) = (0,m∗1, q) then output ′fail′;

5. If (i′′,m′′1,m
′′
2) = (0,m∗1, q) then output ′fail′;

6. If i′ < i′′ then output true, else output false.

Program RetrieveTagC,1,q,4,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTagsC,1,q,4,1(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, message q, tag m∗1, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. If (i,m1,m2) = (0,m∗1, q) then output ′fail′;
4. Return (m1,m2).

Figure 55: Programs in HybC,1,q,4,1. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). 111



Programs in HybC,1,q,4,2.
Program GenZeroC,1,q,4,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,1,q,4,2(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1{p0} of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program TransformC,1,q,4,2[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), encryption key EK2 of
ACE, single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{p0}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2(i− 1,m1,m2);
6. Return L← ACE.EncEK2(i,m1,m2).

Program isLessC,1,q,4,2(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, message q, tag m∗1, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If (i′,m′1,m
′
2) = (0,m∗1, q) then output ′fail′;

5. If (i′′,m′′1,m
′′
2) = (0,m∗1, q) then output ′fail′;

6. If i′ < i′′ then output true, else output false.

Program RetrieveTag(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTags(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, message q, tag m∗1, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. If (i,m1,m2) = (0,m∗1, q) then output ′fail′;
4. Return (m1,m2).

Figure 56: Programs in HybC,1,q,4,2. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). 112



Programs in HybC,1,q,4,3.
Program GenZeroC,1,q,4,3[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,1,q,4,3(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1{p0} of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program TransformC,1,q,4,3[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), encryption key EK2{p0,q}
of ACE punctured at p0,q = (0,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag
m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{p0}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
6. Return L← ACE.EncEK2{p0,q}(i,m1,m2).

Program isLessC,1,q,4,3(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, message q, tag m∗1, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If (i′,m′1,m
′
2) = (0,m∗1, q) then output ′fail′;

5. If (i′′,m′′1,m
′′
2) = (0,m∗1, q) then output ′fail′;

6. If i′ < i′′ then output true, else output false.

Program RetrieveTagC,1,q,4,3(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTagsC,1,q,4,3(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, message q, tag m∗1, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. If (i,m1,m2) = (0,m∗1, q) then output ′fail′;
4. Return (m1,m2).

Figure 57: Programs in HybC,1,q,4,3. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,4,4.
Program GenZeroC,1,q,4,4[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,1,q,4,4(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1{p0} of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program TransformC,1,q,4,4[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), encryption key EK2{p0,q}
of ACE punctured at p0,q = (0,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag
m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{p0}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
6. Return L← ACE.EncEK2{p0,q}(i,m1,m2).

Program isLessC,1,q,4,4(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{p0,q} of ACE punctured at p0,q = (0,m∗1, q), message q, tag m∗1,
upper bound T .

1. out′ ← ACE.DecDK2{p0,q}(L
′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2{p0,q}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If (i′,m′1,m
′
2) = (0,m∗1, q) then output ′fail′;

5. If (i′′,m′′1,m
′′
2) = (0,m∗1, q) then output ′fail′;

6. If i′ < i′′ then output true, else output false.

Program RetrieveTagC,1,q,4,4(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTagsC,1,q,4,4(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{p0,q} of ACE punctured at p0,q = (0,m∗1, q), message q, tag m∗1,
upper bound T .

1. out← ACE.DecDK2{p0,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. If (i,m1,m2) = (0,m∗1, q) then output ′fail′;
4. Return (m1,m2).

Figure 58: Programs in HybC,1,q,4,4. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,4,5.
Program GenZeroC,1,q,4,5[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,1,q,4,5(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1{p0} of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program TransformC,1,q,4,5[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), encryption key EK2{p0,q}
of ACE punctured at p0,q = (0,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag
m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{p0}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
6. Return L← ACE.EncEK2{p0,q}(i,m1,m2).

Program isLessC,1,q,4,5(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{p0,q} of ACE punctured at p0,q = (0,m∗1, q), upper bound T .
1. out′ ← ACE.DecDK2{p0,q}(L

′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m
′
2).

2. out′′ ← ACE.DecDK2{p0,q}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagC,1,q,4,5(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTagsC,1,q,4,5(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{p0,q} of ACE punctured at p0,q = (0,m∗1, q), upper bound T .

1. out← ACE.DecDK2{p0,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Return (m1,m2).

Figure 59: Programs in HybC,1,q,4,5. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,4,6.
Program GenZeroC,1,q,4,6[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,1,q,4,6(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1{p0} of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program TransformC,1,q,4,6[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), encryption key EK2{p0,q}
of ACE punctured at p0,q = (0,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag
m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{p0}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
6. Return L← ACE.EncEK2{p0,q}(i,m1,m2).

Program isLessC,1,q,4,6(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagC,1,q,4,6(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTagsC,1,q,4,6(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Return (m1,m2).

Figure 60: Programs in HybC,1,q,4,6. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,4,7.
Program GenZeroC,1,q,4,7[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,1,q,4,7(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1{p0} of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program TransformC,1,q,4,7[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), encryption key EK2 of
ACE, single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{p0}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2(i− 1,m1,m2);
6. Return L← ACE.EncEK2(i,m1,m2).

Program isLessC,1,q,4,7(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagC,1,q,4,7(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTagsC,1,q,4,7(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Return (m1,m2).

Figure 61: Programs in HybC,1,q,4,7. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,4,8.
Program GenZeroC,1,q,4,8[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,1,q,4,8(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1 of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program TransformC,1,q,4,8[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2(i− 1,m1,m2);
6. Return L← ACE.EncEK2(i,m1,m2).

Program isLessC,1,q,4,8(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagC,1,q,4,8(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTagsC,1,q,4,8(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Return (m1,m2).

Figure 62: Programs in HybC,1,q,4,8. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,4,9.
Program GenZeroC,1,q,4,9[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1(0,m1).

Program IncrementC,1,q,4,9(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program TransformC,1,q,4,9[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2(i− 1,m1,m2);
6. Return L← ACE.EncEK2(i,m1,m2).

Program isLessC,1,q,4,9(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagC,1,q,4,9(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTagsC,1,q,4,9(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Return (m1,m2).

Figure 63: Programs in HybC,1,q,4,9. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,1,1.
Program TransformC,2,1,1[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2(i− 1,m1,m2);
5. Return L← ACE.EncEK2(i,m1,m2);

Program isLessC,2,1,1(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,2,1,1(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 64: Programs in HybC,2,1,1. In addition, in this hybrid the adversary gets unmodified obfus-
cated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).

;

120



Programs in HybC,2,1,2.
Program TransformC,2,1,2[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pT,m∗2} of ACE punctured at pT,m∗2 =
(T,m∗1,m

∗
2), single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{pT,m∗2}

(i− 1,m1,m2);

5. Return L← ACE.EncEK2{pT,m∗2}
(i,m1,m2);

Program isLessC,2,1,2(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,2,1,2(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 65: Programs in HybC,2,1,2. In addition, in this hybrid the adversary gets unmodified obfus-
cated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,1,3.
Program TransformC,2,1,3[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pT,m∗2} of ACE punctured at pT,m∗2 =
(T,m∗1,m

∗
2), single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{pT,m∗2}

(i− 1,m1,m2);

5. Return L← ACE.EncEK2{pT,m∗2}
(i,m1,m2);

Program isLessC,2,1,3(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{pT,m∗2} of ACE punctured at pT,m∗2 = (T,m∗1,m
∗
2), upper bound

T .
1. out′ ← ACE.DecDK2{pT,m∗2}

(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m
′
2).

2. out′′ ← ACE.DecDK2{pT,m∗2}
(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,2,1,3(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{pT,m∗2} of ACE punctured at pT,m∗2 = (T,m∗1,m

∗
2), upper bound

T .
1. out← ACE.DecDK2{pT,m∗2}

(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).

2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 66: Programs in HybC,2,1,3. In addition, in this hybrid the adversary gets unmodified obfus-
cated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,2,j,1.
Program TransformC,2,2,j,1[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pj+1,m∗2

} of ACE punctured at
pj+1,m∗2

= (j+1,m∗1,m
∗
2), single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, index j, upper bound

T .
1. If (l,m2) = (l∗1,m

∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1,m2 = m∗2 and i ≤ j + 1 return L← ACE.EncEK2{pj+1,m∗2

}(i− 1,m1,m2);

5. Return L← ACE.EncEK2{pj+1,m∗2
}(i,m1,m2).

Program isLessC,2,2,j,1(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{pj+1,m∗2
} of ACE punctured at pj+1,m∗2

= (j + 1,m∗1,m
∗
2), upper

bound T .
1. out′ ← ACE.DecDK2{pj+1,m∗2

}(L
′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2{pj+1,m∗2
}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,2,2,j,1(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{pj+1,m∗2

} of ACE punctured at pj+1,m∗2
= (j + 1,m∗1,m

∗
2), upper

bound T .
1. out← ACE.DecDK2{pj+1,m∗2

}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).

2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 67: Programs in HybC,2,2,j,1. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,2,j,2.
Program TransformC,2,2,j,2[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pj,m∗2 , pj+1,m∗2

} of ACE punctured
at pj,m∗2 = (j,m∗1,m

∗
2), pj+1,m∗2

= (j + 1,m∗1,m
∗
2), double-tag level L∗j,m∗2 = ACE.EncEK2(j,m∗1,m

∗
2),

single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, index j, upper bound T .
1. If (l,m2) = (l∗1,m

∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1,m2 = m∗2 and i < j + 1 return L← ACE.EncEK2{pj,m∗2 ,pj+1,m∗2

}(i− 1,m1,m2);
5. If m1 = m∗1,m2 = m∗2 and i = j + 1 return L∗j,m∗2 ;
6. Return L← ACE.EncEK2{pj,m∗2 ,pj+1,m∗2

}(i,m1,m2).

Program isLessC,2,2,j,2(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{pj,m∗2 , pj+1,m∗2
} of ACE punctured at pj,m∗2 = (j,m∗1,m

∗
2),

pj+1,m∗2
= (j + 1,m∗1,m

∗
2), double-tag level L∗j,m∗2 = ACE.EncEK2(j,m∗1,m

∗
2), upper bound T .

1. If L′ = L∗j,m∗2
then set (i′,m′1,m

′
2) = (j + 1,m∗1,m

∗
2),

else out′ ← ACE.DecDK2{pj,m∗2 ,pj+1,m∗2
}(L
′); if out′ = ′fail′ then output ′fail′; else parse out′ as

(i′,m′1,m
′
2).

2. If L′′ = L∗j,m∗2
then set (i′′,m′′1,m

′′
2) = (j + 1,m∗1,m

∗
2),

else out′′ ← ACE.DecDK2{pj,m∗2 ,pj+1,m∗2
}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as

(i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,2,2,j,2(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{pj,m∗2 , pj+1,m∗2

} of ACE punctured at pj,m∗2 = (j,m∗1,m
∗
2),

pj+1,m∗2
= (j + 1,m∗1,m

∗
2), double-tag level L∗j,m∗2 = ACE.EncEK2(j,m∗1,m

∗
2), upper bound T .

1. If L = L∗j,m∗2
then return (m∗1,m

∗
2);

2. out← ACE.DecDK2{pj,m∗2 ,pj+1,m∗2
}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).

3. If i > T or i < 0 then output ′fail′;
4. Return (m1,m2).

Figure 68: Programs in HybC,2,2,j,2. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,2,j,3.
Program TransformC,2,2,j,3[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pj,m∗2 , pj+1,m∗2

} of ACE punctured at
pj,m∗2 = (j,m∗1,m

∗
2), pj+1,m∗2

= (j+ 1,m∗1,m
∗
2), double-tag level L∗j+1,m∗2

= ACE.EncEK2(j+ 1,m∗1,m
∗
2),

single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, index j, upper bound T .
1. If (l,m2) = (l∗1,m

∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1,m2 = m∗2 and i < j + 1 return L← ACE.EncEK2{pj+1,m∗2

}(i− 1,m1,m2);
5. If m1 = m∗1,m2 = m∗2 and i = j + 1 return L∗j+1,m∗2

;
6. Return L← ACE.EncEK2{pj,m∗2 ,pj+1,m∗2

}(i,m1,m2).

Program isLessC,2,2,j,3(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{pj,m∗2 , pj+1,m∗2
} of ACE punctured at pj,m∗2 = (j,m∗1,m

∗
2),

pj+1,m∗2
= (j + 1,m∗1,m

∗
2), double-tag level L∗j+1,m∗2

= ACE.EncEK2(j + 1,m∗1,m
∗
2), upper bound T .

1. If L′ = L∗j+1,m∗2
then set (i′,m′1,m

′
2) = (j + 1,m∗1,m

∗
2),

else out′ ← ACE.DecDK2{pj,m∗2 ,pj+1,m∗2
}(L
′); if out′ = ′fail′ then output ′fail′; else parse out′ as

(i′,m′1,m
′
2).

2. If L′′ = L∗j+1,m∗2
then set (i′′,m′′1,m

′′
2) = (j + 1,m∗1,m

∗
2),

else out′′ ← ACE.DecDK2{pj,m∗2 ,pj+1,m∗2
}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as

(i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,2,2,j,3(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{pj,m∗2 , pj+1,m∗2

} of ACE punctured at pj,m∗2 = (j,m∗1,m
∗
2),

pj+1,m∗2
= (j + 1,m∗1,m

∗
2), double-tag level L∗j+1,m∗2

= ACE.EncEK2(j + 1,m∗1,m
∗
2), upper bound T .

1. If L = L∗j+1,m∗2
then return (m∗1,m

∗
2);

2. out← ACE.DecDK2{pj,m∗2 ,pj+1,m∗2
}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).

3. If i > T or i < 0 then output ′fail′;
4. Return (m1,m2).

Figure 69: Programs in HybC,2,2,j,3. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,2,j,4.
Program TransformC,2,2,j,4[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pj,m∗2} of ACE punctured at pj,m∗2 =
(j,m∗1,m

∗
2), single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, index j, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1,m2 = m∗2 and i ≤ j return L← ACE.EncEK2{pj,m∗2}

(i− 1,m1,m2);

5. Return L← ACE.EncEK2{pj,m∗2}
(i,m1,m2).

Program isLessC,2,2,j,4(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{pj,m∗2} of ACE punctured at pj,m∗2 = (j,m∗1,m
∗
2), upper bound T .

1. out′ ← ACE.DecDK2{pj,m∗2}
(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2{pj,m∗2}
(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,2,2,j,4(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{pj,m∗2} of ACE punctured at pj,m∗2 = (j,m∗1,m

∗
2), upper bound T .

1. out← ACE.DecDK2{pj,m∗2}
(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).

2. If i > T or i < 0 then output ′fail′;
3. Return (m1,m2).

Figure 70: Programs in HybC,2,2,j,4. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,3,1.
Program TransformC,2,3,1[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{p1,m∗2

} of ACE punctured at p1,m∗2
=

(1,m∗1,m
∗
2), single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1,m2 = m∗2 and i ≤ 1 return L← ACE.EncEK2{p1,m∗2}

(i− 1,m1,m2);

5. Return L← ACE.EncEK2{p1,m∗2}
(i,m1,m2).

Program isLessC,2,3,1(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{p1,m∗2
} of ACE punctured at p1,m∗2

= (1,m∗1,m
∗
2), upper bound T .

1. out′ ← ACE.DecDK2{p1,m∗2}
(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2{p1,m∗2}
(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,2,3,1(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{p1,m∗2

} of ACE punctured at p1,m∗2
= (1,m∗1,m

∗
2), upper bound T .

1. out← ACE.DecDK2{p1,m∗2}
(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).

2. If i > T or i < 0 then output ′fail′;
3. Return (m1,m2).

Figure 71: Programs in HybC,2,3,1. In addition, in this hybrid the adversary gets unmodified obfus-
cated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,3,2.
Program TransformC,2,3,2[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{p1,m∗2

} of ACE punctured at p1,m∗2
=

(1,m∗1,m
∗
2), single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1,m2 = m∗2 and i ≤ 1 return L← ACE.EncEK2{p1,m∗2}

(i− 1,m1,m2);

5. Return L← ACE.EncEK2{p1,m∗2}
(i,m1,m2).

Program isLessC,2,3,2(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,2,3,2(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Return (m1,m2).

Figure 72: Programs in HybC,2,3,2. In addition, in this hybrid the adversary gets unmodified obfus-
cated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,3,3.
Program TransformC,2,3,3[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1, m2 = m∗2, and i ≤ 0, return L← ACE.EncEK2(i− 1,m1,m2);
5. Return L← ACE.EncEK2(i,m1,m2).

Program GenZeroC,2,3,3[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,2,3,3(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1 of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program RetrieveTagC,2,3,3(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 73: Programs in HybC,2,3,3. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,3,4.
Program TransformC,2,3,4[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), encryption key EK2 of
ACE, single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{p0}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1, m2 = m∗2, and i ≤ 0, return L← ACE.EncEK2(i− 1,m1,m2);
5. Return L← ACE.EncEK2(i,m1,m2).

Program GenZeroC,2,3,4[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,2,3,4(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1{p0} of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program RetrieveTagC,2,3,4(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 74: Programs in HybC,2,3,4. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,3,5.
Program TransformC,2,3,5[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), encryption key EK2 of
ACE, single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{p0}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. Return L← ACE.EncEK2(i,m1,m2).

Program GenZeroC,2,3,5[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,2,3,5(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1{p0} of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program RetrieveTagC,2,3,5(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 75: Programs in HybC,2,3,5. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,3,6.
Program TransformC,2,3,6[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. Return L← ACE.EncEK2(i,m1,m2).

Program GenZeroC,2,3,6[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,2,3,6(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1 of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program RetrieveTagC,2,3,6(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 76: Programs in HybC,2,3,6. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,3,7.
Program TransformC,2,3,7[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. Return L← ACE.EncEK2(i,m1,m2).

Program GenZeroC,2,3,7[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1(0,m1).

Program IncrementC,2,3,7(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program RetrieveTagC,2,3,7(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 77: Programs in HybC,2,3,7. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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5.5 Detailed proof of security

5.5.1 Reductions in the proof of lemma 2 (Switching from `∗0 to `∗1)

We show that for any PPT adversary,

advHybA,HybB (λ) ≤ T · 2−Ω(νiO(λ)) + T · 2−Ω(νACE.Indist(λ)) + 2−Ω(νACE.ConstrDec(λ)).

Lemma 5. advHybA,HybA,1,1(λ) ≤ 2−Ω(νiO(λ)).

Proof. In programs GenZeroA,1,1 and IncrementA,1,1 encryption key EK1 is punctured at pT+1 = (T +
1,m∗1). This is without changing the functionality, since GenZero only encrypts plaintexts of the form
(0,m1), and Increment outputs ′fail′ when i = T and thus never encrypts (T + 1,m∗1).

Lemma 6. advHybA,1,1,HybA,1,2(λ) ≤ 2−Ω(νACE.ConstrDec(λ)).

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set {pT+1} = {(T + 1,m∗1)} to puncture encryption key EK1 and challenge sets {pT+1} ,∅ to
puncture decryption key DK1. Indeed, given EK1{pT+1} and key which is either DK1 or DK1{pT+1}, it is
easy to reconstruct the rest of the distribution.

Lemma 7. advHybA,2,j,1,HybA,2,j,2(λ) ≤ 2−Ω(νiO(λ)) for 1 ≤ j ≤ T .

Proof. In programs GenZero, Increment, Transform, RetrieveTag we puncture EK1, DK1 at pj = (j,m∗1)
and hardwire `∗j = ACE.EncEK1(j,m∗1) when required, in order to preserve functionality.

In program GenZeroA,2,j,2 we can puncture EK1 at pj without changing the functionality, since GenZeroA,2,j,2
only encrypts plaintexts of the form (0,m1) (note that j ≥ 1).

In program IncrementA,2,j,2 we puncture DK1 at pj and, in order to preserve the functionality, instruct the
program to output ACE.EncEK1(j + 2,m∗1) on input `∗j (note that this is what IncrementA,2,j,1 outputs on
input `∗j )26. Further, we puncture EK1 at pj and, in order to preserve the functionality, instruct the program to
output `∗j on input ACE.EncEK1(j − 1,m∗1) (note that this is what IncrementA,2,j,1 does).

In program TransformA,2,j,2 we puncture DK1 at pj and, in order to preserve the functionality, instruct
the program to output ACE.EncEK2(j,m∗1,m2) on input (`∗j ,m2) for any m2 (note that this is what
TransformA,2,j,1 does). Because of this instruction, we can also instruct TransformA,2,j,2 to output ′fail′ when
(i,m1) = (j,m∗1), since this line will never be reached.

In program RetrieveTagA,2,j,2 we puncture DK1 at pj and, in order to preserve the functionality, instruct the
program to output m∗1 on input `∗j (note that this is what RetrieveTagA,2,j,1 does).

Lemma 8. advHybA,2,j,2,HybA,2,j,3(λ) ≤ 2−Ω(νACE.Indist(λ)) for 1 ≤ j ≤ T .

26Except for the case j = T , when we instead instruct the program to output ′fail′.
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Proof. Indistinguishability immediately follows from indistinguishability of ACE ciphertexts for the chal-
lenge plaintexts pj = (j,m∗1) and pj+1 = (j + 1,m∗1). Indeed, given EK1{pj , pj+1}, DK1{pj , pj+1}, and
either `∗j = ACE.EncEK1(j,m∗1) or `∗j+1 = ACE.EncEK1(j + 1,m∗1), it is easy to reconstruct the rest of
the distribution. Note that indeed only one of the two ciphertexts is used in both hybrids (in particular,
since j ≥ 1, the key is never punctured at p0 = (0,m∗1) and therefore we can always compute `∗0 for the
distribution).

Lemma 9. advHybA,2,j,3,HybA,2,j,4(λ) ≤ 2−Ω(νiO(λ)) for 1 ≤ j ≤ T .

Proof. In programs GenZero, Increment, Transform, RetrieveTag we unpuncture EK1, DK1 at pj+1 =
(j + 1,m∗1) and remove hardwired `∗j+1 = ACE.EncEK1(j + 1,m∗1):

In program GenZeroA,2,j,4 we can unpuncture EK1 at pj+1 without changing the functionality, since
GenZeroA,2,j,3 only encrypts plaintexts of the form (0,m1) (note that j ≥ 1).

In program IncrementA,2,j,4 we unpuncture DK1 at pj+1, remove the instruction to output ACE.EncEK1(j +
2,m∗1) on input `∗j+1 and, in order to preserve the functionality, instruct the program to output ACE.EncEK1(j+
2,m∗1) when (i,m1) = (j + 1,m∗1) (we don’t put any separate instruction since this is normal behavior
of Increment); 27. Further, we unpuncture EK1 at pj+1, remove the instruction to output `∗j+1 on in-
put ACE.EncEK1(j − 1,m∗1) and, in order to preserve the functionality, instruct the program to output
ACE.EncEK1(j + 1,m∗1) when (i,m1) = (j − 1,m∗1).

In program TransformA,2,j,4 we unpuncture DK1 at pj , remove the instruction to output
ACE.EncEK2(j,m∗1,m2) on input (`∗j+1,m2) for any m2 and, in order to preserve the functionality, instruct
the program to output ACE.EncEK2(i− 1,m1,m2) when (i,m1) = (j + 1,m∗1).

In program RetrieveTagA,2,j,4 we unpuncture DK1 at pj+1 and remove the instruction to output m∗1 on input
`∗j+1. No additional change is required since this is what RetrieveTag would normally output28.

Lemma 10. advHybA,2,0,1,HybA,2,0,2(λ) ≤ 2−Ω(νiO(λ)).

Proof. In programs GenZero, Increment, Transform, RetrieveTag we puncture EK1, DK1 at p0 = (0,m∗1)
and hardwire `∗0 = ACE.EncEK1(0,m∗1) when required, in order to preserve functionality:

In program GenZeroA,2,0,2 we can puncture EK1 at p0 without changing the functionality, since
GenZeroA,2,0,2 outputs ′fail′ when m1 = m∗1.

In program IncrementA,2,0,2 we puncture DK1 at p0 and, in order to preserve the functionality, instruct the
program to output ACE.EncEK1(2,m∗1) on input `∗0 (note that this is what IncrementA,2,0,1 outputs on input
`∗0). Further, we puncture EK1 at p0: this is without changing the functionality, since this program never
needs to encrypt plaintexts with value 0.

In program TransformA,2,0,2 we puncture DK1 at p0 and, in order to preserve the functionality, instruct
the program to output ACE.EncEK2(0,m∗1,m2) on input (`∗0,m2) for any m2 (note that this is what

27Except for the case j = T , when we instead remove the instruction to output ′fail′. Note that Increment outputs ′fail′ when
i = T + 1 so no additional modification is required. The other exception is the case j = T − 1, where IncrementA,2,j,3 contains
the instruction to output ACE.EncEK1(T + 1,m∗1) on input `∗T , and thus in IncrementA,2,j,4 we change the upper bound from T to
T + 1 for the case m1 = m∗1 in order to preserve the functionality.

28Except for the case j = T , which instruct the program to output m∗1 on input `∗T+1. In this case we additionally change the
upper bound to T + 1, instead of T , for the case m1 = m∗1 in program RetrieveTagA,2,j,4
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TransformA,2,0,1 does). Because of this instruction, we can also instruct TransformA,2,0,2 to output ′fail′

when (i,m1) = (0,m∗1), since this line will never be reached.

In program RetrieveTagA,2,0,2 we puncture DK1 at p0 and, in order to preserve the functionality, instruct the
program to output m∗1 on input `∗0 (note that this is what RetrieveTagA,2,0,1 does).

Lemma 11. advHybA,2,0,2,HybA,2,0,3(λ) ≤ 2−Ω(νACE.Indist(λ)).

Proof. Indistinguishability immediately follows from indistinguishability of ACE ciphertexts for the chal-
lenge plaintexts p0 = (0,m∗1) and p1 = (1,m∗1). Indeed, given EK1{p0, p1}, DK1{p0, p1}, and either
`∗0 = ACE.EncEK1(0,m∗1) or `∗1 = ACE.EncEK1(1,m∗1), it is easy to reconstruct the rest of the distribution.
Note that indeed only one of the two ciphertexts is used in both hybrids (in particular, a single-tag level we
give to the adversary is either `∗0 or `∗1).

Lemma 12. advHybA,2,0,3,HybA,3,1(λ) ≤ 2−Ω(νiO(λ)).

Proof. In programs GenZero, Increment, Transform, RetrieveTag we unpuncture EK1, DK1 at p1 = (1,m∗1)
and remove hardwired `∗1 = ACE.EncEK1(j + 1,m∗1):

In program GenZeroA,3,2 we can unpuncture EK1 at p1 without changing the functionality, since
GenZeroA,2,0,3 only encrypts plaintexts of the form (0,m1).

In program IncrementA,3,1 we unpuncture DK1 at p1 and remove the additional instruction to output
ACE.EncEK1(2,m∗1) on input `∗1 (this is without changing the functionality, since this is what the pro-
gram normally does). Further, we unpuncture EK1 at p1 without changing the functionality: indeed, the
program could possibly encrypt p1 only given an encryption of p0 as input. However, DK1 is punctured at p0

and thus the program would instead output ′fail′ on such input.

In program TransformA,3,1 we instruct the program to output ACE.EncEK2(i− 1,m1,m2), given an encryp-
tion of (i,m∗1) and m2 as input, in the whole range of i from 0 to T . In contrast, program TransformA,2,0,3

does this only for 2 ≤ i ≤ T . However, this is without changing the functionality: first, TransformA,2,0,3

outputs ACE.EncEK2(0,m∗1,m2), given `∗1 and m2 as input, thus we didn’t change the case i = 1. Second,
DK1 is punctured at p0, and thus we can arbitrary change behaviour for the case i = 0 since the program
never reaches that line when i = 0, outputting ′fail′ during decryption.

With this modification, we can remove the instruction to output ACE.EncEK2(0,m∗1,m2) on input (`∗1,m2)
and then unpuncture DK1 at point p1.

In program RetrieveTagA,3,1 we unpuncture DK1 at p1 and remove the instruction to output m∗1 on input `∗1.
No additional change is required since this is what RetrieveTag would normally output.

Lemma 13. advHybA,3,1,HybA,3,2(λ) ≤ 2−Ω(νACE.ConstrDec(λ)).

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set {p0} = {(0,m∗1)} to puncture encryption key EK1 and challenge sets {p0} ,∅ to puncture
decryption key DK1. Indeed, given EK1{p0} and key which is either DK1 or DK1{p0}, it is easy to
reconstruct the rest of the distribution.

Lemma 14. advHybA,3,2,HybA,3,3(λ) ≤ 2−Ω(νiO(λ)).
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Proof. In programs GenZero and Increment we unpuncture EK1 at p0 = (0,m∗1). This doesn’t change the
functionality, since GenZero outputs ′fail′ when m1 = m∗1, and Increment never encrypts a plaintext with
value 0.

5.5.2 Reductions in the proof of lemma 3 (Changing the upper bound from T + 1 to T )

We show that

advHybB ,HybC (λ) ≤ 2−Ω(γ(λ)) +
1

T
+ T · 2−Ω(νiO(λ)) + T · 2−Ω(νACE.ConstrDec(λ)).

(1/T term comes from the fact that the reduction works only when i∗ 6= 0, where i∗ is chosen randomly
between 0 and T ).
Lemma 15. advHybB ,HybB,1,1(λ) ≤ 2−Ω(γ(λ)).

Proof. Assume there is a poly-time distinguisher D which distinguishes between these two hybrids with
probability η ≥ 2−o(γ(λ)) (for infinitely many λi). Then, since:

• programs IncrementB and IncrementB,1,1 differ only at one point (due to the fact that g is injective);

• η ≥ 2−o(γ(λ)) ≥ 2−o(νiO(λ)) (from the condition γ(λ) ≤ O(νiO(λ))) in the theorem statement),

it follows from lemma 1 that there exists an inverter which runs in time at most O(1/η) log T =
2o(γ(λ)) log T , which by the condition in the theorem statement is at most O(2νOWF(log T )). This inverter
inverts the one way function with probability at least (1 − 2−Ω(λ))η, which contradicts the fact that g is
2O(νOWF(λ log T )), 2−Ω(νOWF(λ log T ))-secure OWF.

Lemma 16. advHybB,1,1,HybB,1,2(λ) ≤ 2−Ω(νiO(λ)).

Proof. First, note that both programs GenZeroB,1,1 and GenZeroB,1,2 are functionally equivalent: since
i∗ + 1 6= 0, and GenZero only needs to encrypt value 0, we can safely puncture EK1 at (i∗ + 1,m∗1).

Second, programs IncrementB,1,1 and IncrementB,1,2 are functionally equivalent as well: the only difference
in the code is that the first outputs ′fail′ when (m1, i) = (m∗1, i

∗) (on input ACE.EncEK1(i∗,m∗1)), and the
second instead outputs ′fail′ when it tries to encrypt a punctured point (i∗ + 1,m∗1), which happens on the
same input ACE.EncEK1(i∗,m∗1).

Lemma 17. If i∗ 6= 0, advHybB,2,j,1,HybB,2,j,2(λ) ≤ 2−Ω(νACE.ConstrDec(λ)) for i∗ ≤ j ≤ T .

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set Si∗+1,j+1 to puncture encryption key EK1 and challenge sets Si∗+1,j , Si∗+1,j+1 to puncture
decryption key DK1 (here Sa,b = {(m∗1, a), (m∗1, a+ 1), . . . , (m∗1, b)} if b ≥ a and ∅ otherwise). Indeed,
given EK1{Si∗+1,j+1} and key which is either DK1{Si∗+1,j} or DK1{Si∗+1,j+1}, it is easy to reconstruct
the rest of the distribution, as long as i∗ 6= 0. That is, we can sample remaining keys, obfuscate all programs,
and compute `∗1 = ACE.EncEK1(1,m∗1) (using the challenge encryption key EK1{Si∗+1,j+1} which is not
punctured at (1,m∗1) since i∗ 6= 0) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).

Lemma 18. advHybB,2,j,2,HybB,2,j,3(λ) ≤ 2−Ω(νiO(λ)) for i∗ ≤ j ≤ T .
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Proof. In programs GenZero, Increment we additionally puncture EK1 at pj+2 = (j + 2,m∗1).

In program GenZero we can puncture EK1 at pj+2 without changing the functionality, since GenZero only
encrypts plaintexts of the form (0,m1), but j + 2 6= 0.

In program Increment we can puncture EK1 at pj+2 without changing the functionality, since DK1 is
punctured at the point pj+1, thus Increment never needs to encrypt pj+2 since on input [j + 1,m∗1] it instead
outputs ′fail′ during decryption.

Lemma 19. advHybB,3,1,HybB,3,2(λ) ≤ 2−Ω(νiO(λ)).

Proof. In programs Increment, Transform, and RetrieveTag we change the upper bound from T + 1 back to
T .

In particular, in program IncrementB,3,2 we now additionally output ′fail′ when i = T and m1 = m∗1. This
is without changing the functionality, since this line is never reached: both programs IncrementB,3,1 and
IncrementB,3,2 anyway output ′fail′ on input [T,m∗1], since DK1 is punctured at (T,m∗1).

In program Transform we now additionally output ′fail′ when i = T + 1 and m1 = m∗1. This is without
changing the functionality, since this line is never reached: both programs TransformB,3,1 and TransformB,3,2

anyway output ′fail′ on input [T + 1,m∗1] and any m2, since DK1 is punctured at (T + 1,m∗1).

In program RetrieveTag we now additionally output ′fail′ when i = T + 1 and m1 = m∗1. This is
without changing the functionality, since this line is never reached: both programs RetrieveTagB,3,1 and
RetrieveTagB,3,2 anyway output ′fail′ on input [T + 1,m∗1], since DK1 is punctured at (T + 1,m∗1).

Lemma 20. If i∗ 6= 0, advHybB,4,j,1,HybB,4,j,2(λ) ≤ 2−Ω(νACE.ConstrDec(λ)) for i∗ ≤ j ≤ T .

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set Si∗+1,j+1 to puncture encryption key EK1 and challenge sets Si∗+1,j , Si∗+1,j+1 to puncture
decryption key DK1 (here Sa,b = {(m∗1, a), (m∗1, a+ 1), . . . , (m∗1, b)} if b ≥ a and ∅ otherwise). Indeed,
given EK1{Si∗+1,j+1} and key which is either DK1{Si∗+1,j} or DK1{Si∗+1,j+1}, it is easy to reconstruct
the rest of the distribution, as long as i∗ 6= 0. That is, we can sample remaining keys, obfuscate all programs,
and compute `∗1 = ACE.EncEK1(1,m∗1) (using the challenge encryption key EK1{Si∗+1,j+1} which is not
punctured at (1,m∗1) since i∗ 6= 0) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).

Lemma 21. advHybB,4,j,2,HybB,4,j,3(λ) ≤ 2−Ω(νiO(λ)) for i∗ ≤ j ≤ T .

Proof. In programs GenZero, Increment we unpuncture EK1 at pj+1 = (j + 1,m∗1).

In program GenZero we can unpuncture EK1 at pj+1 without changing the functionality, since GenZero only
encrypts plaintexts of the form (0,m1), but j + 1 6= 0.

In program Increment we can unpuncture EK1 at pj+1 without changing the functionality, since DK1 is
punctured at the point pj , thus Increment never needs to encrypt pj+1 since on input [j,m∗1] it instead outputs
′fail′ during decryption.

Lemma 22. advHybB,5,1,HybB,5,2(λ) ≤ 2−Ω(νiO(λ)).
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Proof. First, note that both programs GenZeroB,5,1 and GenZeroB,5,2 are functionally equivalent: since
i∗ + 1 6= 0, and GenZero only needs to encrypt value 0, we can safely unpuncture EK1 at (i∗ + 1,m∗1).

Second, programs IncrementB,5,1 and IncrementB,5,2 are functionally equivalent as well: the only difference
in the code is that the first outputs ′fail′ when it tries to encrypt a punctured point (i∗+ 1,m∗1) (which happens
on input ACE.EncEK1(i∗,m∗1)), and the second outputs ′fail′ when (m1, i) = (m∗1, i

∗), which happens on the
same input ACE.EncEK1(i∗,m∗1).

Lemma 23. advHybB,5,2,HybB,5,3(λ) ≤ 2−Ω(γ(λ)).

Proof. Assume there is a poly-time distinguisher D which distinguishes between these two hybrids with
probability η ≥ 2−o(γ(λ)) (for infinitely many λi). Then, since:

• programs IncrementB and IncrementB,1,1 differ only at one point (due to the fact that g is injective);

• η ≥ 2−o(γ(λ)) ≥ 2−o(νiO(λ)) (from the condition γ(λ) ≤ O(νiO(λ))) in the theorem statement),

it follows from lemma 1 that there exists an inverter which runs in time at most O(1/η) log T =
2o(γ(λ)) log T , which by the condition in the theorem statement is at most O(2νOWF(log T )). This inverter
inverts the one way function with probability at least (1 − 2−Ω(λ))η, which contradicts the fact that g is
2O(νOWF(λ log T )), 2−Ω(νOWF(λ log T ))-secure OWF.

5.5.3 Reductions in the proof of lemma 4 (Restoring behavior of Transform)

We show that

advHybC ,HybD(λ) ≤ 2τ(λ)(T · 2−Ω(νiO(λ)) + T · 2−Ω(νACE.Indist(λ)) + 2−Ω(νACE.ConstrDec(λ))).

Lemma 24. advHybC,1,q ,HybC,1,q,1,1(λ) ≤ 2−Ω(νiO(λ)).

Proof. In program Transform we puncture encryption key EK2 at pT,q = (T,m∗1, q). This is without
changing the functionality, since Transform never encrypts this point: indeed, it encrypts (i − 1,m1,m2)
when m2 = q, but will abort instead if i = T + 1.

Lemma 25. advHybC,1,q,1,1,HybC,1,q,1,2(λ) ≤ 2−Ω(νACE.ConstrDec(λ)) for q 6= m∗2.

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set {pT,q} = {(T,m∗1, q)} to puncture encryption key EK2 and challenge sets {pT,q}, ∅ to puncture
decryption key DK2. Indeed, given EK2{pT,q} and key which is either DK2{pT,q} or DK2, it is easy to
reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all programs, and
compute `∗1 = ACE.EncEK1(1,m∗1) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2) (using the challenge encryption key

EK2{pT,q} which is not punctured at (0,m∗1,m
∗
2).

Lemma 26. advHybC,1,q,2,j,1,HybC,1,q,2,j,2(λ) ≤ 2−Ω(νiO(λ)), for q 6= m∗2, 0 ≤ j ≤ T − 1.

Proof. We puncture ACE keys EK2,DK2 at the point pj,q = (j,m∗1, q) and hardwire L∗j,q =
ACE.EncEK2(j,m∗1, q) to eliminate the need to encrypt or decrypt pj,q in programs Transform, isLess, and
RetrieveTags, without changing their functionality.
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More specifically, in program Transform we puncture EK2 at pj,q = (j,m∗1, q) and, in order to preserve the
functionality, add an instruction to output L∗j,q = ACE.EncEK2(j,m∗1, q) when (i,m1,m2) = (j + 1,m∗1, q).

In program isLess we puncture decryption key DK2 at pj,q = (j,m∗1, q) and, in order to preserve the
functionality, instruct the program not to decrypt L∗j,q, but to use (j + 1,m∗1, q) as the result of decryption
instead. Note that this is different from what L∗j,q would normally decrypt to, which is (j,m∗1, q). However,
we argue that this doesn’t change the functionality of the program. Indeed:

• The set of inputs on which isLess outputs ′fail′ isn’t changed; in particular, since 0 ≤ j ≤ T − 1, both
(j,m∗1, q) and (j + 1,m∗1, q) are within 0 to T limits and thus are both valid.

• The result of the comparison on inputs [i′,m1,m2] and [i′′,m1,m2], where (m1,m2) 6= (m∗1, q),
remains the same;

• The result of the comparison on inputs [i′,m∗1, q] and [i′′,m∗1, q], where i′, i′′ 6= j and i′, i′′ 6= j + 1,
remains the same;

• The output of the program on inputs ([i′,m∗1, q], [i
′′,m∗1, q]), where i′ = j + 1 or i′′ = j + 1, is ′fail′

for both the original and modified programs, since DK2 is punctured at pj+1,q = (j + 1,m∗1, q) and
thus decryption returns ′fail′;

• The result of the comparison on inputs ([i′,m∗1, q], [j,m
∗
1, q] = L∗j,q), remains the same, since for both

programs the output is:

– true for 0 ≤ i′ < j;

– false for i′ = j (indeed, in the original program in this case i′ = i′′ = j, and in the modified
program i′ = i′′ = j + 1, since [i′,m∗1, q] = L∗j,q when i′ = j and the program uses j + 1 as the
decryption result);

– ′fail′ for i′ = j+1, since DK2 is punctured at pj+1,q = (j+1,m∗1, q) and thus decryption returns
′fail′;

– false for j + 2 ≤ i′ ≤ T .

• Similarly, the result of the comparison on inputs ([j,m∗1, q] = L∗j,q, [i
′,m∗1, q]) remains the same for

the original program and modified program (with the difference that the result is false for 0 ≤ i′ < j
and true for j + 2 ≤ i′ ≤ T ).

In program RetrieveTags we puncture decryption key DK2 at pj,q = (j,m∗1, q) and, in order to preserve the
functionality, instruct the program to output (m∗1, q) on input L∗j,q.

Lemma 27. advHybC,1,q,2,j,2,HybC,1,q,2,j,3(λ) ≤ 2−Ω(νACE.Indist(λ)), for q 6= m∗2, 0 ≤ j ≤ T − 1.

Proof. Indistinguishability immediately follows from indistinguishability of ACE ciphertexts for the
challenge plaintexts pj,q = (j,m∗1, q) and pj+1,q = (j + 1,m∗1, q). Indeed, given EK2{pj,q, pj+1,q},
DK2{pj,q, pj+1,q}, and either L∗j,q = ACE.EncEK2(j,m∗1, q) or L∗j+1,q = ACE.EncEK2(j + 1,m∗1, q), it
is easy to reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all
program (note that indeed at most one of two ciphertexts L∗j,q, L

∗
j+1,q is used in programs of HybC,1,q,2,j,2

and HybC,1,q,2,j,3), and compute `∗1 = ACE.EncEK1(1,m∗1) and L∗0 = ACE.EncEK2(0,m∗1,m
∗
2) (using the

challenge encryption key EK2{pj,q, pj+1,q} which is not punctured at (0,m∗1,m
∗
2) since q 6= m∗2).
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Lemma 28. advHybC,1,q,2,j,3,HybC,1,q,2,j,4(λ) ≤ 2−Ω(νiO(λ)), for q 6= m∗2, 0 ≤ j ≤ T − 1.

Proof. We unpuncture ACE keys EK2,DK2 at the point pj+1,q = (j + 1,m∗1, q) and remove hardwired
L∗j+1,q = ACE.EncEK2(j + 1,m∗1, q) in programs Transform, isLess, and RetrieveTags, without changing
their functionality.

More specifically, in program Transform we unpuncture EK2 at pj+1,q = (j + 1,m∗1, q) and remove an
instruction to output L∗j+1,q = ACE.EncEK2(j+1,m∗1, q) when (i,m1,m2) = (j+1,m∗1, q). This is without
changing the functionality, since now the program will run an encryption ACE.EncEK2(j + 1,m∗1, q) when
(i,m1,m2) = (j + 1,m∗1, q), instead of directly outputting hardwired L∗j+1,q.

In program isLess we unpuncture decryption key DK2 at pj+1,q = (j + 1,m∗1, q) and remove an instruction
to use (j + 1,m∗1, q) as a result of decrypting L∗j+1,q, thus making the program decrypt L∗j+1,q instead. This
is without changing the functionality, since (j + 1,m∗1, q) is what L∗j+1,q decrypts to.

In program RetrieveTags we unpuncture decryption key DK2 at pj+1,q = (j + 1,m∗1, q) and remove an
instruction to output (m∗1, q) on input L∗j+1,q. This is without changing the functionality, since (m∗1, q) is
what the program outputs when decrypting L∗j+1,q.

Lemma 29. advHybC,1,q,2,−1,1,HybC,1,q,2,−1,2
(λ) ≤ 2−Ω(νiO(λ)), for q 6= m∗2.

Proof. We puncture ACE keys EK2,DK2 at the point p−1,q = (−1,m∗1, q) and hardwire L∗−1,q =
ACE.EncEK2(−1,m∗1, q) to eliminate the need to encrypt or decrypt p−1,q in programs Transform, isLess,
and RetrieveTags, without changing their functionality.

More specifically, in program Transform we puncture EK2 at p−1,q = (−1,m∗1, q) and, in order to pre-
serve the functionality, add an instruction to output L∗−1,q = ACE.EncEK2(−1,m∗1, q) when (i,m1,m2) =
(0,m∗1, q).

In program isLess we puncture decryption key DK2 at p−1,q = (−1,m∗1, q) and instruct the program to output
′fail′, given L∗−1,q. This is without changing the functionality, since [−1,m∗1, q] is treated by the program as
an invalid input, since the value i should be between 0 and T .

In program RetrieveTags we puncture decryption key DK2 at p−1,q = (−1,m∗1, q) and instruct the program
to output ′fail′, given L∗−1,q. This is without changing the functionality, since [−1,m∗1, q] is treated by the
program as an invalid input, since the value i should be between 0 and T .

Lemma 30. advHybC,1,q,2,−1,2,HybC,1,q,2,−1,3
(λ) ≤ 2−Ω(νACE.Indist(λ)), for q 6= m∗2.

Proof. Indistinguishability immediately follows from indistinguishability of ACE ciphertexts for the
challenge plaintexts p−1,q = (−1,m∗1, q) and p0,q = (0,m∗1, q). Indeed, given EK2{p−1,q, p0,q},
DK2{p−1,q, p0,q}, and either L∗−1,q = ACE.EncEK2(−1,m∗1, q) or L∗0,q = ACE.EncEK2(0,m∗1, q), it is
easy to reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all pro-
gram (note that indeed at most one of two ciphertexts L∗−1,q, L

∗
0,q is used in programs of HybC,1,q,2,−1,2

and HybC,1,q,2,−1,3), and compute `∗1 = ACE.EncEK1(1,m∗1) and L∗0 = ACE.EncEK2(0,m∗1,m
∗
2) (using the

challenge encryption key EK2{p−1,q, p0,q} which is not punctured at (0,m∗1,m
∗
2) since q 6= m∗2).

Lemma 31. advHybC,1,q,2,−1,3,HybC,1,q,3,1(λ) ≤ 2−Ω(νiO(λ)), for q 6= m∗2.
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Proof. We unpuncture ACE keys EK2,DK2 at the point p0,q = (0,m∗1, q) and remove hardwired L∗0,q =
ACE.EncEK2(0,m∗1, q) in programs Transform, isLess, and RetrieveTags, without changing their functional-
ity.

More specifically, in program Transform we unpuncture EK2 at p0,q = (0,m∗1, q) and remove an instruction
to output L∗0,q = ACE.EncEK2(0,m∗1, q) when (i,m1,m2) = (0,m∗1, q). This is without changing the
functionality, since now the program will run an encryption ACE.EncEK2(0,m∗1, q) when (i,m1,m2) =
(0,m∗1, q), instead of directly outputting hardwired L∗0,q.

In program isLess we unpuncture decryption key DK2 at p0,q = (0,m∗1, q) and remove an instruction to
output ′fail′ given L∗0,q; to preserve the functionality, we instruct the program to output ′fail′ when (i′,m′1,m

′
2)

or (i′′,m′′1,m
′′
2) is equal to (0,m∗1, q).

In program RetrieveTags we unpuncture decryption key DK2 at p0,q = (0,m∗1, q) and remove an instruction
to output ′fail′ given L∗0,q; to preserve the functionality, we instruct the program to output ′fail′ when
(i,m1,m2) = (0,m∗1, q).

Lemma 32. advHybC,1,q,3,1,HybC,1,q,3,2(λ) ≤ 2−Ω(νACE.ConstrDec(λ)) for q 6= m∗2.

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set {p−1,q} = {(−1,m∗1, q)} to puncture encryption key EK2 and challenge sets {p−1,q}, ∅ to
puncture decryption key DK2. Indeed, given EK2{p−1,q} and key which is either DK2{p−1,q} or DK2, it is
easy to reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all programs,
and compute `∗1 = ACE.EncEK1(1,m∗1) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2) (using the challenge encryption

key EK2{p−1,q} which is not punctured at (0,m∗1,m
∗
2) since q 6= m∗2).

Lemma 33. advHybC,1,q,3,2,HybC,1,q,3,3(λ) ≤ 2−Ω(νiO(λ)), for q 6= m∗2.

Proof. We unpuncture ACE key EK2 at the point p−1,q = (−1,m∗1, q) in program Transform. This is without
changing the functionality, since this program never needs to encrypt p−1,q: indeed, when (m1,m2) =
(m∗1, q), the program only encrypts (i,m1,m2), where 0 ≤ i ≤ T .

Lemma 34. advHybC,1,q,3,3,HybC,1,q,4,1(λ) ≤ 2−Ω(νiO(λ)), for q 6= m∗2.

Proof. In programs GenZero and Increment we puncture encryption key EK1 at p0 = (0,m∗1). This is
without changing the functionality, since neither program needs to encrypt this point.

Lemma 35. advHybC,1,q,4,1,HybC,1,q,4,2(λ) ≤ 2−Ω(νACE.ConstrDec(λ)).

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set {p0} = {(0,m∗1)} to puncture encryption key EK1 and challenge sets {p0} ,∅ to puncture
decryption key DK1. Indeed, given EK1{p0} and key which is either DK1 or DK1{p0}, it is easy to
reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all programs, and
compute `∗1 = ACE.EncEK1(1,m∗1) (using the challenge encryption key EK1{p0} which is not punctured at
(1,m∗1)) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).

Lemma 36. advHybC,1,q,4,2,HybC,1,q,4,3(λ) ≤ 2−Ω(νiO(λ)), for q 6= m∗2.
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Proof. In program Transform we puncture encryption key EK2 at p0,q = (0,m∗1, q). This is without changing
the functionality: indeed, in order to encrypt p0,q, the program should get ([0,m∗1], q) as input, but on this
input Transform instead outputs ′fail′, since decryption key DK1 is punctured at p0 = (0,m∗1).

Lemma 37. advHybC,1,q,4,3,HybC,1,q,4,4(λ) ≤ 2−Ω(νACE.ConstrDec(λ)) for q 6= m∗2.

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set {p0,q} = {(0,m∗1, q)} to puncture encryption key EK2 and challenge sets {p0,q}, ∅ to puncture
decryption key DK2. Indeed, given EK2{p0,q} and key which is either DK2{p0,q} or DK2, it is easy to
reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all programs, and
compute `∗1 = ACE.EncEK1(1,m∗1) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2) (using the challenge encryption key

EK2{p0,q} which is not punctured at (0,m∗1,m
∗
2) since q 6= m∗2).

Lemma 38. advHybC,1,q,4,4,HybC,1,q,4,5(λ) ≤ 2−Ω(νiO(λ)), for q 6= m∗2.

Proof. In programs isLess and RetrieveTags we remove an instruction to output ′fail′, given [0,m∗1, q]. This
is without changing the functionality, since in both programs DK2 is punctured at p0,q = (0,m∗1, q), thus
making the programs output ′fail′ during decryption; thus the instructions which we are removing are never
reached anyway, and we can safely remove them.

Lemma 39. advHybC,1,q,4,5,HybC,1,q,4,6(λ) ≤ 2−Ω(νACE.ConstrDec(λ)) for q 6= m∗2.

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set {p0,q} = {(0,m∗1, q)} to puncture encryption key EK2 and challenge sets {p0,q}, ∅ to puncture
decryption key DK2. Indeed, given EK2{p0,q} and key which is either DK2{p0,q} or DK2, it is easy to
reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all programs, and
compute `∗1 = ACE.EncEK1(1,m∗1) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2) (using the challenge encryption key

EK2{p0,q} which is not punctured at (0,m∗1,m
∗
2) since q 6= m∗2).

Lemma 40. advHybC,1,q,4,6,HybC,1,q,4,7(λ) ≤ 2−Ω(νiO(λ)), for q 6= m∗2.

Proof. In program Transform we unpuncture encryption key EK2 at p0,q = (0,m∗1, q). This is without
changing the functionality: indeed, in order to encrypt p0,q, the program should get ([0,m∗1], q) as input, but
on this input Transform instead outputs ′fail′, since decryption key DK1 is punctured at p0 = (0,m∗1).

Lemma 41. advHybC,1,q,4,7,HybC,1,q,4,8(λ) ≤ 2−Ω(νACE.ConstrDec(λ)).

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set {p0} = {(0,m∗1)} to puncture encryption key EK1 and challenge sets {p0} ,∅ to puncture
decryption key DK1. Indeed, given EK1{p0} and key which is either DK1 or DK1{p0}, it is easy to
reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all programs, and
compute `∗1 = ACE.EncEK1(1,m∗1) (using the challenge encryption key EK1{p0} which is not punctured at
(1,m∗1)) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).

Lemma 42. advHybC,1,q,4,8,HybC,1,q,4,9(λ) ≤ 2−Ω(νiO(λ)), for q 6= m∗2.

Proof. In programs GenZero and Increment we unpuncture encryption key EK1 at p0 = (0,m∗1). This is
without changing the functionality, since neither program needs to encrypt this point.

Lemma 43. advHybC,2,1,1,HybC,2,1,2(λ) ≤ 2−Ω(νiO(λ)).
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Proof. In program Transform we puncture encryption key EK2 at pT,m∗2 = (T,m∗1,m
∗
2). This is without

changing the functionality, since Transform never encrypts this point: indeed, when (m1,m2) = (m∗1,m
∗
2)

the largest value it encrypts is (T − 1,m1,m2).

Lemma 44. advHybC,2,1,2,HybC,2,1,3(λ) ≤ 2−Ω(νACE.ConstrDec(λ)).

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set

{
pT,m∗2

}
= {(T,m∗1,m∗2)} to puncture encryption key EK2 and challenge sets

{
pT,m∗2

}
, ∅ to

puncture decryption key DK2. Indeed, given EK2{pT,m∗2} and key which is either DK2{pT,m∗2} or DK2, it is
easy to reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all programs,
and compute `∗1 = ACE.EncEK1(1,m∗1) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2) (using the challenge encryption

key EK2{pT,m∗2} which is not punctured at (0,m∗1,m
∗
2)).

Lemma 45. advHybC,2,2,j,1,HybC,2,2,j,2(λ) ≤ 2−Ω(νiO(λ)), for 1 ≤ j ≤ T − 1.

Proof. We puncture ACE keys EK2,DK2 at the point pj,m∗2 = (j,m∗1,m
∗
2) and hardwire L∗j,m∗2

=

ACE.EncEK2(j,m∗1,m
∗
2) to eliminate the need to encrypt or decrypt pj,m∗2 in programs Transform, isLess,

and RetrieveTags, without changing their functionality.

More specifically, in program Transform we puncture EK2 at pj,m∗2 = (j,m∗1,m
∗
2) and, in order to preserve

the functionality, add an instruction to output L∗j,m∗2 = ACE.EncEK2(j,m∗1,m
∗
2) when (i,m1,m2) = (j +

1,m∗1,m
∗
2).

In program isLess we puncture decryption key DK2 at pj,m∗2 = (j,m∗1,m
∗
2) and, in order to preserve the

functionality, instruct the program not to decrypt L∗j,m∗2 , but to use (j + 1,m∗1,m
∗
2) as the result of decryption

instead. Note that this is different from whatL∗j,m∗2 would normally decrypt to, which is (j,m∗1,m
∗
2). However,

we argue that this doesn’t change the functionality of the program. Indeed:

• The set of inputs on which isLess outputs ′fail′ isn’t changed; in particular, since 0 ≤ j ≤ T − 1, both
(j,m∗1,m

∗
2) and (j + 1,m∗1,m

∗
2) are within 0 to T limits and thus are both valid.

• The result of the comparison on inputs [i′,m1,m2] and [i′′,m1,m2], where (m1,m2) 6= (m∗1,m
∗
2),

remains the same, for all i′, i′′;

• The result of the comparison on inputs [i′,m∗1,m
∗
2] and [i′′,m∗1,m

∗
2], where i′, i′′ 6= j and i′, i′′ 6= j+1,

remains the same;

• The output of the program on inputs ([i′,m∗1,m
∗
2], [i′′,m∗1,m

∗
2]), where i′ = j + 1 or i′′ = j + 1, is

′fail′ for both the original and modified programs, since DK2 is punctured at pj+1,m∗2
= (j+1,m∗1,m

∗
2)

and thus decryption returns ′fail′;

• The result of the comparison on inputs ([i′,m∗1,m
∗
2], [j,m∗1,m

∗
2] = L∗j,m∗2

), remains the same, since
for both programs the output is:

– true for 0 ≤ i′ < j;

– false for i′ = j (indeed, in the original program in this case i′ = i′′ = j, and in the modified
program i′ = i′′ = j + 1, since [i′,m∗1,m

∗
2] = L∗j,m∗2

when i′ = j and the program uses j + 1 as
the decryption result);

144



– ′fail′ for i′ = j + 1, since DK2 is punctured at pj+1,m∗2
= (j + 1,m∗1,m

∗
2) and thus decryption

returns ′fail′;

– false for j + 2 ≤ i′ ≤ T .

• Similarly, the result of the comparison on inputs ([j,m∗1,m
∗
2] = L∗j,m∗2

, [i′,m∗1,m
∗
2]) remains the same

for the original program and modified program (with the difference that the result is false for 0 ≤ i′ < j
and true for j + 2 ≤ i′ ≤ T ).

In program RetrieveTags we puncture decryption key DK2 at pj,m∗2 = (j,m∗1,m
∗
2) and, in order to preserve

the functionality, instruct the program to output (m∗1,m
∗
2) on input L∗j,m∗2 .

Lemma 46. advHybC,2,2,j,2,HybC,2,2,j,3(λ) ≤ 2−Ω(νACE.Indist(λ)), for 1 ≤ j ≤ T − 1.

Proof. Indistinguishability immediately follows from indistinguishability of ACE ciphertexts for the chal-
lenge plaintexts pj,m∗2 = (j,m∗1,m

∗
2) and pj+1,m∗2

= (j + 1,m∗1,m
∗
2). Indeed, given EK2{pj,m∗2 , pj+1,m∗2

},
DK2{pj,m∗2 , pj+1,m∗2

}, and either L∗j,m∗2 = ACE.EncEK2(j,m∗1,m
∗
2) or L∗j+1,m∗2

= ACE.EncEK2(j +

1,m∗1,m
∗
2), it is easy to reconstruct the rest of the distribution. That is, we can sample remaining keys,

obfuscate all programs (note that creating the programs in each of the hybrids HybC,2,2,j,2, HybC,2,2,j,3
requires to know exactly one of the two ciphertexts L∗j,m∗2 , L∗j+1,m∗2

), and compute `∗1 = ACE.EncEK1(1,m∗1)

and L∗0 = ACE.EncEK2(0,m∗1,m
∗
2) (using the challenge encryption key EK2{pj,m∗2 , pj+1,m∗2

} which is not
punctured at (0,m∗1,m

∗
2) since j ≥ 1).

Lemma 47. advHybC,2,2,j,3,HybC,2,2,j,4(λ) ≤ 2−Ω(νiO(λ)), for 1 ≤ j ≤ T − 1.

Proof. We unpuncture ACE keys EK2,DK2 at the point pj+1,m∗2
= (j + 1,m∗1,m

∗
2) and remove hardwired

L∗j+1,m∗2
= ACE.EncEK2(j+1,m∗1,m

∗
2) in programs Transform, isLess, and RetrieveTags, without changing

their functionality.

More specifically, in program Transform we unpuncture EK2 at pj+1,m∗2
= (j + 1,m∗1,m

∗
2) and remove an

instruction to output L∗j+1,m∗2
= ACE.EncEK2(j + 1,m∗1,m

∗
2) when (i,m1,m2) = (j + 1,m∗1,m

∗
2). This is

without changing the functionality, since now the program will run an encryption ACE.EncEK2(j+1,m∗1,m
∗
2)

when (i,m1,m2) = (j + 1,m∗1,m
∗
2), instead of directly outputting hardwired L∗j+1,m∗2

.

In program isLess we unpuncture decryption key DK2 at pj+1,m∗2
= (j+1,m∗1,m

∗
2) and remove an instruction

to use (j + 1,m∗1,m
∗
2) as a result of decrypting L∗j+1,m∗2

, thus making the program decrypt L∗j+1,m∗2
instead.

This is without changing the functionality, since (j + 1,m∗1,m
∗
2) is what L∗j+1,m∗2

decrypts to.

In program RetrieveTags we unpuncture decryption key DK2 at pj+1,m∗2
= (j + 1,m∗1,m

∗
2) and remove an

instruction to output (m∗1,m
∗
2) on input L∗j+1,m∗2

. This is without changing the functionality, since (m∗1,m
∗
2)

is what the program outputs when decrypting L∗j+1,m∗2
.

Lemma 48. advHybC,2,3,1,HybC,2,3,2(λ) ≤ 2−Ω(νACE.ConstrDec(λ)).

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set

{
p1,m∗2

}
= {(1,m∗1,m∗2)} to puncture encryption key EK2 and challenge sets

{
p1,m∗2

}
, ∅ to

puncture decryption key DK2. Indeed, given EK2{p1,m∗2
} and key which is either DK2{p1,m∗2

} or DK2, it is
easy to reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all programs,
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and compute `∗1 = ACE.EncEK1(1,m∗1) and L∗0 = ACE.EncEK2(0,m∗1,m
∗
2) (using the challenge encryption

key EK2{p1,m∗2
} which is not punctured at (0,m∗1,m

∗
2)).

Lemma 49. advHybC,2,3,2,HybC,2,3,3(λ) ≤ 2−Ω(νiO(λ)).

Proof. In program Transform we do the following changes. First, we change the condition for when to encrypt
i−1 from i ≤ 1 to i ≤ 0. This is without changing the functionality, since the case (i,m1,m2) = (1,m∗1,m

∗
2)

corresponds to the input ([1,m∗1],m∗2), in which case the program outputs ′fail′ at the very beginning, thus
the line with the condition is not reached on this input anyway. For the same reason we can unpuncture EK2

at p1,m∗2
= (1,m∗1,m

∗
2).

Next, in programs GenZero and Increment we puncture encryption key EK1 at p0 = (0,m∗1). This is without
changing the functionality, since neither program needs to encrypt this point.

Lemma 50. advHybC,2,3,3,HybC,2,3,4(λ) ≤ 2−Ω(νACE.ConstrDec(λ)).

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set {p0} = {(0,m∗1)} to puncture encryption key EK1 and challenge sets {p0} ,∅ to puncture
decryption key DK1. Indeed, given EK1{p0} and key which is either DK1 or DK1{p0}, it is easy to
reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all programs, and
compute `∗1 = ACE.EncEK1(1,m∗1) (using the challenge encryption key EK1{p0} which is not punctured at
(1,m∗1)) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).

Lemma 51. advHybC,2,3,4,HybC,2,3,5(λ) ≤ 2−Ω(νiO(λ)).

Proof. In program Transform we make the program output ACE.EncEK2(i,m1,m2) instead of
ACE.EncEK2(i− 1,m1,m2) for the case (i,m1,m2) = (0,m∗1,m

∗
2); this is without changing the funcitonal-

ity, since encryption is never reached in the case. Indeed, on input ([0,m∗1],m∗2) Transform outputs ′fail′

during decryption, since DK1 is punctured at p0 = (0,m∗1).

Lemma 52. advHybC,2,3,5,HybC,2,3,6(λ) ≤ 2−Ω(νACE.ConstrDec(λ)).

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set {p0} = {(0,m∗1)} to puncture encryption key EK1 and challenge sets {p0} ,∅ to puncture
decryption key DK1. Indeed, given EK1{p0} and key which is either DK1 or DK1{p0}, it is easy to
reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all programs, and
compute `∗1 = ACE.EncEK1(1,m∗1) (using the challenge encryption key EK1{p0} which is not punctured at
(1,m∗1)) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).

Lemma 53. advHybC,2,3,6,HybC,2,3,7(λ) ≤ 2−Ω(νiO(λ)).

Proof. In programs GenZero and Increment we unpuncture encryption key EK1 at p0 = (0,m∗1). This is
without changing the functionality, since neither program needs to encrypt this point.

6 Construction of interactive deniable encryption

In this section we describe a construction of interactive deniable encryption for a single-bit message space.
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Notation. We denote by s and r the variables corresponding to randomness of the sender and the receiver,
respectively, and let µ1, µ2, µ3 denote the three messages of the protocol. P1,P2,P3,Dec,SFake,RFake are
programs of the deniable encryption.

P1(s,m) takes as input sender randomness s and plaintextm and outputs the first message µ1. P2(r, µ1) takes
as input receiver randomness r and first message µ1 and outputs the second message µ2. P3(s,m, µ1, µ2)
takes as input sender randomness s, plaintext m, and protocol messages µ1, µ2 and outputs the last message
µ3. Dec(r, µ1, µ2, µ3) takes as input receiver randomness r and protocol messages µ1, µ2, µ3 and outputs
the plaintext m. SFake(s,m, m̂, µ1, µ2, µ3) takes as input sender randomness s, true plaintext m, new (fake)
plaintext m̂, and protocol messages µ1, µ2, µ3 and outputs fake randomness s′ which makes µ1, µ2, µ3

look consistent with m̂. RFake(m̂, µ1, µ2, µ3) takes as input new (fake) plaintext m̂ and protocol messages
µ1, µ2, µ3 and outputs fake randomness r′ which makes µ1, µ2, µ3 look consistent with m̂.

To avoid cumbersome notation, we use the same name for both unobfuscated and obfuscated programs.
In particular, the parties and the adversary only see obfuscated programs and never the actual code of the
programs. For example, on fig. 78 the instruction to the sender to run P1 means taking the obfuscation of the
program P1 from the CRS and running it.

Everywhere throughout the paper we will be assuming that any program outputs ⊥, if any of its underlying
primitives outputs ⊥, except for the cases where it is explicitly written otherwise.

6.1 Construction

The protocol is described in fig. 78. It simply instructs parties to run the programs from the CRS, which
consists of 6 obfuscated programs P1,P2,P3,Dec,SFake,RFake (described in fig. 79, fig. 80). Note that
deniability of the receiver is public, since the knowledge of randomness of the receiver is not required in
order to run RFake.

In the introduction we described the reasons behind the logic of the programs we are using. Here we give
an overview of the overall structure of protocol messages and fake randomness. For simplicity, for this
discussion we will use integers (instead of our level system used in the programs of deniable encryption) to
count how many times s was faked (see the introduction for the discussion of what role levels play in our
construction).

The structure of protocol messages. The first two messages in the protocol are simply “hashes” (imple-
mented as a PRF) of internal state of parties so far: that is, µ1 is PRF(s,m) and µ2 is PRF(r, µ1). The third
message µ3 is an encryption of m,µ1, µ2, and level 0. After running the protocol, the receiver can run Dec
which decrypts µ3 and outputs m.

The structure of fake randomness. Fake randomness s′ of the sender is an encryption (under a special
sender-fake key which is known to programs but not known to parties) of m′, µ1

′, µ2
′, µ3

′, and level 1. This
encryption has pseudorandom ciphertexts, and for an external observer s′ looks like a truly random value.
Programs can decrypt s′ using hardwired key and interpret (m′, µ1

′, µ2
′, µ3

′, `′) as an instruction to output
µ1
′ on input m′ (for program P1) and an instruction to output µ3

′ on input m′, µ1
′, µ2

′ (for program P3).
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The CRS: Programs P1,P2,P3, Dec,SFake,RFake (fig. 79, fig. 80)), obfuscated under iO.

Our Interactive bideniable encryption:
Inputs: plaintext m ∈ {0, 1} of the sender.

1. Message 1: The sender chooses random s∗, computes µ1
∗ ← P1(s∗,m) and sends µ1

∗.
2. Message 2: The receiver chooses random r∗, computes µ2

∗ ← P2(r∗, µ1
∗) and sends µ2

∗.
3. Message 3: The sender computes µ3

∗ ← P3(s∗,m, µ1
∗, µ2

∗) and sends µ3
∗.

4. The receiver runs m′ ← Dec(r∗, µ1
∗, µ2

∗, µ3
∗).

Sender Coercion:
Inputs: real plaintext m ∈ {0, 1}, fake plaintext m̂ ∈ {0, 1}, real random coins s∗ of the sender, and the
protocol transcript µ1

∗, µ2
∗, µ3

∗.
1. Upon coercion, the sender computes fake randomness s′ ← SFake(s∗,m, m̂, µ1

∗, µ2
∗, µ3

∗).

Receiver Coercion:
Inputs: fake plaintext m̂ ∈ {0, 1} and the protocol transcript µ1

∗, µ2
∗, µ3

∗.
1. Upon coercion, the receiver chooses random ρ∗ and computes fake randomness r′ ←

RFake(m̂, µ1
∗, µ2

∗, µ3
∗; ρ∗).

Figure 78: Our interactive bideniable encryption scheme.

Thus, such s′ makes the transcript look consistent with m′, regardless of the actual plaintext which was used
to generate the transcript.

Similarly, fake randomness r′ of the receiver is an encryption (under a special receiver-fake key which is
known to programs but not known to parties) of m′, µ1

′, µ2
′, µ3

′, and level 0 (together with prg(ρ) which
is for randomizing this ciphertext). This encryption has pseudorandom ciphertexts, and for an external
observer r′ looks like a truly random value. Programs can decrypt r′ using hardwired key and interpret
(m′, µ1

′, µ2
′, µ3

′, L′) as an instruction to output µ2
′ on input µ1

′ (for program P2) and an instruction to
output m′ on input µ1

′, µ2
′, µ3

′ (for program Dec). Thus, such r′ makes the transcript looks consistent with
m′ (and in particular decrypts it to m′), regardless of the actual plaintext which was used to generate the
transcript.

Both programs P3,Dec also have special instructions for the “mixed input” case, i.e. for the case when P3
gets as input fake s′ encrypting (m′, µ1

′, µ2
′, µ3

′, `′), but input µ2 of the program P3 is different from µ2
′

in s′ (in case of Dec, when µ3
′ in fake r′ is different from input µ3 to Dec). The correct treatment of the

mixed case is crucial for security of the scheme. See the explanation in the introduction for the logic of the
programs on mixed inputs.

6.2 Required primitives and their parameters.

We require the primitives listed below. Note that these primitives can be constructed from iO, injective PRFs
(which in turn can be constructed from standard OWFs, [SW14]) and injective OWFs (which in turn can be
constructed from iO and standard OWFs, [BPW16]); thus it is enough to require iO and OWFs. By starting
with subexponentially-secure iO and OWFs, we can get subexponential security of these primitives.

Definitions can be found in section 3.
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Notation. We denote security parameter by λ. We parametrize sizes in our construction by τ(λ), which is
the length of the first message in the protocol (also equal to the size of a tag for the level system, since we use
µ1, µ2 as tags), and T (λ), which is an upper bound of the level system.

Injective PRFs with sparse image. As shown in [SW14], for any length l there exists a family of PRFs {Fk}λ
mapping l-sized inputs to 2l+ λ-sized outputs, such that with probability at least 1− 2−λ (over the choice of
the key), the PRF is injective. Note that PRF with these parameters has exponentially sparse image, i.e. a
randomly chosen element is in its image with probability 2−l−λ.

These PRFs are used in the construction of ACE and relaxed ACE.

Sparse extracting PRF. As shown in [SW14], for any length l, as long as the input has entropy at least
l ≥ τ/2 + 2λ+ 2, there exists a family of extracting PRFs {Fk}λ mapping at least l-sized inputs to τ/2-sized
outputs, which are strong extractors with statistical distance at most 2−λ. It can be shown in a simple
reduction that applying a length-doubling prg to the output of such a PRF results in a (computationally)
extracting PRF, such that a random string is in its image with probability 2τ/2.

These PRFs are used to compute the first two messages in the protocol.

ACE. As shown in [CHJV14], for any plaintext length l, there exists an ACE with ciphertexts of size 3l + λ
(as long as injective PRFs used are from l bits to 2l + λ bits).

ACE is used as the main encryption scheme (used to compute the third message of the protocol).

Relaxed ACE. As we show in the appendix B by modifying the construction of [CHJV14], for any plaintext
length l and suffix parameter t, there exists a relaxed ACE with ciphertexts of size (l− t+ 1)(2l− t+λ) +λ
(as long as each injective PRF Fi, i = t, . . . , l, is from i bits to 2i+ λ bits). . Further, ciphertexts of this ACE
are sparse, with ratio of ciphertexts at most 2−λ. Relaxed ACE is used as an encryption scheme to generate
fake sender and receiver randomness.

Length-doubling PRG. We use a prg from λ to 2λ bits. It is used in program RFake to randomize fake
randomness of the receiver. (In addition, as part of the construction of a sparse extracting PRF, we also use a
prg from τ(λ)/2 to τ(λ) bits).

Level system. In section 5 we build the level system for any superpolynomial upper bound T and any sublinear
tag size.

Length of variables as a function of the first message size τ and level upper bound T . Below we
express sizes in our construction (which in turn specify parameters of all primitives) as a function of the first
message size τ(λ) and the upper bound of the level system T (λ). We require that both τ(λ)and log T (λ) are
sublinear in λ. We assume that the plaintext of the deniable encryption scheme is one bit long. Somewhat
abusing notation, in this discussion we will be denoting the size of the ACE ciphertext of l-size input as
ACE(l); size of levels as |`|, |L|; size of the output of a prg as |prg|.

• |µ1| = τ ;

• |µ2| = τ ;

• |`| = |ACE(|µ1|+ log T )| = 3(τ + log T ) + λ = O(λ);

• |L| = |ACE(|µ1|+ |µ2|+ log T )| = 3(2τ + log T ) + λ = O(λ);
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• |µ3| = |ACE(1+ |µ1|+ |µ2|+ |L|)| = 3(1+2τ+3(2τ+log T )+λ)+λ = 3+24τ+9 log T +4λ =
O(λ);

• |s| = relaxedACE(1 + |µ1|+ |µ2|+ |µ3|+ |`|) (for suffix parameter t = |`|), thus the size is equal to
(1 + 2τ + (3 + 15τ + 9 log T + 4λ) + 1)(2(1 + 2τ + (3 + 15τ + 9 log T + 4λ) + 3(τ + log T ) +λ)−
(3(τ + log T ) + λ) + λ) + λ = (5 + 17τ + 9 log T + 4λ)(8 + 37τ + 21 log T + 20λ) + λ = O(λ2);

• |r| = relaxedACE(1 + |µ1|+ |µ2|+ |µ3|+ |L|+ |prg|) (for suffix parameter t = |prg|), thus the size is
equal to ((1+2τ+3+24τ+9 log T+4λ+3(2τ+log T )+λ+2λ)−2λ+1)(2(1+2τ+3+24τ+9 log T+
4λ+3(2τ+log T )+λ+2λ)−2λ+λ)+λ = (5+32τ+12 log T+5λ)(8+64τ+24 log T+13λ)+λ =
O(λ2).

Further, since in our construction of deniable encryption we use the first message µ1 as a tag for the level
system, we need a level system for upper bound T and tag size τ .

The size of the programs, and removing layers of iO. Note that the source code on fig. 79, fig. 80
includes the description of obfuscated programs of the level system. In turn, the source code of programs of
the level system contains ACE keys which are again obfuscations of some other programs. Thus, the CRS
contains programs which have 3 layers of obfuscation.

However, we have only done this for convenience: namely, for being able to show security of all primitives
(e.g. ACE and the level system) separately and then to use is it as part of a bigger proof (e.g. of deniable
encryption or the level system). Indeed, it is possible to prove security of our deniable encryption where
programs of deniable encryption are obfuscated only once. That is, programs of deniable encryption can
use unobfuscated code of the programs of the level system and ACE. However, to show security of such
a construction, one would have to “unroll” all proofs, i.e. substitute the proof of, say, ACE instead of
each reduction to security of ACE in the main proof. Needless to say, writing, or even more importantly,
verifying such a proof does not sound feasible to the authors of this paper, who think of themselves as
polynomially-bounded Turing machines.

Nevertheless, in appendix A we briefly explain why such a proof could be written. Intuitively, this holds
because of the following: let’s say in the proof of ACE we punctured the PRF and reduced it to security of
the obfuscation (of ACE source code). Then we can do the same reduction in the “unrolled” proof, since that
punctured PRF key, which is now a part of a source code of deniable encryption program, is still protected by
obfuscation on top of that program.

We state our theorem with the size σ of a source code of the programs of deniable encryption scheme as a
parameter. As long as our construction uses only one layer of iO, σ = O(λ3) (λ3 comes from the fact that all
programs of deniable encryption use keys of a relaxed ACE, which have the size O(λ3) due to the fact each
key consists of O(λ) PRF keys, these keys are punctured in the security proof, and each punctured PRF key
has size O(λ2)).

Theorem 3. Assume the existence of the following primitives with parameters spicified above:

• SG,RG are extracting puncturable PRFs with sparse image. Further, these PRFs should have a
property that, given a punctured key, we can further puncture them at one more point;

• prg is a pseudorandom generator with a sparse image;
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• Programs (GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags) are the programs of a
level system;

• sender-fake ACE (with keys EKS ,DKS) is a relaxed ACE with suffix parameter equal to the size of a
single-tag level of the level system; in addition, its ciphertexts should be sparse.

• receiver-fake ACE (with keys EKR,DKR) is a relaxed ACE with suffix parameter equal to the image
length of a prg; in addition, its ciphertexts should be sparse.

• main ACE (with keys EK,DK);

• iO is a secure indistinguishability obfuscation for circuits of size σ = c · λ3 for some constant c;

Then the protocol presented on fig. 78 with programs presented on fig. 79, fig. 80 is a bideniable and
off-the-record deniable interactive encryption in the CRS model for 1-bit plaintexts. More specifically,
assuming that each primitive except the level system is (t(λ), ε(λ))-secure, and assuming the level system
for an upper bound T and tag size τ is O(t(λ), ε1(λ, T, τ))-secure, the resulting deniable encryption is
(t(λ), O(ε(λ)) +O(2−τ ) + ε1(λ, T, τ))-secure.
Corollary 2. Let T = 2λ

ε/2
, τ = λε/2, and assume that all primitives in the theorem 3 are

(poly(λ), 2−Ω(λε
2/2))-secure. Then the resulting deniable encryption is (poly(λ), 2−Ω(λε

2/2))-secure.

Encrypting longer plaintexts. Note that the syntax of the scheme allows to encrypt longer plaintexts.
However, for simplicity we define and prove deniability and off-the-record-deniability for 1-bit plaintexts
only. In appendix C we list the changes required to adapt the proof to support longer plaintexts. However,
this incurs additional security loss proportional to the |M|3, the cube of the size of the plaintext space.
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Programs P1,P3,SFake.
Program P1(s,m)
Inputs: sender randomness s, plaintext m.
Hardwired values: decryption key DKS of sender-fake ACE, key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS (s,m).

Program P3(s,m, µ1, µ2)
Inputs: sender randomness s, plaintext m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1, GenZero, Transform, RetrieveTag; decryption key
DKS of sender-fake ACE, encryption key EK of main ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFake(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake plaintext m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1, GenZero, Increment; encryption and decryption keys
EKS ,DKS of sender-fake ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS (m̂, µ1, µ2, µ3, `+1).

3. Main step:
(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS (m̂, µ1, µ2, µ3, `1).

Figure 79: Programs P1,P3,SFake.
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Programs P2,Dec,RFake.
Program P2(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: decryption key DKR of receiver-fake ACE, key kR of an extracting PRF RG.

1. Trapdoor step:
(a) out ← ACE.DecDKR(r); if out = ′fail′ then goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(b) If µ1 = µ1
′ then return µ2

′;
2. Main step:

(a) Return µ2 ← RGkR(r, µ1).

Program Dec(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P2, isLess, RetrieveTags; decryption key DKR of receiver-
fake ACE, decryption key DK of the main ACE.

1. Validity check: if P2(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKR(r); if out′ = ′fail′ then goto main step; else parse out′ as
(m′, µ1

′, µ2
′, µ3

′, L′, ρ̂);
(b) if µ1, µ2, µ3 = µ1

′, µ2
′, µ3

′ then return m′;
(c) out← ACE.DecDK(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1

′′, µ2
′′, L′′);

(d) If µ1, µ2 = µ1
′, µ2

′ then
i. If (µ1

′, µ2
′) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) and isLess(L′, L′′) = true then return m′′;

ii. Else abort.
3. Main step:

(a) out← ACE.DecDK(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
(b) If (µ1, µ2) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) then return m′′;

(c) Else abort.

Program RFake(m̂, µ1, µ2, µ3; ρ)
Inputs: fake plaintext m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: encryption key EKR of receiver-fake ACE, decryption key DK of the main ACE.

1. out← ACE.DecDK(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
2. Return r′ ← ACE.EncEKR(m̂, µ1, µ2, µ3, L

′′, prg(ρ)).
Figure 80: Programs P2,Dec,RFake.
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6.3 Proof overview

Correctness. Correctness follows from correctness of all underlying primitives and from the fact that
sender-fake and receiver-fake ACE are both sparse. More concretely, assume s∗ and r∗ are randomly
chosen coins of the sender and the receiver. Due to sparseness of ACE, s∗ (resp, r∗) is outside of the
image of sender-fake (resp., receiver-fake) ACE. Therefore program P1 on input s∗,m executes the main
step and outputs µ1

∗ = SGkS (s∗,m), program P2 on input r∗, µ1
∗ executes the main step and outputs

µ2
∗ = RGkR(r∗, µ1

∗), and program P3 on input s∗,m, µ1
∗, µ2

∗ executes the main step and outputs µ3
∗ =

EncK(m,µ1
∗, µ2

∗,Transform(GenZero(µ1
∗), µ2

∗)). In particular, the validity check passes since indeed
P1(s∗,m) = µ1

∗.

Next, program Dec on input r∗, µ1
∗, µ2

∗, µ3
∗ executes the main step by decrypting µ3

∗ and returning its
plaintext m. In particular, validity check passes, since P2(r∗, µ1

∗) = µ2
∗. Further, note that µ1, µ2 which are

the input to Dec, µ1
′′, µ2

′′ which are decrypted from µ3
∗, and the output of RetrieveTags(L′′) are all equal

to µ1
∗, µ2

∗ (recall that L′′ = Transform(GenZero(µ1
∗), µ2

∗)). Thus all checks in the main step of Dec pass
and the program outputs m.

Notation. m∗0,m
∗
1 denote messages chosen by the adversary. s∗, r∗ denote true (chosen at random) random

coins of the sender and receiver, respectively. µ1
∗, µ2

∗, µ3
∗ denote the challenge transcript of the protocol,

which is either tr(s∗, r∗,m∗0) or tr(s∗, r∗,m∗1) depending on the hybrid. s′, r′ denote fake random coins of
the sender and receiver, respectively. We write tr(s, r,m) to denote the communication in the protocol with
input m and randomness s and r.

By `∗0 we denote a single-tag level 0 with tag µ1
∗. By `∗1 we denote a single-tag level 1 with tag µ1

∗. By L∗0
we denote double-tag level 0 with tags µ1

∗, µ2
∗.

In addition, we will be using notation [val, µ1] and [val, µ1, µ2] to denote single-tag and double-tag levels
with value val and tag µ1 (or, tags µ1, µ2).

Main steps. We start with a distribution corresponding to transmitted plaintext m∗0 ∈ {0, 1} and real
randomness s∗ and r∗ presented to the adversary. More formally, we consider the following distribution:

HybA = (PP,m∗0,m
∗
1, s
∗, r∗, tr(s∗, r∗,m∗0)), where s∗, r∗ are randomly chosen, and PP =

Setup(1λ; P1,P2,P3,Dec,SFake,RFake; rSetup) for randomly chosen rSetup.

To prove security of our deniable encryption scheme, we proceed in the following steps:

1. Indistinguishability of explanations of the sender: we switch real (randomly chosen) s∗ to fake s′,
which encodes plaintext m∗0, transcript µ1

∗, µ2
∗, µ3

∗, and level `∗ = [0, µ1
∗], moving to the following

distribution:

HybB = (PP,m∗0,m
∗
1, s
′, r∗, tr(s∗, r∗,m∗0)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), and PP = Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for

randomly chosen rSetup.

The proof of this step is similar in spirit to the proof of a sender-deniable encryption of Sahai and
Waters [SW14], and relies on the fact that all relevant programs, given s∗ or s′ as input, behave in the
same way for any choice of remaining inputs.
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2. Indistinguishability of explanations of the receiver: we switch real (randomly chosen) r∗ to fake
r′, which encodes plaintext m∗0, transcript µ1

∗, µ2
∗, µ3

∗, and level L∗ = [0, µ1
∗, µ2

∗], moving to the
following distribution:

HybC = (PP,m∗0,m
∗
1, s
′, r′, tr(s∗, r∗,m∗0)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly
chosen ρ∗, and PP = Setup(1λ; P1,P2,P3,Dec,SFake,RFake; rSetup) for randomly chosen rSetup.

Unlike the previous step, here there exist inputs such that program Dec, when run on these inputs and
r∗ or r′, produces different outputs. However, such inputs are hard to find. Thus, in security proof of
this step we first use properties of ACE to “eliminate” bad inputs (i.e. to make the programs reject
them), then run Sahai-Waters-like proof similar to the previous step, and finally use ACE to bring bad
inputs back and restore the programs.

3. Semantic security: we switch the transcript from encrypting m∗0 to encrypting m∗1, moving to the
following distribution:

HybD = (PP,m∗0,m
∗
1, s
′, r′, tr(s∗, r∗,m∗1)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly
chosen ρ∗, and PP = Setup(1λ; P1,P2,P3,Dec,SFake,RFake; rSetup) for randomly chosen rSetup.

Proving security of this step involves the following. First, similar to the previous step, we “eliminate”
a ciphertext µ3

∗ = ACE.EncEK(1 ⊕m∗0, µ1
∗, µ2

∗, L∗0), making all programs reject it (note that this
ciphertext is “complementary” to the challenge ciphertext µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0),
meaning it encrypts the opposite bit). This allows us to modify program Dec such that decryption key
DK is not used to decrypt µ3

∗, µ3
∗. Then we use security of ACE to switch µ3

∗ from encrypting m∗0 to
m∗1, and then revert all previous changes.

4. Indistinguishability of levels: we switch the level encoded in s′ from `∗0 = [0, µ1
∗] to `∗1 = [1, µ1

∗]
(while keeping L∗0 = [0, µ1

∗, µ2
∗] the same), moving to the following distribution:

HybE = (PP,m∗0,m
∗
1, s
′, r′, tr(s∗, r∗,m∗1)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly
chosen ρ∗, and PP = Setup(1λ; P1,P2,P3,Dec,SFake,RFake; rSetup) for randomly chosen rSetup.

To prove security of this step, we first use security of ACE to eliminate some bad inputs. After this,
we can modify programs of deniable encryption scheme in such a way that they only use punctured
version of the programs of the level system. Then we invoke security of the level system and finally
revert previous changes.

Finally, we argue that, except with negligible probability, s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1) is the

same as s′ = SFake(s∗,m∗1,m
∗
0, µ1

∗, µ2
∗, µ3

∗) (indeed, this is what SFake outputs except for a negli-
gibly small fraction of inputs). In addition, since r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) =
RFake(m∗0, µ1

∗, µ2
∗, µ3

∗; ρ∗), we thus obtain the following distribution:

HybF = (PP,m∗0,m
∗
1, s
′, r′, tr(s∗, r∗,m∗1)), where s∗, r∗ are randomly chosen, s′ =

SFake(s∗,m∗1,m
∗
0, µ1

∗, µ2
∗, µ3

∗), r′ = RFake(m∗0, µ1
∗, µ2

∗, µ3
∗; ρ∗) for randomly chosen ρ∗, and

PP = Setup(1λ; P1,P2,P3,Dec,SFake,RFake; rSetup) for randomly chosen rSetup.

Note that this distribution corresponds to the execution of the protocol with plaintext m∗1 and fake randomness
s′, r′ which makes this transcript look consistent with plaintext m∗0, and thus we proved security of our
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deniable encryption.

In section 7.1 for each one of the four steps we present a list of hybrids with a brief explanation of why
indistinguishability between each hybrid holds. Formal security reductions can be found in section 7.2.

Off-the-record deniability. Proof of off-the-record deniability of our scheme follows the same major
four steps, but in a different order and with slightly different distributions. In section 8 we explain how to
modify the proof of deniability from section 7 to turn it into a proof of off-the-record deniability.

7 Proof of security of our bideniable encryption

7.1 List of hybrids

In this section we present a list of hybrids with brief explanation of why indistinguishability holds. Formal
security reductions can be found in section 7.2.

We note that we repeat some hybrids in order to get 4 clean steps (e.g. hybrids HybB,3,3 − HybB,3,5 at the
very end of the proof of lemma 55 are immediately undone at the very beginning of the proof of lemma 56).
Lemma 54. [Indistinguishability of explanations of the sender] Assuming (t(λ), ε(λ)) security of relaxed
ACE, iO and sparse extracting PRFs, the distiributions in HybA,HybB are (t(λ), O(ε(λ)))-close.
Lemma 55. [Indistinguishability of explanations of the receiver] Assuming (t(λ), ε(λ)) security of ACE,
relaxed ACE, iO, prg and sparse extracting PRFs, the distiributions in HybB,HybC are (t(λ), O(ε(λ)) +
2−τ(λ))-close.
Lemma 56. [Semantic security] Assuming (t(λ), ε(λ)) security of ACE, relaxed ACE, iO, and sparse
extracting PRFs, the distiributions in HybC ,HybD are (t(λ), O(ε(λ)) +O(2−τ(λ)))-close.
Lemma 57. [Indistinguishability of levels] Assuming (t(λ), ε(λ)) security of relaxed ACE, iO, and sparse
extracting PRFs, and assuming (t(λ), ε1(λ, T, τ))-secure level system, the distiributions in HybD,HybE are
(t(λ), O(ε(λ)) + ε1(λ, T, τ))-close.

7.1.1 Proof of lemma 54 (Indistinguishability of explanation of the sender)

• HybA,1. We give the adversary (PP,m∗0,m
∗
1, s
∗, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; s∗, r∗ are cho-
sen at random, µ1

∗ = SG(s∗,m∗0), µ2
∗ = P2(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0).

Programs are presented on fig. 81.

Note that HybA,1 = HybA, conditioned on the fact that s∗ is outside of the image of ACE.

• HybA,2. We give the adversary (PP,m∗0,m
∗
1, s
∗, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1A,1,P2,P3A,1,Dec,SFakeA,1,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗0), µ2

∗ = P2(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0).
Programs are presented on fig. 82.

That is, we modify programs of the sender by puncturing encryption key of sender-fake ACE EKS{S`∗0}
at the set S`∗0 = {(∗, ∗, ∗, ∗, `∗0)}, decryption key of sender-fake ACE DKS{s∗, s′} at s∗ and s′ (where
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s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0)), and the key kS of extracting PRF SG of the sender at the

points (s∗,m∗0) and (s′,m∗0). In addition, we hardwire certain outputs inside programs of the sender to
make sure that functionality of the programs doesn’t change. Indistinguishability holds by iO.

• HybA,3. We give the adversary (PP,m∗0,m
∗
1, s
∗, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1A,1,P2,P3A,1,Dec,SFakeA,1,RFake; rSetup) for randomly chosen rSetup; s∗, r∗ are cho-
sen at random, µ1

∗ is chosen at random, µ2
∗ = P2(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0).

Programs are presented on fig. 82.

That is, we choose µ1
∗ at random instead of computing it as µ1

∗ = SGkS (s∗,m∗0). Indistinguishability
holds by pseudorandomness of the PRF SG at the punctured point (s∗,m∗0).

• HybA,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1A,1,P2,P3A,1,Dec,SFakeA,1,RFake; rSetup) for randomly chosen rSetup; s∗, r∗ are cho-
sen at random, µ1

∗ is chosen at random, µ2
∗ = P2(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0). Programs are presented on fig. 82.

That is, we switch the roles of s∗ and s′ everywhere in the distribution: namely, we give s′ (instead of
s∗) to the adversary as randomness of the sender, and we change s∗ to s′ and s′ to s∗ everywhere in
the programs. Note that this doesn’t change the code of the programs since programs use s∗ and s′ in
the same way. Indistinguishability holds by the symmetry of sender-fake ACE, which says that
(s∗, s′,EKS{S`∗0},DKS{s∗, s′}) is indistinguishable from (s′, s∗,EKS{S`∗0},DKS{s∗, s′}), where
p = (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), s∗ is randomly chosen, s′ = ACE.EncEKS (p). Note that DKS{s∗, s′} is
first punctured at one of the points s∗, s′ which is lexicographically smaller, and then at the other.

• HybA,5. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1A,1,P2,P3A,1,Dec,SFakeA,1,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗0), µ2

∗ = P2(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Programs are presented on fig. 82.

That is, we generate µ1
∗ as µ1

∗ = SGkS (s∗,m∗0) instead of choosing it at random. Indistinguishability
holds by pseudorandomness of the PRF SG at the punctured point (s∗,m∗0).

• HybA,6. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; s∗, r∗ are cho-
sen at random, µ1

∗ = SG(s∗,m∗0), µ2
∗ = P2(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0). Programs are presented on fig. 81.

That is, we revert all changes we made to programs and thus use original programs of our deniable
encryption scheme in this hybrid. Indistinguishability holds by iO, since we remove puncturing without
changing the functionality of the programs.

Note that HybA,6 = HybB , conditioned on the fact that s∗ is outside of the image of ACE.
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Programs P1,P3,SFake.
Program P1(s,m)
Inputs: sender randomness s, message m.
Hardwired values: decryption key DKS of sender-fake ACE, key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS (s,m).

Program P3(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1, GenZero, Transform, RetrieveTag; decryption key
DKS of sender-fake ACE, encryption key EK of main ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFake(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1, GenZero, Increment; encryption and decryption keys
EKS ,DKS of sender-fake ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS (m̂, µ1, µ2, µ3, `+1).

3. Main step:
(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS (m̂, µ1, µ2, µ3, `1).

Figure 81: Programs P1,P3,SFake.
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Programs P1A,1,P3A,1,SFakeA,1.
Program P1A,1(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{s∗, s′} of sender-fake ACE, punctured key kS{(s∗,m∗0), (s′,m∗0)}
of an extracting PRF SG, variables s∗, s′,m∗0, µ1

∗.
1. Trapdoor step:

(a) If (s,m) = (s∗,m∗0) or (s,m) = (s′,m∗0) then return µ1
∗;

(b) If s = s∗ or s = s′ then goto main step;
(c) out← ACE.DecDKS{s∗,s′}(s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(d) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS{(s∗,m∗0),(s′,m∗0)}(s,m).
Program P3A,1(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1A,1, GenZero, Transform, RetrieveTag; punctured decryption
key DKS{s∗, s′} of sender-fake ACE, encryption key EK of main ACE, variables s∗, s′,m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0.
1. Validity check: if P1A,1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) If (s,m, µ1, µ2) = (s∗,m∗0, µ1
∗, µ2

∗) or (s,m, µ1, µ2) = (s′,m∗0, µ1
∗, µ2

∗) then return µ3
∗;

(b) If (s,m, µ1) = (s∗,m∗0, µ1
∗) or (s,m, µ1) = (s′,m∗0, µ1

∗) then return µ3 ←
EncEK(m∗0, µ1

∗, µ2,Transform(`∗0, µ2));
(c) If s = s∗ or s = s′ then goto main step;
(d) out← ACE.DecDKS{s∗,s′}(s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(e) If m,µ1, µ2 = m′, µ1

′, µ2
′ then return µ3

′;
(f) If m,µ1 = m′, µ1

′ then:
i. If µ1 6= RetrieveTag(`′) then abort;

ii. Set L← Transform(`′, µ2);
iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);

3. Main step:
(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeA,1(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1A,1, GenZero, Increment; punctured encryption key EKS{S`∗0

}
(where S`∗0

= {(∗, ∗, ∗, ∗, `∗0)}) and punctured decryption key DKS{s∗, s′}, variables s∗, s′,m∗0, µ1
∗, `∗0.

1. Validity check: if P1A,1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) If (s,m, µ1) = (s∗,m∗0, µ1
∗) or (s,m, µ1) = (s′,m∗0, µ1

∗) then return
EncEKS{p}(m̂, µ1, µ2, µ3, Increment(`∗0));

(b) If s = s∗ or s = s′ then goto main step;
(c) out← ACE.DecDKS{s∗,s′}(s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(d) If m,µ1 = m′, µ1

′ then
i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;

ii. Return ACE.EncEKS{S`∗0
}(m̂, µ1, µ2, µ3, `+1).

3. Main step:
(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{S`∗0

}(m̂, µ1, µ2, µ3, `1).

Figure 82: Programs P1A,1,P3A,1, SFakeA,1, used in the proof of lemma 54 (indistinguishability of expla-
nations of the sender).
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7.1.2 Proof of lemma 55 (Indistinguishability of explanation of the receiver)

First in a sequence of hybrids we “eliminate” complementary ciphertext µ3
∗ = ACE.EncEK(1 ⊕

m∗0, µ1
∗, µ2

∗, L∗0), i.e. make programs Dec and SFake reject it:

• HybB,1,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; s∗, r∗ are cho-
sen at random, µ1

∗ = SG(s∗,m∗0), µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0). Programs can be found in fig. 83 (programs of the sender)

and fig. 87 (programs of the receiver).

Note that this distribution is exactly the distribution from HybB , conditioned on the fact that s∗, r∗ are
outside of images of their ACE.

• HybB,1,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,1,P2,P3B,1,Dec, SFakeB,1,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗0), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Programs can be found in fig. 84 (programs of the sender)
and fig. 87 (programs of the receiver).

That is, in program SFake we puncture encryption key EKS of the sender-fake ACE at the set P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Indistinguishability holds by iO, since this modification
doesn’t change the functionality of SFake due to the fact that SFake never encrypts plaintexts with
level `∗0.

• HybB,1,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,2,P2,P3B,2,Dec, SFakeB,2,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗0), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Programs can be found in fig. 85 (programs of the sender)
and fig. 87 (programs of the receiver).

That is, in programs P1,P3,SFake we puncture decryption key DKS of the sender-fake ACE at the
same set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Indistinguishability holds by security of
constrained decryption of ACE, since the corresponding encryption key EKS is already punctured at
the same set.

• HybB,1,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,2,P2,P3B,2,Dec, SFakeB,2,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0). Programs can be found in fig. 85 (programs of the sender)

and fig. 87 (programs of the receiver).

That is, we choose µ1
∗ at random instead of computing it as µ1

∗ = SGkS (s∗,m∗0). Indistinguishability
holds by the strong extracting property of the sender PRF SG (note that s∗ was not used anywhere else
in the distribution).

• HybB,1,5. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2,P3B,3,Dec, SFakeB,3,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),
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s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0). Programs can be found in fig. 86 (programs of the sender)

and fig. 87 (programs of the receiver).

That is, in program P3 we puncture encryption key EK of the main ACE at the point p = (1 ⊕
m∗0, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by iO, since P3 never needs to encrypt this point. Roughly,

this is because of the following: since µ1
∗ is random and outside of the image of a PRF SG, P3 never

encrypts p in the main step. In order to encrypt it in trapdoor step, P3 needs to take as input some fake
s encoding level `∗0. However, due to the fact that DKS is punctured at the set P`∗0 which contains all
but one strings with `∗0, the only valid fake s with `∗0 is s′. However, running P3 on s′ cannot result in
encrypting p in the trapdoor step since p contains the wrong plaintext 1⊕m∗0 (instead of m∗0).

• HybB,1,6. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,1,P3B,3,DecB,1,SFakeB,3,RFakeB,1; rSetup) for randomly chosen rSetup; r∗ is
chosen at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0). Programs can be found in fig. 86 (programs of the sender)

and fig. 88 (programs of the receiver).

That is, in programs Dec,RFake we puncture decryption key DK of the main ACE at the same point
p = (1⊕m∗0, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by security of constrained decryption of ACE,

since the corresponding encryption key EK is already punctured at this point.

Now µ3
∗ = ACE.EncEK(1 ⊕ m∗0, µ1

∗, µ2
∗, L∗0) is rejected by Dec and RFake. In the following hybrids,

similarly to previous lemma, we switch the roles of r∗ and r′, using the fact that programs treat them similarly,
once µ3

∗ is eliminated29.

• HybB,2,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,2,P3B,3,DecB,2,SFakeB,3,RFakeB,2; rSetup) for randomly chosen rSetup; r∗ is
chosen at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0). Programs can be found in fig. 86 (programs of the sender)

and fig. 89 (programs of the receiver).

That is, we modify programs of the receiver (P2,Dec,RFake) by puncturing encryption key of receiver-
fake ACE EKR{Sρ̂∗} at Sρ̂∗ = {(∗, ∗, ∗, ∗, ∗, ρ̂∗)} for randomly chosen ρ̂∗. Next, we puncture
decryption key of receiver-fake ACE DKR{r∗, r′} at r∗ and r′ (where r′ = ACE.EncEKR(p), p =
(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗)), and the key kR of extracting PRF RG of the receiver at the points (r∗, µ1

∗)
and (r′, µ1

∗). In addition, we hardwire certain outputs inside programs of the receiver to make sure
that functionality of the programs doesn’t change. Indistinguishability holds by iO.

• HybB,2,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,2,P3B,3,DecB,2,SFakeB,3,RFakeB,2; rSetup) for randomly chosen
rSetup; r∗ is chosen at random, µ1

∗ is chosen at random, µ2
∗ is chosen at random,

µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Programs
can be found in fig. 86 (programs of the sender) and fig. 89 (programs of the receiver).

29The problem with µ3
∗ is that unmodified Dec on input (r∗, µ1

∗, µ2
∗, µ3

∗) outputs 1 ⊕ m∗0 (via main step), and on input
(r′, µ1

∗, µ2
∗, µ3

∗) it outputs ′fail′ (via trapdoor step, since levels in r′ and µ3
∗ are both 0 and “isLess = true” check fails. Because

of this difference, in HybB,2,1 we wouldn’t be able to modify program Dec such that the code treats r∗ and r′ in the same way.
However, after HybB,1,6 µ3

∗ is not a valid ciphertext anymore and thus in HybB,2,1 we can instruct Dec to output ′fail′ on both r∗

and r′.
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That is, we choose µ2
∗ at random instead of computing it as µ2

∗ = RGkS (r∗, µ1
∗). Indistinguishability

holds by pseudorandomness of the PRF SG at the punctured point (r∗, µ1
∗).

• HybB,2,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,2,P3B,3,DecB,2,SFakeB,3,RFakeB,2; rSetup) for randomly cho-
sen rSetup; r∗ is chosen at random, µ1

∗ is chosen at random, µ2
∗ is chosen at ran-

dom, µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0),
r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗) for randomly chosen ρ̂∗. Programs can be found in fig.

86 (programs of the sender) and fig. 89 (programs of the receiver).

That is, we switch the roles of r∗ and r′ everywhere in the distribution: namely, we give r′ (instead
of r∗) to the adversary as randomness of the receiver, and we change r∗ to r′ and r′ to r∗ everywhere
in the programs. Note that this doesn’t change the code of the programs since programs use r∗

and r′ in the same way. Indistinguishability holds by the symmetry of receiver-fake ACE, which
says that (r∗, r′,EKR{Sρ̂∗},DKR{r∗, r′}) is indistinguishable from (r′, r∗,EKR{Sρ̂∗},DKR{r′, r∗}),
where Sρ̂∗ = {(∗, ∗, ∗, ∗, ∗, ρ̂∗)}, p = (m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗), r∗ is randomly chosen, r′ =

ACE.EncEKR(p).

• HybB,2,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,2,P3B,3,DecB,2,SFakeB,3,RFakeB,2; rSetup) for randomly chosen rSetup; r∗ is
chosen at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗) for randomly

chosen ρ̂∗. Programs can be found in fig. 86 (programs of the sender) and fig. 89 (programs of the
receiver).

That is, we compute µ2
∗ as µ2

∗ = RGkR(r∗, µ1
∗) instead of choosing it at random. Indistinguishability

holds by pseudorandomness of the PRF RG at the punctured point (r∗, µ1
∗).

• HybB,2,5. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,1,P3B,3,DecB,1,SFakeB,3,RFakeB,1; rSetup) for randomly chosen rSetup; r∗ is
chosen at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗) for randomly

chosen ρ̂∗. Programs can be found in fig. 86 (programs of the sender) and fig. 88 (programs of the
receiver).

That is, we revert all changes we made to programs in HybB,2,1 and thus use original programs
P2,Dec,RFake, except that DK remains punctured at the point p = (1 ⊕m∗0, µ1

∗, µ2
∗, L∗0). Indis-

tinguishability holds by iO, since we remove puncturing without changing the functionality of the
programs.

• HybB,2,6. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,1,P3B,3,DecB,1,SFakeB,3,RFakeB,1; rSetup) for randomly cho-
sen rSetup; s∗, r∗ are chosen at random, µ1

∗ = SGkS (s∗,m∗0), µ2
∗ = RG(r∗, µ1

∗),
µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ =
ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗. Programs can be found
in fig. 86 (programs of the sender) and fig. 88 (programs of the receiver).

That is, we replace randomly chosen ρ̂∗ with prg(ρ∗) for randomly chosen ρ∗, when generating r′.
Indistinguishability holds by security of a prg.
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Finally, in the following hybrids we revert all changes we made in hybrids HybB,1,1 - HybB,1,6, thus restoring
all programs (and making µ3

∗ a valid ciphertext):

• HybB,3,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2,P3B,3,Dec, SFakeB,3,RFake; rSetup) for randomly chosen rSetup; r∗

is chosen at random, chosen at random, µ1
∗ is chosen at random, µ2

∗ = RG(r∗, µ1
∗),

µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ =
ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗. Programs can be found
in fig. 86 (programs of the sender) and fig. 87 (programs of the receiver).

That is, in programs Dec,RFake we unpuncture decryption key DK of the main ACE at the point
p = (1⊕m∗0, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by security of constrained decryption of ACE,

since the corresponding encryption key EK is punctured at this point.

• HybB,3,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,2,P2,P3B,2,Dec, SFakeB,2,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs can be found in fig. 85 (programs of the sender) and fig. 87 (programs
of the receiver).

That is, in program P3 we unpuncture encryption key EK of the main ACE at the point p = (1 ⊕
m∗0, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by iO, because of the same reason as in HybB,1,5.

• HybB,3,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,2,P2,P3B,2,Dec, SFakeB,2,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗0), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for

randomly chosen ρ∗. Programs can be found in fig. 85 (programs of the sender) and fig. 87 (programs
of the receiver).

That is, we choose µ1
∗ as µ1

∗ = SGkS (s∗,m∗0) instead of computing it at random. Indistinguishability
holds by the strong extracting property of the sender PRF SG (note that s∗ is not used anywhere else in
the distribution).

• HybB,3,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,1,P2,P3B,1,Dec, SFakeB,1,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗0), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for

randomly chosen ρ∗. Programs can be found in fig. 84 (programs of the sender) and fig. 87 (programs
of the receiver).

That is, in programs P1,P3,SFake we unpuncture decryption key DKS of the sender-fake ACE at the
same set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Indistinguishability holds by security of
constrained decryption of ACE, since the corresponding encryption key EKS is already punctured at
the same set.

• HybB,3,5. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; s∗, r∗ are cho-
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sen at random, µ1
∗ = SG(s∗,m∗0), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for

randomly chosen ρ∗. Programs can be found in fig. 83 (programs of the sender) and fig. 87 (programs
of the receiver).

That is, in program SFake we unpuncture encryption key EKS of the sender-fake ACE at the set P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Indistinguishability holds by iO, since this modification
doesn’t change the functionality of SFake due to the fact that SFake never encrypts plaintexts with
level `∗0.

Note that HybB,3,5 is the same as HybC , conditioned on the fact that s∗, r∗ are outside of image of
ACE.
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Programs P1,P3,SFake.
Program P1(s,m)
Inputs: sender randomness s, message m.
Hardwired values: decryption key DKS of sender-fake ACE, key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS (s,m).

Program P3(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1, GenZero, Transform, RetrieveTag; decryption key
DKS of sender-fake ACE, encryption key EK of main ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFake(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1, GenZero, Increment; encryption and decryption keys
EKS ,DKS of sender-fake ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS (m̂, µ1, µ2, µ3, `+1).

3. Main step:
(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS (m̂, µ1, µ2, µ3, `1).

Figure 83: Programs P1,P3,SFake.
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Programs P1B,1,P3B,1, SFakeB,1.
Program P1B,1(s,m)
Inputs: sender randomness s, message m.
Hardwired values: decryption key DKS of sender-fake ACE, key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS (s,m).

Program P3B,1(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1B,1, GenZero, Transform, RetrieveTag; decryption
key DKS of sender-fake ACE, encryption key EK of main ACE.

1. Validity check: if P1B,1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeB,1(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1B,1, GenZero, Increment; punctured encryp-
tion key EKS{P`∗0} and decryption key DKS of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).
1. Validity check: if P1B,1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 84: Programs P1B,1,P3B,1, SFakeB,1, used in the proof of lemma 55 (indistinguishability of expla-
nations of the receiver).
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Programs P1B,2,P3B,2, SFakeB,2.
Program P1B,2(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), key kS of an extracting PRF SG.
1. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3B,2(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1B,2, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0),
encryption key EK of main ACE.

1. Validity check: if P1B,2(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeB,2(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1B,2, GenZero, Increment; punctured encryp-
tion and decryption keys EKS{P`∗0},DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).
1. Validity check: if P1B,2(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 85: Programs P1B,2,P3B,2, SFakeB,2, used in the proof of lemma 55 (indistinguishability of expla-
nations of the receiver).
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Programs P1B,3,P3B,3, SFakeB,3.
Program P1B,3(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), key kS of an extracting PRF SG.
1. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3B,3(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1B,3, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0),
punctured encryption key EK{p} of main ACE, where p = (1⊕m∗0, µ1

∗, µ2
∗, L∗0).

1. Validity check: if P1B,3(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK{p}(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK{p}(m,µ1, µ2, L0).

Program SFakeB,3(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1B,3, GenZero, Increment; punctured encryp-
tion and decryption keys EKS{P`∗0},DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).
1. Validity check: if P1B,3(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 86: Programs P1B,3,P3B,3, SFakeB,3, used in the proof of lemma 55 (indistinguishability of expla-
nations of the receiver).
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Programs P2,Dec,RFake.
Program P2(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: decryption key DKR of receiver-fake ACE, key kR of an extracting PRF RG.

1. Trapdoor step:
(a) out ← ACE.DecDKR(r); if out = ′fail′ then goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(b) If µ1 = µ1
′ then return µ2

′;
2. Main step:

(a) Return µ2 ← RGkR(r, µ1).

Program Dec(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P2, isLess, RetrieveTags; decryption key DKR of receiver-
fake ACE, decryption key DK of the main ACE.

1. Validity check: if P2(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKR(r); if out′ = ′fail′ then goto main step; else parse out′ as
(m′, µ1

′, µ2
′, µ3

′, L′, ρ̂);
(b) if µ1, µ2, µ3 = µ1

′, µ2
′, µ3

′ then return m′;
(c) out← ACE.DecDK(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1

′′, µ2
′′, L′′);

(d) If µ1, µ2 = µ1
′, µ2

′ then
i. If (µ1

′, µ2
′) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) and isLess(L′, L′′) = true then return m′′;

ii. Else abort.
3. Main step:

(a) out← ACE.DecDK(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
(b) If (µ1, µ2) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) then return m′′;

(c) Else abort.

Program RFake(m̂, µ1, µ2, µ3; ρ)
Inputs: fake message m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: encryption key EKR of receiver-fake ACE, decryption key DK of the main ACE.

1. out← ACE.DecDK(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
2. Return r′ ← ACE.EncEKR(m̂, µ1, µ2, µ3, L

′′, prg(ρ)).
Figure 87: Programs P2,Dec,RFake.
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Programs P2B,1,DecB,1,RFakeB,1.
Program P2B,1(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: decryption key DKR of receiver-fake ACE, key kR of an extracting PRF RG.

1. Trapdoor step:
(a) out ← ACE.DecDKR(r); if out = ′fail′ then goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(b) If µ1 = µ1
′ then return µ2

′;
2. Main step:

(a) Return µ2 ← RGkR(r, µ1).

Program DecB,1(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P2, isLess, RetrieveTags; decryption key DKR of receiver-
fake ACE, punctured decryption key DK{p} of the main ACE, where p = (1⊕m∗0, µ1

∗, µ2
∗, L∗0).

1. Validity check: if P2(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKR(r); if out′ = ′fail′ then goto main step; else parse out′ as
(m′, µ1

′, µ2
′, µ3

′, L′, ρ̂);
(b) if µ1, µ2, µ3 = µ1

′, µ2
′, µ3

′ then return m′;
(c) out← ACE.DecDK{p}(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1

′′, µ2
′′, L′′);

(d) If µ1, µ2 = µ1
′, µ2

′ then
i. If (µ1

′, µ2
′) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) and isLess(L′, L′′) = true then return m′′;

ii. Else abort.
3. Main step:

(a) out← ACE.DecDK{p}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
(b) If (µ1, µ2) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) then return m′′;

(c) Else abort.

Program RFakeB,1(m̂, µ1, µ2, µ3; ρ)
Inputs: fake message m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: encryption key EKR of receiver-fake ACE, punctured decryption key DK{p} of the main
ACE, where p = (1⊕m∗0, µ1

∗, µ2
∗, L∗0).

1. out← ACE.DecDK{p}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
2. Return r′ ← ACE.EncEKR(m̂, µ1, µ2, µ3, L

′′, prg(ρ)).
Figure 88: Programs P2B,1,DecB,1,RFakeB,1, used in the proof of lemma 55 (indistinguishability of
explanations of the receiver).
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Programs P2B,2,DecB,2,RFakeB,2.
Program P2B,2(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: punctured decryption key DKR{r∗, r′} of receiver-fake ACE, punctured key
kR{(r∗, µ1

∗), (r′, µ1
∗)} of an extracting PRF RG, variables r∗, r′, µ1

∗, µ2
∗.

1. Trapdoor step:
(a) If (r, µ1) = (r∗, µ1

∗) or (r, µ1) = (r′, µ1
∗) then return µ2

∗;
(b) If r = r∗ or r = r′ then goto main step;
(c) out ← ACE.DecDKR{r∗,r′}(r); if out = ′fail′ then goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(d) If µ1 = µ1
′ then return µ2

′;
2. Main step:

(a) Return µ2 ← RGkR{(r∗,µ1
∗),(r′,µ1

∗)}(r, µ1).

Program DecB,2(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P2B,2, isLess, RetrieveTags; punctured decryption
key DKR{r∗, r′} of receiver-fake ACE, punctured decryption key DK{p} of the main ACE, where p =
(1⊕m∗0, µ1

∗, µ2
∗, L∗0), variables r∗, r′, µ1

∗, µ2
∗, µ3

∗,m∗0.
1. Validity check: if P2B,2(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) If (r, µ1, µ2, µ3) = (r∗, µ1
∗, µ2

∗, µ3
∗) or (r, µ1, µ2, µ3) = (r′, µ1

∗, µ2
∗, µ3

∗) then return m∗0;
(b) If (r, µ1, µ2) = (r∗, µ1

∗, µ2
∗) or (r, µ1, µ2) = (r′, µ1

∗, µ2
∗) then then goto main step;

(c) If r = r∗ or r = r′ then goto main step;
(d) out ← ACE.DecDKR{r∗,r′}(r); if out′ = ′fail′ then goto main step; else parse out′ as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(e) if µ1, µ2, µ3 = µ1
′, µ2

′, µ3
′ then return m′;

(f) out← ACE.DecDK{p}(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1
′′, µ2

′′, L′′);
(g) If µ1, µ2 = µ1

′, µ2
′ then

i. If (µ1
′, µ2

′) = (µ1
′′, µ2

′′) = RetrieveTags(L′′) and isLess(L′, L′′) = true then return m′′;
ii. Else abort.

3. Main step:
(a) out← ACE.DecDK{p}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1

′′, µ2
′′, L′′);

(b) If (µ1, µ2) = (µ1
′′, µ2

′′) = RetrieveTags(L′′) then return m′′;
(c) Else abort.

Program RFakeB,2(m̂, µ1, µ2, µ3; ρ)
Inputs: fake message m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: punctured encryption key EKR{Sρ̂∗} of receiver-fake ACE, where Sρ̂∗ =
{(∗, ∗, ∗, ∗, ∗, ρ̂∗)} for randomly chosen ρ̂∗, punctured decryption key DK{p} of the main ACE, where
p = (1⊕m∗0, µ1

∗, µ2
∗, L∗0).

1. out← ACE.DecDK{p}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
2. Return r′ ← ACE.EncEKR{p}(m̂, µ1, µ2, µ3, L

′′, prg(ρ)).

Figure 89: Programs P2B,2,DecB,2,RFakeB,2, used in the proof of lemma 55 (indistinguishability of
explanations of the receiver).
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7.1.3 Proof of lemma 56 (Semantic security)

• HybC,1,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; s∗, r∗ are cho-
sen at random, µ1

∗ = SG(s∗,m∗0), µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs can be found in fig. 90 (programs of the sender) and fig. 94 (programs
of the receiver).

Note that this distribution is exactly the distribution from HybC , conditioned on the fact that s∗, r∗ are
outside of image of ACE.

• HybC,1,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,1,P2,P3C,1,Dec, SFakeC,1,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗0), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for

randomly chosen ρ∗. Programs can be found in fig. 91 (programs of the sender) and fig. 94 (programs
of the receiver).

That is, in program SFake we puncture encryption key EKS of the sender-fake ACE at the set P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Indistinguishability holds by iO, since this modification
doesn’t change the functionality of SFake due to the fact that SFake never encrypts plaintexts with
level `∗0.

• HybC,1,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,2,P2,P3C,2,Dec, SFakeC,2,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗0), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for

randomly chosen ρ∗. Programs can be found in fig. 92 (programs of the sender) and fig. 94 (programs
of the receiver).

That is, in programs P1,P3,SFake we puncture decryption key DKS of the sender-fake ACE at the
same set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Indistinguishability holds by security of
constrained decryption of ACE, since the corresponding encryption key EKS is already punctured at
the same set.

• HybC,1,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,2,P2,P3C,2,Dec, SFakeC,2,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs can be found in fig. 92 (programs of the sender) and fig. 94 (programs
of the receiver).

That is, we choose µ1
∗ at random instead of computing it as µ1

∗ = SGkS (s∗,m∗0). Indistinguishability
holds by the strong extracting property of the sender PRF SG (note that s∗ was not used anywhere else
in the distribution).

• HybC,1,5. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,2,P2,P3C,2,Dec, SFakeC,2,RFake; rSetup) for randomly chosen rSetup; µ1
∗
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is chosen at random, µ2
∗ is chosen at random, µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗))

for randomly chosen ρ∗. Programs can be found in fig. 92 (programs of the sender) and fig. 94
(programs of the receiver).

That is, we choose µ2
∗ at random instead of computing it as µ2

∗ = RGkR(r∗, µ1
∗). Indistinguishability

holds by the strong extracting property of the receiver PRF RG (note that r∗ was not used anywhere
else in the distribution).

• HybC,2,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,3,P2,P3C,3,Dec, SFakeC,3,RFake; rSetup) for randomly chosen rSetup; µ1
∗

is chosen at random, µ2
∗ is chosen at random, µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗))

for randomly chosen ρ∗. Programs can be found in fig. 93 (programs of the sender) and fig. 94
(programs of the receiver).

That is, in program P3 we puncture encryption key EK of the main ACE at the points p0 =
(m∗0, µ1

∗, µ2
∗, L∗0), p1 = (m∗1, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by iO, since P3 never needs to

encrypt these points. Roughly, this is because of the following: since µ1
∗ is random and outside of

the image of a PRF SG, P3 never encrypts p0, p1 in the main step. In order to encrypt it in trapdoor
step, P3 needs to take as input some fake s encoding level `∗0. However, due to the fact that DKS is
punctured at the set P`∗0 which contains all but one strings with `∗0, the only valid fake s with `∗0 is s′.
However, running P3 on s′ cannot result in encrypting p0 or p1 in the trapdoor step: in order to hit the
trapdoor step with s′, the input to P3 should be (s′,m∗0, µ1

∗, µ2
∗); however, in this case the program

immediately outputs µ3
′ without running an encryption algorithm.

• HybC,2,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,3,P2C,1,P3C,3,DecC,1,SFakeC,3,RFakeC,1; rSetup) for randomly chosen rSetup;
µ1
∗ is chosen at random, µ2

∗ is chosen at random, µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs can be found in fig. 93 (programs of the sender) and fig. 95 (programs
of the receiver).

That is, in programs Dec,RFake we puncture decryption key DK of the main ACE at the point
p1 = (m∗1, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by security of constrained decryption of ACE,

since the corresponding encryption key EK is already punctured at this point (and encryption of p1 is
not used anywhere in the distribution).

• HybC,2,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,3,P2C,2,P3C,3,DecC,2,SFakeC,3,RFakeC,2; rSetup) for randomly chosen rSetup;
µ1
∗ is chosen at random, µ2

∗ is chosen at random, µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs can be found in fig. 93 (programs of the sender) and fig. 96 (programs
of the receiver).

That is, we modify programs Dec and RFake by additionally puncturing decryption key of main ACE
DK at the point p0 = (m∗0, µ1

∗, µ2
∗, L∗0). In addition, we hardwire certain outputs inside program

RFake to make sure that its functionality doesn’t change. (Note that in program Dec we only puncture
keys, without hardwiring anything. However, this doesn’t change the functionality of Dec. This is
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because Dec would output ⊥ when trying to decrypt an encryption of p0 anyway: roughly, this is
because the main step cannot be reached because µ2

∗ doesn’t have a preimage, and trapdoor step would
output ⊥ because there doesn’t exist fake randomness with level smaller than 0.) Indistinguishability
holds by iO.

• HybC,2,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,3,P2C,2,P3C,3,DecC,2,SFakeC,3,RFakeC,2; rSetup) for randomly chosen rSetup;
µ1
∗ is chosen at random, µ2

∗ is chosen at random, µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs can be found in fig. 93 (programs of the sender) and fig. 96 (programs
of the receiver).

That is, we generate µ3
∗ as an encryption of p1 = (m∗1, µ1

∗, µ2
∗, L∗0) instead of p0 =

(m∗0, µ1
∗, µ2

∗, L∗0). Indistinguishability holds by security of the main ACE, since encryption and
decryption keys EK, DK are punctured at both p0, p1.

• HybC,2,5. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,3,P2C,3,P3C,3,DecC,3,SFakeC,3,RFakeC,3; rSetup) for randomly chosen rSetup;
µ1
∗ is chosen at random, µ2

∗ is chosen at random, µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs can be found in fig. 93 (programs of the sender) and fig. 97 (programs
of the receiver).

That is, we modify programs Dec and RFake by unpuncturing decryption key of main ACE DK at the
point p1 = (m∗1, µ1

∗, µ2
∗, L∗0) (note that DK remains punctured at p0 = (m∗0, µ1

∗, µ2
∗, L∗0)). We also

remove additional instructions introduced in HybC,2,3. Indistinguishability holds by iO, since we don’t
change functionality of the programs.

• HybC,2,6. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,3,P2,P3C,3,Dec, SFakeC,3,RFake; rSetup) for randomly chosen rSetup; µ1
∗

is chosen at random, µ2
∗ is chosen at random, µ3

∗ = ACE.EncEK(m∗1, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗))

for randomly chosen ρ∗. Programs can be found in fig. 93 (programs of the sender) and fig. 94
(programs of the receiver).

That is, in programs Dec,RFake we unpuncture decryption key DK of the main ACE at the point
p0 = (m∗0, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by security of constrained decryption of ACE,

since the corresponding encryption key EK is punctured at this point (and encryption of p0 is not used
anywhere in the distribution).

• HybC,2,7. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,2,P2,P3C,2,Dec, SFakeC,2,RFake; rSetup) for randomly chosen rSetup; µ1
∗

is chosen at random, µ2
∗ is chosen at random, µ3

∗ = ACE.EncEK(m∗1, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗))

for randomly chosen ρ∗. Programs can be found in fig. 92 (programs of the sender) and fig. 94
(programs of the receiver).

That is, in program P3 we unpuncture encryption key EK of the main ACE at the points p0 =
(m∗0, µ1

∗, µ2
∗, L∗0), p1 = (m∗1, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by iO, since this doesn’t
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change functionality of P3 for the same reason as in HybC,2,1.

• HybC,3,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,2,P2,P3C,2,Dec, SFakeC,2,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs can be found in fig. 92 (programs of the sender) and fig. 94 (programs
of the receiver).

That is, we compute µ2
∗ as µ2

∗ = RGkR(r∗, µ1
∗) instead of choosing it at random. Indistinguishability

holds by the strong extracting property of the receiver PRF RG (note that r∗ is not used anywhere else
in the distribution).

• HybC,3,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,2,P2,P3C,2,Dec, SFakeC,2,RFake; rSetup) for randomly chosen rSetup; s∗ is
chosen at random, r∗ is chosen at random, µ1

∗ = SGkS (s∗,m∗1), µ2
∗ = RG(r∗, µ1

∗),
µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ =
ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗. Programs can be found
in fig. 92 (programs of the sender) and fig. 94 (programs of the receiver).

That is, we compute µ1
∗ as µ1

∗ = SGkS (s∗,m∗1) instead of choosing it at random. Indistinguishability
holds by the strong extracting property of the sender PRF SG (note that s∗ is not used anywhere else in
the distribution).

• HybC,3,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,1,P2,P3C,1,Dec, SFakeC,1,RFake; rSetup) for randomly chosen rSetup; s∗ is
chosen at random, r∗ is chosen at random, µ1

∗ = SGkS (s∗,m∗1), µ2
∗ = RG(r∗, µ1

∗),
µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ =
ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗. Programs can be found
in fig. 91 (programs of the sender) and fig. 94 (programs of the receiver).

That is, in programs P1,P3, SFake we unpuncture decryption key DKS of the sender-fake ACE at
the set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Indistinguishability holds by security of
constrained decryption of ACE, since the corresponding encryption key EKS is punctured at the same
set.

• HybC,3,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; s∗ is cho-
sen at random, r∗ is chosen at random, µ1

∗ = SGkS (s∗,m∗1), µ2
∗ = RG(r∗, µ1

∗),
µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ =
ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗. Programs can be found
in fig. 90 (programs of the sender) and fig. 94 (programs of the receiver).

That is, in program SFake we unpuncture encryption key EKS of the sender-fake ACE at the set P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Indistinguishability holds by iO, since this modification
doesn’t change the functionality of SFake due to the fact that SFake never encrypts plaintexts with
level `∗0.

Note that HybC,3,4 = HybD, conditioned on the fact that s∗, r∗ are outisde of image of ACE.
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Programs P1,P3,SFake.
Program P1(s,m)
Inputs: sender randomness s, message m.
Hardwired values: decryption key DKS of sender-fake ACE, key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS (s,m).

Program P3(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1, GenZero, Transform, RetrieveTag; decryption key
DKS of sender-fake ACE, encryption key EK of main ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFake(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1, GenZero, Increment; encryption and decryption keys
EKS ,DKS of sender-fake ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS (m̂, µ1, µ2, µ3, `+1).

3. Main step:
(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS (m̂, µ1, µ2, µ3, `1).

Figure 90: Programs P1,P3,SFake.
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Programs P1C,1,P3C,1, SFakeC,1.
Program P1C,1(s,m)
Inputs: sender randomness s, message m.
Hardwired values: decryption key DKS of sender-fake ACE, key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS (s,m).

Program P3C,1(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1C,1, GenZero, Transform, RetrieveTag; decryption
key DKS of sender-fake ACE, encryption key EK of main ACE.

1. Validity check: if P1C,1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeC,1(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1C,1, GenZero, Increment; punctured encryp-
tion key EKS{P`∗0} and decryption key DKS of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).
1. Validity check: if P1C,1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 91: Programs P1C,1,P3C,1,SFakeC,1, used in the proof of lemma 56 (semantic security).
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Programs P1C,2,P3C,2, SFakeC,2.
Program P1C,2(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), key kS of an extracting PRF SG.
1. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3C,2(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1C,2, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0),
encryption key EK of main ACE.

1. Validity check: if P1C,2(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeC,2(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1C,2, GenZero, Increment; punctured encryp-
tion and decryption keys EKS{P`∗0},DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).
1. Validity check: if P1C,2(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 92: Programs P1C,2,P3C,2,SFakeC,2, used in the proof of lemma 56 (semantic security).
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Programs P1C,3,P3C,3, SFakeC,3.
Program P1C,3(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), key kS of an extracting PRF SG.
1. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3C,3(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1C,3, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}\(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), punc-
tured encryption key EK{p0, p1} of main ACE, where p0 = (m∗0, µ1

∗, µ2
∗, L∗0), p1 = (m∗1, µ1

∗, µ2
∗, L∗0).

1. Validity check: if P1C,3(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK{p0,p1}(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK{p0,p1}(m,µ1, µ2, L0).

Program SFakeC,3(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1C,3, GenZero, Increment; punctured encryp-
tion and decryption keys EKS{P`∗0},DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).
1. Validity check: if P1C,3(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 93: Programs P1C,3,P3C,3,SFakeC,3, used in the proof of lemma 56 (semantic security).
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Programs P2,Dec,RFake.
Program P2(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: decryption key DKR of receiver-fake ACE, key kR of an extracting PRF RG.

1. Trapdoor step:
(a) out ← ACE.DecDKR(r); if out = ′fail′ then goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(b) If µ1 = µ1
′ then return µ2

′;
2. Main step:

(a) Return µ2 ← RGkR(r, µ1).

Program Dec(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P2, isLess, RetrieveTags; decryption key DKR of receiver-
fake ACE, decryption key DK of the main ACE.

1. Validity check: if P2(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKR(r); if out′ = ′fail′ then goto main step; else parse out′ as
(m′, µ1

′, µ2
′, µ3

′, L′, ρ̂);
(b) if µ1, µ2, µ3 = µ1

′, µ2
′, µ3

′ then return m′;
(c) out← ACE.DecDK(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1

′′, µ2
′′, L′′);

(d) If µ1, µ2 = µ1
′, µ2

′ then
i. If (µ1

′, µ2
′) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) and isLess(L′, L′′) = true then return m′′;

ii. Else abort.
3. Main step:

(a) out← ACE.DecDK(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
(b) If (µ1, µ2) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) then return m′′;

(c) Else abort.

Program RFake(m̂, µ1, µ2, µ3; ρ)
Inputs: fake message m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: encryption key EKR of receiver-fake ACE, decryption key DK of the main ACE.

1. out← ACE.DecDK(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
2. Return r′ ← ACE.EncEKR(m̂, µ1, µ2, µ3, L

′′, prg(ρ)).
Figure 94: Programs P2,Dec,RFake.
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Programs P2C,1,DecC,1,RFakeC,1.
Program P2C,1(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: decryption key DKR of receiver-fake ACE, key kR of an extracting PRF RG.

1. Trapdoor step:
(a) out ← ACE.DecDKR(r); if out = ′fail′ then goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(b) If µ1 = µ1
′ then return µ2

′;
2. Main step:

(a) Return µ2 ← RGkR(r, µ1).

Program DecC,1(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P2C,1, isLess, RetrieveTags; decryption key DKR of
receiver-fake ACE, punctured decryption key DK{p1} of the main ACE, where p1 = (m∗1, µ1

∗, µ2
∗, L∗0).

1. Validity check: if P2C,1(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKR(r); if out′ = ′fail′ then goto main step; else parse out′ as
(m′, µ1

′, µ2
′, µ3

′, L′, ρ̂);
(b) if µ1, µ2, µ3 = µ1

′, µ2
′, µ3

′ then return m′;
(c) out← ACE.DecDK{p1}(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1

′′, µ2
′′, L′′);

(d) If µ1, µ2 = µ1
′, µ2

′ then
i. If (µ1

′, µ2
′) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) and isLess(L′, L′′) = true then return m′′;

ii. Else abort.
3. Main step:

(a) out← ACE.DecDK{p1}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
(b) If (µ1, µ2) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) then return m′′;

(c) Else abort.

Program RFakeC,1(m̂, µ1, µ2, µ3; ρ)
Inputs: fake message m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: encryption key EKR of receiver-fake ACE, punctured decryption key DK{p1} of the
main ACE, where p1 = (m∗1, µ1

∗, µ2
∗, L∗0).

1. out← ACE.DecDK{p1}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
2. Return r′ ← ACE.EncEKR(m̂, µ1, µ2, µ3, L

′′, prg(ρ)).
Figure 95: Programs P2C,1,DecC,1,RFakeC,1, used in the proof of lemma 56 (semantic security).
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Programs P2C,2,DecC,2,RFakeC,2.
Program P2C,2(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: decryption key DKR of receiver-fake ACE, key kR of an extracting PRF RG.

1. Trapdoor step:
(a) out ← ACE.DecDKR(r); if out = ′fail′ then goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(b) If µ1 = µ1
′ then return µ2

′;
2. Main step:

(a) Return µ2 ← RGkR(r, µ1).

Program DecC,2(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P2C,2, isLess, RetrieveTags; decryption key DKR of
receiver-fake ACE, punctured decryption key DK{p0, p1} of the main ACE, where p0 = (m∗0, µ1

∗, µ2
∗, L∗0),

p1 = (m∗1, µ1
∗, µ2

∗, L∗0).
1. Validity check: if P2C,2(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKR(r); if out′ = ′fail′ then goto main step; else parse out′ as
(m′, µ1

′, µ2
′, µ3

′, L′, ρ̂);
(b) if µ1, µ2, µ3 = µ1

′, µ2
′, µ3

′ then return m′;
(c) out← ACE.DecDK{p0,p1}(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1

′′, µ2
′′, L′′);

(d) If µ1, µ2 = µ1
′, µ2

′ then
i. If (µ1

′, µ2
′) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) and isLess(L′, L′′) = true then return m′′;

ii. Else abort.
3. Main step:

(a) out← ACE.DecDK{p0,p1}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
(b) If (µ1, µ2) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) then return m′′;

(c) Else abort.

Program RFakeC,2(m̂, µ1, µ2, µ3; ρ)
Inputs: fake message m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: encryption key EKR of receiver-fake ACE, punctured decryption key DK{p0, p1} of the
main ACE, where p0 = (m∗0, µ1

∗, µ2
∗, L∗0), p1 = (m∗1, µ1

∗, µ2
∗, L∗0), variables µ3

∗, L∗0.
1. If µ3 = µ3

∗ then set L′′ = L∗0;
else out← ACE.DecDK{p0,p1}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1

′′, µ2
′′, L′′);

2. Return r′ ← ACE.EncEKR(m̂, µ1, µ2, µ3, L
′′, prg(ρ)).

Figure 96: Programs P2C,2,DecC,2,RFakeC,2, used in the proof of lemma 56 (semantic security).
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Programs P2C,3,DecC,3,RFakeC,3.
Program P2C,3(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: decryption key DKR of receiver-fake ACE, key kR of an extracting PRF RG.

1. Trapdoor step:
(a) out ← ACE.DecDKR(r); if out = ′fail′ then goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(b) If µ1 = µ1
′ then return µ2

′;
2. Main step:

(a) Return µ2 ← RGkR(r, µ1).

Program DecC,3(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P2C,3, isLess, RetrieveTags; decryption key DKR of
receiver-fake ACE, punctured decryption key DK{p0} of the main ACE, where p0 = (m∗0, µ1

∗, µ2
∗, L∗0).

1. Validity check: if P2C,3(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKR(r); if out′ = ′fail′ then goto main step; else parse out′ as
(m′, µ1

′, µ2
′, µ3

′, L′, ρ̂);
(b) if µ1, µ2, µ3 = µ1

′, µ2
′, µ3

′ then return m′;
(c) out← ACE.DecDK{p0}(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1

′′, µ2
′′, L′′);

(d) If µ1, µ2 = µ1
′, µ2

′ then
i. If (µ1

′, µ2
′) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) and isLess(L′, L′′) = true then return m′′;

ii. Else abort.
3. Main step:

(a) out← ACE.DecDK{p0}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
(b) If (µ1, µ2) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) then return m′′;

(c) Else abort.

Program RFakeC,3(m̂, µ1, µ2, µ3; ρ)
Inputs: fake message m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: encryption key EKR of receiver-fake ACE, punctured decryption key DK{p0} of the
main ACE, where p0 = (m∗0, µ1

∗, µ2
∗, L∗0).

1. out← ACE.DecDK{p0}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
2. Return r′ ← ACE.EncEKR(m̂, µ1, µ2, µ3, L

′′, prg(ρ)).
Figure 97: Programs P2C,3,DecC,3,RFakeC,3, used in the proof of lemma 56 (semantic security).
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7.1.4 Proof of lemma 57 (Indistinguishability of levels)

• HybD,1,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; s∗, r∗ are cho-
sen at random, µ1

∗ = SG(s∗,m∗1), µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 98.

Note that this distribution is exactly the distribution from HybC , conditioned on the fact that s∗, r∗ are
outside of image of ACE.

• HybD,1,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1D,1,P2,P3D,1,Dec,SFakeD,1,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗1), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗1, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for

randomly chosen ρ∗. Programs of the sender can be found in fig. 99.

That is, in program SFake we puncture encryption key EKS of the sender-fake ACE at the set P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Indistinguishability holds by iO, since this modification
doesn’t change the functionality of SFake due to the fact that SFake never encrypts plaintexts with
level `∗0.

• HybD,1,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1D,2,P2,P3D,2,Dec,SFakeD,2,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗1), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗1, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for

randomly chosen ρ∗. Programs of the sender can be found in fig. 100.

That is, in programs P1,P3,SFake we puncture decryption key DKS of the sender-fake ACE at the
same set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Indistinguishability holds by security of
constrained decryption of ACE, since the corresponding encryption key EKS is already punctured at
the same set.

• HybD,1,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1D,2,P2,P3D,2,Dec,SFakeD,2,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 100.

That is, we choose µ1
∗ at random instead of computing it as µ1

∗ = SGkS (s∗,m∗1). Indistinguishability
holds by the strong extracting property of the sender PRF SG (note that s∗ was not used anywhere else
in the distribution).

• HybD,2,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1D,3,P2,P3D,3,Dec,SFakeD,3,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 101.
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That is, in programs P3 and SFake we use punctured programs GenZero[µ1
∗], Transform[`∗0, µ2

∗].
Indistinguishability holds by iO, since this doesn’t change functionality of P3 and SFake. Roughly,
this is because of the following:

Since µ1
∗ is random and outside of the image of a PRF SG, programs P3 and SFake never call

GenZero(µ1
∗) in the main step, and program P3 never calls Transform(`∗0, µ2

∗) in the main step.

In order to call Transform(`∗0, µ2
∗) in trapdoor step, P3 needs to take as input some fake s encoding

level `∗0. However, due to the fact that DKS is punctured at the set P`∗0 which contains all but one
strings with `∗0, the only valid fake s with `∗0 is s′. However, running P3 on s′ cannot result in calling
Transform(`∗0, µ2

∗) in the trapdoor step: in order to hit the trapdoor step with s′ and run Transform with
µ2 = µ2

∗, the input to P3 should be (s′,m∗0, µ1
∗, µ2

∗); however, in this case the program immediately
outputs µ3

′ without running Transform.

• HybD,2,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1D,4,P2,P3D,4,Dec,SFakeD,4,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 102.

That is, we switch the single-tag level used in generation of s′ from `∗0 = [0, µ1
∗] to `∗1 = [1, µ1

∗].
Indistinguishability holds by security of level system: recall that it guarantees that `∗0 is indistinguishable
from `∗1, even given L∗0 = [0, µ1

∗, µ2
∗] and punctured programs of the level system.

Note that now keys EKS ,DKS of the sender-fake ACE become punctured at the set P`∗1 =
{(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1) instead of P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0),

and program Transform becomes punctured at the point (`∗1, µ2
∗) instead of (`∗0, µ2

∗).

• HybD,2,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1D,5,P2,P3D,5,Dec,SFakeD,5,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 103.

That is, in programs P3 and SFake we use original programs GenZero, Transform instead of punctured
programs GenZero[µ1

∗], Transform[`∗1, µ2
∗]. Indistinguishability holds by iO, since this doesn’t change

functionality of P3 and SFake. Roughly, this is because of similar reasoning as in HybD, except for `∗1
instead of `∗0:

Since µ1
∗ is random and outside of the image of a PRF SG, programs P3 and SFake never call

GenZero(µ1
∗) in the main step, and program P3 never calls Transform(`∗1, µ2

∗) in the main step.

In order to call Transform(`∗1, µ2
∗) in trapdoor step, P3 needs to take as input some fake s encoding

level `∗1. However, due to the fact that DKS is punctured at the set P`∗1 which contains all but one
strings with `∗1, the only valid fake s with `∗1 is s′. However, running P3 on s′ cannot result in calling
Transform(`∗1, µ2

∗) in the trapdoor step: in order to hit the trapdoor step with s′ and run Transform with
µ2 = µ2

∗, the input to P3 should be (s′,m∗0, µ1
∗, µ2

∗); however, in this case the program immediately
outputs µ3

′ without running Transform.

• HybD,3,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =
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Setup(1λ; P1D,6,P2,P3D,6,Dec,SFakeD,6,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 104.

That is, in program SFake we additionally puncture encryption key EKS of the sender-fake ACE at
the set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} (recall that it is already punctured at the set P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1)). Indistinguishability holds by security of iO, since this modification doesn’t
change the functionality of SFake due to the fact that SFake never encrypts plaintexts with level `∗0.

• HybD,3,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1D,7,P2,P3D,7,Dec,SFakeD,7,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 105.

That is, in programs P1,P3, SFake we additionally puncture decryption key DKS of the sender-
fake ACE at the set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} (recall that it is already punctured at the set P`∗1 =
{(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1)). Indistinguishability holds by security of constrained de-
cryption of ACE, since the corresponding encryption key EK is already punctured at P`∗0 ∪ P`∗1 .

• HybD,3,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1D,8,P2,P3D,8,Dec,SFakeD,8,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 106.

That is, in programs P1,P3, SFake we unpuncture decryption key DKS of the sender-fake ACE at
the set P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1) (but this key still remains punctured at the set
P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}). Indistinguishability holds by security of constrained decryption of ACE, since
the corresponding encryption key EK is already punctured at P`∗0 ∪ P`∗1 .

• HybD,3,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1D,9,P2,P3D,9,Dec,SFakeD,9,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 107.

That is, in program SFake we unpuncture encryption key EKS of the sender-fake ACE at the set
P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1) (but this key still remains punctured at the set
P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}). Indistinguishability holds by security of iO, since this doesn’t change the
functionality of SFake. Indeed, the program never needs to encrypt any plaintext containing `∗1 because
of the following. Since µ1

∗ is random and outside of the image of a PRF SG, program SFake never
calls GenZero(µ1

∗) in the main step and thus never needs to encrypt `∗1 = Increment(GenZero(µ1
∗)).

In order to encrypt a plaintext containing `∗1 in the trapdoor step, SFake needs to get as input fake s
which contains `∗0. However, since DKS is punctured at P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}, there do not exist valid
fake s with `∗0, thus the program never needs to encrypt plaintexts with `∗1.

• HybD,3,5. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =
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Setup(1λ; P1D,10,P2,P3D,10,Dec, SFakeD,10,RFake; rSetup) for randomly chosen rSetup; r∗ is cho-
sen at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 108.

That is, in programs P1,P3,SFake we unpuncture decryption key DKS of the sender-fake ACE at the
set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}. Indistinguishability holds by security of constrained decryption of ACE,
since the corresponding encryption key EK is already punctured at P`∗0 .

• HybD,3,6. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen at
random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 109.

That is, in program SFake we unpuncture encryption key EKS of the sender-fake ACE at the set
P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}. Indistinguishability holds by security of iO, since this doesn’t change the
functionality of SFake since SFake never needs to encrypt plaintexts with `∗0.

• HybD,3,7. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; s∗ is cho-
sen at random, r∗ is chosen at random, µ1

∗ = SGkS (s∗,m∗1), µ2
∗ = RG(r∗, µ1

∗),
µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ =
ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗. Programs of the sender
can be found in fig. 109.

That is, we compute µ1
∗ as µ1

∗ = SGkS (s∗,m∗1) instead of choosing it at random. Indistinguishability
holds by the strong extracting property of the sender PRF SG (note that s∗ is not used anywhere else in
the distribution).

Note that HybD,3,7 = HybE .
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Programs P1,P3,SFake.
Program P1(s,m)
Inputs: sender randomness s, message m.
Hardwired values: decryption key DKS of sender-fake ACE, key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS (s,m).

Program P3(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1, GenZero, Transform, RetrieveTag; decryption key
DKS of sender-fake ACE, encryption key EK of main ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFake(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1, GenZero, Increment; encryption and decryption keys
EKS ,DKS of sender-fake ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS (m̂, µ1, µ2, µ3, `+1).

3. Main step:
(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS (m̂, µ1, µ2, µ3, `1).

Figure 98: Programs P1,P3,SFake.
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Programs P1D,1,P3D,1, SFakeD,1.
Program P1D,1(s,m)
Inputs: sender randomness s, message m.
Hardwired values: decryption key DKS of sender-fake ACE, key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS (s,m).

Program P3D,1(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1D,1, GenZero, Transform, RetrieveTag; decryption
key DKS of sender-fake ACE, encryption key EK of main ACE.

1. Validity check: if P1D,1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeD,1(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1D,1, GenZero, Increment; punctured encryp-
tion key EKS{P`∗0} and decryption key DKS of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).
1. Validity check: if P1D,1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 99: Programs P1D,1,P3D,1, SFakeD,1, used in the proof of lemma 57 (security of levels).
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Programs P1D,2,P3D,2, SFakeD,2.
Program P1D,2(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), key kS of an extracting PRF SG.
1. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3D,2(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1D,2, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0),
encryption key EK of main ACE.

1. Validity check: if P1D,2(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeD,2(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1D,2, GenZero, Increment; punctured encryp-
tion and decryption keys EKS{P`∗0},DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).
1. Validity check: if P1D,2(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 100: Programs P1D,2,P3D,2,SFakeD,2, used in the proof of lemma 57 (security of levels).
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Programs P1D,3,P3D,3, SFakeD,3.
Program P1D,3(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), key kS of an extracting PRF SG.
1. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3D,3(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1D,3, punctured GenZero[µ1

∗], punctured
Transform[(`∗0, µ2

∗)], RetrieveTag; punctured decryption key DKS{P`∗0} of sender-fake ACE, where
P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), encryption key EK of main ACE.
1. Validity check: if P1D,3(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform[(`∗0, µ2

∗)](`′, µ2);
iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);

3. Main step:
(a) Set L0 ← Transform[(`∗0, µ2

∗)](GenZero[µ1
∗](µ1), µ2);

(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeD,3(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1D,3, punctured GenZero[µ1

∗], Increment; punctured
encryption and decryption keys EKS{P`∗0},DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).
1. Validity check: if P1D,3(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero[µ1
∗](µ1));

(b) Return ACE.EncEKS{P`∗0}
(m̂, µ1, µ2, µ3, `1).

Figure 101: Programs P1D,3,P3D,3,SFakeD,3, used in the proof of lemma 57 (security of levels).
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Programs P1D,4,P3D,4, SFakeD,4.
Program P1D,4(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗1} of sender-fake ACE, where P`∗1 =
{(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), key kS of an extracting PRF SG.
1. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3D,4(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1D,4, punctured GenZero[µ1

∗], punctured
Transform[(`∗1, µ2

∗)], RetrieveTag; punctured decryption key DKS{P`∗1} of sender-fake ACE, where
P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), encryption key EK of main ACE.
1. Validity check: if P1D,4(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform[(`∗1, µ2

∗)](`′, µ2);
iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);

3. Main step:
(a) Set L0 ← Transform[(`∗1, µ2

∗)](GenZero[µ1
∗](µ1), µ2);

(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeD,4(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1D,4, punctured GenZero[µ1

∗], Increment; punctured
encryption and decryption keys EKS{P`∗1},DKS{P`∗1} of sender-fake ACE, where P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1).
1. Validity check: if P1D,4(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗1}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero[µ1
∗](µ1));

(b) Return ACE.EncEKS{P`∗1}
(m̂, µ1, µ2, µ3, `1).

Figure 102: Programs P1D,4,P3D,4,SFakeD,4, used in the proof of lemma 57 (security of levels).
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Programs P1D,5,P3D,5, SFakeD,5.
Program P1D,5(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗1} of sender-fake ACE, where P`∗1 =
{(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), key kS of an extracting PRF SG.
1. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3D,5(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1D,5, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗1} of sender-fake ACE, where P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1),
encryption key EK of main ACE.

1. Validity check: if P1D,5(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeD,5(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1D,5, GenZero, Increment; punctured encryp-
tion and decryption keys EKS{P`∗1},DKS{P`∗1} of sender-fake ACE, where P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1).
1. Validity check: if P1D,5(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗1}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗1}

(m̂, µ1, µ2, µ3, `1).

Figure 103: Programs P1D,5,P3D,5,SFakeD,5, used in the proof of lemma 57 (security of levels).
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Programs P1D,6,P3D,6, SFakeD,6.
Program P1D,6(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗1} of sender-fake ACE, where P`∗1 =
{(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), key kS of an extracting PRF SG.
1. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3D,6(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1D,6, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗1} of sender-fake ACE, where P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1),
encryption key EK of main ACE.

1. Validity check: if P1D,6(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeD,6(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1D,6, GenZero, Increment; punctured encryption
and decryption keys EKS{P`∗1 ∪ P`∗0},DKS{P`∗1} of sender-fake ACE, where P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}.
1. Validity check: if P1D,6(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗1∪P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗1∪P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 104: Programs P1D,6,P3D,6,SFakeD,6, used in the proof of lemma 57 (security of levels).
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Programs P1D,7,P3D,7, SFakeD,7.
Program P1D,7(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗1 ∪ P`∗0} of sender-fake ACE, where P`∗1 =
{(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}, key kS of an extracting PRF SG.
1. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1∪P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3D,7(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1D,7, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗1 ∪ P`∗0} of sender-fake ACE, where P`∗1 = {(∗, ∗, ∗, ∗, `∗1)}\(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1),
P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}, encryption key EK of main ACE.

1. Validity check: if P1D,7(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1∪P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeD,7(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1D,7, GenZero, Increment; punctured encryption and
decryption keys EKS{P`∗1 ∪ P`∗0},DKS{P`∗1 ∪ P`∗0} of sender-fake ACE, where P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}.
1. Validity check: if P1D,7(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1∪P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗1∪P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗1∪P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 105: Programs P1D,7,P3D,7,SFakeD,7, used in the proof of lemma 57 (security of levels).
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Programs P1D,8,P3D,8, SFakeD,8.
Program P1D,8(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)},
key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out ← ACE.DecDKS{P`∗0}

(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3D,8(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1D,8, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}, encryption key EK of main
ACE.

1. Validity check: if P1D,8(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeD,8(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1D,8, GenZero, Increment; punctured encryption
and decryption keys EKS{P`∗1 ∪ P`∗0},DKS{P`∗0} of sender-fake ACE, where P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}.
1. Validity check: if P1D,8(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗1∪P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗1∪P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 106: Programs P1D,8,P3D,8,SFakeD,8, used in the proof of lemma 57 (security of levels).
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Programs P1D,9,P3D,9, SFakeD,9.
Program P1D,9(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)},
key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out ← ACE.DecDKS{P`∗0}

(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3D,9(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1D,9, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}, encryption key EK of main
ACE.

1. Validity check: if P1D,9(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeD,9(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1D,9, GenZero, Increment; punctured encryption and
decryption keys EKS{P`∗0},DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}.

1. Validity check: if P1D,9(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 107: Programs P1D,9,P3D,9,SFakeD,9, used in the proof of lemma 57 (security of levels).
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Programs P1D,10,P3D,10, SFakeD,10.
Program P1D,10(s,m)
Inputs: sender randomness s, message m.
Hardwired values: decryption key DKS of sender-fake ACE, key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS (s,m).

Program P3D,10(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1D,10, GenZero, Transform, RetrieveTag; decryption
key DKS of sender-fake ACE, encryption key EK of main ACE.

1. Validity check: if P1D,10(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeD,10(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1D,10, GenZero, Increment; punctured encryption key
EKS{P`∗0} and decryption key DKS of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}.

1. Validity check: if P1D,10(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 108: Programs P1D,10,P3D,10,SFakeD,10, used in the proof of lemma 57 (security of levels).
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Programs P1,P3,SFake.
Program P1(s,m)
Inputs: sender randomness s, message m.
Hardwired values: decryption key DKS of sender-fake ACE, key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS (s,m).

Program P3(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1, GenZero, Transform, RetrieveTag; decryption key
DKS of sender-fake ACE, encryption key EK of main ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFake(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1, GenZero, Increment; encryption and decryption keys
EKS ,DKS of sender-fake ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS (m̂, µ1, µ2, µ3, `+1).

3. Main step:
(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS (m̂, µ1, µ2, µ3, `1).

Figure 109: Programs P1,P3,SFake.
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7.2 Detailed proof of security

In this section we present formal security reductions for each hybrid described in section 7.1.

We denote by σ′ the maximum size of programs of deniable encryption in the construction and the proof.
Since our construction uses multiple layers of obfuscation, σ′ is some polynomial of λ. As we note in
appendix A, we could instead use only one layer of obfuscation, and the resulting code would have size
σ = O(λ3).

7.2.1 Reductions in the proof of lemma 54 (Indistinguishability of explanation of the sender)

Let t(λ) be any function in Ω(poly(λ)), and let ε(λ) be a negligible function in w(2−λ). Assuming the
sender-fake relaxed ACE, sparse extracting puncturable PRF, and iO for program size σ′ is (t(λ), ε(λ))-secure,
we show that no time-t(λ) adversary can distinguish between HybA and HybB with more than O(ε(λ))
advantage.

Note that conditioning on s∗ begin not in the image of ACE incurs only 2−λ loss and therefore we omit it.

Lemma 58. Statistical distance between distributions HybA,HybA,1 is at most 2−λ.

Proof. Since randomly chosen s∗ is a valid ciphertext of sender ACE with probability at most 2−λ, with
all but this probability both P1 and P3 will fail do decrypt s∗ under DKS and therefore will run main step,
outputting µ1

∗ = SGkS (s∗,m∗0) and µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0), respectively.

Lemma 59. Assume s∗ is outside of the image of sender ACE. Then, if there exists an adversary which can
distinguish HybA,1 and HybA,2 in time t(λ) with advantage ε(λ), then there exists an adversary which can
break iO for programs of size σ′ in time t(λ) + poly(λ) with distinguishing advantage 1

3 · ε(λ).

Proof. Below we analyze all three pairs of programs assuming that s∗ is outside the image of sender ACE,
and thus ACE.DecDKS (s∗) = ′fail′. We show that programs have the same functionality. We use the fact that
all underlying primitives satisfy correctness.

Program P1. We present case analysis to show that the behavior of programs P1 and P1A,1 on each input
is the same:

• Case s = s∗:

– Case m = m∗0: P1 outputs µ1
∗ via main step since s∗ is outside of image of ACE. P1A,1 outputs

µ1
∗ due to hardwired instruction.

– Case m 6= m∗0: P1 executes main step and outputs SGkS (s∗,m) since s∗ is outside of image of
ACE. P1A,1 executes main step and outputs SGkS (s∗,m) due to hardwired instruction.

• Case s = s′:

– Case m = m∗0: P1 outputs µ1
∗ via trapdoor step. P1A,1 outputs µ1

∗ due to hardwired instruction.
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– Case m 6= m∗0: P1 skips the trapdoor step since s′ contains the wrong m∗0 6= m, and outputs
SGkS (s′,m). P1A,1 executes main step and output SGkS (s′,m) due to hardwired instruction.

• Case s 6= s′, s∗: P1 and P1A,1 execute the same code, since punctured keys preserve functionality on
all inputs which are not punctured (note that when s 6= s′, s∗ keys are indeed never used at punctured
points).

Program P3. Next we compare programs P3 and P3A,1. Note that validity check passes on the same set
of inputs in programs P3 and P3A,1, since programs P1 and P1A,1 are functionally equivalent. We present
the analysis assuming inputs passed the validity check.

• Case s = s∗:

– Case (m,µ1) = (m∗0, µ1
∗):

∗ Case µ2 = µ2
∗: P3 outputs µ3

∗ via main step since s∗ is outside of image of ACE. P3A,1
outputs µ3

∗ due to hardwired instruction.

∗ Case µ2 6= µ2
∗: P3 outputs EncEK(m∗0, µ1

∗, µ2,Transform(GenZero(µ1
∗), µ2))

via main step since s∗ is outside of image of ACE. P3A,1 outputs
EncEK(m∗0, µ1

∗, µ2,Transform(`∗0, µ2)) due to hardwired instruction. Note that
GenZero(µ1

∗) = `∗0 and thus both outputs are the same.

– Case (m,µ1) 6= (m∗0, µ1
∗): P3 executes main step and outputs

EncEK(m,µ1, µ2,Transform(GenZero(µ1), µ2)) since s∗ is outside of image
of ACE. P3A,1 executes main step due to hardwired instruction and outputs
EncEK(m,µ1, µ2,Transform(GenZero(µ1), µ2)).

• Case s = s′:

– Case (m,µ1) = (m∗0, µ1
∗):

∗ Case µ2 = µ2
∗: P3 outputs µ1

∗ via trapdoor step. P3A,1 outputs µ1
∗ due to hardwired

instruction.

∗ Case µ2 6= µ2
∗: P3 gets level `∗0 from s′ and outputs EncEK(m∗0, µ1

∗, µ2,Transform(`∗0, µ2))
via trapdoor step. P3A,1 outputs EncEK(m∗0, µ1

∗, µ2,Transform(`∗0, µ2)) due to hardwired
instruction.

– Case (m,µ1) 6= (m∗0, µ1
∗): P3 skips the trapdoor step since s′ contains the wrong

(m∗0, µ1
∗) 6= (m,µ1), and outputs EncEK(m,µ1, µ2,Transform(GenZero(µ1), µ2)) via

main step. P3A,1 executes main step due to hardwired instruction and outputs
EncEK(m,µ1, µ2,Transform(GenZero(µ1), µ2)).

• Case s 6= s′, s∗: P3 and P3A,1 execute the same code, since punctured keys preserve functionality on
all inputs which are not punctured. Note that in this case these keys are never used at punctured points.

Program SFake. Next we compare programs SFake and SFakeA,1. Note that validity check passes on the
same set of inputs in programs SFake and SFakeA,1, since programs P1 and P1A,1 are functionally equivalent.
We present the analysis assuming inputs passed the validity check.
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• Case s = s∗:

– Case (m,µ1) = (m∗0, µ1
∗) (for arbitrary (m̂, µ2, µ3)): SFake outputs

ACE.EncEKS (m̂, µ1
∗, µ2, µ3, Increment(GenZero(µ1

∗))) via main step since s∗ is out-
side of image of ACE. SFakeA,1 outputs ACE.EncEKS (m̂, µ1

∗, µ2, µ3, Increment(`∗0)) due to
hardwired instruction. Note that GenZero(µ1

∗) = `∗0 and thus both outputs are the same.

– Case (m,µ1) 6= (m∗0, µ1
∗) (for arbitrary (m̂, µ2, µ3)): SFake executes main step since s∗ is

outside of image of ACE and outputs ACE.EncEKS (m̂, µ1, µ2, µ3, Increment(GenZero(µ1))).
SFakeA,1 skips the trapdoor step due to hardwired instruction and outputs the same value via
main step.

• Case s = s′:

– Case (m,µ1) = (m∗0, µ1
∗) (for arbitrary (m̂, µ2, µ3)): SFake gets `∗0 from s′, increments it and

outputs ACE.EncEKS (m̂, µ1
∗, µ2, µ3, Increment(`∗0)). SFakeA,1 outputs the same value due to

hardwired instruction.

– Case (m,µ1) 6= (m∗0, µ1
∗) (for arbitrary (m̂, µ2, µ3)): SFake skips the

trapdoor step since s′ contains the wrong (m∗0, µ1
∗) 6= (m,µ1), and

outputs ACE.EncEKS (m̂, µ1, µ2, µ3, Increment(GenZero(µ1))) via main step.
SFakeA,1 skips the trapdoor step due to hardwired instruction and outputs
EncEK(m,µ1, µ2,Transform(GenZero(µ1), µ2)) via main step.

• Case s 6= s′, s∗: SFake and SFakeA,1 execute the same code, since punctured keys preserve func-
tionality on all inputs which are not punctured. Note that keys are never used at punctured points
(in particular, the program never needs to encrypt a plaintext containing `∗0, and thus the key can be
punctured at S`∗0 = {∗, ∗, ∗, ∗, `∗0}).

Lemma 60. Assume s∗ is outside of the image of sender ACE. Then, if there exists an adversary which can
distinguish HybA,2 and HybA,3 in time t(λ) with advantage ε(λ), then there exists an adversary which can
break security of a puncturable PRF SGkS in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. We give a reduction from indistinguishability of hybrids HybA,2 and HybA,3 to security of a punc-
turable PRF SGkS at the punctured point (s∗,m∗0).

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. Next it chooses random s∗ and sends the

point (s∗,m∗0) to the challenger of puncturable PRF game. The reduction gets back from the challenger the
punctured key kS{(s∗,m∗0)} and the value µ1

∗, which is either SGkS (s∗,m∗0) or randomly chosen.

Next the reduction reconstructs the rest of the distribution as follows. It samples all keys used in programs
(except kS{(s∗,m∗0)}), namely keys EK,DK of the main ACE, keys EKS ,DKS of the sender ACE, keys
EKR,DKR of the receiver ACE, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random r∗ and sets µ2
∗ = RGkR(r∗, µ1

∗). It computes levels `∗0 = GenZero(µ1
∗), L∗0 =

Transform(`∗0, µ2
∗). It sets µ3

∗ = EncEK(m∗0, µ1
∗, µ2

∗, L∗0) and s′ = EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0).
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Next it computes punctured keys DKS{s∗, s′}, kS{(s∗,m∗0), (s′,m∗0)} (by additionally puncturing challenge
kS{(s∗,m∗0)} at (s′,m∗0)), and EKS{S`∗0}, S`∗0 = {∗, ∗, ∗, ∗, `∗0}.

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
(fig. 82) and P2,Dec,RFake (fig. 80). It gives obfuscated programs to the adversary, together with
s∗, r∗, µ1

∗, µ2
∗, µ3

∗. If challenge µ1
∗ was SGkS (s∗,m∗0), then the resulting distribution is exactly the

distribution from HybA,2. If µ1
∗ was randomly chosen, then the resulting distribution is exactly the distribution

from HybA,3.

Note that this reduction is using the fact that an adversary who holds the punctured key can additionally
puncture it at another point. We note that the construction of an extracting PRF [SW14] is based on GGM
PRF and satisfies this property.

Lemma 61. Assume s∗ is outside of the image of sender ACE. Then, if there exists an adversary which can
distinguish HybA,3 and HybA,4 in time t(λ) with advantage ε(λ), then there exists an adversary which can
break symmetry of a sender-fake relaxed ACE scheme in time t(λ) + poly(λ) with distinguishing advantage
ε(λ).

Proof. We give a reduction from indistinguishability of hybrids HybA,3 and HybA,4 to symmetry of sender
ACE.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. Next it samples all keys used in

programs (except EKS ,DKS), namely keys EK,DK of the main ACE, keys EKR,DKR of the re-
ceiver ACE, key kS of the sparse extracting PRF SG of the sender, key kR of the sparse ex-
tracting PRF RG of the receiver. It also runs setup of the level system to create the code of
GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random r∗ and sets µ1
∗ to be randomly chosen, µ2

∗ = RGkR(r∗, µ1
∗). It computes levels

`∗0 = GenZero(µ1
∗), L∗0 = Transform(`∗0, µ2

∗). It sets µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0).

Next the reduction sends p = (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0) as the challenge point to the challenger of the symmetry

of ACE. The challenger chooses random s∗, samples keys EKS ,DKS of ACE and computes s′ = EncEKS (p),
and punctures EKS at S`∗0 = {∗, ∗, ∗, ∗, `∗0} and DKS at s∗, s′ (DKS is first punctured at one of the strings
s∗, s′ which is lexicographically smaller, and then at the other). The reduction gets back from the challenger
(s1, s2,EKS{S`∗0}, DKS{s∗, s′}), where s1 = s∗, s2 = s′ or s1 = s′, s2 = s∗.

Next the reduction computes punctured key kS{(s1,m
∗
0), (s2,m

∗
0)}. Then it uses variables and code created

above to construct and obfuscate programs P1,P3, SFake, (fig. 82) and P2,Dec,RFake (fig. 80). In particular,
in every place where s∗, s′ appear, e.g. in code of programs, or as a punctured point, the reduction first uses
one of the strings s1, s2 which is lexicographically smaller, and then the other (note that s∗, s′ always appear
together in the distribution, except for the value given to the adversary as randomness of the sender).

Next the reduction gives obfuscated programs to the adversary, together with s1, r
∗, µ1

∗, µ2
∗, µ3

∗. If
challenge s1, s2 are s∗, s′, then the resulting distribution is exactly the distribution from HybA,3. If s1, s2 are
s′, s∗, then the resulting distribution is exactly the distribution from HybA,4.

Lemma 62. Assume s∗ is outside of the image of sender ACE. Then, if there exists an adversary which can
distinguish HybA,4 and HybA,5 in time t(λ) with advantage ε(λ), then there exists an adversary which can
break security of a puncturable PRF SGkS in time t(λ) + poly(λ) with distinguishing advantage ε(λ).
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Proof. The proof is very similar to the proof of indistinguishability of hybrids HybA,2,HybA,3, except that
the reduction gives s′ instead of s∗ as randomness of the sender to the adversary.

We give a reduction from indistinguishability of hybrids HybA,4 and HybA,5 to security of a puncturable PRF
SGkS at the punctured point (s∗,m∗0).

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. Next it chooses random s∗ and sends the

point (s∗,m∗0) to the challenger of puncturable PRF game. The reduction gets back from the challenger the
punctured key kS{(s∗,m∗0)} and the value µ1

∗, which is either SGkS (s∗,m∗0) or randomly chosen.

Next the reduction reconstructs the rest of the distribution as follows. It samples all keys used in programs
(except kS{(s∗,m∗0)}), namely keys EK,DK of the main ACE, keys EKS ,DKS of the sender ACE, keys
EKR,DKR of the receiver ACE, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random r∗ and sets µ2
∗ = RGkR(r∗, µ1

∗). It computes levels `∗0 = GenZero(µ1
∗), L∗0 =

Transform(`∗0, µ2
∗). It sets µ3

∗ = EncEK(m∗0, µ1
∗, µ2

∗, L∗0) and s′ = EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0).

Next it computes punctured keys DKS{s∗, s′}, kS{(s∗,m∗0), (s′,m∗0)} (by additionally puncturing challenge
kS{(s∗,m∗0)} at (s′,m∗0)), and EKS{S`∗0}, S`∗0 = {∗, ∗, ∗, ∗, `∗0}

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
(fig. 82) and P2,Dec,RFake (fig. 80). It gives obfuscated programs to the adversary, together with
s′, r∗, µ1

∗, µ2
∗, µ3

∗. If challenge µ1
∗ was SGkS (s∗,m∗0), then the resulting distribution is exactly the distri-

bution from HybA,5. If µ1
∗ was randomly chosen, then the resulting distribution is exactly the distribution

from HybA,4.

Note that this reduction is using the fact that an adversary who holds the punctured key can additionally
puncture it at another point. We note that the construction of an extracting PRF [SW14] is based on GGM
PRF and satisfies this property.

Lemma 63. Assume s∗ is outside of the image of sender ACE. Then, if there exists an adversary which can
(t(λ), ε(λ))-distinguish HybA,5 and HybA,6, then there exists an adversary which can break iO for programs
of size σ′ in time t(λ) + poly(λ) with distinguishing advantage 1

3 · ε(λ).

Proof. The proof is identical to the proof of lemma 59, except that we give s′, and not s∗, as randomness of
the sender to the adversary.

Finally, we note that the distributions in HybA,6 and HybB are 2−λ-close (the reasoning is similar to
distributions HybA,HybA,1).

7.2.2 Reductions in the proof of lemma 55 (Indistinguishability of explanation of the receiver)

Let t(λ) be any function in Ω(poly(λ)), and let ε(λ) be a negligible function in w(2−λ). Assuming the prg,
the sender-fake relaxed ACE, receiver-fake relaxed ACE, main ACE, sparse extracting puncturable PRF, and
iO for program size σ′ are (t(λ), ε(λ))-secure, we show that no time-t(λ) adversary can distinguish between
HybB and HybC with more than O(ε(λ)) + 2−τ(λ) advantage.
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(Note that security loss 2−τ(λ) comes from conditioning on the fact that µ1
∗ is outside of the image of the

PRF SG. Conditioning on s∗, r∗, ρ̂∗ incurs only 2−λ loss and therefore we omit it.).

Lemma 64. Statistical distance between distributions HybB,HybB,1,1 is at most 2 · 2−λ.

Proof. Since randomly chosen s∗ is a valid ciphertext of sender ACE with probability senderACE.sparsity(λ),
with all but this probability both P1 and P3 will fail do decrypt s∗ under DKS and therefore will run main
step, outputting µ1

∗ = SGkS (s∗,m∗0) and µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0), respectively.

Similarly, randomly chosen r∗ is a valid ciphertext of receiver ACE with probability receiverACE.sparsity(λ),
and thus with all but this probability P2 will fail do decrypt r∗ under DKR and therefore will run main step,
outputting µ2

∗ = RGkR(r∗, µ1
∗).

Lemma 65. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybB,1,1 and HybB,1,2,
then there exists an adversary which can break iO for programs of size σ′ in time t(λ) + poly(λ) with
distinguishing advantage ε(λ).

Proof. The only difference between programs SFake and SFakeB,1 is that SFakeB,1 uses a punctured key
EKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). This is without changing functionality,
since SFake never needs to encrypt a plaintext with level `∗0, since `∗0 = [0, µ1

∗] and SFake encrypts levels
with value at least 1.

Lemma 66. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybB,1,2 and HybB,1,3,
then there exists an adversary which can break security of constrained decryption of sender-fake relaxed
ACE in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. We give a reduction from indistinguishability of hybrids HybB,1,2 and HybB,1,3 to security of con-
strained decryption of sender ACE.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It samples all keys used in programs (except

EKS ,DKS), namely keys EK,DK of the main ACE, keys EKR,DKR of the receiver ACE, key kS of the sparse
extracting PRF SG of the sender, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random s∗, r∗ and sets µ1
∗ = SGkS (s∗,m∗0), µ2

∗ = RGkR(r∗, µ1
∗). It computes levels `∗0 =

GenZero(µ1
∗), L∗0 = Transform(`∗0, µ2

∗). It sets µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0).

Next the reduction sends the set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0) to puncture encryption key

and sets P`∗0 ,∅ to puncture decryption key to the challenger of constrained decryption game. The challenger
samples keys EKS , DKS and it sends back to the reduction EKS{P`∗0} and key which is either DKS{P`∗0} or
DKS{∅}.

Next the reduction computes s′ = EncEKS{P`∗0}
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0) (note that this point is not punctured).

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
(fig. 84, fig. 85) and P2,Dec,RFake (fig. 80). It gives obfuscated programs to the adversary, together
with s′, r∗, µ1

∗, µ2
∗, µ3

∗. If challenge key was DKS{∅}, then the resulting distribution is exactly the

205



distribution from HybB,1,2. If key was DKS{P`∗0}, then the resulting distribution is exactly the distribution
from HybB,1,3.

Lemma 67. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybB,1,3 and HybB,1,4,
then there exists an adversary which can break the strong computational extractor property of the PRF SG in
time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. We give a reduction from indistinguishability of hybrids HybB,1,3 and HybB,1,4 to strong computa-
tionally extracting PRF SGkS .

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It sends the point m∗0 to the challenger of

strong extractor game. The challenger samples the key kS for SG and either chooses µ1
∗ at random or

computes it as µ1
∗ = SGkS (s∗,m∗0) for randomly chosen s∗. The reduction gets back from the challenger

the key kS and the value µ1
∗.

Next the reduction reconstructs the rest of the distribution as follows. It samples all keys used in programs
(except kS), namely keys EK,DK of the main ACE, keys EKS ,DKS of the sender ACE, keys EKR,DKR

of the receiver ACE, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of the level
system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random r∗ and sets µ2
∗ = RGkR(r∗, µ1

∗). It computes levels `∗0 = GenZero(µ1
∗), L∗0 =

Transform(`∗0, µ2
∗). It sets µ3

∗ = EncEK(m∗0, µ1
∗, µ2

∗, L∗0) and s′ = EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0).

Next it computes punctured keys EKS{P`∗0}, DKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
(fig. 85) and P2,Dec,RFake (fig. 80). It gives obfuscated programs to the adversary, together with
s′, r∗, µ1

∗, µ2
∗, µ3

∗. If challenge µ1
∗ was SGkS (s∗,m∗0), then the resulting distribution is exactly the distri-

bution from HybB,1,3. If µ1
∗ was randomly chosen, then the resulting distribution is exactly the distribution

from HybB,1,4.

Lemma 68. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybB,1,4 and HybB,1,5, then there exists an adversary which can break
iO for programs of size σ′ in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The only difference between programs P3B,2 and P3B,3 is that P3B,3 uses a punctured key EK{p},
where p = (1⊕m∗0, µ1

∗, µ2
∗, L∗0). We argue that the program never needs to encrypt any plaintext of the

form (∗, µ1
∗, µ2

∗, L∗0), and therefore puncturing this point doesn’t change the functionality:

Note that, since µ1
∗ is random, it is outside of the image of a PRF SG with overwhelming probability, and

thus validity check can pass only if P3 is run on some (s,m, µ1
∗, µ2

∗), where s encodes m,µ1
∗ (and other

values). However, note that P3B,2 on such input can only execute trapdoor step (and not the main step);
thus the key in the main step can be safely punctured. Further, in order for the program to run encryption
algorithm in the trapdoor step on any plaintext of the form (∗, µ1

∗, µ2
∗, L∗0), fake s should encode level `∗0.

However, note that DKS is punctured at the set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), and thus
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P3B,2 rejects all fake s with `∗0 inside except s which encodes (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), that is, s′. Finally,

note that running P3B,2 on (s′,m, µ1
∗, µ2

∗) will pass validity check only if m = m∗0 (again, since µ1
∗ is

outside of the image of PRF SG). Thus (s′,m∗0, µ1
∗, µ2

∗) is the only potentially problematic input. However,
running P3B,2 on (s′,m∗0, µ1

∗, µ2
∗) will not trigger encryption algorithm, since the program directly outputs

the value µ3
∗ encoded in s′. Thus P3B,2 never encrypts any plaintext of the form (∗, µ1

∗, µ2
∗, L∗0) in the

trapdoor step.

Lemma 69. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybB,1,5 and HybB,1,6, then there exists an adversary which can break
security of constrained decryption of the main ACE in time t(λ) + poly(λ) with distinguishing advantage
ε(λ).

Proof. We give a reduction from indistinguishability of hybrids HybB,1,5 and HybB,1,6 to security of con-
strained decryption of main ACE.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It samples all keys used in programs (except

EK,DK), namely keys EKS ,DKS of sender ACE, keys EKR,DKR of the receiver ACE, key kS of the sparse
extracting PRF SG of the sender, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random r∗ and sets µ1
∗ at random, µ2

∗ = RGkR(r∗, µ1
∗). It computes levels `∗0 = GenZero(µ1

∗),
L∗0 = Transform(`∗0, µ2

∗).

Next the reduction sends the set consisting of a single point p = (1⊕m∗0, µ1
∗, µ2

∗, L∗0) to puncture encryption
key and sets p,∅ to puncture decryption key to the challenger of constrained decryption game. The challenger
samples keys EK, DK and it sends back to the reduction EK{p} and key which is either DK{p} or DK{∅}.

Next the reduction computes µ3
∗ = EncEK{p}(m

∗
0, µ1

∗, µ2
∗, L∗0) (note that this point isn’t punctured, thus

the reduction can indeed encrypt it).

It punctured keys EKS{P`∗0}, DKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), and sets

s′ = EncEKS{P`∗0}
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3,SFake
(fig. 86) and P2,Dec,RFake (fig. 87, fig. 88). It gives obfuscated programs to the adversary, together with
s′, r∗, µ1

∗, µ2
∗, µ3

∗. If challenge key was DK{∅}, then the resulting distribution is exactly the distribution
from HybB,1,5. If key was DKS{p}, then the resulting distribution is exactly the distribution from HybB,1,6.

Lemma 70. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and ρ̂∗ is outside of the image of
the prg. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybB,1,6 and HybB,2,1, then
there exists an adversary which can break security of iO for σ′-sized programs in time t(λ) + poly(λ) with
distinguishing advantage 1

3 · ε(λ).

Proof. In this analysis we assume that r∗ is outside the image of receiver ACE, and thus ACE.DecDKR(r∗) =
′fail′.
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Programs P2 and P2B,2. We present case analysis to show that the behavior of programs P2 and P2B,2
on each input is the same:

• Case r = r∗:

– Case µ1 = µ1
∗: P2 outputs µ2

∗ via main step since r∗ is outside of image of ACE. P2B,2 outputs
µ2
∗ due to hardwired instruction.

– Case µ1 6= µ1
∗: P2 executes main step and outputs RGkR(r∗, µ1) since r∗ is outside of image of

ACE. P2B,2 executes main step and outputs RGkR(r∗, µ1) due to hardwired instruction.

• Case r = r′:

– Case µ1 = µ1
∗: P2 outputs µ2

∗ via trapdoor step. P2B,2 outputs µ2
∗ due to hardwired instruction.

– Case µ1 6= µ1
∗: P2 skips the trapdoor step since r′ contains the wrong µ1

∗ 6= µ1, and outputs
RGkR(r′, µ1). P2B,2 executes main step due to hardwired instruction and outputs RGkR(r′, µ1).

• Case r 6= r′, r∗: P2 and P2B,2 execute the same code, since punctured keys preserve functionality on
all inputs which are not punctured. Note that keys are never used at punctured points.

Programs Dec and DecB,2. Next we compare programs Dec and DecB,2. Note that validity check passes
on the same set of inputs in programs Dec and DecB,2, since programs P2 and P2B,1 are functionally
equivalent. We present the analysis assuming inputs passed the validity check.

• Case r = r∗:

– Case (µ1, µ2) = (µ1
∗, µ2

∗):

∗ Case µ3 = µ3
∗: Dec outputs m∗0 via main step since r∗ is outside of image of ACE. DecB,1

outputs m∗0 due to hardwired instruction.

∗ Case µ3 6= µ3
∗: since r∗ is outside of image of ACE, Dec executes the main step. DecB,2

skips the trapdoor step due to hardwired instruction and performes exactly the same actions
in the main step.

– Case (µ1, µ2) 6= (µ1
∗, µ2

∗): Dec executes main step since r∗ is outside of image of ACE. DecB,2
skips the trapdoor step due to hardwired instruction and performes exactly the same actions in
the main step.

• Case r = r′:

– Case (µ1, µ2) = (µ1
∗, µ2

∗):

∗ Case µ3 = µ3
∗: Dec outputs m∗0 via trapdoor step. DecB,2 outputs m∗0 due to hardwired

instruction.

∗ Case µ3 6= µ3
∗: Dec executes trapdoor step. That is, it tries to decrypt µ3 and either outputs

its plaintext or ′fail′. In order for Dec to outputs a plaintext (and not ′fail′), µ1, µ2 should be
the same in the input, in µ3, in r′, and in L′′, and moreover, isLess(L′, L′′) should be true.
Since r′ has level L′ = L∗0, isLess is true for all L′′ of the form [i, µ1

∗, µ2
∗], where i > 0.

In other words, µ3 should be an encryption of (m,µ1
∗, µ2

∗, L′′), where L′′ = [i, µ1
∗, µ2

∗],
i > 0, and m is arbitrary. We call it condition 1.
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DecB,2 is instructed to skip the trapdoor step and execute the main step. That is, it decrypts
µ3 and either outputs its plaintext or ′fail′. In order for DecB,1 to outputs a plaintext (and not
′fail′), µ1, µ2 should be the same in the input, in µ3, and in L′′ (however, unlike Dec, there
is no “isLess(L′, L′′) = true” condition). In other words, µ3 should be an encryption of
(m,µ1

∗, µ2
∗, L′′), where L′′ = [i, µ1

∗, µ2
∗], i ≥ 0, and m is arbitrary. We call it condition

2.

Thus, the only difference in these conditions for Dec and DecB,2 is that, given an encryption
of (m,µ1

∗, µ2
∗, [0, µ1

∗, µ2
∗]) for any m (that is, µ3

∗ or µ3
∗), condition 1 instructs to output

′fail′ and condition 2 instructs to output m. However, we claim that both programs Dec
and DecB,2 still behave the same on inputs µ3

∗ or µ3
∗. Indeed, recall that if the input was

(r′, µ1
∗, µ2

∗, µ3
∗), both programs would output m∗0 as analysed in the previous case. If the

input was (r′, µ1
∗, µ2

∗, µ3
∗), both programs would output ′fail′, since decryption key DK of

the main ACE is punctured at the point p = (1⊕m∗0, µ1
∗, µ2

∗, [0, µ1
∗, µ2

∗]).

Thus, in this case both programs have the same functionality.

– Case (µ1, µ2) 6= (µ1
∗, µ2

∗): Dec skips the trapdoor step since r′ contains the wrong (µ1
∗, µ2

∗) 6=
(µ1, µ2), and executes the main step. DecB,2 skips the trapdoor step due to hardwired instruction
and executes the main step.

• Case r 6= r′, r∗: Dec and DecB,2 execute the same code, since punctured keys preserve functionality
on all inputs which are not punctured. Note that DecB,2 never uses key DKR at the punctured points,
thus puncturing it doesn’t change the functionality of the program. Note that the key DKp can be used
by Dec and DecB,2 to decrypt an encryption of p, however it is punctured at both programs and thus
functionality of both programs is the same in this case.

Programs RFake and RFakeB,2. Next we compare programs RFake and RFakeB,2. Note that the only
difference is that RFakeB,2 uses a punctured key EKR{Sρ̂∗}, where Sρ̂∗ = {(∗, ∗, ∗, ∗, ∗, ρ̂∗)} for randomly
chosen ρ̂∗. By assumption of the lemma, ρ̂∗ is outside of the image of this prg, and thus RFakeB,2 never
needs to encrypt any of points ending with ρ̂∗. Therefore puncturing the key doesn’t change the functionality
of the program.

Lemma 71. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and ρ̂∗ is outside of the image of
the prg. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybB,2,1 and HybB,2,2, then
there exists an adversary which can break security of of a puncturable PRF RGkR in time t(λ) + poly(λ)
with distinguishing advantage ε(λ).

Proof. The proof is very similar to the proof of indistinguishability of hybrids HybA,2,HybA,3, except that
the reduction is for PRF of the receiver, not the PRF of the sender.

We give a reduction to security of a puncturable PRF RGkR at the punctured point (r∗, µ1
∗).

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. Next it chooses random r∗, µ1

∗ and sends the
point (r∗, µ1

∗) to the challenger of puncturable PRF game. The reduction gets back from the challenger the
punctured key kR{(r∗, µ1

∗)} and the value µ2
∗, which is either RGkR(r∗, µ1

∗) or randomly chosen.
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Next the reduction reconstructs the rest of the distribution as follows. It samples all keys used in programs
(except kR{(r∗, µ1

∗)}), namely keys EK,DK of the main ACE, keys EKS ,DKS of the sender ACE, keys
EKR,DKR of the receiver ACE, key kS of the sparse extracting PRF SG of the sender. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It computes levels `∗0 = GenZero(µ1
∗), L∗0 = Transform(`∗0, µ2

∗). It sets µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗) for randomly chosen ρ̂∗.

Next it computes punctured keys DKR{r∗, r′}, kR{(r∗, µ1
∗), (r′, µ1

∗)} (by additionally puncturing challenge
kR{(r∗, µ1

∗)} at (r′, µ1
∗)), and EKR{Sρ̂∗}, Sρ̂∗ = {(∗, ∗, ∗, ∗, ∗, ρ̂∗)} for randomly chosen ρ̂∗. It also

punctures keys EKS{P`∗0}, DKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), and EK{p},

DK{p} at p = (1⊕m∗0, µ1
∗, µ2

∗, L∗0).

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
(fig. 86) and P2,Dec,RFake (fig. 89). It gives obfuscated programs to the adversary, together with
s′, r∗, µ1

∗, µ2
∗, µ3

∗. If challenge µ2
∗ was RGkR(r∗, µ1

∗), then the resulting distribution is exactly the
distribution from HybB,2,1. If µ2

∗ was randomly chosen, then the resulting distribution is exactly the
distribution from HybB,2,2.

Note that this reduction is using the fact that an adversary who holds the punctured key can additionally
puncture it at another point. We note that the construction of an extracting puncturable PRF of [SW14] is
based on GGM PRF and satisfies this property.

Lemma 72. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and ρ̂∗ is outside of the image of
the prg. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybB,2,2 and HybB,2,3, then
there exists an adversary which can break the symmetry of a receiver-fake relaxed ACE in time t(λ) + poly(λ)
with distinguishing advantage ε(λ).

Proof. The proof is very similar to the proof of indistinguishability of hybrids HybA,3,HybA,4, except that
the reduction is to the ACE of the receiver, not ACE of the sender.

We give a reduction to symmetry of receiver ACE.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. Next it samples all keys used

in programs (except EKR,DKR), namely keys EK,DK of the main ACE, keys EKS ,DKS of the
sender ACE, key kS of the sparse extracting PRF SG of the sender, key kR of the sparse ex-
tracting PRF RG of the receiver. It also runs setup of the level system to create the code of
GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random µ1
∗, µ2

∗. It computes levels `∗0 = GenZero(µ1
∗), L∗0 = Transform(`∗0, µ2

∗). It sets
µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0), s′ = EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).

Next the reduction chooses ρ̂∗ at random and sends p = (m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, ρ̂

∗) as the challenge point
to the challenger of the symmetry of ACE. The challenger chooses random r∗, samples keys EKR,DKR

of ACE and computes r′ = EncEKR(p), and punctures EKR at Sρ̂∗ = {(∗, ∗, ∗, ∗, ∗, ρ̂∗)} and DKR at r∗, r′

(DKR is first punctured at one of the strings r∗, r′ which is lexicographically smaller, and then at the other).
The reduction gets back from the challenger (r1, r2,EKR{Sρ̂∗}, DKR{r∗, r′}), where r1 = r∗, r2 = r′ or
r1 = r′, r2 = r∗.
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Next it computes punctured keys EKS{P`∗0}, DKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), and EK{p}, DK{p} where p = (1⊕m∗0, µ1
∗, µ2

∗, L∗0).

Next the reduction computes punctured key kR{(r1, µ1
∗), (r2, µ1

∗)}. Then it uses variables and code created
above to construct and obfuscate programs P1,P3, SFake, (fig. 86) and P2,Dec,RFake (fig. 89). In particular,
in every place where r∗, r′ appear, e.g. in code of programs, or as a punctured point, the reduction first uses
one of the strings r1, r2 which is lexicographically smaller, and then the other (note that r∗, r′ always appear
together in the distribution, except for the value given to the adversary as randomness of the receiver).

Next the reduction gives obfuscated programs to the adversary, together with s′, r1, µ1
∗, µ2

∗, µ3
∗. If challenge

r1, r2 are r∗, r′, then the resulting distribution is exactly the distribution from HybB,2,2. If r1, r2 are r′, r∗,
then the resulting distribution is exactly the distribution from HybB,2,3.

Lemma 73. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and ρ̂∗ is outside of the image of
the prg. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybB,2,3 and HybB,2,4, then
there exists an adversary which can break security of a puncturable PRF RGkR in time t(λ) + poly(λ) with
distinguishing advantage ε(λ).

Proof. The proof is very similar to the proof of indistinguishability of hybrids HybB,2,1,HybB,2,2, except
that r′ and not r∗ is given to the adversary as randomness of the receiever.

We give a reduction to security of a puncturable PRF RGkR at the punctured point (r∗, µ1
∗).

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. Next it chooses random r∗, µ1

∗ and sends the
point (r∗, µ1

∗) to the challenger of puncturable PRF game. The reduction gets back from the challenger the
punctured key kR{(r∗, µ1

∗)} and the value µ2
∗, which is either RGkR(r∗, µ1

∗) or randomly chosen.

Next the reduction reconstructs the rest of the distribution as follows. It samples all keys used in programs
(except kR{(r∗, µ1

∗)}), namely keys EK,DK of the main ACE, keys EKS ,DKS of the sender ACE, keys
EKR,DKR of the receiver ACE, key kS of the sparse extracting PRF SG of the sender. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It computes levels `∗0 = GenZero(µ1
∗), L∗0 = Transform(`∗0, µ2

∗). It sets µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗) for randomly chosen ρ̂∗.

Next it computes punctured keys DKR{r∗, r′}, kR{(r∗, µ1
∗), (r′, µ1

∗)} (by additionally puncturing challenge
kR{(r∗, µ1

∗)} at (r′, µ1
∗)), and EKR{Sρ̂∗}, Sρ̂∗ = {(∗, ∗, ∗, ∗, ∗, ρ̂∗)} for randomly chosen ρ̂∗. It also

punctures keys EKS{P`∗0}, DKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), and EK{p},

DK{p} at p = (1⊕m∗0, µ1
∗, µ2

∗, L∗0).

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
(fig. 86) and P2,Dec,RFake (fig. 89). It gives obfuscated programs to the adversary, together with
s′, r′, µ1

∗, µ2
∗, µ3

∗. If challenge µ2
∗ was RGkR(r∗, µ1

∗), then the resulting distribution is exactly the
distribution from HybB,2,4. If µ2

∗ was randomly chosen, then the resulting distribution is exactly the
distribution from HybB,2,3.

Note that this reduction is using the fact that an adversary who holds the punctured key can additionally
puncture it at another point. We note that the construction of an extracting puncturable PRF of [SW14] is
based on GGM PRF and satisfies this property.
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Lemma 74. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and ρ̂∗ is outside of the image of
the prg. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybB,2,4 and HybB,2,5, then
there exists an adversary which can break security of iO for σ′-sized programs in time t(λ) + poly(λ) with
distinguishing advantage 1

3 · ε(λ).

Proof. The proof is identical to the proof of lemma 70.

Lemma 75. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybB,2,5 and HybB,2,6, then there exists an adversary which can break
security of a prg in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. We give a reduction to security of a prg.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary.

It samples all keys used in programs, namely keys EK,DK of the main ACE, keys EKS ,DKS of the sender
ACE, keys EKR,DKR of the receiver ACE, key kS of the sparse extracting PRF SG of the sender, key kR
of the sparse extracting PRF RG of the receiver. It also runs setup of the level system to create the code of
GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

Next it chooses random r∗, µ1
∗ and computes µ2

∗ = RGkR(r∗, µ1
∗). It computes levels `∗0 = GenZero(µ1

∗),
L∗0 = Transform(`∗0, µ2

∗). It sets µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0), s′ = EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).

It receives ρ̂∗ from a challenger of a prg game which is either randomly chosen or prg(ρ∗) for randomly
chosen ρ∗. Then the reduction sets r′ = EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗).

Next it punctures keys EKS{P`∗0}, DKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), and

EK{p}, DK{p} at p = (1⊕m∗0, µ1
∗, µ2

∗, L∗0).

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
(fig. 86) and P2,Dec,RFake (fig. 88). It gives obfuscated programs to the adversary, together with
s′, r′, µ1

∗, µ2
∗, µ3

∗. If challenge ρ̂∗ was an image of a prg, then the resulting distribution is exactly the distri-
bution from HybB,2,6. If ρ̂∗ was randomly chosen, then the resulting distribution is exactly the distribution
from HybB,2,5.

Lemma 76. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybB,2,6 and HybB,3,1, then there exists an adversary which can break
security of constrained decryption of the main ACE in time t(λ) + poly(λ) with distinguishing advantage
ε(λ).

Proof. The proof is very similar to the proof of indistinguishability of hybrids HybB,1,5,HybB,1,6, except
that r′ and not r∗ is given to the adversary as randomness of the receiver.

Lemma 77. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybB,3,1 and HybB,3,2, then there exists an adversary which can break
security of iO for σ′-sized programs in time t(λ) + poly(λ) with distinguishing advantage ε(λ).
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Proof. The proof is identical to the proof of lemma 68.

Lemma 78. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybB,3,2 and HybB,3,3,
then there exists an adversary which can break the strong computational extractor property of a PRF SGkS
in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is very similar to the proof of indistinguishability of hybrids HybB,1,3,HybB,1,4, except
that r′ and not r∗ is given to the adversary as randomness of the receiver.

Lemma 79. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybB,3,3 and HybB,3,4,
then there exists an adversary which can break security of contrained decryption of a sender-fake relaxed
ACE in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is very similar to the proof of indistinguishability of hybrids HybB,1,2,HybB,1,3, except
that r′ and not r∗ is given to the adversary as randomness of the receiver.

Lemma 80. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybB,3,4 and HybB,3,5, then there exists an adversary which can break
security of iO for σ′-sized programs in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is identical to the proof of lemma 65.

Finally, we note that the distributions in HybB,3,5 and HybC are 2−λ-close (the reasoning is similar to
distributions HybB,HybB,1,1).

7.2.3 Reductions in the proof of lemma 56 (Semantic Security)

Let t(λ) be any function in Ω(poly(λ)), and let ε(λ) be a negligible function in w(2−λ). Assuming the
sender-fake relaxed ACE, receiver-fake relaxed ACE, main ACE, sparse extracting puncturable PRF, and iO
for program size σ′ are (t(λ), ε(λ))-secure, we show that no time-t(λ) adversary can distinguish between
HybC and HybD with more than O(ε(λ)) +O(2−τ(λ)) advantage.

(Note that security loss O(2−τ(λ)) comes from conditioning on the fact that µ1
∗, µ2

∗ are outside of the image
of the corresponding PRFs. Conditioning on s∗, r∗ incurs only 2−λ loss and therefore we omit it.).
Lemma 81. Statistical distance between distributions HybC ,HybC,1,1 is at most 2 · 2−λ.

Proof. Same as indistinguishability between hybrids HybB,HybB,1,1.

Lemma 82. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,1,1 and HybC,1,2,
then there exists an adversary which can break security of iO for σ′-sized programs in time t(λ) + poly(λ)
with distinguishing advantage ε(λ).
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Proof. The only difference between programs SFake and SFakeC,1 is that SFakeC,1 uses a punctured key
EKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). This is without changing functionality,
since SFake never needs to encrypt a plaintext with level `∗0, since `∗0 = [0, µ1

∗] and SFake encrypts levels
with value at least 1.

Lemma 83. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,1,2 and HybC,1,3,
then there exists an adversary which can break security of contrained decryption of a sender-fake relaxed
ACE in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. Same as indistinguishability between hybrids HybB,3,3,HybB,3,4.

Lemma 84. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,1,3 and HybC,1,4,
then there exists an adversary which can break the strong computational extractor property of a PRF SGkS
in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. Same as indistinguishability between hybrids HybB,3,2,HybB,3,3.

Lemma 85. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybC,1,4 and HybC,1,5, then there exists an adversary which can break the
strong computational extractor property of a PRF RGkR in time t(λ)+poly(λ) with distinguishing advantage
ε(λ).

Proof. The proof is similar to the proof of indistinguishability of hybrids HybB,1,3,HybB,1,4, except that the
reduction is to the strong extracting PRF of the receiver, not the sender.

We give a reduction to strong computationally extracting PRF RGkR .

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It chooses µ1

∗ at random and sends the point
µ1
∗ to the challenger of strong extractor game. The challenger samples the key kR for RG and either chooses

µ2
∗ at random or computes it as µ2

∗ = RGkR(r∗, µ1
∗) for randomly chosen r∗. The reduction gets back

from the challenger the key kR and the value µ2
∗.

Next the reduction reconstructs the rest of the distribution as follows. It samples all keys used in programs
(except kR), namely keys EK,DK of the main ACE, keys EKS ,DKS of the sender ACE, keys EKR,DKR of
the receiver ACE, key kS of the sparse extracting PRF SG of the sender. It also runs setup of the level system
to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It computes levels `∗0 = GenZero(µ1
∗), L∗0 = Transform(`∗0, µ2

∗). It sets µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗.

Next it computes punctured keys EKS{P`∗0}, DKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
(fig. 92) and P2,Dec,RFake (fig. 94). It gives obfuscated programs to the adversary, together with
s′, r′, µ1

∗, µ2
∗, µ3

∗. If challenge µ2
∗ was RGkR(r∗, µ1

∗), then the resulting distribution is exactly the
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distribution from HybC,1,4. If µ2
∗ was randomly chosen, then the resulting distribution is exactly the

distribution from HybC,1,5.

Lemma 86. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and µ2
∗ is outside the image of

the PRF RG. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,1,5 and HybC,2,1,
then there exists an adversary which can break security of iO for σ′-sized programs in time t(λ) + poly(λ)
with distinguishing advantage ε(λ).

Proof. The only difference between programs P3B,2 and P3B,3 is that P3B,3 uses a punctured key
EK{p0, p1}, where p0 = (m∗0, µ1

∗, µ2
∗, L∗0), p1 = (m∗1, µ1

∗, µ2
∗, L∗0). We argue that the program never

needs to encrypt p0, p1, and therefore puncturing these points doesn’t change the functionality:

Since we assumed that µ1
∗ is outside of the image of a PRF SG, validity check can pass only if P3 is

run on some (s,m, µ1
∗, µ2

∗), where s encodes m,µ1
∗ (and other values). However, note that P3C,2 on

such input can only execute trapdoor step (and not the main step); thus the key in the main step can be
safely punctured. Further, in order for the program to run encryption algorithm in the trapdoor step on
input p0 or p1, fake s should encode level `∗0. However, note that DKS is punctured at the set P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), and thus P3C,2 rejects all fake s with `∗0 inside except s which
encodes (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), that is, s′. Finally, note that running P3C,2 on (s′,m, µ1
∗, µ2

∗) will pass
validity check only if m = m∗0 (again, since µ1

∗ is outside of the image of PRF SG). Thus (s′,m∗0, µ1
∗, µ2

∗)
is the only potentially problematic input (in particular, the key is never used to encrypt p1). However, running
P3C,2 on (s′,m∗0, µ1

∗, µ2
∗) will not trigger encryption algorithm, since the program directly outputs the

value µ3
∗ encoded in s′. Thus P3C,2 never encrypts p0 or p1 in the trapdoor step.

Lemma 87. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and µ2
∗ is outside the image of

the PRF RG. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,2,1 and HybC,2,2,
then there exists an adversary which can break security of constrained decryption of main ACE in time
t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is similar to the proof of indistinguishability of hybrids HybB,3,3,HybB,3,4, except that EK
is additionally punctured at another point, and µ2

∗ is randomly chosen.

We give a reduction to security of constrained decryption of main ACE.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It samples all keys used in programs (except

EK,DK), namely keys EKS ,DKS of sender ACE, keys EKR,DKR of the receiver ACE, key kS of the sparse
extracting PRF SG of the sender, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random µ1
∗, µ2

∗. It computes levels `∗0 = GenZero(µ1
∗), L∗0 = Transform(`∗0, µ2

∗).

Next the reduction sends the set consisting of two points p0 = (m∗0, µ1
∗, µ2

∗, L∗0), p1 = (m∗1, µ1
∗, µ2

∗, L∗0)
to puncture encryption key, sets p1,∅ to puncture decryption key, and plaintext p0 to the challenger of
constrained decryption game (note that plaintext p0 doesn’t belong to the set {p1} for puncturing DK
and thus this is a valid query to the challenger of constrained decryption game). The challenger samples
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keys EK, DK and it sends back to the reduction EK{p0, p1}, key which is either DK{p1} or DK{∅}, and
µ3
∗ = EncEK(p0).

Next the reduction punctures keys EKS{P`∗0}, DKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), and sets s′ = EncEKS{P`∗0}
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ =

EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗.

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3,SFake
(fig. 93) and P2,Dec,RFake (fig. 94, fig. 95). It gives obfuscated programs to the adversary, together with
s′, r′, µ1

∗, µ2
∗, µ3

∗. If challenge key was DK{∅}, then the resulting distribution is exactly the distribution
from HybC,2,1. If key was DKS{p1}, then the resulting distribution is exactly the distribution from HybC,2,2.

Lemma 88. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and µ2
∗ is outside the image of

the PRF RG. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,2,2 and HybC,2,3,
then there exists an adversary which can break security of iO for σ′-sized circuits in time t(λ) + poly(λ) with
distinguishing advantage 1

2ε(λ).

Proof. We start with analyzing program Dec: The only difference between programs DecC,1 and DecC,2
is that DecC,1 uses key DK{p1} and DecC,2 uses DK{p0, p1}, i.e. the key is additionally punctured at p0

(here p0 = (m∗0, µ1
∗, µ2

∗, L∗0), p1 = (m∗1, µ1
∗, µ2

∗, L∗0)). We will argue that if DecC,1 on input µ3
∗ =

ACE.EncEK(p0) reaches the line where it needs to decrypt µ3
∗, then it always outputs ′fail′. Therefore

puncturing this point (and thus forcing DecC,2 to output ′fail′ when attempt to decrypt µ3
∗) doesn’t change

the functionality:

First, note that if input µ3 = µ3
∗, but (µ1, µ2) 6= (µ1

∗, µ2
∗) and the program reached decryption of µ3

∗, then
the program outputs ′fail′: indeed, µ3

∗ encrypts µ1
∗, µ2

∗ and thus the check (µ1, µ2) = (µ1
∗, µ2

∗) will not
pass.

Second, by assumption µ2
∗ is outside of the image of a PRF RG, and thus validity check can pass only if

DecC,1 is run on some (r, µ1
∗, µ2

∗, µ3
∗), where r encodes µ1

∗, µ2
∗ (and other values). However, note that

DecC,1 on such input can only execute the trapdoor step (and not the main step); thus the key in the main
step can be safely punctured. Further, in order for the program to output m after decryption in the trapdoor
step, the condition “isLess(L′, L′′)” should hold. However, when input µ3 = µ3

∗, L′′ is equal to [0, µ1
∗, µ2

∗],
which is the smallest possible level and therefore there doesn’t exist L′ such that isLess(L′, L′′) = true.
Thus, if DecC,1 reached decryption in the trapdoor step on input µ3

∗, it will anyway output ′fail′ due to failed
“isLess” check and therefore we can puncture DK at p0 such that an attempt to decrypt µ3

∗ would cause Dec
to output ′fail′ immediately.

Next we analyze program RFake. The difference between RFakeC,1 and RFakeC,2 is that the key DK, which
is already punctured at p1, is additionally punctured at p0. In order to preserve the functionality of RFake
on input µ3

∗, we additionally instruct RFake to use level L∗0 = [0, µ1
∗, µ2

∗] on input µ3
∗ (without actually

decrypting µ3
∗). Note that this is what RFakeC,1 would do on input µ3

∗; thus this doesn’t change the
functionality.

Lemma 89. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and µ2
∗ is outside the image of

the PRF RG. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,2,3 and HybC,2,4,
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then there exists an adversary which can break indistinguishability of ciphertexts of main ACE in time
t(λ) + poly(λ) with distinguishing advantage 1

2ε(λ).

Proof. We give a reduction to indistinguishability of ciphertexts of main ACE.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It samples all keys used in programs (except

EK,DK), namely keys EKS ,DKS of sender ACE, keys EKR,DKR of the receiver ACE, key kS of the sparse
extracting PRF SG of the sender, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random µ1
∗, µ2

∗. It computes levels `∗0 = GenZero(µ1
∗), L∗0 = Transform(`∗0, µ2

∗).

Next the reduction sends the set consisting of two points p0 = (m∗0, µ1
∗, µ2

∗, L∗0), p1 = (m∗1, µ1
∗, µ2

∗, L∗0)
to puncture encryption key, the same set {p0, p1} to puncture decryption key, and plaintexts p0, p1 to the
challenger of indistinguishability of ciphertexts game (note that plaintexts belong to both punctured sets
and thus this is a valid query to the challenger of indistinguishability of ciphertexts game). The challenger
samples keys EK, DK and it sends back to the reduction EK{p0, p1}, DK{p0, p1}, and µ3

∗ which is either
EncEK(p0) or EncEK(p1).

Next the reduction punctures keys EKS{P`∗0}, DKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), and sets s′ = EncEKS{P`∗0}
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ =

EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗.

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3,SFake
(fig. 93) and P2,Dec,RFake (fig. 96). It gives obfuscated programs to the adversary, together with
s′, r′, µ1

∗, µ2
∗, µ3

∗. If challenge µ3
∗ was EncEK(p0), then the resulting distribution is exactly the distribution

from HybC,2,3. If µ3
∗ was EncEK(p1), then the resulting distribution is exactly the distribution from HybC,2,4.

Lemma 90. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and µ2
∗ is outside the image of

the PRF RG. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,2,4 and HybC,2,5,
then there exists an adversary which can break security of iO for σ′-sized circuits in time t(λ) + poly(λ) with
distinguishing advantage 1

2ε(λ).

Proof. The proof is very similar to the proof of lemma 88, except that in this hybrid µ3
∗ = EncEK(p1) instead

of p0, and we unpuncture DK at p1 instead of p0.

We start with analyzing program Dec: The only difference between programs DecC,3 and DecC,2 is that
DecC,3 uses key DK{p0} and DecC,2 uses DK{p0, p1}, i.e. the key is additionally punctured at p1 (here
p0 = (m∗0, µ1

∗, µ2
∗, L∗0), p1 = (m∗1, µ1

∗, µ2
∗, L∗0)). We will argue that if DecC,3 on input µ3

∗ = EncEK(p1)
reaches the line where it needs to decrypt µ3

∗, then it always outputs ′fail′. Therefore puncturing this point
(and thus forcing DecC,2 to output ′fail′ when attempt to decrypt µ3

∗) doesn’t change the functionality:

First, note that if input µ3 = µ3
∗, but (µ1, µ2) 6= (µ1

∗, µ2
∗) and the program reached decryption of µ3

∗, then
the program outputs ′fail′: indeed, µ3

∗ encrypts µ1
∗, µ2

∗ and thus the check (µ1, µ2) = (µ1
∗, µ2

∗) will not
pass.

Second, since µ2
∗ is random, it is outside of the image of a PRF RG with overwhelming probability, and thus

validity check can pass only if DecC,3 is run on some (r, µ1
∗, µ2

∗, µ3
∗), where r encodes µ1

∗, µ2
∗ (and other
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values). However, note that DecC,3 on such input can only execute trapdoor step (and not the main step);
thus the key in the main step can be safely punctured. Further, in order for the program to output m after
decryption in the trapdoor step, the condition “isLess(L′, L′′)” should hold. However, when input µ3 = µ3

∗,
L′′ is equal to [0, µ1

∗, µ2
∗], which is the smallest possible level and therefore there doesn’t exist L′ such that

isLess(L′, L′′) = true. Thus, if DecC,3 reached decryption in the trapdoor step on input µ3
∗, it will anyway

output ′fail′ due to failed “isLess” check and therefore we can puncture DK at p1 such that an attempt to
decrypt µ3

∗ would cause Dec to output ′fail′ immediately.

Next we analyze program RFake. The difference between RFakeC,3 and RFakeC,2 is that the key DK, which
is already punctured at p0, is additionally punctured at p1. In order to preserve the functionality of RFake
on input µ3

∗, we additionally instruct RFake to use level L∗0 = [0, µ1
∗, µ2

∗] on input µ3
∗ (without actually

decrypting µ3
∗). Note that this is what RFakeC,3 would do on input µ3

∗; thus this doesn’t change the
functionality.

Lemma 91. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and µ2
∗ is outside the image of

the PRF RG. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,2,5 and HybC,2,6,
then there exists an adversary which can break security of constrained decryption of main ACE in time
t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is similar to the proof of indistinguishability of hybrids HybC,2,1,HybC,2,2, except that we
unpuncture DK at p0 instead of p1, and our third message is µ3

∗ = EncEK(p1) instead of µ3
∗ = EncEK(p0).

We give a reduction to security of constrained decryption of main ACE.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It samples all keys used in programs (except

EK,DK), namely keys EKS ,DKS of sender ACE, keys EKR,DKR of the receiver ACE, key kS of the sparse
extracting PRF SG of the sender, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random µ1
∗, µ2

∗. It computes levels `∗0 = GenZero(µ1
∗), L∗0 = Transform(`∗0, µ2

∗).

Next the reduction sends the set consisting of two points p0 = (m∗0, µ1
∗, µ2

∗, L∗0), p1 = (m∗1, µ1
∗, µ2

∗, L∗0)
to puncture encryption key, sets p0,∅ to puncture decryption key, and plaintext p1 to the challenger of
constrained decryption game (note that plaintext p1 doesn’t belong to the set {p0} for puncturing DK
and thus this is a valid query to the challenger of constrained decryption game). The challenger samples
keys EK, DK and it sends back to the reduction EK{p0, p1}, key which is either DK{p0} or DK{∅}, and
µ3
∗ = EncEK(p1).

Next the reduction punctures keys EKS{P`∗0}, DKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), and sets s′ = EncEKS{P`∗0}
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ =

EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗.

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3,SFake
(fig. 93) and P2,Dec,RFake (fig. 97, fig. 94). It gives obfuscated programs to the adversary, together with
s′, r′, µ1

∗, µ2
∗, µ3

∗. If challenge key was DK{∅}, then the resulting distribution is exactly the distribution
from HybC,2,6. If key was DKS{p0}, then the resulting distribution is exactly the distribution from HybC,2,5.
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Lemma 92. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and µ2
∗ is outside the image of

the PRF RG. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,2,6 and HybC,2,7,
then there exists an adversary which can break security of iO for σ′-sized programs in time t(λ) + poly(λ)
with distinguishing advantage ε(λ).

Proof. The proof is identical to the proof of lemma 86.

Lemma 93. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybC,2,7 and HybC,3,1, then there exists an adversary which can break the
strong computational extractor property of a PRF RGkR in time t(λ)+poly(λ) with distinguishing advantage
ε(λ).

Proof. The proof is identical to the proof of indistinguishability of hybrids HybC,1,4,HybC,1,5, except that
µ3
∗ = EncEK(m∗1, µ1

∗, µ2
∗, L∗0) instead of µ3

∗ = EncEK(m∗0, µ1
∗, µ2

∗, L∗0).

Lemma 94. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,3,1 and HybC,3,2,
then there exists an adversary which can break the strong computational extractor property of a PRF SGkS
in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is similar to the proof of indistinguishability of hybrids HybC,1,3,HybC,1,4 (with the
difference that µ3

∗ = EncEK(m∗1, µ1
∗, µ2

∗, L∗0) instead of µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0), and the reduction

is made for the point (s∗,m∗1) instead of (s∗,m∗0)).

Lemma 95. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,3,2 and HybC,3,3,
then there exists an adversary which can break security of contrained decryption of a sender-fake relaxed
ACE in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is similar to the proof of indistinguishability of hybrids HybC,1,2,HybC,1,3 (with the
difference that µ3

∗ = EncEK(m∗1, µ1
∗, µ2

∗, L∗0) instead of µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0), and µ1

∗ =
SG(s∗,m∗1) instead of µ1

∗ = SG(s∗,m∗0)).

Lemma 96. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,3,3 and HybC,3,4,
then there exists an adversary which can break security of iO for σ′-sized programs in time t(λ) + poly(λ)
with distinguishing advantage ε(λ).

Proof. The only difference between programs SFake and SFakeC,1 is that SFakeC,1 uses a punctured key
EKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). This is without changing functionality,
since SFake never needs to encrypt a plaintext with level `∗0, since `∗0 = [0, µ1

∗] and SFake encrypts levels
with value at least 1.

Finally, we note that the distributions in HybC,3,4 and HybD are O(2−λ)-close (the reasoning is similar to
distributions HybB,HybB,1,1).
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7.2.4 Reductions in the proof of lemma 57 (Indistinguishability of Levels)

Let t(λ) be any function in Ω(poly(λ)), and let ε(λ) be a negligible function in w(2−λ). Assuming the
sender-fake relaxed ACE, sparse extracting puncturable PRF, and iO for program size σ′ are (t(λ), ε(λ))-
secure, and assuming the level system is (t(λ), ε1(λ, T, τ))-secure, we show that no time-t(λ) adversary can
distinguish between HybD and HybE with more than O(ε(λ)) + ε1(λ, T, τ) advantage.

(Note that security loss O(2−τ(λ)) comes from conditioning on the fact that µ1
∗ is outside of the image of

the corresponding PRF. Conditioning on s∗, r∗ incurs only 2−λ loss and therefore we omit it.).
Lemma 97. Statistical distance between distributions HybD,HybD,1,1 is at most 2 · 2−λ.

Proof. Same as indistinguishability between hybrids HybB,HybB,1,1.

Lemma 98. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybD,1,1 and HybD,1,2,
then there exists an adversary which can break security of iO for σ′-sized programs in time t(λ) + poly(λ)
with distinguishing advantage ε(λ).

Proof. The only difference between programs SFake and SFakeD,1 is that SFakeD,1 uses a punctured key
EKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). This is without changing functionality,
since SFake never needs to encrypt a plaintext with level `∗0, since `∗0 = [0, µ1

∗] and SFake encrypts levels
with value at least 1.

Lemma 99. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybD,1,2 and HybD,1,3,
then there exists an adversary which can break security of constrained decryption of sender-fake relaxed
ACE in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is similar to the proof of indistinguishability of hybrids HybB,1,2,HybB,1,3 (with the
difference that r′ instead of r∗ is given to the adversary, and µ3

∗ = EncEK(m∗1, µ1
∗, µ2

∗, L∗0) instead of
µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0), µ1

∗ = SG(s∗,m∗1) instead of µ1
∗ = SG(s∗,m∗0)).

Lemma 100. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybD,1,3 and HybD,1,4,
then there exists an adversary which can break computational strong extractor property of the PRF SG in
time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is similar to the proof of indistinguishability of hybrids HybB,1,3,HybB,1,4 (with the
difference that r′ (instead of r∗) is given to the adversary, µ3

∗ = EncEK(m∗1, µ1
∗, µ2

∗, L∗0) instead of
µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0), and the reduction is made for the point (s∗,m∗1) instead of (s∗,m∗0)).

Lemma 101. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybD,1,4 and HybD,2,1, then there exists an adversary which can break
security of iO for σ′-sized programs in time t(λ) + poly(λ) with distinguishing advantage 1

2ε(λ).
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Proof. The difference between programs in the two hybrids is that in HybD,2,1 programs use only punctured
versions of programs of the level system. We argue that this doesn’t change the functionality of the programs
of deniable encryption, since these programs never need to call programs of the level system on punctured
inputs.

We start with analyzing program P3D,2. By assumption, µ1
∗ is outside of the image of a PRF SG, and

thus when µ1 = µ1
∗ validity check can pass only if P3 is run on some (s,m, µ1

∗, µ2), where s encodes
m,µ1

∗ (and other values). However, note that P3D,2 on such input can only execute trapdoor step (and
not the main step); thus in the main step we can use GenZero[µ1

∗] which is punctured at µ1
∗. Moreover,

since GenZero[µ1
∗] never outputs `∗0, we can also use Transform[(`∗0, µ2

∗)] which is punctured at the input
(`∗0, µ2

∗).

It remains to argue that we can puncture Transform[(`∗0, µ2
∗)] at the input (`∗0, µ2

∗) in the trapdoor step as
well. Note that in order to run Transform on this input in the trapdoor step, P3 should take as input fake
s which encodes `∗0 (among other things). However, since DKS is punctured at P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), the only such fake s is ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), that is, s′. Further, in

order for “(m,µ1) = (m′, µ1
′)” check to pass, inputs to P3 should be m = m∗0 and µ1 = µ1

∗. Finally, in
order to call Transform on (`∗0, µ2

∗), the input µ2 to P3 should be µ2
∗. In other words, the only input on

which P3 could potentially run Transform at the punctured point is (s′,m∗0, µ1
∗, µ2

∗); however, in this case
P3 simply outputs µ3

∗, which is encoded in s′, without running Transform at all. Thus we can puncture
Transform safely.

Next we analyze program SFakeD,2. By assumption, µ1
∗ is is outside of the image of a PRF SG, and thus

validity check can pass only if SFake is run on some (s,m, m̂, µ1
∗, µ2, µ3), where s encodes m,µ1

∗ (and
other values). However, note that SFakeD,2 on such input can only execute trapdoor step (and not the main
step); thus in the main step we can use GenZero[µ1

∗] which is punctured at µ1
∗.

Lemma 102. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybD,2,1 and HybD,2,2, then there exists an adversary which can break
security of the level system with an upper bound T and tag size τ in time t(λ) + poly(λ) with distinguishing
advantage ε(λ).

Proof. We give a reduction to security of the level system.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It samples all keys used in programs, namely

keys EK,DK of the main ACE, keys EKS ,DKS of the sender ACE, keys EKR,DKR of the receiver ACE,
key kS of the sparse extracting PRF SG of the sender, key kR of the sparse extracting PRF RG of the receiver.

It chooses random r∗ and µ1
∗ and computes µ2

∗ = RGkR(r∗, µ1
∗). It sends µ1

∗, µ2
∗ as the first and the

second tag to the challenger of the level system. The challenger chooses bit b at random and runs setup of the
level system to obtain programs GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags. Then
it computes `∗0 = GenZero(µ1

∗), `∗1 = Increment(`∗0), and L∗0 = Transform(`∗0, µ2
∗). It also obfuscates

punctured programs GenZero[µ1
∗], Increment,Transform[(`∗b , µ2

∗)], isLess,RetrieveTag,RetrieveTags. It
sends these obfuscated punctured programs to the reduction, together with `∗b and L∗0.

The reduction computes µ3
∗ = EncEK(m∗1, µ1

∗, µ2
∗, L∗0), s′ = EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗b), and r′ =
EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗.
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Next the reduction punctures keys EKS{P`∗b}, DKS{P`∗b} at the set P`∗b = {(∗, ∗, ∗, ∗, `∗b)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗b).

Then the reduction uses variables and code obtained from the challenger to construct and obfuscate programs
P1,P3,SFake, (fig. 101, fig. 102) and P2,Dec,RFake (fig. 80). It gives obfuscated programs to the
adversary, together with s′, r′, µ1

∗, µ2
∗, µ3

∗. If challenge bit b is 0, then the resulting distribution is exactly
the distribution from HybD,2,1. If b is 1, then the resulting distribution is exactly the distribution from
HybD,2,2.

Lemma 103. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybD,2,2 and HybD,2,3, then there exists an adversary which can break
security of iO for σ′-sized programs in time t(λ) + poly(λ) with distinguishing advantage 1

2ε(λ).

Proof. This proof is very similar to the proof of lemma 101, except that Transform is punctured at (`∗1, µ2
∗)

instead of (`∗0, µ2
∗).

The difference between programs in HybD,2,2,HybD,2,3 is that in HybD,2,2 programs use only punctured
versions of programs of the level system. We argue that this doesn’t change the functionality of the programs
of deniable encryption, since these programs never need to call programs of the level system on punctured
inputs.

We start with analyzing program P3D,4. By assumption µ1
∗ is outside of the image of a PRF SG, and

thus when µ1 = µ1
∗ validity check can pass only if P3 is run on some (s,m, µ1

∗, µ2), where s encodes
m,µ1

∗ (and other values). However, note that P3D,4 on such input can only execute trapdoor step (and
not the main step); thus in the main step we can use GenZero[µ1

∗] which is punctured at µ1
∗. Moreover,

since GenZero[µ1
∗] never outputs `∗1, we can also use Transform[(`∗1, µ2

∗)] which is punctured at the input
(`∗1, µ2

∗).

It remains to argue that we can puncture Transform[(`∗1, µ2
∗)] at the input (`∗1, µ2

∗) in the trapdoor step as
well. Note that in order to run Transform on this input in the trapdoor step, P3D,5 should take as input fake
s which encodes `∗1 (among other things). However, since DKS is punctured at P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), the only such fake s is ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), that is, s′. Further, in

order for “(m,µ1) = (m′, µ1
′)” check to pass, inputs to P3 should be m = m∗0 and µ1 = µ1

∗. Finally, in
order to call Transform on (`∗1, µ2

∗), the input µ2 to P3 should be µ2
∗. In other words, the only input on

which P3 could potentially run Transform at the punctured point is (s′,m∗0, µ1
∗, µ2

∗); however, in this case
P3 simply outputs µ3

∗, which is encoded in s′, without running Transform at all. Thus we can puncture
Transform safely.

Next we analyze program SFakeD,4. Since µ1
∗ is outside of the image of a PRF SG, and thus validity check

can pass only if SFake is run on some (s,m, m̂, µ1
∗, µ2, µ3), where s encodes m,µ1

∗ (and other values).
However, note that SFakeD,4 on such input can only execute trapdoor step (and not the main step); thus in
the main step we can use GenZero[µ1

∗] which is punctured at µ1
∗.

Lemma 104. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybD,2,3 and HybD,3,1, then there exists an adversary which can break
security of iO for σ′-sized programs in time t(λ) + poly(λ) with distinguishing advantage ε(λ).
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Proof. The only difference between programs SFakeD,5 and SFakeD,6 is that in SFakeD,6 the key EKS is also
punctured at P`∗0 , where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} (in addition to being punctured at P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1)). This is without changing functionality, since SFake never needs to encrypt a plaintext
with level `∗0, since `∗0 = [0, µ1

∗] and SFake encrypts levels with value at least 1.

Lemma 105. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybD,3,1 and HybD,3,2, then there exists an adversary which can break
security of constrained decryption of sender-fake relaxed ACE in time t(λ) + poly(λ) with distinguishing
advantage ε(λ).

Proof. The proof is similar to the proof of indistinguishability of hybrids HybD,1,2,HybD,1,3, except that
`∗1 instead of `∗0 is used in the distribution, and keys EK, DK are additionally punctured at the set P`∗1 =
{(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1).

We give a reduction to security of constrained decryption of sender ACE.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It samples all keys used in programs (except

EKS ,DKS), namely keys EK,DK of the main ACE, keys EKR,DKR of the receiver ACE, key kS of the sparse
extracting PRF SG of the sender, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random r∗ and µ1
∗ and computes µ2

∗ = RGkR(r∗, µ1
∗). It computes levels `∗0 = GenZero(µ1

∗),
`∗1 = Increment(`∗0), L∗0 = Transform(`∗0, µ2

∗). It sets µ3
∗ = EncEK(m∗1, µ1

∗, µ2
∗, L∗0).

Next the reduction sends the set P`∗0 ∪ P`∗1 as a set to puncture encryption key (where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)},
P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1)), and sends sets P`∗1 and P`∗0 ∪ P`∗1 as sets to puncture
decryption key to the challenger of constrained decryption game. The challenger samples keys EKS , DKS

and it sends back to the reduction EKS{P`∗0 ∪ P`∗1} and key which is either DKS{P`∗1} or DKS{P`∗0 ∪ P`∗1}.

Next the reduction computes s′ = EncEKS{P`∗0∪P`∗1}
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1) (note that this point is not punc-

tured) and r′ = EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗.

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
(fig. 104, fig. 105) and P2,Dec,RFake (fig. 80). It gives obfuscated programs to the adversary, together
with s′, r′, µ1

∗, µ2
∗, µ3

∗. If challenge key is DKS{P`∗0 ∪ P`∗1}, then the resulting distribution is exactly the
distribution from HybD,3,2. If key is DKS{P`∗1}, then the resulting distribution is exactly the distribution
from HybD,3,1.

Lemma 106. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybD,3,2 and HybD,3,3, then there exists an adversary which can break
security of constrained decryption of sender-fake relaxed ACE in time t(λ) + poly(λ) with distinguishing
advantage ε(λ).

Proof. The proof is similar to the proof of indistinguishability of hybrids HybD,3,1,HybD,3,2, except that we
unpuncture DK at the set P`∗1 = {(∗, ∗, ∗, ∗, `∗1)}\ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1) instead of P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} .
We give a reduction to security of constrained decryption of sender ACE.
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The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It samples all keys used in programs (except

EKS ,DKS), namely keys EK,DK of the main ACE, keys EKR,DKR of the receiver ACE, key kS of the sparse
extracting PRF SG of the sender, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random r∗ and µ1
∗ and computes µ2

∗ = RGkR(r∗, µ1
∗). It computes levels `∗0 = GenZero(µ1

∗),
`∗1 = Increment(`∗0), L∗0 = Transform(`∗0, µ2

∗). It sets µ3
∗ = EncEK(m∗1, µ1

∗, µ2
∗, L∗0).

Next the reduction sends the set P`∗0 ∪ P`∗1 as a set to puncture encryption key (where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)},
P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1)), and sends sets P`∗0 and P`∗0 ∪ P`∗1 as sets to puncture
decryption key to the challenger of constrained decryption game. The challenger samples keys EKS , DKS

and it sends back to the reduction EKS{P`∗0 ∪ P`∗1} and key which is either DKS{P`∗0} or DKS{P`∗0 ∪ P`∗1}.

Next the reduction computes s′ = EncEKS{P`∗0∪P`∗1}
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1) (note that this point is not punc-

tured) and r′ = EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗.

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
(fig. 105, fig. 106) and P2,Dec,RFake (fig. 80). It gives obfuscated programs to the adversary, together
with s′, r′, µ1

∗, µ2
∗, µ3

∗. If challenge key is DKS{P`∗0 ∪ P`∗1}, then the resulting distribution is exactly the
distribution from HybD,3,2. If key is DKS{P`∗0}, then the resulting distribution is exactly the distribution
from HybD,3,3.

Lemma 107. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybD,3,3 and HybD,3,4, then there exists an adversary which can break
security of iO for σ′-sized programs in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The only difference between programs SFakeD,8 and SFakeD,9 is that in SFakeD,8 the key EKS is
also punctured at P`∗1 , where P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1) (in addition to being punctured
at P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}). We argue that this is without changing functionality:

First, note that the trapdoor step never needs to encrypt the plaintext with `∗1: for that SFake would need to
get as input some fake s which encodes `∗0, but such fake s doesn’t exist since DKS is punctured on the whole
set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}.

Second, in order to encrypt `∗1 in the main step, SFakeD,9 should get µ1
∗ as input. However, in order to

pass validity check with µ1
∗ (which is outside of the image of PRF SG), SFakeD,9 should get as input

some (s,m, m̂, µ1
∗, µ2, µ3), where s is fake and encodes (m,µ1

∗) (among other things). But on such input
SFakeD,9 never executes the main step - it executes the trapdoor step. Thus we can additionally puncture EK
at P`∗1 in the main step.

Lemma 108. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybD,3,4 and HybD,3,5, then there exists an adversary which can break
security of constrained decryption of sender-fake relaxed ACE in time t(λ) + poly(λ) with distinguishing
advantage ε(λ).

Proof. The proof is similar to the proof of indistinguishability of hybrids HybD,3,2,HybD,3,3, except that
EKS , DKS are punctured at different sets. We give a reduction to security of constrained decryption of sender
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ACE.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It samples all keys used in programs (except

EKS ,DKS), namely keys EK,DK of the main ACE, keys EKR,DKR of the receiver ACE, key kS of the sparse
extracting PRF SG of the sender, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random r∗ and µ1
∗ and computes µ2

∗ = RGkR(r∗, µ1
∗). It computes levels `∗0 = GenZero(µ1

∗),
`∗1 = Increment(`∗0), L∗0 = Transform(`∗0, µ2

∗). It sets µ3
∗ = EncEK(m∗1, µ1

∗, µ2
∗, L∗0).

Next the reduction sends the set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} as a set to puncture encryption key, and sends sets P`∗0
and ∅ as sets to puncture decryption key to the challenger of constrained decryption game. The challenger
samples keys EKS , DKS and it sends back to the reduction EKS{P`∗0} and key which is either DKS{P`∗0} or
DKS{∅}.

Next the reduction computes s′ = EncEKS{P`∗0}
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1) (note that this point is not punctured)

and r′ = EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗.

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
(fig. 105, fig. 106) and P2,Dec,RFake (fig. 80). It gives obfuscated programs to the adversary, together with
s′, r′, µ1

∗, µ2
∗, µ3

∗. If challenge key is DKS{P`∗0}, then the resulting distribution is exactly the distribution
from HybD,3,4. If key is DKS{∅}, then the resulting distribution is exactly the distribution from HybD,3,5.

Lemma 109. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybD,3,5 and HybD,3,6, then there exists an adversary which can break
security of iO for σ′-sized programs in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The only difference between programs SFakeD,9 and SFakeD,10 is that in SFakeD,9 the key EKS is
punctured at P`∗0 , where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}. This is without changing functionality, since SFake never
needs to encrypt a plaintext with level `∗0, since `∗0 = [0, µ1

∗] and SFake encrypts levels with value at least
1.

Lemma 110. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybD,3,6 and HybD,3,7,
then there exists an adversary which can break computational strong extractor property of the PRF SG in
time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is identical to the proof of indistinguishability of hybrids HybD,1,3,HybD,1,4, except that
fake s′ is computed using level `∗1 instead of `∗0.

Finally, we note that the distributions in HybD,3,7 and HybE are O(2−λ)-close (the reasoning is similar to
distributions HybB,HybB,1,1).
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8 Proof of off-the-record deniability of our bideniable encryption

In this section we show that our scheme also satisfies off-the-record property, which says that the adversary
who gets contradicting claims from parties (that is, the sender claims that the plaintext was m∗0 and shows
consistent randomness, but the receiver claims that the plaintext was m∗1 and also shows consistent random-
ness) cannot tell which party is lying (if not both) and which plaintext was actually sent. In other words,
neither party can prove which plaintext was used in the protocol. We underline however that this property
only holds as long as parties act honestly during the protocol: indeed, a malicious party can always choose its
randomness as a result of a prg and provide the seed of this prg as a proof that its randomness is genuine.

Recall the definition of off-the-record deniability states that the following three distributions are computation-
ally indistinguishable:

• the sender claims m∗0 was sent, the receiver claims m∗1 was sent, the plain-
text was m∗0 : (PP,m∗0,m

∗
1,m

∗
2, s
∗, r′, tr(s∗, r∗,m∗0)), where s∗, r∗ are randomly

chosen, r′ = RFake(m∗1, µ1
∗, µ2

∗, µ3
∗; ρ∗) for randomly chosen ρ∗, and PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup.

• the sender claims m∗0 was sent, the receiver claims m∗1 was sent, the plaintext was
m∗1 : (PP,m∗0,m

∗
1,m

∗
2, s
′, r∗, tr(s∗, r∗,m∗1)), where s∗, r∗ are randomly chosen, s′ =

SFake(s∗,m∗1,m
∗
0, µ1

∗, µ2
∗, µ3

∗), and PP = Setup(1λ; P1,P2,P3,Dec,SFake,RFake; rSetup) for
randomly chosen rSetup.

• the sender claims m∗0 was sent, the receiver claims m∗1 was sent, the plaintext was
m∗2 : (PP,m∗0,m

∗
1,m

∗
2, s
′, r′, tr(s∗, r∗,m∗2)), where s∗, r∗ are randomly chosen, s′ =

SFake(s∗,m∗2,m
∗
0, µ1

∗, µ2
∗, µ3

∗), r′ = RFake(m∗1, µ1
∗, µ2

∗, µ3
∗; ρ∗) for randomly chosen ρ∗, and

PP = Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup.

Note that the first distribution is the same as the following distribution, since RFake(m∗1, µ1
∗, µ2

∗, µ3
∗; ρ∗)

outputs ACE.EncEKR(m∗1, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)):

HybA = (PP,m∗0,m
∗
1, s
∗, r′, tr(s∗, r∗,m∗0)), where s∗, r∗ are randomly chosen,

r′ = ACE.EncEKR(m∗1, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗, and PP =

Setup(1λ; P1,P2,P3,Dec,SFake,RFake; rSetup) for randomly chosen rSetup.

Further, note that the second distribution is statistically close to the following distribution, since
SFake(s∗,m∗1,m

∗
0, µ1

∗, µ2
∗, µ3

∗) with overwhelming probability over the choice of s∗ outputs
ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1):

HybE = (PP,m∗0,m
∗
1, s
′, r∗, tr(s∗, r∗,m∗1)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), and PP = Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for

randomly chosen rSetup.

Finally, note that the third distribution is statistically close to the following distribution:

HybD′ = (PP,m∗0,m
∗
1,m

∗
2, s
′, r′, tr(s∗, r∗,m∗2)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly cho-
sen ρ∗, and PP = Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup.

Thus to prove off-the-record deniability it suffices to show indistinguishability between hybrids HybA, HybE ,
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and HybD′ . The proof of this statement consists of the same main components as the proof of deniability,
albeit in a different order and with slight changes. Below we describe the structure of the proof and comment
on the differences with the proof of deniability. Conscretely, we show that HybA ≈ HybB ≈ HybC
≈ HybD ≈ HybE and that HybC ≈ HybD′ , where hybrids are as follows:

1. Indistinguishability of explanations of the sender: starting from HybA, we switch real s∗ to fake s′,
which encodes plaintext m∗0, transcript µ1

∗, µ2
∗, µ3

∗, and level `∗ = [0, µ1
∗], moving to the following

distribution:

HybB = (PP,m∗0,m
∗
1,m

∗
2, s
′, r′, tr(s∗, r∗,m∗0)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly
chosen ρ∗, and PP = Setup(1λ; P1,P2,P3,Dec,SFake,RFake; rSetup) for randomly chosen rSetup.

The proof of this step is identical to the proof of lemma 54, except that everywhere (in all hybrids and
reductions) we additionally generate r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly
chosen ρ∗ and give r′ (instead of r∗) to the adversary.

2. Indistinguishability of levels: we switch the level encoded in s′ from `∗0 = [0, µ1
∗] to `∗1 = [1, µ1

∗]
(while keeping L∗0 = [0, µ1

∗, µ2
∗] the same), moving to the following distribution:

HybC = (PP,m∗0,m
∗
1,m

∗
2, s
′, r′, tr(s∗, r∗,m∗0)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly
chosen ρ∗ and PP = Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup.

The proof of this step is identical to the proof of lemma 57, except that in all hybrids and reduc-
tions we generate r′ = RFake(m∗1, µ1

∗, µ2
∗, µ3

∗; ρ∗) instead of r′ = RFake(m∗0, µ1
∗, µ2

∗, µ3
∗; ρ∗),

µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0) instead of µ3

∗ = ACE.EncEK(m∗1, µ1
∗, µ2

∗, L∗0), and µ1
∗ =

SG(s∗,m∗0) instead of µ1
∗ = SG(s∗,m∗1) (except when µ1

∗ is randomly chosen).

3. Semantic security: we switch the transcript from encrypting m∗0 to encrypting m∗1, moving to the
following distribution:

HybD = (PP,m∗0,m
∗
1,m

∗
2, s
′, r′, tr(s∗, r∗,m∗1)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly
chosen ρ∗, and PP = Setup(1λ; P1,P2,P3,Dec,SFake,RFake; rSetup) for randomly chosen rSetup.

The proof of this step is identical to the proof of lemma 56, except that in all hybrids and reduc-
tions we generate r′ = RFake(m∗1, µ1

∗, µ2
∗, µ3

∗; ρ∗) instead of r′ = RFake(m∗0, µ1
∗, µ2

∗, µ3
∗; ρ∗),

for randomly chosen ρ∗, and s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1) instead of s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0).

4. Indistinguishability of explanations of the receiver: we switch fake r′, which encodes plaintext m∗1,
transcript µ1

∗, µ2
∗, µ3

∗, and level L∗ = [0, µ1
∗, µ2

∗], to real (randomly chosen) r∗, thus moving to the
following distribution:

HybE = (PP,m∗0,m
∗
1,m

∗
2, s
′, r∗, tr(s∗, r∗,m∗1)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), and PP = Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for

randomly chosen rSetup.

The proof of this step is very close to the proof of lemma 55, except for a couple of changes. First,
we switch the role of m∗0,m

∗
1 everywhere (in hybrids and reductions), and we generate s′ using level
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`∗1 instead of `∗0. However, we still generate s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1) (as opposed

to s′ = ACE.EncEKS (m∗1, µ1
∗, µ2

∗, µ3
∗, `∗1)), and we use the set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} (isntead of

P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗1, µ1
∗, µ2

∗, µ3
∗, `∗0)).

For the ease of verification, in the paragraph below we present the list of hybrids proving indistin-
guishability of HybD and HybE .

Semantic security for plaintext m∗2: besides showing indistinguishability between HybC and HybD, we
also show indistinguishability between HybC and HybD′ , i.e. we switch the transcript from encrypting m∗0 to
encrypting m∗2, moving from HybC to the following distribution:

HybD′ = (PP,m∗0,m
∗
1,m

∗
2, s
′, r′, tr(s∗, r∗,m∗2)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly cho-
sen ρ∗, and PP = Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup.

The proof of this step is identical to the proof of lemma 56, except that in all hybrids and reductions we generate
r′ = RFake(m∗1, µ1

∗, µ2
∗, µ3

∗; ρ∗) instead of r′ = RFake(m∗0, µ1
∗, µ2

∗, µ3
∗; ρ∗), for randomly chosen ρ∗,

and s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1) instead of s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Also,
everywhere in hybrids and reductions we use p0 = (m∗0, µ1

∗, µ2
∗, L∗0), p2 = (m∗2, µ1

∗, µ2
∗, L∗0) instead of

p0 = (m∗0, µ1
∗, µ2

∗, L∗0), p1 = (m∗1, µ1
∗, µ2

∗, L∗0).

List of hybrids for the proof of indistinguishability of HybD and HybE Now we present the list of
hybrids for the proof of indistinguishability of receiver explanation of off-the-record deniability. We do not
present the reductions since they are very similar to the corresponding reductions (section 7.2.2), used for
hybrids in section 7.1.2 in the proof of lemma 55. For a more convenient reference to security reductions, we
do not change enumeration of hybrids from section 7.1.2, and we keep hybrids in the same order as there
(starting from randomly chosen r∗, and moving to fake r′).

We also present programs (those which require changes compared to their version in the proof of lemma 55).

List of hybrids. First in a sequence of hybrids we “eliminate” complementary ciphertext µ3
∗ =

ACE.EncEK(1⊕m∗1, µ1
∗, µ2

∗, L∗0), i.e. make programs Dec and SFake reject it:

• HybB,1,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; s∗, r∗ are cho-
sen at random, µ1

∗ = SG(s∗,m∗1), µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1). Programs can be found in fig. 83 (programs of the sender)

and fig. 87 (programs of the receiver).

Note that this distribution is exactly the distribution from HybD, conditioned on the fact that s∗, r∗ are
outside of images of their ACE.

• HybB,1,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,1,P2,P3B,1,Dec, SFakeB,1,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗1), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗1, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1). Programs can be found in fig. 84 (programs of the sender)
and fig. 87 (programs of the receiver).
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That is, in program SFake we puncture encryption key EKS of the sender-fake ACE at the set
P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}. Indistinguishability holds by iO, since this modification doesn’t change
the functionality of SFake due to the fact that SFake never encrypts plaintexts with level `∗0.

• HybB,1,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,2,P2,P3B,2,Dec, SFakeB,2,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗1), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗1, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1). Programs can be found in fig. 85 (programs of the sender)
and fig. 87 (programs of the receiver).

That is, in programs P1,P3,SFake we puncture decryption key DKS of the sender-fake ACE at the
same set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}. Indistinguishability holds by security of constrained key of ACE,
since the corresponding encryption key EKS is already punctured at the same set.

• HybB,1,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,2,P2,P3B,2,Dec, SFakeB,2,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1). Programs can be found in fig. 85 (programs of the sender)

and fig. 87 (programs of the receiver).

That is, we choose µ1
∗ at random instead of computing it as µ1

∗ = SGkS (s∗,m∗1). Indistinguishability
holds by the strong extracting property of the sender PRF SG (note that s∗ was not used anywhere else
in the distribution).

• HybB,1,5. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2,P3B,3,Dec, SFakeB,3,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1). Programs can be found in fig. 110 (programs of the sender)

and fig. 87 (programs of the receiver).

That is, in program P3 we puncture encryption key EK of the main ACE at the point p = (1 ⊕
m∗1, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by iO, since P3 never needs to encrypt this point. Roughly,

this is because of the following: since µ1
∗ is random and outside of the image of a PRF SG, P3 never

encrypts p in the main step. In order to encrypt it in trapdoor step, P3 needs to take as input some fake
s encoding level `∗0, which doesn’t exist due to the fact that DKS is punctured at the set P`∗0 .

• HybB,1,6. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,1,P3B,3,DecB,1,SFakeB,3,RFakeB,1; rSetup) for randomly chosen rSetup; r∗ is
chosen at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1). Programs can be found in fig. 110 (programs of the sender)

and fig. 111 (programs of the receiver).

That is, in programs Dec,RFake we puncture decryption key DK of the main ACE at the same point
p = (1⊕m∗1, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by security of constrained key of ACE, since

the corresponding encryption key EK is already punctured at this point.

Now µ3
∗ = ACE.EncEK(1 ⊕ m∗1, µ1

∗, µ2
∗, L∗0) is rejected by Dec and RFake. In the following hybrids,

similarly to previous lemma, we switch the roles of r∗ and r′, using the fact that programs treat them similarly,
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once µ3
∗ is eliminated30.

• HybB,2,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,2,P3B,3,DecB,2,SFakeB,3,RFakeB,2; rSetup) for randomly chosen rSetup; r∗ is
chosen at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1). Programs can be found in fig. 110 (programs of the sender)

and fig. 112 (programs of the receiver).

That is, we modify programs of the receiver (P2,Dec,RFake) by puncturing encryption key of receiver-
fake ACE EKR{p} at the point p = (m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗), decryption key of receiver-fake ACE

DKR{r∗, r′} at r∗ and r′ (where r′ = ACE.EncEKR(p)), and the key kR of extracting PRF RG of the
receiver at the points (r∗, µ1

∗) and (r′, µ1
∗). In addition, we hardwire certain outputs inside programs

of the receiver to make sure that functionality of the programs doesn’t change. Indistinguishability
holds by iO.

• HybB,2,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,2,P3B,3,DecB,2,SFakeB,3,RFakeB,2; rSetup) for randomly chosen
rSetup; r∗ is chosen at random, µ1

∗ is chosen at random, µ2
∗ is chosen at random,

µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1). Programs
can be found in fig. 110 (programs of the sender) and fig. 112 (programs of the receiver).

That is, we choose µ2
∗ at random instead of computing it as µ2

∗ = RGkS (r∗, µ1
∗). Indistinguishability

holds by pseudorandomness of the PRF SG at the punctured point (r∗, µ1
∗).

• HybB,2,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,2,P3B,3,DecB,2,SFakeB,3,RFakeB,2; rSetup) for randomly cho-
sen rSetup; r∗ is chosen at random, µ1

∗ is chosen at random, µ2
∗ is chosen at ran-

dom, µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1),
r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗) for randomly chosen ρ̂∗. Programs can be found in fig.

110 (programs of the sender) and fig. 112 (programs of the receiver).

That is, we switch the roles of r∗ and r′ everywhere in the distribution: namely, we give r′ (instead
of r∗) to the adversary as randomness of the receiver, and we change r∗ to r′ and r′ to r∗ everywhere
in the programs. Note that this doesn’t change the code of the programs since programs use r∗ and
r′ in the same way. Indistinguishability holds by the symmetry of receiver-fake ACE, which says
that (r∗, r′,EKR{p},DKR{r∗, r′}) is indistinguishable from (r′, r∗,EKR{p},DKR{r′, r∗}), where
p = (m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗), r∗ is randomly chosen, r′ = ACE.EncEKR(p).

• HybB,2,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,2,P3B,3,DecB,2,SFakeB,3,RFakeB,2; rSetup) for randomly chosen rSetup; r∗ is
chosen at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗) for randomly

chosen ρ̂∗. Programs can be found in fig. 110 (programs of the sender) and fig. 112 (programs of the
receiver).

30The problem with µ3
∗ is that unmodified Dec on input (r∗, µ1

∗, µ2
∗, µ3

∗) outputs 1 ⊕ m∗1 (via main step), and on input
(r′, µ1

∗, µ2
∗, µ3

∗) it outputs ′fail′ (via trapdoor step, since levels in r′ and µ3
∗ are both 0 and “isLess = true” check fails. Because

of this difference, in HybB,2,1 we wouldn’t be able to modify program Dec such that the code treats r∗ and r′ in the same way.
However, after HybB,1,6 µ3

∗ is not a valid ciphertext anymore and thus in HybB,2,1 we can instruct Dec to output ′fail′ on both r∗

and r′.
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That is, we compute µ2
∗ as µ2

∗ = RGkR(r∗, µ1
∗) instead of choosing it at random. Indistinguishability

holds by pseudorandomness of the PRF RG at the punctured point (r∗, µ1
∗).

• HybB,2,5. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,1,P3B,3,DecB,1,SFakeB,3,RFakeB,1; rSetup) for randomly chosen rSetup; r∗ is
chosen at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗) for randomly

chosen ρ̂∗. Programs can be found in fig. 110 (programs of the sender) and fig. 111 (programs of the
receiver).

That is, we revert all changes we made to programs in HybB,2,1 and thus use original programs
P2,Dec,RFake, except that DK remains punctured at the point p = (1 ⊕m∗1, µ1

∗, µ2
∗, L∗0). Indis-

tinguishability holds by iO, since we remove puncturing without changing the functionality of the
programs.

• HybB,2,6. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,1,P3B,3,DecB,1,SFakeB,3,RFakeB,1; rSetup) for randomly cho-
sen rSetup; s∗, r∗ are chosen at random, µ1

∗ = SGkS (s∗,m∗1), µ2
∗ = RG(r∗, µ1

∗),
µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), r′ =
ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗. Programs can be found
in fig. 110 (programs of the sender) and fig. 111 (programs of the receiver).

That is, we replace randomly chosen ρ̂∗ with prg(ρ∗) for randomly chosen ρ∗, when generating r′.
Indistinguishability holds by security of a prg.

Finally, in the following hybrids we revert all changes we made in hybrids HybB,1,1 - HybB,1,6, thus restoring
all programs (and making µ3

∗ a valid ciphertext):

• HybB,3,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2,P3B,3,Dec, SFakeB,3,RFake; rSetup) for randomly chosen rSetup; r∗

is chosen at random, chosen at random, µ1
∗ is chosen at random, µ2

∗ = RG(r∗, µ1
∗),

µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), r′ =
ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗. Programs can be found
in fig. 110 (programs of the sender) and fig. 87 (programs of the receiver).

That is, in programs Dec,RFake we unpuncture decryption key DK of the main ACE at the point
p = (1⊕m∗1, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by security of constrained key of ACE, since

the corresponding encryption key EK is punctured at this point.

• HybB,3,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,2,P2,P3B,2,Dec, SFakeB,2,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs can be found in fig. 85 (programs of the sender) and fig. 87 (programs
of the receiver).

That is, in program P3 we unpuncture encryption key EK of the main ACE at the point p = (1 ⊕
m∗1, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by iO, because of the same reason as in HybB,1,5.

• HybB,3,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =
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Setup(1λ; P1B,2,P2,P3B,2,Dec, SFakeB,2,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗1), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗1, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), r′ = ACE.EncEKR(m∗1, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for

randomly chosen ρ∗. Programs can be found in fig. 85 (programs of the sender) and fig. 87 (programs
of the receiver).

That is, we choose µ1
∗ as µ1

∗ = SGkS (s∗,m∗1) instead of computing it at random. Indistinguishability
holds by the strong extracting property of the sender PRF SG (note that s∗ is not used anywhere else in
the distribution).

• HybB,3,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,1,P2,P3B,1,Dec, SFakeB,1,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗1), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗1, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), r′ = ACE.EncEKR(m∗1, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for

randomly chosen ρ∗. Programs can be found in fig. 84 (programs of the sender) and fig. 87 (programs
of the receiver).

That is, in programs P1,P3,SFake we unpuncture decryption key DKS of the sender-fake ACE at the
same set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}. Indistinguishability holds by security of constrained key of ACE,
since the corresponding encryption key EKS is already punctured at the same set.

• HybB,3,5. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; s∗, r∗ are cho-
sen at random, µ1

∗ = SG(s∗,m∗1), µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs can be found in fig. 83 (programs of the sender) and fig. 87 (programs
of the receiver).

That is, in program SFake we unpuncture encryption key EKS of the sender-fake ACE at the set
P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}. Indistinguishability holds by iO, since this modification doesn’t change the
functionality of SFake due to the fact that SFake never encrypts plaintexts with level `∗0.

Note that HybB,3,5 is the same as HybC , conditioned on the fact that s∗, r∗ are outside of image of
ACE.
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Programs P1B,3,P3B,3, SFakeB,3.
Program P1B,3(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)},
key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out ← ACE.DecDKS{P`∗0}

(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3B,3(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1B,3, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}, punctured encryption key
EK{p} of main ACE, where p = (1⊕m∗1, µ1

∗, µ2
∗, L∗0).

1. Validity check: if P1B,3(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK{p}(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK{p}(m,µ1, µ2, L0).

Program SFakeB,3(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1B,3, GenZero, Increment; punctured encryption and
decryption keys EKS{P`∗0},DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}.

1. Validity check: if P1B,3(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 110: Programs P1B,3,P3B,3, SFakeB,3, used in the proof indistinguishability of explanations of the
receiver for off-the-record deniability.
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Programs P2B,1,DecB,1,RFakeB,1.
Program P2B,1(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: decryption key DKR of receiver-fake ACE, key kR of an extracting PRF RG.

1. Trapdoor step:
(a) out ← ACE.DecDKR(r); if out = ′fail′ then goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(b) If µ1 = µ1
′ then return µ2

′;
2. Main step:

(a) Return µ2 ← RGkR(r, µ1).

Program DecB,1(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P2, isLess, RetrieveTags; decryption key DKR of receiver-
fake ACE, punctured decryption key DK{p} of the main ACE, where p = (1⊕m∗1, µ1

∗, µ2
∗, L∗0).

1. Validity check: if P2(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKR(r); if out′ = ′fail′ then goto main step; else parse out′ as
(m′, µ1

′, µ2
′, µ3

′, L′, ρ̂);
(b) if µ1, µ2, µ3 = µ1

′, µ2
′, µ3

′ then return m′;
(c) out← ACE.DecDK{p}(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1

′′, µ2
′′, L′′);

(d) If µ1, µ2 = µ1
′, µ2

′ then
i. If (µ1

′, µ2
′) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) and isLess(L′, L′′) = true then return m′′;

ii. Else abort.
3. Main step:

(a) out← ACE.DecDK{p}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
(b) If (µ1, µ2) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) then return m′′;

(c) Else abort.

Program RFakeB,1(m̂, µ1, µ2, µ3; ρ)
Inputs: fake message m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: encryption key EKR of receiver-fake ACE, punctured decryption key DK{p} of the main
ACE, where p = (1⊕m∗1, µ1

∗, µ2
∗, L∗0).

1. out← ACE.DecDK{p}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
2. Return r′ ← ACE.EncEKR(m̂, µ1, µ2, µ3, L

′′, prg(ρ)).
Figure 111: Programs P2B,1,DecB,1,RFakeB,1, used in the proof of lemma 55 (indistinguishability of
explanations of the receiver).

234



Programs P2B,2,DecB,2,RFakeB,2.
Program P2B,2(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: punctured decryption key DKR{r∗, r′} of receiver-fake ACE, punctured key
kR{(r∗, µ1

∗), (r′, µ1
∗)} of an extracting PRF RG, variables r∗, r′, µ1

∗, µ2
∗.

1. Trapdoor step:
(a) If (r, µ1) = (r∗, µ1

∗) or (r, µ1) = (r′, µ1
∗) then return µ2

∗;
(b) If r = r∗ or r = r′ then goto main step;
(c) out ← ACE.DecDKR{r∗,r′}(r); if out = ′fail′ then goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(d) If µ1 = µ1
′ then return µ2

′;
2. Main step:

(a) Return µ2 ← RGkR{(r∗,µ1
∗),(r′,µ1

∗)}(r, µ1).

Program DecB,2(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P2B,2, isLess, RetrieveTags; punctured decryption
key DKR{r∗, r′} of receiver-fake ACE, punctured decryption key DK{p} of the main ACE, where p =
(1⊕m∗1, µ1

∗, µ2
∗, L∗0), variables r∗, r′, µ1

∗, µ2
∗, µ3

∗,m∗1.
1. Validity check: if P2B,2(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) If (r, µ1, µ2, µ3) = (r∗, µ1
∗, µ2

∗, µ3
∗) or (r, µ1, µ2, µ3) = (r′, µ1

∗, µ2
∗, µ3

∗) then return m∗1;
(b) If (r, µ1, µ2) = (r∗, µ1

∗, µ2
∗) or (r, µ1, µ2) = (r′, µ1

∗, µ2
∗) then then goto main step;

(c) If r = r∗ or r = r′ then goto main step;
(d) out ← ACE.DecDKR{r∗,r′}(r); if out′ = ′fail′ then goto main step; else parse out′ as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(e) if µ1, µ2, µ3 = µ1
′, µ2

′, µ3
′ then return m′;

(f) out← ACE.DecDK{p}(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1
′′, µ2

′′, L′′);
(g) If µ1, µ2 = µ1

′, µ2
′ then

i. If (µ1
′, µ2

′) = (µ1
′′, µ2

′′) = RetrieveTags(L′′) and isLess(L′, L′′) = true then return m′′;
ii. Else abort.

3. Main step:
(a) out← ACE.DecDK{p}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1

′′, µ2
′′, L′′);

(b) If (µ1, µ2) = (µ1
′′, µ2

′′) = RetrieveTags(L′′) then return m′′;
(c) Else abort.

Program RFakeB,2(m̂, µ1, µ2, µ3; ρ)
Inputs: fake message m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: punctured encryption key EKR{Sρ̂∗} of receiver-fake ACE, where Sρ̂∗ =
{∗, ∗, ∗, ∗, ∗, ρ̂∗} for randomly chosen ρ̂∗, punctured decryption key DK{p} of the main ACE, where
p = (1⊕m∗1, µ1

∗, µ2
∗, L∗0).

1. out← ACE.DecDK{p}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
2. Return r′ ← ACE.EncEKR{Sρ̂∗}(m̂, µ1, µ2, µ3, L

′′, prg(ρ)).

Figure 112: Programs P2B,2,DecB,2,RFakeB,2, used in the proof of lemma 55 (indistinguishability of
explanations of the receiver).
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A On removing layers of obfuscation

When our construction described in section 6 is instantiated with ACE from [CHJV14], relaxed ACE described
in section B, and the level system described in section 5 (which in turn uses ACE of [CHJV14]), the resulting
CRS ends up containing three layers of obfuscation. Since even a single obfuscation incurs a significant
blowup in the program size, ideally we would like to have only one layer of obfuscation.

In this section we explain why the whole proof of bideniability and off-the-record deniability can still go
through, if we use non-obfuscated version and “unroll” all the proofs. More concretely, we do the following:

• Instead of using ACE keys and the programs of the level system, which are all obfuscated programs,
we use their non-obfuscated versions. Still, we use one layer of obfuscation on top of programs of
deniable encryption. We pad the size of the non-obfuscated programs of deniable encryption to size σ
such that σ is larger than the size of any (non-obfuscated) program (including programs variants in the
hybrids) of deniable encryption, ACE, relaxed ACE, or the level system.

• In the proof we replace each hybrid reducing to security of any of ACE, relaxed ACE, or the level
system with a sequence of hybrids proving the corresponding property of the primitive.

Now we briefly comment on why each security reduction can still be proven. Let program C1 of a primitive
∆1, and program C2 of a primitive ∆2 be such that C1 uses an obfuscated version of C2, i.e. iO(C2), as a
black box (e.g. ∆1 can be deniable encryption and ∆2 can be relaxed ACE, ACE or the level system, or ∆1
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can be the level system and ∆2 can be ACE). We denote this by C1[iO(C2)]. Further, let C1[C2] be program
C1 which uses program C2, instead of iO(C2). Note that this is syntactically well-defined since C1 uses
iO(C2) as a black box and since iO(C2) and C2 have the same syntax.

Further, let all reductions in the security proof of ∆1 use iO(C2) as a black box. We claim that the “unrThen
all reductions in security proofs of deniable encryption, ACE, relaxed ACE, and the level system can be
classified as follows:

Reductions in the proof of security of ∆1:

• Reductions which rely on security of ∆2: we replace each reduction with a sequence of reductions
from the proof of ∆2, and as we argue later, they all still can be proven.

• Reductions which do not rely on security of ∆2, but which use the fact that iO(C2) has a certain
functionality (e.g. an iO-based reduction, which uses the fact that the functionality of C1 in the two
consecutive hybrids doesn’t change, and analyzes functionality of iO(C2) as part of the argument). We
claim that if such a reduction is possible with C1[iO(C2)], then it is also possible with C1[C2]. This is
because iO preserves the functionality with all-but-negligible probability over the randomness of iO.

• All other reductions: these reductions merely use the fact that in the reduction it is possible to
reconstruct iO(C2) in polynomial time. Note that this is true for C2 as well, thus such reductions still
go through.

Reductions in the proof of security of ∆2

• Reductions to security of obfuscation for a program C2, relying on the fact that C2 has the same
functionality in the two consecutive hybrids: we claim that we can instead reduce to security of
obfuscation for a program iO(C1[C2]). Indeed, since C1 uses iO(C2) as a black box, and since iO
preserves functionality except for negligible probability over the choice of randomness of iO, C1[C2]
also has the same functionality in those two hybrids. Thus, as long as we pad the program C1[C2]
sufficiently, the reduction to security of iO still holds.

• Reductions which rely on the fact that in some cases iO allows to extract a differing input of programs
C ′2, C

′′
2 , given iO(C ′2), iO(C ′′2 ). We argue that security of there hybrids can still be reduced to security

of iO and one-way functions, even though the resulting programs C1[C ′2] and C1[C ′′2 ] can be different
on exponentially many inputs. Recall that those security reductions work by constructing a circuit
M2 such that M2 is the same as C ′2 or C ′′2 , and use it do to binary search over a differing value, which
could be an input, or part of an input, or some intermediate variable in the program. But this means
that the reduction in the “unrolled” proof can do the same binary search, over the same differing value,
by using program M1 = C1[M2], which can be constructed using iO(C1[C ′2]), iO(C1[C ′′2 ]): indeed,
since M2 is the same as either C ′2 or C ′′2 , C1[M2] is the same as either C1[C ′2] or C1[C ′′2 ].

• All other reductions: in such reductions we need to make sure that the reduction can reconstruct the
whole distribution, which now includes an obfuscated program iO(C1[C2]), together with any values
the adversary is supposed to get as part of the game for primitive ∆1. We note that this can be done:
since it was possible to do in the reduction (of the proof for ∆1) to security of ∆2, it should be possible
as well for every hybrid in security proof of ∆2, since otherwise the reduction of the proof of ∆1 can
be used as a distinguisher for ∆2. Indeed, since the reduction uses iO(C2) as a black box, we can
replace iO(C2) with C2 and the reduction still succeeds.
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B Construction of relaxed ACE

In this section we describe how to modify the construction of ACE from [CHJV14] to obtain relaxed ACE (def.
5). Recall that the differences between ACE and relaxed ACE are that relaxed ACE doesn’t necessarily satisfy
indistinguishability of ciphertexts; that its distinguishing advantage in security of constrained decryption game
is negligible for certain sets (as opposed to being proportional to size of those sets); and that it additionally
satisfies symmetry.

Brief motivation and explanation of the construction. The first attempt to remove dependency on the
size of the sets is perhaps to use the technique from [GPS16] - that is, instead of having a single PRF-based
signature on the plaintext m, have |m| signatures of each prefix of m. This allows to change the key on
many inputs (with the same prefix) in a single step. However, with this approach we are not able to prove
symmetry: it requires to switch c∗ = Enc(m∗) to random and thus to puncture all keys for each PRF; however,
such puncturing cannot be done without changing the functionality of the encryption program, since e.g.
puncturing the PRF which is applied on the first bit already prohibits encrypting of half of all inputs.

To deal with this, we notice that in the proof of deniable encryption we use security of relaxed ACE on sets of
special structure, which is either all strings ending with the same suffix of a fixed size, or all such strings
except one. Thus we require relaxed ACE to be parametrized with prefix parameter t, which denotes the size
of this prefix. 31 An encryption of m will be an ACE ciphertext where instead of a single PRF signature of m,
we will have n− t+ 1 PRF signatures of suffixt(m), . . . , suffixn(m). We say that a set S is consistent with
some suffix suf of size t, if S consists of all strings ending with suf; we say that a plaintext m is consistent
with suf, if m ends with suf. Using n− t+ 1 signatures allows us to prove the following:

• symmetry for random c∗ and c′ = Enc(m∗), as long as encryption key is punctured at the set S, and
both S and m∗ are consistent with the same suffix suf of size t;

• security of constrained decryption with distinguishing advantage independent of set sizes, as long as
S1 \ S0 is either Ssuf (e.g. a set consistent with some suf of size t), or Ssuf \ {m}, where both S and
m are consistent with the same suf of size t.

Security of constrained decryption follows a by-now standard proof, which punctures the key at the whole
set Ssufi at once (for each i = t + 1, . . . , n), by adding an injective prg on top of a signature check and
then switching the prg image to random (in the actual proof we instead use an injective OWF to minimize
assumptions). For the case S1 \ S0 = Ssuf it is enough to do one step, and for the case S1 \ S0 = Ssuf \ {m}
we need n− t steps.32

Symmetry argument is essentially a Sahai-Waters [SW14] symmetry argument in the proof of deniable
encryption, with a difference that they didn’t use ACE as an abstraction, and we instead decided to formulate
it on ACE level to shorten the main proof of deniable encryption. The proof follows essentially the same
steps, except that, since we have more signatures, we also need to argue that in the proof the decryption key
can be punctured at a certain set of points (this is done using an argument similar to the proof of security
of constrained decryption, since encryption key is already punctured on those points). Indeed, the proof of

31In the construction of deniable encryption, t = |`0| for the sender ACE and t = |prg(ρ)| for the receiver ACE.
32We write S0, S1 (sets to puncture keys at in the security game) and Ssuf (a set denoting all strings ending with suf), somewhat

abusing the notation, since the subscript means an index in the former case and a prefix in the latter. However, all our suffixes are of
length at least t, so there should be no confusion.
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Programs of relaxed ACE.
Program GEnc(m)
Inputs: message m.
Hardwired values: keys Kt, . . . ,Kn,K of PRFs Ft, . . . , Fn, F ; circuit CU describing set U . Parameters
t, n.

1. If CU (m) then return ⊥;
2. For each i = t, . . . , n set αi ← Fi(Ki; suffixi(m));
3. Set β ← F (K;αn)⊕m;
4. Return (αt, . . . , αn, β).

Program GDec(c)
Inputs: ciphertext c.
Hardwired values: keys Kt, . . . ,Kn,K of PRFs Ft, . . . , Fn, F ; circuit CS . Parameters t, n.

1. Parse c = (αt, . . . , αn, β);
2. Set m← F (K;αn)⊕ β
3. If CS(m) then return ⊥;
4. For each i = t, . . . , n do: if αi 6= Fi(Ki; suffixi(m)) then return ⊥;
5. Return m.

Program GPuncture(c)
Inputs: ciphertext c.
Hardwired values: keys Kt, . . . ,Kn,K of PRFs Ft, . . . , Fn, F . In addition, strings c(0) and c(1), hardwired
in lexicographic order. Parameters t, n.

1. If c = c(0) or c = c(1) then return ⊥; (c(0) and c(1) are written in lexicographic order)
2. Parse c = (αt, . . . , αn, β);
3. Set m← F (K;αn)⊕ β
4. For each i = t, . . . , n do: if αi 6= Fi(Ki; suffixi(m)) then return ⊥;
5. Return m.

Figure 113: Programs of constrained keys of relaxed ACE. By suffixi(m) we denote mn−i+1, . . . ,mn.

[SW14] uses the fact that the (only) signature uniquely defines the plaintext. This is not true in our case
anymore, since some signatures only define the corresponding prefix of the plaintext. This introduces “bad”
plaintexts which we need to get rid of. To do this, we rely on the fact that S \ {m∗} can be represented as a
union of Ssufi , where all sufi are different from suffixes of m∗.

Construction of relaxed ACE. The construction of relaxed ACE is the same as the construction of ACE
from [CHJV14], except that we use different programs. Namely, let Ft, . . . , Fn be injective PRFs with sparse
images, mapping t, . . . , n bits, respectively, to nout = O(λ) bits. Let F be a PRF mapping nout bits to O(λ)
bits. Then a (possibly punctured) encryption key is obfuscated GEnc(m), a (possibly punctured) decryption
key is obfuscated GDec(m), and a ciphertext-based punctured key is obfuscated GPuncture(c)[c

(0), c(1)], where
one of c(0), c(1) is a valid ciphertext and the other is randomly chosen. Programs can be found on fig. 113.

Theorem 4. Assuming iO and injective one way functions, the construction of [CHJV14] instantiated with
programs on fig. 113 is a relaxed ACE for plaintext length n and suffix parameter t. Concretely, assuming
iO is (t1, ε1)-secure and one way function is (t2, ε2)-secure, and let (t3, ε3) be such that ε3 ≥ ε

o(1)
1 , and

t3 · 1
ε1

(n− t) = O(t2).
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Then the resulting ACE is (min(t1, t3), O((n− t) · (ε1 + ε2 + ε)))-secure.

Proof. Correctness. All necessary correctness properties follow from correctness of iO, injectivity of PRFs
and can be immediately verified.

Security of constrained decryption with negligible advantage. We prove security for a harder case
of S1 \ S0 = Ssuft \ {m∗} (the case when S1 \ S0 = Ssuft can be shown by doing a single step of this
proof for the PRF Ft). Note that S1 \ S0 = Ssuft \ {m∗} can be represented as Ssufn ∪ . . . ∪ Ssuft+1 , where
sufn = m∗1,m

∗
2, . . . ,m

∗
n, sufn−1 = m∗2,m

∗
3, . . . ,m

∗
n, suft+1 = m∗n−t+1,m

∗
n−t+2, . . . ,m

∗
n.

We start with a distribution corresponding to the key DK which is punctured at S0 (which we denote by
Hyb0) and eventially reach a distribution where the key DK is punctured at S1 (which we denote by Hybn,5).
We show indistinguishability via a sequence of hybrids Hybj,k for j = t+ 1, . . . , n, k = 0, . . . , 5. Programs
can be found on fig. 114:

• Hyb0 corresponds to the game where DK is punctured at S0, i.e. the adversary gets
(EK{U}, DK{S0}).

• Hybj,0: the adversary gets (EK{U}, DKj,0), where DKi is an obfuscation of a program Gj,0Dec (fig.
114). Note that when j = t+ 1, Hybj,0 = Hyb0.

• Hybj,1: the adversary gets (EKj,1, DKj,1), where DKj,1 is an obfuscation of a program Gj,1Dec, where
z∗ = Fj(Kj ; sufj)), and EKj,1 is an obfuscation of Gj,1Enc. Indistinguishability from the previous
hybrid follows from iO, since both pairs of programs have the same functionality. Indeed, in Gj,0Dec

and Gj,1Dec we replaced the condition αj = Fj(Kj ; suffixj(m)) with two different checks for the case
suffixj(m) 6= sufj and suffixj(m) = sufj . For the former, we didn’t change the check (but punctured
the key Kj at sufj), and for the latter, we replaced the check αj = Fj(Kj ; sufj) with the check
g(αj) = z∗, where z∗ = g(Fj(Kj ; sufj)). Since g is injective, this doesn’t change the functionality.

In Gj,1Enc we punctured the key Kj at sufj . This is without changing the functionality, since the program
outputs ⊥ on input m ∈ Ssufj ⊂ U .

• Hybj,2: the adversary gets (EKj,1, DKj,1), where DKj,1 is an obfuscation of a program Gj,1Dec, where
z∗ = g(y∗) for random y∗, and EKj,1 is an obfuscation of Gj,1Enc. Indistinguishability holds by security
of a punctured PRF Fj at sufj .

• Hybj,3: the adversary gets (EKj,1, DKj,3), where DKj,3 is an obfuscation of a program Gj,3Dec, where
z∗ = g(y∗) for random y∗, and EKj,1 is an obfuscation of Gj,1Enc. In other words, we instruct the
program to output ⊥ instead of m when g(αj) = z∗.

Similar to lemma 1 from [BCP14], we argue that if any adversary can distinguish between hy-
brids Hybj,2 and Hybj,3 and iO is secure, then we can invert the one-way function g. Note that in
our case programs differ on exponentially many inputs; however, differing inputs are a subset of
{αt, . . . , αj = y∗, . . . , αn, β}, where y∗ = g−1(z∗) and other values can be arbitrary. In other words,
differing inputs share the block y∗, and we can do binary search over y∗ similar to how the proof of
lemma 1 does a binary search over a single differing input.
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More concretely, the extractor works as follows. It creates a program M which on input
αt, . . . , αj , . . . , αn, β first checks if αj < y′ (where y′ is a binary search guess for y∗, i.e. in the
first iteration y′ = 2|αj |/2). If so, then M executes Gj,1Dec, otherwise it executes Gj,3Dec. Note that if
y∗ < y′, then M is functionally equivalent to Gj,1Dec, and if y∗ ≥ y′, then M is functionally equivalent
to Gj,3Dec. (Indeed, if y∗ < y′, then for all input αj ≥ y′ the line with the check g(αj) = z∗ in both
Gj,1Dec, Gj,3Dec will never be executed, since g is injective and its only preimage y∗ < y′. Since this is
the only difference in the programs, these programs are functionally equivalent for the case αj ≥ y′,
and therefore for all inputs M is functionally equivalent to Gj,1Dec. The case y∗ ≥ y′ can be analyzed
similarly). If by assumption there is an adversary which distinguishes between Hybj,2 and Hybj,3 with
probability at least η and iO is ν-secure, where ν = ηo(1), then the adversary can run the adversary
O(1/η) times, estimate its distinguishing probability, learn the first bit of y∗, and continue binary
search similar to the proof of lemma 1.

• Hybj,4: the adversary gets (EKj,1, DKj,3), where DKj,3 is an obfuscation of a program Gj,3Dec, where
z∗ = g(Fj(Kj ; sufj)), and EKj,1 is an obfuscation of Gj,1Enc. In other words, we switch y∗ back to
Fj(Kj ; sufj) from random. Indistinguishability holds by security of a punctured PRF Fj at sufj .

• Hybj,5: the adversary gets (EK{U}, DKj+1,0), where DKj+1,0 is an obfuscation of a program
Gj+1,0

Dec . In other words, we unpuncture the key Kj at sufj , and, since the program now always returns
⊥ when suffixj(m) = sufj , we remove the line with z∗-check and instead make the program output
⊥ when m ∈ Ssufj . indistinguishability holds by iO, since this doesn’t change the functionality (the
reasoning why the key can be unpunctured is the same as in Hybj,1).

Note that Hybj,5 = Hybj+1,0.

Note that in Hybn,5 program Gn+1,0
Dec outputs ⊥ when s ∈ S0 or m ∈ Ssufn ∪ . . . ∪ Ssuft+1 = S1 \ S0. In

other words, it outputs ⊥ when m ∈ S1, and thus this program is equivalent to DK{S1}, which concludes
security proof.

Finally, note that security loss depends only logarithmically on the size of S1 \ S0, as required by security of
constrained decryption of relaxed ACE.
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Programs of relaxed ACE.

Program Gj,1Enc(m)
Inputs: message m.
Hardwired values: keys Kt, . . . ,Kn,K (where Kj{sufj} is punctured at sufj) of PRFs Ft, . . . , Fn, F ;
circuit CU describing set U . Parameters t, n.

1. If CU (m) then return ⊥;
2. For each i = t, . . . , n, i 6= j, set αi ← Fi(Ki; suffixi(m)); set αj ← Fj(Kj{sufj}; suffixi(m));
3. Set β ← F (K;αn)⊕m;
4. Return (αt, . . . , αn, β).

Program Gj,0Dec(c)
Inputs: ciphertext c.
Hardwired values: keysKt, . . . ,Kn,K of PRFs Ft, . . . , Fn, F ; circuit CS0 . Parameters t, n. Set of suffixes
sufn, . . . , suft+1 describing S1 \ S0.

1. Parse c = (αt, . . . , αn, β);
2. Set m← F (K;αn)⊕ β
3. If CS0(m) then return ⊥;
4. If m ∈ Ssufj−1

∪ Ssufj−2
∪ . . . ∪ Ssuft+2 ∪ Ssuft+1 then return ⊥;

5. For each i = t, . . . , n do: if αi 6= Fi(Ki; suffixi(m)) then return ⊥;
6. Return m.

Program Gj,1Dec(c)
Inputs: ciphertext c.
Hardwired values: keys Kt, . . . ,Kn,K (where Kj{sufj} is punctured at sufj) of PRFs Ft, . . . , Fn, F ;
circuit CS0 . Parameters t, n. Set of suffixes sufn, . . . , suft+1 describing S1 \ S0, injective owf g, value z∗.

1. Parse c = (αt, . . . , αn, β);
2. Set m← F (K;αn)⊕ β
3. If CS0(m) then return ⊥;
4. If m ∈ Ssufj−1

∪ . . . ∪ Ssuft+1 then return ⊥;
5. For each i = t, . . . , n, i 6= j do: if αi 6= Fi(Ki{sufj}; suffixi(m)) then return ⊥;
6. If suffixj(m) = sufj then: if g(αj) = z∗ then return m, else return ⊥;
7. If suffixj(m) 6= sufj then: if αj = Fj(Kj{sufj}; suffixj(m)) then return m, else return ⊥.

Program Gj,3Dec(c)
Inputs: ciphertext c.
Hardwired values: keys Kt, . . . ,Kn,K (where Kj{sufj} is punctured at sufj) of PRFs Ft, . . . , Fn, F ;
circuit CS0 . Parameters t, n. Set of suffixes sufn, . . . , suft+1 describing S1 \ S0, injective owf g, value z∗.

1. Parse c = (αt, . . . , αn, β);
2. Set m← F (K;αn)⊕ β
3. If CS0(m) then return ⊥;
4. If m ∈ Ssufj−1

∪ . . . ∪ Ssuft+1 then return ⊥;
5. For each i = t, . . . , n, i 6= j do: if αi 6= Fi(Ki{sufj}; suffixi(m)) then return ⊥;
6. If suffixj(m) = sufj then: if g(αj) = z∗ then return ⊥, else return ⊥;
7. If suffixj(m) 6= sufj then: if αj = Fj(Kj{sufj}; suffixj(m)) then return m, else return ⊥.
8. Return ⊥.

Figure 114: Programs used in the proof of security of constrained decryption of relaxed ACE.
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Symmetry. Recall that from the definition of symmetry U = Ssuft is a set of plaintexts ending with the same
suffix of size t, and the challenge plaintextm∗ ends with suft as well. Let suf∗n, . . . , suf∗t denote n, . . . , t-long
suffixes of m∗ (note that suft = suf∗t ). Further, as in the proof of security of constrained decpryption, let
sufn, . . . , suft+1 be such that U \ {m∗} = Ssufn ∪ . . . ∪ Ssuft+1 . (Note that for each i = t + 1, . . . , n sufi
and suf∗i only differ in the first bit).

We show symmetry of ACE in a sequence of hybrids, for b = 0, 1. Programs can be found on fig. 115.

• Hybb0: The distribution in this hybrid is (c(0), c(1), EK{U}, DK{c(0), c(1)}), where cb is randomly
chosen and c1−b is Enc(EK,m∗).

• Hybb1: The distribution in this hybrid is (c(0), c(1), EK ′, DK ′), where EK ′, DK ′ are instead ob-
fuscations of programs G′Enc and G′Puncture, respectively. Denote c = (αt, . . . , αn, β), and c(0), c(1)

accordingly (in particular, α(1−b)
n = Fn(Kn;m∗)). (fig. 115).

We argue that indistinguishability between Hybb0 and Hybb1 for any b holds by iO. Indeed, since for
all i = t, . . . , n Ssuf∗i

⊂ U and Ssufi ⊂ U , G′Enc outputs ⊥ on any input m ∈ Ssuf∗i
or m ∈ Ssufi , for

all i = t, . . . , n, anyway and thus each Fi is never computed on suf∗i , sufi, i = t, . . . , n. Thus we
can puncture each Fi at suf∗i , sufi, i = t, . . . , n (note that suft = suf∗t and thus Ft is only punctured
once). Further, since Fn is injective, and is never run on suf∗n = m∗, F is never computed on
α

(1−b)
n = Fn(Kn;m∗), thus we can puncture K at α(1−b)

n . Finally, since α(b)
n is randomly chosen and

Fn has sparse image, with overwhelming probability α(b)
n is outside of the image of Fn and we can

puncture key K at α(b)
n as well.

In G′Puncture we can puncture K at α(0)
n , α

(1)
n since before that there is an instruction to output ⊥ if

αn is equal to one of these values. We argue that this instruction doesn’t change the functionality:
indeed, α(b)

n is outside of the image of Fn with high probability and therefore the program would reject
anyway. Next, if α = α

(1−b)
n , since Fn is injective, the only way to satisfy the Fn-check is to have

β = F (K;α
(1−b)
n ) ⊕m∗ = β(1−b). But then, to satisfy other PRF checks, αt, . . . , αn−1 should be

equal to α(1−b)
t , . . . , α

(1−b)
n−1 , in which case c = c(1−b) and the program outputs ⊥ in the very beginning.

• Hybb2: The distribution in this hybrid is (c(0), c(1), EK ′, DK ′′), where EK ′, DK ′′ are obfuscations of
programs G′Enc and G′′Puncture, respectively. In other words, we instruct the program G′′Puncture to output
⊥ if m ∈ Ssufn ∪ Ssufn−1 ∪ . . . ∪ Ssuft+2 ∪ Ssuft+1 . Indistinguishability of this hybrid can be shown
similarly to the proof of the security of constrained decryption. That is, for each sufi, i = t+ 1, . . . , n,
we can make this program reject all m ∈ Ssufi by puncturing the PRF Fi, changing Fi(Ki; sufi) to
random, replacing the PRF check with OWF check, and arguing that the program can abort (instead
of outputting m) if OWF check passes, since otherwise OWF can be inverted. (Importantly, note that
indeed the value Fi(Ki; sufi), for i = t + 1, . . . , n, isn’t used anywhere else in the distribution: in
particular, it is not required to compute c(0) or c(1), and moreover program G′Enc only uses a punctured
key Ki{sufi}).

Indistinguishability holds by security of punctured PRFs Ft+1, . . . , Fn, one-wayness of injective OWF,
and security of iO.

• Hybb3: The distribution in this hybrid is (c(0), c(1), EK ′, DK ′′′), where EK ′, DK ′′′ are obfuscations
of programs G′Enc and G′′′Puncture, respectively. In other words, we instruct program G′′′Puncture to output
⊥ when m ∈ Ssuft . We argue this doesn’t change the functionality. Indeed, the condition “m ∈
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Ssufn ∪Ssufn−1 ∪ . . .∪Ssuft+1” covers all m ∈ Ssuft except m∗. Therefore requiring to output ⊥ when
m ∈ Ssuft is equivalent to additionally ask to output ⊥ when m = m∗. However, when m = m∗,
c = c(1−b) and therefore the program outputs ⊥ in the very beginning.

Further, in program G′′′Puncture we puncture all keys Ki, i = t, . . . , n, at suf∗i . This can be done since
the program never needs to compute any of these values since when m ∈ Ssuft , the program outputs ⊥.

• Hybb4: The distribution in this hybrid is (c(0), c(1), EK ′, DK ′′′), where EK ′, DK ′′′ are obfuscations
of programs G′Enc and G′′′Puncture, respectively, and c(1−b) is chosen at random instead of as a result of
PRFs. Security holds by security of PRFs F, Ft, . . . , Fn punctured at α(b)

n , suf∗t , . . . , suf∗n, respectively.

Finally, note that the distributions in Hyb0
4 and Hyb1

4 are the same. Thus concludes the proof of the symmetry
of ACE.

C Encrypting longer plaintexts

Our main security proof holds for the case when 1-bit plaintexts are used. Here we outline the changes in the
proof when the scheme is used to encrypt long plaintexts from some plaintext spaceM.

The only change is that in the proof of indistinguishability of explanations of the receiver (lemma 55), instead
of eliminating a single complementary ciphertext µ3

∗ = ACE.EncEK(1 ⊕ m∗0, µ1
∗, µ2

∗, L∗0), we need to
eliminate all complementary ciphertexts {ACE.EncEK(m,µ1

∗, µ2
∗, L∗0) : m ∈M,m 6= m∗0}. This change

is required both in the proof of deniability and off-the-record deniability.

Concretely, changes are the following:

• In hybrid HybB,1,5 (similarly, in HybB,3,2) in program P3 we puncture encryption key EK of the main
ACE at all points {(m,µ1

∗, µ2
∗, L∗0) : m ∈M,m 6= m∗0}. Indistinguishability holds by the same

reasoning as in the orginal proof. The description of the program P3 on fig. 86 should be changed
accordingly.

• In hybrid HybB,1,6 (similarly, in HybB,3,1) we puncture decryption key DK of the main ACE at the
same set of points p = {(m,µ1

∗, µ2
∗, L∗0) : m ∈M,m 6= m∗0}. Indistinguishability holds by security

of constrained decryption of ACE, since the corresponding encryption key EK is already punctured at
these points. The description of the programs Dec,RFake on fig. 88 should be changed accordingly.
Note however that this incurs security loss proportional to |M|, since security loss in constrained
decryption game depends on the size of the punctured set.

Thus the proof can be adapted to the case of longer plaintexts, with additional multiplicative factor of |M| in
security loss. However, the resulting scheme is only statically secure, i.e. both real and fake plaintexts have
to be fixed before the CRS is generated. To achieve adaptive security, one can guess both plaintexts in the
proof and lose another factor of |M|2.

Thus the scheme can be used for encrypting and denying longer messages, albeit with additional multiplicative
factor of |M|3 in security loss.
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Programs of relaxed ACE.
Program G′Enc(m)
Inputs: message m.
Hardwired values: punctured keysKt{suf∗t , suft},Kt+1{suf∗t+1, suft+1}, . . . ,Kn{suf∗n, sufn},K{α(0)

n , α
(1)
n }

of PRFs Ft, . . . , Fn, F ; circuit CU describing set U . Parameters t, n.
1. If CU (m) then return ⊥;
2. For each i = t, . . . , n set αi ← Fi(Ki{suf∗i , sufi}; suffixi(m));
3. Set β ← F (K{α(0)

n , α
(1)
n };αn)⊕m;

4. Return (αt, . . . , αn, β).

Program G′Puncture(c)
Inputs: ciphertext c.
Hardwired values: keys Kt, . . . ,Kn,K{α(0)

n , α
(1)
n } of PRFs Ft, . . . , Fn, F ; circuit CU describing set U .

In addition, strings c(0) and c(1), hardwired in lexicographic order. Parameters t, n.
1. If c = c(0) or c = c(1) then return ⊥; (c(0) and c(1) are written in lexicographic order)
2. Parse c = (αt, . . . , αn, β); c(0) = (α

(0)
t , . . . , α

(0)
n , β(0)); c(1) = (α

(1)
t , . . . , α

(1)
n , β(1));

3. If αn = α
(0)
n or αn = α

(1)
n then return ⊥; (α(0)

n and α(1)
n are written in lexicographic order)

4. Set m← F (K{α(0)
n , α

(1)
n };αn)⊕ β;

5. For each i = t, . . . , n do: if αi 6= Fi(Ki; suffixi(m)) then return ⊥;
6. Return m.

Program G′′Puncture(c)
Inputs: ciphertext c.
Hardwired values: keys Kt, . . . ,Kn,K{α(0)

n , α
(1)
n } of PRFs Ft, . . . , Fn, F ; circuit CU describing set U .

In addition, strings c(0) and c(1), hardwired in lexicographic order. Parameters t, n.
1. If c = c(0) or c = c(1) then return ⊥; (c(0) and c(1) are written in lexicographic order)
2. Parse c = (αt, . . . , αn, β); c(0) = (α

(0)
t , . . . , α

(0)
n , β(0)); c(1) = (α

(1)
t , . . . , α

(1)
n , β(1));

3. If αn = α
(0)
n or αn = α

(1)
n then return ⊥; (α(0)

n and α(1)
n are written in lexicographic order)

4. Set m← F (K{α(0)
n , α

(1)
n };αn)⊕ β;

5. If m ∈ Ssufn ∪ Ssufn−1 ∪ . . . ∪ Ssuft+2 ∪ Ssuft+1 then return ⊥;
6. For each i = t, . . . , n do: if αi 6= Fi(Ki; suffixi(m)) then return ⊥;
7. Return m.

Program G′′′Puncture(c)
Inputs: ciphertext c.
Hardwired values: punctured keysKt{suf∗t }, . . . ,Kn{suf∗n},K{α

(0)
n , α

(1)
n } of PRFs Ft, . . . , Fn, F ; circuit

CU describing set U . In addition, strings c(0) and c(1), hardwired in lexicographic order. Parameters t, n.
1. If c = c(0) or c = c(1) then return ⊥; (c(0) and c(1) are written in lexicographic order)
2. Parse c = (αt, . . . , αn, β); c(0) = (α

(0)
t , . . . , α

(0)
n , β(0)); c(1) = (α

(1)
t , . . . , α

(1)
n , β(1));

3. If αn = α
(0)
n or αn = α

(1)
n then return ⊥; (α(0)

n and α(1)
n are written in lexicographic order)

4. Set m← F (K{α(0)
n , α

(1)
n };αn)⊕ β;

5. If m ∈ Ssuft then return ⊥;
6. For each i = t, . . . , n do: if αi 6= Fi(Ki{suf∗i }; suffixi(m)) then return ⊥;
7. Return m.

Figure 115: Programs of constrained keys. Note that everywhere where c(0), c(1) or α(0)
n , α

(1)
n appear, they

are written in lexicographic order (in particular, in the GGM-based punctured PRF, keyK{α(0)
n , α

(1)
n } doesn’t

depend on the order of puncturing and only depends on lexicographically sorted set
{
α

(0)
n , α

(1)
n

}
). For

convenience we denote the punctured Kt by Kt{suf∗t , suft} (similar to other keys), even though suf∗t = suft
and the key is only punctured at one point.
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