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Abstract

Deniable encryption (Canetti et al., Crypto 1996) allows parties to communicate secretly over public
channels, with the additional guarantee that secrecy of their communication is protected even if the parties
are later coerced — or even willingly bribed — to expose their entire internal states: plaintexts, keys and
randomness. To this end, deniable encryption comes with “faking algorithms” that can be used by the
parties to generate fake internal states (keys and randomness) that make a given communication transcript
appear consistent with any plaintext of the parties’ choice.

However, to date we have deniable encryption, and more generally interactive deniable communication,
for the restricted case where only one of the parties is bribed (Sahai and Waters, STOC 2014). The main
question — namely, whether deniable communication is at all possible in the case where both parties are
simultaneously coerced or bribed — has remained open.

We resolve this question in the affirmative, presenting a communication protocol that is fully deniable
under coercion or bribery of both parties. We consider an attacker that records the communication between
the sender and receiver, and later obtains from each party a purported message, along with purported local
randomness. Still, the attacker cannot identify the true communicated message. Specifically, when both
parties provide the same message, the attacker cannot distinguish the true message from a fake message,
and when the parties provide different messages the attacker cannot tell which party (if any) is revealing
the true message. (This latter property was not considered before, and is of independent interest. We call
it off-the-record deniability.)

The scheme takes three rounds, assumes sub-exponentially secure indistinguishability obfuscation
and one-way functions, and uses a short, global reference string that is generated once at system set-up
and suffices for an unbounded number of encryptions and decryptions.

∗Boston University and Tel Aviv University. Email: canetti@bu.edu
†MIT and Harvard. Email: sunoo@csail.mit.edu
‡Boston University. Email: oxanapob@bu.edu

1



Contents

1 Introduction 1
1.1 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Fully deniable interactive encryption: The definition in a nutshell . . . . . . . . . . . . . . . 3
1.3 A very brief overview of the construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 On the complexity of the construction and the proof . . . . . . . . . . . . . . . . . . . . . . 7
1.5 On verifiability of the result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Variants of deniable encryption and other related concepts . . . . . . . . . . . . . . . . . . 10
1.7 Prior work on deniable encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8 Organization of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Towards the Scheme: Technical Overview 12
2.1 Our first attempt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Levels, comparison-based decryption behavior, and our final scheme . . . . . . . . . . . . . 17

3 Defining bideniable and off-the-record-deniable encryption 23
3.1 Deniability in the CRS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Deniability in The Oracle Access Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Deniable Encryption in Oracle-Access model 26
4.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Proof of correctness and security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Preliminaries: IO, DIO, and ACE 42
5.1 Indistinguishability Obfuscation for Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Equivalence of iO and diO for programs differing on one point . . . . . . . . . . . . . . . . 49
5.3 Puncturable Pseudorandom Functions and their variants . . . . . . . . . . . . . . . . . . . . 49
5.4 Asymmetrically constrained encryption (ACE) and its relaxed variant . . . . . . . . . . . . 50

6 Construction of interactive deniable encryption 54
6.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Building blocks and main theorem stating security . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.1 Level system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2.2 Primitives required for the main construction, and their parameters . . . . . . . . . . 59
6.2.3 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Proof overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Level System 67
7.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.3 Overview of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.4 List of hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.4.1 Proof of lemma 2 (Switching from `∗0 to `∗1). . . . . . . . . . . . . . . . . . . . . . . 80
7.4.2 Proof of lemma 3 (Changing the upper bound from T + 1 to T ). . . . . . . . . . . . 102
7.4.3 Proof of lemma 4 (Restoring behavior of Transform). . . . . . . . . . . . . . . . . . 119

7.5 Security reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

2



7.5.1 Reductions in the proof of lemma 2 (Switching from `∗0 to `∗1) . . . . . . . . . . . . 164
7.5.2 Reductions in the proof of lemma 3 (Changing the upper bound from T + 1 to T ) . . 167
7.5.3 Reductions in the proof of lemma 4 (Restoring behavior of Transform) . . . . . . . 169

8 Proof of bideniability of our encryption protocol 177
8.1 List of hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.1.1 Proof of lemma 54 (Indistinguishability of explanation of the sender) . . . . . . . . 177
8.1.2 Proof of lemma 55 (Indistinguishability of explanation of the receiver) . . . . . . . . 181
8.1.3 Proof of lemma 56 (Semantic security) . . . . . . . . . . . . . . . . . . . . . . . . 193
8.1.4 Proof of lemma 57 (Indistinguishability of levels) . . . . . . . . . . . . . . . . . . . 205

8.2 Detailed proof of security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
8.2.1 Reductions in the proof of lemma 54 (Indistinguishability of explanation of the sender)221
8.2.2 Reductions in the proof of lemma 55 (Indistinguishability of explanation of the receiver)225
8.2.3 Reductions in the proof of lemma 56 (Semantic Security) . . . . . . . . . . . . . . . 234
8.2.4 Reductions in the proof of lemma 57 (Indistinguishability of Levels) . . . . . . . . . 240

9 Proof of off-the-record deniability of our encryption protocol 247

A On Flexible Deniability: Discussion 259

B On removing layers of obfuscation 261

C Construction of relaxed ACE 262

D Encrypting longer plaintexts 269

3



1 Introduction

The ability to communicate secret information without having any prior shared secrets is a central pillar
of modern cryptography [DH76, RSA78, GM84]. However, standard definitions and existing algorithms
for secure communication only guarantee security as long as the local randomness used by the parties
remains hidden. If the parties’ secret keys and randomness are exposed, say as a result of coercion or bribery,
secrecy is no longer guaranteed. Indeed, the transcript in common encryption and key exchange schemes
often “commits” the sender to the plaintext, in that each transcript is consistent with only one plaintext and
randomness.

To address this issue, Canetti, Dwork, Naor and Ostrovsky [CDNO96] introduced the notion of deniable
encryption, which provides a mechanism for preserving the secrecy of the communicated plaintext even
in face of post-communication coercion or bribery.1 Specifically, deniable encryption (or, more generally,
deniable interactive communication) introduces additional algorithms, called faking algorithms, that are
not present in standard secure communication definitions. The faking algorithms allow the communicating
parties to present fake internal states (including keys and randomness) that appears consistent with the
communication transcript and any plaintext of parties’ choice. Concretely, an adversary shouldn’t be able to
tell if the sender and the receiver gave it the true keys, randomness, and plaintext used in the protocol, or the
fake ones.

When the communicating parties have a secret key that was shared ahead of time, deniable encryption can be
simple: The classic one-time-pad scheme is perfectly deniable. Indeed, having sent c = k ⊕m, the parties
can claim that they sent any plaintext m′ by claiming that k′ = c⊕m′ is their true key. However, shared-key
deniable schemes fail to address the crucial question of how to deniably agree on a shared key in the first
place. Indeed, existing key exchange protocols are themselves “committing”. For instance, in Diffie-Hellman
key exchange, there exists only one key consistent with any given transcript, so it is impossible to equivocate
a one-time pad key generated using Diffie-Hellman key exchange. Thus the core question here is how to
deniably transmit a value (or alternatively to establish a shared key) without any a priori shared secrets.

When no keys are shared a priori, deniability becomes much more challenging to achieve. In fact, even the
restricted case where only the sender is coerced (or bribed) has been resolved only much later, assuming
indistinguishability obfuscation, in a breakthrough work of Sahai and Waters [SW14]. (Prior to [SW14] we
only had the partial solution of [CDNO96], where the adversary’s distinguishing advantage decreases linearly
in the ciphertext size; in particular, to get indistinguishability with negligibly small advantage, one has to
send superpolynomially long ciphertexts.)

The case where only the receiver is coerced or bribed follows from the sender-only case via a general
transformation, at the cost of an additional message [CDNO96], thus resulting in a 3-round protocol when
instantiated with the construction of [SW14]. This transformation can also be extended to handle the case
where the adversary is restricted to coerce any party of its choice, but only one of the two.

However, the existence of schemes that guarantee deniability in the unrestricted case, where both the sender
and the receiver can be simultaneously coerced or bribed, has remained open. The question has remained
open even for interactive encryption protocols that use arbitrarily many rounds of communication. (Indeed,
any deniable encryption protocol must be interactive - i.e., it must use at least three messages - due to the
result of [BNNO11] which rules out receiver-deniable encryption in 2 rounds.) This is the main question we

1We focus on the case of bribery. Indeed, this case seems more challenging, since it considers also parties that are incentivized to
willingly disclose all their internal state, including all past random choices.
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focus on in this work:

Do there exist multi-round bi-deniable encryption protocols, with any number of rounds?

Indeed, bi-deniability, namely deniability against an attacker that bribes both parties, is a significantly stronger
security guarantee than any of the restricted variants above, where the adversary only receives the internal
state of either the sender or the receiver. In contrast, here the adversary obtains a complete transcript of an
execution, including all the random choices, inputs and outputs of both parties. This means that the adversary
can now fully run this execution, step by step, and compare it against the recorded communication. Yet, as
long as the sender and receiver follow the protocol during the actual exchange of messages, bi-deniability
gurantees that any (real or fake) transcript provided by the parties looks just as plausible as any other (real or
fake) one. So the “true execution”, including the “true plaintext” is effectively “erased” from the system2

Furthermore, when the attacker bribes both parties, another concern emerges: what if the plaintext claimed by
the sender is different from the plaintext claimed by the receiver? This could happen if the parties didn’t have
an opportunity to agree on their fake plaintext, or if they have conflicting incentives, or if one of the parties is
a whistleblower who tries to prove to others that the other party has sent or received a particular plaintext.
Standard bi-deniability (as defined by [CDNO96]) provides no guarantees for these cases, and it may seem
there isn’t much left to hide, since the coercer already knows that at least one party is lying. However, note
that the ideal secure channel would provide some guarantees even in this case: namely, the coercer wouldn’t
be able to tell who is lying (if not both), and it wouldn’t be able to determine what the true plaintext was: the
one claimed by the sender, or the one claimed by the receiver, or some other plaintext potentially different
from the claimed ones. In other words, in the situation where parties’ claims are inconsistent, it could still
be possible to protect the privacy of the plaintext, despite the fact that parties’ innocence is necessarily
compromised.

1.1 Our contributions

Our first contribution is formulating a security guarantee, called off-the-record deniability, that holds even
when the responses provided by the two coerced (or bribed) parties are inconsistent with each other.3Off-
the-record deniability achieves the level of protection of the ideal channel in the “inconsistent plaintexts”
scenario: that is, it guarantees that the true plaintext remains hidden, and that the coercer cannot tell which
party is lying. An important property of off-the-record deniability is that it guarantees protection to each
party independently of the actions of the other party; this is in contrast with the standard bi-deniability where,
for security guarantee to hold, both parties have to decide to lie, and they have to lie about the same fake
plaintext.

We note that off-the-record deniability is incomparable to standard bideniability, which provides a guarantee
only when both parties produce fake internal state for the same claimed plaintext. Bi-deniability gives no
guarantee when parties’ claimed plaintexts are inconsistent, or even when the claimed plaintexts are consistent
but one party provides true randomness and the other provides fake randomness for the same true plaintext.

We say that an (interactive) encryption scheme is fully deniable if it provides both bi-deniability and off-the-
record deniability. In all, a fully deniable scheme provides protection akin to a physically secure channel

2We note that a related bi-deniability concept, called multi-distributional bi-deniability, has been previously considered [OPW11];
see more details in S ection 1.7 and Appendix A.

3The off-the-record messaging protocol [BGB04] is a protocol for instant messaging that shares our motivation of enabling
encrypted communications as close as possible to an ideal private channel, but is otherwise unrelated to the off-the-record deniability
defined in this paper.
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where the attacker sees no ciphertext at all: Once the transmission of the message is complete, each party
can claim that the message transmitted was any value whatsoever (say, from a pre-specified domain) and the
attacker has no way to tell which party, if any, is telling the truth.

Our second and main contribution is demonstrating the feasibility of fully deniable encryption. We underline
that prior to this work, even the existence of bi-deniable encryption (without the additional off-the-record
property) was an open question.

Theorem 1. There exists a three-message interactive bit encryption scheme that is fully deniable (i.e., both
bideniable and off-the-record-deniable) in the common reference string model, assuming subexponentially
secure indistinguishability obfuscation and subexponentially secure one-way functions. In addition, the
receiver’s deniability is public (i.e., the true random coins of the receiver are not required to compute fake
randomness of the receiver).

The six programs in the common reference string (CRS) correspond to the six programs in the scheme: On
the sender side, the programs P1 and P3 for generating the first and third messages, respectively, and the
sender faking program SFake, and on the receiver side the program P2 for generating the second message,
the decryption program Dec, and the receiver faking program RFake. The scheme instructs the parties to
sample uniformly random coins and run the obfuscated programs to compute all the messages of the protocol,
decrypt, or fake.

The challenges we encounter are two-fold. First, we discover a special “internal logic” which should be
present in any deniable encryption - even the one in the idealized model where parties only have access to
the oracles implementing programs of deniable encryption. We prove security of deniable encryption in this
idealized model. While this theorem is not used in our main result (namely, building deniable encryption
from iO), it highlights the difficulties we encounter while designing a scheme, and provides a somewhat
easier construction and proof for those who wish to be convinced of the correctness of the result. We note
that, while many cryptographic primitives can be trivially constructed in such a model, deniable encryption is
still highly-non trivial; in fact, our technical overview (see section 2) is fully devoted to building deniable
encryption in this setting.

Translating this idealized protocol to one that is provably secure when the programs are (a) actual programs
and (b) protected only by IO is yet another challenge. Here we use the highly sophisticated tools developed in
[KLW15, CHJV14, BPR15, BPW16] for dealing with situations where the adversary has access to multiple
obfuscated programs and repeatedly runs programs on values generated previously by other programs. In
addition, we develop our own tools and abstractions that are used to argue about situations that are significantly
more complex than previously handled.

1.2 Fully deniable interactive encryption: The definition in a nutshell

Deniable interactive encryption comes with algorithms to transmit the messages of the protocol, to decrypt,
and to generate fake randomness. Since our protocol has three messages, we present the definition for that
case. A scheme consists of six programs P1,P2,P3,Dec, SFake,RFake, as follows: Program P1 is run by
the sender; it takes input a message m and sender random string s, and outputs a first message µ1. Program
P2 is run by the receiver; it takes as input message µ1 and receiver random string r, and outputs second
message µ2. Program P3, run by the sender, takes s,m, µ1, µ2 and outputs a third message µ3. Program Dec,
run by the receiver, takes r, µ1, µ2, µ3 and outputs plaintext m̃.
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Program SFake takes as input the public transcript of the protocol (namely messages µ1, µ2, µ3), the sender
randomness s, the message m, a fake message m′, and potentially some additional random input ρS , and
outputs a fake random string sm′ that’s intended to explain the transcript as an encryption of m′. Program
RFake takes as input the public transcript, the receiver randomness r, the message m, a fake message m′,
and potentially some additional random input ρR, and outputs a fake random string rm′ that’s intended to
explain the transcript as decrypting to m′.

First, we require correctness in the natural way: If the sender runs P1,P3 with plaintextm and with uniformly
chosen s, and the receiver runs P2,Dec with uniformly chosen r, then the receiver decrypts m̃ = m except
for negligible probability.

Bi-deniability guarantees that no PPT adversary can tell between the following two cases: in one case, it
observes the execution for plaintext m′ and receives true random coins from both parties. In the other case, it
observes the execution for plaintext m and receives fake random coins which make it look consistent with m′.
That is,

(tr(s, r,m′), s, r) ≈c (tr(s, r,m), sm′ , rm′), (1)

where s, r are uniformly random, tr(s, r,m) is the public transcript resulting from running the
protocol to transmit m with random input s for the sender and r for the receiver, sm′ =
SFake(s,m,m′, tr(s, r,m); ρS), rm′ = RFake(r,m,m′, tr(s, r,m); ρR), and ≈c denotes computational in-
distinguishability.

Off-the-record deniability guarantees that no PPT adversary can tell between the following three cases:

• The sender is telling the truth (claiming m) and the receiver is lying (claiming m′). That is, the
adversary observes the execution for plaintext m and receives true random coins from the sender, but
fake random coins consistent with m′ from the receiver.

• The sender is lying (claiming m) and the receiver is telling the truth (claiming m′). That is, the
adversary observes the execution for plaintext m′ and receives fake random coins consistent with m
from the sender, but true random coins from the receiver.

• The sender is lying (claiming m) and the receiver is lying as well (claiming m′). That is, the
adversary observes the execution for plaintext m′′ and receives fake random coins consistent with m
from the sender, and fake random coins consistent with m′ from the receiver.

That is,

(tr(s, r,m), s, rm′) ≈c (tr(s, r,m′), sm, r) ≈c (tr(s, r,m′′), sm, rm′), (2)

where s, r, tr are defined as in (1), and sm, rm′ are fake coins produced by running faking algorithms on the
corresponding transcript.

Observe that bi-deniability implies that tr(s, r,m) ≈c tr(s, r,m′), so a bi-deniable scheme is also semanti-
cally secure. Similarly, off-the-record deniable scheme is also semantically secure.

Full deniability. We say that a scheme is fully deniable if it is both bi-deniable and off-the-record deniable.
Indeed, full deniability provides a level of protection akin to a physically secure channel, where the parties
can freely claim any plaintext was sent or received, and which guarantees protection even in cases when
parties’ claims do not match.
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1.3 A very brief overview of the construction

Our starting point is an elegant technique from [SW14] that transforms any randomized algorithm A (with
domain X and range Y ) into a “deniable version” using iO. The technique creates two obfuscated programs
A′ and F , where: A′ is the “deniable version” of A; and F is a “faking algorithm” that, for any input
(x, y) ∈ X × Y , outputs randomness ρ such that A′(x; ρ) = y. Using this technique, we can take any
protocol and equip parties with a way to “explain” any given protocol message that they send: that is, to
produce fake randomness which makes that protocol message consistent with any plaintext of parties’ choice.

Based on this, a first attempt at a bideniable scheme might be to apply the [SW14] technique to an arbitrary
public-key encryption scheme to create obfuscated programs for encryption, decryption, sender-fake and
receiver-fake — and then use the sender-fake and receiver-fake programs to “explain” the protocol messages
one by one. However, this does not yield a bideniable encryption scheme: the [SW14] technique is guaranteed
to work only when applied to independent algorithm executions, but here the algorithms are run on the same
keys and randomness, protocol messages are interrelated, and any convincing overall explanation must consist
of a sequence of consistent explanations across the algorithms.4 The problem in a nutshell is that although the
[SW14] technique could create a deniable version of any single program, applying the technique separately
to the key generation, encryption, and decryption programs fails to achieve deniability with respect to the
programs’ joint behavior.

More concretely, it is problematic that the adversary can manipulate its given transcript and randomness
to generate certain “related” transcripts and randomness, and then try running the decryption algorithm
on different combinations of them. Next, we give brief intuition as to why this is a problem. A fake r
(i.e. randomness of the receiver) can be viewed as a string which “encodes” or “remembers”, explicitly or
implicitly, an instruction to decrypt a certain transcript to a certain fake plaintext. An adversary can run
RFake iteratively on a given r (and a series of related transcripts) to successively obtain r1, r2, . . . , hoping
that each new application of RFake will add a new (i-th) instruction into the “memory” of ri in addition to all
the preceding instructions. Since ri is a bounded-length string which, information-theoretically, can carry
only a fixed amount of information, sooner or later one of the instructions will be lost from the “memory”
of ri∗ for some i∗. Because of this, assuming r was fake, by running RFake many times the adversary can
obtain some ri which does not carry the original r’s instruction, and thus decrypts the transcript in question
honestly. (This information-theoretic idea also underlies the three-round lower bound of [BNNO11]; see
more details in section 2).

Hence, our approach involves: (1) designing a protocol that does not allow the adversary to compute related
transcripts that force receiver randomness to “accumulate” information as described above, and then (2)
applying the [SW14] technique to the algorithms for generating each message of this protocol. In the first
step, we design such a protocol in the oracle-access model, where everyone (both parties and adversaries)
has only oracle access to the programs for computing protocol messages. Then in the second step, we adapt
the construction to the setting where everyone gets access to the actual code of programs, obfuscated under
indistinguishability obfuscation.

Step 1 of our plan — designing a protocol resistant to the “related transcript attack” — itself consists of
two key steps: (1a) design a “Base Protocol” that resists only some attacks, then (1b) augment the base
protocol using the ideas of a level system and comparison-based decryption, to obtain a protocol secure in the
oracle-access model (which we call the “Idealized Protocol”).

4Indeed, if this approach worked, it would yield two-message bideniable encryption, which is impossible [BNNO11].
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STEP 1A
Base Protocol
Prevents some attacks
but ultimately insecure

STEP 1B
Idealized Protocol
Fully deniable in
oracle-access model

STEP 2
Full Protocol (§6)
Fully deniable under
subexp. iO & OWF

+ Level system (§7)
+ Comparison-based

decryption (§2)

+ [SW14] technique
+ Level system

construction
from iO (§7.2)

Figure 1: The construction, step by step. The second arrow is dashed because while conceptually the
Idealized Protocol is a stepping-stone to the Full Protocol, technically the Full Protocol requires very different
techniques, and must be proven from scratch rather than “building on” the Idealized Protocol.

Next we describe these steps in more detail:

STEP 1A: We design the Base Protocol in the oracle-access model as follows. The first message µ1 is a PRF
output for input (s,m) where s is the sender randomness s and m is the plaintext. The second message µ2 is
a PRF output for input (r, µ1) where r is the receiver randomness r. The third message µ3 is an encryption
of (m,µ1, µ2). All keys for PRFs and encryption are hidden inside these programs and not known to anyone,
including the parties. After exchanging µ1, µ2, µ3 with the sender, the receiver uses the decryption program,
which decrypts the ciphertext µ3 and outputs m. In addition, we add certain consistency checks to the
programs: the decryption program returns an output only if it gets the correct r (i.e., consistent with µ2), and
the program P3 for the third message only returns the output if it gets the correct s (i.e., consistent with µ1).

One way to view this design is the following: in the first two messages, parties exchange “hashes” of their
internal state so far, and the next two programs - P3 and Dec - produce an output only if parties “prove” to
these programs (by giving randomness consistent with these “hashes”) that they are eligible for obtaining
the output. Intuitively, this design tries to guarantee that the adversary cannot compute related transcripts
(and thus cannot perform the attack described above where r accumulates too much information): for
instance, it shouldn’t be able to reuse µ1, µ2 from transcript (µ1, µ2, µ3) and compute some new µ3

′ such
that (µ1, µ2, µ3

′) is also a valid transcript with respect to the same r. We give more intuition about this in
section 2.

STEP 1B: Unfortunately, the intuition from Step 1a is only partially correct: it turns out that it is still possible
to generate related transcripts, although the design above indeed protects against “most” ways of generating
them. Concretely, we show that there exists a specific method Ω (described fully in Section 2.1) to compute
a series of related transcripts differing only in the third message. Importantly, this procedure is generic in
that it works for any three-message bideniable encryption scheme. It takes any transcript (µ1, µ2, µ3) and,
applied iteratively, produce a “chain” of valid transcripts tr1 = (µ1, µ2, µ3

(1)), tr2 = (µ1, µ2, µ3
(2)), and so

on. However, the scheme from step 1a importantly ensures that Ω is in fact the only way to compute valid
related transcripts: this is crucial for the security proof.

Thus, it remains to ensure that the adversary cannot learn the true plaintext from the chain of related transcripts
produced using Ω. To achieve this, we augment the Base Protocol with a level system, under which each
µ3

(i), generated using Ω, encodes a number which we call a level, which is set to that transcript’s own index
i.5 Concretely, µ3

(i) is an encryption of (m,µ1, µ2, i). Additionally, we ensure that any fake randomness
ri — generated by running RFake on (µ1, µ2, µ3

(i)) — also encodes the level i of the transcript which was
used to generate this ri. The level i is encoded in encrypted form, and so it is hidden from parties and the
adversary, but the programs can decrypt and learn i using their internal keys. Finally, to complete the Idealized
Protocol, we modify the decryption algorithm such that any fake ri associated with level i may be used to

5This is possible because Ω is inherently applied sequentially so the index i of each transcript produced by Ω is well defined.
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decrypt transcripts with µ3
(j) where j > i (“correctness forward”), but decryption will fail (i.e., output ⊥) if

attempted with respect to ri and µ3
(j) where j < i (“oblivious past”). We refer to this as comparison-based

decryption behavior.

tr tr1 . . . tri−1 tri tri+1 tri+2 . . .

ri

Oblivious past:
decrypting with ri fails

Correctness forward:
decrypting with ri succeeds

Ω Ω Ω Ω Ω Ω Ω

RFake

Figure 2: Comparison-based decryption behavior

The Idealized Protocol, just described, is bideniable in the oracle-access model. In particular, it avoids the
attack described above, where the adversary runs RFake iteratively on related transcripts in an attempt to
“erase” an instruction for the challenge transcript from potentially fake r. Intuitively, comparison-based
decryption ensures that r which was faked multiple times only encodes the most recent faked plaintext, rather
than accumulating a sequence of past fake plaintexts, and thus prevents the accumulating attack described
earlier.

STEP 2: Finally, we obtain the Full Protocol by applying the [SW14] technique to the Idealized Protocol,
which enables the parties to use obfuscated programs (rather than oracle access) to compute protocol messages
and to generate fake randomness for any protocol message they produce. Proving security of the resulting
protocol based on iO presents a number of challenges. To start with, the security argument in the oracle-access
model relies heavily on the fact that certain outputs of programs are hard to find provided the corresponding
inputs are hard to find. In contrast, to make the analogous argument with respect to iO, we need to show that
such inputs don’t exist (rather than being hard to find). Furthermore, as part of our construction we introduce
and construct a special primitive that somewhat resembles “deterministic order-revealing encryption”: it is a
special type of encryption where Enc(0) and Enc(1) must be indistinguishable, even given programs which
homomorphically increment ciphertexts (producing Enc(2),Enc(3) and so on up to some superpolynomial
bound) and homomorphically compare them. (Intuitively, homomorphic comparison enables the comparison-
based decryption behavior; more details are in section 2). Our security proof is quite distinct from (and more
complex than) that of [SW14], due in part to the need to prove consistency and deniability in the presence of
multiple programs equipped with faking algorithms, and the presence of this special encryption primitive.

This concludes the brief overview of our scheme. For more intuition behind the scheme and a more detailed
explanation of design choices and techniques, see section 2 (technical overview). Impatient readers may
wish to jump ahead to the Idealized Protocol program descriptions in figures 6 and 7 or refer to the complete
description of the Full Protocol in section 6.

1.4 On the complexity of the construction and the proof

While this work significantly extends the boundary of what is known to be possible in deniable encryption,
it makes strong hardness assumptions and uses the CRS model. Furthermore, the construction is relatively
complex, and the analysis is long and somewhat tedious. This section comments on these drawbacks and
points to potential avenues for improvement.

A simpler construction? The core idea behind our construction is relatively simple. Our first observation
is that the main attack of concern is one where the adversary starts from the challenge transcript, generates
a chain of other related transcripts, and uses these transripts to test the behavior of the scheme. To remain
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secure, the scheme should satisfy comparison-based decryption behavior, which ensures that if the adversary
generates a fake decryption key using one of the transcripts tr in the chain, then this key must decrypt
correctly all transcripts after tr in the chain (“correctness forward”), and output ⊥ on all transcripts before tr
(“oblivious past”).

However, our implementation of this relatively simple idea requires lengthy proofs, even when such proofs
are themselves conceptually simple. This is in part due to the fact that the syntax of deniable encryption is
already complicated: with six programs, taking two to six input values each, it can take one or two pages just
to present the program code. The complexity of our proofs is also due in part to the fact that the currently
known techniques for working with obfuscation are not well tailored to dealing with multiple programs which
can all be run interrelatedly with each other, requiring multiple hybrids per single logical step.

That said, it is unlikely that the “core” of bideniable encryption, at least in three messages, can be made signif-
icantly simpler. The reason is that bideniability is a very strong property and it imposes many requirements on
the scheme, which do not leave much freedom for the construction: arguably, any construction in 3 messages
would have to do some comparison-based decryption behavior, similar to ours. For instance, as mentioned
above, the fact that adversaries can generate chains of related transcripts is true for any (three-message)
scheme: it is implied by sender-deniability.

Is obfuscation necessary? While it is not clear whether obfuscation is necessary for bideniable encryption,
removing obfuscation appears to be quite challenging: we use obfuscation to get three seemingly unrelated
“pieces” in our scheme, which are as follows:

(1) We need a mechanism to make individual algorithms “explainable” (which is currently done along the
lines of sender-deniable encryption of [SW14]). Thus, any progress on removing obfuscation in a 3-message
bideniable encryption will likely also yield a sender-deniable PKE without obfuscation, which is a great open
problem on its own.

(2) Another reason for using obfuscation is that, as explained more in section 2, a deniable encryption scheme
with comparison-based decryption logic requires building a certain kind of “deterministic order-revealing
encryption” which we call a level system: concretely, an adversary should not be able to distinguish between
encryptions of 0 and 1, even given functions which allow homomorphic incrementing of ciphertexts (up to
a superpolynomial bound T ) and compare them (with the result of the comparison in the clear). We build
this level system from iO; while one could envision building this primitive from weaker assumptions such as
LWE, there are some extra challenges with integrating the resulting primitive into the construction (e.g., the
way it is currently integrated into our scheme requires both (a) the code of deniable encryption programs to
be obfuscated and (b) the level system to be puncturable).

(3) Last but not least, obfuscation allows the programs to have a fairly complicated functionality depending
on the result of the secret checks inside the program, and moreover, the adversary cannot tell which “if”
statement of the program was executed. This is crucial both in guaranteeing that the adversary cannot generate
related transcripts except by running Ω, and in guaranteeing that even if it does run Ω, the programs of the
scheme can undetectably “exchange information” with each other to ensure that comparison-based decryption
behavior holds.

We will be happy to see the progress on building any of these three pieces without obfuscation, which will
pave the way for the obfuscation-less construction.

Subexponential security. The need for subexponential security comes from the fact that proving indistin-
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guishability between encryptions of 0 and 1 in the “order-revealing encryption” mentioned above requires
some superpolynomial T hybrid steps. (This requirement follows from the fact that the adversary can generate
chains of any polynomial length.) With current techniques, it seems inherent to have the number of hybrids
proportional to T and therefore to require subexponential security of underlying primitives.

Structured CRS with secrets. Our construction requires a CRS (which consists of obfuscated programs),
where the randomness used to generate the CRS (i.e., the randomness of obfuscation and secret keys inside
the programs) must remain hidden from everyone including participants of the protocol.

While removing this setup assumption would be desirable, it appears to be out of reach of current cryptographic
techniques. This question is a special case of a very general question in cryptography: it is possible to
generate any structured CRS with secrets without knowing those secrets? This in turn is a special case of
the invertible sampling hypothesis (ISH) [IKOS10] which conjectures that for any distribution (potentially
generated using some secret information), there is a way to generate it without learning those secrets (e.g., it
should be possible to sample N = pq without knowing p, q). ISH is related to several significant questions
in cryptography, such as adaptive security and the relationship between PKE and OT. However, [IKOS10]
shows, albeit under strong assumptions, that ISH does not hold for certain distributions. While this does not
imply that our CRS cannot be generated in such a way, or that deniable encryption is impossible without a
CRS, it indicates that this question may be quite hard to answer.

1.5 On verifiability of the result

Several readers and reviewers expressed concern that it would be difficult to verify the result. While this
concern is understandable given the intimidating size of the paper, we argue that the proof is less laborious
than it looks and can be understood in a reasonable time by a knowledgeable reader.6

1. While the total length of the proofs in this paper totals about 150 pages, we note that these proofs, like
most cryptographic proofs, are very structured: they consist of a sequence of hybrid distributions with
an argument of why each pair of subsequent distributions are indistinguishable. What makes this paper
different is that these distributions take a lot of space to describe: since we frequently alter the code
of the programs in the hybrid distributions, just the description of each hybrid distribution alone can
easily take between 1/3 of a page (when no programs are changed) to 3 pages (when programs of both
the sender and the receiver are changed).

Yet, what matters for reading and verifying the proof is understanding the difference between two
subsequent distributions (to verify that they are indeed indistinguishable). In this sense our proofs are
no different than other cryptographic proofs: at each step we only make a simple atomic change, such
as puncturing a PRF, switching the value to random, using the property of an extractor, changing the
code of an obfuscated program, and so on.

2. While the number of hybrid distributions is somewhat high (approaching a hundred), the majority of
the changes are very straighforward and easy to check (e.g., puncturing keys). For instance, the proof
of security of the level system, despite taking almost 100 pages, almost entirely consists of applying

6Ironically, our efforts to make the proof as easily readable and verifiable as possible contributed to the size of this paper. For
instance, for modularity we split the proof of security into 4 logical steps. Since each of the “core” changes requires some puncturing
both before and after the change is made, such splitting introduced redundant hybrids which would not be necessary, had we instead
written the whole proof in one shot. We also present the full code of the programs in each hybrid where the code changes happen,
even if the change would be very small if described incrementally (such as replacing a full key with a punctured key): we believe this
is beneficial for readability, given the number of hybrid distributions.
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one of only two changes at each step: either puncturing a public key of a special encryption scheme
(with a reduction to iO security), or puncturing a corresponding secret key (with a reduction to a special
security property of that encryption scheme).

3. Finally and perhaps most importantly, the proofs are fairly modular (the proof of security of deniable
encryption is split into 4 logical steps, and the proof of security of a level scheme is splitted into 3).
Even within each of these steps, there is a high-level strategy behind a low-level puncturing and “iO
gymnastics” (the strategy for the encryption scheme itself is described at the end of the technical
overview section, and the strategy for the level system is described in the level system section).

Thus, we encourage a curious reader to take a look at the proofs, and we are happy to explain the result or
answer any questions by mail or in person.

1.6 Variants of deniable encryption and other related concepts

We further discuss some variants of deniable encryption and communication and surrounding concepts. While
these concepts are not directly relevant to this work, clarifying them may prevent confusion.

• Post-execution vs. adaptive coercion. This paper considers coercion that happens after protocol
execution. A broader definition, adaptive coercion, would capture coercion at some (arbitrary) point
during the protocol execution (with uncoerced parties possibly unaware of the coercion).

• Private vs. public deniability. The deniability of the sender (or receiver, or both) is called public
[SW14] if the corresponding faking algorithm does not require the true randomness and the true
plaintext as input. Our scheme has public receiver deniability (our RFake has syntax RFake(m′, tr; ρR)).
This means that anyone, not just the receiver, can produce fake random coins for the receiver. Note that
any publicly deniable faking algorithm must be randomized: otherwise, the coercer could easily check
if a claimed r is fake by comparing it to RFake(m′, tr).

• “Coordinated” schemes. One can also consider “coordinated” schemes [OPW11] where a single
faking algorithm takes as input the true coins of both the sender and the receiver at the same time. Such
schemes require coordination between the sender and the receiver in order to compute fake randomness.
Our scheme does not require coordination, but we note that prior to this work, even coordinated fully
bideniable schemes were not known.

Deniable encryption is related to a number of other cryptographic concepts:

• Incoercible key exchange is equivalent to deniable encryption: indeed, given the former, one can
always encrypt messages deniably under one-time pad. Given deniable encryption, one can always
pick a random key and send it to the receiver deniably.

• Non-committing (adaptively secure) encryption (NCE, [CFGN96]) is weaker than deniable en-
cryption, and designed for a different purpose. NCE requires that a simulator can generate dummy
ciphertexts that can later be opened to any plaintext. The differences with deniable encryption are
twofold. First, in deniable encryption it is possible to fake a ciphertext which carries a plaintext, while
NCE ciphertexts can either be faked (if simulated) or carry a plaintext (if real). In other words, in NCE
parties cannot fake; only the simulator can. Secondly, fake opening on behalf of all parties in NCE is
done by the same entity, the simulator, while in deniable encryption the sender and the receiver fake
independently of each other.

Bideniable encryption is strictly stronger than NCE: bideniable encryption implies NCE [CDNO96],
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but there exists NCE which takes two messages [CDMW09] and which therefore is not bideniable due
to the three-message lower bound of [BNNO11].

• Flexible deniability. In addition to full deniability, [CDNO96] also introduced a weaker notion of
deniability, sometimes called flexible deniability, multi-distributional deniability ([OPW11, BNNO11,
Dac12, AFL16, CIO16]), or dual-scheme deniability ([GKW17]). Appendix A provides detailed
discussion of this notion and its limitations.

• Deniable authentication. Deniable encryption is incomparable to deniable authentication, though
their motivations are similar. Deniable authentication allows the receiver of a message to authenticate
the message’s origin and contents, while preventing the receiver from convincing a third party who
did not directly witness the communication that the message indeed came from the sender (see, e.g.,
[DKSW09]). In contrast, in deniable encryption, the third party (adversary) may directly witness the
communicated ciphertext and learn whether the parties have communicated with each other. The goal
of deniable encryption is not to hide whether a party participated in a communication, but rather to
preserve secrecy of the contents of the communication — even when parties are coerced (separately or
jointly) to provide their internal secrets.

1.7 Prior work on deniable encryption

Deniable encryption was first introduced in 1996 by [CDNO96]. However, the techniques of that time fell
short of achieving deniability: in fact, [CDNO96] presented a construction where the distinguishing advantage
between real and fake opening was inversely proportional to the length of the ciphertext, thus requiring
superpolynomially long ciphertexts in order to achieve cryptographic deniability. It was not until 2014
that Sahai and Waters presented the first (and, to date, the only) construction of sender-deniable encryption
[SW14]. Their construction was based on indistinguishability obfuscation.

The [SW14] construction can be transformed into a three-message receiver-deniable protocol using a generic
transformation [CDNO96] from sender- to receiver-deniable encryption at the cost of one additional round,
as follows: the receiver first deniably sends a random bit b to the sender deniably using the sender-deniable
protocol, then the sender sends b ⊕m to the receiver in the final round. Furthermore, if the sender sends
b ⊕m using the sender-deniable protocol rather than in the clear, the resulting scheme will be sender-or-
receiver-deniable: that is, deniable against adversaries that coerce either one but not both of the parties. This
final step incurs no additional rounds if (as in [SW14]) the message need not be decided until the last round
of the sender-deniable protocol. However, all these constructions heavily rely on the fact one of the parties’s
internal states remains hidden, and therefore fail to achieve bideniability.

Several prior works have focused on proving lower bounds for deniable encryption. [CDNO96] showed
that a certain class of schemes cannot achieve better distinguishing advantage than inverse polynomial.
[Dac12] extended this result to a broader class of constructions, showing that the same holds for any
black-box construction of sender-deniable encryption from simulatable encryption. [Nie02] showed that
any non-committing encryption, including bideniable encryption, can only reuse its public key an a priori
bounded number of times; and therefore deniable communication must be interactive, even if two messages.
Using different techniques, [BNNO11] showed that two-message receiver-deniable schemes, and hence also
bideniable schemes, do not exist.
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1.8 Organization of the paper

The rest of the paper is organized as follows. Section 2 gives an informal yet almost complete description of
the scheme, and outlines the main proof steps. Section 3 formally defines bideniable and off-the-record
deniable encryption. Section 4 details the Idealized Protocol and security proof in the oracle-access model.
Section 5 covers preliminaries: iO, puncturable PRFs, and other cryptographic primitives necessary for our
construction.

Section 7 formally defines, constructs, and proves security of the level system which is an essential building
block of our deniable encryption scheme. Section 6 gives a complete description of our deniable encryp-
tion scheme and states 4 main lemmas from which security of the scheme follows. Finally, Sections 8 and 9
give the full proofs of bideniability and off-the-record deniability of our Full Protocol.

2 Towards the Scheme: Technical Overview

This section provides an informal yet almost complete overview of our construction in the oracle-access
model. That is, we assume that all parties and the adversary have oracle access to programs P1,P2,P3 (which
generate the three messages of the protocol), decryption program Dec, and faking programs SFake,RFake.

We build our scheme in two main steps. As a first attempt, we try to avoid the known attacks on the 2-message
case by considering a 3-message scheme. Next we discuss some attacks and augment our scheme with levels
and comparison-based decryption behavior, which yields our final scheme.

2.1 Our first attempt

Given the mechanism of [SW14] which allows to make any algorithm deniable, a natural attempt to build
deniable encryption is to take any 2-message public key encryption scheme and make all its algorithms
Gen,Enc,Dec deniable. Indeed, the technique from [SW14] allows to transform any randomized algorithm
A (with domain X and range Y ) into a “deniable version” using indistinguishability obfuscation (iO). The
technique creates two obfuscated programs A′ and F , where: A′ is the “deniable version” of A; and F is
a “faking algorithm” that, for any input (x, y) ∈ X × Y , outputs randomness ρ such that A′(x; ρ) = y.
Using this technique, we can take any protocol and equip parties with a way to “explain” any given protocol
message they send: that is, to produce fake randomness which makes that protocol message consistent with
any plaintext of the parties’ choice.

This approach would indeed allow, say, the receiver to generate fake sk′ which decrypts a given ciphertext c to
any plaintext of its choice. This sk′ would even be indistinguishable from the real sk, as long as the adversary
only sees the secret key and nothing else. Of course, the issue is that the adversary does see other values:
it has an access to the public key, and therefore to the encryption algorithm, which allows it to generate
values related to sk, and the technique of [SW14] doesn’t work when applied to multiple programs with
interconnected outputs, which is the case for Gen, Enc and Dec.

Let us now outline the result of [BNNO11], demonstrating that bideniable encryption is impossible in 2
messages. This will give us guidance on what to avoid while building 3-message bideniable encryption (and
in addition it will show a concrete attack on the above attempt to build the scheme).

Impossibility of the 2-message case ([BNNO11]). [BNNO11] shows that even receiver-deniable (as op-
posed to bideniable) schemes cannot be built in 2 messages. Their result is unconditional. To prove this,
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they show that any 2-message receiver-deniable encryption scheme, even for a single-bit plaintext, can be
used to deniably send any polynomial number of plaintexts, simply by reusing the first message (pk) and
sending multiple second messages c1, . . . , cN (where N is an arbitrary polynomial); they show that all
these ciphertexts can be faked simultaneously using a single fake decryption key. This implies a method for
compressing an arbitrary string beyond what is information-theoretically possible, as follows. To compress a
string b1, . . . , bN fromN bits (whereN is larger than |sk|) to |sk| bits: (1) prepareN encryptions of 0 under a
single pk (call them c1, . . . , cN );7 (2) compute sk(1) ← RFake(sk, c1, b1), sk(2) ← RFake(sk(1), c2, b2), . . . ,
sk(N) ← RFake(sk(N−1), cN , bN ). The final string sk(N) is a compressed description of b1, . . . , bN , since
it is shorter than N and since the original string can be recovered by decrypting each bi as Dec(sk(N), ci).
Since most strings cannot be compressed, receiver-deniable encryption cannot exist.

Stated differently, this impossibility says that the secret key which was faked multiple times to lie about
different ciphertexts has to remember each lie; but information-theoretically it cannot remember more
information that its length allows. Thus, at some point this secret key has to forget previous lies, and then
it can be used to decrypt the ciphertext in question to its real plaintext. That is, there is always an attack
on any 2-message scheme, which roughly goes as follows: assume the adversary gets c (which is claimed
to encrypt m′) together with fake sk′, but in reality c encrypts m. The adversary should generate N > |sk|
ciphertexts c1, . . . , cN as above, and run RFake iteratively to compute sk(N) as above, and then compute
Dec(sk(N); c) = m to learn the true plaintext.

As can be seen from the above, the core issue with the 2-message schemes is that for a single message
of the receiver - i.e. pk - it is possible to efficiently generate many different messages of the sender, i.e.
ciphertexts (which means that all these ciphertexts are proper ciphertexts with respect to the same secret key
of the receiver, which in turn allows to use a single secret key to fake them all). Let us consider a similar
property in the 3-message case. Consider some 3-message scheme with messages (µ1, µ2, µ3) such that for a
given receiver message µ2 one can efficiently generate many different sender messages µ1

(i), µ3
(i) yielding

a consistent transcript (µ1
(i), µ2, µ3

(i)). Then the scheme is subject to the same impossibility result. For
example, consider a 3-message scheme where the third message is a fresh encryption under freshly sampled
random coins, which allows generating many third messages µ3

(i) for any given µ1, µ2; we can apply the
[BNNO11] argument to show that fake key of the receiver has to remember a lie for each µ3

(i), so this scheme
is susceptible to the same attack as two-message schemes.

First attempt. Now we present our scheme, which is insecure so far but will be augmented later to achieve a
secure version. The scheme essentially instructs parties to exchange two PRF values first, and then lets the
sender encrypt its m into a ciphertext µ3 using program P3, which the receiver can decrypt using program
Dec. Before presenting the scheme formally, we give some motivation for the design choices.

With the above impossibility in mind, a natural attempt to build a 3-message scheme is to ensure that for any
given first two messages µ1, µ2 only one consistent third message µ3 can be efficiently computed. To achieve
this, we do the following:

1. Let the first message µ1 of the sender be a “commitment” to its coins s and message m;

2. Let the third message µ3 be a deterministic, symmetric-key encryption of m under a key K which is
hardwired into programs P3 and Dec and is not available to parties;

3. Let P3(s,m, µ1, µ2) perform a validity check before it outputs µ3: P3 should check that µ1 is indeed

7These ciphertexts do not depend on the string to be compressed and thus can be thought of as public parameters of the
compression protocol.
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a “commitment” to s and m. If this validity check fails, P3 outputs ⊥.

In other words, the only way for the sender to generate its encryption µ3 is to “prove” to P3 that it is running
program P3 on the same s,m as it used to compute µ1. Thus, as long as K remains secret and the ciphertexts
are sufficiently sparse, for any µ1, µ2, there is only one consistent µ3 which is easy to find.

Next, since µ3 is computed under the same key K in each execution and it is not randomized, so far all
executions with the same m yield the same µ3, which is clearly insecure; because of this, we let µ3 encrypt
not only m, but the first two messages µ1, µ2 as well, which now forces different executions to produce
different third message µ3.

So far we haven’t discussed how the second message µ2 should be computed, which actually depends on
the extension of the attack from above. Indeed, recall that so far we wanted it to be hard to find multiple
transcripts with the same µ2, i.e., (µ1

(i), µ2, µ3
(i)). In fact, we also want it to be hard to convert some

transcript (µ1, µ2, µ3) for some receiver randomnes r into a different transcript (µ1
′, µ2

′, µ3
′) consistent with

the same randomness r, since it is possible to extend the attack to this case as well. Thus, we design the
protocol as follows:

1. Let the second message µ2 be pseudorandom function PRF(r, µ1), computed using the key which is
hardwired into program P2 and not known to the parties8. The inputs to this PRF are randomness of
the receiver r and the first message µ1.

2. Let Dec(r, µ1, µ2, µ3) perform a validity check before it decrypts and outputs m: Dec should check
that µ2 is a correct PRF value on input r and µ1. If this validity check fails, Dec outputs ⊥.

In other words, the only way for the receiver to decrypt µ3 is to “prove” to Dec that it is running program Dec
on a proper r (consistent with µ2). In particular this ensures that it is hard to transform some (µ1, µ2, µ3) into
a different (µ1

′, µ2
′, µ3

′) which is consistent with the same receiver randomness r, since it requires finding
µ1
′, µ2

′ such that µ2
′ = PRF(r, µ1

′), for unknown r and unknown PRF key.

A couple of final notes remain. First, in the scheme below we implement our “commitment” using a PRF as
well, with its key hardwired into program P1 and not known to parties (thus, both µ1 and µ2 are the result of
the PRFs). Second, we augment each program P1, P2, P3, Dec with a “trapdoor step” which makes each
of these programs separately deniable, in spirit of [SW14] technique. Finally, we make the validity check
inside Dec to accept as long as P2(r, µ1) = µ2, as opposed to PRF(r, µ1) = µ2; the difference is that P2
also accepts “fake” values which are not real preimages of the PRF. Similar modification is done to P3: its
validity check verifies that P1(s,m) = µ1 and therefore would also accept fake s which is not a real opening
of the “commitment”. Note that these chenges are necessary, since otherwise one could use the validity check
to test whether a given s is a real preimage of µ1 or a fake one.

We present the programs P1,P2,P3,Dec, SFake,RFake in our current construction in fig. 3. For convenience,
we add comments to the code to help illustrate what the code is doing. Despite somewhat heavy code, the
programs are very structured, and in a nutshell they behave as follows:

• Each program has a main step which is triggered when the program is run on uniformly random s or r,
which is the case during an honest execution;

• Programs P1,P2,P3,Dec also have a trapdoor step which is triggered when the programs are given
fake randomness (which has a special format so it can be recognized by programs). The set of fake

8In this high-level description we omit PRF keys to simplify notation.
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randomness is sufficiently sparse that the trapdoor step is almost never triggered on uniformly chosen s
or r. Fake randomness contains an “instruction” of how the program should behave.

• Programs P3 and Dec have validity checks for the reason described in the motivation paragraph above.

• Programs SFake and RFake can generate fake randomness which can be recognized by other programs.

In particular, during an honest execution with uniformly random s and r and plaintext m, the parties exchange
messages µ1, µ2, µ3 (computed by programs P1,P2,P3 respectively), as µ1 = PRF(s,m), µ2 = PRF(r, µ1),
µ3 = EncK(m,µ1, µ2) respectively.9 The receiver then can decrypt (µ1, µ2, µ3) by running program
Dec(r, µ1, µ2, µ3), which verifies that PRF(r, µ1) = µ2 and then decrypts µ3 and outputs m.

The programs of deniable encryption: first attempt.
Program P1(s,m)

1. Trapdoor step: if DecKS (s) = (m′, µ1
′, µ2

′, µ3
′) and m′ = m, then return µ1

′ //if s is fake and
encodes m, output encoded µ1

′

2. Main step: Return µ1 ← PRF(s,m). //otherwise output PRF(s,m)

Program P2(r, µ1)
1. Trapdoor step: if DecKR(r) = (m′, µ1

′, µ2
′, µ3

′) and µ1
′ = µ1, then return µ2

′. //if r is fake and
encodes µ1, output encoded µ2

′

2. Normal step: else return PRF(r, µ1). //otherwise output PRF(r, µ1)

Program P3(s,m, µ1, µ2)
1. Validity check: if P1(s,m) 6= µ1, then abort;
2. Trapdoor step: if DecKS (s) = (m′, µ1

′, µ2
′, µ3

′) and (m′, µ1
′, µ2

′) = (m,µ1, µ2), then return µ3
′.

//if s is fake and encodes correct (m,µ1, µ2), output encoded µ3
′

3. Normal step: else return EncK(m,µ1, µ2).//otherwise encrypt m

Program Dec(r, µ1, µ2, µ3)
1. Validity check: if P2(r, µ1) 6= µ2, then abort;
2. Trapdoor step: if DecKR(r) = (m′, µ1

′, µ2
′, µ3

′) and (µ1
′, µ2

′, µ3
′) = (µ1, µ2, µ3), then return m′.

//if r is fake and encodes correct (µ1, µ2, µ3), output encoded m′

3. Normal step: else decrypt (m′′, µ1
′′, µ2

′′)← DecK(µ3). If (µ1
′′, µ2

′′ = µ1, µ2) then output m′′, else
abort. //otherwise decrypt honestly

Program SFake(s,m, m̂, µ1, µ2, µ3; ρS)
1. Validity check: if P1(s,m) 6= µ1, then abort;
2. Normal step: else return EncKS (m̂, µ1, µ2, µ3, ρS) // output fake s with fake plaintext and the tran-

script inside.
Program RFake(m̂, µ1, µ2, µ3; ρR)

1. Normal step: return EncKR(m̂, µ1, µ2, µ3, ρR) // output fake r with fake plaintext and the transcript
inside

Figure 3: The programs of deniable encryption: first attempt. P1,P2,P3,Dec are deterministic;11SFake,
RFake are randomized.

If the parties want to show a coercing adversary that they transmitted m̂ instead, they can use SFake, RFake
to compute fake s′ and r′, which are random-looking strings with m̂, µ1, µ2, and µ3 encrypted inside. If the

9Note that s,m (and r, µ1) are both inputs to the PRF, not keys; we omit PRF keys for simplicity of notation.
11We treat s, r as non-random inputs, even though they are supposed to uniformly chosen, since they are reused across different

programs.
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adversary decrypts the transcript (µ1, µ2, µ3) with fake r′ = EncKR(m̂, µ1, µ2, µ3, ρR), it will get m̂ as a
result (via the trapdoor step of the decryption program). Similarly, the other programs, when given fake s′ or
r′ as input, employ their trapdoor steps as well, making each protocol message appear consistent with m̂.

The problem with the current scheme. We designed our scheme above with specific attacks in mind, but
is this scheme secure? The answer is “almost”: it is relatively easy to show security of the scheme in an
idealized model where parties (and the adversary) have only oracle access to the programs, but only as long as
the adversary cannot query SFake oracle. Concretely, the adversary can use SFake to mount a certain attack
on the scheme, but this attack turns out to be “the only one”. Once we put a special protection mechanism in
place - a comparison-based decryption behavior - we will be able to show that the scheme is fully secure
even if the adversary has an access to all oracles including SFake (and in the body of the paper we prove this
result even when the adversary can see the code of all programs, obfuscated under iO).

Let’s see why our current scheme is insecure. Recall that we wanted µ1 to be a “commitment”, and we
wanted P3 to output µ3 only if the sender can prove to P3 that it used the same s and m in the commitment
and as input to P3. This was important to make sure that for any µ1, µ2 at most one consistent µ3 is easily
computable. Then, however, we said that P3 should perform its validity check with respect to the whole
program P1 and not just the commitment; in particular, the validity check in P3 accepts not only the true
opening of the commitment, but also fake s. The problem is that P1, due to its trapdoor step, is not binding:
given any µ1

∗ = PRF(s∗,m0) and m1 6= m0, it is easy to generate a different s1 that passes the verification
check. In fact, SFake does exactly that: given (s∗,m0,m1, µ1

∗, µ2, µ3) for some µ2, µ3, it outputs s1 such
that P1(s1,m1) = µ1

∗.

While this is not a concrete attack yet, it exposes a problem with our initial hope of a committing first
message: sender-deniability guarantees an easy inversion of the first message, potentially with respect to
a wrong plaintext m; so µ1 cannot be a commitment. As a result, it must be easy to create many fake si
consistent with µ1, and therefore many third messages µ3

(1), µ3
(2), . . ., all consistent with a given (µ1

∗, µ2
∗)

(a procedure to do this is detailed in fig. 4; note that it is important that SFake should be run on a transcript
different from the one being attacked - more concretely, it should be run on a transcript with a different second
message). The important things to keep in mind for our scheme are:

• To generate such µ3
(i) encrypting some m1 for (µ1

∗, µ2
∗), one has to run P3 on a certain fake si;

• P3 can recognize when it is being used to generate µ3
(i). (Indeed, P3 should be run on a “mixed input”:

that is, P3 should be run on s,m, µ1
∗, µ2

∗, but fake si should encode, among other things, the same
µ1
∗ but different µ̃2 6= µ2

∗).

• The only way to generate such fake si efficiently is to run SFake.

Since it is easy to generate many third messages, our scheme is subject to the same attack as all 2-message
schemes: namely, the adversary can generate many ciphertexts µ3

(i), fake each of them to compute N -times
fake r(N), and then use it to correctly decrypt µ3

∗ in question. However, in 3-message case this can be fixed.
We do so by introducing levels and comparison-based decryption behavior, which specifies how exactly
the decryption program should act whenever the adversary tries to use such r(N) to decrypt a transcript
(µ1
∗, µ2

∗, µ3
(i)) or a challenge transcript (µ1

∗, µ2
∗, µ3

∗).
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A procedure to generate another third message encrypting m1 and consistent with given µ1, µ2.
Inputs to the procedure Ω are the transcript µ1

∗, µ2
∗, µ3

∗, randomness s∗ of the sender (which could be real
or fake), and plaintext m∗, and new desiged plaintext m1:
Ω(µ1

∗, µ2
∗, µ3

∗, s∗,m∗,m1):
1. Compute an auxiliary transcript t̃r = (µ1

∗, µ̃2, µ̃3) with the same first message µ1
∗, but different

second message µ̃2, by choosing fresh receiver randomness r̃ and setting t̃r← tr(s∗, r̃,m∗). Note that
the first message of this transcript is P1(s∗,m∗) = µ1

∗.
2. Compute s1 ← SFake(s∗,m∗,m1, µ1

∗, µ̃2, µ̃3). Note that s1 is fake randomness which remembers
m1, µ1

∗ and a new µ̃2 6= µ2
∗.

3. Compute µ3
(1) ← P3(s1,m1, µ1

∗, µ2
∗).

The procedure can now be repeated on input µ1
∗, µ2

∗, µ3
(1), s1,m1,m2 to generate µ3

(2), and so on.
Figure 4: Procedure Ω to compute many 3rd messages consistent with given µ1, µ2.

2.2 Levels, comparison-based decryption behavior, and our final scheme

Comparison-based decryption behavior. Let rj , for j = 0, . . . , T for a superpolynomial T , be the result
or running RFake on a transcript containing µ3

(j), and let µ3
(0) denote the challenge µ3

∗. Assume Dec is run
on rj and µ3

(i) for some i ∈ [0, . . . , T ]. Then Dec should do the following:

1. When j > i, Dec should output ⊥ (“oblivious past” rule);

2. When j < i, Dec should decrypt µ3
(i) correctly, as long as consistency checks pass (“correctness

forward” rule);

3. When j = i, Dec should decrypt µ3
(i) according to the instruction in fake rj .

In other words, if an adversary creates fake rj using µ3
(j) number j in the sequence of ciphertexts, this rj can

be used to decrypt honestly all ciphertexts “after” µ3
(j), but cannot be used to decrypt ciphertexts “before”

µ3
(j). µ3

(j) itself should be decrypted according to an instruction inside fake rj .

tr tr1 . . . tri−1 tri tri+1 tri+2 . . .

ri

Oblivious past:
decrypting with ri fails

Correctness forward:
decrypting with ri succeeds

Ω Ω Ω Ω Ω Ω Ω

RFake

Figure 5: Comparison-based decryption behavior

By adopting this comparison-based decryption behavior, we can avoid the attack described above, even
despite the fact that many third messages can be generated and tested by the adversary. Let us give some flavor
of why this particular behavior helps. Recall that the attack instructed the adversary to generate some fake
rj (by faking sufficiently many different ciphertexts µ3

(1), µ3
(2), . . . ,) and then “go back” to the challenge

µ3
∗ and decrypt it. Thus, the natural idea is to make Dec output ⊥ whenever fake rj is used to try to decrypt

the initial µ3
∗ = µ3

(0).12 This simple modification indeed stops the attack, but it cannot be implemented
alone: once it is in place, as it turns out, security of the scheme enforces that Dec on inputs rj , µ3

(i) should

12Note that such a restriction cannot be implemented in the 2-message case, but can be implemented in the 3-message case. This
is related to the fact that our procedure Ω which generates µ3

(i) is “one way”, i.e., it is easy to generate µ3
(i+1) from µ3

(i), but it
could be hard - and is hard in our scheme to generate µ3

(i) from µ3
(i+1). In contrast, in any 2-message scheme, there is no order on

the ciphertexts; they are always easy to generate.
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output ⊥ for all j > i, and not just j > i = 0 13. In other words, “oblivious past” rule is the “minimum”
modification which prevents fake rj from decrypting µ3

∗ = µ3
(0) and maintains security of the scheme.

Finally, let us note that “correctness forward” rule must be in place as well, since it is implied by sender-
deniability. As a result, the behavior of the decryption program depends on the comparison of “indices” of the
transcript and the receiver randomness; therefore we refer to this as comparison-based decryption behavior.

Implementing comparison-based decryption behavior: levels.

So far we didn’t discuss how exactly to write our programs such that comparison-based decryption behavior
is followed. Indeed, when we run Dec on some µ3 and some r, how does it know whether µ3 is “forward” of
r in the chain and Dec should decrypt honestly, or whether it is “in the past” so Dec should output ⊥?

We solve this by using levels: that is, we let all fake sender randomness, all fake receiver randomness, and all
third message µ3

(i) also encrypt a number ` between 0 and some superpolynomial T as follows:

• Fake sender randomness encrypts, among other things, a level ` which is how many times this
randomness was faked. (E.g., to compute fake randomness, the sender would normally run SFake
only once, so the level ` of the resulting fake randomness is 1. If it runs SFake on the resulting
randomness again, its level ` will be 2, and so on).

• Each potential third message µ3
(i) also encrypts, in addition to m and µ1, µ2, its level, which is

its index i in the chain. Note that the algorithm Ω which computes µ3
(i) outputs µ3

(1), µ3
(2), . . .

sequentially, and therefore their index i is well defined. In an honest execution, the level of µ3 is always
set to 0.

• Fake receiver randomness encrypts, in addition to other things, a level ` which is the level of its
“parent” transcript (i.e., the transcript which was used as input to RFake). (E.g., to compute fake
randomness, the receiver would run RFake on their honest transcript, which has level 0, therefore fake
randomness will get level 0).

We claim that storing this information in fake randomness and third messages is enough for the scheme to
maintain it correctly and follow the comparison-based decryption behavior. For instance, Dec can decide
what to do by comparing the levels inside r and µ3. RFake can record the correct level of r by copying
the level of its parent ciphertext. SFake can maintain the correct number of times something was faked, by
reading the level in its input s and incrementing it. P3, as discussed above, can detect when it is being run to
generate another third message, and it can put inside this third message the level it copied from input s; since
generating each new µ3 requires once-more fake s, the level in s - the number of times it was faked - will be
translated into an index of µ3 in the chain.

Our final protocol in the oracle-access model. We present our final protocol (albeit still in the oracle
model!) on fig. 6, fig. 7. This scheme is indeed a secure deniable encryption scheme in the oracle access
model, as we show in section 4. We briefly summarize the structure of the programs:

• Each program has a main step which is triggered when the program is run on uniformly random s or r,
which is the case during an honest execution;

13Some intuition for this is the following: suppose Dec outputs ⊥ whenever rj , j > 0 is used to decrypt µ3
∗ = µ3

(0). Now
considering trying to decrypt some µ3

(i) with, say, ri+3. r3 doesn’t decrypt µ3
(0), and the difference between µ3

(0), r3 and
µ3

(i), ri+3 is that µ3
(0) was generated with truly random s and µ3

(i) used si which was faked i times. One can show that
sender-deniability implies µ3

(i) should not be decrypted by ri+3 as well.
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• Programs P1,P2,P3,Dec also have a trapdoor step which is triggered when the programs receive
fake randomness (which has a special format and can be recognized by programs). The set of fake
randomness is sufficiently sparse, so the trapdoor step is almost never triggered on uniformly chosen s
or r. Fake randomness contains an “instruction” of how the program should behave on some particular
input.

• Programs P3 and Dec also have a “mixed input” step which is to prevent attacks using the fact that
many third messages µ3 can be generated. Concretely, P3 in mixed input step copies the level from
its input s into the third message µ3, ensuring that µ3 encrypts its own index in the sequence. Dec in
mixed input step implements comparison-based decryption behavior by comparing the levels inside µ3

and r.

This step is triggered when the program receives fake s (or r) as input, but the input to the program
doesn’t quite match the input in the instruction inside s (or r). Concretely, P3 enters mixed input step
when its input and fake s contain the same µ1 but different second messages, and Dec enters mixed
input step when its input and fake r contain the same µ1, µ2 but different third messages.

• Programs P3 and Dec have validity checks for the reason described in the motivation paragraph of our
first attempt.

• Programs SFake and RFake can generate fake randomness which can be recognized by other programs.
They are modified to maintain the correct levels: that is, SFake increments a level of the sender
randomness. RFake copies the level from the parent transcript into fake randomness.

The interesting cases of the protocol execution are summarized next.

• Normal execution of the protocol: executing programs on randomly chosen s∗, r∗ and plaintext m∗0
makes programs execute the main step and output µ1

∗ = PRF(s∗,m∗0), µ2
∗ = PRF(r∗, µ1

∗), and
µ3
∗ = EncK(m∗0, µ1

∗, µ2
∗, 0), where the last 0 is the level; Dec, given the resulting transcript as input,

outputs m∗0 via main step.

• Fake randomness of parties: The sender who wishes to claim that it sent m∗1 6= m∗0 in the protocol
can run SFake to obtain fake s′ encoding (m∗1, µ1

∗, µ2
∗, µ3

∗, 1), where the last 1 is the level. The
receiver who wishes to claim that it received m∗1 6= m∗0 in the protocol can run RFake to obtain fake r′

encoding (m∗1, µ1
∗, µ2

∗, µ3
∗, 0), where the last 0 is the level. Executing programs on fake s′ or fake r′

and m∗1 makes programs execute the trapdoor step, which tells them to output a hardwired value and
abort. Thus, P1 will output µ1

∗, P2 will output µ2
∗, P3 will output µ3

∗, and Dec will output m∗1 via
trapdoor step, making the transcript for plaintext m∗0 look consistent with m∗1.

• Efficiently computable related transcripts: it is only possible to compute related transcripts of the
form (µ1

∗, µ2
∗, µ3), where µ3 = EncK(m,µ1

∗, µ2
∗, `), ` ≥ 1; moreover, the only way of doing so

is to follow the procedure Ω described above (which includes running SFake). Trying to compute
µ3 for such transcript will make program P3 execute the “mixed input step”, ensuring that such µ3

indeed receives level ` ≥ 1; for this, it is important that SFake increments the level inside s. Trying to
decrypt such a related transcript (µ1

∗, µ2
∗, µ3) will make program Dec execute the “mixed input step”,

ensuring that the correct decryption behavior is observed (that fake r decrypts correctly transcripts with
larger level, but refuses to decrypt transcripts with smaller level); for this, it is important that RFake
copies the level from the transcript to r.

Outline of security proof in oracle-access model. Since the proof even in this simpler model is somewhat
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Programs P1,P3,SFake.
Program P1(s,m)

1. Trapdoor step:
(a) out← DecKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′; //if s is fake and encodes m, output encoded µ1
′

2. Main step:
(a) Return µ1 ← PRFkS (s,m). //otherwise output PRF(s,m)

Program P3(s,m, µ1, µ2)
1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← DecKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′; //if s is fake and encodes correct (m,µ1, µ2), output

encoded µ3
′

3. Mixed input step: If m,µ1 = m′, µ1
′ but µ2 6= µ2

′ then return µ3 ← EncK(m,µ1, µ2, `
′); //if s is

fake and encodes correct (m,µ1) but incorrect µ2
′, encrypt m with level copied from s

4. Main step:
(a) Return µ3 ← EncK(m,µ1, µ2, 0). //otherwise encrypt m with level 0

Program SFake(s,m, m̂, µ1, µ2, µ3)
1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← DecKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. If ` ≥ T then abort;
ii. Return EncKS (m̂, µ1, µ2, µ3, `+ 1). //if input s is already fake then output new fake s with

fake plaintext, the transcript, and incremented level
3. Main step:

(a) Return EncKS (m̂, µ1, µ2, µ3, 1). //otherwise output fake s with fake plaintext, the transcript, and
level 1

Figure 6: Programs P1,P3, SFake.

lengthy, we only outline the main steps, with intuition for each. The proof proceeds in 4 main steps. We start
with a real execution corresponding to plaintext m∗0, where the adversary receives real randomness s∗, r∗.

• Step 1: indistinguishability of explanations of the sender. Instead of giving the adversary real
s∗, we give it s′ = EncKS (m∗0, µ1

∗, µ2
∗, µ3

∗, ` = 0) (note that this s′ contains level 0, unlike fake
randomness produced by SFake which contains level at least 1).

Intuitively, the reason why we can switch from s∗ to s′ indistinguishably is because all programs treat
them in the same way. That is:

– either the programs output the same value, possibly using different parts of the program (e.g., P1
on input (s∗,m∗0) outputs µ1

∗ via main step and on input (s′,m∗0) outputs µ1
∗ via trapdoor step),

– or the programs execute the same code, possibly outputting different result (e.g., P1 on input
(s∗,m∗1) and (s′,m∗1) outputs a PRF of its input).

This observation, and the fact that the ciphertext s′ is pseudorandom, allow us to change s∗ to s′
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Programs P2,Dec,RFake.
Program P2(r, µ1)

1. Trapdoor step:
(a) out← DecKR(r); if out = ′fail′ then goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, L′, ρ̂);
(b) If µ1 = µ1

′ then return µ2
′; //if r is fake and encodes µ1, output encoded µ2

′

2. Main step:
(a) Return µ2 ← PRFkR(r, µ1). //otherwise output PRF(r, µ1)

Program Dec(r, µ1, µ2, µ3)
1. Validity check: if P2(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) out← DecKR(r); if out′ = ′fail′ then goto main step; else parse out′ as (m′, µ1
′, µ2

′, µ3
′, `′, ρ̂);

(b) if µ1, µ2, µ3 = µ1
′, µ2

′, µ3
′ then return m′; //if r is fake and encodes correct (µ1, µ2, µ3), output

encoded m′

(c) out← DecK(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1
′′, µ2

′′, `′′);
3. Mixed input step: If µ1, µ2 = µ1

′, µ2
′ but µ3 6= µ3

′ then
(a) If (µ1

′, µ2
′) = (µ1

′′, µ2
′′) and `′ < `′′ then return m′′; //if r is fake and encodes correct (µ1, µ2)

but incorrect µ3
′, decrypt honestly or abort, depending on whether the level in r is smaller than in

µ3 or not
(b) Else abort.

4. Main step:
(a) out← DecK(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1

′′, µ2
′′, `′′);

(b) If (µ1, µ2) = (µ1
′′, µ2

′′) then return m′′; //otherwise decrypt honestly
(c) Else abort.

Program RFake(m̂, µ1, µ2, µ3; ρ)
1. out← DecK(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1

′′, µ2
′′, `′′);

2. Return r′ ← EncKR(m̂, µ1, µ2, µ3, `
′′, prg(ρ)). // output fake r with fake plaintext, the transcript, and

the level copied from µ3

Figure 7: Programs P2,Dec,RFake.

(similarly to the [SW14] proof of deniable encryption).

• Step 2: indistinguishability of explanations of the receiver. Instead of giving the adversary real
r∗, we give it fake r′, i.e., r′ = EncKR(m∗0, µ1

∗, µ2
∗, µ3

∗, ` = 0, ρR). The proof is analogous to the
previous case, except that there is an input on which r∗ and r′ behave differently.

Recall that r∗ decrypts honestly all related transcripts, while r′ decrypts honestly only “forward”, i.e.,
related transcripts with level ` ≥ 1. Thus, level-0 transcripts are at risk of being treated differently.
Indeed, consider a transcript (µ1

∗, µ2
∗, µ3

∗), where µ3
∗ = EncK(m∗1, µ1

∗, µ2
∗, ` = 0) is like µ3

∗

except that it encrypts the wrong plaintext m∗1. This transcript decrypts correctly to m∗1 with r∗, but
decrypting it with r′ returns ⊥ since level comparison check fails.

This single transcript makes r∗ and r′ distinguishable, and as a result we cannot do the proof like in
step 1. Therefore, we first move to a hybrid where this “differing” transcript doesn’t exist. This is done
as follows. First, since s∗ (the preimage of PRF value µ1

∗) is not part of the distribution anymore, we
can move µ1

∗ outside the PRF image. Then we argue that P3 never outputs µ3
∗:

– The main step cannot output µ3
∗, since the main step is executed only if validity check passes via
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a correct PRF preimage, which now doesn’t exist.

– The mixed step cannot output µ3
∗. To make the mixed step output a ciphertext with level 0

(like µ3
∗), one has to give P3 as input randomness with level 0. However, it is hard to find such

randomness since SFake never outputs randomness with level 0.

– The trapdoor step can only output µ3
∗ if we give P3 fake randomness with µ3

∗ inside to begin
with. Since there are no other means of computing µ3

∗, such randomness is also hard to find and
therefore this step also doesn’t output µ3

∗.

Once the differing transcript (µ1
∗, µ2

∗, µ3
∗) is eliminated, we can switch r∗ to r′ similar to the previous

step.

• Step 3: indistinguishability of plaintexts. The next step is to switch µ3
∗ from encrypting m∗0 to m∗1.

This is done by “detaching” µ3
∗ from its key K in programs P3 and Dec. Concretely:

– P3 can only output µ3
∗ via the trapdoor thread (which doesn’t use the key K). The reason is very

similar to the case-by-case analysis of P3 above: the main step requires the preimage of the PRF,
which doesn’t exist, and the mixed step requires level-0 sender randomness, which is hard to find.

– Dec can only “decrypt” µ3
∗ via the trapdoor thread (which, again, doesn’t use K). To guarantee

this, we first move µ2
∗ outside of the image of the PRF (this is possible since r∗ is not part of the

distribution anymore). As a result, µ3
∗ is never decrypted via the main step because the preimage

for µ2
∗ doesn’t exist. Further, µ3

∗ cannot be decrypted in the mixed step either, because, due to
“forward decryption” rule, it requires receiver randomness with level smaller than level in µ3

∗ -
which doesn’t exist since µ3

∗ has the smallest possible level, 0.

In other words, neither P3 nor Dec need to use K to encrypt or decrypt µ3
∗. Therefore we can “detach”

K and µ3
∗ and change the plaintext to m∗1.

Note that the transcript now contains m∗1, and both randomness s′, r′ are consistent with m∗0. However,
the proof is not finished yet since parties cannot produce such s′ themselves (since it contains level 0
instead of 1).

• Step 4: indistinguishability of levels. The last step is to change the level inside s′ from 0 to 1,
i.e., generate s′ = EncKS (m∗0, µ1

∗, µ2
∗, µ3

∗, ` = 1). To understand the challenge of this step, it is
instructive to take a “level-centric” point of view: let’s forget that the scheme is about transmitting
plaintexts, and instead think about fake s as an encryption of level (0 or 1), think about µ3

∗ as an
encryption of level 0, and think about programs of deniable encryption as programs which allow
homomorphic operations on encrypted levels. For example, program SFake outputs fake randomness
which is an encryption of incremented level, and thus implements a homomorphic Increment operation
on levels. Program Dec compares levels inside µ3 and r and, based on that, decides whether to decrypt,
and thus it implements a homomorphic isLess function on levels, which reveals (in the clear) if one
level is smaller than the other.

In other words, step 4 essentially requires switching s′ from an encryption of 0 to an encryption of 1,
while the adversary has access to homomorphic functions Increment and isLess14. In the oracle-access
model, it can be easily shown that polynomially bounded adversaries cannot distinguish between Enc(0)
and Enc(1), even given access to isLess and Increment oracles, as long as the largest allowed level

14Recall that the adversary also has µ3
∗ which is an encryption of level 0. For simplicity, we ignore this fact in this high-level

overview.
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T is superpolynomial: this is because the adversary can only generate polynomial-length sequences
of encryptions — Enc(1),Enc(2), . . . or Enc(2),Enc(3), . . . (depending on whether the challenge
ciphertext was Enc(0) or Enc(1)) — but the oracles’ behavior will be identical on both sequences.

This concludes the proof outline in the model where programs are given as oracles. We underline that in the
actual construction we need special types of PRFs, encryption schemes, and a special primitive called the
level system to be able to prove security with iO. The proof of steps 1 - 3 in the actual construction roughly
follows the same outline (sometimes with several hybrids per each logical step), but the proof of the step
4 (indistinguishability of levels) itself requires a lot of work, when the adversary possesses the code of the
programs; we outline the intuition and the main steps of the proof for this step in section 7.3.

3 Defining bideniable and off-the-record-deniable encryption

We present the definition of interactive deniable encryption, or, more formally, interactive deniable message
transmission. In Section 3.1 we present the definition in the CRS model; this definition corresponds to our
main construction. In Section 3.2 we present the definition for the idealized, oracle access model.

3.1 Deniability in the CRS Model

Syntax. An interactive deniable encryption scheme π consists of seven algorithms π =
(Setup,P1,P2,P3,Dec,SFake,RFake), where Setup is used to generate the public programs (i.e. the CRS),
programs P1, P3 and SFake are programs of the sender, and programs P2, Dec and RFake are programs of the
receiver. We let the transcript tr = π(s, r,m) of an execution of the scheme on inputs m and random input s
of the sender, and random input r of the receiver denote the sequence of three messages sent in this execution.
That is, π(s, r,m) = tr = (µ1, µ2, µ3), where µ1 = P1(s,m), µ2 = P2(r, µ1), and µ3 = P3(s,m, µ1, µ2).

The faking algorithms have the following syntax: SFake(s,m,m′, tr; ρ) expects to take a transcript tr along
with the true random coins s and true plaintext m, which were used to compute tr. It also needs the desired
fake plaintext m′, and its own randomness ρ. RFake follows the same syntax except that it expects the
receiver randomness r instead of sender randomness s.

Bideniable and off-the-record-deniable encryption in the CRS model. Below we define standard and
off-the-record deniability for interactive deniable encryption in the CRS model. For simplicity, we concentrate
on bit encryption. The definitions can be naturally extended to multi-bit plaintexts.

Formally, the deniable encryption algorithms should take the CRS as input. We omit this for notational
simplicity as it is unnecessary in our construction (where the CRS contains the programs, and the programs
do not take the CRS as input).

Definition 1. Bideniable bit encryption in the CRS model. π = (Setup,P1,P2,P3, Dec, SFake,RFake)
is a 3-message bideniable interactive encryption scheme for message spaceM = {0, 1}, if it satisfies the
following correctness and bideniability properties:

• Correctness: There exists a negligible function ν(λ) such that for at least (1 − ν)-fraction of ran-
domness rSetup ∈ {0, 1}|rSetup|, the following holds: let CRS← Setup(rSetup). Then for any m ∈M
Pr[m′ 6= m : s ← {0, 1}|s| , r ← {0, 1}|r| , tr ← π(s, r,m),m′ ← Dec(r, tr)] ≤ ν(λ), where the
probability is taken over the choices of s and r.

23



• Bideniability: No PPT adversary Adv wins with more than negligible advantage in the following
game, for any m0,m1 ∈M:

1. The challenger chooses random rSetup and generates CRS← Setup(rSetup). It also chooses a
bit b at random.

2. If b = 0, then the challenger behaves as follows:

(a) It chooses random s∗, r∗ and computes tr∗ = π(s∗, r∗,m0).

(b) It gives the adversary (CRS,m0,m1, s
∗, r∗, tr∗).

3. If b = 1, then the challenger behaves as follows:

(a) It chooses random s∗, r∗ and computes tr∗ ← π(s∗, r∗,m1);

(b) s′ ← SFake(s∗,m1,m0, tr∗; ρS) and r′ ← RFake(r∗,m1,m0, tr∗; ρR), for randomly cho-
sen ρS , ρR.

(c) It gives the adversary (CRS,m0,m1, s
′, r′, tr∗).

4. Adv outputs b′ and wins if b = b′.

Next we define off-the-record deniability. We define it for an arbitrary message space, since having |M| > 2
allows for an extra case when plaintexts claimed by the sender, by the receiver, and the real plaintext are three
different strings (case b = 2 in the definition below).

Definition 2. Off-the-record deniable encryption in the CRS model. We say that a scheme is off-the-
record-deniable, if it satisfies correctness as above and has the following property:

Off-the-record deniability: No PPT adversary Adv wins with more than negligible advantage in the
following game, for any m0,m1,m2 ∈M:

1. The challenger chooses random rSetup and generates CRS← Setup(rSetup). It also chooses random
b ∈ {0, 1, 2}.

2. If b = 0, then the challenger generates the following variables:

(a) The challenger chooses random s∗, r∗ and computes tr∗ ← π(s∗, r∗,m0);

(b) It sets r′ ← RFake(r∗,m0,m1, tr∗; ρR) for randomly chosen ρR.

(c) It gives the adversary (CRS,m0,m1,m2, s
∗, r′, tr∗).

3. If b = 1, then the challenger generates the following variables:

(a) The challenger chooses random s∗, r∗ and computes tr∗ ← π(s∗, r∗,m1);

(b) It sets s′ ← SFake(s∗,m1,m0, tr∗; ρS) for randomly chosen ρS .

(c) It gives the adversary (CRS,m0,m1,m2, s
′, r∗, tr∗).

4. If b = 2, then the challenger generates the following variables:

(a) The challenger chooses random s∗, r∗ and computes tr∗ ← π(s∗, r∗,m2);

(b) It sets s′ ← SFake(s∗,m2,m0, tr∗; ρS) for randomly chosen ρS .

(c) It sets r′ ← RFake(r∗,m2,m1, tr∗; ρR) for randomly chosen ρR.
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(d) It gives the adversary (CRS,m0,m1,m2, s
′, r′, tr∗).

5. Adv outputs b′ and wins if b = b′.

We say that an encryption scheme is bideniable (resp., off-the-record deniable) with (t, ε)-security, if for any
size-t adversary distinguishing advantage in bideniability (resp., off-the-record deniability) game is at most ε.

Single-execution security implies multi-execution security. In definitions 4 and 2, the CRS is global (i.e.,
non-programmable). These definitions do not involve simulation and the same set of programs is used
throughout. Furthermore, even though definitions 4 and 2 consider a single protocol execution, a simple
hybrid argument shows that security of a single execution implies security of arbitrarily polynomially many
executions with the same set of programs.15

Definition 3. Public receiver-deniability. A deniable scheme has public receiver-deniability if the receiver
faking algorithm RFake takes as input only the transcript tr and fake plaintext m′ (not true random coins of
the receiver r∗ and true plaintext m).

3.2 Deniability in The Oracle Access Model

In the oracle access model the algorithms P1,P2,P3,Dec, SFake,RFake are replaced by oracles. That
is, an interactive deniable encryption scheme π in the oracle access model consists of six oracles π =
(P1,P2,P3,Dec,SFake,RFake). As before, oracles P1, P3 and SFake are used by the sender, and oracles
P2, Dec and RFake are used by the receiver. As begfore, we let the transcript tr = π(s, r,m) of an execution
of the scheme on inputs m and random input s of the sender, and random input r of the receiver denote
the sequence of three messages sent in this execution. That is, π(s, r,m) = tr = (µ1, µ2, µ3), where
µ1 = P1(s,m), µ2 = P2(r, µ1), and µ3 = P3(s,m, µ1, µ2).

The faking oracles have the following syntax: SFake(s,m,m′, tr; ρ) expects to take a transcript tr along with
the true random coins s and true plaintext m, which were used to compute tr. It also needs the desired fake
plaintext m′, and its own randomness ρ. RFake follows the same syntax except that it expects the receiver
randomness r instead of sender randomness s.

Deniable encryption in the oracle access model. For the oracle access model, we concentrate on plain
bideniability. As before, the definitions can be naturally extended to multi-bit plaintexts.

Definition 4. Bideniable bit encryption in the Oracle Access Model. π = (P1,P2,P3,
Dec,SFake,RFake) is a 3-message bideniable interactive encryption scheme for message spaceM = {0, 1},
if it satisfies the following correctness and bideniability properties:

• Correctness: For any m ∈ M Pr[m′ 6= m : s ← {0, 1}|s| , r ← {0, 1}|r| , tr ← π(s, r,m),m′ ←
Dec(r, tr)] = 0. (Here the probability is taken over the initial random choices of the oracles and rhw
choices of s and r.

• Bideniability: No PPT adversary Adv wins with more than negligible advantage in the following
game, for any m0,m1 ∈M:

1. The challenger samples the six oracles and gives Adv access to them. It also chooses a bit b at
random.

15Indeed, we can change all executions from real to fake one by one, where the reduction from a single-execution security will
generate other executions on its own, since knowing the CRS (but not its generation randomness) suffices to run all programs.
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2. If b = 0, then the challenger behaves as follows:

(a) It chooses random s∗, r∗ and computes tr∗ = π(s∗, r∗,m0).

(b) It gives the adversary (m0,m1, s
∗, r∗, tr∗).

3. If b = 1, then the challenger behaves as follows:

(a) It chooses random s∗, r∗ and computes tr∗ ← π(s∗, r∗,m1);

(b) s′ ← SFake(s∗,m1,m0, tr∗; ρS) and r′ ← RFake(r∗,m1,m0, tr∗; ρR), for randomly cho-
sen ρS , ρR.

(c) It gives the adversary (m0,m1, s
′, r′, tr∗).

4. Adv outputs b′ and wins if b = b′.

4 Deniable Encryption in Oracle-Access model

In this section we construct and prove security of our deniable encryption scheme assuming that parties and
adversaries only have oracle access to the programs of deniable encryption.

We stress that our main result — deniable encryption in the CRS model described in section 6 — does not
use any results from this section and can be read independently. The goal of this section is to describe a
simplified construction with a relatively short proof of security, to help the reader verify the result.

Our scheme is described on fig. 8, and it assumes that all parties — senders, receivers, and adversaries —
have access to oracles described in fig. 9, fig. 10. These oracles compute messages of deniable encryption, as
well as compute fake random coins for parties.

Notation and primitives.

Let s and r denote thte randomness of the sender and the receiver, respectively, and let µ1, µ2, µ3 denote the
three messages of the protocol. P1,P2,P3,Dec,SFake,RFake are the oracles computing the corresponding
messages of deniable encryption, performing decryption, and faking coins for the sender and the receiver,
respectively. For instance, to compute the first message, the sender should query the oracle P1 on input
(s∗,m) for uniformly chosen s∗.

We now specify the syntax. P1(s,m) takes as input sender randomness s and plaintext m and outputs
the first message µ1. P2(r, µ1) takes as input receiver randomness r and first message µ1 and outputs
the second message µ2. P3(s,m, µ1, µ2) takes as input sender randomness s, plaintext m, and protocol
messages µ1, µ2 and outputs the last message µ3. Dec(r, µ1, µ2, µ3) takes as input receiver randomness r
and protocol messages µ1, µ2, µ3 and outputs the plaintext m. SFake(s,m, m̂, µ1, µ2, µ3) takes as input
sender randomness s, true plaintext m, new (fake) plaintext m̂, and protocol messages µ1, µ2, µ3 and outputs
fake randomness s′ which makes µ1, µ2, µ3 look consistent with m̂. RFake(m̂, µ1, µ2, µ3) takes as input new
(fake) plaintext m̂ and protocol messages µ1, µ2, µ3 and outputs fake randomness r′ which makes µ1, µ2, µ3

look consistent with m̂.

Our oracles use hashes H1, H2, H3 and encryption schemes with keys KS ,KR,K. We underline that these
primitives are “ideal”: that is, the description of each hash H1, H2, H3 is a table {(xi, yi)} specifying the
output yi for each input xi. The description of each key KS ,KR,K is a table specifying the ciphertext ci for
each input xi; all three encryption schemes are deterministic (that is, they only take the plaintext as input, and
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do not sample any additional random coins.). All these primitives are ideal in the sense that all images of all
encryption schemes and hashes are chosen uniformly at random.

For convenience, we denote by S,R,M,H1,H2,H3 the image of sender-fake encryption scheme (with key
KS), receiver-fake encryption scheme (with key KR), the main encryption scheme (with key K), and hashes
H1, H2, H3, respectively.

In our construction fake randomness is itself an encryption of several variables - e.g. fake sender randomness
s encrypts m,µ1, µ2, µ3, `. Because of this, it is convenient to refer to a particular “field” of a decrypted
value, which we will denote, following programming languages notation, by DecKS (s).m, DecKS (s).µ1,
DecKS (s).µ2, DecKS (s).µ3, DecKS (s).`; similarly, we will be referring to different fields of µ3 by using
DecK(µ3).m, DecK(µ3).µ1, DecK(µ3).µ2, DecK(µ3).`.

The choice of parameters. We set T to be superpolynomial in the security parameter (e.g. T = λlog λ). We
set the size of each ciphertext and hash image to be large enough so that the image of each encryption or hash
is sparse. In particular, let us set |µ1| = |µ2| = 2λ, |µ3| = 7λ, |s| = |r| = 16λ, |`| = λ. Further, we make
the images size of H1 and H2 to be 2λ each. This means that H1 is a function from |s|+ 1 bits to 2λ bits
(with image size 2λ), H2 is a function from |µ1|+ |r| bits to 2λ bits (with image size 2λ), H3 is a function
from λ bits to 2λ bits. This choice of parameters ensures that each encryption and hash have sufficiently
sparse images and therefore the probability of randomly chosen string to be in their image is negligible in λ16.
Finally, note that the set S should be sparse enough so that T ∗ |S|/2|s| remains negligible (indeed, this is
true for our choice of parameters: the size of S is 2|m|+|µ1|+|µ2|+|µ3|+|`| = 21+2λ+2λ+7λ+λ < 213λ, T < 2λ,
and 2|s| = 216λ).

Finally, we note that this choice of parameters also ensures correctness of encryption schemes with keys
K,KS ,KR: namely, it ensures that for any fixed µ3 ∈M, the probability over the choice of K that it has
more than one preimage is negligible (indeed, this probability is bounded by |M|2−|µ3| < 2−λ). The same
holds for any fixed s over the choice of key KS , and any fixed r over the choice of key KR.

4.1 Construction

The protocol is described in fig. 8. It simply instructs parties to run the programs P1,P2,P3,Dec to encrypt
and decrypt, and SFake,RFake to fake (described in fig. 9 and 10). Note that deniability of the receiver is
public, since the knowledge of randomness of the receiver is not required in order to run RFake.

We assume that a program outputs⊥ if any of its underlying primitives outputs⊥, except where it is explicitly
written otherwise. For instance, if a program tries to decrypt a ciphertext which is not in the image of the
corresponding encryption scheme, this program outputs ⊥.

4.2 Proof of correctness and security.

In short, correctness of the scheme follows from correctness of underlying ideal encryption and the fact that
the sets S andR of fake randomness are sparse (the latter is important because oracles do not perform correct

16The exact choice of parameters comes from the following: the purpose of setting |µ1| = |µ2| = 2λ is to make sure that the
images of hashes H1, H2 are sparse enough (each hash H1, H2 has 2λ different images). By setting |µ3| = 7λ, we make sure
the set of valid ciphertexts µ3 under key K is also sparse (indeed, note that the size of the plaintext which is encrypted in µ3 is
|m| + |µ1| + |µ2| + |`| = 1 + 2λ + 2λ + λ < 6λ). Finally, by setting |s| = |r| = 16λ we make sure that the set of valid
ciphertexts under keys KS ,KR is sparse as well: indeed, note that the size of plaintexts encrypted inside fake s, r is at most
|m|+ |µ1|+ |µ2|+ |µ3|+ |`|+ |H3(ρ)| < 1 + 2λ+ 2λ+ 7λ+ λ+ 2λ < 15λ.
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Programs: P1,P2,P3, Dec, SFake,RFake, described in fig. 9, fig. 10. These programs are only accessible
via oracle access.

Our interactive deniable encryption:
Inputs: plaintext m ∈ {0, 1} of the sender.

1. Message 1: The sender chooses random s∗, computes µ1
∗ ← P1(s∗,m) and sends µ1

∗ to the receiver.
2. Message 2: The receiver chooses random r∗, computes µ2

∗ ← P2(r∗, µ1
∗) and sends µ2

∗ to the
sender.

3. Message 3: The sender computes µ3
∗ ← P3(s∗,m, µ1

∗, µ2
∗) and sends µ3

∗ to the receiver.
4. The receiver runs m′ ← Dec(r∗, µ1

∗, µ2
∗, µ3

∗).

Sender Coercion:
Inputs: real plaintext m ∈ {0, 1}, fake plaintext m̂ ∈ {0, 1}, real random coins s∗ of the sender, and the
protocol transcript µ1

∗, µ2
∗, µ3

∗.
1. Upon coercion, the sender computes fake randomness s′ ← SFake(s∗,m, m̂, µ1

∗, µ2
∗, µ3

∗).

Receiver Coercion:
Inputs: fake plaintext m̂ ∈ {0, 1} and the protocol transcript µ1

∗, µ2
∗, µ3

∗.
1. Upon coercion, the receiver chooses random ρ∗ and computes fake randomness r′ ←

RFake(m̂, µ1
∗, µ2

∗, µ3
∗; ρ∗).

Figure 8: Our interactive deniable encryption scheme.

encryption / decryption operations when run on randomness from S,R, which parties may accidentally pick
as their random coins).

More concretely, recall that s∗, chosen uniformly at random, belongs to set S only with negligible probability;
the same holds for r∗ andR. This means that, in the protocol execution for plaintext m and uniformly chosen
s∗, r∗, except with negligible probability, the transcript (µ1

∗, µ2
∗, µ3

∗) will be generated as follows:

• µ1
∗ = H1(s∗,m);

• µ2
∗ = H2(r∗, µ1

∗);

• µ3
∗ = EncK(m,µ1

∗, µ2
∗, 0),

and therefore Dec(r∗, µ1
∗, µ2

∗, µ3
∗) will return the correct plaintext m via the main step.

To prove security of the scheme, we show that for any (potentially unbounded) adversaryA which makes only
polynomial number of queries to the oracle, the distributions H0 and H11,7 are statistically indistinguishable,
whereH0 corresponds to the output of the adversary which sees the real execution of the protocol for plaintext
m0, together with real randomness s∗, r∗, and H11,7 corresponds to the output of the adversary which sees
the execution of the protocol for plaintext m1, together with fake randomness s′, r′ which makes it look
consistent with m0. To prove this, we consider intermediate hybrid distributions {Hi} and show that for each
i the distributions Hi and Hi−1 are statistically indistinguishable. For this proof in the oracle-access model,
we will consider the case m0 6= m1 ∈ {0, 1}.

Below we describe each hybrid experiment. For convenience, we mark the changes from the previous
experiment in red.
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Oracles P1,P3,SFake.
Oracle P1(s,m)
Inputs: sender randomness s, plaintext m.
Hardwired values: key KS of sender-fake encryption scheme, hash H1 with sparse image.

1. Trapdoor step:
(a) If s ∈ S and DecKS (s).m = m, then return DecKS (s).µ1;

2. Main step:
(a) Else return H1(s,m).

Oracle P3(s,m, µ1, µ2)
Inputs: sender randomness s, plaintext m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: key KS of sender-fake encryption scheme, key K of main encryption scheme.

1. Validity check:
(a) If P1(s,m) 6= µ1 then ⊥;

2. Trapdoor step:
(a) If s ∈ S and (DecKS (s).m,DecKS (s).µ1,DecKS (s).µ2) = (m,µ1, µ2) then return

DecKS (s).µ3;
3. Mixed input step:

(a) Else if s ∈ S and (DecKS (s).m,DecKS (s).µ1) = (m,µ1) then return
EncK(m,µ1, µ2,DecKS (s).`);

4. Main step:
(a) Else return EncK(m,µ1, µ2, 0).

Oracle SFake(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real plaintext m, fake plaintext m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: key KS of sender-fake encryption scheme, upper bound T .

1. Validity check:
(a) If P1(s,m) 6= µ1 then ⊥;

2. Trapdoor step:
(a) If s ∈ S and (DecKS (s).m,DecKS (s).µ1) = (m,µ1) then

i. If DecKS (s).` = T then ⊥;
ii. Else return EncKS (m̂, µ1, µ2, µ3,DecKS (s).`+ 1).

3. Main step:
(a) Else return EncKS (m̂, µ1, µ2, µ3, 1).

Figure 9: Programs P1,P3,SFake. S,R,M,H1,H2,H3 denote the image of sender-fake encryption
scheme (with key KS), receiver-fake encryption scheme (with key KR), the main encryption scheme (with
key K), and hashes H1, H2, H3, respectively.
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Oracles P2,Dec,RFake.
Oracle P2(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: key KR of receiver-fake encryption scheme, hash H2 with sparse image.

1. Trapdoor step:
(a) If r ∈ R and DecKR(r).µ1 = µ1, then return DecKR(r).µ2;

2. Main step:
(a) Return H2(r, µ1).

Oracle Dec(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: key KR of receiver-fake encryption scheme, key K of the main encryption scheme,
upper bound T .

1. Validity check:
(a) If P2(r, µ1) 6= µ2 then ⊥;

2. Trapdoor step:
(a) If r ∈ R and (DecKR(r).µ1,DecKR(r).µ2,DecKR(r).µ3) = (µ1, µ2, µ3) then return

DecKR(r).m;
3. Mixed input step:

(a) If r ∈ R and (DecKR(r).µ1,DecKR(r).µ2) = (µ1, µ2) then
i. If µ3 ∈ M and (µ1, µ2) = (DecK(µ3).µ1,DecK(µ3).µ2) and DecKR(r).` < DecK(µ3).`

then return DecK(µ3).m;
ii. Else ⊥.

4. Main step:
(a) If µ3 ∈M and (DecK(µ3).µ1,DecK(µ3).µ2) = (µ1, µ2) then return DecK(µ3).m;
(b) Else ⊥.

Oracle RFake(m̂, µ1, µ2, µ3; ρ)
Inputs: fake plaintext m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: key KR of receiver-fake encryption scheme, key K of the main encryption scheme,
function H3 with a sparse image.

1. If µ3 ∈ M and DecK(µ3).µ1 = µ1 and DecK(µ3).µ2 = µ2 then return
EncKR(m̂, µ1, µ2, µ3,DecK(µ3).`,H3(ρ));

2. Else ⊥.
Figure 10: Oracles P2,Dec,RFake. S,R,M,H1,H2,H3 denote the image of sender-fake encryption
scheme (with key KS), receiver-fake encryption scheme (with key KR), the main encryption scheme (with
key K), and hashes H1, H2, H3, respectively.
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By writing AO(x) we mean the output of adversary A on input x, where the adversary has oracle access to
algorithm O.

• H0 : AP1,P2,P3,Dec,SFake,RFake(m0,m1, s
∗, r∗, µ1

∗, µ2
∗, µ3

∗), where s∗, r∗ are chosen uniformly at
random, µ1

∗ = P1(s∗,m0), µ2
∗ = P2(r∗, µ1

∗), µ3
∗ = P3(s∗,m0, µ1

∗, µ2
∗).

This experiment corresponds to the adversary observing the execution of the protocol with plaintext
m0, who is given true randomness s∗, r∗.

• H1 : AP1,P2,P3,Dec,SFake,RFake(m0,m1, s
∗, r∗, µ1

∗, µ2
∗, µ3

∗), where s∗, r∗ are chosen uniformly at
random, µ1

∗ = H1(s∗,m0), µ2
∗ = H2(r∗, µ1

∗), µ3
∗ = EncK(m0, µ1

∗, µ2
∗, 0). If s∗ ∈ S or r∗ ∈ R,

the experiment aborts.

This experiment is similar to the previous one, except that it aborts if s∗ ∈ S or r∗ ∈ R, which happens
with negligible probability. Thus, this experiment is statistically close to the previous one.

Since s∗ 6∈ S, we explicitly write µ1
∗ = H1(s∗,m0), instead of µ1

∗ = P1(s∗,m0); similar with
µ2
∗, µ3

∗.

• H2 : AP1,P2,P3,Dec,SFake,RFake(m0,m1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where s∗, r∗ are chosen uniformly
at random, µ1

∗ = H1(s∗,m0), µ2
∗ = H2(r∗, µ1

∗), µ3
∗ = EncK(m0, µ1

∗, µ2
∗, 0), and s′ =

EncKS (m0, µ1
∗, µ2

∗, µ3
∗, 0). If s∗ ∈ S or r∗ ∈ R, the experiment aborts.

This experiment is similar to the previous one, except that the adversary receives sender randomness s′

which comes from a fake set S , instead of true s∗. Note that s′ = EncKS (m0, µ1
∗, µ2

∗, µ3
∗, 0), i.e. s′

so far has level 0, and contains the fake plaintext m0 which is the same as the real plaintext.

We argue that this experiment is identical to the previous one. Roughly, this is because all oracles,
given s∗ or s′ as input, output either the same values or identically distributed ones. Indeed, lets analyze
how s∗ and s′ are used within the oracles:

1. Oracle P1 contains the following entries which include s∗ or s′:

(a) Entries s∗,m0 → µ1
∗ (in the main step) and s′,m0 → µ1

∗ (in the trapdoor step),

(b) Entries s∗,m1 → H1(s∗,m1) and s′,m1 → H1(s′,m1) (both in the main step).

2. Oracle P3 contains the following entries which include s∗ or s′:

(a) Entries s∗,m0, µ1
∗, µ2

∗ → µ3
∗ (in the main step) and s′,m0, µ1

∗, µ2
∗ → µ3

∗ (in the
trapdoor step),

(b) For every string µ2 6= µ2
∗ of the correct length, there are entries

s∗,m0, µ1
∗, µ2 → EncK(m,µ1

∗, µ2, 0) (in the main step) and s′,m0, µ1
∗, µ2 →

EncK(m,µ1
∗, µ2,DecKS (s′).`) = EncK(m,µ1

∗, µ2, 0) (in the mixed input step)17,

(c) For every string (m,µ1, µ2) of the correct length, such that µ1 = H1(s∗,m), there is an
entry s∗,m, µ1, µ2 → EncK(m,µ1, µ2, 0) (in the main step). Since these entries for the
case (m,µ1) = (m0, µ1

∗) were already accounted for in steps 1 and 2, here we consider
the case (m,µ1) 6= (m0, µ1

∗). For all remaining strings (m,µ1, µ2) there is an entry
s∗,m, µ1, µ2 → ⊥ (in the validity check).

In addition, for every string (m,µ1, µ2) of the correct length, such that µ1 = H1(s′,m)

17Indeed, note that DecKS (s′).` = 0.
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and (m,µ1) 6= (m0, µ1
∗)18, there is an entry s′,m, µ1, µ2 → EncK(m,µ1, µ2, 0) (in the

main step). For all remaining strings (m,µ1, µ2) there is an entry s∗,m, µ1, µ2 → ⊥ (in the
validity check).

3. Oracle SFake contains the following entries which include s∗ or s′:

(a) For every string (m̂, µ2, µ3) of the correct length, there is an entry s∗,m0, m̂, µ1
∗, µ2, µ3 →

EncKS (m̂, µ1
∗, µ2, µ3, 1) (in the main step), and an entry s′,m0, m̂, µ1

∗, µ2, µ3 →
EncKS (m̂, µ1

∗, µ2, µ3, 1) (in the trapdoor step)19.

(b) For every string (m, m̂, µ1, µ2, µ3) of the correct length, such that µ1 = H1(s∗,m), there
is an entry s∗,m, m̂, µ1, µ2, µ3 → EncKS (m̂, µ1, µ2, µ3, 1) (in the main step). Since these
entries for the case (m,µ1) = (m0, µ1

∗) were already accounted for in step 1, here we
consider the case (m,µ1) 6= (m0, µ1

∗). For all remaining strings (m, m̂, µ1, µ2, µ3) there
is an entry s∗,m, m̂, µ1, µ2, µ3 → ⊥ (in the validity check).

In addition, for every string (m, m̂, µ1, µ2, µ3) of the correct length, such that µ1 =
H1(s′,m) and (m,µ1) 6= (m0, µ1

∗)20, there is an entry s′,m, m̂, µ1, µ2, µ3 →
EncKS (m̂, µ1, µ2, µ3, 1) (in the main step). For all remaining strings (m, m̂, µ1, µ2, µ3)
there is an entry s′,m, m̂, µ1, µ2, µ3 → ⊥ (in the validity check).

Note that in all cases s∗ and s′ participate either in identical entries (such as cases 1(a), 2(a), 2(b), 3(a))
or in entries which have the same distribution (cases 1(b), 2(c), 3(b)), and recall that s∗ and s′ are
themselves uniformly chosen strings. Therefore this experiment is identical to the previous one.

• H3 : AP1,P2,P3,Dec,SFake,RFake(m0,m1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where s∗, r∗ are chosen uniformly
at random, µ1

∗ = H1(s∗,m0), µ2
∗ = H2(r∗, µ1

∗), µ3
∗ = EncK(m0, µ1

∗, µ2
∗, 0), and s′ =

EncKS (m0, µ1
∗, µ2

∗, µ3
∗, 0). If s∗ ∈ S or r∗ ∈ R, the experiment aborts. If the adversary queries any

oracle on any input containing s∗, the experiment aborts.

This experiment is similar to the previous one, except that it aborts if the adversary ever issues a query
containing s∗. Note that s∗ is a uniformly random variable which is independent of the oracles’ output;
thus the adversary could query s∗ only by guessing it, which happens with negligible probability.
Therefore, this experiment is statistically close to the previous one.

• H4 : AP1,P2,P3,Dec,SFake,RFake(m0,m1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where r∗ is chosen uniformly at ran-
dom, µ1

∗ is chosen uniformly at random independently of H1, µ2
∗ = H2(r∗, µ1

∗), µ3
∗ =

EncK(m0, µ1
∗, µ2

∗, 0), and s′ = EncKS (m0, µ1
∗, µ2

∗, µ3
∗, 0). If r∗ ∈ R or µ1

∗ ∈ H1, the ex-
periment aborts.

This experiment is similar to the previous one, except that µ1
∗ which is given to the adversary is chosen

uniformly at random, instead of being set to its proper value H1(s∗,m0) (in particular, µ1
∗ is different

from the value H1(s∗,m0) which is stored by the oracles). Further, we also change the experiment to
abort if uniformly random µ1

∗ is in the imageH1 of H1, which happens with negligible probability.
Finally, note that s∗ is not part of the experiment anymore and there is no need to generate it.

Note that the only way for the adversary to check if the oracle stores µ1
∗ or H1(s∗,m0) is to query it

on some preimage (s,m) of H1(s∗,m0), which can only happen with negligible probability. Therefore

18Indeed, if (m,µ1) = (m0, µ1
∗), then P3 on input s′ uses either trapdoor step or mixed input step, but never the main step.

19Indeed, note that DecKS (s′).`+ 1 = 1
20Indeed, if (m,µ1) = (m0, µ1

∗), then SFake on input s′ uses trapdoor step, but never the main step.
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this experiment is statistically close to the previous one.

• H5 : AP1,P2,P3,Dec,SFake,RFake(m0,m1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where r∗ is chosen uniformly at ran-
dom, µ1

∗ is chosen uniformly at random independently of H1, µ2
∗ = H2(r∗, µ1

∗), µ3
∗ =

EncK(m0, µ1
∗, µ2

∗, 0), and s′ = EncKS (m0, µ1
∗, µ2

∗, µ3
∗, 0). If r∗ ∈ R or µ1

∗ ∈ H1, the
experiment aborts. If the adversary queries any oracle on any input containing s ∈ S ′0, where

S ′0 =
{

EncKs(m̂, µ1, µ2, µ3, 0) : (m̂, µ1, µ2, µ3) ∈ {0, 1}1+|µ1|+|µ2|+|µ3|
}
\s′, the experiment aborts.

This experiment is similar to the previous one except that it aborts if the adversary ever makes a query
containing sender randomness of a fake format with level 0 (except s′, which is given to the adversary).

Note that the oracles’ outputs are independent of S ′0 (in particular, note that neither oracle outputs
fake sender randomness with level 0: indeed, in the output of SFake levels start with 1), therefore the
adversary cannot find such s ∈ S ′0 except for guessing it, which happens with negligible probability.
Therefore this experiment is statistically close to the previous one.

• H6 : AP1,P2,P3,Dec,SFake,RFake(m0,m1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where r∗ is chosen uniformly at ran-
dom, µ1

∗ is chosen uniformly at random independently of H1, µ2
∗ = H2(r∗, µ1

∗), µ3
∗ =

EncK(m0, µ1
∗, µ2

∗, 0), and s′ = EncKS (m0, µ1
∗, µ2

∗, µ3
∗, 0). If r∗ ∈ R or µ1

∗ ∈ H1, the
experiment aborts. If the adversary queries any oracle on any input containing s ∈ S ′0, where

S ′0 =
{

EncKs(m̂, µ1, µ2, µ3, 0) : (m̂, µ1, µ2, µ3) ∈ {0, 1}1+|µ1|+|µ2|+|µ3|
}
\s′, the experiment aborts.

If the adversary queries any oracle on any input containing µ3
∗ = EncK(m1, µ1

∗, µ2
∗, 0) the experi-

ment aborts.

This experiment is similar to the previous one except that it aborts if the adversary ever queries any
oracle on µ3

∗ = EncK(m1, µ1
∗, µ2

∗, 0) (this ciphertext can be thought of as “complement” of the
challenge ciphertext µ3

∗ = EncK(m0, µ1
∗, µ2

∗, 0) since it encrypts the same µ1
∗, µ2

∗, 0, but the
opposite bit m1).

We argue that µ3
∗ can only be found by the adversary by guessing certain variables, with negligible

chance of success. First, we will give some intuition: we claim that the adversary can find µ3
∗ only by

doing one of the following:

1. Guessing µ3
∗;

2. Forcing P3 to output µ3
∗ via trapdoor step, by running P3 on some fake s which encrypts µ3

∗;

3. Forcing P3 to output µ3
∗ via mixed input step, by running P3 on a certain fake s 6= s′ with level

0.

Intuitively, the adversary’s chance of succeeding in case one is negligible due to sparseness of the
encryption scheme; in the second case, to generate such an s, the adversary would have to know µ3

∗

to begin with; and in the third case the adversary would have to find fake s 6= s′ with level 0, which
is not an output of any oracle and therefore it can only be guessed by the adversary with negligible
probability.

Now we give a formal argument. We claim that the ciphertext µ3
∗ = EncK(m1, µ1

∗, µ2
∗, 0) can

be removed from the description of oracle P3, without changing the experiment. First, recall that
µ1
∗ 6∈ H1 (otherwise the experiment aborts). This means that the only way to satisfy the validity

check in P3 with µ1
∗ is to provide P3 with an input (s,m, µ1

∗, µ2) such that DecKS (s).m = m,
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DecKS (s).µ1 = µ1
∗. However, in this case oracle P3 never executes the main step (either trapdoor

step or mixed input step will be executed). Therefore we can remove the description of µ3
∗ from K in

the main step.

Second, we claim that we can remove the description of µ3
∗ from K in the mixed input step as

well. Indeed, note that µ3
∗ is an encryption of level 0 (together with other values). Note that

the mixed input step copies the level DecKS (s).` into the ciphertext EncK(m,µ1, µ2,DecKS (s).`);
this means that the only way to force the mixed input step to encrypt level 0 is to query P3 on
some s ∈ S such that DecKS (s).` = 0. However, in our experiment the adversary never queries
s ∈ S ′0 (otherwise the experiment aborts), therefore the only level-0 s which can be queried is
s′ = EncKS (m0, µ1

∗, µ2
∗, µ3

∗, 0). Finally, for P3 to output µ3
∗ = EncK(m1, µ1

∗, µ2
∗, 0) on inputs

s′,m, µ1, µ2 via mixed input step, its inputs (m,µ1, µ2) should be set to (m1, µ1
∗, µ2

∗). However,
inputs (s′,m1, µ1

∗, µ2
∗) to oracle P3 will not pass the validity check, since P1(s′,m1) 6= µ1

∗ (indeed,
µ1
∗ 6∈ H1, and DecKS (s).m = m0 6= m1, thus neither trapdoor step nor main step of P1 results in

µ1
∗).

Third, we note that, formally speaking, the string µ3
∗ is present in the trapdoor step of P3, since this

step outputs DecKS (s).µ3, which could happen to be µ3
∗. However, this step contains the description

of all binary strings of length |µ3|, since any such string could be equal to DecKS (s).µ3 for some s. In
other words, the description of trapdoor step is independent of µ3

∗.

Therefore we can remove the description of µ3
∗ from P3 without changing the experiment. Finally, we

note that all other oracles’ outputs are independent of µ3
∗. Therefore the probability that the adversary

queries µ3
∗ is at most the probability of guessing it, which is negligible.

Thus, this experiment is statistically close to the previous one.

• H7 : AP1,P2,P3,Dec,SFake,RFake(m0,m1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where r∗ is chosen uniformly at ran-
dom, µ1

∗ is chosen uniformly at random independently of H1, µ2
∗ = H2(r∗, µ1

∗), µ3
∗ =

EncK(m0, µ1
∗, µ2

∗, 0), s′ = EncKS (m0, µ1
∗, µ2

∗, µ3
∗, 0), r′ = EncKR(m0, µ1

∗, µ2
∗, µ3

∗, 0, ρ̂∗)
for uniformly chosen ρ̂∗ . If r∗ ∈ R or µ1

∗ ∈ H1 or ρ̂∗ ∈ H3, the experiment
aborts. If the adversary queries any oracle on any input containing s ∈ S ′0, where S ′0 ={

EncKs(m̂, µ1, µ2, µ3, 0) : (m̂, µ1, µ2, µ3) ∈ {0, 1}1+|µ1|+|µ2|+|µ3|
}
\ s′, the experiment aborts. If

the adversary queries any oracle on any input containing µ3
∗ = EncK(m1, µ1

∗, µ2
∗, 0) the experiment

aborts.

This experiment is similar to the previous one, except that the adversary receives fake r′ and not the
real r∗ as the randomness of the receiver.

We argue that this experiment is identical to the previous one. Roughly, this is because all oracles,
given r∗ or r′ as input, output either the same values or identically distributed ones; while this is not
true for some bad inputs, our experiment aborts if the adversary ever queries such an input. Indeed, lets
analyze how r∗ and r′ are used within the oracles:

1. Oracle P2 contains the following entries which include r∗ or r′:

(a) Entries r∗, µ1
∗ → µ2

∗ (in the main step) and r′, µ1
∗ → µ2

∗ (in the trapdoor step),

(b) For all µ1 6= µ1
∗, entries r∗, µ1 → H2(r∗, µ1) and r′, µ1 → H2(r′, µ1) (both in the main

step).
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2. Oracle Dec contains the following entries which include r∗ or r′:

(a) For every string µ3 = EncK(m,µ1
∗, µ2

∗, `) such that m ∈ {0, 1}, ` ∈ [0, . . . , T ], there is
an entry r∗, µ1

∗, µ2
∗, µ3 → m (in the main step).

For every string µ3 = EncK(m,µ1
∗, µ2

∗, `) such that m ∈ {0, 1}, ` ∈ [1, . . . , T ], there is
an entry r′, µ1

∗, µ2
∗, µ3 → m (in the mixed input step).

Note that entries for r′ do not contain entries for µ3 with level ` = 0. In particular, so far we
listed two entries for r∗ which r′ doesn’t have:

i. r∗, µ1
∗, µ2

∗, µ3
∗ → m0, where µ3

∗ = EncK(m0, µ1
∗, µ2

∗, 0)

ii. r∗, µ1
∗, µ2

∗, µ3
∗ → m1, where µ3

∗ = EncK(m1, µ1
∗, µ2

∗, 0).

However, one of these entries for r′ (r′, µ1
∗, µ2

∗, µ3
∗ → m0) appears in the trapdoor

step. The other entry however is different from r∗-entry: indeed, while r∗-entry says
r∗, µ1

∗, µ2
∗, µ3

∗ → m1, r′-entry says r′, µ1
∗, µ2

∗, µ3
∗ → ⊥ (in the mixed input step), since

the condition DecKR(r).` < DecK(µ3).` is violated due to both levels being 0. However,
our experiment aborts if the adversary ever queries any oracle on input µ3

∗, and therefore
the fact that Dec outputs different output on input r′ or r∗ doesn’t change the distribution of
the experiment, since such “differing input” is not queried by the adversary.

(b) For every string (µ1, µ2, µ3) of the correct length, such that µ2 = H2(r∗, µ1) and µ3 =
EncK(m,µ1, µ2, `) for m ∈ {0, 1}, ` ∈ [0, . . . , T ], there is an entry r∗, µ1, µ2, µ3 → m
(in the main step). Since these entries for the case (µ1, µ2) = (µ1

∗, µ2
∗) were already

accounted for in steps 1 and 2, here we consider the case (µ1, µ2) 6= (µ1
∗, µ2

∗). For all
strings (µ1, µ2, µ3) which are not already considered, there is an entry r∗, µ1, µ2, µ3 → ⊥.

For every string (µ1, µ2, µ3) of the correct length, such that µ2 = H2(r′, µ1) and µ3 =
EncK(m,µ1, µ2, `) for m ∈ {0, 1}, ` ∈ [0, . . . , T ], there is an entry r′, µ1, µ2, µ3 → m (in
the main step). (Note that in this case (µ1, µ2) 6= (µ1

∗, µ2
∗), since µ2 6= H2(r′, µ1)) For all

strings (µ1, µ2, µ3) which are not already considered, there is an entry r′, µ1, µ2, µ3 → ⊥.

3. Oracle RFake doesn’t r as input.

Note that in all cases r∗ and r′ participate either in identical entries (such as case 1(a)) or in identically
distributed ones (cases 2(a), 2(b)), and recall that r∗ and r′ are themselves uniformly chosen strings.
Therefore this experiment is identical to the previous one.

• H8 : AP1,P2,P3,Dec,SFake,RFake(m0,m1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where µ1
∗ is chosen uniformly at ran-

dom independently of H1, µ2
∗ is chosen uniformly at random independently of H2, µ3

∗ =
EncK(m0, µ1

∗, µ2
∗, 0), s′ = EncKS (m0, µ1

∗, µ2
∗, µ3

∗, 0), r′ = EncKR(m0, µ1
∗, µ2

∗, µ3
∗, 0, ρ̂∗)

for uniformly chosen ρ̂∗. If µ1
∗ ∈ H1 or µ2

∗ ∈ H2 or ρ̂∗ ∈ H3, the experiment
aborts. If the adversary queries any oracle on any input containing s ∈ S ′0, where S ′0 ={

EncKs(m̂, µ1, µ2, µ3, 0) : (m̂, µ1, µ2, µ3) ∈ {0, 1}1+|µ1|+|µ2|+|µ3|
}
\ s′, the experiment aborts. If

the adversary queries any oracle on any input containing µ3
∗ = EncK(m1, µ1

∗, µ2
∗, 0) the experiment

aborts.

This experiment is similar to the previous one except that µ2
∗ is chosen uniformly at random, indepen-

dently of the value H2(r∗, µ1
∗). In addition, r∗ is now not part of the experiment and doesn’t have to

be generated. Further, we also make the experiment abort if uniformly random µ2
∗ is in the imageH2
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of H2, which happens with negligible probability.

Note that the only way for the adversary to check if the oracle stores µ2
∗ orH2(r∗, µ1

∗) is to query it on
some preimage (r, µ1) of H2(r∗, µ1

∗), which can only happen with negligible probability. Therefore
this experiment is statistically close to the previous one.

• H9 : AP1,P2,P3,Dec,SFake,RFake(m0,m1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where µ1
∗ is chosen uni-

formly at random independently of H1, µ2
∗ is chosen uniformly at random indepen-

dently of H2, µ3
∗ = EncK(m1, µ1

∗, µ2
∗, 0), s′ = EncKS (m0, µ1

∗, µ2
∗, µ3

∗, 0), r′ =
EncKS (m0, µ1

∗, µ2
∗, µ3

∗, 0, ρ̂∗) for uniformly chosen ρ̂∗. If µ1
∗ ∈ H1 or µ2

∗ ∈ H2 or
ρ̂∗ ∈ H3, the experiment aborts. If the adversary queries any oracle on any input containing s ∈ S ′0,

where S ′0 =
{

EncKs(m̂, µ1, µ2, µ3, 0) : (m̂, µ1, µ2, µ3) ∈ {0, 1}1+|µ1|+|µ2|+|µ3|
}
\ s′, the experiment

aborts. If the adversary queries any oracle on any input containing µ3
∗ = EncK(m0, µ1

∗, µ2
∗, 0) the

experiment aborts.

In this experiment we switch the roles of µ3
∗ and µ3

∗: that is, we give the adversary µ3
∗ =

EncK(m1, µ1
∗, µ2

∗, 0) encrypting m1, instead of µ3
∗ = EncK(m0, µ1

∗, µ2
∗, 0) encrypting m0. Next,

we use µ3
∗ instead of µ3

∗ to generate fake s′, r′. Next, we make the experiment abort if the adversary
queries any input containing µ3

∗ = EncK(m0, µ1
∗, µ2

∗, 0), instead of µ3
∗ = EncK(m1, µ1

∗, µ2
∗, 0)

as before.

We claim that this experiment is identical to the previous one. Let us analyze how µ3
∗ and µ3

∗ are
used in the programs:

1. Program P3:

(a) In the trapdoor step, for every entry of the form (s,m, µ1, µ2) → µ3
∗, there is an entry

(s,m, µ1, µ2) → µ3
∗ (and vice versa), where s and s are such that DecKS (s).µ3 = µ3

∗,
DecKS (s).µ3 = µ3

∗, and all other fields of s and s are the same.

(b) In the mixed input step, we can remove all entries containing µ3
∗, µ3

∗, without changing the
experiment. This is because of the following: in order for P3 to output µ3

∗ or µ3
∗ via mixed

input step, it should be run on inputs (s,m, µ1
∗, µ2

∗) for some s,m such that s ∈ S and s
has level 0. Recall that our experiment aborts if the adversary queries any level-0 s except
for s′. Finally, in order for P3(s′,m, µ1

∗, µ2
∗) to output non-⊥ on input s′, m should be

equal to m0 to pass the validity check, in which case P3 uses the trapdoor step (and outputs
µ3
∗); in particular, doesn’t use the mixed input step.

(c) Finally, in the main step we can also remove all entries containing µ3
∗, µ3

∗ without changing
the experiment. Indeed, since µ1

∗ 6∈ H1, they only way to pass the the validity check in P3
with µ1

∗ is to give it some s ∈ S , which forces P3 to execute either trapdoor step or mixed
input step.

2. Program SFake has the same set of entries for all possible strings µ3 of proper length;

3. Program Dec:

(a) In the trapdoor step, for every entry of the form (r, µ1, µ2, µ3
∗) → m, there is an entry

(r, µ1, µ2, µ3
∗) → m (and vice versa), where r and r are such that DecKR(r).µ3 = µ3

∗,
DecKR(r).µ3 = µ3

∗, and all other fields of r and r are the same.

(b) In the mixed input step, we can remove all entries containing µ3
∗, µ3

∗, without changing the
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experiment. This is because of the following: in order for Dec to output non-⊥ via mixed
input step, the condition DecKR(r).` < DecK(µ3).` should hold. However, both µ3

∗ and
µ3
∗ have level 0, therefore there doesn’t exist r which satisfies this consition.

(c) Finally, in the main step we can remove all entries containing µ3
∗, µ3

∗, without changing
the experiment, since µ2

∗ 6∈ H2, and therefore, if the input passes the the validity check with
µ2
∗, it must be that r ∈ R, which forces Dec to execute either trapdoor step or mixed input

step.

4. Program RFake has the same set of entries for strings µ3
∗ and µ3

∗, since the only information
from µ3 used by RFake is its level, which is the same (0) in µ3

∗ and µ3
∗.

To conclude the argument, it remains to note that other programs do not use µ3
∗ nor µ3

∗, and that in
both experiments 8 and 9 fake randomness of the sender and the receiver corresponds to the claimed
third message: that is, in experiment 8 s′ and r′ are both generated using µ3

∗, and in experiment 9 s′

and r′ are both generated using µ3
∗. Thus, this experiment is identical to the previous one.

• H11,1 : AP11,P2,P31,Dec,SFake1,RFake(m0,m1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where µ1
∗ is chosen uniformly at

random independently of H1, µ2
∗ is chosen uniformly at random independently of H2, µ3

∗ =
EncK(m1, µ1

∗, µ2
∗, 0), s′ = EncKS (m0, µ1

∗, µ2
∗, µ3

∗, 1), r′ = EncKR(m0, µ1
∗, µ2

∗, µ3
∗, 0, ρ̂∗)

for uniformly chosen ρ̂∗. If µ1
∗ ∈ H1 or µ2

∗ ∈ H2 or ρ̂∗ ∈ H3, the exper-
iment aborts. If the adversary queries any oracle on any input containing s ∈ S0 ∪ S ′1,

where S0 =
{

EncKs(m̂, µ1, µ2, µ3, 0) : (m,µ1, µ2, µ3) ∈ {0, 1}1+|µ1|+|µ2|+|µ3|
}

, and S ′1 ={
EncKs(m̂, µ1

∗, µ2, µ3, 1) : (m,µ2, µ3) ∈ {0, 1}1+|µ2|+|µ3|
}
\ s′, the experiment aborts. If the ad-

versary queries any oracle on any input containing µ3
∗ = EncK(m0, µ1

∗, µ2
∗, 0) the experiment

aborts.

In this experiment we change the encryption table of the key KS and adjust the code of the programs
of the sender, as shown on fig. 13, to preserve the distribution of the experiment. (For convenience
of verification, we also rewrote the code of the original programs of the sender but made the bound
on ` explicit on fig. 11). In addition, we change s′ from s′ = EncKS (m0, µ1

∗, µ2
∗, µ3

∗, 0) to
s′ = EncKS (m0, µ1

∗, µ2
∗, µ3

∗, 1), and we change the set (which aborts the experiment when being
queried by the adversary) from S ′0 to S0 ∪ S ′1.

We now describe the changes in detail. First, we change the keyKS of a sender-fake encryption scheme
as follows. Recall that key KS is a table of all plaintext-ciphertext pairs, i.e. a table containing entries
of the form s↔ (m,µ1, µ2, µ3, `) for all strings s,m, µ1, µ2, µ3 of the proper length and ` ∈ [0, T ].
In this experiment we replace each entry where µ1 = µ1

∗ with another entry: that is, for each entry of
the form s ↔ (m,µ1

∗, µ2, µ3, `) we replace it with another entry s ↔ (m,µ1
∗, µ2, µ3, ` + 1), thus

incrementing by 1 the value of level in some ciphertexts. In particular, the set of levels for which
encryptions exist changes to [1, T + 1] from [0, T ] for µ1 = µ1

∗. Note that this change affects the
challenge s′, which is switched from EncKS (m0, µ1

∗, µ2
∗, µ3

∗, 0) to EncKS (m0, µ1
∗, µ2

∗, µ3
∗, 1).

Second, we change the code of the programs so that they subtract 1 from the level of affected ciphertexts
s, before using it, thus nullifying the change from the above and preserving the distribution. The
resulting code is presented on fig. 13, and the changes are highlighted in red. Below we list the
changes:

– In the mixed input step of program P3, we consider the cases µ1 = µ1
∗ and µ1 6= µ1

∗ separately.
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For the case µ1 6= µ1
∗ the code remains unchanged. For the case µ1 = µ1

∗, the program checks
that the level in s is within [1, T + 1] (instead of [0, T ]), and the program outputs an encryption
of DecKS (s).`− 1 instead of DecKS (s).`.

– In the trapdoor step of program SFake, we consider the cases µ1 = µ1
∗ and µ1 6= µ1

∗ separately.
For the case µ1 6= µ1

∗ the code remains unchanged. For the case µ1 = µ1
∗, the program checks

that the level in s is within [1, T ] (instead of [0, T − 1]).

– In the main step of program SFake, we do not need to make any changes to the program. Recall
that the experiment aborts if µ1

∗ ∈ H1, and therefore the main step of SFake cannot be triggered
on input µ1

∗. As a result, the main step of SFake never needs to encrypt µ1
∗ and is therefore not

affected by our change of shifting the levels by 1.

Due to adjusted code, this experiment is identical to the previous one.

• H11,2 : AP12,P22,P32,Dec2,SFake2,RFake2(m0,m1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where µ1
∗ is chosen uniformly

at random independently of H1, µ2
∗ is chosen uniformly at random independently of H2, µ3

∗ =
EncK(m1, µ1

∗, µ2
∗, 0), s′ = EncKS (m0, µ1

∗, µ2
∗, µ3

∗, 1), r′ = EncKR(m0, µ1
∗, µ2

∗, µ3
∗, 0, ρ̂∗)

for uniformly chosen ρ̂∗. If µ1
∗ ∈ H1 or µ2

∗ ∈ H2 or ρ̂∗ ∈ H3, the experi-
ment aborts. If the adversary queries any oracle on any input containing s ∈ S0 ∪
S ′1, where S0 =

{
EncKs(m̂, µ1, µ2, µ3, 0) : (m,µ1, µ2, µ3) ∈ {0, 1}1+|µ1|+|µ2|+|µ3|

}
, and S ′1 ={

EncKs(m̂, µ1
∗, µ2, µ3, 1) : (m,µ2, µ3) ∈ {0, 1}1+|µ2|+|µ3|

}
\ s′, the experiment aborts. If the ad-

versary queries any oracle on any input containing µ3
∗ = EncK(m0, µ1

∗, µ2
∗, 0) the experiment

aborts.

In this experiment we change the encryption table of the key K and adjust the code of the programs
of the sender and the receiver, as shown on fig. 14, fig. 15. (For convenience of verification, we also
rewrote the code of the original programs of the receiver but made the bound on ` explicit on fig. 12).

We now describe the changes in detail. First, we change the key K of the main encryption scheme
as follows. Recall that key K is a table of all plaintext-ciphertext pairs, i.e. a table containing
entries of the form µ3 ↔ (m,µ1, µ2, `) for all strings m,µ1, µ2 of the proper length and ` ∈ [0, T ].
In this experiment we replace each entry where µ1 = µ1

∗, except for µ3
∗ and µ3

∗, with another
entry: that is, for each entry of the form µ3 ↔ (m,µ1

∗, µ2, `) we replace it with another entry
µ3 ↔ (m,µ1

∗, µ2, `+ 1) (as long as µ3 6= µ3
∗, µ3

∗), thus incrementing by 1 the value of level in some
ciphertexts. In particular, the set of levels for which encryptions exist changes to [1, T + 1] from [0, T ]
for µ1 = µ1

∗. Note that this change does not affect the challenge µ3
∗.

Second, we change the code of the programs so that they add 1 to the level before encrypting with
key K, and subtract 1 from the level of decrypted µ3 before using it, thus nullifying the change from
the above and preserving the distribution. The resulting code is presented on fig. 14, fig. 15, and the
changes are highlighted in red. Below we list the changes:

– In the mixed input step of program P3, we consider the cases µ1 = µ1
∗ and µ1 6= µ1

∗ separately.
For the case µ1 6= µ1

∗ the code remains unchanged. For the case µ1 = µ1
∗, the program outputs

an encryption of DecKS (s).` instead of DecKS (s).`− 1.

Recall that the levels of the two ciphertexts - µ3
∗ and µ3

∗ encrypting (1, µ1
∗, µ2

∗, 0) and
(0, µ1

∗, µ2
∗, 0) - were not incremented in a table of K. However, the mixed input step never
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needs to encrypt (0, µ1
∗, µ2

∗, 0) or (1, µ1
∗, µ2

∗, 0). Indeed, to force P3 to output an encryption
of, say, (0, µ1

∗, µ2
∗, 0) via mixed input step, one has to run it on fake s with level 0(i.e. S ∈ S0),

but the experiment aborts in this case.

– In the mixed input step of program Dec, we consider the cases µ1 = µ1
∗ and µ1 6= µ1

∗ separately.
For the case µ1 6= µ1

∗ the code remains unchanged. For the case µ1 = µ1
∗, the program checks

that the level in µ3 is within [1, T + 1] (instead of [0, T ]), and compares DecKR(r).` against
DecK(µ3).`− 1 instead of DecK(µ3).`, to account for an incremented levels of some ciphertexts.

Recall that the levels of the two ciphertexts - µ3
∗ and µ3

∗ - were not incremented in a table of K.
However, the mixed input step never outputs non-⊥ on input µ3

∗ or µ3
∗. Indeed, this is because

the condition DecKR(r).` < DecK(µ3).` can never be satisfied due to level of µ3
∗, µ3

∗ being 0.

– In program RFake, we consider three cases: µ3 = µ3
∗, µ3

∗, and else µ1 = µ1
∗ and µ1 6= µ1

∗.
For the case µ1 6= µ1

∗ and µ3 = µ3
∗, µ3

∗ the code remains unchanged. For the case µ1 = µ1
∗,

the program checks that the level in µ3 is within [1, T + 1] (instead of [0, T ]), and decrements
DecK(µ3).` by one before using it to compute the output.

Due to adjusted code, this experiment is identical to the previous one.

• H11,3 : AP12,P23,P32,Dec3,SFake2,RFake3(m0,m1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where µ1
∗ is chosen uniformly

at random independently of H1, µ2
∗ is chosen uniformly at random independently of H2, µ3

∗ =
EncK(m1, µ1

∗, µ2
∗, 0), s′ = EncKS (m0, µ1

∗, µ2
∗, µ3

∗, 1), r′ = EncKR(m0, µ1
∗, µ2

∗, µ3
∗, 0, ρ̂∗)

for uniformly chosen ρ̂∗. If µ1
∗ ∈ H1 or µ2

∗ ∈ H2 or ρ̂∗ ∈ H3, the experi-
ment aborts. If the adversary queries any oracle on any input containing s ∈ S0 ∪
S ′1, where S0 =

{
EncKs(m̂, µ1, µ2, µ3, 0) : (m,µ1, µ2, µ3) ∈ {0, 1}1+|µ1|+|µ2|+|µ3|

}
, and S ′1 ={

EncKs(m̂, µ1
∗, µ2, µ3, 1) : (m,µ2, µ3) ∈ {0, 1}1+|µ2|+|µ3|

}
\ s′, the experiment aborts. If the ad-

versary queries any oracle on any input containing µ3
∗ = EncK(m0, µ1

∗, µ2
∗, 0) the experiment

aborts.

In this experiment we change the encryption table of the receiver-faking key KR and adjust the code of
the programs of the receiver, as shown on fig. 16.

We now describe the changes in detail. First, we change the key KR of the receiver faking scheme
as follows. Recall that key KR is a table of all plaintext-ciphertext pairs, i.e. a table containing
entries of the form r ↔ (m̂, µ1, µ2, µ3, `, ρ̂) for all strings m,µ1, µ2, µ3, ρ̂ of the proper length and
` ∈ [0, T ]. In this experiment we replace each entry where µ1 = µ1

∗, except for (µ1, µ2, µ3, `) =
(µ1
∗, µ2

∗, µ3
∗, 0) and (µ1, µ2, µ3, `) = (µ1

∗, µ2
∗, µ3

∗, 0), with another entry: that is, for each entry of
the form r ↔ (m,µ1

∗, µ2, µ3, `, ρ̂) we replace it with another entry r ↔ (m,µ1
∗, µ2, µ3, `+ 1, ρ̂) (as

long as (µ2, µ3, `) 6= (µ2
∗, µ3

∗, 0) and (µ2, µ3, `) 6= (µ2
∗, µ3

∗, 0)), thus incrementing by 1 the value
of level in some ciphertexts. Note that this change does not affect the challenge r′.

Second, we change the code of the programs so that they add 1 to the level before encrypting with key
KR, and subtract 1 from the level of decrypted r before using it, thus nullifying the change from the
above and preserving the distribution. The resulting code is presented on fig. 16, and the changes are
highlighted in red. Below we list the changes:

– In the mixed input step of program Dec, we consider the cases µ1 = µ1
∗ and µ1 6= µ1

∗ separately.
For the case µ1 6= µ1

∗ the code remains unchanged. For the case µ1 = µ1
∗, the program uses
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DecKR(r).`− 1 instead of DecKR(r).` when comparing to DecK(µ3).`− 1.

Recall that the levels of the ciphertexts of the form (m,µ1
∗, µ2

∗, µ3
∗, 0, ρ̂) were not incremented

in a table of KR. However, we claim that, even though we have adjusted the code without
adjusting the table of KR for these cases, the distribution of the experiment doesn’t change.
Indeed, to force Dec to output non-⊥ via mixed input step, given some r which is an encryption
of (m,µ1

∗, µ2
∗, µ3

∗, 0, ρ̂), one has to run it on inputs (r, µ1
∗, µ2

∗, µ3) where µ3 is itself an
encryption of µ1

∗, µ2
∗. Consider the following three cases of µ3 which encrypts µ1

∗, µ2
∗:

∗ µ3 = µ3
∗. In this case the trapdoor step would have been executed, and the program never

reaches the mixed input step.

∗ µ3 = µ3
∗. In this case the experiment aborts.

∗ µ3 6= µ3
∗ and µ3 6= µ3

∗. In this case the level of µ3 is at least 2 (indeed, µ3
∗ and µ3

∗

are the only two possible ciphetexts with level 0, and all other levels were incremented
by 1, thus there are no level-1 ciphertexts). But if DecK(µ3).` ≥ 2, then the conditions
DecKR(r).` − 1 < DecK(µ3).` − 1 and DecKR(r).` < DecK(µ3).` − 1 are equivalent,
since DecKR(r).` = 0.

– In program RFake, we consider three cases: µ3 = µ3
∗, µ3

∗, and else µ1 = µ1
∗ and µ1 6= µ1

∗.
For the case µ1 6= µ1

∗ and µ3 = µ3
∗, µ3

∗ the code remains unchanged. For the case µ1 = µ1
∗,

the program encrypts the value DecK(µ3).` instead of DecK(µ3).`− 1.

Due to adjusted code, this experiment is identical to the previous one.

• H11,4 : AP12,P23,P32,Dec3,SFake2,RFake3(m0,m1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where µ1
∗ is chosen uniformly

at random independently of H1, µ2
∗ is chosen uniformly at random independently of H2, µ3

∗ =
EncK(m1, µ1

∗, µ2
∗, 0), s′ = EncKS (m0, µ1

∗, µ2
∗, µ3

∗, 1), r′ = EncKR(m0, µ1
∗, µ2

∗, µ3
∗, 0, ρ̂∗)

for uniformly chosen ρ̂∗. If µ1
∗ ∈ H1 or µ2

∗ ∈ H2 or ρ̂∗ ∈ H3, the experiment aborts.
If the adversary queries any oracle on an input s ∈ S such that DecKS (s).µ1 = µ1

∗ and
(DecKS (s).` = 0 or DecKS (s).` = T + 1 or DecKS (s).` = T ), the experiment aborts. If
the adversary queries any oracle on an input r ∈ R such that DecKR(r).µ1 = µ1

∗ and
(DecKR(r).` = 0 or DecKR(R).` = T + 1), the experiment aborts. If the adversary queries
any oracle on an input µ3 ∈ M such that DecK(µ3).µ1 = µ1

∗ and (DecK(µ3).` = 0 or
DecK(µ3).` = T + 1), the experiment aborts. If the adversary queries any oracle on any input contain-
ing s ∈ S0 ∪ S ′1, where S0 =

{
EncKs(m̂, µ1, µ2, µ3, 0) : (m,µ1, µ2, µ3) ∈ {0, 1}1+|µ1|+|µ2|+|µ3|

}
,

and S ′1 =
{

EncKs(m̂, µ1
∗, µ2, µ3, 1) : (m,µ2, µ3) ∈ {0, 1}1+|µ2|+|µ3|

}
\ s′, the experiment aborts. If

the adversary queries any oracle on any input containing µ3
∗ = EncK(m0, µ1

∗, µ2
∗, 0) the experiment

aborts.

This experiment is similar to the previous one, except that it aborts if the adversary queries any variable
encrypting µ1

∗ with level 0 or T + 1. Informally, both happen with negligible probability because none
of the programs ever output a value with µ1

∗ and level 0, and because finding any value with level T
requires the adversary to query SFake at least T − 1 times, which is infeasible for a polynomial-time
adversary since T is superpolynomial.

More formally, note that the following is required for the adversary to find level-0 variables encrypting
µ1
∗: to output r with level 0 , the adversary needs to run RFake on µ3 with level 0; to find µ3 with
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level 0, it needs to run P3 on s with level 0 or s 6∈ S. Since such µ3 should have µ1
∗ encrypted, and

µ1
∗ 6∈ H1, there doesn’t exist s 6∈ S which outputs such µ3. Further, s ∈ S with level 0 is never an

output of any program, and therefore the adversary can only guess any of these values, which happens
with negligible probability.

Now we show that the adversary queries any variable with level T with at most negligible probability.
Concretely, let ε be the sparseness of the sender-fake encryption scheme, i.e. ε = |S|

2|s|
. We claim that

the probability that any polynomial-time adversary queries the programs on s ∈ S with level T + 1 or
T is at most Tε, which we are going to show by proving that if the adversary makes n queries, the
probability of asking a query containing s ∈ S with ` ∈ [n+ 1, T + 1] is at most εn. In turn, εn < εT
since the number of queries is polynomial. We prove this statement by induction:

For the base case, note that for n = 1, the probability that the adversary queries s ∈ S with level
` ∈ [2, . . . , T + 1] is bounded by the probability of guessing s ∈ S, which is equal to ε.

Assume the hypothesis holds for n. Assume the adversary makes n+ 1 queries and happens to ask a
query containing s ∈ S with ` ∈ [n + 1, T + 1]. Let’s split this probability by considering the case
when it did or did not query s ∈ S with level `− 1 within first n queries. The first event happens with
probability at most εn by induction hypothesis, and the second happens with probability at most ε
since the adversary can only guess such s ∈ S . Thus the probability of the adversary succeeding with
n+ 1 queries is at most ε(n+ 1), thus proving induction hypothesis for n+ 1.

Finally, note that in order to query any µ3 or r with level T or T + 1, the adversary needs to either
guess it or query its “parent” variable with level T or T + 1 first (that is, s in case of µ3, and µ3 in case
of r), and therefore the probability ad the adversary querying any variable with level T or T + 1 is
negligible.

• H11,5 : AP1,P2,P3,Dec,SFake,RFake(m0,m1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where µ1
∗ is chosen uniformly at

random independently of H1, µ2
∗ is chosen uniformly at random independently of H2, µ3

∗ =
EncK(m1, µ1

∗, µ2
∗, 0), s′ = EncKS (m0, µ1

∗, µ2
∗, µ3

∗, 1), r′ = EncKR(m0, µ1
∗, µ2

∗, µ3
∗, 0, ρ̂∗)

for uniformly chosen ρ̂∗.If µ1
∗ ∈ H1 or µ2

∗ ∈ H2 or ρ̂∗ ∈ H3, the experiment aborts.
If the adversary queries any oracle on an input s ∈ S such that DecKS (s).µ1 = µ1

∗ and
(DecKS (s).` = 0 or DecKS (s).` = T + 1 or DecKS (s).` = T ), the experiment aborts. If
the adversary queries any oracle on an input r ∈ R such that DecKR(r).µ1 = µ1

∗ and
(DecKR(r).` = 0 or DecKR(R).` = T + 1), the experiment aborts. If the adversary queries
any oracle on an input µ3 ∈ M such that DecK(µ3).µ1 = µ1

∗ and (DecK(µ3).` = 0 or
DecK(µ3).` = T + 1), the experiment aborts. If the adversary queries any oracle on any input contain-
ing s ∈ S0 ∪ S ′1, where S0 =

{
EncKs(m̂, µ1, µ2, µ3, 0) : (m,µ1, µ2, µ3) ∈ {0, 1}1+|µ1|+|µ2|+|µ3|

}
,

and S ′1 =
{

EncKs(m̂, µ1
∗, µ2, µ3, 1) : (m,µ2, µ3) ∈ {0, 1}1+|µ2|+|µ3|

}
\ s′, the experiment aborts. If

the adversary queries any oracle on any input containing µ3
∗ = EncK(m0, µ1

∗, µ2
∗, 0) the experiment

aborts.

In this experiment we revert to using the original programs of the deniable encryption scheme, without
any modifications.

We argue that this experiment is identical to the previous one. Indeed, note that there are the following
differences between the programs in this experiment and the previous experiment:

– Some programs check that the level is in [1, . . . , T + 1] instead of [0, . . . , T ], for some variables
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encrypting µ1
∗. Also, program SFake2 checks that the level is in [1, . . . , T ] instead of [0, . . . , T −

1]. This change in the programs doesn’t change the distribution of the experiment, since the
experiment aborts when the adversary queries variables with levels 0, T, T + 1 encrypting µ1

∗.

– Program Dec3 checks the levels in the mixed input step by checking that DecKR(r).` − 1 <
DecK(µ3).`− 1, instead of DecKR(r).` < DecK(µ3).`. The two conditions are equivalent and
therefore this change doesn’t affect the functionality of the program.

• H11,6 : AP1,P2,P3,Dec,SFake,RFake(m0,m1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where µ1
∗ is chosen uniformly at

random independently of H1, µ2
∗ is chosen uniformly at random independently of H2, µ3

∗ =
EncK(m1, µ1

∗, µ2
∗, 0), s′ = EncKS (m0, µ1

∗, µ2
∗, µ3

∗, 1), r′ = EncKR(m0, µ1
∗, µ2

∗, µ3
∗, 0, ρ̂∗) for

uniformly chosen ρ̂∗.

That is, we remove the condition that we abort when the adversary queries certain values. This is
statistically close to the previous experiment, since the adversary can only query these values with
negligible probability. The argument is similar to the argument made in previous hybrid distributions
where these abort conditions were introduced.

• H11,7 : AP1,P2,P3,Dec,SFake,RFake(m0,m1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where s∗, r∗ are chosen uni-
formly at random, µ1

∗ = P1(s∗,m1), µ2
∗ = P2(r∗, µ1

∗), µ3
∗ = EncK(m1, µ1

∗, µ2
∗, 0), s′ =

EncKS (m0, µ1
∗, µ2

∗, µ3
∗, 1), r′ = EncKR(m0, µ1

∗, µ2
∗, µ3

∗, 0, H3(ρ∗)) for uniformly chosen ρ∗.

That is, we set µ1
∗ and µ2

∗ to be their values in the protocol execution with m1, and we set r′ to use
H3(ρ∗) instead of an independent random value as randomness.

The reasoning is similar to the reasoning used in experiments H1 to H5 and H8.

Note that this experiment corresponds to an execution on input m1, where s′, r′ are both fake and
consistent with m0.

5 Preliminaries: IO, DIO, and ACE

5.1 Indistinguishability Obfuscation for Circuits

Definition 5 (Indistinguishability Obfuscation (iO)). A uniform PPT machine iO is called an indistinguisha-
bility obfuscator if the following conditions are satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(1λ, C)] = 1

• There is a polynomial p such that for every circuit C ∈ Cλ, it holds that |iO(c)| ≤ p(|C|).

• For any (not necessarily uniform) PPT distinguisher D, there exists a negligible function α such that
the following holds: For all security parameters λ ∈ N, for all circuit families C0 = {C0

λ}λ∈N, C1 =
{C1

λ}λ∈N of size |C0
λ| = |C1

λ|, we have that if C0
λ(x) = C1

λ(x) for all inputs x, then

∣∣∣Pr
[
D(iO(1λ, C0

λ)) = 1
]
− Pr

[
D(iO(1λ, C1

λ)) = 1
]∣∣∣ ≤ negl(λ).

We say that indistinguishability obfuscation is (t(λ), ε(λ))-secure if the distinguishing advantage of all
distinguishers of size t(λ) is at most ε(λ).
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Oracles P1,P3,SFake.
Oracle P1(s,m)
Inputs: sender randomness s, plaintext m.
Hardwired values: key KS of sender-fake encryption scheme, hash H1 with sparse image.

1. Trapdoor step:
(a) If s ∈ S and DecKS (s).m = m, then return DecKS (s).µ1;

2. Main step:
(a) Else return H1(s,m).

Oracle P3(s,m, µ1, µ2)
Inputs: sender randomness s, plaintext m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: key KS of sender-fake encryption scheme, key K of main encryption scheme.

1. Validity check:
(a) If P1(s,m) 6= µ1 then ⊥;

2. Trapdoor step:
(a) If s ∈ S and (DecKS (s).m,DecKS (s).µ1,DecKS (s).µ2) = (m,µ1, µ2) then return

DecKS (s).µ3;
3. Mixed input step:

(a) Else if s ∈ S and (DecKS (s).m,DecKS (s).µ1) = (m,µ1) then
i. If DecKS (s).` 6∈ [0, . . . , T ] then ⊥

ii. Else return EncK(m,µ1, µ2,DecKS (s).`)
4. Main step:

(a) Else return EncK(m,µ1, µ2, 0).

Oracle SFake(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real plaintext m, fake plaintext m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: key KS of sender-fake encryption scheme, upper bound T .

1. Validity check:
(a) If P1(s,m) 6= µ1 then ⊥;

2. Trapdoor step:
(a) If s ∈ S and (DecKS (s).m,DecKS (s).µ1) = (m,µ1) then

i. If DecKS (s).` 6∈ [0, . . . , T − 1] then ⊥
ii. Else return EncKS (m̂, µ1, µ2, µ3,DecKS (s).`+ 1).

3. Main step:
(a) Else return EncKS (m̂, µ1, µ2, µ3, 1).

Figure 11: Oracles P1,P3, SFake. The code of the programs is unchanged, but we make the bounds on `
explicit in relevant places; we highlight them in red for convenience.
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Oracles P2,Dec,RFake.
Oracle P2(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: key KR of receiver-fake encryption scheme, hash H2 with sparse image.

1. Trapdoor step:
(a) If r ∈ R and DecKR(r).µ1 = µ1, then return DecKR(r).µ2;

2. Main step:
(a) Return H2(r, µ1).

Oracle Dec(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: key KR of receiver-fake encryption scheme, key K of the main encryption scheme,
upper bound T .

1. Validity check:
(a) If P2(r, µ1) 6= µ2 then ⊥;

2. Trapdoor step:
(a) If r ∈ R and (DecKR(r).µ1,DecKR(r).µ2,DecKR(r).µ3) = (µ1, µ2, µ3) then return

DecKR(r).m;
3. Mixed input step:

(a) If r ∈ R and (DecKR(r).µ1,DecKR(r).µ2) = (µ1, µ2) then
i. If µ3 ∈ M and (µ1, µ2) = (DecK(µ3).µ1,DecK(µ3).µ2) and DecKR(r).` < DecK(µ3).`

and DecKR(r).` ∈ [0, . . . , T ] and DecK(µ3).` ∈ [0, . . . , T ] return DecK(µ3).m;
ii. Else ⊥.

4. Main step:
(a) If µ3 ∈M and (DecK(µ3).µ1,DecK(µ3).µ2) = (µ1, µ2) then return DecK(µ3).m;
(b) Else ⊥.

Oracle RFake(m̂, µ1, µ2, µ3; ρ)
Inputs: fake plaintext m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: key KR of receiver-fake encryption scheme, key K of the main encryption scheme,
function H3 with a sparse image.

1. If µ3 ∈M and DecK(µ3).` ∈ [0, . . . , T ] and DecK(µ3).µ1 = µ1 and DecK(µ3).µ2 = µ2 then return
EncKR(m̂, µ1, µ2, µ3,DecK(µ3).`,H3(ρ));

2. Else ⊥.
Figure 12: Oracles P2,Dec,RFake. The code of the programs is unchanged, but we make the bounds on `
explicit in relevant places; we highlight them in red for convenience.
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Oracles P11,P31,SFake1.
Oracle P11(s,m)
Inputs: sender randomness s, plaintext m.
Hardwired values: key KS of sender-fake encryption scheme, hash H1 with sparse image.

1. Trapdoor step:
(a) If s ∈ S and DecKS (s).m = m, then return DecKS (s).µ1;

2. Main step:
(a) Else return H1(s,m).

Oracle P31(s,m, µ1, µ2)
Inputs: sender randomness s, plaintext m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: key KS of sender-fake encryption scheme, key K of main encryption scheme.

1. Validity check:
(a) If P11(s,m) 6= µ1 then ⊥;

2. Trapdoor step:
(a) If s ∈ S and (DecKS (s).m,DecKS (s).µ1,DecKS (s).µ2) = (m,µ1, µ2) then return

DecKS (s).µ3;
3. Mixed input step:

(a) Else if s ∈ S and (DecKS (s).m,DecKS (s).µ1) = (m,µ1) and µ1 = µ1
∗ then

i. If DecKS (s).` 6∈ [1, . . . , T + 1] then ⊥
ii. Else return EncK(m,µ1, µ2,DecKS (s).`− 1);

(b) Else if s ∈ S and (DecKS (s).m,DecKS (s).µ1) = (m,µ1) and then
i. If DecKS (s).` 6∈ [0, . . . , T ] then ⊥

ii. Else return EncK(m,µ1, µ2,DecKS (s).`);
4. Main step:

(a) Else return EncK(m,µ1, µ2, 0).

Oracle SFake1(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real plaintext m, fake plaintext m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: key KS of sender-fake encryption scheme, upper bound T .

1. Validity check:
(a) If P11(s,m) 6= µ1 then ⊥;

2. Trapdoor step:
(a) If s ∈ S and (DecKS (s).m,DecKS (s).µ1) = (m,µ1) and µ1 = µ1

∗ then
i. If DecKS (s).` 6∈ [1, . . . , T ] then ⊥

ii. Else return EncKS (m̂, µ1, µ2, µ3,DecKS (s).`+ 1).
(b) Else if s ∈ S and (DecKS (s).m,DecKS (s).µ1) = (m,µ1) then

i. If DecKS (s).` 6∈ [0, . . . , T − 1] then ⊥
ii. Else return EncKS (m̂, µ1, µ2, µ3,DecKS (s).`+ 1).

3. Main step:
(a) Else return EncKS (m̂, µ1, µ2, µ3, 1).

Figure 13: Oracles P11,P31,SFake1.
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Oracles P12,P32,SFake2.
Oracle P12(s,m)
Inputs: sender randomness s, plaintext m.
Hardwired values: key KS of sender-fake encryption scheme, hash H1 with sparse image.

1. Trapdoor step:
(a) If s ∈ S and DecKS (s).m = m, then return DecKS (s).µ1;

2. Main step:
(a) Else return H1(s,m).

Oracle P32(s,m, µ1, µ2)
Inputs: sender randomness s, plaintext m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: key KS of sender-fake encryption scheme, key K of main encryption scheme.

1. Validity check:
(a) If P12(s,m) 6= µ1 then ⊥;

2. Trapdoor step:
(a) If s ∈ S and (DecKS (s).m,DecKS (s).µ1,DecKS (s).µ2) = (m,µ1, µ2) then return

DecKS (s).µ3;
3. Mixed input step:

(a) Else if s ∈ S and (DecKS (s).m,DecKS (s).µ1) = (m,µ1) and µ1 = µ1
∗ then

i. If DecKS (s).` 6∈ [1, . . . , T + 1] then ⊥
ii. Else return EncK(m,µ1, µ2,DecKS (s).`);

(b) Else if s ∈ S and (DecKS (s).m,DecKS (s).µ1) = (m,µ1) then
i. If DecKS (s).` 6∈ [0, . . . , T ] then ⊥

ii. Else return EncK(m,µ1, µ2,DecKS (s).`);
4. Main step:

(a) Else return EncK(m,µ1, µ2, 0).

Oracle SFake2(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real plaintext m, fake plaintext m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: key KS of sender-fake encryption scheme, upper bound T .

1. Validity check:
(a) If P12(s,m) 6= µ1 then ⊥;

2. Trapdoor step:
(a) If s ∈ S and (DecKS (s).m,DecKS (s).µ1) = (m,µ1) and µ1 = µ1

∗ then
i. If DecKS (s).` = 0 or DecKS (s).` = T + 1 then ⊥;

ii. Else return EncKS (m̂, µ1, µ2, µ3,DecKS (s).`+ 1).
(b) Else if s ∈ S and (DecKS (s).m,DecKS (s).µ1) = (m,µ1) then

i. If DecKS (s).` = T then ⊥;
ii. Else return EncKS (m̂, µ1, µ2, µ3,DecKS (s).`+ 1).

3. Main step:
(a) Else return EncKS (m̂, µ1, µ2, µ3, 1).

Figure 14: Oracles P12,P32,SFake2.
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Oracles P22,Dec2,RFake2.
Oracle P22(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: key KR of receiver-fake encryption scheme, sparse hash H2.

1. Trapdoor step:
(a) If r ∈ R and DecKR(r).µ1 = µ1, then return DecKR(r).µ2;

2. Main step:
(a) Return H2(r, µ1).

Oracle Dec2(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: key KR of receiver-fake encryption scheme, key K of the main encryption scheme,
upper bound T .

1. Validity check:
(a) If P22(r, µ1) 6= µ2 then ⊥;

2. Trapdoor step:
(a) If r ∈ R and (DecKR(r).µ1,DecKR(r).µ2,DecKR(r).µ3) = (µ1, µ2, µ3) then return

DecKR(r).m;
3. Mixed input step:

(a) Else if r ∈ R and (DecKR(r).µ1,DecKR(r).µ2) = (µ1, µ2) then
i. If µ3 ∈ M and (µ1, µ2) = (DecK(µ3).µ1,DecK(µ3).µ2)and DecK(µ3).µ1 = µ1

∗

and DecKR(r).` < DecK(µ3).`− 1 and DecKR(r).` ∈ [0, . . . , T ] and DecK(µ3).` ∈
[1, . . . , T + 1] then return DecK(µ3).m;

ii. Else if µ3 ∈ M and (µ1, µ2) = (DecK(µ3).µ1,DecK(µ3).µ2) and DecKR(r).` <
DecK(µ3).` and DecKR(r).` ∈ [0, . . . , T ] and DecK(µ3).` ∈ [0, . . . , T ] then return
DecK(µ3).m;

iii. Else ⊥.
4. Main step:

(a) Else if µ3 ∈M and (DecK(µ3).µ1,DecK(µ3).µ2) = (µ1, µ2) then
i. Else return DecK(µ3).m;

(b) Else ⊥.

Oracle RFake2(m̂, µ1, µ2, µ3; ρ)
Inputs: fake plaintext m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: key KR of receiver-fake encryption scheme, key K of the main encryption scheme,
function H3 with a sparse image.

1. If µ3 = µ3
∗ or µ3 = µ3

∗ then
(a) (µ1, µ2) = (µ1

∗, µ2
∗) then return EncKR(m̂, µ1, µ2, µ3, 0, H3(ρ));

(b) Else ⊥;
2. Else if µ3 ∈M and DecK(µ3).µ1 = µ1

∗ and DecK(µ3).` ∈ [1, . . . , T + 1] and DecK(µ3).µ1 = µ1

and DecK(µ3).µ2 = µ2 then return EncKR(m̂, µ1, µ2, µ3,DecK(µ3).`− 1, H3(ρ));
3. Else if µ3 ∈ M and DecK(µ3).` ∈ [0, . . . , T ] and DecK(µ3).µ1 = µ1 and DecK(µ3).µ2 = µ2 then

return EncKR(m̂, µ1, µ2, µ3,DecK(µ3).`,H3(ρ));
4. Else ⊥.

Figure 15: Oracles P22,Dec2,RFake2.
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Oracles P23,Dec3,RFake3.
Oracle P23(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: key KR of receiver-fake encryption scheme, sparse hash H2.

1. Trapdoor step:
(a) If r ∈ R and DecKR(r).µ1 = µ1, then return DecKR(r).µ2;

2. Main step:
(a) Return H2(r, µ1).

Oracle Dec3(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: key KR of receiver-fake encryption scheme, key K of the main encryption scheme,
upper bound T .

1. Validity check:
(a) If P23(r, µ1) 6= µ2 then ⊥;

2. Trapdoor step:
(a) If r ∈ R and (DecKR(r).µ1,DecKR(r).µ2,DecKR(r).µ3) = (µ1, µ2, µ3) then return

DecKR(r).m;
3. Mixed input step:

(a) Else if r ∈ R and (DecKR(r).µ1,DecKR(r).µ2) = (µ1, µ2) then
i. If µ3 ∈ M and (µ1, µ2) = (DecK(µ3).µ1,DecK(µ3).µ2)and DecK(µ3).µ1 = µ1

∗ and
DecKR(r).`− 1 < DecK(µ3).`− 1 and DecKR(r).` ∈ [1, . . . , T + 1] and DecK(µ3).` ∈
[1, . . . , T + 1] then return DecK(µ3).m;

ii. Else if µ3 ∈ M and (µ1, µ2) = (DecK(µ3).µ1,DecK(µ3).µ2) and DecKR(r).` <
DecK(µ3).` and DecKR(r).` ∈ [0, . . . , T ] and DecK(µ3).` ∈ [0, . . . , T ] then return
DecK(µ3).m;

iii. Else ⊥.
4. Main step:

(a) Else if µ3 ∈M and (DecK(µ3).µ1,DecK(µ3).µ2) = (µ1, µ2) then
i. Else return DecK(µ3).m;

(b) Else ⊥.

Oracle RFake3(m̂, µ1, µ2, µ3; ρ)
Inputs: fake plaintext m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: key KR of receiver-fake encryption scheme, key K of the main encryption scheme,
function H3 with a sparse image.

1. If µ3 = µ3
∗ or µ3 = µ3

∗ then
(a) (µ1, µ2) = (µ1

∗, µ2
∗) then return EncKR(m̂, µ1, µ2, µ3, 0, H3(ρ));

(b) Else ⊥;
2. If µ3 ∈ M and DecK(µ3).µ1 = µ1

∗ and DecK(µ3).` ∈ [1, . . . , T + 1] and DecK(µ3).µ1 = µ1 and
DecK(µ3).µ2 = µ2 then return EncKR(m̂, µ1, µ2, µ3,DecK(µ3).`,H3(ρ));

3. Else if µ3 ∈ M and DecK(µ3).` ∈ [0, . . . , T ] and DecK(µ3).µ1 = µ1 and DecK(µ3).µ2 = µ2 then
return EncKR(m̂, µ1, µ2, µ3,DecK(µ3).`,H3(ρ));

4. Else ⊥.
Figure 16: Oracles P23,Dec3,RFake3.
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5.2 Equivalence of iO and diO for programs differing on one point

In the proof of security of the level system we use the following lemma from [BPR15] (which is a special
case of theorem 6.2 from [BCP14], with exact parameters):

Lemma 1. ([BPR15, BCP14]) Let iO be a (t, δ)-secure indistinguishability obfuscator for P/poly. There
exists a PPT oracle-aided extractor E, such that for any tO(1)-size distinguisher D, and two equal-size
circuits C0, C1 differing on exactly one input x∗, the following holds. Let C ′0, C

′
1 be padded versions

of C0, C1 of size s ≥ 3 · |C0|. If |Pr[D(iO(C ′0)) = 1] − Pr[D(iO(C ′1)) = 1]| = η ≥ δ(s)o(1), then
Pr[x∗ ← ED(·)(11/η, C0, C1)] ≥ 1− 2−Ω(s).

5.3 Puncturable Pseudorandom Functions and their variants

Puncturable PRFs. In puncrurable PRFs it is possible to create a key that is punctured at a set S of
polynomial size. A key k punctured at S (denoted k{S}) allows evaluating the PRF at all points not in S.
Furthermore, the function values at points in S remain pseudorandom even given k{S}.

Definition 6. A puncturable pseudorandom function family for input size n(λ) and output size m(λ) is a
tuple of algorithms {Sample,Puncture,Eval} such that the following properties hold:

• Functionality preserved under puncturing: For any PPT adversary A which outputs a set S ⊂
{0, 1}n, for any x 6∈ S,

Pr[Fk(x) = Fk{S}(x) : k ← Sample(1λ), k{S} ← Puncture(k, S)] = 1.

• Pseudorandomness at punctured points: For any PPT adversaries A1, A2, define a set S and state
state as (S, state)← A1(1λ). Then

Pr[A2(state, S, k{S}, Fk(S))]− Pr[A2(state, S, k{S}, U|S|·m(λ))] < negl(λ),

where Fk(S) denotes concatenated PRF values on inputs from S, i.e. Fk(S) = {Fk(xi) : xi ∈ S}.

The GGM PRF [GGM84] satisfies this definition.

Statistically injective puncturable PRFs. Such PRFs are injective with overwhelming probability over the
choice of a key. Sahai and Waters [SW14] show that if F is a puncturable PRF with arbitrary input length n
and output length m ≥ 2n+λ, and h is 2-universal hash function, then F′k,h = Fk(x)⊕h(x) is a statistically
injective puncturable PRF with probability 1− 2−λ over the choice of a key.

Extracting puncturable PRFs. Such PRFs have a property of a strong extractor: even when a full key is
known, the output of the PRF is statistically close to uniform, as long as there is enough min-entropy in the
input. Sahai and Waters [SW14] show that if the input has min-entropy at least m+ 2λ+ 2 (where m is the
output size), then such PRF can be constructed from any puncturable PRF F as F′k,h = h(Fk(x)), where h is
2-universal hash function; it can be shown that the output of this PRF together with the key is 2−λ-close to
the uniform distribution.

Sparse computationally extracting puncturable PRFs. We need a slightly modified version of extracting
PRFs: we relax the extracting requirement from statistical to computational, but require our PRF to have a
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sparse image. Such a PRF can be built from computationally extracting PRF by applying a PRF on top of it
[CPR17].

Definition 7. A PRF family with a key k mapping {0, 1}n(λ) to {0, 1}l(λ) is a sparse computationally
extracting family for min-entropy t(λ), if, in addition to the standard definition of a puncturable PRF, the
following two conditions hold:

• Sparseness: Pr[r ∈ Im(Fk) : k ← Sample(1λ), r ← Ul] < ν(λ) for some negligible function ν;

• Computational extractor: If distribution X has min-entropy at least t(λ), then with overwhelming
probability over the choice of key k for any PPT adversary A

| Pr [ A(k,Fk(x)) = 1 | x← X ]− Pr [ A(k, r) = 1 | r ← UI ] | < negl(λ).

We say that such a PRF is (t(λ), ε(λ))-secure, if for any t-sized distinguishers the distinguishing advantage in
the puncturable PRF game and in the computational extractor game is at most ε, and sparseness ν(λ) < ε(λ).

[CPR17] show that, assuming one-way functions, such PRFs exist if t(λ), the entropy of the input, is at least
m/2 + 2λ + 2, and m is superlogarithmic. Their construction uses a PRF with security parameter λ and
a PRG with security parameter m/2 and therefore the construction can be made exponentially secure, by
requiring (possibly stronger) subexponential security of the underlying PRF and PRG.

5.4 Asymmetrically constrained encryption (ACE) and its relaxed variant

ACE at a high level. Asymmetrically constrained encryption ([CHJV14], see also the journal version
[BCG+18]), or ACE for short, is a public-key, deterministic encryption scheme with special security prop-
erties. Intuitively, it allows to puncture both the public key and the secret key, at possibly different sets,
such that EK{m} doesn’t allow to compute the encryption of m, and DK{m} doesn’t allow to decrypt the
encryption of m. The scheme has to satisfy the following security properties, which we only roughly outline
in this paragraph (see the formal definition below for precise correctness and security requirements):

• Indistinguishability of ciphertexts: EncEK(m0) and EncEK(m1) are indistinguishable even given
punctured EK{m0,m1}, DK{m0,m1} (or given EK,DK punctured at bigger sets including m0,m1).
Intuitively, the adversary can neither encrypt m0,m1 nor decrypt EncEK(m0) and EncEK(m1), and
thus cannot distinguish between encryptions of m0,m1.

• Security of constrained decryption: Given EK{U}, it is hard to distinguish between DK{S0} and
DK{S1}, where S0 ⊆ S1 ⊆ U . Intuitively, the adversary cannot distinguish between these two cases
since it is hard to find a “differing ciphertext” EncEK(m), m ∈ S1 \ S0, which DK{S0} and DK{S1}
decrypt differently (to m and ⊥). Such ciphertexts are hard to find since such m ∈ U , and EK is
punctured at U .

Relaxed ACE at a high level. In addition to ACE, we require a slightly different version of it, which we
call a relaxed ACE. Relaxed ACE does not require indistinguishability of ciphertexts, but instead requires a
different property called symmetry. We show how to modify the construction of [CHJV14] to build relaxed
ACE with small security loss in constrained decryption game for certain sets. More concretely, we have the
following differences:

• In [CHJV14], security of constrained decryption allows for security loss proportional to the size of
S1 \ S0, since they change DK{S0} to DK{S1}, one point at a time. This is too much in our case,
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since our sets have size 2O(λ). However, our sets have nice structure (e.g. all strings ending with the
same suffix, or all such strings except one), and we can slightly modify the construction such that
security loss is only polynomial on such sets. Essentially, our ciphertexts, instead of having a single
signature of a plaintext like in [CHJV14], have signatures of each prefix of the plaintext, which allows
to puncture DK at a lot of points at once (this technique is similar to [GPS16]).

• We require additional property which we call symmetry. To define it, we first need a syntactically
different way of puncturing the decryption key. In [CHJV14] puncturing is plaintext-based (i.e. the
punctured key DK{m} has the description of the plaintext but not the ciphertext). We need, in
addition to that, a ciphertext-based way to puncture (we denote it as DK{c}). Symmetry then says
that distributions (c∗, c′,EK{m},DK{c∗, c′}) and (c′, c∗,EK{m},DK{c∗, c′}) are indistinguishable,
where m is an arbitrary plaintext, c′ is its ciphertext, and c∗ is randomly chosen. We note that for
ciphertext-based punctured key symmetry is the only required security property, although we still
require all applicable correctness properties.

Definition of ACE. Now we present a formal definition:

Definition 8. [CHJV14], [BCG+18] An asymmetrically constrained encryption (ACE) scheme is a 5-tuple
of PPT algorithms (Setup,GenEK,GenDK,Enc,Dec) satisfying syntax, correctness, security of constrained
decryption, and selective indistinguishability of ciphertexts as described below.

Syntax. The algorithms (Setup,GenEK,GenDK,Enc,Dec) have the following syntax.

• Setup: Setup(1λ, 1n, 1s) is a randomized algorithm that takes as input the security parameter λ, the
message length n, and a “circuit succinctness” parameter s, all in unary. Setup then outputs a secret
key SK. We think of secret keys as consisting of two parts: an encryption key EK and a decryption
key DK.

LetM = {0, 1}n denote the message space.

• (Constrained) Key Generation: Let S ⊂M be any set whose membership is decidable by a circuit
CS . We say that S is admissible if |CS | ≤ s. Intuitively, the set size parameter s denotes the upper
bound on the size of circuit description of sets to which encryption and decryption keys can be
constrained.

– GenEK(SK,CS) takes as input the secret key SK of the scheme and the description of circuit
CS for an admissible set S. It outputs an encryption key EK{S}. We write EK to denote
EK{∅}.

– GenDK(SK,CS) also takes as input the secret key SK of the scheme and the description of
circuit CS for an admissible set S. It outputs a decryption key DK{S}. We write DK to denote
DK{∅}.

Unless mentioned otherwise, we will only consider admissible sets S ⊂M.

• Encryption: Enc(EK ′,m) is a deterministic algorithm that takes as input an encryption key EK ′

(that may be constrained) and a message m ∈M and outputs a ciphertext c or the reject symbol ⊥.

• Decryption: Dec(DK ′, c) is a deterministic algorithm that takes as input a decryption key DK ′ (that
may be constrained) and a ciphertext c and outputs a message m ∈M or the reject symbol ⊥.

Correctness. An ACE scheme is correct if the following properties hold:
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1. Correctness of Decryption: For all n, all m ∈M, all sets S, S′ ⊂M s.t. m /∈ S ∪ S′,

Pr

Dec(DK,Enc(EK,m)) = m

∣∣∣∣∣∣
SK ← Setup(1λ),
EK ← GenEK(SK,CS′),
DK ← GenDK(SK,CS)

 = 1.

Informally, this says that Dec ◦ Enc is the identity on messages which are in neither of the punctured
sets.

2. Equivalence of Constrained Encryption: Let SK ← Setup(1λ). For any message m ∈ M and any
sets S, S′ ⊂M with m not in the symmetric difference S∆S′ (i.e., we are requiring that m is in both
S and S′ or m is in neither S nor S′).

Pr

Enc(EK,m) = Enc(EK ′,m)

∣∣∣∣∣∣
SK ← Setup(1λ),
EK ← GenEK(SK,CS),
EK ′ ← GenEK(SK,CS′)

 = 1.

3. Unique Ciphertexts: With high probability over SK ← Setup(1λ), it holds for any c and c′ that if
Dec(DK, c) = Dec(DK, c′) 6= ⊥, then c = c′.

4. Safety of Constrained Decryption: For all strings c, all S ⊂M,

Pr
[
Dec(DK, c) ∈ S

∣∣ SK ← Setup(1λ), DK ← GenDK(SK,CS)
]

= 0

This says that a punctured key DK{S} will never decrypt a string c to a message in S.

5. Equivalence of Constrained Decryption: If Dec(DK{S}, c) = m 6= ⊥ and m /∈ S′, then
Dec(DK{S′}, c) = m.

Security of Constrained Decryption. Intuitively, this property says that for any two sets S0, S1, no
adversary can distinguish between the constrained key DK{S0} and DK{S1}, even given additional
auxiliary information in the form of a constrained encryption key EK ′ and ciphertexts c1, . . . , ct. To rule
out trivial attacks, EK ′ is constrained at least on S0∆S1. Similarly, each ci is an encryption of a message
m /∈ S0∆S1.

Formally, we describe security of constrained decryption as a multi-stage game between an adversary adv
and a challenger.

• Setup: A chooses sets S0, S1, U s.t. S0∆S1 ⊆ U ⊆ M and sends their circuit descriptions
(CS0 , CS1 , CU ) to the challenger. adv also sends arbitrary polynomially many messages m1, . . . ,mt

such that mi /∈ S0∆S1.

The challenger chooses a bit b ∈ {0, 1} and computes the following:

1. SK ← Setup(1λ),

2. DK{Sb} ← GenDK(SK,CSb),

3. EK ← GenEK(SK, ∅),

4. ci ← Enc(EK,mi) for every i ∈ [t], and

5. EK{U} ← GenEK(SK,CU ).

52



Finally, it sends the tuple (EK{U}, DK{Sb}, {ci}) to adv.

• Guess: A outputs a bit b′ ∈ {0, 1}.

The advantage ofA in this game (on security parameter λ) is defined as advA =
∣∣Pr[b′ = b]− 1

2

∣∣. We require
that for all PPT A, advA(λ) is negl(λ)|S1 \ S0| .

Selective Indistinguishability of Ciphertexts. Intuitively, this property says that no adversary can distin-
guish encryptions of m0 from encryptions of m1, even given certain auxiliary information. The auxiliary
information corresponds to constrained encryption and decryption keys EK ′, DK ′, as well as some ci-
phertexts c1, . . . , ct. In order to rule out trivial attacks, EK ′ and DK ′ should both be punctured on at
least {m0,m1}, and none of c1, . . . , ct should be an encryption of m0 or m1. Let both F1 and F2 be
sub-exponentially secure.

Formally, we require that for all sets S,U ⊂ M, for all m∗0,m
∗
1 ∈ S ∩ U , and all m1, . . . ,mt ∈ M \

{m∗0,m∗1}, the distribution
EK{S}, DK{U}, c∗0, c∗1, c1, . . . , ct

is computationally indistinguishable from

EK{S}, DK{U}, c∗1, c∗0, c1, . . . , ct

in the probability space defined by sampling SK ← Setup(1λ), EK ← GenEK(SK, ∅), EK{S} ←
GenEK(SK,CS), DK{U} ← GenDK(SK,CU ), c∗b ← Enc(EK,m∗b), and ci ← Enc(EK,mi).

As shown in [CHJV14], there exists subexponentially secure ACE assuming subexponentially secure injective
PRGs and iO. We note that their construction and the proof can be based on injective OWFs instead of
injective PRGs, similar to the proof of our relaxed ACE (section C).

Definition of relaxed ACE. As noted earlier, we also consider a relaxed ACE where indistinguishability of
ciphertexts doesn’t necessarily hold. Instead, we require a different property called symmetry, and we show
how to modify the construction of [CHJV14] to build relaxed ACE with small security loss in the constrained
decryption game for certain sets.

Definition 9. A relaxed asymmetrically constrained encryption (relaxed ACE) scheme for message space
{0, 1}n and suffix parameter t is a 6-tuple of PPT algorithms (Setup,GenEK,GenDK,Enc,Dec,Puncture)
satisfying the the following:

1. Syntax: Setup,GenEK,GenDK,Enc,Dec) have syntax as in the definition of ACE. Ciphertext-based
puncturing algorithm Puncture(SK, c1, c2) is an algorithm which takes as input the secret key SK,
a ciphertext c2 and a random string c1 of the same length and outputs a ciphertext-based punctured
key DK{c1, c2}. (We use this notation to distinguish ciphertext-based puncturing DK{c1, c2} from
plaintext-based puncturing DK{S}, where S is a set of plaintexts).

2. Correctness: We require all correctness properties as in the ACE definition. In addition, we require
correctness of decryption and equivalence of constrained decryption to hold even for ciphertext-
based punctured decryption keys. Namely, if DK{c1, c2} = Puncture(SK, c1, c2)) where c1 is
random and c2 is Enc(EK,m), then we require that the mentioned properties hold for the constrained
set S = {m}.

3. Security: We require security of constrained decryption (from the definition of ACE) to hold for
the case when there are no plaintext queries, and only for the case when S1 \ S0 is either of the form
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Ssuf (that is, a set of all strings ending with arbitrary, but the same for all strings, suffix suf of length t),
or of the form Ssuf \ {m∗} (where again suf has the size t, and m∗ also ends with suf). Further, we
require that distinguishing advantage depends on |S1 \ S0| at most logarithmically; in particular, it
should be negligible even when |S1 \ S0| = O(2λ) (alternatively, we can require that the advantage is
smaller than a concrete negligible function).

In addition, for ciphertext-based punctured key we require a property called symmetry, which is
defined with respect to the following game.

1. A chooses plaintext m and sends it to the challenger. Let U = Ssuffixt(m) be the set of all strings ending
with the same t bits as m. the challenger computes the following:

2. SK ← Setup(1λ),

3. c1 is chosen at random from {0, 1}|c|;

4. EK ← GenEK(SK, ∅),

5. EK{U} ← GenEK(SK,U),

6. c2 ← Enc(EK,m)

7. DK{c1, c2} ← Puncture(SK, c1, c2),

8. Finally the challenger chooses random b and gives the adversary (c1, c2, EK{U}, DK{c1, c2}) if
b = 0 and (c2, c1, EK{U}, DK{c1, c2}) if b = 1;

9. A outputs a bit b′ ∈ {0, 1}.

The advantage ofA in this game (on security parameter λ) is defined as advA =
∣∣Pr[b′ = b]− 1

2

∣∣. We require
that for all PPT A, advA(λ) is negligible in λ (alternatively, we can require that it is smaller than a concrete
negligible function ).

In the appendix (section C) we show that there exists subexponentially secure relaxed ACE assuming
subexponentially secure OWFs and iO.

Sparse relaxed ACE. We remark that our relaxed ACE from appendix C has sparse image, that is, the
probability that a randomly chosen string of a proper length is a valid ACE ciphertext is at most 2−λ.

6 Construction of interactive deniable encryption

In this section we describe a construction of interactive deniable encryption for a single-bit message space.

Notation.

We denote by s and r the variables corresponding to randomness of the sender and the receiver, respectively,
and let µ1, µ2, µ3 denote the three messages of the protocol. P1,P2,P3,Dec,SFake,RFake are programs of
the deniable encryption.

P1(s,m) takes as input sender randomness s and plaintextm and outputs the first message µ1. P2(r, µ1) takes
as input receiver randomness r and first message µ1 and outputs the second message µ2. P3(s,m, µ1, µ2)
takes as input sender randomness s, plaintext m, and protocol messages µ1, µ2 and outputs the last message
µ3. Dec(r, µ1, µ2, µ3) takes as input receiver randomness r and protocol messages µ1, µ2, µ3 and outputs
the plaintext m. SFake(s,m, m̂, µ1, µ2, µ3) takes as input sender randomness s, true plaintext m, new (fake)
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The CRS: Programs P1,P2,P3, Dec,SFake,RFake (fig. 18, fig. 19)), obfuscated under iO.

Our Interactive deniable encryption:
Inputs: plaintext m ∈ {0, 1} of the sender.

1. Message 1: The sender chooses random s∗, computes µ1
∗ ← P1(s∗,m) and sends µ1

∗.
2. Message 2: The receiver chooses random r∗, computes µ2

∗ ← P2(r∗, µ1
∗) and sends µ2

∗.
3. Message 3: The sender computes µ3

∗ ← P3(s∗,m, µ1
∗, µ2

∗) and sends µ3
∗.

4. The receiver runs m′ ← Dec(r∗, µ1
∗, µ2

∗, µ3
∗).

Sender Coercion:
Inputs: real plaintext m ∈ {0, 1}, fake plaintext m̂ ∈ {0, 1}, real random coins s∗ of the sender, and the
protocol transcript µ1

∗, µ2
∗, µ3

∗.
1. Upon coercion, the sender computes fake randomness s′ ← SFake(s∗,m, m̂, µ1

∗, µ2
∗, µ3

∗).

Receiver Coercion:
Inputs: fake plaintext m̂ ∈ {0, 1} and the protocol transcript µ1

∗, µ2
∗, µ3

∗.
1. Upon coercion, the receiver chooses random ρ∗ and computes fake randomness r′ ←

RFake(m̂, µ1
∗, µ2

∗, µ3
∗; ρ∗).

Figure 17: Our interactive deniable encryption scheme.

plaintext m̂, and protocol messages µ1, µ2, µ3 and outputs fake randomness s′ which makes µ1, µ2, µ3

look consistent with m̂. RFake(m̂, µ1, µ2, µ3) takes as input new (fake) plaintext m̂ and protocol messages
µ1, µ2, µ3 and outputs fake randomness r′ which makes µ1, µ2, µ3 look consistent with m̂.

To avoid cumbersome notation, we use the same name for both unobfuscated and obfuscated programs.
In particular, the parties and the adversary only see obfuscated programs and never the actual code of the
programs. For example, on fig. 17 the instruction to the sender to run P1 means taking the obfuscation of the
program P1 from the CRS and running it.

Everywhere throughout the paper we will be assuming that any program outputs ⊥, if any of its underlying
primitives outputs ⊥, except for the cases where it is explicitly written otherwise.

6.1 Construction

The protocol is described in fig. 17. It simply instructs parties to run the programs from the CRS, which
consists of 6 obfuscated programs P1,P2,P3,Dec,SFake,RFake (described in fig. 18, fig. 19). Note that
deniability of the receiver is public, since the knowledge of randomness of the receiver is not required in
order to run RFake.

In the introduction we described the reasons behind the logic of the programs we are using. Here we give
an overview of the overall structure of protocol messages and fake randomness. For simplicity, for this
discussion we will use integer levels to count how many times s was faked (in the full construction, the
programs of deniable encryption make use of a “level system” primitive instead of integers in the clear; level
systems are defined formally in Section ??).

The structure of protocol messages. The first two messages in the protocol are simply “hashes” (imple-
mented as a PRF) of internal state of parties so far: that is, µ1 is PRF(s,m) and µ2 is PRF(r, µ1). The third
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message µ3 is an encryption of m,µ1, µ2, and level 0. After running the protocol, the receiver can run Dec
which decrypts µ3 and outputs m.

The structure of fake randomness. Fake randomness s′ of the sender is an encryption (under a special
sender-fake key which is known to programs but not known to parties) of m′, µ1

′, µ2
′, µ3

′, and level 1. This
encryption has pseudorandom ciphertexts, and for an external observer s′ looks like a truly random value.
Programs can decrypt s′ using hardwired key and interpret (m′, µ1

′, µ2
′, µ3

′, `′) as an instruction to output
µ1
′ on input m′ (for program P1) and an instruction to output µ3

′ on input m′, µ1
′, µ2

′ (for program P3).
Thus, such s′ makes the transcript look consistent with m′, regardless of the actual plaintext which was used
to generate the transcript.

Similarly, fake randomness r′ of the receiver is an encryption (under a special receiver-fake key which is
known to programs but not known to parties) of m′, µ1

′, µ2
′, µ3

′, and level 0 (together with prg(ρ) which
is for randomizing this ciphertext). This encryption has pseudorandom ciphertexts, and for an external
observer r′ looks like a truly random value. Programs can decrypt r′ using hardwired key and interpret
(m′, µ1

′, µ2
′, µ3

′, L′) as an instruction to output µ2
′ on input µ1

′ (for program P2) and an instruction to
output m′ on input µ1

′, µ2
′, µ3

′ (for program Dec). Thus, such r′ makes the transcript looks consistent with
m′ (and in particular decrypts it to m′), regardless of the actual plaintext which was used to generate the
transcript.

Both programs P3,Dec also have special instructions for the “mixed input” case, i.e., for the case when P3
gets as input fake s′ encrypting (m′, µ1

′, µ2
′, µ3

′, `′), but input µ2 of the program P3 is different from µ2
′

in s′ (in case of Dec, when µ3
′ in fake r′ is different from input µ3 to Dec). The correct treatment of the

mixed case is crucial for security of the scheme. See the explanation in the introduction for the logic of the
programs on mixed inputs.

6.2 Building blocks and main theorem stating security

6.2.1 Level system

The level system, mentioned in earlier sections of this paper, is a primitive introduced in this work that is a
critical building block of our deniable encryption protocol. This subsection provides detailed intuition about
the level system primitive followed by a formal definition (the latter being a prerequisite to formally stating
the security guarantees of our main construction). This subsection’s scope is purely definitional; see Section 7
for a construction and security proof.

Motivation and overview. The idea of a level system is to have an encryption scheme which allows to
increment ciphertexts and compare them homomorphically. However, in order for this encryption to be useful
in our construction of deniable protocol, we require the following properties of this "encryption scheme":21

• There should be two types of ciphertexts, which we call single-tag levels and double-tag levels;

• A single-tag level is an encryption of number i between 0 and upper bound T , together with some
string m1 ∈ M1, which we call a tag. (In our construction of deniable encryption, we use the first
message of the deniable protocol as a tag. This is done to “tie” the level to the instance of the protocol).

• A double-tag level is an encryption of number i between 0 and upper bound T , together with two tags
m1 ∈ M1,m2 ∈ M2. (In our construction of deniable encryption, we use the first and the second

21Note that even though we call it encryption, we don’t require this primitive to have decryption.
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messages of the deniable protocol as tags. This, again, is done to “tie” the level to the instance of the
protocol).

• It should be possible to perform the following operations:

1. Sample a single-tag level 0 for any tag m1;

2. Homomorphically increment the value inside any single-tag level (keeping its tag the same);

3. Transform any single-tag level into a double-tag level, for any second tag m2 (the value and the
first tag remain the same);

4. Compare two double-tag levels, as long as their both tags are the same;

5. Given any level, retrieve its tag(s).

Notation. We use notation [i,m1] to denote a single-tag level with value i and tag m1. We also use `i to
denote a single-tag level with value i, when the tag is clear from the context.

We use notation [i,m1,m2] to denote a double-tag level with value i and tags m1,m2. We also use Li to
denote a double-tag level with value i, when its tags are clear from the context.

Security property. The security requirement of a level system is that it should be hard to distinguish between
`∗0 = [0,m∗1], L∗0 = [0,m∗1,m

∗
2] and `∗1 = [1,m∗1], L∗0 = [0,m∗1,m

∗
2], even given (limited) ability to perform

homomorphic operations described above.

This will be used in the proof of security of deniable encryption scheme as follows. Recall that in that proof
we need to start with the real transcript and real randomness s, r (having levels L∗0, `

∗
0, L

∗
0, respectively) and

eventually switch to the (same) real transcript but fake randomness s′, r′ (with levels L∗0, `
∗
1, L

∗
0). We can use

security of the level system in the proof of deniable encryption as follows: given challenge `∗b , L
∗
0 (where

`∗b = [b,m∗1], b ∈ {0, 1}, L∗0 = [0,m∗1,m
∗
2]), we use `∗b inside fake s and we use L∗0 inside the transcript and

fake r. Since security of levels only holds when programs are punctured, in the proof of deniable encryption
we first move to a hybrid with only punctured level programs, and then invoke security of the level system.

Definition We start with describing the syntax of a level system for tag space M and upper bound T :

• Setup(1λ;T ; GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags; rSetup) → PP =
(PGenZero,PIncrement,PTransform,PisLess,PRetrieveTag,PRetrieveTags) is a randomized algorithm which
takes as input security parameter, the largest allowed level T , description of programs, and randomness.
It uses random coins to sample all necessary keys for each program22, and outputs those programs
obfuscated under iO.

• GenZero(m1)→ ` is a deterministic algorithm which takes message m1 ∈M as input and outputs a
string ` = [0,m1], which is a single-tag level with tag m1 and value 0. We also require that there exists
a punctured version of this algorithm denoted GenZero[m∗1](m1) which outputs ′fail′ on input m∗1.

• Increment(`) → `′ is a deterministic algorithm which takes a single-tag level ` = [i,m1] for some
0 ≤ i ≤ T − 1,m1 ∈M , and outputs a single-tag level with the same tag and incremented value, i.e.
`′ = [i+ 1,m1]. If i ≥ T , it instead outputs ′fail′.

• Transform(`,m2)→ ` is a deterministic algorithm which takes a single-tag level ` = [i,m1] for some
0 ≤ i ≤ T,m1 ∈M , and some message m2 ∈M , and outputs L = [i,m1,m2], which is a double-tag

22We assume that Setup is implicitly given generation algorithms for all underlying primitives of the programs.
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level with tags m1,m2, and value i. We also require that there exists a punctured version of this
algorithm denoted Transform[(`∗,m∗2)](`,m2) which outputs ′fail′ on input (`∗,m∗2).

• isLess(L′, L′′)→ out ∈ {true, false} is a deterministic algorithm which takes as input two double-tag
levels L′ = [i′,m′1,m

′
2] and L′′ = [i′′,m′′1,m

′′
2]. If (m′1,m

′
2) 6= (m′′1,m

′′
2), then it outputs ′fail′.

Otherwise it outputs true if i′ < i′′ and false if i′ ≥ i′′.

• RetrieveTag(`)→ m1 is a deterministic algorithm which takes a single-tag level ` and outputs its tag.

• RetrieveTags(L) → (m1,m2) is a deterministic algorithm which takes a double-tag level L and
outputs both tags.

We emphasize that all programs except Setup are deterministic.

Definition 10. A tuple of parametrized, deterministic23 algorithms

(GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags,GenZero[m∗1],Transform[l∗,m∗2])

is a level system for tag spaceM , if algorithms have syntax described above, and the correctness and security
properties described below hold.

Notation: Let T be superpolynomial in λ, and PP = (PGenZero, PIncrement, PTransform, PisLess,PRetrieveTag,
PRetrieveTags) ← Setup(1λ; T ; GenZero, Increment, Transform, isLess, RetrieveTag,RetrieveTags; rSetup)
for randomly chosen rSetup.

Next, let m∗1 ∈ M , m∗2 ∈ M , and let `∗ be an arbitrary string (not necessarily a level). Let
PP′ = (P′GenZero, P′Increment, P′Transform, P′isLess, P′RetrieveTag, P′RetrieveTags) ← Setup(1λ, T,GenZero[m∗1],
Increment, Transform[(`∗,m∗2)], isLess, RetrieveTag, RetrieveTags; rSetup) with the same randomness
rSetup as above.

For any fixed rSetup consider the following notation:

• For every m1 ∈M denote [0,m1] = PGenZero(m1);

• For every m1 ∈M , 1 ≤ i ≤ T denote [i,m] = PIncrement([i− 1,m]);

• For every m2 ∈ M and every [i,m1], where 0 ≤ i ≤ T,m1 ∈ M , denote [i,m1,m2] =
PTransform([i,m1],m2).

Correctness: The following properties should hold, except with negligible probability over the choice of
rSetup:

• Uniqueness of levels:

– For all ` /∈ {[i,m1] : 0 ≤ i ≤ T,m1 ∈M}:

∗ PIncrement(`) = ′fail′;

∗ PTransform(`,m2) = ′fail′ for any m2 ∈M ;

23We prefer to use the notion of parametrized, deterministic algorithms to keep the definition simple. To formally define this
notion, consider a randomized Turing machine with the restriction that the number of random bits written on its random tape is fixed
and independent of the input (only dependent on security parameter λ). Such a Turing machine can first use these random coins to
generate all necessary parameters (e.g., keys) and then run the actual code of the algorithm using generated parameters. In particular,
we assume that this TM has the code of all necessary generation algorithms.
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∗ PRetrieveTag(`) = ′fail′.

– For all L /∈ {[i,m1,m2] : 0 ≤ i ≤ T,m1 ∈M,m2 ∈M}:

∗ PisLess(L,L
′) = ′fail′, PisLess(L

′, L) = ′fail′, for any string L′;

∗ PRetrieveTags(L) = ′fail′.

• Upper bound is respected: For every m1 ∈M PIncrement([T,m1]) = ′fail′.

• Correctness of comparison: For every m1,m2 ∈M and for every 0 ≤ i, j ≤ T :

– PisLess([i,m1,m2], [j,m1,m2]) = true for i < j,

– PisLess([i,m1,m2], [j,m1,m2]) = false for i ≥ j.

• Comparison is possible only on matching levels: If (m′1,m
′
2) 6= (m′′1,m

′′
2), then

PisLess([i,m
′
1,m

′
2], [j,m′′1,m

′′
2]) = ′fail′ for all i, j.

• Correctness of tags retrieval: For every m1,m2 ∈M and for every 0 ≤ i ≤ T :

– PRetrieveTag([i,m1]) = m1,

– PRetrieveTags([i,m1,m2]) = (m1,m2).

• Functionality is preserved under puncturing:

– PGenZero(m) = P′GenZero(m) for all m ∈M , m 6= m∗1;

– PIncrement(`) = P′Increment(`) for all strings `;

– PTransform(`,m2) = P′Transform(`,m2) for all strings l and for all m2 ∈M , except (`∗,m∗2);

– PisLess(L
′, L′′) = P′isLess(L

′′, L′′) for all strings L′, L′′;

– PRetrieveTag(`) = P′RetrieveTag(`) for all strings `;

– PRetrieveTags(L) = P′RetrieveTags(L) for all strings L.

Note that it follows from the correctness properties that [i,m1] = [i′,m′1] if and only (i,m1) = (i′,m′1), and
[i,m1,m2] = [i′,m′1,m

′
2] if and only (i,m1,m2) = (i′,m′1,m

′
2).

Security: For any m∗1 ∈M,m∗2 ∈M , the following distributions are computationally indistinguishable:

(`∗0, L
∗
0,PP0) ≈ (`∗1, L

∗
0,PP1),

where rSetup is randomly chosen, PP = (PGenZero,PIncrement,PTransform,PisLess,PRetrieveTag,PRetrieveTags)←
Setup(GenZero, Increment,Transform, isLess,RetrieveTag, RetrieveTags; rSetup),

`∗0 ← PGenZero(m∗1), `∗1 ← PIncrement(`
∗
0), L∗0 ← PTransform(`∗0,m

∗
2),

PPb ← Setup(GenZero[m∗1], Increment,Transform[(`∗b ,m
∗
2)], isLess,RetrieveTag,RetrieveTags; rSetup).

6.2.2 Primitives required for the main construction, and their parameters

We require the primitives listed below. Note that these primitives can be constructed from iO, injective PRFs
(which in turn can be constructed from standard OWFs, [SW14]) and injective OWFs (which in turn can be
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constructed from iO and standard OWFs, [BPW16]); thus it is enough to require iO and OWFs. By starting
with subexponentially-secure iO and OWFs, we can get subexponential security of these primitives.

Definitions can be found in section 5.

Notation. We denote security parameter by λ. We parametrize sizes in our construction by τ(λ), which is
the length of the first message in the protocol (also equal to the size of a tag for the level system, since we use
µ1, µ2 as tags), and T (λ), which is an upper bound of the level system.

Injective PRFs with sparse image. As shown in [SW14], for any length l there exists a family of PRFs {Fk}λ
mapping l-sized inputs to 2l+ λ-sized outputs, such that with probability at least 1− 2−λ (over the choice of
the key), the PRF is injective. Note that PRF with these parameters has exponentially sparse image, i.e. a
randomly chosen element is in its image with probability 2−l−λ.

These PRFs are used in the construction of ACE and relaxed ACE.

Sparse extracting PRF. As shown in [SW14], for any length l, as long as the input has entropy at least
l ≥ τ/2 + 2λ+ 2, there exists a family of extracting PRFs {Fk}λ mapping at least l-sized inputs to τ/2-sized
outputs, which are strong extractors with statistical distance at most 2−λ. It can be shown in a simple
reduction that applying a length-doubling prg to the output of such a PRF results in a (computationally)
extracting PRF, such that a random string is in its image with probability 2τ/2.

These PRFs are used to compute the first two messages in the protocol.

ACE. As shown in [CHJV14], for any plaintext length l, there exists an ACE with ciphertexts of size 3l + λ
(as long as injective PRFs used are from l bits to 2l + λ bits).

ACE is used as the main encryption scheme (used to compute the third message of the protocol).

Relaxed ACE. As we show in the appendix C by modifying the construction of [CHJV14], for any plaintext
length l and suffix parameter t, there exists a relaxed ACE with ciphertexts of size (l− t+ 1)(2l− t+λ) +λ
(as long as each injective PRF Fi, i = t, . . . , l, is from i bits to 2i+ λ bits). . Further, ciphertexts of this ACE
are sparse, with ratio of ciphertexts at most 2−λ. Relaxed ACE is used as an encryption scheme to generate
fake sender and receiver randomness.

Length-doubling PRG. We use a prg from λ to 2λ bits. It is used in program RFake to randomize fake
randomness of the receiver. (In addition, as part of the construction of a sparse extracting PRF, we also use a
prg from τ(λ)/2 to τ(λ) bits).

Level system. We require a level system for any superpolynomial upper bound T and any sublinear tag size.

Length of variables as a function of the first message size τ and level upper bound T . Below we express
sizes in our construction (which in turn specify parameters of all primitives) as a function of the first message
size τ(λ) and the upper bound of the level system T (λ). We require that both τ(λ)and log T (λ) are sublinear
in λ. We assume that the plaintext of the deniable encryption scheme is one bit long. Somewhat abusing
notation, in this discussion we will be denoting the size of the ACE ciphertext of l-size input as ACE(l); size
of levels as |`|, |L|; size of the output of a prg as |prg|.

• |µ1| = τ ;

• |µ2| = τ ;

• |`| = |ACE(|µ1|+ log T )| = 3(τ + log T ) + λ = O(λ);
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• |L| = |ACE(|µ1|+ |µ2|+ log T )| = 3(2τ + log T ) + λ = O(λ);

• |µ3| = |ACE(1+ |µ1|+ |µ2|+ |L|)| = 3(1+2τ+3(2τ+log T )+λ)+λ = 3+24τ+9 log T +4λ =
O(λ);

• |s| = relaxedACE(1 + |µ1|+ |µ2|+ |µ3|+ |`|) (for suffix parameter t = |`|), thus the size is equal to
(1 + 2τ + (3 + 15τ + 9 log T + 4λ) + 1)(2(1 + 2τ + (3 + 15τ + 9 log T + 4λ) + 3(τ + log T ) +λ)−
(3(τ + log T ) + λ) + λ) + λ = (5 + 17τ + 9 log T + 4λ)(8 + 37τ + 21 log T + 20λ) + λ = O(λ2);

• |r| = relaxedACE(1 + |µ1|+ |µ2|+ |µ3|+ |L|+ |prg|) (for suffix parameter t = |prg|), thus the size is
equal to ((1+2τ+3+24τ+9 log T+4λ+3(2τ+log T )+λ+2λ)−2λ+1)(2(1+2τ+3+24τ+9 log T+
4λ+3(2τ+log T )+λ+2λ)−2λ+λ)+λ = (5+32τ+12 log T+5λ)(8+64τ+24 log T+13λ)+λ =
O(λ2).

Further, since in our construction of deniable encryption we use the first message µ1 as a tag for the level
system, we need a level system for upper bound T and tag size τ .

The size of the programs, and removing layers of iO. Note that the source code on fig. 18, fig. 19 includes
the description of obfuscated programs of the level system. In turn, the source code of programs of the level
system contains ACE keys which are again obfuscations of some other programs. Thus, the CRS contains
programs which have 3 layers of obfuscation.

However, this layering is only for convenience: it enables proving the security of component primitives (e.g.,
ACE and the level system) separately and then combine them into a bigger proof (e.g., of deniable encryption
or the level system). It is possible to prove security of our deniable encryption where programs of deniable
encryption are obfuscated only once. That is, programs of deniable encryption can use unobfuscated code of
the programs of the level system and ACE. However, to show security in this case, one would have to “unroll”
all proofs, i.e., substitute the proof of, say, ACE instead of each reduction to security of ACE in the main
proof. Needless to say, writing, and more importantly, verifying such a proof would be very onerous (certainly
from the perspective of the authors, who think of themselves as polynomially-bounded Turing machines).

Nevertheless, in appendix B we briefly explain why such a proof could be written. Intuitively, this holds
because of the following: let’s say in the proof of ACE we punctured the PRF and reduced it to security of
the obfuscation (of ACE source code). Then we can do the same reduction in the “unrolled” proof, since that
punctured PRF key, which is now a part of a source code of deniable encryption program, is still protected by
obfuscation on top of that program.

We state our theorem with a parameter σ representing the size of the source code of the programs of the
deniable encryption scheme. As long as our construction uses only one layer of iO, σ = O(λ3) (λ3 comes
from the fact that all programs of deniable encryption use keys of a relaxed ACE, which have size O(λ3)
due to the fact each key consists of O(λ) PRF keys, these keys are punctured in the security proof, and each
punctured PRF key has size O(λ2)).

6.2.3 Main theorem

Theorem 2. Assume the existence of the following primitives with parameters spicified above:

• SG,RG are extracting puncturable PRFs with sparse image. Further, these PRFs should have a
property that, given a punctured key, we can further puncture them at one more point;

• prg is a pseudorandom generator with a sparse image;
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• Programs (GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags) are the programs of a
level system;

• sender-fake ACE (with keys EKS ,DKS) is a relaxed ACE with suffix parameter equal to the size of a
single-tag level of the level system; in addition, its ciphertexts should be sparse.

• receiver-fake ACE (with keys EKR,DKR) is a relaxed ACE with suffix parameter equal to the image
length of a prg; in addition, its ciphertexts should be sparse.

• main ACE (with keys EK,DK);

• iO is a secure indistinguishability obfuscation for circuits of size σ = c · λ3 for some constant c;

Then the protocol of fig. 17 instantiated with the programs in fig. 18 and fig. 19 is a bideniable and
off-the-record deniable interactive encryption in the CRS model for 1-bit plaintexts. More specifically,
assuming that each primitive except the level system is (t(λ), ε(λ))-secure, and assuming the level system
for an upper bound T and tag size τ is O(t(λ), ε1(λ, T, τ))-secure, the resulting deniable encryption is
(t(λ), O(ε(λ)) +O(2−τ ) + ε1(λ, T, τ))-secure.

Corollary 1. Let T = 2λ
ε/2

, τ = λε/2, and assume that all primitives in theorem 2 are (poly(λ), 2−Ω(λε
2/2))-

secure. Then the resulting deniable encryption is (poly(λ), 2−Ω(λε
2/2))-secure.

Encrypting longer plaintexts. Note that the syntax of the scheme allows to encrypt longer plaintexts.
However, for simplicity we define and prove deniability and off-the-record-deniability for 1-bit plaintexts
only. In appendix D we list the changes required to adapt the proof to support longer plaintexts. However,
this incurs additional security loss proportional to the |M|3, the cube of the size of the plaintext space.
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Programs P1,P3,SFake.
Program P1(s,m)
Inputs: sender randomness s, plaintext m.
Hardwired values: decryption key DKS of sender-fake ACE, key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS (s,m).

Program P3(s,m, µ1, µ2)
Inputs: sender randomness s, plaintext m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1, GenZero, Transform, RetrieveTag; decryption key
DKS of sender-fake ACE, encryption key EK of main ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFake(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake plaintext m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1, GenZero, Increment; encryption and decryption keys
EKS ,DKS of sender-fake ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS (m̂, µ1, µ2, µ3, `+1).

3. Main step:
(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS (m̂, µ1, µ2, µ3, `1).

Figure 18: Programs P1,P3,SFake.
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Programs P2,Dec,RFake.
Program P2(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: decryption key DKR of receiver-fake ACE, key kR of an extracting PRF RG.

1. Trapdoor step:
(a) out ← ACE.DecDKR(r); if out = ′fail′ then goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(b) If µ1 = µ1
′ then return µ2

′;
2. Main step:

(a) Return µ2 ← RGkR(r, µ1).

Program Dec(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P2, isLess, RetrieveTags; decryption key DKR of receiver-
fake ACE, decryption key DK of the main ACE.

1. Validity check: if P2(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKR(r); if out′ = ′fail′ then goto main step; else parse out′ as
(m′, µ1

′, µ2
′, µ3

′, L′, ρ̂);
(b) if µ1, µ2, µ3 = µ1

′, µ2
′, µ3

′ then return m′;
(c) out← ACE.DecDK(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1

′′, µ2
′′, L′′);

(d) If µ1, µ2 = µ1
′, µ2

′ then
i. If (µ1

′, µ2
′) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) and isLess(L′, L′′) = true then return m′′;

ii. Else abort.
3. Main step:

(a) out← ACE.DecDK(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
(b) If (µ1, µ2) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) then return m′′;

(c) Else abort.

Program RFake(m̂, µ1, µ2, µ3; ρ)
Inputs: fake plaintext m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: encryption key EKR of receiver-fake ACE, decryption key DK of the main ACE.

1. out← ACE.DecDK(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
2. Return r′ ← ACE.EncEKR(m̂, µ1, µ2, µ3, L

′′, prg(ρ)).
Figure 19: Programs P2,Dec,RFake.
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6.3 Proof overview

Correctness. Correctness follows from correctness of all underlying primitives and from the fact that
sender-fake and receiver-fake ACE are both sparse. More concretely, assume s∗ and r∗ are randomly
chosen coins of the sender and the receiver. Due to sparseness of ACE, s∗ (resp, r∗) is outside of the
image of sender-fake (resp., receiver-fake) ACE. Therefore program P1 on input s∗,m executes the main
step and outputs µ1

∗ = SGkS (s∗,m), program P2 on input r∗, µ1
∗ executes the main step and outputs

µ2
∗ = RGkR(r∗, µ1

∗), and program P3 on input s∗,m, µ1
∗, µ2

∗ executes the main step and outputs µ3
∗ =

EncK(m,µ1
∗, µ2

∗,Transform(GenZero(µ1
∗), µ2

∗)). In particular, the validity check passes since indeed
P1(s∗,m) = µ1

∗.

Next, program Dec on input r∗, µ1
∗, µ2

∗, µ3
∗ executes the main step by decrypting µ3

∗ and returning its
plaintext m. In particular, validity check passes, since P2(r∗, µ1

∗) = µ2
∗. Further, note that µ1, µ2 which are

the input to Dec, µ1
′′, µ2

′′ which are decrypted from µ3
∗, and the output of RetrieveTags(L′′) are all equal

to µ1
∗, µ2

∗ (recall that L′′ = Transform(GenZero(µ1
∗), µ2

∗)). Thus all checks in the main step of Dec pass
and the program outputs m.

Notation. m∗0,m∗1 denote messages chosen by the adversary. s∗, r∗ denote true (chosen at random) random
coins of the sender and receiver, respectively. µ1

∗, µ2
∗, µ3

∗ denote the challenge transcript of the protocol,
which is either tr(s∗, r∗,m∗0) or tr(s∗, r∗,m∗1) depending on the hybrid. s′, r′ denote fake random coins of
the sender and receiver, respectively. We write tr(s, r,m) to denote the communication in the protocol with
input m and randomness s and r.

By `∗0 we denote a single-tag level 0 with tag µ1
∗. By `∗1 we denote a single-tag level 1 with tag µ1

∗. By L∗0
we denote double-tag level 0 with tags µ1

∗, µ2
∗.

In addition, we will be using notation [val, µ1] and [val, µ1, µ2] to denote single-tag and double-tag levels
with value val and tag µ1 (or, tags µ1, µ2).

Main steps. We start with a distribution corresponding to transmitted plaintext m∗0 ∈ {0, 1} and real
randomness s∗ and r∗ presented to the adversary. More formally, we consider the following distribution:

HybA = (PP,m∗0,m
∗
1, s
∗, r∗, tr(s∗, r∗,m∗0)), where s∗, r∗ are randomly chosen, and PP =

Setup(1λ; P1,P2,P3,Dec,SFake,RFake; rSetup) for randomly chosen rSetup.

To prove security of our deniable encryption scheme, we proceed in the following steps:

1. Indistinguishability of explanations of the sender: we switch real (randomly chosen) s∗ to fake s′,
which encodes plaintext m∗0, transcript µ1

∗, µ2
∗, µ3

∗, and level `∗ = [0, µ1
∗], moving to the following

distribution:

HybB = (PP,m∗0,m
∗
1, s
′, r∗, tr(s∗, r∗,m∗0)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), and PP = Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for

randomly chosen rSetup.

The proof of this step is similar in spirit to the proof of a sender-deniable encryption of Sahai and
Waters [SW14], and relies on the fact that all relevant programs, given s∗ or s′ as input, behave in the
same way for any choice of remaining inputs.

2. Indistinguishability of explanations of the receiver: we switch real (randomly chosen) r∗ to fake
r′, which encodes plaintext m∗0, transcript µ1

∗, µ2
∗, µ3

∗, and level L∗ = [0, µ1
∗, µ2

∗], moving to the
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following distribution:

HybC = (PP,m∗0,m
∗
1, s
′, r′, tr(s∗, r∗,m∗0)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly
chosen ρ∗, and PP = Setup(1λ; P1,P2,P3,Dec,SFake,RFake; rSetup) for randomly chosen rSetup.

Unlike the previous step, here there exist inputs such that program Dec, when run on these inputs and
r∗ or r′, produces different outputs. However, such inputs are hard to find. Thus, in security proof of
this step we first use properties of ACE to “eliminate” bad inputs (i.e. to make the programs reject
them), then run Sahai-Waters-like proof similar to the previous step, and finally use ACE to bring bad
inputs back and restore the programs.

3. Semantic security: we switch the transcript from encrypting m∗0 to encrypting m∗1, moving to the
following distribution:

HybD = (PP,m∗0,m
∗
1, s
′, r′, tr(s∗, r∗,m∗1)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly
chosen ρ∗, and PP = Setup(1λ; P1,P2,P3,Dec,SFake,RFake; rSetup) for randomly chosen rSetup.

Proving security of this step involves the following. First, similar to the previous step, we “eliminate”
a ciphertext µ3

∗ = ACE.EncEK(1 ⊕m∗0, µ1
∗, µ2

∗, L∗0), making all programs reject it (note that this
ciphertext is “complementary” to the challenge ciphertext µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0),
meaning it encrypts the opposite bit). This allows us to modify program Dec such that decryption key
DK is not used to decrypt µ3

∗, µ3
∗. Then we use security of ACE to switch µ3

∗ from encrypting m∗0 to
m∗1, and then revert all previous changes.

4. Indistinguishability of levels: we switch the level encoded in s′ from `∗0 = [0, µ1
∗] to `∗1 = [1, µ1

∗]
(while keeping L∗0 = [0, µ1

∗, µ2
∗] the same), moving to the following distribution:

HybE = (PP,m∗0,m
∗
1, s
′, r′, tr(s∗, r∗,m∗1)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly
chosen ρ∗, and PP = Setup(1λ; P1,P2,P3,Dec,SFake,RFake; rSetup) for randomly chosen rSetup.

To prove security of this step, we first use security of ACE to eliminate some bad inputs. After this,
we can modify programs of deniable encryption scheme in such a way that they only use punctured
version of the programs of the level system. Then we invoke security of the level system and finally
revert previous changes.

Finally, we argue that, except with negligible probability, s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1) is the

same as s′ = SFake(s∗,m∗1,m
∗
0, µ1

∗, µ2
∗, µ3

∗) (indeed, this is what SFake outputs except for a negli-
gibly small fraction of inputs). In addition, since r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) =
RFake(m∗0, µ1

∗, µ2
∗, µ3

∗; ρ∗), we thus obtain the following distribution:

HybF = (PP,m∗0,m
∗
1, s
′, r′, tr(s∗, r∗,m∗1)), where s∗, r∗ are randomly chosen, s′ =

SFake(s∗,m∗1,m
∗
0, µ1

∗, µ2
∗, µ3

∗), r′ = RFake(m∗0, µ1
∗, µ2

∗, µ3
∗; ρ∗) for randomly chosen ρ∗, and

PP = Setup(1λ; P1,P2,P3,Dec,SFake,RFake; rSetup) for randomly chosen rSetup.

Note that this distribution corresponds to the execution of the protocol with plaintext m∗1 and fake randomness
s′, r′ which makes this transcript look consistent with plaintext m∗0, and thus we proved security of our
deniable encryption.

In section 8.1 for each one of the four steps we present a list of hybrids with a brief explanation of why
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indistinguishability between each hybrid holds. Formal security reductions can be found in section 8.2.

Off-the-record deniability. Proof of off-the-record deniability of our scheme follows the same major four
steps, but in a different order and with slightly different distributions. In section 9 we explain how to modify
the proof of deniability from section 8 to turn it into a proof of off-the-record deniability.

7 Level System

This section presents our level system construction and security proof. Level systems were already defined in
section 6.2.1, as a building block for our deniable encryption protocol. We repeat both the intuitive motivation
and formal definition here, in order to keep this section self-contained for any readers who may read it
separately. (We believe the level system may be a primitive of independent interest.) Readers wishing to skip
the definitional material and go straight to the construction should skip to section 7.2.

Motivation and overview. The idea of a level system is to have an encryption scheme which allows to
increment ciphertexts and compare them homomorphically. However, in order for this encryption to be useful
in our construction of deniable protocol, we require the following properties of this "encryption scheme":24

• There should be two types of ciphertexts, which we call single-tag levels and double-tag levels;

• A single-tag level is an encryption of number i between 0 and upper bound T , together with some
string m1 ∈ M1, which we call a tag. (In our construction of deniable encryption, we use the first
message of the deniable protocol as a tag. This is done to “tie” the level to the instance of the protocol).

• A double-tag level is an encryption of number i between 0 and upper bound T , together with two tags
m1 ∈ M1,m2 ∈ M2. (In our construction of deniable encryption, we use the first and the second
messages of the deniable protocol as tags. This, again, is done to “tie” the level to the instance of the
protocol).

• It should be possible to perform the following operations:

1. Sample a single-tag level 0 for any tag m1;

2. Homomorphically increment the value inside any single-tag level (keeping its tag the same);

3. Transform any single-tag level into a double-tag level, for any second tag m2 (the value and the
first tag remain the same);

4. Compare two double-tag levels, as long as their both tags are the same;

5. Given any level, retrieve its tag(s).

Notation. We use notation [i,m1] to denote a single-tag level with value i and tag m1. We also use `i to
denote a single-tag level with value i, when the tag is clear from the context.

We use notation [i,m1,m2] to denote a double-tag level with value i and tags m1,m2. We also use Li to
denote a double-tag level with value i, when its tags are clear from the context.

Security property. The security requirement of a level system is that it should be hard to distinguish between
`∗0 = [0,m∗1], L∗0 = [0,m∗1,m

∗
2] and `∗1 = [1,m∗1], L∗0 = [0,m∗1,m

∗
2], even given (limited) ability to perform

homomorphic operations described above.
24Note that even though we call it encryption, we don’t require this primitive to have decryption.
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This will be used in the proof of security of deniable encryption scheme as follows. Recall that in that proof
we need to start with the real transcript and real randomness s, r (having levels L∗0, `

∗
0, L

∗
0, respectively) and

eventually switch to the (same) real transcript but fake randomness s′, r′ (with levels L∗0, `
∗
1, L

∗
0). We can use

security of the level system in the proof of deniable encryption as follows: given challenge `∗b , L
∗
0 (where

`∗b = [b,m∗1], b ∈ {0, 1}, L∗0 = [0,m∗1,m
∗
2]), we use `∗b inside fake s and we use L∗0 inside the transcript and

fake r. Since security of levels only holds when programs are punctured, in the proof of deniable encryption
we first move to a hybrid with only punctured level programs, and then invoke security of the level system.

7.1 Definition

We start with describing the syntax of a level system for tag space M and upper bound T :

• Setup(1λ;T ; GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags; rSetup) → PP =
(PGenZero,PIncrement,PTransform,PisLess,PRetrieveTag,PRetrieveTags) is a randomized algorithm which
takes as input security parameter, the largest allowed level T , description of programs, and randomness.
It uses random coins to sample all necessary keys for each program25, and outputs those programs
obfuscated under iO.

• GenZero(m1)→ ` is a deterministic algorithm which takes message m1 ∈M as input and outputs a
string ` = [0,m1], which is a single-tag level with tag m1 and value 0. We also require that there exists
a punctured version of this algorithm denoted GenZero[m∗1](m1) which outputs ′fail′ on input m∗1.

• Increment(`) → `′ is a deterministic algorithm which takes a single-tag level ` = [i,m1] for some
0 ≤ i ≤ T − 1,m1 ∈M , and outputs a single-tag level with the same tag and incremented value, i.e.
`′ = [i+ 1,m1]. If i ≥ T , it instead outputs ′fail′.

• Transform(`,m2)→ ` is a deterministic algorithm which takes a single-tag level ` = [i,m1] for some
0 ≤ i ≤ T,m1 ∈M , and some message m2 ∈M , and outputs L = [i,m1,m2], which is a double-tag
level with tags m1,m2, and value i. We also require that there exists a punctured version of this
algorithm denoted Transform[(`∗,m∗2)](`,m2) which outputs ′fail′ on input (`∗,m∗2).

• isLess(L′, L′′)→ out ∈ {true, false} is a deterministic algorithm which takes as input two double-tag
levels L′ = [i′,m′1,m

′
2] and L′′ = [i′′,m′′1,m

′′
2]. If (m′1,m

′
2) 6= (m′′1,m

′′
2), then it outputs ′fail′.

Otherwise it outputs true if i′ < i′′ and false if i′ ≥ i′′.

• RetrieveTag(`)→ m1 is a deterministic algorithm which takes a single-tag level ` and outputs its tag.

• RetrieveTags(L) → (m1,m2) is a deterministic algorithm which takes a double-tag level L and
outputs both tags.

We emphasize that all programs except Setup are deterministic.

Definition 11. A tuple of parametrized, deterministic26 algorithms

(GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags,GenZero[m∗1],Transform[l∗,m∗2])

25We assume that Setup is implicitly given generation algorithms for all underlying primitives of the programs.
26We prefer to use the notion of parametrized, deterministic algorithms to keep the definition simple. To formally define this

notion, consider a randomized Turing machine with the restriction that the number of random bits written on its random tape is fixed
and independent of the input (only dependent on security parameter λ). Such a Turing machine can first use these random coins to
generate all necessary parameters (e.g., keys) and then run the actual code of the algorithm using generated parameters. In particular,
we assume that this TM has the code of all necessary generation algorithms.
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is a level system for tag spaceM , if algorithms have syntax described above, and the correctness and security
properties described below hold.

Notation: Let T be superpolynomial in λ, and PP = (PGenZero, PIncrement, PTransform, PisLess,PRetrieveTag,
PRetrieveTags) ← Setup(1λ; T ; GenZero, Increment, Transform, isLess, RetrieveTag,RetrieveTags; rSetup)
for randomly chosen rSetup.

Next, let m∗1 ∈ M , m∗2 ∈ M , and let `∗ be an arbitrary string (not necessarily a level). Let
PP′ = (P′GenZero, P′Increment, P′Transform, P′isLess, P′RetrieveTag, P′RetrieveTags) ← Setup(1λ, T,GenZero[m∗1],
Increment, Transform[(`∗,m∗2)], isLess, RetrieveTag, RetrieveTags; rSetup) with the same randomness
rSetup as above.

For any fixed rSetup consider the following notation:

• For every m1 ∈M denote [0,m1] = PGenZero(m1);

• For every m1 ∈M , 1 ≤ i ≤ T denote [i,m] = PIncrement([i− 1,m]);

• For every m2 ∈ M and every [i,m1], where 0 ≤ i ≤ T,m1 ∈ M , denote [i,m1,m2] =
PTransform([i,m1],m2).

Correctness: The following properties should hold, except with negligible probability over the choice of
rSetup:

• Uniqueness of levels:

– For all ` /∈ {[i,m1] : 0 ≤ i ≤ T,m1 ∈M}:

∗ PIncrement(`) = ′fail′;

∗ PTransform(`,m2) = ′fail′ for any m2 ∈M ;

∗ PRetrieveTag(`) = ′fail′.

– For all L /∈ {[i,m1,m2] : 0 ≤ i ≤ T,m1 ∈M,m2 ∈M}:

∗ PisLess(L,L
′) = ′fail′, PisLess(L

′, L) = ′fail′, for any string L′;

∗ PRetrieveTags(L) = ′fail′.

• Upper bound is respected: For every m1 ∈M PIncrement([T,m1]) = ′fail′.

• Correctness of comparison: For every m1,m2 ∈M and for every 0 ≤ i, j ≤ T :

– PisLess([i,m1,m2], [j,m1,m2]) = true for i < j,

– PisLess([i,m1,m2], [j,m1,m2]) = false for i ≥ j.

• Comparison is possible only on matching levels: If (m′1,m
′
2) 6= (m′′1,m

′′
2), then

PisLess([i,m
′
1,m

′
2], [j,m′′1,m

′′
2]) = ′fail′ for all i, j.

• Correctness of tags retrieval: For every m1,m2 ∈M and for every 0 ≤ i ≤ T :

– PRetrieveTag([i,m1]) = m1,

– PRetrieveTags([i,m1,m2]) = (m1,m2).

• Functionality is preserved under puncturing:
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– PGenZero(m) = P′GenZero(m) for all m ∈M , m 6= m∗1;

– PIncrement(`) = P′Increment(`) for all strings `;

– PTransform(`,m2) = P′Transform(`,m2) for all strings l and for all m2 ∈M , except (`∗,m∗2);

– PisLess(L
′, L′′) = P′isLess(L

′′, L′′) for all strings L′, L′′;

– PRetrieveTag(`) = P′RetrieveTag(`) for all strings `;

– PRetrieveTags(L) = P′RetrieveTags(L) for all strings L.

Note that it follows from the correctness properties that [i,m1] = [i′,m′1] if and only (i,m1) = (i′,m′1), and
[i,m1,m2] = [i′,m′1,m

′
2] if and only (i,m1,m2) = (i′,m′1,m

′
2).

Security: For any m∗1 ∈M,m∗2 ∈M , the following distributions are computationally indistinguishable:

(`∗0, L
∗
0,PP0) ≈ (`∗1, L

∗
0,PP1),

where rSetup is randomly chosen, PP = (PGenZero,PIncrement,PTransform,PisLess,PRetrieveTag,PRetrieveTags)←
Setup(GenZero, Increment,Transform, isLess,RetrieveTag, RetrieveTags; rSetup),

`∗0 ← PGenZero(m∗1), `∗1 ← PIncrement(`
∗
0), L∗0 ← PTransform(`∗0,m

∗
2),

PPb ← Setup(GenZero[m∗1], Increment,Transform[(`∗b ,m
∗
2)], isLess,RetrieveTag,RetrieveTags; rSetup).

7.2 Construction

We implement a level system in a natural way: we let levels to be ciphertexts (encrypting the value and the
tag in a single-tag level, and the value and both tags in a double-tag level) under special encryption scheme
called asymmetric constrained encryption, or ACE (8). For single-tag and double-tag levels we use two
different instances of ACE, with keys EK1,DK1 for single-tag levels and EK2,DK2 for double-tag levels.
We let programs of the level system (fig. 20) perform required “homomorphic” operations in a natural way,
by decrypting the ciphertext and learning its value and tag, checking validity of the operation, and then
outputting the result (reencrypted, when applicable).

Theorem 3. Let:

• λ be a security parameter;

• iO be (poly(λ), 2−Ω(νiO(λ)))-secure indistinguishability obfuscation;

• ACE be an asymmetric constrained encryption scheme with (poly(λ), 2−Ω(νACE.Indist(λ)))-secure indis-
tinguishability of ciphertexts and (poly(λ), 2−Ω(νACE.ConstrDec(λ))) security of decryption;

• g be a (2O(νOWF(λ′)), 2−Ω(νOWF(λ′)))-secure injective one-way function mapping λ′ = log T (λ)-bit
inputs to poly(λ′)-bit outputs;

• γ(λ) be a function satisfying the following conditions:

– γ(λ) = O(νiO(λ));

– 2γ(λ)poly(λ) log T = O(2νOWF(log T ));

Then the scheme described on fig. 20 is a level system for upper bound T (λ), tags of length τ(λ), which is
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(poly(λ), 2−νlevels(λ))-secure, where 2−νlevels(λ) is equal to the following:

2−Ω(γ(λ))+T−1(λ)+T (λ)2−Ω(νACE.ConstrDec(λ))+2τ(λ)(T (λ)·2−Ω(νiO(λ))+T (λ)·2−Ω(νACE.Indist(λ))+2−Ω(νACE.ConstrDec(λ)))).

Note: Here γ(λ) represents distinguishing advantage between two obfuscated programs differing on one
input (which is a preimage of the OWF g). The two conditions on γ are set to satisfy the requirements of
theorem 1, and say that the inverter’s size is small enough, and that distinguishing advantage is big enough
compared to the indistinguishability guarantee of iO.

By using subexponentially-secure primitives, we obtain the following corollary:

Corollary 2. Let:

• λ be a security parameter;

• iO be (poly(λ), 2−Ω(λε))-secure indistinguishability obfuscation;

• ACE be an asymmetric constrained encryption scheme with (poly(λ), 2−Ω(λε))-secure indistinguisha-
bility of ciphertexts and (poly(λ), 2−Ω(λε)) security of decryption;

• g be a (2Ω(λ′ε), 2−Ω(λ′ε))-secure injective one-way function mapping λ′ = λε/2-bit inputs to poly(λ′)-
bit outputs;

• γ(λ) = λε
2/2;

Then the scheme described on fig. 20 is a level system for upper bound T (λ) = 2λ
ε/2

, tags of length

τ(λ) = λε/2, which is (poly(λ), 2−Ω(λε
2/2))-secure.

7.3 Overview of the proof

Correctness. Correctness properties of our level scheme immediately follow from statistical correctness of
iO and correctness and uniqueness properties of ACE.

Overview of security proof. For security, we first informally describe the structure of the proof, and then give
the sequence of hybrids in section 7.4 and security reductions in section 7.5. Recall that security definition
requires that (`∗0, L

∗
0,PP0) ≈ (`∗1, L

∗
0,PP1), where PPb are punctured, obfuscated programs. Starting from

the distribution (`∗0, L
∗
0,PP0), our proof proceeds in 3 major steps:

1. Switching from `∗0 = [0,m∗1] to `∗1 = [1,m∗1]. Programs GenZero and Increment define a chain
[0,m1]→ [1,m1]→ . . .→ [T,m1]→ ⊥ for each tag m1. In a sequence of hybrids we switch from
[0,m∗1] to [1,m∗1] by switching the whole chain from [0,m∗1] → [1,m∗1] → . . . → [T,m∗1] → ⊥ to
[1,m∗1]→ [2,m∗1]→ . . .→ [T + 1,m∗1]→ ⊥.

As a result of this change, `∗0 is switched to `∗1 as desired (and in particular, the punctured point in
Transform is switched from `∗0 to `∗1 as well). However, this change also affects the programs in the
following two ways (resulting programs are in fig. 22) :

• Wrong upper bound: programs Increment, Transform, and RetrieveTag now have an upper
bound T + 1 (instead of T ) for the case m1 = m∗1,

• Incorrect reencryption: program Transform, given [i,m∗1] for 0 ≤ i ≤ T + 1, outputs [i −
1,m∗1,m2] instead of [i,m∗1,m2].
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Program GenZero(m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE.

1. output l← ACE.EncEK1(0,m1).
Program Increment(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program Transform(l,m2)
Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. output L← ACE.EncEK2(i,m1,m2).

Program isLess(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or or i′ < 0 or i′′ < 0 (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.
Program RetrieveTag(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTags(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 20: Programs in our level system
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2. Restoring correct upper bound in Increment,Transform, and RetrieveTag. In a sequence of
hybrids we change the wrong upper bound T + 1 to the correct upper bound T in relevant programs.

Resulting programs are in fig. 23. This part of the proof uses ideas from [BPR15] to argue that
the adversary can never reach the upper bound and thus the upper bound can be decreased by 1
indistinguishably.

3. Restoring correct reencryption in Transform. In a sequence of hybrids we make program Transform
output the correct value [i,m∗1,m2], instead of [i− 1,m∗1,m2], for all 0 ≤ i ≤ T and for all m2.

The proof of this step follows a by-now-standard puncturing technique (which allows to change the
ciphertext in a PRF-based encryption from one plaintext to another), except that we also have to deal
with program isLess which has decryption keys inside it. Intuitively, the proof still goes through even
despite those decryption keys, because isLess only reveals the result of the comparison, which is not
affected by our change.

At the end of this step, we obtain original punctured programs, thus proving security of our level
system.

Security loss. Steps 1 and 2 require number of hybrids proportional to the upper bound T , and step 3 requires
number of hybrids proportional to 2|m2|T . In addition, in the proof of step 2 we also lose 1/T , thus requiring
T and 2|m2| to be superpolynomial.

Now we describe the proof in each step in more detail. While the reader can safely skip this part and directly
go to the list of hybrids (section 7.4), we suggest that the readers familiar with iO techniques take a look at
this informal presentation first, since it outlines, in a succinct way, the logic behind the somewhat lengthy
sequence of hybrids.

Step 1: Switching `∗ from [0,m∗1] to [1,m∗1].

1. We first change the chain to [0,m∗1]→ [1,m∗1]→ . . .→ [T − 1,m∗1]→ [T + 1,m∗1]→ ⊥, creating
a gap between T − 1 and T + 1. This is done by first hardwiring the ciphertext l∗T = [T,m∗1] into
relevant programs, then puncturing keys corresponding to both [T,m∗1] and [T + 1,m∗1] (the latter
can be punctured since they are never used due to upper bound T ), and finally switching hardwired
ciphertext to l∗T+1 = [T + 1,m∗1] and unpuncturing keys at [T + 1,m∗1]27.

Note that the keys remain punctured at the point [T,m∗1], which essentially means that from the point
of view of programs there doesn’t exist a valid encryption of (T,m∗1).

Finally, note that switching the hardwired ciphertext from [T,m∗1] to [T + 1,m∗1] changes the upper
bound from T to T + 1 in programs Transform and RetrieveTag.

2. Then in a sequence of hybrids we move the gap from T down to 0 a follows. Let j-th hybrid be a
hybrid where the gap is at j + 1, i.e. Increment defines a chain [0,m∗1]→ [1,m∗1]→ . . .→ [j,m∗1]→
[j+2,m∗1]→ . . .→ [T,m∗1]→ [T +1,m∗1], and keys are punctured at [j+1,m∗1], meaning that there
doesn’t exist a valid encryption of (j + 1,m∗1). We move the gap to j by first hardwiring the ciphertext
l∗j = [j,m∗1] into relevant programs, then puncturing keys corresponding to [j,m∗1] (recall that keys are
already punctured at [j + 1,m∗1]), and finally switching hardwired ciphertext to l∗j+1 = [j + 1,m∗1] and
unpuncturing keys at [j + 1,m∗1].

27Note that it is crucial for switching the ciphertext that keys are punctured at both points, and only one of the two ciphertexts is
present in the distribution.
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Note that the keys remain punctured at the point [j,m∗1], enabling the next step.

In addition, note that in the first step the upper bound in Increment is switched from T to T + 1. This
is due to the fact that this step switches the hardwired ciphertext from [T − 1,m∗1] to [T,m∗1], and due
to the fact that there is a hardwired instruction to output [T + 1,m∗1], given hardwired ciphertext as
input (indeed, while in the original Increment input [T,m∗1] results in ⊥, after the change input [T,m∗1]
results in [T + 1,m∗1]).

Finally, note that the last step switches challenge level `∗0 = [0,m∗1] to `∗1 = [1,m∗1].

3. As a result, we obtain Increment which defines a chain 1→ 2→ . . .→ T → T + 1→ ⊥ for the tag
m∗1, and keys are punctured at [0,m∗1]. We remove the puncturing using the fact that keys for [0,m∗1]
are never used, since GenZero doesn’t have to work on input m∗1.

Resulting programs are in fig. 22.

Step 2: Restoring the correct upper bound of Increment, Transform, and RetrieveTag on m∗1. Intu-
itively, nobody can tell whether these programs have an upper bound T or T + 1, since the only way to test
this is to check if, starting with level [1,m∗1], Increment fails after T − 1 or T executions, which requires
superpolynomial time to compute. To turn this intuition into a formal argument, we follow the proof of
[BPR15]:

1. We cut the chain 1 → 2 → . . . → T → T + 1 → ⊥ (here we omit the tag m∗1 for simplicity and
compactness) at a random point as follows. We add a check “if prg(i) = S then abort” to Increment,
where S is randomly chosen. If the prg is expanding enough, then with overwhelming probability S
is outside of the prg image, and adding this line doesn’t change the functionality. However, next we
change S to be prg(s) for some random s, which cuts the line at point s: that is, Increment now defines
the chain 1→ . . . s→ ⊥, s+ 1→ . . .→ T + 1→ ⊥.

2. In a sequence of hybrids we cut the line in all points after s, obtaining the following chain: 1→ . . .→
s → ⊥, s + 1 → ⊥, s + 2 → ⊥, . . ., T → ⊥, T + 1 → ⊥. Intuitively, once Increment outputs ⊥
given [s,m∗1], it becomes impossible for an adversary to obtain [s+ 1,m∗1], and therefore behavior of
Increment at [s+ 1,m∗1] can be changed to ⊥ as well. The process can be continued. This intuition is
captured by the security of constrained decryption of ACE.

As the result, we move to a hybrid where valid encryptions of (s + 1,m∗1), . . . , (T + 1,m∗1) do not
exist.

3. Then we can move the upper bound from T + 1 back to T for the case m1 = m∗1, since programs
output ⊥ on input [T + 1,m∗1] anyway. Thus, changing T + 1 to T doesn’t affect the functionality of
the programs.

4. Then we can reverse all previous steps, restore the chain and eventually get original programs with
correct upper bound T (except Transform, which now has the correct upper bound T , but still has
incorrect behavior on inputs of the form ([i,m∗1],m2)).

Resulting programs are in fig. 23.

Step 3: Restoring the correct reencryption behaviour in Transform. Note that TransformB

(fig. 23) defines the set of outputs [0,m1,m2], . . . , [T,m1,m2] (corresponding to inputs
([0,m1],m2), . . . , ([T,m1],m2)) for the case m1 6= m∗1, and the set of outputs [−1,m∗1,m2], . . . , [T −
1,m∗1,m2] (corresponding to inputs ([0,m∗1],m2), . . . , ([T,m∗1],m2)) for the case m1 6= m∗1. We change
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the set of outputs from [−1,m∗1,m2], . . . , [T − 1,m∗1,m2] to [0,m∗1,m2], . . . , [T,m∗1,m2] by running the
following sequence of steps for each possible second tag m2:

1. We first change the set of outputs from [−1,m∗1,m2], . . . , [T − 1,m∗1,m2] to [−1,m∗1,m2], . . . , [T −
2,m∗1,m2], [T,m∗1,m2], creating a gap between T − 2 and T . This is done by first hardwiring the
ciphertext L∗T−1 = [T−1,m∗1,m2] into relevant programs (Transform, isLess, and RetrieveTags), then
puncturing keys corresponding to both [T − 1,m∗1,m2] and [T,m∗1,m2] (the latter can be punctured
since they are never used due to the upper bound T ), and finally switching hardwired ciphertext to
L∗T = [T,m∗1,m2] and unpuncturing keys at [T,m∗1,m2]28.

Note that the keys remain punctured at the point [T − 1,m∗1,m2], which essentially means that from
the point of view of programs there doesn’t exist a valid encryption of (T − 1,m∗1,m2).

2. Then in a sequence of hybrids we move the gap from T − 1 down to −1 a follows. Let j-th hybrid
be a hybrid where the gap is at j + 1, i.e. Transform outputs [−1,m∗1,m2], . . . , [j,m∗1,m2], [j +
2,m∗1,m2], . . . , [T,m∗1,m2], and keys are punctured at [j + 1,m∗1,m2], meaning that there doesn’t
exist a valid encryption of (j + 1,m∗1,m2). We move the gap to j by first hardwiring the ciphertext
L∗j = [j,m∗1,m2] into relevant programs, then puncturing keys corresponding to [j,m∗1,m2] (recall
that keys are already punctured at [j + 1,m∗1,m2]), and finally switching hardwired ciphertext to
L∗j+1 = [j + 1,m∗1,m2] and unpuncturing keys at [j + 1,m∗1,m2].

Note that the keys remain punctured at the point [j,m∗1,m2], enabling the next step.

An important property of program isLess which enables switching [j,m∗1,m2] to [j + 1,m∗1,m2] at
each step is that isLess treats both [j,m∗1,m2] and [j+1,m∗1,m2] in the same way. That is, both
[j,m∗1,m2] and [j + 1,m∗1,m2] are larger than [0,m∗1,m2], . . . , [j − 1,m∗1,m2], and both are smaller
than [j + 2,m∗1,m2], . . . , [T,m∗1,m2]. Finally, both are equal when compared to themselves. The only
difference in the output could have occured on inputs ([j,m∗1,m2], [j+ 1,m∗1,m2]) (resulting in isLess
returning true) and ([j + 1,m∗1,m2], [j,m∗1,m2]) (resulting in isLess returning false); however, in each
of the two hybrids only one of the two values “exists” and the other is punctured out, thus forcing
isLess to output ⊥ on these inputs. This allows us to “swap" [j,m∗1,m2] and [j + 1,m∗1,m2] without
changing the functionality of the programs.

Finally, note that we don’t perform two last steps, i.e. switching from 0 to 1 and from −1 to 0,
for the case m2 = m∗2 (indeed, that would switch the challenge value from L∗0 = [0,m∗1,m

∗
2] to

L∗1 = [1,m∗1,m
∗
2], but it has to remain L∗0 = [0,m∗1,m

∗
2] in both experiments of the security game). In

fact, we don’t have to switch from 0 to 1 since Transform is punctured at [l∗1,m
∗
2] and outputs ′fail′ on

this input anyway. Further, since [0,m∗1] is hard to obtain for the adversary, we argue that Transform
may be indistinguishably changed from outputting [−1,m∗1,m

∗
2] to [0,m∗1,m

∗
2] on input [0,m∗1],m∗2

(again, this intuition is formalized using security of the constrained key of the ACE).

28Note that it is crucial for switching the ciphertext that keys are punctured at both points, and only one of the two ciphertexts is
present in the distribution.
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Programs in HybA
Program GenZero[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1(0,m1).

Program Increment(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program Transform[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗0 =
ACE.EncEK1(0,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. return L← ACE.EncEK2(i,m1,m2).

Program isLess(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTag(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTags(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 21: Programs in HybA. In addition, in this hybrid the adversary gets l∗0 = ACE.EncEK1(0,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB
Program GenZeroB[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1(0,m1).

Program IncrementB(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, tag m∗1, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program TransformB[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i,m1,m2).

Program isLessB(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagB(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, tag m∗1, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i > T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i > T or i < 0) then output ′fail′;
4. Output m1.

Program RetrieveTagsB(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 22: Programs in HybB. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). 77



Programs in HybC .
Program GenZeroC [m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1(0,m1).

Program IncrementC(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program TransformC [(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 return L← ACE.EncEK2(i− 1,m1,m2);
5. Return L← ACE.EncEK2(i,m1,m2).

Program isLessC(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagC(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTagsC(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 23: Programs in HybC . In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybD
Program GenZero[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1(0,m1).

Program Increment(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program Transform[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. return L← ACE.EncEK2(i,m1,m2).

Program isLess(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTag(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTags(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 24: Programs in HybD. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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7.4 List of hybrids

For any messages m∗1,m
∗
2, consider the following distributions for randomly chosen rSetup:

• HybA = (PP, `∗0, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1], Increment,Transform[`∗0,m

∗
2],

isLess,RetrieveTag,RetrieveTags; rSetup) (fig. 21), `∗0 = GenZero(m∗1), L∗0 = Transform(`∗0,m
∗
2).

• HybB = (PP, `∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB[m∗1], IncrementB,TransformB[`∗1,m

∗
2],

isLessB,RetrieveTagB,RetrieveTagsB; rSetup) (fig. 22), `∗0 = GenZero(m∗1), `∗1 = Increment(`∗0),
L∗0 = Transform(`∗0,m

∗
2).

• HybC = (PP, `∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroC [m∗1], IncrementC ,TransformB[`∗1,m

∗
2],

isLessC ,RetrieveTagC ,RetrieveTagsC ; rSetup) (fig. 23), `∗0 = GenZero(m∗1), `∗1 = Increment(`∗0),
L∗0 = Transform(`∗0,m

∗
2).

• HybD = (PP, `∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1], Increment,Transform[`∗1,m

∗
2],

isLess,RetrieveTag,RetrieveTags; rSetup) (fig. 24), `∗0 = GenZero(m∗1), `∗1 = Increment(`∗0), L∗0 =
Transform(`∗0,m

∗
2).

Note that HybA is the distribution from security game for b = 0 and HybD is the distribution from security
game for b = 1. To prove security of the level system, we need to show that HybA ≈ HybD, which we do in
the following lemmas:

Lemma 2. (Switching from `∗0 to `∗1) For any PPT adversary A,

advHybA,HybB (λ) ≤ T · 2−Ω(νiO(λ)) + T · 2−Ω(νACE.Indist(λ)) + 2−Ω(νACE.ConstrDec(λ)).

Lemma 3. (Changing the upper bound from T + 1 to T ) For any PPT adversary A,

advHybB ,HybC (λ) ≤ 2−Ω(γ(λ)) +
1

T
+ T · 2−Ω(νiO(λ)) + T · 2−Ω(νACE.ConstrDec(λ)).

Lemma 4. (Restoring behavior of Transform) For any PPT adversary A,

advHybC ,HybD(λ) ≤ 2τ(λ)(T · 2−Ω(νiO(λ)) + T · 2−Ω(νACE.Indist(λ)) + 2−Ω(νACE.ConstrDec(λ))).

7.4.1 Proof of lemma 2 (Switching from `∗0 to `∗1).

As described earlier, we are going to shift levels [i,m∗1] to [i+ 1,m∗1] one by one, starting from i = T . We
start from HybA.

• HybA,1,1. We give the adversary (PP, l∗0, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,1,1[m∗1],

IncrementA,1,1, TransformA,1,1[(l∗0,m
∗
2)], isLess, RetrieveTagA,1,1, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 25.

That is, we puncture ACE key EK1 at point pT+1 = (T + 1,m∗1) in programs Increment and GenZero,
since these programs never run encryption on pT+1. Indistinguishability holds by iO.

• HybA,1,2. We give the adversary (PP, l∗0, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,1,2[m∗1],

IncrementA,1,2, TransformA,1,2[(l∗0,m
∗
2)], isLess, RetrieveTagA,1,2, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 26.
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That is, we puncture ACE key DK1 at the same point pT+1 = (T + 1,m∗1) in programs Increment,
Transform, and RetrieveTag. Indistinguishability holds by security of constrained decryption of ACE,
since corresponding encryption key is already punctured at pT+1.

Next we consider the following sequence of hybrids for j = T, . . . , 1. Programs for the case j = T and
j = T − 1 are written separately in order to track how the upper bound in programs is changed from T to
T + 1.

• HybA,2,j,1. We give the adversary (PP, l∗0, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,2,j,1[m∗1],

IncrementA,2,j,1, TransformA,2,j,1[(l∗0,m
∗
2)], isLess, RetrieveTagA,2,j,1, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 26 (for the case j = T ), fig. 29 (for j = T − 1), fig. 33 (for
j = T − 2, . . . , 1).

That is, in this hybrid EK1 and DK1 are punctured at pj+1 = (j + 1,m∗1). In addition, program
Increment, given [j,m∗1], outputs [j + 2,m∗1]. Program Transform, given ([i,m∗1],m2) for i > j,
outputs [i− 1,m∗1,m2].

Note that HybA,2,j,1 = HybA,1,2 for j = T .

• HybA,2,j,2. We give the adversary (PP, l∗0, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,2,j,2[m∗1],

IncrementA,2,j,2, TransformA,2,j,2[(l∗0,m
∗
2)], isLess, RetrieveTagA,2,j,2, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 27 (for the case j = T ), fig. 30 (for j = T − 1), fig. 34 (for
j = T − 2, . . . , 1).

That is, we additionally puncture ACE keys EK1,DK1 at the point pj = (j,m∗1) and hardwire l∗j =
ACE.EncEK1(j,m∗1) to eliminate the need to encrypt or decrypt pj in programs GenZero, Increment,
Transform, and RetrieveTag. Indistinguishability holds by iO.

• HybA,2,j,3. We give the adversary (PP, l∗0, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,2,j,3[m∗1],

IncrementA,2,j,3, TransformA,2,j,3[(l∗0,m
∗
2)], isLess, RetrieveTagA,2,j,3, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 28 (for the case j = T ), fig. 31 (for j = T − 1), fig. 35 (for
j = T − 2, . . . , 1).

That is, we replace l∗j = ACE.EncEK1(j,m∗1) with l∗j+1 = ACE.EncEK1(j + 1,m∗1) in programs
Increment, Transform, and RetrieveTag. Indistinguishability holds by security of ACE for punctured
points pj , pj+1.

• HybA,2,j,4. We give the adversary (PP, l∗0, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,2,j,4[m∗1],

IncrementA,2,j,4, TransformA,2,j,4[(l∗0,m
∗
2)], isLess, RetrieveTagA,2,j,4, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 29 (for the case j = T ), fig. 32 (for j = T − 1), fig. 36 (for
j = T − 2, . . . , 1).

That is, we unpuncture ACE keys EK1,DK1 at the point pj+1 = (j + 1,m∗1) and remove hardwired
l∗j+1 = ACE.EncEK1(j + 1,m∗1) in programs GenZero, Increment, Transform, and RetrieveTag.
Indistinguishability holds by iO.

Note that HybA,2,j,4 = HybA,2,j−1,1 for 2 ≤ j ≤ T .
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Next we change l∗0 to l∗1 as follows:

• HybA,2,0,1. We give the adversary (PP, l∗0, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,2,0,1[m∗1],

IncrementA,2,0,1, TransformA,2,0,1[(l∗0,m
∗
2)], isLess, RetrieveTagA,2,0,1, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 37.

That is, in this hybrid EK1 and DK1 are punctured at p1 = (1,m∗1). In addition, program Increment,
given [0,m∗1], outputs [2,m∗1]. Program Transform, given ([i,m∗1],m2) for i > 0, outputs [i −
1,m∗1,m2].

Note that HybA,2,0,1 = HybA,2,j,4 for j = 1.

• HybA,2,0,2. We give the adversary (PP, l∗0, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,2,0,2[m∗1],

IncrementA,2,0,2, TransformA,2,0,2[(l∗0,m
∗
2)], isLess, RetrieveTagA,2,0,2, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 38.

That is, we additionally puncture ACE keys EK1,DK1 at the point p0 = (0,m∗1) and hardwire l∗0 =
ACE.EncEK1(0,m∗1) to eliminate the need to encrypt or decrypt p0 in programs GenZero, Increment,
Transform, and RetrieveTag. Indistinguishability holds by iO.

• HybA,2,0,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,2,0,3[m∗1],

IncrementA,2,0,3, TransformA,2,0,3[(l∗1,m
∗
2)], isLess, RetrieveTagA,2,0,3, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 39.

That is, we replace l∗0 = ACE.EncEK1(0,m∗1) with l∗1 = ACE.EncEK1(1,m∗1) in programs Increment,
Transform, and RetrieveTag, and give l∗1 instead of l∗0 to the adversary. Indistinguishability holds by
security of ACE for punctured points p0, p1.

• HybA,3,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,3,1[m∗1],

IncrementA,3,1, TransformA,3,1[(l∗1,m
∗
2)], isLess, RetrieveTagA,3,1, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 40.

That is, we unpuncture ACE keys EK1,DK1 at the point p1 = (1,m∗1) and remove hardwired
l∗1 = ACE.EncEK1(1,m∗1) in programs GenZero, Increment, Transform, and RetrieveTag. Indis-
tinguishability holds by iO.

• HybA,3,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,3,2[m∗1],

IncrementA,3,2, TransformA,3,2[(l∗1,m
∗
2)], isLess, RetrieveTagA,3,2, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 41.

That is, we unpuncture ACE decryption key DK1 at the point p0 = (0,m∗1) in programs Increment,
Transform, and RetrieveTag. Indistinguishability holds by security of constrained decryption of ACE,
since corresponding encryption key is punctured at p0.

• HybA,3,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroA,3,3[m∗1],

IncrementA,3,3, TransformA,3,3[(l∗1,m
∗
2)], isLess, RetrieveTagA,3,3, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of
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the programs can be found on fig. 42.

That is, we unpuncture ACE encryption key EK1 at the point p0 = (0,m∗1) in programs GenZero,
Increment. Indistinguishability holds by iO, since these programs never encrypt p0.

Note that HybA,3,3 is the same as HybB .

Thus, the the advantage of the PPT adversary in distinguishing between HybA and HybB is at most

(2T + 4) · 2−Ω(νiO(λ)) + (T + 1) · 2−Ω(νACE.Indist(λ)) + 2 · 2−Ω(νACE.ConstrDec(λ)) =

T · 2−Ω(νiO(λ)) + T · 2−Ω(νACE.Indist(λ)) + 2−Ω(νACE.ConstrDec(λ)).
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Programs in HybA,1,1
Program GenZeroA,1,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pT+1} of ACE punctured at the point pT+1 = (T + 1,m∗1), tag
m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Return l← ACE.EncEK1{pT+1}(0,m1).

Program IncrementA,1,1(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pT+1},DK1 of ACE punctured at pT+1 = (T +
1,m∗1), upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. Return l+1 ← ACE.EncEK1{pT+1}(i+ 1,m1).

Program TransformA,1,1[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗0 =
ACE.EncEK1(0,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. Return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,1,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Return m1.

Figure 25: Programs in HybA,1,1. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,1,2 (same as HybA,2,T,1)
Program GenZeroA,2,T,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pT+1} of ACE punctured at the point pT+1 = (T + 1,m∗1), tag
m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Return l← ACE.EncEK1{pT+1}(0,m1).

Program IncrementA,2,T,1(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pT+1},DK1{pT+1} of ACE punctured at pT+1 =
(T + 1,m∗1), upper bound T .

1. out← ACE.DecDK1{pT+1}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then return ′fail′;
3. Return l+1 ← ACE.EncEK1{pT+1}(i+ 1,m1).

Program TransformA,2,T,1[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pT+1} of ACE punctured at the point pT+1 = (T + 1,m∗1),
encryption key EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{pT+1}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. Return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,T,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pT+1} of ACE punctured at the point pT+1 = (T + 1,m∗1), upper
bound T .

1. out← ACE.DecDK1{pT+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then return ′fail′;
3. Return m1.

Figure 26: Programs in HybA,1,2 (same as HybA,2,T,1). In addition, in this hybrid the adversary gets
unmodified obfuscated programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 =
ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,T,2
Program GenZeroA,2,T,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pT , pT+1} of ACE punctured at points pT = (T,m∗1), pT+1 =
(T + 1,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pT ,pT+1}(0,m1).

Program IncrementA,2,T,2(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pT , pT+1},DK1{pT , pT+1} of ACE punctured at
pT = (T,m∗1), pT+1 = (T + 1,m∗1), single-tag level l∗T = ACE.EncEK1(T,m∗1), upper bound T .

1. If l = l∗T then output ′fail′;
2. out← ACE.DecDK1{pT ,pT+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If i ≥ T or i < 0 then output ′fail′;
4. If i = T − 1 and m1 = m∗1 then output l∗T ;
5. output l+1 ← ACE.EncEK1{pT ,pT+1}(i+ 1,m1).

Program TransformA,2,T,2[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pT , pT+1} of ACE punctured at points pT = (T,m∗1), pT+1 =
(T + 1,m∗1), encryption key EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, single-tag level
l∗T = ACE.EncEK1(T,m∗1), upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. If l = l∗T then output L← ACE.EncEK2(T,m∗1,m2);
3. out← ACE.DecDK1{pT ,pT+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
4. If i > T or i < 0 then output ′fail′;
5. output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,T,2(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pT , pT+1} of ACE punctured at points pT = (T,m∗1), pT+1 =
(T + 1,m∗1), single-tag level l∗T = ACE.EncEK1(T,m∗1), upper bound T .

1. If l = l∗T then output m∗1;
2. out← ACE.DecDK1{pT ,pT+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then output ′fail′;
4. Output m1.

Figure 27: Programs in HybA,2,T,2. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,T,3
Program GenZeroA,2,T,3[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pT , pT+1} of ACE punctured at points pT = (T,m∗1), pT+1 =
(T + 1,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pT ,pT+1}(0,m1).

Program IncrementA,2,T,3(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pT , pT+1},DK1{pT , pT+1} of ACE punctured at
pT = (T,m∗1), pT+1 = (T + 1,m∗1), single-tag level l∗T+1 = ACE.EncEK1(T + 1,m∗1), upper bound T .

1. If l = l∗T+1 then output ′fail′;
2. out← ACE.DecDK1{pT ,pT+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If i ≥ T or i < 0 then output ′fail′;
4. If i = T − 1 and m1 = m∗1 then output l∗T+1;
5. output l+1 ← ACE.EncEK1{pT ,pT+1}(i+ 1,m1).

Program TransformA,2,T,3[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pT , pT+1} of ACE punctured at points pT = (T,m∗1), pT+1 =
(T + 1,m∗1), encryption key EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, single-tag level
l∗T+1 = ACE.EncEK1(T + 1,m∗1), upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. If l = l∗T+1 then output L← ACE.EncEK2(T,m∗1,m2);
3. out← ACE.DecDK1{pT ,pT+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
4. If i > T or i < 0 then output ′fail′;
5. output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,T,3(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pT , pT+1} of ACE punctured at points pT = (T,m∗1), pT+1 =
(T + 1,m∗1), single-tag level l∗T+1 = ACE.EncEK1(T + 1,m∗1), upper bound T .

1. If l = l∗T+1 then output m∗1;
2. out← ACE.DecDK1{pT ,pT+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then output ′fail′;
4. Output m1.

Figure 28: Programs in HybA,2,T,3. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,T,4 (same as HybA,2,T−1,1).
Program GenZeroA,2,T−1,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pT } of ACE punctured at the point pT = (T,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pT }(0,m1).

Program IncrementA,2,T−1,1(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pT },DK1{pT } of ACE punctured at pT = (T,m∗1),
upper bound T .

1. out← ACE.DecDK1{pT }(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. If i = T − 1 and m1 = m∗1 then output ACE.EncEK1{pT }(i+ 2,m1);
4. output l+1 ← ACE.EncEK1{pT }(i+ 1,m1).

Program TransformA,2,T−1,1[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pT } of ACE punctured at the point pT = (T,m∗1), encryption key
EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. out← ACE.DecDK1{pT }(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1 and i = T + 1 then output L← ACE.EncEK2(T,m∗1,m2);
4. If i > T or i < 0 then output ′fail′;
5. output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,T−1,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pT } of ACE punctured at the point pT = (T,m∗1), upper bound T .

1. out← ACE.DecDK1{pT }(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m∗1.

3. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 29: Programs in HybA,2,T,4 (same as HybA,2,T−1,1). In addition, in this hybrid the adversary
gets unmodified obfuscated programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,T−1,2

Program GenZeroA,2,T−1,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pT−1, pT } of ACE punctured at points pT−1 = (T − 1,m∗1), pT =
(T,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pT−1,pT }(0,m1).

Program IncrementA,2,T−1,2(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pT−1, pT },DK1{pT−1, pT } of ACE punctured at
points pT−1 = (T − 1,m∗1), pT = (T,m∗1), single-tag level l∗T−1 = ACE.EncEK1(T − 1,m∗1), upper bound
T ,

1. If l = l∗T−1 then output ACE.EncEK1{pT−1,pT }(T + 1,m∗1);
2. out← ACE.DecDK1{pT−1,pT }(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If i ≥ T or i < 0 then output ′fail′;
4. If i = T − 2 and m1 = m∗1 then output l∗T−1;
5. output l+1 ← ACE.EncEK1{pT−1,pT }(i+ 1,m1).

Program TransformA,2,T−1,2[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pT−1, pT } of ACE punctured at points pT−1 = (T − 1,m∗1), pT =
(T,m∗1), encryption key EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, single-tag level
l∗T−1 = ACE.EncEK1(T − 1,m∗1), upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. If l = l∗T−1 then output L← ACE.EncEK2(T − 1,m∗1,m2);
3. out← ACE.DecDK1{pT−1,pT }(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
4. If m1 = m∗1 and i = T + 1 then output L← ACE.EncEK2(T,m∗1,m2);
5. If i > T or i < 0 then output ′fail′;
6. output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,T−1,2(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pT−1, pT } of ACE punctured at points pT−1 = (T − 1,m∗1), pT =
(T,m∗1), single-tag level l∗T−1 = ACE.EncEK1(T − 1,m∗1), upper bound T .

1. If l = l∗T−1 then output m∗1;
2. out← ACE.DecDK1{pT−1,pT }(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m∗1.

4. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 30: Programs in HybA,2,T−1,2. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,T−1,3

Program GenZeroA,2,T−1,3[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pT−1, pT } of ACE punctured at points pT−1 = (T − 1,m∗1), pT =
(T,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pT−1,pT }(0,m1).

Program IncrementA,2,T−1,3(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pT−1, pT },DK1{pT−1, pT } of ACE punctured at
points pT−1 = (T − 1,m∗1), pT = (T,m∗1), single-tag level l∗T = ACE.EncEK1(T,m∗1) , upper bound T .

1. If l = l∗T then output ACE.EncEK1{pT−1,pT }(T + 1,m∗1);
2. out← ACE.DecDK1{pT−1,pT }(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If i ≥ T or i < 0 then output ′fail′;
4. If i = T − 2 and m1 = m∗1 then output l∗T ;
5. output l+1 ← ACE.EncEK1{pT−1,pT }(i+ 1,m1).

Program TransformA,2,T−1,3[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pT−1, pT } of ACE punctured at points pT−1 = (T − 1,m∗1), pT =
(T,m∗1), encryption key EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, single-tag level
l∗T = ACE.EncEK1(T,m∗1), upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. If l = l∗T then output L← ACE.EncEK2(T − 1,m∗1,m2);
3. out← ACE.DecDK1{pT−1,pT }(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
4. If m1 = m∗1 and i = T + 1 then output L← ACE.EncEK2(T,m∗1,m2);
5. If i > T or i < 0 then output ′fail′;
6. output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,T−1,3(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pT−1, pT } of ACE punctured at points pT−1 = (T − 1,m∗1), pT =
(T,m∗1), single-tag level l∗T = ACE.EncEK1(T,m∗1), upper bound T .

1. If l = l∗T then output m∗1;
2. out← ACE.DecDK1{pT−1,pT }(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m∗1.

4. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 31: Programs in HybA,2,T−1,3. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,T−1,4

Program GenZeroA,2,T−1,4[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pT−1} of ACE punctured at the point pT−1 = (T − 1,m∗1), tag
m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pT−1}(0,m1).

Program IncrementA,2,T−1,4(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pT−1},DK1{pT−1} of ACE punctured at the point
pT−1 = (T − 1,m∗1), upper bound T .

1. out← ACE.DecDK1{pT−1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. If i = T − 2 and m1 = m∗1 then output ACE.EncEK1{pT−1}(i+ 2,m1);
5. output l+1 ← ACE.EncEK1{pT−1}(i+ 1,m1).

Program TransformA,2,T−1,4[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pT−1} of ACE punctured at the point pT−1 = (T − 1,m∗1),
encryption key EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. out← ACE.DecDK1{pT−1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1 and i = T + 1 then output L← ACE.EncEK2(T,m∗1,m2);
4. If m1 = m∗1 and i = T then output L← ACE.EncEK2(T − 1,m∗1,m2);
5. If i > T or i < 0 then output ′fail′;
6. output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,T−1,4(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pT−1} of ACE punctured at the point pT−1 = (T − 1,m∗1), upper
bound T .

1. out← ACE.DecDK1{pT−1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m∗1.

3. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 32: Programs in HybA,2,T−1,4. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,j,1
Program GenZeroA,2,j,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pj+1} of ACE punctured at the point pj+1 = (j + 1,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pj+1}(0,m1).

Program IncrementA,2,j,1(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pj+1},DK1{pj+1} of ACE punctured at pj+1 =
(j + 1,m∗1), index j, upper bound T .

1. out← ACE.DecDK1{pj+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. If i = j and m1 = m∗1 then output ACE.EncEK1{pj+1}(i+ 2,m∗1);
5. output l+1 ← ACE.EncEK1{pj+1}(i+ 1,m1).

Program TransformA,2,j,1[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pj+1} of ACE punctured at the point pj+1 = (j + 1,m∗1), encryp-
tion key EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, index j, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. out← ACE.DecDK1{pj+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) If i > j + 1 then output L← ACE.EncEK2(i− 1,m1,m2);
(c) If i = j + 1 then output ′fail′;
(d) If i < j + 1 then output L← ACE.EncEK2(i,m1,m2).

4. If m1 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,j,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pj+1} of ACE punctured at the point pj+1 = (j + 1,m∗1), upper
bound T .

1. out← ACE.DecDK1{pj+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m∗1.

3. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 33: Programs in HybA,2,j,1. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,j,2
Program GenZeroA,2,j,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pj , pj+1} of ACE punctured at points pj = (j,m∗1), pj+1 =
(j + 1,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pj ,pj+1}(0,m1).

Program IncrementA,2,j,2(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pj , pj+1},DK1{pj , pj+1} of ACE punctured at
points pj = (j,m∗1), pj+1 = (j + 1,m∗1), single-tag level l∗j = ACE.EncEK1(j,m∗1), index j, upper bound T ,

1. If l = l∗j then output ACE.EncEK1{pj ,pj+1}(j + 2,m∗1);
2. out← ACE.DecDK1{pj ,pj+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
4. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
5. If i = j − 1 and m1 = m∗1 then output l∗j ;
6. output l+1 ← ACE.EncEK1{pj ,pj+1}(i+ 1,m1).

Program TransformA,2,j,2[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pj , pj+1} of ACE punctured at points pj = (j,m∗1), pj+1 =
(j + 1,m∗1), encryption key EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, single-tag level
l∗j = ACE.EncEK1(j,m∗1), index j, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. If l = l∗j then output L← ACE.EncEK2(j,m∗1,m2);
3. out← ACE.DecDK1{pj ,pj+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
4. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) If i > j + 1 then output L← ACE.EncEK2(i− 1,m1,m2);
(c) If i = j + 1 then output ′fail′;
(d) If i = j then output ′fail′;
(e) If i < j then output L← ACE.EncEK2(i,m1,m2).

5. If m1 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,j,2(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pj , pj+1} of ACE punctured at points pj = (j,m∗1), pj+1 =
(j + 1,m∗1), single-tag level l∗j = ACE.EncEK1(j,m∗1), upper bound T .

1. If l = l∗j then output m∗1;
2. out← ACE.DecDK1{pj ,pj+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m1.

4. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 34: Programs in HybA,2,j,2. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,j,3
Program GenZeroA,2,j,3[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pj , pj+1} of ACE punctured at points pj = (j,m∗1), pj+1 =
(j + 1,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pj ,pj+1}(0,m1).

Program IncrementA,2,j,3(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pj , pj+1},DK1{pj , pj+1} of ACE punctured at
points pj = (j,m∗1), pj+1 = (j + 1,m∗1), single-tag level l∗j+1 = ACE.EncEK1(j + 1,m∗1) , index j, upper
bound T .

1. If l = l∗j+1 then output ACE.EncEK1{pj ,pj+1}(j + 2,m∗1);
2. out← ACE.DecDK1{pj ,pj+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
4. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
5. If i = j − 1 and m1 = m∗1 then output l∗j+1;
6. output l+1 ← ACE.EncEK1{pj ,pj+1}(i+ 1,m1).

Program TransformA,2,j,3[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pj , pj+1} of ACE punctured at points pj = (j,m∗1), pj+1 =
(j + 1,m∗1), encryption key EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, single-tag level
l∗j+1 = ACE.EncEK1(j + 1,m∗1), index j, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. If l = l∗j+1 then output L← ACE.EncEK2(j,m∗1,m2);
3. out← ACE.DecDK1{pj ,pj+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
4. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) If i > j + 1 then output L← ACE.EncEK2(i− 1,m1,m2);
(c) If i = j + 1 then output ′fail′;
(d) If i = j then output ′fail′;
(e) If i < j then output L← ACE.EncEK2(i,m1,m2).

5. If m1 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,j,3(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pj , pj+1} of ACE punctured at points pj = (j,m∗1), pj+1 =
(j + 1,m∗1), single-tag level l∗j+1 = ACE.EncEK1(j + 1,m∗1), upper bound T .

1. If l = l∗j+1 then output m∗1;
2. out← ACE.DecDK1{pj ,pj+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m1.

4. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 35: Programs in HybA,2,j,3. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,j,4.
Program GenZeroA,2,j,4[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{pj} of ACE punctured at the point pj = (j,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pj}(0,m1).

Program IncrementA,2,j,4(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pj},DK1{pj} of ACE punctured at pj = (j,m∗1),
index j, upper bound T .

1. out← ACE.DecDK1{pj}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. If i = j − 1 and m1 = m∗1 then output ACE.EncEK1{pj}(i+ 2,m∗1);
5. output l+1 ← ACE.EncEK1{pj}(i+ 1,m1).

Program TransformA,2,j,4[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{pj} of ACE punctured at the point pj = (j,m∗1), encryption key
EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, index j, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. out← ACE.DecDK1{pj}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) If i > j then output L← ACE.EncEK2(i− 1,m1,m2);
(c) If i = j then output ′fail′;
(d) If i < j then output L← ACE.EncEK2(i,m1,m2).

4. If m1 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,j,4(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{pj} of ACE punctured at the point pj = (j,m∗1), upper bound T .

1. out← ACE.DecDK1{pj}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m∗1.

3. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 36: Programs in HybA,2,j,4. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,0,1
Program GenZeroA,2,0,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p1} of ACE punctured at the point p1 = (1,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{p1}(0,m1).

Program IncrementA,2,0,1(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p1},DK1{p1} of ACE punctured at p1 = (1,m∗1),
upper bound T .

1. out← ACE.DecDK1{p1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. If i = 0 and m1 = m∗1 then output ACE.EncEK1{p1}(i+ 2,m∗1);
5. output l+1 ← ACE.EncEK1{p1}(i+ 1,m1).

Program TransformA,2,0,1[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p1} of ACE punctured at the point p1 = (1,m∗1), encryption key
EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. out← ACE.DecDK1{p1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) If i > 1 then output L← ACE.EncEK2(i− 1,m1,m2);
(c) If i = 1 then output ′fail′;
(d) If i < 1 then output L← ACE.EncEK2(i,m1,m2).

4. If m1 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,0,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p1} of ACE punctured at the point p1 = (1,m∗1), upper bound T .

1. out← ACE.DecDK1{p1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m∗1.

3. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 37: Programs in HybA,2,0,1. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,0,2
Program GenZeroA,2,0,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0, p1} of ACE punctured at points p0 = (0,m∗1), p1 = (1,m∗1),
tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{p0,p1}(0,m1).

Program IncrementA,2,0,2(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0, p1},DK1{p0, p1} of ACE punctured at points
p0 = (0,m∗1), p1 = (1,m∗1), single-tag level l∗0 = ACE.EncEK1(0,m∗1), upper bound T ,

1. If l = l∗0 then output ACE.EncEK1{p0,p1}(2,m
∗
1);

2. out← ACE.DecDK1{p0,p1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
4. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
5. output l+1 ← ACE.EncEK1{p0,p1}(i+ 1,m1).

Program TransformA,2,0,2[(l∗0,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0, p1} of ACE punctured at points p0 = (0,m∗1), p1 = (1,m∗1),
encryption key EK2 of ACE, single-tag level l∗0 = ACE.EncEK1(0,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗0,m
∗
2) then output ′fail′;

2. If l = l∗0 then output L← ACE.EncEK2(0,m∗1,m2);
3. out← ACE.DecDK1{p0,p1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
4. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) If i > 1 then output L← ACE.EncEK2(i− 1,m1,m2);
(c) If i = 1 then output ′fail′;
(d) If i = 0 then output ′fail′;

5. If m1 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,0,2(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0, p1} of ACE punctured at points p0 = (0,m∗1), p1 = (1,m∗1),
single-tag level l∗0 = ACE.EncEK1(0,m∗1), upper bound T .

1. If l = l∗0 then output m∗1;
2. out← ACE.DecDK1{p0,p1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m1.

4. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 38: Programs in HybA,2,0,2. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗0 = ACE.EncEK1(0,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,2,0,3
Program GenZeroA,2,0,3[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0, p1} of ACE punctured at points p0 = (0,m∗1), p1 = (1,m∗1),
tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{p0,p1}(0,m1).

Program IncrementA,2,0,3(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0, p1},DK1{p0, p1} of ACE punctured at points
p0 = (0,m∗1), p1 = (1,m∗1), single-tag level l∗1 = ACE.EncEK1(1,m∗1), upper bound T ,

1. If l = l∗1 then output ACE.EncEK1{p0,p1}(2,m
∗
1);

2. out← ACE.DecDK1{p0,p1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
4. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
5. output l+1 ← ACE.EncEK1{p0,p1}(i+ 1,m1).

Program TransformA,2,0,3[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0, p1} of ACE punctured at points p0 = (0,m∗1), p1 = (1,m∗1),
encryption key EK2 of ACE, single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then output ′fail′;

2. If l = l∗1 then output L← ACE.EncEK2(0,m∗1,m2);
3. out← ACE.DecDK1{p0,p1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
4. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) If i > 1 then output L← ACE.EncEK2(i− 1,m1,m2);
(c) If i = 1 then output ′fail′;
(d) If i = 0 then output ′fail′;

5. If m1 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,2,0,3(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0, p1} of ACE punctured at points p0 = (0,m∗1), p1 = (1,m∗1),
single-tag level l∗1 = ACE.EncEK1(1,m∗1), upper bound T .

1. If l = l∗1 then output m∗1;
2. out← ACE.DecDK1{p0,p1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m1.

4. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 39: Programs in HybA,2,0,3. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,3,1.
Program GenZeroA,3,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at the point p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{p0}(0,m1).

Program IncrementA,3,1(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1{p0} of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program TransformA,3,1[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0} of ACE punctured at the point p0 = (0,m∗1), encryption key
EK2 of ACE, single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then output ′fail′;

2. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) output L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,3,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0} of ACE punctured at the point p0 = (0,m∗1), upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m∗1.

3. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 40: Programs in HybA,3,1. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,3,2
Program GenZeroA,3,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at the point p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{p0}(0,m1).

Program IncrementA,3,2(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1 of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program TransformA,3,2[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then output ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) output L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,3,2(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m∗1.

3. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 41: Programs in HybA,3,2. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybA,3,3
Program GenZeroA,3,3[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1(0,m1).

Program IncrementA,3,3(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program TransformA,3,3[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then output ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) output L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagA,3,3(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m = m∗1:

(a) If i > T + 1 or i < 0 then output ′fail′;
(b) Output m∗1.

3. If m 6= m∗1:
(a) If i > T or i < 0 then output ′fail′;
(b) Output m1.

Figure 42: Programs in HybA,3,3. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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7.4.2 Proof of lemma 3 (Changing the upper bound from T + 1 to T ).

As described earlier, we will fix upper bounds in programs by cutting the sequence of encryptions [1,m∗1]→
. . .→ [T + 1,m∗1] at a random place and then cutting the sequence in all subsequent positions, then changing
the upper bound, and finally restoring the line. We cut the line at a random place in the following sequence of
hybrids, starting from HybB:

• HybB,1,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,1,1[m∗1],

IncrementB,1,1, TransformB,1,1[(l∗1,m
∗
2)], isLess, RetrieveTagB,1,1, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 44.

That is, in program Increment we add an instruction to abort if m1 = m∗1 and g(i) = I∗, where g
is an injective OWF and I∗ is a random image of g. Indistinguishability holds by security of iO and
OWF: since OWF is injective, the two programs differ only at a single point; as shown in [BCP14],
any adversary which can distinguish between the two programs, can be also used to find the differing
point, which can be used to break one-wayness of g (see lemma 1).

• HybB,1,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,1,2[m∗1],

IncrementB,1,2, TransformB,1,2[(l∗1,m
∗
2)], isLess, RetrieveTagB,1,2, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 45.

That is, in programs Increment and GenZero we puncture ACE encryption key EK1 at the point
(i∗ + 1,m∗1). Indistinguishability holds by iO, since Increment never needs to encrypt this point,
because it aborts earlier on input [i∗,m∗1]. GenZero never needs to encrypt (i∗,m∗1) as well, since it
only encrypts value 0, and i∗ = 0 only with negligible probability.

Next we run the following sequence of hybrids for j = i∗, . . . , T in order to cut the chain at all points after
i∗:

• HybB,2,j,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,2,j,1[m∗1],

IncrementB,2,j,1, TransformB,2,j,1[(l∗1,m
∗
2)], isLess, RetrieveTagB,2,j,1, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 46.

That is, in programs GenZero, Increment, Transform, and RetrieveTag ACE encryption key EK1 is
punctured at the set {(i∗ + 1,m∗1), . . . , (j + 1,m∗1)}, and its decryption key DK1 is punctured at the
set {(i∗ + 1,m∗1), . . . , (j,m∗1)}.

Note that HybB,2,j,1 = HybB,1,2 for j = i∗.

• HybB,2,j,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,2,j,2[m∗1],

IncrementB,2,j,2, TransformB,2,j,2[(l∗1,m
∗
2)], isLess, RetrieveTagB,2,j,2, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 47.

That is, in programs Increment, Transform, and RetrieveTag we additionally puncture ACE decryption
key DK1 at the point (j + 1,m∗1). Indistinguishability holds by security of constrained decryption of
ACE, since EK1 is already punctured at the set which includes (j + 1,m∗1).

• HybB,2,j,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,2,j,3[m∗1],
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IncrementB,2,j,3, TransformB,2,j,3[(l∗1,m
∗
2)], isLess, RetrieveTagB,2,j,3, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 48.

That is, we additionally puncture ACE encryption key EK1 at the point (j + 2,m∗1) in programs
GenZero and Increment. Indistinguishability holds by iO, since DK1 is punctured at the set which
includes (j + 1,m∗1), and thus program Increment never tries to encrypt (j + 2,m∗1), aborting earlier;
GenZero never needs to encrypt (j + 2,m∗1) either since j + 2 6= 0.

Note that HybB,2,j,3 = HybB,2,j+1,1 for j = i∗, . . . , T .

Next we change the upper bound as follows:

• HybB,3,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,3,1[m∗1],

IncrementB,3,1, TransformB,3,1[(l∗1,m
∗
2)], isLess, RetrieveTagB,3,1, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 49.

That is, in programs GenZero, Increment, Transform, and RetrieveTag EK1,DK1 are punctured at the
set {[i∗ + 1,m∗1], . . . , [T + 1,m∗1]}.

Note that HybB,3,1 = HybB,2,T,2.

• HybB,3,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,3,2[m∗1],

IncrementB,3,2, TransformB,3,2[(l∗1,m
∗
2)], isLess, RetrieveTagB,3,2, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 50.

That is, in program Increment and Transform we change the upper bound from T + 1 to T . Indistin-
guishability holds by iO, since DK1 is punctured at the set which includes (T,m∗1), (T + 1,m∗1), and
thus Increment anyways outputs ′fail′ on input [T,m∗1], and Transform anyway outputs ′fail′ on input
[T + 1,m∗1].

Next we run the following sequence of hybrids for j = T, . . . , i∗ in order to restore the chain:

• HybB,4,j,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,4,j,1[m∗1],

IncrementB,4,j,1, TransformB,4,j,1[(l∗1,m
∗
2)], isLess, RetrieveTagB,4,j,1, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 51.

That is, in programs GenZero, Increment, Transform, and RetrieveTag ACE key EK1,DK1 are punc-
tured at the set {(i∗ + 1,m∗1), . . . , (j + 1,m∗1)}.

Note that HybB,4,j,1 = HybB,3,2 for j = T .

• HybB,4,j,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,4,j,2[m∗1],

IncrementB,4,j,2, TransformB,4,j,2[(l∗1,m
∗
2)], isLess, RetrieveTagB,4,j,2, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 52.

That is, we unpuncture DK1 in Increment, Transform, and RetrieveTag at the point (j + 1,m∗1).
Indistinguishability holds by security of constrained decryption of ACE, since EK1 is punctured at the
set which includes (j + 1,m∗1).
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• HybB,4,j,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,4,j,3[m∗1],

IncrementB,4,j,3, TransformB,4,j,3[(l∗1,m
∗
2)], isLess, RetrieveTagB,4,j,3, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 53.

That is, we unpuncture EK1 in GenZero and Increment at the point (j + 1,m∗1). Indistinguishability
holds by iO, since GenZero never encrypts (j + 1,m∗1) where j + 1 6= 0, and since Increment never
encrypts (j + 1,m∗1), since it aborts on input [j,m∗1] due to punctured DK1.

Note that HybB,4,j,3 = HybB,4,j−1,1 for j = T, . . . , i∗ + 1.

Finally we remove the last remaining cut in the chain as follows:

• HybB,5,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,5,1[m∗1],

IncrementB,5,1, TransformB,5,1[(l∗1,m
∗
2)], isLess, RetrieveTagB,5,1, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 54.

That is, in programs Increment and GenZero ACE encryption key EK1 is punctured at the point
(i∗ + 1,m∗1).

Note that HybB,5,1 = HybB,4,j,2 for j = i∗.

• HybB,5,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,5,2[m∗1],

IncrementB,5,2, TransformB,5,2[(l∗1,m
∗
2)], isLess, RetrieveTagB,5,2, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 55.

That is, in program Increment we add an instruction to abort if m1 = m∗1 and g(i) = I∗, where
I∗ = g(i∗) for randomly chosen i∗. In addition, we remove the puncturing from EK1 in all programs.
Indistinguishability holds by iO, since Increment outputs ′fail′ on [i∗,m∗1] in both cases, and since
GenZero never needs to encrypt (i∗ + 1,m∗1).

• HybB,5,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroB,5,3[m∗1],

IncrementB,5,3, TransformB,5,4[(l∗1,m
∗
2)], isLess, RetrieveTagB,5,3, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 56.

That is, in program Increment we remove an instruction to abort if m1 = m∗1 and g(i) = I∗.
Indistinguishability holds by security of iO and OWF: since OWF is injective, the two programs differ
only at a single point; as shown in [BCP14], any adversary which can distinguish between the two
programs, can be also used to find the differing point, which can be used to break one-wayness of g
(see lemma 1).

Note that HybB,5,3 = HybC .

Note that this reduction works only as long as i∗ 6= 0, which happens with probability 1
T . Thus, the the

advantage of the PPT adversary in distinguishing between HybB and HybC is at most

1

T
+ 2 · 2−Ω(γ(λ)) + (2(T − i∗ + 1) + 3) · 2−Ω(νiO(λ)) + 2(T − i∗ + 1) · 2−Ω(νACE.ConstrDec(λ)) ≤

1

T
+ 2−Ω(γ(λ)) + T · 2−Ω(νiO(λ)) + T · 2−Ω(νACE.ConstrDec(λ)).
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Programs in HybB
Program GenZeroB[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1(0,m1).

Program IncrementB(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, tag m∗1, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program TransformB[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i,m1,m2).

Program isLessB(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagB(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, tag m∗1, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i > T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i > T or i < 0) then output ′fail′;
4. Output m1.

Program RetrieveTagsB(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 43: Programs in HybB. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). 105



Programs in HybB,1,1.
Program GenZeroB,1,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1(0,m1).

Program IncrementB,1,1(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, tag m∗1, OWF g, I∗ = g(i∗) for
random i∗, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 = m∗1 and g(i) = I∗) then output ′fail′;
4. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
5. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program TransformB,1,1[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,1,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, tag m∗1, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i > T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i > T or i < 0) then output ′fail′;
4. Output m1.

Figure 44: Programs in HybB,1,1. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,1,2.
Program GenZeroB,1,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values:punctured encryption key EK1{pi∗+1} of ACE, punctured at the point pi∗+1 = (i∗ +
1,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pi∗+1}(0,m1).

Program IncrementB,1,2(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pi∗+1},DK1 of ACE, punctured at pi∗+1 =
(i∗ + 1,m∗1), tag m∗1, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. output l+1 ← ACE.EncEK1{pi∗+1}(i+ 1,m1).

Program TransformB,1,2[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,1,2(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, tag m∗1, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i > T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i > T or i < 0) then output ′fail′;
4. Output m1.

Figure 45: Programs in HybB,1,2. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,2,j,1.
Program GenZeroB,2,j,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: punctured encryption key EK1{Si∗+1,j+1} of ACE, tag m∗1. Here Sa,b =
{(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{Si∗+1,j+1}(0,m1).

Program IncrementB,2,j,1(l)
Inputs: single-tag level l
Hardwired values: punctured encryption and decryption keys EK1{Si∗+1,j+1}, DK1{Si∗+1,j} of ACE, tag
m∗1, set Si∗,j , upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,j}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. output l+1 ← ACE.EncEK1{Si∗+1,j+1}(i+ 1,m1).

Program TransformB,2,j,1[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{Si∗+1,j} of ACE, encryption key EK2 of ACE, single-tag level
l∗1 = ACE.EncEK1(1,m∗1), tagm∗1, tagm∗2, upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)}
if b ≥ a and {∅} otherwise.

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{Si∗+1,j}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,2,j,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{Si∗+1,j} of ACE, punctured at the set Si∗+1,j , tag m∗1, upper bound
T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,j}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i > T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i > T or i < 0) then output ′fail′;
4. Output m1.

Figure 46: Programs in HybB,2,j,1. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,2,j,2.
Program GenZeroB,2,j,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: punctured encryption key EK1{Si∗+1,j+1} of ACE, tag m∗1. Here Sa,b =
{(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{Si∗+1,j+1}(0,m1).

Program IncrementB,2,j,2(l)
Inputs: single-tag level l
Hardwired values: punctured encryption and decryption keys EK1{Si∗+1,j+1}, DK1{Si∗+1,j+1} of ACE,
tag m∗1, set Si∗,j , upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅}
otherwise.

1. out← ACE.DecDK1{Si∗+1,j+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. output l+1 ← ACE.EncEK1{Si∗+1,j+1}(i+ 1,m1).

Program TransformB,2,j,2[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{Si∗+1,j+1} of ACE, encryption key EK2 of ACE, single-tag level
l∗1 = ACE.EncEK1(1,m∗1), tagm∗1, tagm∗2, upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)}
if b ≥ a and {∅} otherwise.

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{Si∗+1,j+1}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,2,j,2(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{Si∗+1,j+1} of ACE, punctured at the set Si∗+1,j+1, tag m∗1, upper
bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,j+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i > T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i > T or i < 0) then output ′fail′;
4. Output m1.

Figure 47: Programs in HybB,2,j,2. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,2,j,3.
Program GenZeroB,2,j,3[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: punctured encryption key EK1{Si∗+1,j+2} of ACE, tag m∗1. Here Sa,b =
{(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{Si∗+1,j+2}(0,m1).

Program IncrementB,2,j,3(l)
Inputs: single-tag level l
Hardwired values: punctured encryption and decryption keys EK1{Si∗+1,j+2}, DK1{Si∗+1,j+1} of ACE,
tag m∗1, set Si∗,j , upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅}
otherwise.

1. out← ACE.DecDK1{Si∗+1,j+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. output l+1 ← ACE.EncEK1{Si∗+1,j+2}(i+ 1,m1).

Program TransformB,2,j,3[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{Si∗+1,j+1} of ACE, encryption key EK2 of ACE, single-tag level
l∗1 = ACE.EncEK1(1,m∗1), tagm∗1, tagm∗2, upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)}
if b ≥ a and {∅} otherwise.

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{Si∗+1,j+1}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,2,j,3(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{Si∗+1,j+1} of ACE, punctured at the set Si∗+1,j+1, tag m∗1, upper
bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,j+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i > T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i > T or i < 0) then output ′fail′;
4. Output m1.

Figure 48: Programs in HybB,2,j,3. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,3,1.
Program GenZeroB,3,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: punctured encryption key EK1{Si∗+1,T+1} of ACE, tag m∗1. Here Sa,b =
{(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{Si∗+1,T+1}(0,m1).

Program IncrementB,3,1(l)
Inputs: single-tag level l
Hardwired values: punctured encryption and decryption keys EK1{Si∗+1,T+1}, DK1{Si∗+1,T+1} of ACE,
tag m∗1, set Si∗,T , upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅}
otherwise.

1. out← ACE.DecDK1{Si∗+1,T+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i ≥ T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i ≥ T or i < 0) then output ′fail′;
4. output l+1 ← ACE.EncEK1{Si∗+1,T+1}(i+ 1,m1).

Program TransformB,3,1[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{Si∗+1,T+1} of ACE, encryption key EK2 of ACE, single-tag level
l∗1 = ACE.EncEK1(1,m∗1), tagm∗1, tagm∗2, upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)}
if b ≥ a and {∅} otherwise.

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{Si∗+1,T+1}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If m1 = m∗1:

(a) If i > T + 1 or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i− 1,m1,m2);

4. If m1 6= m∗1:
(a) If i > T or i < 0 then return ′fail′;
(b) return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,3,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{Si∗+1,T+1} of ACE, punctured at the set Si∗+1,T+1, tag m∗1, upper
bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,T+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If m1 = m∗1 and (i > T + 1 or i < 0) then output ′fail′;
3. If m1 6= m∗1 and (i > T or i < 0) then output ′fail′;
4. Output m1.

Figure 49: Programs in HybB,3,1. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,3,2.
Program GenZeroB,3,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: punctured encryption key EK1{Si∗+1,T+1} of ACE, tag m∗1. Here Sa,b =
{(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{Si∗+1,T+1}(0,m1).

Program IncrementB,3,2(l)
Inputs: single-tag level l
Hardwired values: punctured encryption and decryption keys EK1{Si∗+1,T+1}, DK1{Si∗+1,T+1} of ACE,
tag m∗1, set Si∗,T , upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅}
otherwise.

1. out← ACE.DecDK1{Si∗+1,T+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{Si∗+1,T+1}(i+ 1,m1).

Program TransformB,3,2[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{Si∗+1,T+1} of ACE, encryption key EK2 of ACE, single-tag level
l∗1 = ACE.EncEK1(1,m∗1), tagm∗1, tagm∗2, upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)}
if b ≥ a and {∅} otherwise.

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{Si∗+1,T+1}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 6= m∗1 return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,3,2(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{Si∗+1,T+1} of ACE, punctured at the set Si∗+1,T+1, upper bound
T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,T+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 50: Programs in HybB,3,2. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,4,j,1.
Program GenZeroB,4,j,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: punctured encryption key EK1{Si∗+1,j+1} of ACE, tag m∗1. Here Sa,b =
{(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{Si∗+1,j+1}(0,m1).

Program IncrementB,4,j,1(l)
Inputs: single-tag level l
Hardwired values: punctured encryption and decryption keys EK1{Si∗+1,j+1}, DK1{Si∗+1,j+1} of ACE,
tag m∗1, set Si∗,j , upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅}
otherwise.

1. out← ACE.DecDK1{Si∗+1,j+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{Si∗+1,j+1}(i+ 1,m1).

Program TransformB,4,j,1[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{Si∗+1,j+1} of ACE, encryption key EK2 of ACE, single-tag level
l∗1 = ACE.EncEK1(1,m∗1), tagm∗1, tagm∗2, upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)}
if b ≥ a and {∅} otherwise.

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{Si∗+1,j+1}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 6= m∗1 return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,4,j,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{Si∗+1,j+1} of ACE, punctured at the set Si∗+1,j+1, upper bound T .
Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,j+1}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 51: Programs in HybB,4,j,1. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,4,j,2.
Program GenZeroB,4,j,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: punctured encryption key EK1{Si∗+1,j+1} of ACE, tag m∗1. Here Sa,b =
{(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{Si∗+1,j+1}(0,m1).

Program IncrementB,4,j,2(l)
Inputs: single-tag level l
Hardwired values: punctured encryption and decryption keys EK1{Si∗+1,j+1}, DK1{Si∗+1,j} of ACE, tag
m∗1, set Si∗,j , upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,j}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{Si∗+1,j+1}(i+ 1,m1).

Program TransformB,4,j,2[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{Si∗+1,j} of ACE, encryption key EK2 of ACE, single-tag level
l∗1 = ACE.EncEK1(1,m∗1), tagm∗1, tagm∗2, upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)}
if b ≥ a and {∅} otherwise.

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{Si∗+1,j}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 6= m∗1 return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,4,j,2(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{Si∗+1,j} of ACE, punctured at the set Si∗+1,j , upper bound T .
Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,j}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 52: Programs in HybB,4,j,2. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,4,j,3.
Program GenZeroB,4,j,3[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: punctured encryption key EK1{Si∗+1,j} of ACE, tag m∗1. Here Sa,b =
{(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{Si∗+1,j}(0,m1).

Program IncrementB,4,j,3(l)
Inputs: single-tag level l
Hardwired values: punctured encryption and decryption keys EK1{Si∗+1,j}, DK1{Si∗+1,j} of ACE, tag
m∗1, set Si∗,j , upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,j}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{Si∗+1,j}(i+ 1,m1).

Program TransformB,4,j,3[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{Si∗+1,j} of ACE, encryption key EK2 of ACE, single-tag level
l∗1 = ACE.EncEK1(1,m∗1), tagm∗1, tagm∗2, upper bound T . Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)}
if b ≥ a and {∅} otherwise.

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{Si∗+1,j}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 6= m∗1 return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,4,j,3(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{Si∗+1,j} of ACE, punctured at the set Si∗+1,j , upper bound T .
Here Sa,b = {(a,m∗1), (a+ 1,m∗1), . . . , (b,m∗1)} if b ≥ a and {∅} otherwise.

1. out← ACE.DecDK1{Si∗+1,j}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 53: Programs in HybB,4,j,3. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,5,1.
Program GenZeroB,5,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: punctured encryption key EK1{pi∗+1} of ACE, punctured at the point pi∗+1 = (i∗ +
1,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{pi∗+1}(0,m1).

Program IncrementB,5,1(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{pi∗+1}, DK1 of ACE, punctured at the point
pi∗+1 = (i∗ + 1,m∗1), tag m∗1, , upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{pi∗+1}(i+ 1,m1).

Program TransformB,5,1[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 6= m∗1 return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,5,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 54: Programs in HybB,5,1. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,5,2.
Program GenZeroB,5,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1(0,m1).

Program IncrementB,5,2(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1, DK1 of ACE, tag m∗1, OWF g, I∗ = g(i∗) for
random i∗, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. If m1 = m∗1 and g(i) = I∗ then output ′fail′;
4. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program TransformB,5,2[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 6= m∗1 return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,5,2(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 55: Programs in HybB,5,2. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybB,5,3.
Program GenZeroB,5,3[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1(0,m1).

Program IncrementB,5,3(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program TransformB,5,3[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 6= m∗1 return L← ACE.EncEK2(i,m1,m2).

Program RetrieveTagB,5,3(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 56: Programs in HybB,5,3. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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7.4.3 Proof of lemma 4 (Restoring behavior of Transform).

Starting from HybC , we first change outputs of Transform from [i− 1,m∗1,m2] to [i,m∗1,m2] for different
m2 6= m∗2 one by one, by considering the following sequence of hybrids for q = 0, . . . , ν2, q 6= m∗2, where
ν2 = 2|m2|:

• HybC,1,q. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,1,q[(l
∗
1,m

∗
2)], isLessC,1,q, RetrieveTag, RetrieveTagsC,1,q, l∗1 =

ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the programs can be

found on fig. 58.

That is, program Transform on input ([i,m∗1],m2) outputs [i − 1,m∗1,m2] for m2 ≥ q or m2 = m∗2
and [i,m∗1,m2] otherwise.

Note that HybC = HybC,1,q for q = 0.

In the following sequence of hybrids we change the output at m2 = q from [i− 1,m∗1, q] to [i,m∗1, q]:

• HybC,1,q,1,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,1,q,1,1[(l∗1,m
∗
2)], isLessC,1,q,1,1, RetrieveTag, RetrieveTagsC,1,q,1,1, l∗1 =

ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the programs can be found

on fig. 59.

That is, in program Transform we puncture ACE encryption key EK2 at the point pT,q = (T,m∗1, q).
Indistinguishability holds by iO, since Transform never encrypts this plaintext.

• HybC,1,q,1,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,1,q,1,2[(l∗1,m
∗
2)], isLessC,1,q,1,2, RetrieveTag, RetrieveTagsC,1,q,1,2; rSetup) for

randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 60.

That is, in programs isLess and RetrieveTags we puncture ACE decryption key DK2 at the point
pT,q = (T,m∗1, q). Indistinguishability holds by security of constrained ACE key, since EK2 is already
punctured at the same point.

We consider the following hybrids for j = T −1, . . . , 0, switching the output from [j,m∗1, q] to [j+ 1,m∗1, q]:

• HybC,1,q,2,j,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,1,q,2,j,1[(l∗1,m
∗
2)], isLessC,1,q,2,j,1, RetrieveTag, RetrieveTagsC,1,q,2,j,1; rSetup)

for randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description

of the programs can be found on fig. 61.

That is, in this hybrid EK2,DK2 are punctured at the point pj+1,q = (j + 1,m∗1, q).

Note that HybC,1,q,1,2 = HybC,1,q,2,j,1 for j = T − 1.

• HybC,1,q,2,j,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,1,q,2,j,2[(l∗1,m
∗
2)], isLessC,1,q,2,j,2, RetrieveTag, RetrieveTagsC,1,q,2,j,2; rSetup)

for randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description

of the programs can be found on fig. 62.

That is, we additionally puncture ACE keys EK2,DK2 at the point pj,q = (j,m∗1, q) and hardwire
L∗j,q = ACE.EncEK2(j,m∗1, q) to eliminate the need to encrypt or decrypt pj,q in programs Transform,
isLess, and RetrieveTags. Indistinguishability holds by iO.
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Note that in program isLess we instruct the program to use the value pj+1,q = (j + 1,m∗1, q) on input
L∗j,q (instead of correct value pj,q = (j,m∗1, q)). However, this doesn’t change the overall functionality
of the program: using pj+1,q instead of pj,q could change the result of comparison only if the other
input was an encryption of pj+1,q (since comparison will result in true when pj,q is used and false
when pj+1,q is used). However, DK2 is punctured at a set which includes pj+1,q, and thus no ciphertext
is decrypted to pj+1,q. Thus programs isLess12,q,2,j,1 and isLess12,q,2,j,0 have the same functionality.

• HybC,1,q,2,j,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,1,q,2,j,3[(l∗1,m
∗
2)], isLessC,1,q,2,j,3, RetrieveTag, RetrieveTagsC,1,q,2,j,3; rSetup)

for randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description

of the programs can be found on fig. 63.

That is, we replace L∗j,q = ACE.EncEK2(j,m∗1, q) with L∗j+1,q = ACE.EncEK2(j + 1,m∗1, q) in
programs Transform, isLess and RetrieveTags. Indistinguishability holds by security of ACE for
punctured points pj,q, pj+1,q.

• HybC,1,q,2,j,4. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,1,q,2,j,4[(l∗1,m
∗
2)], isLessC,1,q,2,j,4, RetrieveTag, RetrieveTagsC,1,q,2,j,4; rSetup)

for randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description

of the programs can be found on fig. 64.

That is, we unpuncture ACE keys EK2,DK2 at the point pj+1,q = (j+1,m∗1, q) and remove hardwired
L∗j+1,q = ACE.EncEK2(j+1,m∗1, q) in programs Transform, isLess, and RetrieveTags. Indistinguisha-
bility holds by iO.

Note that HybC,1,q,2,j,4 = HybC,1,q,2,j−1,1 for j = T − 1, . . . , 1.

Next we separately consider the case j = −1, switching the output from [−1,m∗1, q] to [0,m∗1, q]:

• HybC,1,q,2,−1,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZero[m∗1], Increment, TransformC,1,q,2,−1,1[(l∗1,m
∗
2)], isLessC,1,q,2,−1,1, RetrieveTag,

RetrieveTagsC,1,q,2,−1,1; rSetup) for randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be found on fig. 65.

That is, in this hybrid EK2,DK2 are punctured at the point p0,q = (0,m∗1, q).

Note that HybC,1,q,2,−1,1 = HybC,1,q,2,j,4 for j = 0.

• HybC,1,q,2,−1,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZero[m∗1], Increment, TransformC,1,q,2,−1,2[(l∗1,m
∗
2)], isLessC,1,q,2,−1,2, RetrieveTag,

RetrieveTagsC,1,q,2,−1,2; rSetup) for randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be found on fig. 66.

That is, we additionally puncture ACE keys EK2,DK2 at the point p−1,q = (−1,m∗1, q) and hardwire
L∗−1,q = ACE.EncEK2(−1,m∗1, q) to eliminate the need to encrypt or decrypt p−1,q in programs
Transform, isLess, and RetrieveTags. Indistinguishability holds by iO.

Note that in programs isLess and RetrieveTags we instruct the program to output fail, given L∗−1,q =
ACE.EncEK2(−1,m∗1, q) as input, since both programs treat levels with i < 0 as invalid.

• HybC,1,q,2,−1,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZero[m∗1], Increment, TransformC,1,q,2,−1,3[(l∗1,m
∗
2)], isLessC,1,q,2,−1,3, RetrieveTag,
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RetrieveTagsC,1,q,2,−1,3; rSetup) for randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be found on fig. 67.

That is, we replace L∗−1,q = ACE.EncEK2(−1,m∗1, q) with L∗0,q = ACE.EncEK2(0,m∗1, q) in programs
Transform, isLess and RetrieveTags. Indistinguishability holds by security of ACE for punctured
points p−1,q, p0,q.

Next we clean up punctured keys:

• HybC,1,q,3,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,1,q,3,1[(l∗1,m
∗
2)], isLessC,1,q,3,1, RetrieveTag, RetrieveTagsC,1,q,3,1; rSetup) for

randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 68.

That is, we unpuncture ACE keys EK2,DK2 at the point p0,q = (0,m∗1, q) and remove hardwired
L∗0,q = ACE.EncEK2(0,m∗1, q) in programs Transform, isLess, and RetrieveTags. Indistinguishability
holds by iO.

• HybC,1,q,3,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,1,q,3,2[(l∗1,m
∗
2)], isLessC,1,q,3,2, RetrieveTag, RetrieveTagsC,1,q,3,2; rSetup) for

randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 69.

That is, we unpuncture ACE key DK2 at the point p−1,q = (−1,m∗1, q) in programs Transform, isLess,
and RetrieveTags. Indistinguishability holds by security of a constrained ACE key, since EK2 is
punctured at p−1,q.

• HybC,1,q,3,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,1,q,3,3[(l∗1,m
∗
2)], isLessC,1,q,3,3, RetrieveTag, RetrieveTagsC,1,q,3,3; rSetup) for

randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 70.

That is, we unpuncture ACE key EK2 at the point p−1,q = (−1,m∗1, q) in program Transform. Indis-
tinguishability holds by iO, since Transform never encrypts this value.

Note that programs isLess and RetrieveTags now output ′fail′ on input [0,m∗1, q]. We fix this in the following
hybrids:

• HybC,1,q,4,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZeroC,1,q,4,1[m∗1], IncrementC,1,q,4,1, TransformC,1,q,4,1[(l∗1,m
∗
2)], isLessC,1,q,4,1,

RetrieveTagC,1,q,4,1, RetrieveTagsC,1,q,4,1; rSetup) for randomly chosen rSetup, l∗1 =
ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be

found on fig. 71.

That is, in this hybrid we puncture ACE encryption key EK1 at p0 = (0,m∗1) in programs GenZero
and Increment. Indistinguishability holds by iO, since these programs never encrypt p0.

• HybC,1,q,4,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZeroC,1,q,4,2[m∗1], IncrementC,1,q,4,2, TransformC,1,q,4,2[(l∗1,m
∗
2)], isLessC,1,q,4,2,

RetrieveTagC,1,q,4,2, RetrieveTagsC,1,q,4,2; rSetup) for randomly chosen rSetup, l∗1 =
ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be

found on fig. 72.
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That is, in this hybrid we puncture ACE decryption key DK1 at the same point p0 = (0,m∗1) in
programs Increment, Transform, and RetrieveTag. Indistinguishability holds by security of constrained
decryption of ACE, since corresponding encryption key EK1 is already punctured at p0.

• HybC,1,q,4,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZeroC,1,q,4,3[m∗1], IncrementC,1,q,4,3, TransformC,1,q,4,3[(l∗1,m
∗
2)], isLessC,1,q,4,3,

RetrieveTagC,1,q,4,3, RetrieveTagsC,1,q,4,3; rSetup) for randomly chosen rSetup, l∗1 =
ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be

found on fig. 73.

That is, in this hybrid we puncture ACE encryption key EK2 at p0,q = (0,m∗1, q) in program Transform.
Indistinguishability holds by security of iO, since, due to punctured DK1{p0}, this program always
outputs ′fail′ on input ([0,m∗1], q) and thus never needs to encrypt p0,q.

• HybC,1,q,4,4. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZeroC,1,q,4,4[m∗1], IncrementC,1,q,4,4, TransformC,1,q,4,4[(l∗1,m
∗
2)], isLessC,1,q,4,4,

RetrieveTagC,1,q,4,4, RetrieveTagsC,1,q,4,4; rSetup) for randomly chosen rSetup, l∗1 =
ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be

found on fig. 74.

That is, in this hybrid we puncture ACE decryption key DK2 at the same point p0,q = (0,m∗1, q) in
programs isLess and RetrieveTags. Indistinguishability holds by security of constrained decryption of
ACE, since corresponding encryption key EK2 is already punctured at p0,q.

• HybC,1,q,4,5. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZeroC,1,q,4,5[m∗1], IncrementC,1,q,4,5, TransformC,1,q,4,5[(l∗1,m
∗
2)], isLessC,1,q,4,5,

RetrieveTagC,1,q,4,5, RetrieveTagsC,1,q,4,5; rSetup) for randomly chosen rSetup, l∗1 =
ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be

found on fig. 75.

That is, we remove instructions to output ′fail′ in programs isLess and RetrieveTags on input [0,m∗1, q].
Indistinguishability holds by iO, since these instructions are never executed due to the fact that DK2 is
punctured at p0,q = (0,m∗1, q) and thus the programs output ′fail′ during decryption.

• HybC,1,q,4,6. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZeroC,1,q,4,6[m∗1], IncrementC,1,q,4,6, TransformC,1,q,4,6[(l∗1,m
∗
2)], isLessC,1,q,4,6,

RetrieveTagC,1,q,4,6, RetrieveTagsC,1,q,4,6; rSetup) for randomly chosen rSetup, l∗1 =
ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be

found on fig. 76.

That is, in this hybrid we unpuncture ACE decryption key DK2 at p0,q = (0,m∗1, q) in programs isLess
and RetrieveTags. Indistinguishability holds by security of constrained decryption of ACE, since
corresponding encryption key EK2 is punctured at p0,q.

• HybC,1,q,4,7. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZeroC,1,q,4,7[m∗1], IncrementC,1,q,4,7, TransformC,1,q,4,7[(l∗1,m
∗
2)], isLessC,1,q,4,7,

RetrieveTagC,1,q,4,7, RetrieveTagsC,1,q,4,7; rSetup) for randomly chosen rSetup, l∗1 =
ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be

found on fig. 77.
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That is, in this hybrid we unpuncture ACE encryption key EK2 at p0,q = (0,m∗1, q) in program
Transform. Indistinguishability holds by security of iO, since, due to punctured DK1{p0}, this program
always outputs ′fail′ on input ([0,m∗1], q) and thus never needs to encrypt p0,q.

• HybC,1,q,4,8. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZeroC,1,q,4,8[m∗1], IncrementC,1,q,4,8, TransformC,1,q,4,8[(l∗1,m
∗
2)], isLessC,1,q,4,8,

RetrieveTagC,1,q,4,8, RetrieveTagsC,1,q,4,8; rSetup) for randomly chosen rSetup, l∗1 =
ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be

found on fig. 78.

That is, in this hybrid we unpuncture ACE decryption key DK1 at p0 = (0,m∗1) in programs Increment,
Transform, and RetrieveTag. Indistinguishability holds by security of constrained decryption of ACE,
since corresponding encryption key EK1 is punctured at p0.

• HybC,1,q,4,9. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP =

Setup(1λ; GenZeroC,1,q,4,9[m∗1], IncrementC,1,q,4,9, TransformC,1,q,4,9[(l∗1,m
∗
2)], isLessC,1,q,4,9,

RetrieveTagC,1,q,4,9, RetrieveTagsC,1,q,4,9; rSetup) for randomly chosen rSetup, l∗1 =
ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). Description of the programs can be

found on fig. 79.

That is, in this hybrid we unpuncture ACE encryption key EK1 at p0 = (0,m∗1) in programs GenZero
and Increment. Indistinguishability holds by iO, since these programs never encrypt p0.

This concludes fixing behavior of Transform for the case m2 6= m∗2. Next we fix the case m2 = m∗2 in a
similar manner, except that we need different hybrids for the case j = −1, 0 (to prevent switching L∗0 to L∗1):

• HybC,2,1,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,2,1,1[(l∗1,m
∗
2)], isLessC,2,1,1, RetrieveTag, RetrieveTagsC,2,1,1, l∗1 =

ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the programs can be found

on fig. 80.

Note that HybC,1,q,4,9 = HybC,2,1,1 for q = 2|m2|.

• HybC,2,1,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,2,1,2[(l∗1,m
∗
2)], isLessC,2,1,2, RetrieveTag, RetrieveTagsC,2,1,2, l∗1 =

ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the programs can be found

on fig. 81.

That is, in program Transform we puncture ACE encryption key EK2 at the point pT,m∗2 = (T,m∗1,m
∗
2).

Indistinguishability holds by iO, since Transform never encrypts this plaintext.

• HybC,2,1,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,2,1,3[(l∗1,m
∗
2)], isLessC,2,1,3, RetrieveTag, RetrieveTagsC,2,1,3; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 82.

That is, in programs isLess and RetrieveTags we puncture ACE decryption key DK2 at the point
pT,m∗2 = (T,m∗1,m

∗
2). Indistinguishability holds by security of constrained ACE key, since EK2 is

already punctured at the same point.

We consider the following hybrids for j = T − 1, . . . , 1, switching the output from [j,m∗1,m
∗
2] to [j +

1,m∗1,m
∗
2]:
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• HybC,2,2,j,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,2,2,j,1[(l∗1,m
∗
2)], isLessC,2,2,j,1, RetrieveTag, RetrieveTagsC,2,2,j,1; rSetup) for

randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 83.

That is, in this hybrid EK2,DK2 are punctured at the point pj+1,m∗2
= (j + 1,m∗1,m

∗
2).

Note that HybC,2,1,3 = HybC,2,2,j,1 for j = T − 1.

• HybC,2,2,j,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,2,2,j,2[(l∗1,m
∗
2)], isLessC,2,2,j,2, RetrieveTag, RetrieveTagsC,2,2,j,2; rSetup) for

randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 84.

That is, we additionally puncture ACE keys EK2,DK2 at the point pj,m∗2 = (j,m∗1,m
∗
2) and hardwire

L∗j,m∗2
= ACE.EncEK2(j,m∗1,m

∗
2) to eliminate the need to encrypt or decrypt pj,m∗2 in programs

Transform, isLess, and RetrieveTags. Indistinguishability holds by iO.

Note that in program isLess we instruct the program to use the value pj+1,m∗2
= (j + 1,m∗1,m

∗
2) on

input L∗j,m∗2 (instead of correct value pj,m∗2 = (j,m∗1,m
∗
2)). However, this doesn’t change the overall

functionality of the program: using pj+1,m∗2
instead of pj,m∗2 could change the result of comparison

only if the other input was an encryption of pj+1,m∗2
(since comparison will result in true when pj,m∗2

is used and false when pj+1,m∗2
is used). However, DK2 is punctured at a set which includes pj+1,m∗2

,
and thus no ciphertext is decrypted to pj+1,m∗2

. Thus programs isLessC,2,2,j,1 and isLessC,2,2,j,2 have
the same functionality.

• HybC,2,2,j,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,2,2,j,3[(l∗1,m
∗
2)], isLessC,2,2,j,3, RetrieveTag, RetrieveTagsC,2,2,j,3; rSetup) for

randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 85.

That is, we replace L∗j,m∗2 = ACE.EncEK2(j,m∗1,m
∗
2) with L∗j+1,m∗2

= ACE.EncEK2(j + 1,m∗1,m
∗
2)

in programs Transform, isLess and RetrieveTags. Indistinguishability holds by security of ACE for
punctured points pj,m∗2 , pj+1,m∗2

.

• HybC,2,2,j,4. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,2,2,j,4[(l∗1,m
∗
2)], isLessC,2,2,j,4, RetrieveTag, RetrieveTagsC,2,2,j,4; rSetup) for

randomly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of

the programs can be found on fig. 86.

That is, we unpuncture ACE keys EK2,DK2 at the point pj+1,m∗2
= (j + 1,m∗1,m

∗
2) and remove

hardwired L∗j+1,m∗2
= ACE.EncEK2(j + 1,m∗1,m

∗
2) in programs Transform, isLess, and RetrieveTags.

Indistinguishability holds by iO.

Note that HybC,2,2,j,4 = HybC,2,2,j−1,1 for j = T − 1, . . . , 2.

Finally we consider the case j = −1, switching the output from [−1,m∗1,m
∗
2] to [0,m∗1,m

∗
2] and cleaning up

any left puncturing:

• HybC,2,3,1. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,2,3,1[(l∗1,m
∗
2)], isLessC,2,3,1, RetrieveTag, RetrieveTagsC,2,3,1; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the
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programs can be found on fig. 87.

In this hybrid EK2,DK2 are punctured at the point p1,m∗2
= (1,m∗1,m

∗
2).

Note that HybC,2,3,1 = HybC,2,2,j,4 for j = 1.

• HybC,2,3,2. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZero[m∗1],

Increment, TransformC,2,3,2[(l∗1,m
∗
2)], isLessC,2,3,2, RetrieveTag, RetrieveTagsC,2,3,2; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 88.

That is, we unpuncture ACE key DK2 at the point p1,m∗2
= (1,m∗1,m

∗
2). in programs isLess and

RetrieveTags. Indistinguishability holds by security of a constrained ACE key, since EK2 is punctured
at p1,m∗2

.

• HybC,2,3,3. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroC,2,3,3[m∗1],

IncrementC,2,3,3, TransformC,2,3,3[(l∗1,m
∗
2)], isLess, RetrieveTagC,2,3,3, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 89.

That is, we change the following: first, we puncture ACE key EK1 at the point p0 = (0,m∗1) in
programs GenZero and Increment: this is without changing the functionality of those programs, since
then never need to encrypt p0. Second, we unpuncture ACE key EK2 at point p1,m∗2

= (1,m∗1,m
∗
2) in

program Transform, since this program never needs to encrypt p1,m∗2
due to the first instruction (which

tells the program to output ′fail′ if it gets ([1,m∗1],m∗2) as input)). Indistinguishability holds by iO.

• HybC,2,3,4. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroC,2,3,4[m∗1],

IncrementC,2,3,4, TransformC,2,3,4[(l∗1,m
∗
2)], isLess, RetrieveTagC,2,3,4, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 90.

That is, in programs Increment and RetrieveTag we puncture ACE decryption key DK1 at the point
p0 = (0,m∗1). Indistinguishability holds by security of constrained ACE key, since EK1 is already
punctured at the same point.

• HybC,2,3,5. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroC,2,3,5[m∗1],

IncrementC,2,3,5, TransformC,2,3,5[(l∗1,m
∗
2)], isLess, RetrieveTagC,2,3,5, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 91.

That is, we let program Transform output [0,m∗1,m
∗
2] (instead of [−1,m∗1,m

∗
2]) on input ([0,m∗1],m∗2).

This doesn’t change the functionality of the program, since DK1 is punctured the point p0 = (0,m∗1),
thus no valid encryption of (0,m∗1) exists, and Transform aborts on input [0,m∗1],m∗2. Indistinguisha-
bility holds by iO.

• HybC,2,3,6. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroC,2,3,6[m∗1],

IncrementC,2,3,6, TransformC,2,3,6[(l∗1,m
∗
2)], isLess, RetrieveTagC,2,3,6, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 92.

That is, in programs Increment and RetrieveTag we unpuncture ACE decryption key DK1 at the point
p0 = (0,m∗1). Indistinguishability holds by security of constrained ACE key, since EK1 is already
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punctured at the same point.

• HybC,2,3,7. We give the adversary (PP, l∗1, L
∗
0,m

∗
1,m

∗
2), where PP = Setup(1λ; GenZeroC,2,3,7[m∗1],

IncrementC,2,3,7, TransformC,2,3,7[(l∗1,m
∗
2)], isLess, RetrieveTagC,2,3,7, RetrieveTags; rSetup) for ran-

domly chosen rSetup, l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m
∗
2). Description of the

programs can be found on fig. 93.

That is, we unpuncture ACE key EK1 at the point p0 = (0,m∗1) in programs GenZero and Increment.
Indistinguishability holds by iO, since neither program encrypts this value.

Note that HybC,2,3,7 = HybD.

Thus, the the advantage of the PPT adversary in distinguishing between HybC and HybD is at most

(2τ(λ) − 1)((2T + 9) · 2−Ω(νiO(λ)) + (T + 1) · 2−Ω(νACE.Indist(λ)) + 6 · 2−Ω(νACE.ConstrDec(λ)))+

(2(T − 1) + 4) · 2−Ω(νiO(λ)) + (T − 1) · 2−Ω(νACE.Indist(λ)) + 4 · 2−Ω(νACE.ConstrDec(λ)) =

2τ(λ)(T · 2−Ω(νiO(λ)) + T · 2−Ω(νACE.Indist(λ)) + 2−Ω(νACE.ConstrDec(λ))).
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Programs in HybC .
Program GenZeroC [m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1(0,m1).

Program IncrementC(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program TransformC [(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 return L← ACE.EncEK2(i− 1,m1,m2);
5. Return L← ACE.EncEK2(i,m1,m2).

Program isLessC(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagC(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTagsC(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 57: Programs in HybC . In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q.
Program TransformC,1,q[(l

∗
1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q return L← ACE.EncEK2(i− 1,m1,m2);
6. Return L← ACE.EncEK2(i,m1,m2);

Program isLessC,1,q(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 58: Programs in HybC,1,q. In addition, in this hybrid the adversary gets unmodified obfus-
cated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,1,1.
Program TransformC,1,q,1,1[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pT,q} of ACE punctured at pT,q =
(T,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{pT,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q return L← ACE.EncEK2{pT,q}(i− 1,m1,m2);
6. Return L← ACE.EncEK2{pT,q}(i,m1,m2);

Program isLessC,1,q,1,1(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,1,1(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 59: Programs in HybC,1,q,1,1. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,1,2.
Program TransformC,1,q,1,2[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pT,q} of ACE punctured at pT,q =
(T,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{pT,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q return L← ACE.EncEK2{pT,q}(i− 1,m1,m2);
6. Return L← ACE.EncEK2{pT,q}(i,m1,m2);

Program isLessC,1,q,1,2(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{pT,q} of ACE punctured at pT,q = (T,m∗1, q), upper bound T .
1. out′ ← ACE.DecDK2{pT,q}(L

′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m
′
2).

2. out′′ ← ACE.DecDK2{pT,q}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,1,2(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{pT,q} of ACE punctured at pT,q = (T,m∗1, q), upper bound T .

1. out← ACE.DecDK2{pT,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 60: Programs in HybC,1,q,1,2. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,2,j,1.
Program TransformC,1,q,2,j,1[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pj+1,q} of ACE punctured at pj+1,q =
(j + 1,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{pj+1,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 > q return L← ACE.EncEK2{pj+1,q}(i− 1,m1,m2);
6. If m1 = m∗1, m2 = q, and i ≤ j + 1 return L← ACE.EncEK2{pj+1,q}(i− 1,m1,m2);
7. Return L← ACE.EncEK2{pj+1,q}(i,m1,m2).

Program isLessC,1,q,2,j,1(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{pj+1,q} of ACE punctured at pj+1,q = (j+ 1,m∗1, q), upper bound
T .

1. out′ ← ACE.DecDK2{pj+1,q}(L
′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2{pj+1,q}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,2,j,1(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{pj+1,q} of ACE punctured at pj+1,q = (j+ 1,m∗1, q), upper bound
T .

1. out← ACE.DecDK2{pj+1,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 61: Programs in HybC,1,q,2,j,1. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,2,j,2.
Program TransformC,1,q,2,j,2[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pj,q, pj+1,q} of ACE punctured at
pj,q = (j,m∗1, q), pj+1,q = (j + 1,m∗1, q), double-tag level L∗j,q = ACE.EncEK2(j,m∗1, q), single-tag level
l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{pj,q ,pj+1,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 > q return L← ACE.EncEK2{pj,q ,pj+1,q}(i− 1,m1,m2);
6. If m1 = m∗1, m2 = q, and i = j + 1 return L∗j,q;
7. If m1 = m∗1, m2 = q, and i < j + 1 return L← ACE.EncEK2{pj,q ,pj+1,q}(i− 1,m1,m2);
8. Return L← ACE.EncEK2{pj,q ,pj+1,q}(i,m1,m2).

Program isLessC,1,q,2,j,2(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{pj,q, pj+1,q} of ACE punctured at pj,q = (j,m∗1, q), pj+1,q =
(j + 1,m∗1, q), double-tag level L∗j,q = ACE.EncEK2(j,m∗1, q), upper bound T .

1. If L′ = L∗j,q then set (i′,m′1,m
′
2) = (j + 1,m∗1, q),

else out′ ← ACE.DecDK2{pj,q ,pj+1,q}(L
′); if out′ = ′fail′ then output ′fail′; else parse out′ as

(i′,m′1,m
′
2).

2. If L′′ = L∗j,q then set (i′′,m′′1,m
′′
2) = (j + 1,m∗1, q),

else out′′ ← ACE.DecDK2{pj,q ,pj+1,q}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as

(i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,2,j,2(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{pj,q, pj+1,q} of ACE punctured at pj,q = (j,m∗1, q), pj+1,q =
(j + 1,m∗1, q), double-tag level L∗j,q = ACE.EncEK2(j,m∗1, q), upper bound T .

1. If L = L∗j,q then return (m∗1, q);
2. out← ACE.DecDK2{pj,q ,pj+1,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
3. If i > T or i < 0 then output ′fail′;
4. Return (m1,m2).

Figure 62: Programs in HybC,1,q,2,j,2. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,2,j,3.
Program TransformC,1,q,2,j,3[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pj,q, pj+1,q} of ACE punctured at
pj,q = (j,m∗1, q), pj+1,q = (j + 1,m∗1, q), double-tag level L∗j+1,q = ACE.EncEK2(j + 1,m∗1, q), single-tag
level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{pj,q ,pj+1,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 > q return L← ACE.EncEK2{pj,q ,pj+1,q}(i− 1,m1,m2);
6. If m1 = m∗1, m2 = q, and i = j + 1 return L∗j+1,q;
7. If m1 = m∗1, m2 = q, and i < j + 1 return L← ACE.EncEK2{pj,q ,pj+1,q}(i− 1,m1,m2);
8. Return L← ACE.EncEK2{pj,q ,pj+1,q}(i,m1,m2).

Program isLessC,1,q,2,j,3(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{pj,q, pj+1,q} of ACE punctured at pj,q = (j,m∗1, q), pj+1,q =
(j + 1,m∗1, q), double-tag level L∗j+1,q = ACE.EncEK2(j + 1,m∗1, q), upper bound T .

1. If L′ = L∗j+1,q then set (i′,m′1,m
′
2) = (j + 1,m∗1, q),

else out′ ← ACE.DecDK2{pj,q ,pj+1,q}(L
′); if out′ = ′fail′ then output ′fail′; else parse out′ as

(i′,m′1,m
′
2).

2. If L′′ = L∗j+1,q then set (i′′,m′′1,m
′′
2) = (j + 1,m∗1, q),

else out′′ ← ACE.DecDK2{pj,q ,pj+1,q}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as

(i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,2,j,3(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{pj,q, pj+1,q} of ACE punctured at pj,q = (j,m∗1, q), pj+1,q =
(j + 1,m∗1, q), double-tag level L∗j+1,q = ACE.EncEK2(j + 1,m∗1, q), upper bound T .

1. If L = L∗j+1,q then return (m∗1, q);
2. out← ACE.DecDK2{pj,q ,pj+1,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
3. If i > T or i < 0 then output ′fail′;
4. Return (m1,m2).

Figure 63: Programs in HybC,1,q,2,j,3. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,2,j,4.
Program TransformC,1,q,2,j,4[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pj,q} of ACE punctured at pj,q =
(j,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{pj,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 > q return L← ACE.EncEK2{pj,q}(i− 1,m1,m2);
6. If m1 = m∗1, m2 = q, and i ≤ j return L← ACE.EncEK2{pj,q}(i− 1,m1,m2);
7. Return L← ACE.EncEK2{pj,q}(i,m1,m2).

Program isLessC,1,q,2,j,4(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{pj,q} of ACE punctured at pj,q = (j,m∗1, q), upper bound T .
1. out′ ← ACE.DecDK2{pj,q}(L

′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m
′
2).

2. out′′ ← ACE.DecDK2{pj,q}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,2,j,4(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{pj,q} of ACE punctured at pj,q = (j,m∗1, q), upper bound T .

1. out← ACE.DecDK2{pj,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Return (m1,m2).

Figure 64: Programs in HybC,1,q,2,j,4. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,2,−1,1.
Program TransformC,1,q,2,−1,1[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{p0,q} of ACE punctured at p0,q =
(0,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 > q return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
6. If m1 = m∗1, m2 = q, and i ≤ 0 return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
7. Return L← ACE.EncEK2{p0,q}(i,m1,m2).

Program isLessC,1,q,2,−1,1(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{p0,q} of ACE punctured at p0,q = (0,m∗1, q), upper bound T .
1. out′ ← ACE.DecDK2{p0,q}(L

′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m
′
2).

2. out′′ ← ACE.DecDK2{p0,q}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,2,−1,1(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{p0,q} of ACE punctured at p0,q = (0,m∗1, q), upper bound T .

1. out← ACE.DecDK2{p0,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 65: Programs in HybC,1,q,2,−1,1. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,2,−1,2.
Program TransformC,1,q,2,−1,2[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{p−1,q, p0,q} of ACE punctured at
p−1,q = (−1,m∗1, q), p0,q = (0,m∗1, q), double-tag level L∗−1,q = ACE.EncEK2(−1,m∗1, q), single-tag level
l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{p−1,q ,p0,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 > q return L← ACE.EncEK2{p−1,q ,p0,q}(i− 1,m1,m2);
6. If m1 = m∗1, m2 = q, and i = 0 return L∗−1,q;
7. If m1 = m∗1, m2 = q, and i < 0 return L← ACE.EncEK2{p−1,q ,p0,q}(i− 1,m1,m2);
8. Return L← ACE.EncEK2{p−1,q ,p0,q}(i,m1,m2).

Program isLessC,1,q,2,−1,2(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{p−1,q, p0,q} of ACE punctured at p−1,q = (−1,m∗1, q), p0,q =
(0,m∗1, q), double-tag level L∗−1,q = ACE.EncEK2(−1,m∗1, q), upper bound T .

1. If L′ = L∗−1,q then output ′fail′;
else out′ ← ACE.DecDK2{p−1,q ,p0,q}(L

′); if out′ = ′fail′ then output ′fail′; else parse out′ as
(i′,m′1,m

′
2).

2. If L′′ = L∗−1,q then output ′fail′;
else out′′ ← ACE.DecDK2{p−1,q ,p0,q}(L

′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as
(i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,2,−1,2(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{p−1,q, p0,q} of ACE punctured at p−1,q = (−1,m∗1, q), p0,q =
(0,m∗1, q), double-tag level L∗−1,q = ACE.EncEK2(−1,m∗1, q), upper bound T .

1. If L = L∗−1,q then output ′fail′;
2. out← ACE.DecDK2{p−1,q ,p0,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
3. If i > T or i < 0 then output ′fail′;
4. Return (m1,m2).

Figure 66: Programs in HybC,1,q,2,−1,2. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,2,−1,3.
Program TransformC,1,q,2,−1,3[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{p−1,q, p0,q} of ACE punctured at
p−1,q = (−1,m∗1, q), p0,q = (0,m∗1, q), double-tag level L∗0,q = ACE.EncEK2(0,m∗1, q), single-tag level
l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{p−1,q ,p0,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 > q return L← ACE.EncEK2{p−1,q ,p0,q}(i− 1,m1,m2);
6. If m1 = m∗1, m2 = q, and i = 0 return L∗0,q;
7. If m1 = m∗1, m2 = q, and i < 0 return L← ACE.EncEK2{p−1,q ,p0,q}(i− 1,m1,m2);
8. Return L← ACE.EncEK2{p−1,q ,p0,q}(i,m1,m2).

Program isLessC,1,q,2,−1,3(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{p−1,q, p0,q} of ACE punctured at p−1,q = (−1,m∗1, q), p0,q =
(0,m∗1, q), double-tag level L∗0,q = ACE.EncEK2(0,m∗1, q), upper bound T .

1. If L′ = L∗0,q then output ′fail′;
else out′ ← ACE.DecDK2{p−1,q ,p0,q}(L

′); if out′ = ′fail′ then output ′fail′; else parse out′ as
(i′,m′1,m

′
2).

2. If L′′ = L∗0,q then output ′fail′;
else out′′ ← ACE.DecDK2{p−1,q ,p0,q}(L

′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as
(i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,2,−1,3(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{p−1,q, p0,q} of ACE punctured at p−1,q = (−1,m∗1, q), p0,q =
(0,m∗1, q), double-tag level L∗0,q = ACE.EncEK2(0,m∗1, q), upper bound T .

1. If L = L∗0,q then output ′fail′;
2. out← ACE.DecDK2{p−1,q ,p0,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
3. If i > T or i < 0 then output ′fail′;
4. Return (m1,m2).

Figure 67: Programs in HybC,1,q,2,−1,3. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,3,1.
Program TransformC,1,q,3,1[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{p−1,q} of ACE punctured at p−1,q =
(−1,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{p−1,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2{p−1,q}(i− 1,m1,m2);
6. Return L← ACE.EncEK2{p−1,q}(i,m1,m2).

Program isLessC,1,q,3,1(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{p−1,q} of ACE punctured at p−1,q = (−1,m∗1, q), message q, tag
m∗1, upper bound T .

1. out′ ← ACE.DecDK2{p−1,q}(L
′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2{p−1,q}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If (i′,m′1,m
′
2) = (0,m∗1, q) then output ′fail′;

5. If (i′′,m′′1,m
′′
2) = (0,m∗1, q) then output ′fail′;

6. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,3,1(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{p−1,q} of ACE punctured at p−1,q = (−1,m∗1, q), message q, tag
m∗1, upper bound T .

1. out← ACE.DecDK2{p−1,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. If (i,m1,m2) = (0,m∗1, q) then output ′fail′;
4. Return (m1,m2).

Figure 68: Programs in HybC,1,q,3,1. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,3,2.
Program TransformC,1,q,3,2[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{p−1,q} of ACE punctured at p−1,q =
(−1,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{p−1,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2{p−1,q}(i− 1,m1,m2);
6. Return L← ACE.EncEK2{p−1,q}(i,m1,m2).

Program isLessC,1,q,3,2(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, message q, tag m∗1, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If (i′,m′1,m
′
2) = (0,m∗1, q) then output ′fail′;

5. If (i′′,m′′1,m
′′
2) = (0,m∗1, q) then output ′fail′;

6. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,3,2(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, message q, tag m∗1, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. If (i,m1,m2) = (0,m∗1, q) then output ′fail′;
4. Return (m1,m2).

Figure 69: Programs in HybC,1,q,3,2. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,3,3.
Program TransformC,1,q,3,3[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2(i− 1,m1,m2);
6. Return L← ACE.EncEK2(i,m1,m2).

Program isLessC,1,q,3,3(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, message q, tag m∗1, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If (i′,m′1,m
′
2) = (0,m∗1, q) then output ′fail′;

5. If (i′′,m′′1,m
′′
2) = (0,m∗1, q) then output ′fail′;

6. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,1,q,3,3(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, message q, tag m∗1, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. If (i,m1,m2) = (0,m∗1, q) then output ′fail′;
4. Return (m1,m2).

Figure 70: Programs in HybC,1,q,3,3. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,4,1.
Program GenZeroC,1,q,4,1[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,1,q,4,1(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1 of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program TransformC,1,q,4,1[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2(i− 1,m1,m2);
6. Return L← ACE.EncEK2(i,m1,m2).

Program isLessC,1,q,4,1(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, message q, tag m∗1, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If (i′,m′1,m
′
2) = (0,m∗1, q) then output ′fail′;

5. If (i′′,m′′1,m
′′
2) = (0,m∗1, q) then output ′fail′;

6. If i′ < i′′ then output true, else output false.

Program RetrieveTagC,1,q,4,1(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTagsC,1,q,4,1(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, message q, tag m∗1, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. If (i,m1,m2) = (0,m∗1, q) then output ′fail′;
4. Return (m1,m2).

Figure 71: Programs in HybC,1,q,4,1. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2). 141



Programs in HybC,1,q,4,2.
Program GenZeroC,1,q,4,2[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,1,q,4,2(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1{p0} of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program TransformC,1,q,4,2[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), encryption key EK2 of
ACE, single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{p0}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2(i− 1,m1,m2);
6. Return L← ACE.EncEK2(i,m1,m2).

Program isLessC,1,q,4,2(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, message q, tag m∗1, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If (i′,m′1,m
′
2) = (0,m∗1, q) then output ′fail′;

5. If (i′′,m′′1,m
′′
2) = (0,m∗1, q) then output ′fail′;

6. If i′ < i′′ then output true, else output false.

Program RetrieveTag(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTags(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, message q, tag m∗1, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. If (i,m1,m2) = (0,m∗1, q) then output ′fail′;
4. Return (m1,m2).

Figure 72: Programs in HybC,1,q,4,2. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
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Programs in HybC,1,q,4,3.
Program GenZeroC,1,q,4,3[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,1,q,4,3(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1{p0} of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program TransformC,1,q,4,3[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), encryption key EK2{p0,q}
of ACE punctured at p0,q = (0,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag
m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{p0}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
6. Return L← ACE.EncEK2{p0,q}(i,m1,m2).

Program isLessC,1,q,4,3(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, message q, tag m∗1, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If (i′,m′1,m
′
2) = (0,m∗1, q) then output ′fail′;

5. If (i′′,m′′1,m
′′
2) = (0,m∗1, q) then output ′fail′;

6. If i′ < i′′ then output true, else output false.

Program RetrieveTagC,1,q,4,3(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTagsC,1,q,4,3(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, message q, tag m∗1, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. If (i,m1,m2) = (0,m∗1, q) then output ′fail′;
4. Return (m1,m2).

Figure 73: Programs in HybC,1,q,4,3. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,4,4.
Program GenZeroC,1,q,4,4[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,1,q,4,4(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1{p0} of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program TransformC,1,q,4,4[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), encryption key EK2{p0,q}
of ACE punctured at p0,q = (0,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag
m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{p0}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
6. Return L← ACE.EncEK2{p0,q}(i,m1,m2).

Program isLessC,1,q,4,4(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{p0,q} of ACE punctured at p0,q = (0,m∗1, q), message q, tag m∗1,
upper bound T .

1. out′ ← ACE.DecDK2{p0,q}(L
′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2{p0,q}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If (i′,m′1,m
′
2) = (0,m∗1, q) then output ′fail′;

5. If (i′′,m′′1,m
′′
2) = (0,m∗1, q) then output ′fail′;

6. If i′ < i′′ then output true, else output false.

Program RetrieveTagC,1,q,4,4(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTagsC,1,q,4,4(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{p0,q} of ACE punctured at p0,q = (0,m∗1, q), message q, tag m∗1,
upper bound T .

1. out← ACE.DecDK2{p0,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. If (i,m1,m2) = (0,m∗1, q) then output ′fail′;
4. Return (m1,m2).

Figure 74: Programs in HybC,1,q,4,4. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,4,5.
Program GenZeroC,1,q,4,5[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,1,q,4,5(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1{p0} of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program TransformC,1,q,4,5[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), encryption key EK2{p0,q}
of ACE punctured at p0,q = (0,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag
m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{p0}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
6. Return L← ACE.EncEK2{p0,q}(i,m1,m2).

Program isLessC,1,q,4,5(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{p0,q} of ACE punctured at p0,q = (0,m∗1, q), upper bound T .
1. out′ ← ACE.DecDK2{p0,q}(L

′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m
′
2).

2. out′′ ← ACE.DecDK2{p0,q}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagC,1,q,4,5(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTagsC,1,q,4,5(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{p0,q} of ACE punctured at p0,q = (0,m∗1, q), upper bound T .

1. out← ACE.DecDK2{p0,q}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Return (m1,m2).

Figure 75: Programs in HybC,1,q,4,5. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,4,6.
Program GenZeroC,1,q,4,6[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,1,q,4,6(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1{p0} of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program TransformC,1,q,4,6[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), encryption key EK2{p0,q}
of ACE punctured at p0,q = (0,m∗1, q), single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag
m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{p0}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2{p0,q}(i− 1,m1,m2);
6. Return L← ACE.EncEK2{p0,q}(i,m1,m2).

Program isLessC,1,q,4,6(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagC,1,q,4,6(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTagsC,1,q,4,6(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Return (m1,m2).

Figure 76: Programs in HybC,1,q,4,6. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,4,7.
Program GenZeroC,1,q,4,7[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,1,q,4,7(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1{p0} of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program TransformC,1,q,4,7[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), encryption key EK2 of
ACE, single-tag level l∗1 = ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{p0}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2(i− 1,m1,m2);
6. Return L← ACE.EncEK2(i,m1,m2).

Program isLessC,1,q,4,7(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagC,1,q,4,7(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTagsC,1,q,4,7(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Return (m1,m2).

Figure 77: Programs in HybC,1,q,4,7. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).

147



Programs in HybC,1,q,4,8.
Program GenZeroC,1,q,4,8[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,1,q,4,8(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1 of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program TransformC,1,q,4,8[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2(i− 1,m1,m2);
6. Return L← ACE.EncEK2(i,m1,m2).

Program isLessC,1,q,4,8(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagC,1,q,4,8(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTagsC,1,q,4,8(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Return (m1,m2).

Figure 78: Programs in HybC,1,q,4,8. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,1,q,4,9.
Program GenZeroC,1,q,4,9[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. output l← ACE.EncEK1(0,m1).

Program IncrementC,1,q,4,9(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program TransformC,1,q,4,9[(l∗1,m
∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), message q, tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2(i− 1,m1,m2);
5. If m1 = m∗1 and m2 ≥ q + 1 return L← ACE.EncEK2(i− 1,m1,m2);
6. Return L← ACE.EncEK2(i,m1,m2).

Program isLessC,1,q,4,9(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagC,1,q,4,9(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Program RetrieveTagsC,1,q,4,9(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Return (m1,m2).

Figure 79: Programs in HybC,1,q,4,9. In addition, in this hybrid the adversary gets l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,1,1.
Program TransformC,2,1,1[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2(i− 1,m1,m2);
5. Return L← ACE.EncEK2(i,m1,m2);

Program isLessC,2,1,1(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,2,1,1(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 80: Programs in HybC,2,1,1. In addition, in this hybrid the adversary gets unmodified obfus-
cated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).

;
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Programs in HybC,2,1,2.
Program TransformC,2,1,2[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pT,m∗2} of ACE punctured at pT,m∗2 =
(T,m∗1,m

∗
2), single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{pT,m∗2}

(i− 1,m1,m2);

5. Return L← ACE.EncEK2{pT,m∗2}
(i,m1,m2);

Program isLessC,2,1,2(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,2,1,2(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 81: Programs in HybC,2,1,2. In addition, in this hybrid the adversary gets unmodified obfus-
cated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,1,3.
Program TransformC,2,1,3[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pT,m∗2} of ACE punctured at pT,m∗2 =
(T,m∗1,m

∗
2), single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1 and m2 = m∗2 return L← ACE.EncEK2{pT,m∗2}

(i− 1,m1,m2);

5. Return L← ACE.EncEK2{pT,m∗2}
(i,m1,m2);

Program isLessC,2,1,3(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{pT,m∗2} of ACE punctured at pT,m∗2 = (T,m∗1,m
∗
2), upper bound

T .
1. out′ ← ACE.DecDK2{pT,m∗2}

(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m
′
2).

2. out′′ ← ACE.DecDK2{pT,m∗2}
(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,2,1,3(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{pT,m∗2} of ACE punctured at pT,m∗2 = (T,m∗1,m

∗
2), upper bound

T .
1. out← ACE.DecDK2{pT,m∗2}

(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).

2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 82: Programs in HybC,2,1,3. In addition, in this hybrid the adversary gets unmodified obfus-
cated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,2,j,1.
Program TransformC,2,2,j,1[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pj+1,m∗2

} of ACE punctured at
pj+1,m∗2

= (j+1,m∗1,m
∗
2), single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, index j, upper bound

T .
1. If (l,m2) = (l∗1,m

∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1,m2 = m∗2 and i ≤ j + 1 return L← ACE.EncEK2{pj+1,m∗2

}(i− 1,m1,m2);

5. Return L← ACE.EncEK2{pj+1,m∗2
}(i,m1,m2).

Program isLessC,2,2,j,1(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{pj+1,m∗2
} of ACE punctured at pj+1,m∗2

= (j + 1,m∗1,m
∗
2), upper

bound T .
1. out′ ← ACE.DecDK2{pj+1,m∗2

}(L
′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2{pj+1,m∗2
}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,2,2,j,1(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{pj+1,m∗2

} of ACE punctured at pj+1,m∗2
= (j + 1,m∗1,m

∗
2), upper

bound T .
1. out← ACE.DecDK2{pj+1,m∗2

}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).

2. If i > T or i < 0 then output ′fail′;
3. Output m1,m2.

Figure 83: Programs in HybC,2,2,j,1. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,2,j,2.
Program TransformC,2,2,j,2[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pj,m∗2 , pj+1,m∗2

} of ACE punctured
at pj,m∗2 = (j,m∗1,m

∗
2), pj+1,m∗2

= (j + 1,m∗1,m
∗
2), double-tag level L∗j,m∗2 = ACE.EncEK2(j,m∗1,m

∗
2),

single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, index j, upper bound T .
1. If (l,m2) = (l∗1,m

∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1,m2 = m∗2 and i < j + 1 return L← ACE.EncEK2{pj,m∗2 ,pj+1,m∗2

}(i− 1,m1,m2);
5. If m1 = m∗1,m2 = m∗2 and i = j + 1 return L∗j,m∗2 ;
6. Return L← ACE.EncEK2{pj,m∗2 ,pj+1,m∗2

}(i,m1,m2).

Program isLessC,2,2,j,2(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{pj,m∗2 , pj+1,m∗2
} of ACE punctured at pj,m∗2 = (j,m∗1,m

∗
2),

pj+1,m∗2
= (j + 1,m∗1,m

∗
2), double-tag level L∗j,m∗2 = ACE.EncEK2(j,m∗1,m

∗
2), upper bound T .

1. If L′ = L∗j,m∗2
then set (i′,m′1,m

′
2) = (j + 1,m∗1,m

∗
2),

else out′ ← ACE.DecDK2{pj,m∗2 ,pj+1,m∗2
}(L
′); if out′ = ′fail′ then output ′fail′; else parse out′ as

(i′,m′1,m
′
2).

2. If L′′ = L∗j,m∗2
then set (i′′,m′′1,m

′′
2) = (j + 1,m∗1,m

∗
2),

else out′′ ← ACE.DecDK2{pj,m∗2 ,pj+1,m∗2
}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as

(i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,2,2,j,2(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{pj,m∗2 , pj+1,m∗2

} of ACE punctured at pj,m∗2 = (j,m∗1,m
∗
2),

pj+1,m∗2
= (j + 1,m∗1,m

∗
2), double-tag level L∗j,m∗2 = ACE.EncEK2(j,m∗1,m

∗
2), upper bound T .

1. If L = L∗j,m∗2
then return (m∗1,m

∗
2);

2. out← ACE.DecDK2{pj,m∗2 ,pj+1,m∗2
}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).

3. If i > T or i < 0 then output ′fail′;
4. Return (m1,m2).

Figure 84: Programs in HybC,2,2,j,2. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,2,j,3.
Program TransformC,2,2,j,3[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pj,m∗2 , pj+1,m∗2

} of ACE punctured at
pj,m∗2 = (j,m∗1,m

∗
2), pj+1,m∗2

= (j+ 1,m∗1,m
∗
2), double-tag level L∗j+1,m∗2

= ACE.EncEK2(j+ 1,m∗1,m
∗
2),

single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, index j, upper bound T .
1. If (l,m2) = (l∗1,m

∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1,m2 = m∗2 and i < j + 1 return L← ACE.EncEK2{pj+1,m∗2

}(i− 1,m1,m2);
5. If m1 = m∗1,m2 = m∗2 and i = j + 1 return L∗j+1,m∗2

;
6. Return L← ACE.EncEK2{pj,m∗2 ,pj+1,m∗2

}(i,m1,m2).

Program isLessC,2,2,j,3(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{pj,m∗2 , pj+1,m∗2
} of ACE punctured at pj,m∗2 = (j,m∗1,m

∗
2),

pj+1,m∗2
= (j + 1,m∗1,m

∗
2), double-tag level L∗j+1,m∗2

= ACE.EncEK2(j + 1,m∗1,m
∗
2), upper bound T .

1. If L′ = L∗j+1,m∗2
then set (i′,m′1,m

′
2) = (j + 1,m∗1,m

∗
2),

else out′ ← ACE.DecDK2{pj,m∗2 ,pj+1,m∗2
}(L
′); if out′ = ′fail′ then output ′fail′; else parse out′ as

(i′,m′1,m
′
2).

2. If L′′ = L∗j+1,m∗2
then set (i′′,m′′1,m

′′
2) = (j + 1,m∗1,m

∗
2),

else out′′ ← ACE.DecDK2{pj,m∗2 ,pj+1,m∗2
}(L
′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as

(i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,2,2,j,3(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{pj,m∗2 , pj+1,m∗2

} of ACE punctured at pj,m∗2 = (j,m∗1,m
∗
2),

pj+1,m∗2
= (j + 1,m∗1,m

∗
2), double-tag level L∗j+1,m∗2

= ACE.EncEK2(j + 1,m∗1,m
∗
2), upper bound T .

1. If L = L∗j+1,m∗2
then return (m∗1,m

∗
2);

2. out← ACE.DecDK2{pj,m∗2 ,pj+1,m∗2
}(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).

3. If i > T or i < 0 then output ′fail′;
4. Return (m1,m2).

Figure 85: Programs in HybC,2,2,j,3. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,2,j,4.
Program TransformC,2,2,j,4[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{pj,m∗2} of ACE punctured at pj,m∗2 =
(j,m∗1,m

∗
2), single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, index j, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1,m2 = m∗2 and i ≤ j return L← ACE.EncEK2{pj,m∗2}

(i− 1,m1,m2);

5. Return L← ACE.EncEK2{pj,m∗2}
(i,m1,m2).

Program isLessC,2,2,j,4(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{pj,m∗2} of ACE punctured at pj,m∗2 = (j,m∗1,m
∗
2), upper bound T .

1. out′ ← ACE.DecDK2{pj,m∗2}
(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2{pj,m∗2}
(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,2,2,j,4(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{pj,m∗2} of ACE punctured at pj,m∗2 = (j,m∗1,m

∗
2), upper bound T .

1. out← ACE.DecDK2{pj,m∗2}
(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).

2. If i > T or i < 0 then output ′fail′;
3. Return (m1,m2).

Figure 86: Programs in HybC,2,2,j,4. In addition, in this hybrid the adversary gets unmodified ob-
fuscated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,3,1.
Program TransformC,2,3,1[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{p1,m∗2

} of ACE punctured at p1,m∗2
=

(1,m∗1,m
∗
2), single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1,m2 = m∗2 and i ≤ 1 return L← ACE.EncEK2{p1,m∗2}

(i− 1,m1,m2);

5. Return L← ACE.EncEK2{p1,m∗2}
(i,m1,m2).

Program isLessC,2,3,1(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2{p1,m∗2
} of ACE punctured at p1,m∗2

= (1,m∗1,m
∗
2), upper bound T .

1. out′ ← ACE.DecDK2{p1,m∗2}
(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2{p1,m∗2}
(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m

′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,2,3,1(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2{p1,m∗2

} of ACE punctured at p1,m∗2
= (1,m∗1,m

∗
2), upper bound T .

1. out← ACE.DecDK2{p1,m∗2}
(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).

2. If i > T or i < 0 then output ′fail′;
3. Return (m1,m2).

Figure 87: Programs in HybC,2,3,1. In addition, in this hybrid the adversary gets unmodified obfus-
cated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,3,2.
Program TransformC,2,3,2[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2{p1,m∗2

} of ACE punctured at p1,m∗2
=

(1,m∗1,m
∗
2), single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1,m2 = m∗2 and i ≤ 1 return L← ACE.EncEK2{p1,m∗2}

(i− 1,m1,m2);

5. Return L← ACE.EncEK2{p1,m∗2}
(i,m1,m2).

Program isLessC,2,3,2(L′, L′′)
Inputs: double-tag levels L′, L′′

Hardwired values: decryption key DK2 of ACE, upper bound T .
1. out′ ← ACE.DecDK2(L′); if out′ = ′fail′ then output ′fail′; else parse out′ as (i′,m′1,m

′
2).

2. out′′ ← ACE.DecDK2(L′′); if out′′ = ′fail′ then output ′fail′; else parse out′′ as (i′′,m′′1,m
′′
2).

3. If i′ > T or i′′ > T or i′ < 0 or i′′ < 0 or (m′1,m
′
2) 6= (m′′1,m

′′
2) then output ′fail′;

4. If i′ < i′′ then output true, else output false.

Program RetrieveTagsC,2,3,2(L)
Inputs: double-tag level L
Hardwired values: decryption key DK2 of ACE, upper bound T .

1. out← ACE.DecDK2(L); if out = ′fail′ then output ′fail′; else parse out as (i,m1,m2).
2. If i > T or i < 0 then output ′fail′;
3. Return (m1,m2).

Figure 88: Programs in HybC,2,3,2. In addition, in this hybrid the adversary gets unmodified obfus-
cated programs GenZero[m∗1], Increment and RetrieveTag, together with l∗1 = ACE.EncEK1(1,m∗1),
L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,3,3.
Program TransformC,2,3,3[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1, m2 = m∗2, and i ≤ 0, return L← ACE.EncEK2(i− 1,m1,m2);
5. Return L← ACE.EncEK2(i,m1,m2).

Program GenZeroC,2,3,3[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,2,3,3(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1 of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program RetrieveTagC,2,3,3(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 89: Programs in HybC,2,3,3. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,3,4.
Program TransformC,2,3,4[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), encryption key EK2 of
ACE, single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗1, tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{p0}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. If m1 = m∗1, m2 = m∗2, and i ≤ 0, return L← ACE.EncEK2(i− 1,m1,m2);
5. Return L← ACE.EncEK2(i,m1,m2).

Program GenZeroC,2,3,4[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,2,3,4(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1{p0} of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program RetrieveTagC,2,3,4(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 90: Programs in HybC,2,3,4. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,3,5.
Program TransformC,2,3,5[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), encryption key EK2 of
ACE, single-tag level l∗1 = ACE.EncEK1(1,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1{p0}(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. Return L← ACE.EncEK2(i,m1,m2).

Program GenZeroC,2,3,5[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,2,3,5(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1{p0} of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program RetrieveTagC,2,3,5(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1{p0} of ACE punctured at p0 = (0,m∗1), upper bound T .

1. out← ACE.DecDK1{p0}(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 91: Programs in HybC,2,3,5. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,3,6.
Program TransformC,2,3,6[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. Return L← ACE.EncEK2(i,m1,m2).

Program GenZeroC,2,3,6[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1{p0} of ACE punctured at p0 = (0,m∗1), tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1{p0}(0,m1).

Program IncrementC,2,3,6(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1{p0},DK1 of ACE punctured at p0 = (0,m∗1),
upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1{p0}(i+ 1,m1).

Program RetrieveTagC,2,3,6(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 92: Programs in HybC,2,3,6. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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Programs in HybC,2,3,7.
Program TransformC,2,3,7[(l∗1,m

∗
2)](l,m2)

Inputs: single-tag level l, tag m2 ∈M
Hardwired values: decryption key DK1 of ACE, encryption key EK2 of ACE, single-tag level l∗1 =
ACE.EncEK1(1,m∗1), tag m∗2, upper bound T .

1. If (l,m2) = (l∗1,m
∗
2) then return ′fail′;

2. out← ACE.DecDK1(l); if out = ′fail′ then return ′fail′; else parse out as (i,m1).
3. If i > T or i < 0 then return ′fail′;
4. Return L← ACE.EncEK2(i,m1,m2).

Program GenZeroC,2,3,7[m∗1](m1)
Inputs: tag m1 ∈M .
Hardwired values: encryption key EK1 of ACE, tag m∗1.

1. If m1 = m∗1 then output ′fail′;
2. Output l← ACE.EncEK1(0,m1).

Program IncrementC,2,3,7(l)
Inputs: single-tag level l
Hardwired values: encryption and decryption keys EK1,DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i ≥ T or i < 0 then output ′fail′;
3. output l+1 ← ACE.EncEK1(i+ 1,m1).

Program RetrieveTagC,2,3,7(l)
Inputs: single-tag level l
Hardwired values: decryption key DK1 of ACE, upper bound T .

1. out← ACE.DecDK1(l); if out = ′fail′ then output ′fail′; else parse out as (i,m1).
2. If i > T or i < 0 then output ′fail′;
3. Output m1.

Figure 93: Programs in HybC,2,3,7. In addition, in this hybrid the adversary gets unmodified obfuscated
programs isLess and RetrieveTags, together with l∗1 = ACE.EncEK1(1,m∗1), L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).
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7.5 Security reductions

7.5.1 Reductions in the proof of lemma 2 (Switching from `∗0 to `∗1)

We show that for any PPT adversary,

advHybA,HybB (λ) ≤ T · 2−Ω(νiO(λ)) + T · 2−Ω(νACE.Indist(λ)) + 2−Ω(νACE.ConstrDec(λ)).

Lemma 5. advHybA,HybA,1,1(λ) ≤ 2−Ω(νiO(λ)).

Proof. In programs GenZeroA,1,1 and IncrementA,1,1 encryption key EK1 is punctured at pT+1 = (T +
1,m∗1). This is without changing the functionality, since GenZero only encrypts plaintexts of the form
(0,m1), and Increment outputs ′fail′ when i = T and thus never encrypts (T + 1,m∗1).

Lemma 6. advHybA,1,1,HybA,1,2(λ) ≤ 2−Ω(νACE.ConstrDec(λ)).

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set {pT+1} = {(T + 1,m∗1)} to puncture encryption key EK1 and challenge sets {pT+1} ,∅ to
puncture decryption key DK1. Indeed, given EK1{pT+1} and key which is either DK1 or DK1{pT+1}, it is
easy to reconstruct the rest of the distribution.

Lemma 7. advHybA,2,j,1,HybA,2,j,2(λ) ≤ 2−Ω(νiO(λ)) for 1 ≤ j ≤ T .

Proof. In programs GenZero, Increment, Transform, RetrieveTag we puncture EK1, DK1 at pj = (j,m∗1)
and hardwire `∗j = ACE.EncEK1(j,m∗1) when required, in order to preserve functionality.

In program GenZeroA,2,j,2 we can puncture EK1 at pj without changing the functionality, since GenZeroA,2,j,2
only encrypts plaintexts of the form (0,m1) (note that j ≥ 1).

In program IncrementA,2,j,2 we puncture DK1 at pj and, in order to preserve the functionality, instruct the
program to output ACE.EncEK1(j + 2,m∗1) on input `∗j (note that this is what IncrementA,2,j,1 outputs on
input `∗j )29. Further, we puncture EK1 at pj and, in order to preserve the functionality, instruct the program to
output `∗j on input ACE.EncEK1(j − 1,m∗1) (note that this is what IncrementA,2,j,1 does).

In program TransformA,2,j,2 we puncture DK1 at pj and, in order to preserve the functionality, instruct
the program to output ACE.EncEK2(j,m∗1,m2) on input (`∗j ,m2) for any m2 (note that this is what
TransformA,2,j,1 does). Because of this instruction, we can also instruct TransformA,2,j,2 to output ′fail′ when
(i,m1) = (j,m∗1), since this line will never be reached.

In program RetrieveTagA,2,j,2 we puncture DK1 at pj and, in order to preserve the functionality, instruct the
program to output m∗1 on input `∗j (note that this is what RetrieveTagA,2,j,1 does).

Lemma 8. advHybA,2,j,2,HybA,2,j,3(λ) ≤ 2−Ω(νACE.Indist(λ)) for 1 ≤ j ≤ T .

Proof. Indistinguishability immediately follows from indistinguishability of ACE ciphertexts for the chal-
lenge plaintexts pj = (j,m∗1) and pj+1 = (j + 1,m∗1). Indeed, given EK1{pj , pj+1}, DK1{pj , pj+1}, and

29Except for the case j = T , when we instead instruct the program to output ′fail′.
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either `∗j = ACE.EncEK1(j,m∗1) or `∗j+1 = ACE.EncEK1(j + 1,m∗1), it is easy to reconstruct the rest of
the distribution. Note that indeed only one of the two ciphertexts is used in both hybrids (in particular,
since j ≥ 1, the key is never punctured at p0 = (0,m∗1) and therefore we can always compute `∗0 for the
distribution).

Lemma 9. advHybA,2,j,3,HybA,2,j,4(λ) ≤ 2−Ω(νiO(λ)) for 1 ≤ j ≤ T .

Proof. In programs GenZero, Increment, Transform, RetrieveTag we unpuncture EK1, DK1 at pj+1 =
(j + 1,m∗1) and remove hardwired `∗j+1 = ACE.EncEK1(j + 1,m∗1):

In program GenZeroA,2,j,4 we can unpuncture EK1 at pj+1 without changing the functionality, since
GenZeroA,2,j,3 only encrypts plaintexts of the form (0,m1) (note that j ≥ 1).

In program IncrementA,2,j,4 we unpuncture DK1 at pj+1, remove the instruction to output ACE.EncEK1(j +
2,m∗1) on input `∗j+1 and, in order to preserve the functionality, instruct the program to output ACE.EncEK1(j+
2,m∗1) when (i,m1) = (j + 1,m∗1) (we don’t put any separate instruction since this is normal behavior
of Increment); 30. Further, we unpuncture EK1 at pj+1, remove the instruction to output `∗j+1 on in-
put ACE.EncEK1(j − 1,m∗1) and, in order to preserve the functionality, instruct the program to output
ACE.EncEK1(j + 1,m∗1) when (i,m1) = (j − 1,m∗1).

In program TransformA,2,j,4 we unpuncture DK1 at pj , remove the instruction to output
ACE.EncEK2(j,m∗1,m2) on input (`∗j+1,m2) for any m2 and, in order to preserve the functionality, instruct
the program to output ACE.EncEK2(i− 1,m1,m2) when (i,m1) = (j + 1,m∗1).

In program RetrieveTagA,2,j,4 we unpuncture DK1 at pj+1 and remove the instruction to output m∗1 on input
`∗j+1. No additional change is required since this is what RetrieveTag would normally output31.

Lemma 10. advHybA,2,0,1,HybA,2,0,2(λ) ≤ 2−Ω(νiO(λ)).

Proof. In programs GenZero, Increment, Transform, RetrieveTag we puncture EK1, DK1 at p0 = (0,m∗1)
and hardwire `∗0 = ACE.EncEK1(0,m∗1) when required, in order to preserve functionality:

In program GenZeroA,2,0,2 we can puncture EK1 at p0 without changing the functionality, since
GenZeroA,2,0,2 outputs ′fail′ when m1 = m∗1.

In program IncrementA,2,0,2 we puncture DK1 at p0 and, in order to preserve the functionality, instruct the
program to output ACE.EncEK1(2,m∗1) on input `∗0 (note that this is what IncrementA,2,0,1 outputs on input
`∗0). Further, we puncture EK1 at p0: this is without changing the functionality, since this program never
needs to encrypt plaintexts with value 0.

In program TransformA,2,0,2 we puncture DK1 at p0 and, in order to preserve the functionality, instruct
the program to output ACE.EncEK2(0,m∗1,m2) on input (`∗0,m2) for any m2 (note that this is what
TransformA,2,0,1 does). Because of this instruction, we can also instruct TransformA,2,0,2 to output ′fail′

when (i,m1) = (0,m∗1), since this line will never be reached.

30Except for the case j = T , when we instead remove the instruction to output ′fail′. Note that Increment outputs ′fail′ when
i = T + 1 so no additional modification is required. The other exception is the case j = T − 1, where IncrementA,2,j,3 contains
the instruction to output ACE.EncEK1(T + 1,m∗1) on input `∗T , and thus in IncrementA,2,j,4 we change the upper bound from T to
T + 1 for the case m1 = m∗1 in order to preserve the functionality.

31Except for the case j = T , which instruct the program to output m∗1 on input `∗T+1. In this case we additionally change the
upper bound to T + 1, instead of T , for the case m1 = m∗1 in program RetrieveTagA,2,j,4
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In program RetrieveTagA,2,0,2 we puncture DK1 at p0 and, in order to preserve the functionality, instruct the
program to output m∗1 on input `∗0 (note that this is what RetrieveTagA,2,0,1 does).

Lemma 11. advHybA,2,0,2,HybA,2,0,3(λ) ≤ 2−Ω(νACE.Indist(λ)).

Proof. Indistinguishability immediately follows from indistinguishability of ACE ciphertexts for the chal-
lenge plaintexts p0 = (0,m∗1) and p1 = (1,m∗1). Indeed, given EK1{p0, p1}, DK1{p0, p1}, and either
`∗0 = ACE.EncEK1(0,m∗1) or `∗1 = ACE.EncEK1(1,m∗1), it is easy to reconstruct the rest of the distribution.
Note that indeed only one of the two ciphertexts is used in both hybrids (in particular, a single-tag level we
give to the adversary is either `∗0 or `∗1).

Lemma 12. advHybA,2,0,3,HybA,3,1(λ) ≤ 2−Ω(νiO(λ)).

Proof. In programs GenZero, Increment, Transform, RetrieveTag we unpuncture EK1, DK1 at p1 = (1,m∗1)
and remove hardwired `∗1 = ACE.EncEK1(j + 1,m∗1):

In program GenZeroA,3,2 we can unpuncture EK1 at p1 without changing the functionality, since
GenZeroA,2,0,3 only encrypts plaintexts of the form (0,m1).

In program IncrementA,3,1 we unpuncture DK1 at p1 and remove the additional instruction to output
ACE.EncEK1(2,m∗1) on input `∗1 (this is without changing the functionality, since this is what the pro-
gram normally does). Further, we unpuncture EK1 at p1 without changing the functionality: indeed, the
program could possibly encrypt p1 only given an encryption of p0 as input. However, DK1 is punctured at p0

and thus the program would instead output ′fail′ on such input.

In program TransformA,3,1 we instruct the program to output ACE.EncEK2(i− 1,m1,m2), given an encryp-
tion of (i,m∗1) and m2 as input, in the whole range of i from 0 to T . In contrast, program TransformA,2,0,3

does this only for 2 ≤ i ≤ T . However, this is without changing the functionality: first, TransformA,2,0,3

outputs ACE.EncEK2(0,m∗1,m2), given `∗1 and m2 as input, thus we didn’t change the case i = 1. Second,
DK1 is punctured at p0, and thus we can arbitrary change behaviour for the case i = 0 since the program
never reaches that line when i = 0, outputting ′fail′ during decryption.

With this modification, we can remove the instruction to output ACE.EncEK2(0,m∗1,m2) on input (`∗1,m2)
and then unpuncture DK1 at point p1.

In program RetrieveTagA,3,1 we unpuncture DK1 at p1 and remove the instruction to output m∗1 on input `∗1.
No additional change is required since this is what RetrieveTag would normally output.

Lemma 13. advHybA,3,1,HybA,3,2(λ) ≤ 2−Ω(νACE.ConstrDec(λ)).

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set {p0} = {(0,m∗1)} to puncture encryption key EK1 and challenge sets {p0} ,∅ to puncture
decryption key DK1. Indeed, given EK1{p0} and key which is either DK1 or DK1{p0}, it is easy to
reconstruct the rest of the distribution.

Lemma 14. advHybA,3,2,HybA,3,3(λ) ≤ 2−Ω(νiO(λ)).
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Proof. In programs GenZero and Increment we unpuncture EK1 at p0 = (0,m∗1). This doesn’t change the
functionality, since GenZero outputs ′fail′ when m1 = m∗1, and Increment never encrypts a plaintext with
value 0.

7.5.2 Reductions in the proof of lemma 3 (Changing the upper bound from T + 1 to T )

We show that

advHybB ,HybC (λ) ≤ 2−Ω(γ(λ)) +
1

T
+ T · 2−Ω(νiO(λ)) + T · 2−Ω(νACE.ConstrDec(λ)).

(1/T term comes from the fact that the reduction works only when i∗ 6= 0, where i∗ is chosen randomly
between 0 and T ).

Lemma 15. advHybB ,HybB,1,1(λ) ≤ 2−Ω(γ(λ)).

Proof. Assume there is a poly-time distinguisher D which distinguishes between these two hybrids with
probability η ≥ 2−o(γ(λ)) (for infinitely many λi). Then, since:

• programs IncrementB and IncrementB,1,1 differ only at one point (due to the fact that g is injective);

• η ≥ 2−o(γ(λ)) ≥ 2−o(νiO(λ)) (from the condition γ(λ) ≤ O(νiO(λ))) in the theorem statement),

it follows from lemma 1 that there exists an inverter which runs in time at most O(1/η) log T =
2o(γ(λ)) log T , which by the condition in the theorem statement is at most O(2νOWF(log T )). This inverter
inverts the one way function with probability at least (1 − 2−Ω(λ))η, which contradicts the fact that g is
2O(νOWF(λ log T )), 2−Ω(νOWF(λ log T ))-secure OWF.

Lemma 16. advHybB,1,1,HybB,1,2(λ) ≤ 2−Ω(νiO(λ)).

Proof. First, note that both programs GenZeroB,1,1 and GenZeroB,1,2 are functionally equivalent: since
i∗ + 1 6= 0, and GenZero only needs to encrypt value 0, we can safely puncture EK1 at (i∗ + 1,m∗1).

Second, programs IncrementB,1,1 and IncrementB,1,2 are functionally equivalent as well: the only difference
in the code is that the first outputs ′fail′ when (m1, i) = (m∗1, i

∗) (on input ACE.EncEK1(i∗,m∗1)), and the
second instead outputs ′fail′ when it tries to encrypt a punctured point (i∗ + 1,m∗1), which happens on the
same input ACE.EncEK1(i∗,m∗1).

Lemma 17. If i∗ 6= 0, advHybB,2,j,1,HybB,2,j,2(λ) ≤ 2−Ω(νACE.ConstrDec(λ)) for i∗ ≤ j ≤ T .

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set Si∗+1,j+1 to puncture encryption key EK1 and challenge sets Si∗+1,j , Si∗+1,j+1 to puncture
decryption key DK1 (here Sa,b = {(m∗1, a), (m∗1, a+ 1), . . . , (m∗1, b)} if b ≥ a and ∅ otherwise). Indeed,
given EK1{Si∗+1,j+1} and key which is either DK1{Si∗+1,j} or DK1{Si∗+1,j+1}, it is easy to reconstruct
the rest of the distribution, as long as i∗ 6= 0. That is, we can sample remaining keys, obfuscate all programs,
and compute `∗1 = ACE.EncEK1(1,m∗1) (using the challenge encryption key EK1{Si∗+1,j+1} which is not
punctured at (1,m∗1) since i∗ 6= 0) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).

Lemma 18. advHybB,2,j,2,HybB,2,j,3(λ) ≤ 2−Ω(νiO(λ)) for i∗ ≤ j ≤ T .
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Proof. In programs GenZero, Increment we additionally puncture EK1 at pj+2 = (j + 2,m∗1).

In program GenZero we can puncture EK1 at pj+2 without changing the functionality, since GenZero only
encrypts plaintexts of the form (0,m1), but j + 2 6= 0.

In program Increment we can puncture EK1 at pj+2 without changing the functionality, since DK1 is
punctured at the point pj+1, thus Increment never needs to encrypt pj+2 since on input [j + 1,m∗1] it instead
outputs ′fail′ during decryption.

Lemma 19. advHybB,3,1,HybB,3,2(λ) ≤ 2−Ω(νiO(λ)).

Proof. In programs Increment, Transform, and RetrieveTag we change the upper bound from T + 1 back to
T .

In particular, in program IncrementB,3,2 we now additionally output ′fail′ when i = T and m1 = m∗1. This
is without changing the functionality, since this line is never reached: both programs IncrementB,3,1 and
IncrementB,3,2 anyway output ′fail′ on input [T,m∗1], since DK1 is punctured at (T,m∗1).

In program Transform we now additionally output ′fail′ when i = T + 1 and m1 = m∗1. This is without
changing the functionality, since this line is never reached: both programs TransformB,3,1 and TransformB,3,2

anyway output ′fail′ on input [T + 1,m∗1] and any m2, since DK1 is punctured at (T + 1,m∗1).

In program RetrieveTag we now additionally output ′fail′ when i = T + 1 and m1 = m∗1. This is
without changing the functionality, since this line is never reached: both programs RetrieveTagB,3,1 and
RetrieveTagB,3,2 anyway output ′fail′ on input [T + 1,m∗1], since DK1 is punctured at (T + 1,m∗1).

Lemma 20. If i∗ 6= 0, advHybB,4,j,1,HybB,4,j,2(λ) ≤ 2−Ω(νACE.ConstrDec(λ)) for i∗ ≤ j ≤ T .

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set Si∗+1,j+1 to puncture encryption key EK1 and challenge sets Si∗+1,j , Si∗+1,j+1 to puncture
decryption key DK1 (here Sa,b = {(m∗1, a), (m∗1, a+ 1), . . . , (m∗1, b)} if b ≥ a and ∅ otherwise). Indeed,
given EK1{Si∗+1,j+1} and key which is either DK1{Si∗+1,j} or DK1{Si∗+1,j+1}, it is easy to reconstruct
the rest of the distribution, as long as i∗ 6= 0. That is, we can sample remaining keys, obfuscate all programs,
and compute `∗1 = ACE.EncEK1(1,m∗1) (using the challenge encryption key EK1{Si∗+1,j+1} which is not
punctured at (1,m∗1) since i∗ 6= 0) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).

Lemma 21. advHybB,4,j,2,HybB,4,j,3(λ) ≤ 2−Ω(νiO(λ)) for i∗ ≤ j ≤ T .

Proof. In programs GenZero, Increment we unpuncture EK1 at pj+1 = (j + 1,m∗1).

In program GenZero we can unpuncture EK1 at pj+1 without changing the functionality, since GenZero only
encrypts plaintexts of the form (0,m1), but j + 1 6= 0.

In program Increment we can unpuncture EK1 at pj+1 without changing the functionality, since DK1 is
punctured at the point pj , thus Increment never needs to encrypt pj+1 since on input [j,m∗1] it instead outputs
′fail′ during decryption.

Lemma 22. advHybB,5,1,HybB,5,2(λ) ≤ 2−Ω(νiO(λ)).
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Proof. First, note that both programs GenZeroB,5,1 and GenZeroB,5,2 are functionally equivalent: since
i∗ + 1 6= 0, and GenZero only needs to encrypt value 0, we can safely unpuncture EK1 at (i∗ + 1,m∗1).

Second, programs IncrementB,5,1 and IncrementB,5,2 are functionally equivalent as well: the only difference
in the code is that the first outputs ′fail′ when it tries to encrypt a punctured point (i∗+ 1,m∗1) (which happens
on input ACE.EncEK1(i∗,m∗1)), and the second outputs ′fail′ when (m1, i) = (m∗1, i

∗), which happens on the
same input ACE.EncEK1(i∗,m∗1).

Lemma 23. advHybB,5,2,HybB,5,3(λ) ≤ 2−Ω(γ(λ)).

Proof. Assume there is a poly-time distinguisher D which distinguishes between these two hybrids with
probability η ≥ 2−o(γ(λ)) (for infinitely many λi). Then, since:

• programs IncrementB and IncrementB,1,1 differ only at one point (due to the fact that g is injective);

• η ≥ 2−o(γ(λ)) ≥ 2−o(νiO(λ)) (from the condition γ(λ) ≤ O(νiO(λ))) in the theorem statement),

it follows from lemma 1 that there exists an inverter which runs in time at most O(1/η) log T =
2o(γ(λ)) log T , which by the condition in the theorem statement is at most O(2νOWF(log T )). This inverter
inverts the one way function with probability at least (1 − 2−Ω(λ))η, which contradicts the fact that g is
2O(νOWF(λ log T )), 2−Ω(νOWF(λ log T ))-secure OWF.

7.5.3 Reductions in the proof of lemma 4 (Restoring behavior of Transform)

We show that

advHybC ,HybD(λ) ≤ 2τ(λ)(T · 2−Ω(νiO(λ)) + T · 2−Ω(νACE.Indist(λ)) + 2−Ω(νACE.ConstrDec(λ))).

Lemma 24. advHybC,1,q ,HybC,1,q,1,1(λ) ≤ 2−Ω(νiO(λ)).

Proof. In program Transform we puncture encryption key EK2 at pT,q = (T,m∗1, q). This is without
changing the functionality, since Transform never encrypts this point: indeed, it encrypts (i − 1,m1,m2)
when m2 = q, but will abort instead if i = T + 1.

Lemma 25. advHybC,1,q,1,1,HybC,1,q,1,2(λ) ≤ 2−Ω(νACE.ConstrDec(λ)) for q 6= m∗2.

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set {pT,q} = {(T,m∗1, q)} to puncture encryption key EK2 and challenge sets {pT,q}, ∅ to puncture
decryption key DK2. Indeed, given EK2{pT,q} and key which is either DK2{pT,q} or DK2, it is easy to
reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all programs, and
compute `∗1 = ACE.EncEK1(1,m∗1) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2) (using the challenge encryption key

EK2{pT,q} which is not punctured at (0,m∗1,m
∗
2).

Lemma 26. advHybC,1,q,2,j,1,HybC,1,q,2,j,2(λ) ≤ 2−Ω(νiO(λ)), for q 6= m∗2, 0 ≤ j ≤ T − 1.

Proof. We puncture ACE keys EK2,DK2 at the point pj,q = (j,m∗1, q) and hardwire L∗j,q =
ACE.EncEK2(j,m∗1, q) to eliminate the need to encrypt or decrypt pj,q in programs Transform, isLess, and
RetrieveTags, without changing their functionality.
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More specifically, in program Transform we puncture EK2 at pj,q = (j,m∗1, q) and, in order to preserve the
functionality, add an instruction to output L∗j,q = ACE.EncEK2(j,m∗1, q) when (i,m1,m2) = (j + 1,m∗1, q).

In program isLess we puncture decryption key DK2 at pj,q = (j,m∗1, q) and, in order to preserve the
functionality, instruct the program not to decrypt L∗j,q, but to use (j + 1,m∗1, q) as the result of decryption
instead. Note that this is different from what L∗j,q would normally decrypt to, which is (j,m∗1, q). However,
we argue that this doesn’t change the functionality of the program. Indeed:

• The set of inputs on which isLess outputs ′fail′ isn’t changed; in particular, since 0 ≤ j ≤ T − 1, both
(j,m∗1, q) and (j + 1,m∗1, q) are within 0 to T limits and thus are both valid.

• The result of the comparison on inputs [i′,m1,m2] and [i′′,m1,m2], where (m1,m2) 6= (m∗1, q),
remains the same;

• The result of the comparison on inputs [i′,m∗1, q] and [i′′,m∗1, q], where i′, i′′ 6= j and i′, i′′ 6= j + 1,
remains the same;

• The output of the program on inputs ([i′,m∗1, q], [i
′′,m∗1, q]), where i′ = j + 1 or i′′ = j + 1, is ′fail′

for both the original and modified programs, since DK2 is punctured at pj+1,q = (j + 1,m∗1, q) and
thus decryption returns ′fail′;

• The result of the comparison on inputs ([i′,m∗1, q], [j,m
∗
1, q] = L∗j,q), remains the same, since for both

programs the output is:

– true for 0 ≤ i′ < j;

– false for i′ = j (indeed, in the original program in this case i′ = i′′ = j, and in the modified
program i′ = i′′ = j + 1, since [i′,m∗1, q] = L∗j,q when i′ = j and the program uses j + 1 as the
decryption result);

– ′fail′ for i′ = j+1, since DK2 is punctured at pj+1,q = (j+1,m∗1, q) and thus decryption returns
′fail′;

– false for j + 2 ≤ i′ ≤ T .

• Similarly, the result of the comparison on inputs ([j,m∗1, q] = L∗j,q, [i
′,m∗1, q]) remains the same for

the original program and modified program (with the difference that the result is false for 0 ≤ i′ < j
and true for j + 2 ≤ i′ ≤ T ).

In program RetrieveTags we puncture decryption key DK2 at pj,q = (j,m∗1, q) and, in order to preserve the
functionality, instruct the program to output (m∗1, q) on input L∗j,q.

Lemma 27. advHybC,1,q,2,j,2,HybC,1,q,2,j,3(λ) ≤ 2−Ω(νACE.Indist(λ)), for q 6= m∗2, 0 ≤ j ≤ T − 1.

Proof. Indistinguishability immediately follows from indistinguishability of ACE ciphertexts for the
challenge plaintexts pj,q = (j,m∗1, q) and pj+1,q = (j + 1,m∗1, q). Indeed, given EK2{pj,q, pj+1,q},
DK2{pj,q, pj+1,q}, and either L∗j,q = ACE.EncEK2(j,m∗1, q) or L∗j+1,q = ACE.EncEK2(j + 1,m∗1, q), it
is easy to reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all
program (note that indeed at most one of two ciphertexts L∗j,q, L

∗
j+1,q is used in programs of HybC,1,q,2,j,2

and HybC,1,q,2,j,3), and compute `∗1 = ACE.EncEK1(1,m∗1) and L∗0 = ACE.EncEK2(0,m∗1,m
∗
2) (using the

challenge encryption key EK2{pj,q, pj+1,q} which is not punctured at (0,m∗1,m
∗
2) since q 6= m∗2).
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Lemma 28. advHybC,1,q,2,j,3,HybC,1,q,2,j,4(λ) ≤ 2−Ω(νiO(λ)), for q 6= m∗2, 0 ≤ j ≤ T − 1.

Proof. We unpuncture ACE keys EK2,DK2 at the point pj+1,q = (j + 1,m∗1, q) and remove hardwired
L∗j+1,q = ACE.EncEK2(j + 1,m∗1, q) in programs Transform, isLess, and RetrieveTags, without changing
their functionality.

More specifically, in program Transform we unpuncture EK2 at pj+1,q = (j + 1,m∗1, q) and remove an
instruction to output L∗j+1,q = ACE.EncEK2(j+1,m∗1, q) when (i,m1,m2) = (j+1,m∗1, q). This is without
changing the functionality, since now the program will run an encryption ACE.EncEK2(j + 1,m∗1, q) when
(i,m1,m2) = (j + 1,m∗1, q), instead of directly outputting hardwired L∗j+1,q.

In program isLess we unpuncture decryption key DK2 at pj+1,q = (j + 1,m∗1, q) and remove an instruction
to use (j + 1,m∗1, q) as a result of decrypting L∗j+1,q, thus making the program decrypt L∗j+1,q instead. This
is without changing the functionality, since (j + 1,m∗1, q) is what L∗j+1,q decrypts to.

In program RetrieveTags we unpuncture decryption key DK2 at pj+1,q = (j + 1,m∗1, q) and remove an
instruction to output (m∗1, q) on input L∗j+1,q. This is without changing the functionality, since (m∗1, q) is
what the program outputs when decrypting L∗j+1,q.

Lemma 29. advHybC,1,q,2,−1,1,HybC,1,q,2,−1,2
(λ) ≤ 2−Ω(νiO(λ)), for q 6= m∗2.

Proof. We puncture ACE keys EK2,DK2 at the point p−1,q = (−1,m∗1, q) and hardwire L∗−1,q =
ACE.EncEK2(−1,m∗1, q) to eliminate the need to encrypt or decrypt p−1,q in programs Transform, isLess,
and RetrieveTags, without changing their functionality.

More specifically, in program Transform we puncture EK2 at p−1,q = (−1,m∗1, q) and, in order to pre-
serve the functionality, add an instruction to output L∗−1,q = ACE.EncEK2(−1,m∗1, q) when (i,m1,m2) =
(0,m∗1, q).

In program isLess we puncture decryption key DK2 at p−1,q = (−1,m∗1, q) and instruct the program to output
′fail′, given L∗−1,q. This is without changing the functionality, since [−1,m∗1, q] is treated by the program as
an invalid input, since the value i should be between 0 and T .

In program RetrieveTags we puncture decryption key DK2 at p−1,q = (−1,m∗1, q) and instruct the program
to output ′fail′, given L∗−1,q. This is without changing the functionality, since [−1,m∗1, q] is treated by the
program as an invalid input, since the value i should be between 0 and T .

Lemma 30. advHybC,1,q,2,−1,2,HybC,1,q,2,−1,3
(λ) ≤ 2−Ω(νACE.Indist(λ)), for q 6= m∗2.

Proof. Indistinguishability immediately follows from indistinguishability of ACE ciphertexts for the
challenge plaintexts p−1,q = (−1,m∗1, q) and p0,q = (0,m∗1, q). Indeed, given EK2{p−1,q, p0,q},
DK2{p−1,q, p0,q}, and either L∗−1,q = ACE.EncEK2(−1,m∗1, q) or L∗0,q = ACE.EncEK2(0,m∗1, q), it is
easy to reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all pro-
gram (note that indeed at most one of two ciphertexts L∗−1,q, L

∗
0,q is used in programs of HybC,1,q,2,−1,2

and HybC,1,q,2,−1,3), and compute `∗1 = ACE.EncEK1(1,m∗1) and L∗0 = ACE.EncEK2(0,m∗1,m
∗
2) (using the

challenge encryption key EK2{p−1,q, p0,q} which is not punctured at (0,m∗1,m
∗
2) since q 6= m∗2).

Lemma 31. advHybC,1,q,2,−1,3,HybC,1,q,3,1(λ) ≤ 2−Ω(νiO(λ)), for q 6= m∗2.

171



Proof. We unpuncture ACE keys EK2,DK2 at the point p0,q = (0,m∗1, q) and remove hardwired L∗0,q =
ACE.EncEK2(0,m∗1, q) in programs Transform, isLess, and RetrieveTags, without changing their functional-
ity.

More specifically, in program Transform we unpuncture EK2 at p0,q = (0,m∗1, q) and remove an instruction
to output L∗0,q = ACE.EncEK2(0,m∗1, q) when (i,m1,m2) = (0,m∗1, q). This is without changing the
functionality, since now the program will run an encryption ACE.EncEK2(0,m∗1, q) when (i,m1,m2) =
(0,m∗1, q), instead of directly outputting hardwired L∗0,q.

In program isLess we unpuncture decryption key DK2 at p0,q = (0,m∗1, q) and remove an instruction to
output ′fail′ given L∗0,q; to preserve the functionality, we instruct the program to output ′fail′ when (i′,m′1,m

′
2)

or (i′′,m′′1,m
′′
2) is equal to (0,m∗1, q).

In program RetrieveTags we unpuncture decryption key DK2 at p0,q = (0,m∗1, q) and remove an instruction
to output ′fail′ given L∗0,q; to preserve the functionality, we instruct the program to output ′fail′ when
(i,m1,m2) = (0,m∗1, q).

Lemma 32. advHybC,1,q,3,1,HybC,1,q,3,2(λ) ≤ 2−Ω(νACE.ConstrDec(λ)) for q 6= m∗2.

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set {p−1,q} = {(−1,m∗1, q)} to puncture encryption key EK2 and challenge sets {p−1,q}, ∅ to
puncture decryption key DK2. Indeed, given EK2{p−1,q} and key which is either DK2{p−1,q} or DK2, it is
easy to reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all programs,
and compute `∗1 = ACE.EncEK1(1,m∗1) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2) (using the challenge encryption

key EK2{p−1,q} which is not punctured at (0,m∗1,m
∗
2) since q 6= m∗2).

Lemma 33. advHybC,1,q,3,2,HybC,1,q,3,3(λ) ≤ 2−Ω(νiO(λ)), for q 6= m∗2.

Proof. We unpuncture ACE key EK2 at the point p−1,q = (−1,m∗1, q) in program Transform. This is without
changing the functionality, since this program never needs to encrypt p−1,q: indeed, when (m1,m2) =
(m∗1, q), the program only encrypts (i,m1,m2), where 0 ≤ i ≤ T .

Lemma 34. advHybC,1,q,3,3,HybC,1,q,4,1(λ) ≤ 2−Ω(νiO(λ)), for q 6= m∗2.

Proof. In programs GenZero and Increment we puncture encryption key EK1 at p0 = (0,m∗1). This is
without changing the functionality, since neither program needs to encrypt this point.

Lemma 35. advHybC,1,q,4,1,HybC,1,q,4,2(λ) ≤ 2−Ω(νACE.ConstrDec(λ)).

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set {p0} = {(0,m∗1)} to puncture encryption key EK1 and challenge sets {p0} ,∅ to puncture
decryption key DK1. Indeed, given EK1{p0} and key which is either DK1 or DK1{p0}, it is easy to
reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all programs, and
compute `∗1 = ACE.EncEK1(1,m∗1) (using the challenge encryption key EK1{p0} which is not punctured at
(1,m∗1)) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).

Lemma 36. advHybC,1,q,4,2,HybC,1,q,4,3(λ) ≤ 2−Ω(νiO(λ)), for q 6= m∗2.
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Proof. In program Transform we puncture encryption key EK2 at p0,q = (0,m∗1, q). This is without changing
the functionality: indeed, in order to encrypt p0,q, the program should get ([0,m∗1], q) as input, but on this
input Transform instead outputs ′fail′, since decryption key DK1 is punctured at p0 = (0,m∗1).

Lemma 37. advHybC,1,q,4,3,HybC,1,q,4,4(λ) ≤ 2−Ω(νACE.ConstrDec(λ)) for q 6= m∗2.

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set {p0,q} = {(0,m∗1, q)} to puncture encryption key EK2 and challenge sets {p0,q}, ∅ to puncture
decryption key DK2. Indeed, given EK2{p0,q} and key which is either DK2{p0,q} or DK2, it is easy to
reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all programs, and
compute `∗1 = ACE.EncEK1(1,m∗1) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2) (using the challenge encryption key

EK2{p0,q} which is not punctured at (0,m∗1,m
∗
2) since q 6= m∗2).

Lemma 38. advHybC,1,q,4,4,HybC,1,q,4,5(λ) ≤ 2−Ω(νiO(λ)), for q 6= m∗2.

Proof. In programs isLess and RetrieveTags we remove an instruction to output ′fail′, given [0,m∗1, q]. This
is without changing the functionality, since in both programs DK2 is punctured at p0,q = (0,m∗1, q), thus
making the programs output ′fail′ during decryption; thus the instructions which we are removing are never
reached anyway, and we can safely remove them.

Lemma 39. advHybC,1,q,4,5,HybC,1,q,4,6(λ) ≤ 2−Ω(νACE.ConstrDec(λ)) for q 6= m∗2.

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set {p0,q} = {(0,m∗1, q)} to puncture encryption key EK2 and challenge sets {p0,q}, ∅ to puncture
decryption key DK2. Indeed, given EK2{p0,q} and key which is either DK2{p0,q} or DK2, it is easy to
reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all programs, and
compute `∗1 = ACE.EncEK1(1,m∗1) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2) (using the challenge encryption key

EK2{p0,q} which is not punctured at (0,m∗1,m
∗
2) since q 6= m∗2).

Lemma 40. advHybC,1,q,4,6,HybC,1,q,4,7(λ) ≤ 2−Ω(νiO(λ)), for q 6= m∗2.

Proof. In program Transform we unpuncture encryption key EK2 at p0,q = (0,m∗1, q). This is without
changing the functionality: indeed, in order to encrypt p0,q, the program should get ([0,m∗1], q) as input, but
on this input Transform instead outputs ′fail′, since decryption key DK1 is punctured at p0 = (0,m∗1).

Lemma 41. advHybC,1,q,4,7,HybC,1,q,4,8(λ) ≤ 2−Ω(νACE.ConstrDec(λ)).

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set {p0} = {(0,m∗1)} to puncture encryption key EK1 and challenge sets {p0} ,∅ to puncture
decryption key DK1. Indeed, given EK1{p0} and key which is either DK1 or DK1{p0}, it is easy to
reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all programs, and
compute `∗1 = ACE.EncEK1(1,m∗1) (using the challenge encryption key EK1{p0} which is not punctured at
(1,m∗1)) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).

Lemma 42. advHybC,1,q,4,8,HybC,1,q,4,9(λ) ≤ 2−Ω(νiO(λ)), for q 6= m∗2.
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Proof. In programs GenZero and Increment we unpuncture encryption key EK1 at p0 = (0,m∗1). This is
without changing the functionality, since neither program needs to encrypt this point.

Lemma 43. advHybC,2,1,1,HybC,2,1,2(λ) ≤ 2−Ω(νiO(λ)).

Proof. In program Transform we puncture encryption key EK2 at pT,m∗2 = (T,m∗1,m
∗
2). This is without

changing the functionality, since Transform never encrypts this point: indeed, when (m1,m2) = (m∗1,m
∗
2)

the largest value it encrypts is (T − 1,m1,m2).

Lemma 44. advHybC,2,1,2,HybC,2,1,3(λ) ≤ 2−Ω(νACE.ConstrDec(λ)).

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set

{
pT,m∗2

}
= {(T,m∗1,m∗2)} to puncture encryption key EK2 and challenge sets

{
pT,m∗2

}
, ∅ to

puncture decryption key DK2. Indeed, given EK2{pT,m∗2} and key which is either DK2{pT,m∗2} or DK2, it is
easy to reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all programs,
and compute `∗1 = ACE.EncEK1(1,m∗1) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2) (using the challenge encryption

key EK2{pT,m∗2} which is not punctured at (0,m∗1,m
∗
2)).

Lemma 45. advHybC,2,2,j,1,HybC,2,2,j,2(λ) ≤ 2−Ω(νiO(λ)), for 1 ≤ j ≤ T − 1.

Proof. We puncture ACE keys EK2,DK2 at the point pj,m∗2 = (j,m∗1,m
∗
2) and hardwire L∗j,m∗2

=

ACE.EncEK2(j,m∗1,m
∗
2) to eliminate the need to encrypt or decrypt pj,m∗2 in programs Transform, isLess,

and RetrieveTags, without changing their functionality.

More specifically, in program Transform we puncture EK2 at pj,m∗2 = (j,m∗1,m
∗
2) and, in order to preserve

the functionality, add an instruction to output L∗j,m∗2 = ACE.EncEK2(j,m∗1,m
∗
2) when (i,m1,m2) = (j +

1,m∗1,m
∗
2).

In program isLess we puncture decryption key DK2 at pj,m∗2 = (j,m∗1,m
∗
2) and, in order to preserve the

functionality, instruct the program not to decrypt L∗j,m∗2 , but to use (j + 1,m∗1,m
∗
2) as the result of decryption

instead. Note that this is different from whatL∗j,m∗2 would normally decrypt to, which is (j,m∗1,m
∗
2). However,

we argue that this doesn’t change the functionality of the program. Indeed:

• The set of inputs on which isLess outputs ′fail′ isn’t changed; in particular, since 0 ≤ j ≤ T − 1, both
(j,m∗1,m

∗
2) and (j + 1,m∗1,m

∗
2) are within 0 to T limits and thus are both valid.

• The result of the comparison on inputs [i′,m1,m2] and [i′′,m1,m2], where (m1,m2) 6= (m∗1,m
∗
2),

remains the same, for all i′, i′′;

• The result of the comparison on inputs [i′,m∗1,m
∗
2] and [i′′,m∗1,m

∗
2], where i′, i′′ 6= j and i′, i′′ 6= j+1,

remains the same;

• The output of the program on inputs ([i′,m∗1,m
∗
2], [i′′,m∗1,m

∗
2]), where i′ = j + 1 or i′′ = j + 1, is

′fail′ for both the original and modified programs, since DK2 is punctured at pj+1,m∗2
= (j+1,m∗1,m

∗
2)

and thus decryption returns ′fail′;

• The result of the comparison on inputs ([i′,m∗1,m
∗
2], [j,m∗1,m

∗
2] = L∗j,m∗2

), remains the same, since
for both programs the output is:

– true for 0 ≤ i′ < j;
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– false for i′ = j (indeed, in the original program in this case i′ = i′′ = j, and in the modified
program i′ = i′′ = j + 1, since [i′,m∗1,m

∗
2] = L∗j,m∗2

when i′ = j and the program uses j + 1 as
the decryption result);

– ′fail′ for i′ = j + 1, since DK2 is punctured at pj+1,m∗2
= (j + 1,m∗1,m

∗
2) and thus decryption

returns ′fail′;

– false for j + 2 ≤ i′ ≤ T .

• Similarly, the result of the comparison on inputs ([j,m∗1,m
∗
2] = L∗j,m∗2

, [i′,m∗1,m
∗
2]) remains the same

for the original program and modified program (with the difference that the result is false for 0 ≤ i′ < j
and true for j + 2 ≤ i′ ≤ T ).

In program RetrieveTags we puncture decryption key DK2 at pj,m∗2 = (j,m∗1,m
∗
2) and, in order to preserve

the functionality, instruct the program to output (m∗1,m
∗
2) on input L∗j,m∗2 .

Lemma 46. advHybC,2,2,j,2,HybC,2,2,j,3(λ) ≤ 2−Ω(νACE.Indist(λ)), for 1 ≤ j ≤ T − 1.

Proof. Indistinguishability immediately follows from indistinguishability of ACE ciphertexts for the chal-
lenge plaintexts pj,m∗2 = (j,m∗1,m

∗
2) and pj+1,m∗2

= (j + 1,m∗1,m
∗
2). Indeed, given EK2{pj,m∗2 , pj+1,m∗2

},
DK2{pj,m∗2 , pj+1,m∗2

}, and either L∗j,m∗2 = ACE.EncEK2(j,m∗1,m
∗
2) or L∗j+1,m∗2

= ACE.EncEK2(j +

1,m∗1,m
∗
2), it is easy to reconstruct the rest of the distribution. That is, we can sample remaining keys,

obfuscate all programs (note that creating the programs in each of the hybrids HybC,2,2,j,2, HybC,2,2,j,3
requires to know exactly one of the two ciphertexts L∗j,m∗2 , L∗j+1,m∗2

), and compute `∗1 = ACE.EncEK1(1,m∗1)

and L∗0 = ACE.EncEK2(0,m∗1,m
∗
2) (using the challenge encryption key EK2{pj,m∗2 , pj+1,m∗2

} which is not
punctured at (0,m∗1,m

∗
2) since j ≥ 1).

Lemma 47. advHybC,2,2,j,3,HybC,2,2,j,4(λ) ≤ 2−Ω(νiO(λ)), for 1 ≤ j ≤ T − 1.

Proof. We unpuncture ACE keys EK2,DK2 at the point pj+1,m∗2
= (j + 1,m∗1,m

∗
2) and remove hardwired

L∗j+1,m∗2
= ACE.EncEK2(j+1,m∗1,m

∗
2) in programs Transform, isLess, and RetrieveTags, without changing

their functionality.

More specifically, in program Transform we unpuncture EK2 at pj+1,m∗2
= (j + 1,m∗1,m

∗
2) and remove an

instruction to output L∗j+1,m∗2
= ACE.EncEK2(j + 1,m∗1,m

∗
2) when (i,m1,m2) = (j + 1,m∗1,m

∗
2). This is

without changing the functionality, since now the program will run an encryption ACE.EncEK2(j+1,m∗1,m
∗
2)

when (i,m1,m2) = (j + 1,m∗1,m
∗
2), instead of directly outputting hardwired L∗j+1,m∗2

.

In program isLess we unpuncture decryption key DK2 at pj+1,m∗2
= (j+1,m∗1,m

∗
2) and remove an instruction

to use (j + 1,m∗1,m
∗
2) as a result of decrypting L∗j+1,m∗2

, thus making the program decrypt L∗j+1,m∗2
instead.

This is without changing the functionality, since (j + 1,m∗1,m
∗
2) is what L∗j+1,m∗2

decrypts to.

In program RetrieveTags we unpuncture decryption key DK2 at pj+1,m∗2
= (j + 1,m∗1,m

∗
2) and remove an

instruction to output (m∗1,m
∗
2) on input L∗j+1,m∗2

. This is without changing the functionality, since (m∗1,m
∗
2)

is what the program outputs when decrypting L∗j+1,m∗2
.

Lemma 48. advHybC,2,3,1,HybC,2,3,2(λ) ≤ 2−Ω(νACE.ConstrDec(λ)).
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Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set

{
p1,m∗2

}
= {(1,m∗1,m∗2)} to puncture encryption key EK2 and challenge sets

{
p1,m∗2

}
, ∅ to

puncture decryption key DK2. Indeed, given EK2{p1,m∗2
} and key which is either DK2{p1,m∗2

} or DK2, it is
easy to reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all programs,
and compute `∗1 = ACE.EncEK1(1,m∗1) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2) (using the challenge encryption

key EK2{p1,m∗2
} which is not punctured at (0,m∗1,m

∗
2)).

Lemma 49. advHybC,2,3,2,HybC,2,3,3(λ) ≤ 2−Ω(νiO(λ)).

Proof. In program Transform we do the following changes. First, we change the condition for when to encrypt
i−1 from i ≤ 1 to i ≤ 0. This is without changing the functionality, since the case (i,m1,m2) = (1,m∗1,m

∗
2)

corresponds to the input ([1,m∗1],m∗2), in which case the program outputs ′fail′ at the very beginning, thus
the line with the condition is not reached on this input anyway. For the same reason we can unpuncture EK2

at p1,m∗2
= (1,m∗1,m

∗
2).

Next, in programs GenZero and Increment we puncture encryption key EK1 at p0 = (0,m∗1). This is without
changing the functionality, since neither program needs to encrypt this point.

Lemma 50. advHybC,2,3,3,HybC,2,3,4(λ) ≤ 2−Ω(νACE.ConstrDec(λ)).

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set {p0} = {(0,m∗1)} to puncture encryption key EK1 and challenge sets {p0} ,∅ to puncture
decryption key DK1. Indeed, given EK1{p0} and key which is either DK1 or DK1{p0}, it is easy to
reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all programs, and
compute `∗1 = ACE.EncEK1(1,m∗1) (using the challenge encryption key EK1{p0} which is not punctured at
(1,m∗1)) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).

Lemma 51. advHybC,2,3,4,HybC,2,3,5(λ) ≤ 2−Ω(νiO(λ)).

Proof. In program Transform we make the program output ACE.EncEK2(i,m1,m2) instead of
ACE.EncEK2(i− 1,m1,m2) for the case (i,m1,m2) = (0,m∗1,m

∗
2); this is without changing the funcitonal-

ity, since encryption is never reached in the case. Indeed, on input ([0,m∗1],m∗2) Transform outputs ′fail′

during decryption, since DK1 is punctured at p0 = (0,m∗1).

Lemma 52. advHybC,2,3,5,HybC,2,3,6(λ) ≤ 2−Ω(νACE.ConstrDec(λ)).

Proof. Indistinguishability immediately follows from security of constrained decryption of ACE for the
challenge set {p0} = {(0,m∗1)} to puncture encryption key EK1 and challenge sets {p0} ,∅ to puncture
decryption key DK1. Indeed, given EK1{p0} and key which is either DK1 or DK1{p0}, it is easy to
reconstruct the rest of the distribution. That is, we can sample remaining keys, obfuscate all programs, and
compute `∗1 = ACE.EncEK1(1,m∗1) (using the challenge encryption key EK1{p0} which is not punctured at
(1,m∗1)) and L∗0 = ACE.EncEK2(0,m∗1,m

∗
2).

Lemma 53. advHybC,2,3,6,HybC,2,3,7(λ) ≤ 2−Ω(νiO(λ)).

Proof. In programs GenZero and Increment we unpuncture encryption key EK1 at p0 = (0,m∗1). This is
without changing the functionality, since neither program needs to encrypt this point.
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8 Proof of bideniability of our encryption protocol

8.1 List of hybrids

In this section we present a list of hybrids with brief explanation of why indistinguishability holds. Formal
security reductions can be found in section 8.2.

We note that we repeat some hybrids in order to get 4 clean steps (e.g. hybrids HybB,3,3 − HybB,3,5 at the
very end of the proof of lemma 55 are immediately undone at the very beginning of the proof of lemma 56).

Lemma 54. [Indistinguishability of explanations of the sender] Assuming (t(λ), ε(λ)) security of relaxed
ACE, iO and sparse extracting PRFs, the distiributions in HybA,HybB are (t(λ), O(ε(λ)))-close.

Lemma 55. [Indistinguishability of explanations of the receiver] Assuming (t(λ), ε(λ)) security of ACE,
relaxed ACE, iO, prg and sparse extracting PRFs, the distiributions in HybB,HybC are (t(λ), O(ε(λ)) +
2−τ(λ))-close.

Lemma 56. [Semantic security] Assuming (t(λ), ε(λ)) security of ACE, relaxed ACE, iO, and sparse
extracting PRFs, the distiributions in HybC ,HybD are (t(λ), O(ε(λ)) +O(2−τ(λ)))-close.

Lemma 57. [Indistinguishability of levels] Assuming (t(λ), ε(λ)) security of relaxed ACE, iO, and sparse
extracting PRFs, and assuming (t(λ), ε1(λ, T, τ))-secure level system, the distiributions in HybD,HybE are
(t(λ), O(ε(λ)) + ε1(λ, T, τ))-close.

8.1.1 Proof of lemma 54 (Indistinguishability of explanation of the sender)

• HybA,1. We give the adversary (PP,m∗0,m
∗
1, s
∗, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; s∗, r∗ are cho-
sen at random, µ1

∗ = SG(s∗,m∗0), µ2
∗ = P2(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0).

Programs are presented on fig. 94.

Note that HybA,1 = HybA, conditioned on the fact that s∗ is outside of the image of ACE.

• HybA,2. We give the adversary (PP,m∗0,m
∗
1, s
∗, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1A,1,P2,P3A,1,Dec,SFakeA,1,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗0), µ2

∗ = P2(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0).
Programs are presented on fig. 95.

That is, we modify programs of the sender by puncturing encryption key of sender-fake ACE EKS{S`∗0}
at the set S`∗0 = {(∗, ∗, ∗, ∗, `∗0)}, decryption key of sender-fake ACE DKS{s∗, s′} at s∗ and s′ (where
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0)), and the key kS of extracting PRF SG of the sender at the
points (s∗,m∗0) and (s′,m∗0). In addition, we hardwire certain outputs inside programs of the sender to
make sure that functionality of the programs doesn’t change. Indistinguishability holds by iO.

• HybA,3. We give the adversary (PP,m∗0,m
∗
1, s
∗, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1A,1,P2,P3A,1,Dec,SFakeA,1,RFake; rSetup) for randomly chosen rSetup; s∗, r∗ are cho-
sen at random, µ1

∗ is chosen at random, µ2
∗ = P2(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0).

Programs are presented on fig. 95.

That is, we choose µ1
∗ at random instead of computing it as µ1

∗ = SGkS (s∗,m∗0). Indistinguishability
holds by pseudorandomness of the PRF SG at the punctured point (s∗,m∗0).
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• HybA,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1A,1,P2,P3A,1,Dec,SFakeA,1,RFake; rSetup) for randomly chosen rSetup; s∗, r∗ are cho-
sen at random, µ1

∗ is chosen at random, µ2
∗ = P2(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0). Programs are presented on fig. 95.

That is, we switch the roles of s∗ and s′ everywhere in the distribution: namely, we give s′ (instead of
s∗) to the adversary as randomness of the sender, and we change s∗ to s′ and s′ to s∗ everywhere in
the programs. Note that this doesn’t change the code of the programs since programs use s∗ and s′ in
the same way. Indistinguishability holds by the symmetry of sender-fake ACE, which says that
(s∗, s′,EKS{S`∗0},DKS{s∗, s′}) is indistinguishable from (s′, s∗,EKS{S`∗0},DKS{s∗, s′}), where
p = (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), s∗ is randomly chosen, s′ = ACE.EncEKS (p). Note that DKS{s∗, s′} is
first punctured at one of the points s∗, s′ which is lexicographically smaller, and then at the other.

• HybA,5. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1A,1,P2,P3A,1,Dec,SFakeA,1,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗0), µ2

∗ = P2(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Programs are presented on fig. 95.

That is, we generate µ1
∗ as µ1

∗ = SGkS (s∗,m∗0) instead of choosing it at random. Indistinguishability
holds by pseudorandomness of the PRF SG at the punctured point (s∗,m∗0).

• HybA,6. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; s∗, r∗ are cho-
sen at random, µ1

∗ = SG(s∗,m∗0), µ2
∗ = P2(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0). Programs are presented on fig. 94.

That is, we revert all changes we made to programs and thus use original programs of our deniable
encryption scheme in this hybrid. Indistinguishability holds by iO, since we remove puncturing without
changing the functionality of the programs.

Note that HybA,6 = HybB , conditioned on the fact that s∗ is outside of the image of ACE.

178



Programs P1,P3,SFake.
Program P1(s,m)
Inputs: sender randomness s, message m.
Hardwired values: decryption key DKS of sender-fake ACE, key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS (s,m).

Program P3(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1, GenZero, Transform, RetrieveTag; decryption key
DKS of sender-fake ACE, encryption key EK of main ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFake(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1, GenZero, Increment; encryption and decryption keys
EKS ,DKS of sender-fake ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS (m̂, µ1, µ2, µ3, `+1).

3. Main step:
(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS (m̂, µ1, µ2, µ3, `1).

Figure 94: Programs P1,P3,SFake.
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Programs P1A,1,P3A,1,SFakeA,1.
Program P1A,1(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{s∗, s′} of sender-fake ACE, punctured key kS{(s∗,m∗0), (s′,m∗0)}
of an extracting PRF SG, variables s∗, s′,m∗0, µ1

∗.
1. Trapdoor step:

(a) If (s,m) = (s∗,m∗0) or (s,m) = (s′,m∗0) then return µ1
∗;

(b) If s = s∗ or s = s′ then goto main step;
(c) out← ACE.DecDKS{s∗,s′}(s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(d) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS{(s∗,m∗0),(s′,m∗0)}(s,m).
Program P3A,1(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1A,1, GenZero, Transform, RetrieveTag; punctured decryption
key DKS{s∗, s′} of sender-fake ACE, encryption key EK of main ACE, variables s∗, s′,m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0.
1. Validity check: if P1A,1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) If (s,m, µ1, µ2) = (s∗,m∗0, µ1
∗, µ2

∗) or (s,m, µ1, µ2) = (s′,m∗0, µ1
∗, µ2

∗) then return µ3
∗;

(b) If (s,m, µ1) = (s∗,m∗0, µ1
∗) or (s,m, µ1) = (s′,m∗0, µ1

∗) then return µ3 ←
EncEK(m∗0, µ1

∗, µ2,Transform(`∗0, µ2));
(c) If s = s∗ or s = s′ then goto main step;
(d) out← ACE.DecDKS{s∗,s′}(s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(e) If m,µ1, µ2 = m′, µ1

′, µ2
′ then return µ3

′;
(f) If m,µ1 = m′, µ1

′ then:
i. If µ1 6= RetrieveTag(`′) then abort;

ii. Set L← Transform(`′, µ2);
iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);

3. Main step:
(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeA,1(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1A,1, GenZero, Increment; punctured encryption key EKS{S`∗0

}
(where S`∗0

= {(∗, ∗, ∗, ∗, `∗0)}) and punctured decryption key DKS{s∗, s′}, variables s∗, s′,m∗0, µ1
∗, `∗0.

1. Validity check: if P1A,1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) If (s,m, µ1) = (s∗,m∗0, µ1
∗) or (s,m, µ1) = (s′,m∗0, µ1

∗) then return
EncEKS{p}(m̂, µ1, µ2, µ3, Increment(`∗0));

(b) If s = s∗ or s = s′ then goto main step;
(c) out← ACE.DecDKS{s∗,s′}(s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(d) If m,µ1 = m′, µ1

′ then
i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;

ii. Return ACE.EncEKS{S`∗0
}(m̂, µ1, µ2, µ3, `+1).

3. Main step:
(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{S`∗0

}(m̂, µ1, µ2, µ3, `1).

Figure 95: Programs P1A,1,P3A,1, SFakeA,1, used in the proof of lemma 54 (indistinguishability of expla-
nations of the sender).
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8.1.2 Proof of lemma 55 (Indistinguishability of explanation of the receiver)

First in a sequence of hybrids we “eliminate” complementary ciphertext µ3
∗ = ACE.EncEK(1 ⊕

m∗0, µ1
∗, µ2

∗, L∗0), i.e. make programs Dec and SFake reject it:

• HybB,1,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; s∗, r∗ are cho-
sen at random, µ1

∗ = SG(s∗,m∗0), µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0). Programs can be found in fig. 96 (programs of the sender)

and fig. 100 (programs of the receiver).

Note that this distribution is exactly the distribution from HybB , conditioned on the fact that s∗, r∗ are
outside of images of their ACE.

• HybB,1,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,1,P2,P3B,1,Dec, SFakeB,1,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗0), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Programs can be found in fig. 97 (programs of the sender)
and fig. 100 (programs of the receiver).

That is, in program SFake we puncture encryption key EKS of the sender-fake ACE at the set P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Indistinguishability holds by iO, since this modification
doesn’t change the functionality of SFake due to the fact that SFake never encrypts plaintexts with
level `∗0.

• HybB,1,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,2,P2,P3B,2,Dec, SFakeB,2,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗0), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Programs can be found in fig. 98 (programs of the sender)
and fig. 100 (programs of the receiver).

That is, in programs P1,P3,SFake we puncture decryption key DKS of the sender-fake ACE at the
same set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Indistinguishability holds by security of
constrained decryption of ACE, since the corresponding encryption key EKS is already punctured at
the same set.

• HybB,1,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,2,P2,P3B,2,Dec, SFakeB,2,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0). Programs can be found in fig. 98 (programs of the sender)

and fig. 100 (programs of the receiver).

That is, we choose µ1
∗ at random instead of computing it as µ1

∗ = SGkS (s∗,m∗0). Indistinguishability
holds by the strong extracting property of the sender PRF SG (note that s∗ was not used anywhere else
in the distribution).

• HybB,1,5. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2,P3B,3,Dec, SFakeB,3,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0). Programs can be found in fig. 99 (programs of the sender)
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and fig. 100 (programs of the receiver).

That is, in program P3 we puncture encryption key EK of the main ACE at the point p = (1 ⊕
m∗0, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by iO, since P3 never needs to encrypt this point. Roughly,

this is because of the following: since µ1
∗ is random and outside of the image of a PRF SG, P3 never

encrypts p in the main step. In order to encrypt it in trapdoor step, P3 needs to take as input some fake
s encoding level `∗0. However, due to the fact that DKS is punctured at the set P`∗0 which contains all
but one strings with `∗0, the only valid fake s with `∗0 is s′. However, running P3 on s′ cannot result in
encrypting p in the trapdoor step since p contains the wrong plaintext 1⊕m∗0 (instead of m∗0).

• HybB,1,6. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,1,P3B,3,DecB,1,SFakeB,3,RFakeB,1; rSetup) for randomly chosen rSetup; r∗ is
chosen at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0). Programs can be found in fig. 99 (programs of the sender)

and fig. 101 (programs of the receiver).

That is, in programs Dec,RFake we puncture decryption key DK of the main ACE at the same point
p = (1⊕m∗0, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by security of constrained decryption of ACE,

since the corresponding encryption key EK is already punctured at this point.

Now µ3
∗ = ACE.EncEK(1 ⊕ m∗0, µ1

∗, µ2
∗, L∗0) is rejected by Dec and RFake. In the following hybrids,

similarly to previous lemma, we switch the roles of r∗ and r′, using the fact that programs treat them similarly,
once µ3

∗ is eliminated32.

• HybB,2,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,2,P3B,3,DecB,2,SFakeB,3,RFakeB,2; rSetup) for randomly chosen rSetup; r∗ is
chosen at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0). Programs can be found in fig. 99 (programs of the sender)

and fig. 102 (programs of the receiver).

That is, we modify programs of the receiver (P2,Dec,RFake) by puncturing encryption key of receiver-
fake ACE EKR{Sρ̂∗} at Sρ̂∗ = {(∗, ∗, ∗, ∗, ∗, ρ̂∗)} for randomly chosen ρ̂∗. Next, we puncture
decryption key of receiver-fake ACE DKR{r∗, r′} at r∗ and r′ (where r′ = ACE.EncEKR(p), p =
(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗)), and the key kR of extracting PRF RG of the receiver at the points (r∗, µ1

∗)
and (r′, µ1

∗). In addition, we hardwire certain outputs inside programs of the receiver to make sure
that functionality of the programs doesn’t change. Indistinguishability holds by iO.

• HybB,2,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,2,P3B,3,DecB,2,SFakeB,3,RFakeB,2; rSetup) for randomly chosen
rSetup; r∗ is chosen at random, µ1

∗ is chosen at random, µ2
∗ is chosen at random,

µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Programs
can be found in fig. 99 (programs of the sender) and fig. 102 (programs of the receiver).

That is, we choose µ2
∗ at random instead of computing it as µ2

∗ = RGkS (r∗, µ1
∗). Indistinguishability

holds by pseudorandomness of the PRF SG at the punctured point (r∗, µ1
∗).

32The problem with µ3
∗ is that unmodified Dec on input (r∗, µ1

∗, µ2
∗, µ3

∗) outputs 1 ⊕ m∗0 (via main step), and on input
(r′, µ1

∗, µ2
∗, µ3

∗) it outputs ′fail′ (via trapdoor step, since levels in r′ and µ3
∗ are both 0 and “isLess = true” check fails. Because

of this difference, in HybB,2,1 we wouldn’t be able to modify program Dec such that the code treats r∗ and r′ in the same way.
However, after HybB,1,6 µ3

∗ is not a valid ciphertext anymore and thus in HybB,2,1 we can instruct Dec to output ′fail′ on both r∗

and r′.
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• HybB,2,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,2,P3B,3,DecB,2,SFakeB,3,RFakeB,2; rSetup) for randomly cho-
sen rSetup; r∗ is chosen at random, µ1

∗ is chosen at random, µ2
∗ is chosen at ran-

dom, µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0),
r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗) for randomly chosen ρ̂∗. Programs can be found in fig.

99 (programs of the sender) and fig. 102 (programs of the receiver).

That is, we switch the roles of r∗ and r′ everywhere in the distribution: namely, we give r′ (instead
of r∗) to the adversary as randomness of the receiver, and we change r∗ to r′ and r′ to r∗ everywhere
in the programs. Note that this doesn’t change the code of the programs since programs use r∗

and r′ in the same way. Indistinguishability holds by the symmetry of receiver-fake ACE, which
says that (r∗, r′,EKR{Sρ̂∗},DKR{r∗, r′}) is indistinguishable from (r′, r∗,EKR{Sρ̂∗},DKR{r′, r∗}),
where Sρ̂∗ = {(∗, ∗, ∗, ∗, ∗, ρ̂∗)}, p = (m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗), r∗ is randomly chosen, r′ =

ACE.EncEKR(p).

• HybB,2,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,2,P3B,3,DecB,2,SFakeB,3,RFakeB,2; rSetup) for randomly chosen rSetup; r∗ is
chosen at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗) for randomly

chosen ρ̂∗. Programs can be found in fig. 99 (programs of the sender) and fig. 102 (programs of the
receiver).

That is, we compute µ2
∗ as µ2

∗ = RGkR(r∗, µ1
∗) instead of choosing it at random. Indistinguishability

holds by pseudorandomness of the PRF RG at the punctured point (r∗, µ1
∗).

• HybB,2,5. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,1,P3B,3,DecB,1,SFakeB,3,RFakeB,1; rSetup) for randomly chosen rSetup; r∗ is
chosen at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗) for randomly

chosen ρ̂∗. Programs can be found in fig. 99 (programs of the sender) and fig. 101 (programs of the
receiver).

That is, we revert all changes we made to programs in HybB,2,1 and thus use original programs
P2,Dec,RFake, except that DK remains punctured at the point p = (1 ⊕m∗0, µ1

∗, µ2
∗, L∗0). Indis-

tinguishability holds by iO, since we remove puncturing without changing the functionality of the
programs.

• HybB,2,6. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,1,P3B,3,DecB,1,SFakeB,3,RFakeB,1; rSetup) for randomly cho-
sen rSetup; s∗, r∗ are chosen at random, µ1

∗ = SGkS (s∗,m∗0), µ2
∗ = RG(r∗, µ1

∗),
µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ =
ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗. Programs can be found
in fig. 99 (programs of the sender) and fig. 101 (programs of the receiver).

That is, we replace randomly chosen ρ̂∗ with prg(ρ∗) for randomly chosen ρ∗, when generating r′.
Indistinguishability holds by security of a prg.

Finally, in the following hybrids we revert all changes we made in hybrids HybB,1,1 - HybB,1,6, thus restoring
all programs (and making µ3

∗ a valid ciphertext):
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• HybB,3,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2,P3B,3,Dec, SFakeB,3,RFake; rSetup) for randomly chosen rSetup; r∗

is chosen at random, chosen at random, µ1
∗ is chosen at random, µ2

∗ = RG(r∗, µ1
∗),

µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ =
ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗. Programs can be found
in fig. 99 (programs of the sender) and fig. 100 (programs of the receiver).

That is, in programs Dec,RFake we unpuncture decryption key DK of the main ACE at the point
p = (1⊕m∗0, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by security of constrained decryption of ACE,

since the corresponding encryption key EK is punctured at this point.

• HybB,3,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,2,P2,P3B,2,Dec, SFakeB,2,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs can be found in fig. 98 (programs of the sender) and fig. 100 (programs
of the receiver).

That is, in program P3 we unpuncture encryption key EK of the main ACE at the point p = (1 ⊕
m∗0, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by iO, because of the same reason as in HybB,1,5.

• HybB,3,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,2,P2,P3B,2,Dec, SFakeB,2,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗0), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for

randomly chosen ρ∗. Programs can be found in fig. 98 (programs of the sender) and fig. 100 (programs
of the receiver).

That is, we choose µ1
∗ as µ1

∗ = SGkS (s∗,m∗0) instead of computing it at random. Indistinguishability
holds by the strong extracting property of the sender PRF SG (note that s∗ is not used anywhere else in
the distribution).

• HybB,3,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,1,P2,P3B,1,Dec, SFakeB,1,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗0), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for

randomly chosen ρ∗. Programs can be found in fig. 97 (programs of the sender) and fig. 100 (programs
of the receiver).

That is, in programs P1,P3,SFake we unpuncture decryption key DKS of the sender-fake ACE at the
same set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Indistinguishability holds by security of
constrained decryption of ACE, since the corresponding encryption key EKS is already punctured at
the same set.

• HybB,3,5. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; s∗, r∗ are cho-
sen at random, µ1

∗ = SG(s∗,m∗0), µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs can be found in fig. 96 (programs of the sender) and fig. 100 (programs
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of the receiver).

That is, in program SFake we unpuncture encryption key EKS of the sender-fake ACE at the set P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Indistinguishability holds by iO, since this modification
doesn’t change the functionality of SFake due to the fact that SFake never encrypts plaintexts with
level `∗0.

Note that HybB,3,5 is the same as HybC , conditioned on the fact that s∗, r∗ are outside of image of
ACE.
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Programs P1,P3,SFake.
Program P1(s,m)
Inputs: sender randomness s, message m.
Hardwired values: decryption key DKS of sender-fake ACE, key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS (s,m).

Program P3(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1, GenZero, Transform, RetrieveTag; decryption key
DKS of sender-fake ACE, encryption key EK of main ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFake(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1, GenZero, Increment; encryption and decryption keys
EKS ,DKS of sender-fake ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS (m̂, µ1, µ2, µ3, `+1).

3. Main step:
(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS (m̂, µ1, µ2, µ3, `1).

Figure 96: Programs P1,P3,SFake.
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Programs P1B,1,P3B,1, SFakeB,1.
Program P1B,1(s,m)
Inputs: sender randomness s, message m.
Hardwired values: decryption key DKS of sender-fake ACE, key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS (s,m).

Program P3B,1(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1B,1, GenZero, Transform, RetrieveTag; decryption
key DKS of sender-fake ACE, encryption key EK of main ACE.

1. Validity check: if P1B,1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeB,1(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1B,1, GenZero, Increment; punctured encryp-
tion key EKS{P`∗0} and decryption key DKS of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).
1. Validity check: if P1B,1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 97: Programs P1B,1,P3B,1, SFakeB,1, used in the proof of lemma 55 (indistinguishability of expla-
nations of the receiver).
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Programs P1B,2,P3B,2, SFakeB,2.
Program P1B,2(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), key kS of an extracting PRF SG.
1. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3B,2(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1B,2, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0),
encryption key EK of main ACE.

1. Validity check: if P1B,2(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeB,2(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1B,2, GenZero, Increment; punctured encryp-
tion and decryption keys EKS{P`∗0},DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).
1. Validity check: if P1B,2(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 98: Programs P1B,2,P3B,2, SFakeB,2, used in the proof of lemma 55 (indistinguishability of expla-
nations of the receiver).
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Programs P1B,3,P3B,3, SFakeB,3.
Program P1B,3(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), key kS of an extracting PRF SG.
1. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3B,3(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1B,3, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0),
punctured encryption key EK{p} of main ACE, where p = (1⊕m∗0, µ1

∗, µ2
∗, L∗0).

1. Validity check: if P1B,3(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK{p}(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK{p}(m,µ1, µ2, L0).

Program SFakeB,3(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1B,3, GenZero, Increment; punctured encryp-
tion and decryption keys EKS{P`∗0},DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).
1. Validity check: if P1B,3(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 99: Programs P1B,3,P3B,3, SFakeB,3, used in the proof of lemma 55 (indistinguishability of expla-
nations of the receiver).
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Programs P2,Dec,RFake.
Program P2(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: decryption key DKR of receiver-fake ACE, key kR of an extracting PRF RG.

1. Trapdoor step:
(a) out ← ACE.DecDKR(r); if out = ′fail′ then goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(b) If µ1 = µ1
′ then return µ2

′;
2. Main step:

(a) Return µ2 ← RGkR(r, µ1).

Program Dec(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P2, isLess, RetrieveTags; decryption key DKR of receiver-
fake ACE, decryption key DK of the main ACE.

1. Validity check: if P2(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKR(r); if out′ = ′fail′ then goto main step; else parse out′ as
(m′, µ1

′, µ2
′, µ3

′, L′, ρ̂);
(b) if µ1, µ2, µ3 = µ1

′, µ2
′, µ3

′ then return m′;
(c) out← ACE.DecDK(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1

′′, µ2
′′, L′′);

(d) If µ1, µ2 = µ1
′, µ2

′ then
i. If (µ1

′, µ2
′) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) and isLess(L′, L′′) = true then return m′′;

ii. Else abort.
3. Main step:

(a) out← ACE.DecDK(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
(b) If (µ1, µ2) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) then return m′′;

(c) Else abort.

Program RFake(m̂, µ1, µ2, µ3; ρ)
Inputs: fake message m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: encryption key EKR of receiver-fake ACE, decryption key DK of the main ACE.

1. out← ACE.DecDK(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
2. Return r′ ← ACE.EncEKR(m̂, µ1, µ2, µ3, L

′′, prg(ρ)).
Figure 100: Programs P2,Dec,RFake.
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Programs P2B,1,DecB,1,RFakeB,1.
Program P2B,1(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: decryption key DKR of receiver-fake ACE, key kR of an extracting PRF RG.

1. Trapdoor step:
(a) out ← ACE.DecDKR(r); if out = ′fail′ then goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(b) If µ1 = µ1
′ then return µ2

′;
2. Main step:

(a) Return µ2 ← RGkR(r, µ1).

Program DecB,1(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P2, isLess, RetrieveTags; decryption key DKR of receiver-
fake ACE, punctured decryption key DK{p} of the main ACE, where p = (1⊕m∗0, µ1

∗, µ2
∗, L∗0).

1. Validity check: if P2(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKR(r); if out′ = ′fail′ then goto main step; else parse out′ as
(m′, µ1

′, µ2
′, µ3

′, L′, ρ̂);
(b) if µ1, µ2, µ3 = µ1

′, µ2
′, µ3

′ then return m′;
(c) out← ACE.DecDK{p}(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1

′′, µ2
′′, L′′);

(d) If µ1, µ2 = µ1
′, µ2

′ then
i. If (µ1

′, µ2
′) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) and isLess(L′, L′′) = true then return m′′;

ii. Else abort.
3. Main step:

(a) out← ACE.DecDK{p}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
(b) If (µ1, µ2) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) then return m′′;

(c) Else abort.

Program RFakeB,1(m̂, µ1, µ2, µ3; ρ)
Inputs: fake message m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: encryption key EKR of receiver-fake ACE, punctured decryption key DK{p} of the main
ACE, where p = (1⊕m∗0, µ1

∗, µ2
∗, L∗0).

1. out← ACE.DecDK{p}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
2. Return r′ ← ACE.EncEKR(m̂, µ1, µ2, µ3, L

′′, prg(ρ)).
Figure 101: Programs P2B,1,DecB,1,RFakeB,1, used in the proof of lemma 55 (indistinguishability of
explanations of the receiver).
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Programs P2B,2,DecB,2,RFakeB,2.
Program P2B,2(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: punctured decryption key DKR{r∗, r′} of receiver-fake ACE, punctured key
kR{(r∗, µ1

∗), (r′, µ1
∗)} of an extracting PRF RG, variables r∗, r′, µ1

∗, µ2
∗.

1. Trapdoor step:
(a) If (r, µ1) = (r∗, µ1

∗) or (r, µ1) = (r′, µ1
∗) then return µ2

∗;
(b) If r = r∗ or r = r′ then goto main step;
(c) out ← ACE.DecDKR{r∗,r′}(r); if out = ′fail′ then goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(d) If µ1 = µ1
′ then return µ2

′;
2. Main step:

(a) Return µ2 ← RGkR{(r∗,µ1
∗),(r′,µ1

∗)}(r, µ1).

Program DecB,2(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P2B,2, isLess, RetrieveTags; punctured decryption
key DKR{r∗, r′} of receiver-fake ACE, punctured decryption key DK{p} of the main ACE, where p =
(1⊕m∗0, µ1

∗, µ2
∗, L∗0), variables r∗, r′, µ1

∗, µ2
∗, µ3

∗,m∗0.
1. Validity check: if P2B,2(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) If (r, µ1, µ2, µ3) = (r∗, µ1
∗, µ2

∗, µ3
∗) or (r, µ1, µ2, µ3) = (r′, µ1

∗, µ2
∗, µ3

∗) then return m∗0;
(b) If (r, µ1, µ2) = (r∗, µ1

∗, µ2
∗) or (r, µ1, µ2) = (r′, µ1

∗, µ2
∗) then then goto main step;

(c) If r = r∗ or r = r′ then goto main step;
(d) out ← ACE.DecDKR{r∗,r′}(r); if out′ = ′fail′ then goto main step; else parse out′ as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(e) if µ1, µ2, µ3 = µ1
′, µ2

′, µ3
′ then return m′;

(f) out← ACE.DecDK{p}(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1
′′, µ2

′′, L′′);
(g) If µ1, µ2 = µ1

′, µ2
′ then

i. If (µ1
′, µ2

′) = (µ1
′′, µ2

′′) = RetrieveTags(L′′) and isLess(L′, L′′) = true then return m′′;
ii. Else abort.

3. Main step:
(a) out← ACE.DecDK{p}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1

′′, µ2
′′, L′′);

(b) If (µ1, µ2) = (µ1
′′, µ2

′′) = RetrieveTags(L′′) then return m′′;
(c) Else abort.

Program RFakeB,2(m̂, µ1, µ2, µ3; ρ)
Inputs: fake message m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: punctured encryption key EKR{Sρ̂∗} of receiver-fake ACE, where Sρ̂∗ =
{(∗, ∗, ∗, ∗, ∗, ρ̂∗)} for randomly chosen ρ̂∗, punctured decryption key DK{p} of the main ACE, where
p = (1⊕m∗0, µ1

∗, µ2
∗, L∗0).

1. out← ACE.DecDK{p}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
2. Return r′ ← ACE.EncEKR{p}(m̂, µ1, µ2, µ3, L

′′, prg(ρ)).

Figure 102: Programs P2B,2,DecB,2,RFakeB,2, used in the proof of lemma 55 (indistinguishability of
explanations of the receiver).
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8.1.3 Proof of lemma 56 (Semantic security)

• HybC,1,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; s∗, r∗ are cho-
sen at random, µ1

∗ = SG(s∗,m∗0), µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs can be found in fig. 103 (programs of the sender) and fig. 107
(programs of the receiver).

Note that this distribution is exactly the distribution from HybC , conditioned on the fact that s∗, r∗ are
outside of image of ACE.

• HybC,1,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,1,P2,P3C,1,Dec, SFakeC,1,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗0), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for

randomly chosen ρ∗. Programs can be found in fig. 104 (programs of the sender) and fig. 107
(programs of the receiver).

That is, in program SFake we puncture encryption key EKS of the sender-fake ACE at the set P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Indistinguishability holds by iO, since this modification
doesn’t change the functionality of SFake due to the fact that SFake never encrypts plaintexts with
level `∗0.

• HybC,1,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,2,P2,P3C,2,Dec, SFakeC,2,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗0), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for

randomly chosen ρ∗. Programs can be found in fig. 105 (programs of the sender) and fig. 107
(programs of the receiver).

That is, in programs P1,P3,SFake we puncture decryption key DKS of the sender-fake ACE at the
same set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Indistinguishability holds by security of
constrained decryption of ACE, since the corresponding encryption key EKS is already punctured at
the same set.

• HybC,1,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,2,P2,P3C,2,Dec, SFakeC,2,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs can be found in fig. 105 (programs of the sender) and fig. 107
(programs of the receiver).

That is, we choose µ1
∗ at random instead of computing it as µ1

∗ = SGkS (s∗,m∗0). Indistinguishability
holds by the strong extracting property of the sender PRF SG (note that s∗ was not used anywhere else
in the distribution).

• HybC,1,5. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,2,P2,P3C,2,Dec, SFakeC,2,RFake; rSetup) for randomly chosen rSetup; µ1
∗

is chosen at random, µ2
∗ is chosen at random, µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0),
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s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗))
for randomly chosen ρ∗. Programs can be found in fig. 105 (programs of the sender) and fig. 107
(programs of the receiver).

That is, we choose µ2
∗ at random instead of computing it as µ2

∗ = RGkR(r∗, µ1
∗). Indistinguishability

holds by the strong extracting property of the receiver PRF RG (note that r∗ was not used anywhere
else in the distribution).

• HybC,2,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,3,P2,P3C,3,Dec, SFakeC,3,RFake; rSetup) for randomly chosen rSetup; µ1
∗

is chosen at random, µ2
∗ is chosen at random, µ3

∗ = ACE.EncEK(m∗0, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗))

for randomly chosen ρ∗. Programs can be found in fig. 106 (programs of the sender) and fig. 107
(programs of the receiver).

That is, in program P3 we puncture encryption key EK of the main ACE at the points p0 =
(m∗0, µ1

∗, µ2
∗, L∗0), p1 = (m∗1, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by iO, since P3 never needs to

encrypt these points. Roughly, this is because of the following: since µ1
∗ is random and outside of

the image of a PRF SG, P3 never encrypts p0, p1 in the main step. In order to encrypt it in trapdoor
step, P3 needs to take as input some fake s encoding level `∗0. However, due to the fact that DKS is
punctured at the set P`∗0 which contains all but one strings with `∗0, the only valid fake s with `∗0 is s′.
However, running P3 on s′ cannot result in encrypting p0 or p1 in the trapdoor step: in order to hit the
trapdoor step with s′, the input to P3 should be (s′,m∗0, µ1

∗, µ2
∗); however, in this case the program

immediately outputs µ3
′ without running an encryption algorithm.

• HybC,2,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,3,P2C,1,P3C,3,DecC,1,SFakeC,3,RFakeC,1; rSetup) for randomly chosen rSetup;
µ1
∗ is chosen at random, µ2

∗ is chosen at random, µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs can be found in fig. 106 (programs of the sender) and fig. 108
(programs of the receiver).

That is, in programs Dec,RFake we puncture decryption key DK of the main ACE at the point
p1 = (m∗1, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by security of constrained decryption of ACE,

since the corresponding encryption key EK is already punctured at this point (and encryption of p1 is
not used anywhere in the distribution).

• HybC,2,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,3,P2C,2,P3C,3,DecC,2,SFakeC,3,RFakeC,2; rSetup) for randomly chosen rSetup;
µ1
∗ is chosen at random, µ2

∗ is chosen at random, µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs can be found in fig. 106 (programs of the sender) and fig. 109
(programs of the receiver).

That is, we modify programs Dec and RFake by additionally puncturing decryption key of main ACE
DK at the point p0 = (m∗0, µ1

∗, µ2
∗, L∗0). In addition, we hardwire certain outputs inside program

RFake to make sure that its functionality doesn’t change. (Note that in program Dec we only puncture
keys, without hardwiring anything. However, this doesn’t change the functionality of Dec. This is
because Dec would output ⊥ when trying to decrypt an encryption of p0 anyway: roughly, this is
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because the main step cannot be reached because µ2
∗ doesn’t have a preimage, and trapdoor step would

output ⊥ because there doesn’t exist fake randomness with level smaller than 0.) Indistinguishability
holds by iO.

• HybC,2,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,3,P2C,2,P3C,3,DecC,2,SFakeC,3,RFakeC,2; rSetup) for randomly chosen rSetup;
µ1
∗ is chosen at random, µ2

∗ is chosen at random, µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs can be found in fig. 106 (programs of the sender) and fig. 109
(programs of the receiver).

That is, we generate µ3
∗ as an encryption of p1 = (m∗1, µ1

∗, µ2
∗, L∗0) instead of p0 =

(m∗0, µ1
∗, µ2

∗, L∗0). Indistinguishability holds by security of the main ACE, since encryption and
decryption keys EK, DK are punctured at both p0, p1.

• HybC,2,5. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,3,P2C,3,P3C,3,DecC,3,SFakeC,3,RFakeC,3; rSetup) for randomly chosen rSetup;
µ1
∗ is chosen at random, µ2

∗ is chosen at random, µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs can be found in fig. 106 (programs of the sender) and fig. 110
(programs of the receiver).

That is, we modify programs Dec and RFake by unpuncturing decryption key of main ACE DK at the
point p1 = (m∗1, µ1

∗, µ2
∗, L∗0) (note that DK remains punctured at p0 = (m∗0, µ1

∗, µ2
∗, L∗0)). We also

remove additional instructions introduced in HybC,2,3. Indistinguishability holds by iO, since we don’t
change functionality of the programs.

• HybC,2,6. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,3,P2,P3C,3,Dec, SFakeC,3,RFake; rSetup) for randomly chosen rSetup; µ1
∗

is chosen at random, µ2
∗ is chosen at random, µ3

∗ = ACE.EncEK(m∗1, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗))

for randomly chosen ρ∗. Programs can be found in fig. 106 (programs of the sender) and fig. 107
(programs of the receiver).

That is, in programs Dec,RFake we unpuncture decryption key DK of the main ACE at the point
p0 = (m∗0, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by security of constrained decryption of ACE,

since the corresponding encryption key EK is punctured at this point (and encryption of p0 is not used
anywhere in the distribution).

• HybC,2,7. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,2,P2,P3C,2,Dec, SFakeC,2,RFake; rSetup) for randomly chosen rSetup; µ1
∗

is chosen at random, µ2
∗ is chosen at random, µ3

∗ = ACE.EncEK(m∗1, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗))

for randomly chosen ρ∗. Programs can be found in fig. 105 (programs of the sender) and fig. 107
(programs of the receiver).

That is, in program P3 we unpuncture encryption key EK of the main ACE at the points p0 =
(m∗0, µ1

∗, µ2
∗, L∗0), p1 = (m∗1, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by iO, since this doesn’t

change functionality of P3 for the same reason as in HybC,2,1.
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• HybC,3,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,2,P2,P3C,2,Dec, SFakeC,2,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs can be found in fig. 105 (programs of the sender) and fig. 107
(programs of the receiver).

That is, we compute µ2
∗ as µ2

∗ = RGkR(r∗, µ1
∗) instead of choosing it at random. Indistinguishability

holds by the strong extracting property of the receiver PRF RG (note that r∗ is not used anywhere else
in the distribution).

• HybC,3,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,2,P2,P3C,2,Dec, SFakeC,2,RFake; rSetup) for randomly chosen rSetup; s∗ is
chosen at random, r∗ is chosen at random, µ1

∗ = SGkS (s∗,m∗1), µ2
∗ = RG(r∗, µ1

∗),
µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ =
ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗. Programs can be found
in fig. 105 (programs of the sender) and fig. 107 (programs of the receiver).

That is, we compute µ1
∗ as µ1

∗ = SGkS (s∗,m∗1) instead of choosing it at random. Indistinguishability
holds by the strong extracting property of the sender PRF SG (note that s∗ is not used anywhere else in
the distribution).

• HybC,3,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1C,1,P2,P3C,1,Dec, SFakeC,1,RFake; rSetup) for randomly chosen rSetup; s∗ is
chosen at random, r∗ is chosen at random, µ1

∗ = SGkS (s∗,m∗1), µ2
∗ = RG(r∗, µ1

∗),
µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ =
ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗. Programs can be found
in fig. 104 (programs of the sender) and fig. 107 (programs of the receiver).

That is, in programs P1,P3, SFake we unpuncture decryption key DKS of the sender-fake ACE at
the set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Indistinguishability holds by security of
constrained decryption of ACE, since the corresponding encryption key EKS is punctured at the same
set.

• HybC,3,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; s∗ is cho-
sen at random, r∗ is chosen at random, µ1

∗ = SGkS (s∗,m∗1), µ2
∗ = RG(r∗, µ1

∗),
µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ =
ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗. Programs can be found
in fig. 103 (programs of the sender) and fig. 107 (programs of the receiver).

That is, in program SFake we unpuncture encryption key EKS of the sender-fake ACE at the set P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Indistinguishability holds by iO, since this modification
doesn’t change the functionality of SFake due to the fact that SFake never encrypts plaintexts with
level `∗0.

Note that HybC,3,4 = HybD, conditioned on the fact that s∗, r∗ are outisde of image of ACE.
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Programs P1,P3,SFake.
Program P1(s,m)
Inputs: sender randomness s, message m.
Hardwired values: decryption key DKS of sender-fake ACE, key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS (s,m).

Program P3(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1, GenZero, Transform, RetrieveTag; decryption key
DKS of sender-fake ACE, encryption key EK of main ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFake(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1, GenZero, Increment; encryption and decryption keys
EKS ,DKS of sender-fake ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS (m̂, µ1, µ2, µ3, `+1).

3. Main step:
(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS (m̂, µ1, µ2, µ3, `1).

Figure 103: Programs P1,P3,SFake.
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Programs P1C,1,P3C,1, SFakeC,1.
Program P1C,1(s,m)
Inputs: sender randomness s, message m.
Hardwired values: decryption key DKS of sender-fake ACE, key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS (s,m).

Program P3C,1(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1C,1, GenZero, Transform, RetrieveTag; decryption
key DKS of sender-fake ACE, encryption key EK of main ACE.

1. Validity check: if P1C,1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeC,1(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1C,1, GenZero, Increment; punctured encryp-
tion key EKS{P`∗0} and decryption key DKS of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).
1. Validity check: if P1C,1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 104: Programs P1C,1,P3C,1, SFakeC,1, used in the proof of lemma 56 (semantic security).
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Programs P1C,2,P3C,2, SFakeC,2.
Program P1C,2(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), key kS of an extracting PRF SG.
1. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3C,2(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1C,2, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0),
encryption key EK of main ACE.

1. Validity check: if P1C,2(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeC,2(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1C,2, GenZero, Increment; punctured encryp-
tion and decryption keys EKS{P`∗0},DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).
1. Validity check: if P1C,2(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 105: Programs P1C,2,P3C,2, SFakeC,2, used in the proof of lemma 56 (semantic security).
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Programs P1C,3,P3C,3, SFakeC,3.
Program P1C,3(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), key kS of an extracting PRF SG.
1. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3C,3(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1C,3, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}\(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), punc-
tured encryption key EK{p0, p1} of main ACE, where p0 = (m∗0, µ1

∗, µ2
∗, L∗0), p1 = (m∗1, µ1

∗, µ2
∗, L∗0).

1. Validity check: if P1C,3(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK{p0,p1}(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK{p0,p1}(m,µ1, µ2, L0).

Program SFakeC,3(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1C,3, GenZero, Increment; punctured encryp-
tion and decryption keys EKS{P`∗0},DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).
1. Validity check: if P1C,3(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 106: Programs P1C,3,P3C,3, SFakeC,3, used in the proof of lemma 56 (semantic security).
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Programs P2,Dec,RFake.
Program P2(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: decryption key DKR of receiver-fake ACE, key kR of an extracting PRF RG.

1. Trapdoor step:
(a) out ← ACE.DecDKR(r); if out = ′fail′ then goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(b) If µ1 = µ1
′ then return µ2

′;
2. Main step:

(a) Return µ2 ← RGkR(r, µ1).

Program Dec(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P2, isLess, RetrieveTags; decryption key DKR of receiver-
fake ACE, decryption key DK of the main ACE.

1. Validity check: if P2(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKR(r); if out′ = ′fail′ then goto main step; else parse out′ as
(m′, µ1

′, µ2
′, µ3

′, L′, ρ̂);
(b) if µ1, µ2, µ3 = µ1

′, µ2
′, µ3

′ then return m′;
(c) out← ACE.DecDK(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1

′′, µ2
′′, L′′);

(d) If µ1, µ2 = µ1
′, µ2

′ then
i. If (µ1

′, µ2
′) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) and isLess(L′, L′′) = true then return m′′;

ii. Else abort.
3. Main step:

(a) out← ACE.DecDK(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
(b) If (µ1, µ2) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) then return m′′;

(c) Else abort.

Program RFake(m̂, µ1, µ2, µ3; ρ)
Inputs: fake message m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: encryption key EKR of receiver-fake ACE, decryption key DK of the main ACE.

1. out← ACE.DecDK(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
2. Return r′ ← ACE.EncEKR(m̂, µ1, µ2, µ3, L

′′, prg(ρ)).
Figure 107: Programs P2,Dec,RFake.
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Programs P2C,1,DecC,1,RFakeC,1.
Program P2C,1(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: decryption key DKR of receiver-fake ACE, key kR of an extracting PRF RG.

1. Trapdoor step:
(a) out ← ACE.DecDKR(r); if out = ′fail′ then goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(b) If µ1 = µ1
′ then return µ2

′;
2. Main step:

(a) Return µ2 ← RGkR(r, µ1).

Program DecC,1(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P2C,1, isLess, RetrieveTags; decryption key DKR of
receiver-fake ACE, punctured decryption key DK{p1} of the main ACE, where p1 = (m∗1, µ1

∗, µ2
∗, L∗0).

1. Validity check: if P2C,1(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKR(r); if out′ = ′fail′ then goto main step; else parse out′ as
(m′, µ1

′, µ2
′, µ3

′, L′, ρ̂);
(b) if µ1, µ2, µ3 = µ1

′, µ2
′, µ3

′ then return m′;
(c) out← ACE.DecDK{p1}(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1

′′, µ2
′′, L′′);

(d) If µ1, µ2 = µ1
′, µ2

′ then
i. If (µ1

′, µ2
′) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) and isLess(L′, L′′) = true then return m′′;

ii. Else abort.
3. Main step:

(a) out← ACE.DecDK{p1}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
(b) If (µ1, µ2) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) then return m′′;

(c) Else abort.

Program RFakeC,1(m̂, µ1, µ2, µ3; ρ)
Inputs: fake message m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: encryption key EKR of receiver-fake ACE, punctured decryption key DK{p1} of the
main ACE, where p1 = (m∗1, µ1

∗, µ2
∗, L∗0).

1. out← ACE.DecDK{p1}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
2. Return r′ ← ACE.EncEKR(m̂, µ1, µ2, µ3, L

′′, prg(ρ)).
Figure 108: Programs P2C,1,DecC,1,RFakeC,1, used in the proof of lemma 56 (semantic security).
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Programs P2C,2,DecC,2,RFakeC,2.
Program P2C,2(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: decryption key DKR of receiver-fake ACE, key kR of an extracting PRF RG.

1. Trapdoor step:
(a) out ← ACE.DecDKR(r); if out = ′fail′ then goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(b) If µ1 = µ1
′ then return µ2

′;
2. Main step:

(a) Return µ2 ← RGkR(r, µ1).

Program DecC,2(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P2C,2, isLess, RetrieveTags; decryption key DKR of
receiver-fake ACE, punctured decryption key DK{p0, p1} of the main ACE, where p0 = (m∗0, µ1

∗, µ2
∗, L∗0),

p1 = (m∗1, µ1
∗, µ2

∗, L∗0).
1. Validity check: if P2C,2(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKR(r); if out′ = ′fail′ then goto main step; else parse out′ as
(m′, µ1

′, µ2
′, µ3

′, L′, ρ̂);
(b) if µ1, µ2, µ3 = µ1

′, µ2
′, µ3

′ then return m′;
(c) out← ACE.DecDK{p0,p1}(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1

′′, µ2
′′, L′′);

(d) If µ1, µ2 = µ1
′, µ2

′ then
i. If (µ1

′, µ2
′) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) and isLess(L′, L′′) = true then return m′′;

ii. Else abort.
3. Main step:

(a) out← ACE.DecDK{p0,p1}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
(b) If (µ1, µ2) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) then return m′′;

(c) Else abort.

Program RFakeC,2(m̂, µ1, µ2, µ3; ρ)
Inputs: fake message m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: encryption key EKR of receiver-fake ACE, punctured decryption key DK{p0, p1} of the
main ACE, where p0 = (m∗0, µ1

∗, µ2
∗, L∗0), p1 = (m∗1, µ1

∗, µ2
∗, L∗0), variables µ3

∗, L∗0.
1. If µ3 = µ3

∗ then set L′′ = L∗0;
else out← ACE.DecDK{p0,p1}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1

′′, µ2
′′, L′′);

2. Return r′ ← ACE.EncEKR(m̂, µ1, µ2, µ3, L
′′, prg(ρ)).

Figure 109: Programs P2C,2,DecC,2,RFakeC,2, used in the proof of lemma 56 (semantic security).
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Programs P2C,3,DecC,3,RFakeC,3.
Program P2C,3(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: decryption key DKR of receiver-fake ACE, key kR of an extracting PRF RG.

1. Trapdoor step:
(a) out ← ACE.DecDKR(r); if out = ′fail′ then goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(b) If µ1 = µ1
′ then return µ2

′;
2. Main step:

(a) Return µ2 ← RGkR(r, µ1).

Program DecC,3(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P2C,3, isLess, RetrieveTags; decryption key DKR of
receiver-fake ACE, punctured decryption key DK{p0} of the main ACE, where p0 = (m∗0, µ1

∗, µ2
∗, L∗0).

1. Validity check: if P2C,3(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKR(r); if out′ = ′fail′ then goto main step; else parse out′ as
(m′, µ1

′, µ2
′, µ3

′, L′, ρ̂);
(b) if µ1, µ2, µ3 = µ1

′, µ2
′, µ3

′ then return m′;
(c) out← ACE.DecDK{p0}(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1

′′, µ2
′′, L′′);

(d) If µ1, µ2 = µ1
′, µ2

′ then
i. If (µ1

′, µ2
′) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) and isLess(L′, L′′) = true then return m′′;

ii. Else abort.
3. Main step:

(a) out← ACE.DecDK{p0}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
(b) If (µ1, µ2) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) then return m′′;

(c) Else abort.

Program RFakeC,3(m̂, µ1, µ2, µ3; ρ)
Inputs: fake message m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: encryption key EKR of receiver-fake ACE, punctured decryption key DK{p0} of the
main ACE, where p0 = (m∗0, µ1

∗, µ2
∗, L∗0).

1. out← ACE.DecDK{p0}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
2. Return r′ ← ACE.EncEKR(m̂, µ1, µ2, µ3, L

′′, prg(ρ)).
Figure 110: Programs P2C,3,DecC,3,RFakeC,3, used in the proof of lemma 56 (semantic security).
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8.1.4 Proof of lemma 57 (Indistinguishability of levels)

• HybD,1,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; s∗, r∗ are cho-
sen at random, µ1

∗ = SG(s∗,m∗1), µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 111.

Note that this distribution is exactly the distribution from HybC , conditioned on the fact that s∗, r∗ are
outside of image of ACE.

• HybD,1,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1D,1,P2,P3D,1,Dec,SFakeD,1,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗1), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗1, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for

randomly chosen ρ∗. Programs of the sender can be found in fig. 112.

That is, in program SFake we puncture encryption key EKS of the sender-fake ACE at the set P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Indistinguishability holds by iO, since this modification
doesn’t change the functionality of SFake due to the fact that SFake never encrypts plaintexts with
level `∗0.

• HybD,1,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1D,2,P2,P3D,2,Dec,SFakeD,2,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗1), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗1, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for

randomly chosen ρ∗. Programs of the sender can be found in fig. 113.

That is, in programs P1,P3,SFake we puncture decryption key DKS of the sender-fake ACE at the
same set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Indistinguishability holds by security of
constrained decryption of ACE, since the corresponding encryption key EKS is already punctured at
the same set.

• HybD,1,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1D,2,P2,P3D,2,Dec,SFakeD,2,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 113.

That is, we choose µ1
∗ at random instead of computing it as µ1

∗ = SGkS (s∗,m∗1). Indistinguishability
holds by the strong extracting property of the sender PRF SG (note that s∗ was not used anywhere else
in the distribution).

• HybD,2,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1D,3,P2,P3D,3,Dec,SFakeD,3,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 114.

That is, in programs P3 and SFake we use punctured programs GenZero[µ1
∗], Transform[`∗0, µ2

∗].
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Indistinguishability holds by iO, since this doesn’t change functionality of P3 and SFake. Roughly,
this is because of the following:

Since µ1
∗ is random and outside of the image of a PRF SG, programs P3 and SFake never call

GenZero(µ1
∗) in the main step, and program P3 never calls Transform(`∗0, µ2

∗) in the main step.

In order to call Transform(`∗0, µ2
∗) in trapdoor step, P3 needs to take as input some fake s encoding

level `∗0. However, due to the fact that DKS is punctured at the set P`∗0 which contains all but one
strings with `∗0, the only valid fake s with `∗0 is s′. However, running P3 on s′ cannot result in calling
Transform(`∗0, µ2

∗) in the trapdoor step: in order to hit the trapdoor step with s′ and run Transform with
µ2 = µ2

∗, the input to P3 should be (s′,m∗0, µ1
∗, µ2

∗); however, in this case the program immediately
outputs µ3

′ without running Transform.

• HybD,2,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1D,4,P2,P3D,4,Dec,SFakeD,4,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 115.

That is, we switch the single-tag level used in generation of s′ from `∗0 = [0, µ1
∗] to `∗1 = [1, µ1

∗].
Indistinguishability holds by security of level system: recall that it guarantees that `∗0 is indistinguishable
from `∗1, even given L∗0 = [0, µ1

∗, µ2
∗] and punctured programs of the level system.

Note that now keys EKS ,DKS of the sender-fake ACE become punctured at the set P`∗1 =
{(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1) instead of P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0),

and program Transform becomes punctured at the point (`∗1, µ2
∗) instead of (`∗0, µ2

∗).

• HybD,2,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1D,5,P2,P3D,5,Dec,SFakeD,5,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 116.

That is, in programs P3 and SFake we use original programs GenZero, Transform instead of punctured
programs GenZero[µ1

∗], Transform[`∗1, µ2
∗]. Indistinguishability holds by iO, since this doesn’t change

functionality of P3 and SFake. Roughly, this is because of similar reasoning as in HybD, except for `∗1
instead of `∗0:

Since µ1
∗ is random and outside of the image of a PRF SG, programs P3 and SFake never call

GenZero(µ1
∗) in the main step, and program P3 never calls Transform(`∗1, µ2

∗) in the main step.

In order to call Transform(`∗1, µ2
∗) in trapdoor step, P3 needs to take as input some fake s encoding

level `∗1. However, due to the fact that DKS is punctured at the set P`∗1 which contains all but one
strings with `∗1, the only valid fake s with `∗1 is s′. However, running P3 on s′ cannot result in calling
Transform(`∗1, µ2

∗) in the trapdoor step: in order to hit the trapdoor step with s′ and run Transform with
µ2 = µ2

∗, the input to P3 should be (s′,m∗0, µ1
∗, µ2

∗); however, in this case the program immediately
outputs µ3

′ without running Transform.

• HybD,3,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1D,6,P2,P3D,6,Dec,SFakeD,6,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),
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s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 117.

That is, in program SFake we additionally puncture encryption key EKS of the sender-fake ACE at
the set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} (recall that it is already punctured at the set P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1)). Indistinguishability holds by security of iO, since this modification doesn’t
change the functionality of SFake due to the fact that SFake never encrypts plaintexts with level `∗0.

• HybD,3,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1D,7,P2,P3D,7,Dec,SFakeD,7,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 118.

That is, in programs P1,P3, SFake we additionally puncture decryption key DKS of the sender-
fake ACE at the set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} (recall that it is already punctured at the set P`∗1 =
{(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1)). Indistinguishability holds by security of constrained de-
cryption of ACE, since the corresponding encryption key EK is already punctured at P`∗0 ∪ P`∗1 .

• HybD,3,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1D,8,P2,P3D,8,Dec,SFakeD,8,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 119.

That is, in programs P1,P3, SFake we unpuncture decryption key DKS of the sender-fake ACE at
the set P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1) (but this key still remains punctured at the set
P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}). Indistinguishability holds by security of constrained decryption of ACE, since
the corresponding encryption key EK is already punctured at P`∗0 ∪ P`∗1 .

• HybD,3,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1D,9,P2,P3D,9,Dec,SFakeD,9,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 120.

That is, in program SFake we unpuncture encryption key EKS of the sender-fake ACE at the set
P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1) (but this key still remains punctured at the set
P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}). Indistinguishability holds by security of iO, since this doesn’t change the
functionality of SFake. Indeed, the program never needs to encrypt any plaintext containing `∗1 because
of the following. Since µ1

∗ is random and outside of the image of a PRF SG, program SFake never
calls GenZero(µ1

∗) in the main step and thus never needs to encrypt `∗1 = Increment(GenZero(µ1
∗)).

In order to encrypt a plaintext containing `∗1 in the trapdoor step, SFake needs to get as input fake s
which contains `∗0. However, since DKS is punctured at P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}, there do not exist valid
fake s with `∗0, thus the program never needs to encrypt plaintexts with `∗1.

• HybD,3,5. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1D,10,P2,P3D,10,Dec, SFakeD,10,RFake; rSetup) for randomly chosen rSetup; r∗ is cho-
sen at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),
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s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 121.

That is, in programs P1,P3,SFake we unpuncture decryption key DKS of the sender-fake ACE at the
set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}. Indistinguishability holds by security of constrained decryption of ACE,
since the corresponding encryption key EK is already punctured at P`∗0 .

• HybD,3,6. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen at
random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs of the sender can be found in fig. 122.

That is, in program SFake we unpuncture encryption key EKS of the sender-fake ACE at the set
P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}. Indistinguishability holds by security of iO, since this doesn’t change the
functionality of SFake since SFake never needs to encrypt plaintexts with `∗0.

• HybD,3,7. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; s∗ is cho-
sen at random, r∗ is chosen at random, µ1

∗ = SGkS (s∗,m∗1), µ2
∗ = RG(r∗, µ1

∗),
µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ =
ACE.EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗. Programs of the sender
can be found in fig. 122.

That is, we compute µ1
∗ as µ1

∗ = SGkS (s∗,m∗1) instead of choosing it at random. Indistinguishability
holds by the strong extracting property of the sender PRF SG (note that s∗ is not used anywhere else in
the distribution).

Note that HybD,3,7 = HybE .
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Programs P1,P3,SFake.
Program P1(s,m)
Inputs: sender randomness s, message m.
Hardwired values: decryption key DKS of sender-fake ACE, key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS (s,m).

Program P3(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1, GenZero, Transform, RetrieveTag; decryption key
DKS of sender-fake ACE, encryption key EK of main ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFake(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1, GenZero, Increment; encryption and decryption keys
EKS ,DKS of sender-fake ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS (m̂, µ1, µ2, µ3, `+1).

3. Main step:
(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS (m̂, µ1, µ2, µ3, `1).

Figure 111: Programs P1,P3,SFake.
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Programs P1D,1,P3D,1, SFakeD,1.
Program P1D,1(s,m)
Inputs: sender randomness s, message m.
Hardwired values: decryption key DKS of sender-fake ACE, key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS (s,m).

Program P3D,1(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1D,1, GenZero, Transform, RetrieveTag; decryption
key DKS of sender-fake ACE, encryption key EK of main ACE.

1. Validity check: if P1D,1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeD,1(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1D,1, GenZero, Increment; punctured encryp-
tion key EKS{P`∗0} and decryption key DKS of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).
1. Validity check: if P1D,1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 112: Programs P1D,1,P3D,1,SFakeD,1, used in the proof of lemma 57 (security of levels).
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Programs P1D,2,P3D,2, SFakeD,2.
Program P1D,2(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), key kS of an extracting PRF SG.
1. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3D,2(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1D,2, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0),
encryption key EK of main ACE.

1. Validity check: if P1D,2(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeD,2(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1D,2, GenZero, Increment; punctured encryp-
tion and decryption keys EKS{P`∗0},DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).
1. Validity check: if P1D,2(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 113: Programs P1D,2,P3D,2,SFakeD,2, used in the proof of lemma 57 (security of levels).
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Programs P1D,3,P3D,3, SFakeD,3.
Program P1D,3(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), key kS of an extracting PRF SG.
1. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3D,3(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1D,3, punctured GenZero[µ1

∗], punctured
Transform[(`∗0, µ2

∗)], RetrieveTag; punctured decryption key DKS{P`∗0} of sender-fake ACE, where
P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), encryption key EK of main ACE.
1. Validity check: if P1D,3(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform[(`∗0, µ2

∗)](`′, µ2);
iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);

3. Main step:
(a) Set L0 ← Transform[(`∗0, µ2

∗)](GenZero[µ1
∗](µ1), µ2);

(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeD,3(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1D,3, punctured GenZero[µ1

∗], Increment; punctured
encryption and decryption keys EKS{P`∗0},DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).
1. Validity check: if P1D,3(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero[µ1
∗](µ1));

(b) Return ACE.EncEKS{P`∗0}
(m̂, µ1, µ2, µ3, `1).

Figure 114: Programs P1D,3,P3D,3,SFakeD,3, used in the proof of lemma 57 (security of levels).
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Programs P1D,4,P3D,4, SFakeD,4.
Program P1D,4(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗1} of sender-fake ACE, where P`∗1 =
{(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), key kS of an extracting PRF SG.
1. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3D,4(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1D,4, punctured GenZero[µ1

∗], punctured
Transform[(`∗1, µ2

∗)], RetrieveTag; punctured decryption key DKS{P`∗1} of sender-fake ACE, where
P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), encryption key EK of main ACE.
1. Validity check: if P1D,4(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform[(`∗1, µ2

∗)](`′, µ2);
iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);

3. Main step:
(a) Set L0 ← Transform[(`∗1, µ2

∗)](GenZero[µ1
∗](µ1), µ2);

(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeD,4(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1D,4, punctured GenZero[µ1

∗], Increment; punctured
encryption and decryption keys EKS{P`∗1},DKS{P`∗1} of sender-fake ACE, where P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1).
1. Validity check: if P1D,4(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗1}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero[µ1
∗](µ1));

(b) Return ACE.EncEKS{P`∗1}
(m̂, µ1, µ2, µ3, `1).

Figure 115: Programs P1D,4,P3D,4,SFakeD,4, used in the proof of lemma 57 (security of levels).
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Programs P1D,5,P3D,5, SFakeD,5.
Program P1D,5(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗1} of sender-fake ACE, where P`∗1 =
{(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), key kS of an extracting PRF SG.
1. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3D,5(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1D,5, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗1} of sender-fake ACE, where P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1),
encryption key EK of main ACE.

1. Validity check: if P1D,5(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeD,5(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1D,5, GenZero, Increment; punctured encryp-
tion and decryption keys EKS{P`∗1},DKS{P`∗1} of sender-fake ACE, where P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1).
1. Validity check: if P1D,5(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗1}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗1}

(m̂, µ1, µ2, µ3, `1).

Figure 116: Programs P1D,5,P3D,5,SFakeD,5, used in the proof of lemma 57 (security of levels).
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Programs P1D,6,P3D,6, SFakeD,6.
Program P1D,6(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗1} of sender-fake ACE, where P`∗1 =
{(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), key kS of an extracting PRF SG.
1. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3D,6(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1D,6, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗1} of sender-fake ACE, where P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1),
encryption key EK of main ACE.

1. Validity check: if P1D,6(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeD,6(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1D,6, GenZero, Increment; punctured encryption
and decryption keys EKS{P`∗1 ∪ P`∗0},DKS{P`∗1} of sender-fake ACE, where P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}.
1. Validity check: if P1D,6(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗1∪P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗1∪P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 117: Programs P1D,6,P3D,6,SFakeD,6, used in the proof of lemma 57 (security of levels).
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Programs P1D,7,P3D,7, SFakeD,7.
Program P1D,7(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗1 ∪ P`∗0} of sender-fake ACE, where P`∗1 =
{(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}, key kS of an extracting PRF SG.
1. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1∪P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3D,7(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1D,7, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗1 ∪ P`∗0} of sender-fake ACE, where P`∗1 = {(∗, ∗, ∗, ∗, `∗1)}\(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1),
P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}, encryption key EK of main ACE.

1. Validity check: if P1D,7(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1∪P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeD,7(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1D,7, GenZero, Increment; punctured encryption and
decryption keys EKS{P`∗1 ∪ P`∗0},DKS{P`∗1 ∪ P`∗0} of sender-fake ACE, where P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}.
1. Validity check: if P1D,7(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗1∪P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗1∪P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗1∪P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 118: Programs P1D,7,P3D,7,SFakeD,7, used in the proof of lemma 57 (security of levels).
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Programs P1D,8,P3D,8, SFakeD,8.
Program P1D,8(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)},
key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out ← ACE.DecDKS{P`∗0}

(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3D,8(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1D,8, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}, encryption key EK of main
ACE.

1. Validity check: if P1D,8(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeD,8(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1D,8, GenZero, Increment; punctured encryption
and decryption keys EKS{P`∗1 ∪ P`∗0},DKS{P`∗0} of sender-fake ACE, where P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}.
1. Validity check: if P1D,8(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗1∪P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗1∪P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 119: Programs P1D,8,P3D,8,SFakeD,8, used in the proof of lemma 57 (security of levels).
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Programs P1D,9,P3D,9, SFakeD,9.
Program P1D,9(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)},
key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out ← ACE.DecDKS{P`∗0}

(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3D,9(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1D,9, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}, encryption key EK of main
ACE.

1. Validity check: if P1D,9(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeD,9(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1D,9, GenZero, Increment; punctured encryption and
decryption keys EKS{P`∗0},DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}.

1. Validity check: if P1D,9(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 120: Programs P1D,9,P3D,9,SFakeD,9, used in the proof of lemma 57 (security of levels).
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Programs P1D,10,P3D,10, SFakeD,10.
Program P1D,10(s,m)
Inputs: sender randomness s, message m.
Hardwired values: decryption key DKS of sender-fake ACE, key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS (s,m).

Program P3D,10(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1D,10, GenZero, Transform, RetrieveTag; decryption
key DKS of sender-fake ACE, encryption key EK of main ACE.

1. Validity check: if P1D,10(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFakeD,10(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1D,10, GenZero, Increment; punctured encryption key
EKS{P`∗0} and decryption key DKS of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}.

1. Validity check: if P1D,10(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 121: Programs P1D,10,P3D,10,SFakeD,10, used in the proof of lemma 57 (security of levels).
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Programs P1,P3,SFake.
Program P1(s,m)
Inputs: sender randomness s, message m.
Hardwired values: decryption key DKS of sender-fake ACE, key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1

′, µ2
′, µ3

′, `′);
(b) If m = m′ then return µ1

′;
2. Main step:

(a) Return µ1 ← SGkS (s,m).

Program P3(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1, GenZero, Transform, RetrieveTag; decryption key
DKS of sender-fake ACE, encryption key EK of main ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK(m,µ1, µ2, L0).

Program SFake(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1, GenZero, Increment; encryption and decryption keys
EKS ,DKS of sender-fake ACE.

1. Validity check: if P1(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out← ACE.DecDKS (s); if out = ′fail′ goto main step, else parse out as (m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS (m̂, µ1, µ2, µ3, `+1).

3. Main step:
(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS (m̂, µ1, µ2, µ3, `1).

Figure 122: Programs P1,P3,SFake.
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8.2 Detailed proof of security

In this section we present formal security reductions for each hybrid described in section 8.1.

We denote by σ′ the maximum size of programs of deniable encryption in the construction and the proof.
Since our construction uses multiple layers of obfuscation, σ′ is some polynomial of λ. As we note in
appendix B, we could instead use only one layer of obfuscation, and the resulting code would have size
σ = O(λ3).

8.2.1 Reductions in the proof of lemma 54 (Indistinguishability of explanation of the sender)

Let t(λ) be any function in Ω(poly(λ)), and let ε(λ) be a negligible function in w(2−λ). Assuming the
sender-fake relaxed ACE, sparse extracting puncturable PRF, and iO for program size σ′ is (t(λ), ε(λ))-secure,
we show that no time-t(λ) adversary can distinguish between HybA and HybB with more than O(ε(λ))
advantage.

Note that conditioning on s∗ begin not in the image of ACE incurs only 2−λ loss and therefore we omit it.

Lemma 58. Statistical distance between distributions HybA,HybA,1 is at most 2−λ.

Proof. Since randomly chosen s∗ is a valid ciphertext of sender ACE with probability at most 2−λ, with
all but this probability both P1 and P3 will fail do decrypt s∗ under DKS and therefore will run main step,
outputting µ1

∗ = SGkS (s∗,m∗0) and µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0), respectively.

Lemma 59. Assume s∗ is outside of the image of sender ACE. Then, if there exists an adversary which can
distinguish HybA,1 and HybA,2 in time t(λ) with advantage ε(λ), then there exists an adversary which can
break iO for programs of size σ′ in time t(λ) + poly(λ) with distinguishing advantage 1

3 · ε(λ).

Proof. Below we analyze all three pairs of programs assuming that s∗ is outside the image of sender ACE,
and thus ACE.DecDKS (s∗) = ′fail′. We show that programs have the same functionality. We use the fact that
all underlying primitives satisfy correctness.

Program P1. We present case analysis to show that the behavior of programs P1 and P1A,1 on each input is
the same:

• Case s = s∗:

– Case m = m∗0: P1 outputs µ1
∗ via main step since s∗ is outside of image of ACE. P1A,1 outputs

µ1
∗ due to hardwired instruction.

– Case m 6= m∗0: P1 executes main step and outputs SGkS (s∗,m) since s∗ is outside of image of
ACE. P1A,1 executes main step and outputs SGkS (s∗,m) due to hardwired instruction.

• Case s = s′:

– Case m = m∗0: P1 outputs µ1
∗ via trapdoor step. P1A,1 outputs µ1

∗ due to hardwired instruction.

– Case m 6= m∗0: P1 skips the trapdoor step since s′ contains the wrong m∗0 6= m, and outputs
SGkS (s′,m). P1A,1 executes main step and output SGkS (s′,m) due to hardwired instruction.
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• Case s 6= s′, s∗: P1 and P1A,1 execute the same code, since punctured keys preserve functionality on
all inputs which are not punctured (note that when s 6= s′, s∗ keys are indeed never used at punctured
points).

Program P3. Next we compare programs P3 and P3A,1. Note that validity check passes on the same set of
inputs in programs P3 and P3A,1, since programs P1 and P1A,1 are functionally equivalent. We present the
analysis assuming inputs passed the validity check.

• Case s = s∗:

– Case (m,µ1) = (m∗0, µ1
∗):

∗ Case µ2 = µ2
∗: P3 outputs µ3

∗ via main step since s∗ is outside of image of ACE. P3A,1
outputs µ3

∗ due to hardwired instruction.

∗ Case µ2 6= µ2
∗: P3 outputs EncEK(m∗0, µ1

∗, µ2,Transform(GenZero(µ1
∗), µ2))

via main step since s∗ is outside of image of ACE. P3A,1 outputs
EncEK(m∗0, µ1

∗, µ2,Transform(`∗0, µ2)) due to hardwired instruction. Note that
GenZero(µ1

∗) = `∗0 and thus both outputs are the same.

– Case (m,µ1) 6= (m∗0, µ1
∗): P3 executes main step and outputs

EncEK(m,µ1, µ2,Transform(GenZero(µ1), µ2)) since s∗ is outside of image
of ACE. P3A,1 executes main step due to hardwired instruction and outputs
EncEK(m,µ1, µ2,Transform(GenZero(µ1), µ2)).

• Case s = s′:

– Case (m,µ1) = (m∗0, µ1
∗):

∗ Case µ2 = µ2
∗: P3 outputs µ1

∗ via trapdoor step. P3A,1 outputs µ1
∗ due to hardwired

instruction.

∗ Case µ2 6= µ2
∗: P3 gets level `∗0 from s′ and outputs EncEK(m∗0, µ1

∗, µ2,Transform(`∗0, µ2))
via trapdoor step. P3A,1 outputs EncEK(m∗0, µ1

∗, µ2,Transform(`∗0, µ2)) due to hardwired
instruction.

– Case (m,µ1) 6= (m∗0, µ1
∗): P3 skips the trapdoor step since s′ contains the wrong

(m∗0, µ1
∗) 6= (m,µ1), and outputs EncEK(m,µ1, µ2,Transform(GenZero(µ1), µ2)) via

main step. P3A,1 executes main step due to hardwired instruction and outputs
EncEK(m,µ1, µ2,Transform(GenZero(µ1), µ2)).

• Case s 6= s′, s∗: P3 and P3A,1 execute the same code, since punctured keys preserve functionality on
all inputs which are not punctured. Note that in this case these keys are never used at punctured points.

Program SFake.Next we compare programs SFake and SFakeA,1. Note that validity check passes on the
same set of inputs in programs SFake and SFakeA,1, since programs P1 and P1A,1 are functionally equivalent.
We present the analysis assuming inputs passed the validity check.

• Case s = s∗:

– Case (m,µ1) = (m∗0, µ1
∗) (for arbitrary (m̂, µ2, µ3)): SFake outputs

ACE.EncEKS (m̂, µ1
∗, µ2, µ3, Increment(GenZero(µ1

∗))) via main step since s∗ is out-
side of image of ACE. SFakeA,1 outputs ACE.EncEKS (m̂, µ1

∗, µ2, µ3, Increment(`∗0)) due to
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hardwired instruction. Note that GenZero(µ1
∗) = `∗0 and thus both outputs are the same.

– Case (m,µ1) 6= (m∗0, µ1
∗) (for arbitrary (m̂, µ2, µ3)): SFake executes main step since s∗ is

outside of image of ACE and outputs ACE.EncEKS (m̂, µ1, µ2, µ3, Increment(GenZero(µ1))).
SFakeA,1 skips the trapdoor step due to hardwired instruction and outputs the same value via
main step.

• Case s = s′:

– Case (m,µ1) = (m∗0, µ1
∗) (for arbitrary (m̂, µ2, µ3)): SFake gets `∗0 from s′, increments it and

outputs ACE.EncEKS (m̂, µ1
∗, µ2, µ3, Increment(`∗0)). SFakeA,1 outputs the same value due to

hardwired instruction.

– Case (m,µ1) 6= (m∗0, µ1
∗) (for arbitrary (m̂, µ2, µ3)): SFake skips the

trapdoor step since s′ contains the wrong (m∗0, µ1
∗) 6= (m,µ1), and

outputs ACE.EncEKS (m̂, µ1, µ2, µ3, Increment(GenZero(µ1))) via main step.
SFakeA,1 skips the trapdoor step due to hardwired instruction and outputs
EncEK(m,µ1, µ2,Transform(GenZero(µ1), µ2)) via main step.

• Case s 6= s′, s∗: SFake and SFakeA,1 execute the same code, since punctured keys preserve func-
tionality on all inputs which are not punctured. Note that keys are never used at punctured points
(in particular, the program never needs to encrypt a plaintext containing `∗0, and thus the key can be
punctured at S`∗0 = {∗, ∗, ∗, ∗, `∗0}).

Lemma 60. Assume s∗ is outside of the image of sender ACE. Then, if there exists an adversary which can
distinguish HybA,2 and HybA,3 in time t(λ) with advantage ε(λ), then there exists an adversary which can
break security of a puncturable PRF SGkS in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. We give a reduction from indistinguishability of hybrids HybA,2 and HybA,3 to security of a punc-
turable PRF SGkS at the punctured point (s∗,m∗0).

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. Next it chooses random s∗ and sends the

point (s∗,m∗0) to the challenger of puncturable PRF game. The reduction gets back from the challenger the
punctured key kS{(s∗,m∗0)} and the value µ1

∗, which is either SGkS (s∗,m∗0) or randomly chosen.

Next the reduction reconstructs the rest of the distribution as follows. It samples all keys used in programs
(except kS{(s∗,m∗0)}), namely keys EK,DK of the main ACE, keys EKS ,DKS of the sender ACE, keys
EKR,DKR of the receiver ACE, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random r∗ and sets µ2
∗ = RGkR(r∗, µ1

∗). It computes levels `∗0 = GenZero(µ1
∗), L∗0 =

Transform(`∗0, µ2
∗). It sets µ3

∗ = EncEK(m∗0, µ1
∗, µ2

∗, L∗0) and s′ = EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0).

Next it computes punctured keys DKS{s∗, s′}, kS{(s∗,m∗0), (s′,m∗0)} (by additionally puncturing challenge
kS{(s∗,m∗0)} at (s′,m∗0)), and EKS{S`∗0}, S`∗0 = {∗, ∗, ∗, ∗, `∗0}.

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
(fig. 95) and P2,Dec,RFake (fig. 19). It gives obfuscated programs to the adversary, together with
s∗, r∗, µ1

∗, µ2
∗, µ3

∗. If challenge µ1
∗ was SGkS (s∗,m∗0), then the resulting distribution is exactly the

distribution from HybA,2. If µ1
∗ was randomly chosen, then the resulting distribution is exactly the distribution
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from HybA,3.

Note that this reduction is using the fact that an adversary who holds the punctured key can additionally
puncture it at another point. We note that the construction of an extracting PRF [SW14] is based on GGM
PRF and satisfies this property.

Lemma 61. Assume s∗ is outside of the image of sender ACE. Then, if there exists an adversary which can
distinguish HybA,3 and HybA,4 in time t(λ) with advantage ε(λ), then there exists an adversary which can
break symmetry of a sender-fake relaxed ACE scheme in time t(λ) + poly(λ) with distinguishing advantage
ε(λ).

Proof. We give a reduction from indistinguishability of hybrids HybA,3 and HybA,4 to symmetry of sender
ACE.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. Next it samples all keys used in

programs (except EKS ,DKS), namely keys EK,DK of the main ACE, keys EKR,DKR of the re-
ceiver ACE, key kS of the sparse extracting PRF SG of the sender, key kR of the sparse ex-
tracting PRF RG of the receiver. It also runs setup of the level system to create the code of
GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random r∗ and sets µ1
∗ to be randomly chosen, µ2

∗ = RGkR(r∗, µ1
∗). It computes levels

`∗0 = GenZero(µ1
∗), L∗0 = Transform(`∗0, µ2

∗). It sets µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0).

Next the reduction sends p = (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0) as the challenge point to the challenger of the symmetry

of ACE. The challenger chooses random s∗, samples keys EKS ,DKS of ACE and computes s′ = EncEKS (p),
and punctures EKS at S`∗0 = {∗, ∗, ∗, ∗, `∗0} and DKS at s∗, s′ (DKS is first punctured at one of the strings
s∗, s′ which is lexicographically smaller, and then at the other). The reduction gets back from the challenger
(s1, s2,EKS{S`∗0}, DKS{s∗, s′}), where s1 = s∗, s2 = s′ or s1 = s′, s2 = s∗.

Next the reduction computes punctured key kS{(s1,m
∗
0), (s2,m

∗
0)}. Then it uses variables and code created

above to construct and obfuscate programs P1,P3, SFake, (fig. 95) and P2,Dec,RFake (fig. 19). In particular,
in every place where s∗, s′ appear, e.g. in code of programs, or as a punctured point, the reduction first uses
one of the strings s1, s2 which is lexicographically smaller, and then the other (note that s∗, s′ always appear
together in the distribution, except for the value given to the adversary as randomness of the sender).

Next the reduction gives obfuscated programs to the adversary, together with s1, r
∗, µ1

∗, µ2
∗, µ3

∗. If
challenge s1, s2 are s∗, s′, then the resulting distribution is exactly the distribution from HybA,3. If s1, s2 are
s′, s∗, then the resulting distribution is exactly the distribution from HybA,4.

Lemma 62. Assume s∗ is outside of the image of sender ACE. Then, if there exists an adversary which can
distinguish HybA,4 and HybA,5 in time t(λ) with advantage ε(λ), then there exists an adversary which can
break security of a puncturable PRF SGkS in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is very similar to the proof of indistinguishability of hybrids HybA,2,HybA,3, except that
the reduction gives s′ instead of s∗ as randomness of the sender to the adversary.

We give a reduction from indistinguishability of hybrids HybA,4 and HybA,5 to security of a puncturable PRF
SGkS at the punctured point (s∗,m∗0).

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. Next it chooses random s∗ and sends the
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point (s∗,m∗0) to the challenger of puncturable PRF game. The reduction gets back from the challenger the
punctured key kS{(s∗,m∗0)} and the value µ1

∗, which is either SGkS (s∗,m∗0) or randomly chosen.

Next the reduction reconstructs the rest of the distribution as follows. It samples all keys used in programs
(except kS{(s∗,m∗0)}), namely keys EK,DK of the main ACE, keys EKS ,DKS of the sender ACE, keys
EKR,DKR of the receiver ACE, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random r∗ and sets µ2
∗ = RGkR(r∗, µ1

∗). It computes levels `∗0 = GenZero(µ1
∗), L∗0 =

Transform(`∗0, µ2
∗). It sets µ3

∗ = EncEK(m∗0, µ1
∗, µ2

∗, L∗0) and s′ = EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0).

Next it computes punctured keys DKS{s∗, s′}, kS{(s∗,m∗0), (s′,m∗0)} (by additionally puncturing challenge
kS{(s∗,m∗0)} at (s′,m∗0)), and EKS{S`∗0}, S`∗0 = {∗, ∗, ∗, ∗, `∗0}

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
(fig. 95) and P2,Dec,RFake (fig. 19). It gives obfuscated programs to the adversary, together with
s′, r∗, µ1

∗, µ2
∗, µ3

∗. If challenge µ1
∗ was SGkS (s∗,m∗0), then the resulting distribution is exactly the distri-

bution from HybA,5. If µ1
∗ was randomly chosen, then the resulting distribution is exactly the distribution

from HybA,4.

Note that this reduction is using the fact that an adversary who holds the punctured key can additionally
puncture it at another point. We note that the construction of an extracting PRF [SW14] is based on GGM
PRF and satisfies this property.

Lemma 63. Assume s∗ is outside of the image of sender ACE. Then, if there exists an adversary which can
(t(λ), ε(λ))-distinguish HybA,5 and HybA,6, then there exists an adversary which can break iO for programs
of size σ′ in time t(λ) + poly(λ) with distinguishing advantage 1

3 · ε(λ).

Proof. The proof is identical to the proof of lemma 59, except that we give s′, and not s∗, as randomness of
the sender to the adversary.

Finally, we note that the distributions in HybA,6 and HybB are 2−λ-close (the reasoning is similar to
distributions HybA,HybA,1).

8.2.2 Reductions in the proof of lemma 55 (Indistinguishability of explanation of the receiver)

Let t(λ) be any function in Ω(poly(λ)), and let ε(λ) be a negligible function in w(2−λ). Assuming the prg,
the sender-fake relaxed ACE, receiver-fake relaxed ACE, main ACE, sparse extracting puncturable PRF, and
iO for program size σ′ are (t(λ), ε(λ))-secure, we show that no time-t(λ) adversary can distinguish between
HybB and HybC with more than O(ε(λ)) + 2−τ(λ) advantage.

(Note that security loss 2−τ(λ) comes from conditioning on the fact that µ1
∗ is outside of the image of the

PRF SG. Conditioning on s∗, r∗, ρ̂∗ incurs only 2−λ loss and therefore we omit it.).

Lemma 64. Statistical distance between distributions HybB,HybB,1,1 is at most 2 · 2−λ.

Proof. Since randomly chosen s∗ is a valid ciphertext of sender ACE with probability senderACE.sparsity(λ),
with all but this probability both P1 and P3 will fail do decrypt s∗ under DKS and therefore will run main
step, outputting µ1

∗ = SGkS (s∗,m∗0) and µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0), respectively.
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Similarly, randomly chosen r∗ is a valid ciphertext of receiver ACE with probability receiverACE.sparsity(λ),
and thus with all but this probability P2 will fail do decrypt r∗ under DKR and therefore will run main step,
outputting µ2

∗ = RGkR(r∗, µ1
∗).

Lemma 65. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybB,1,1 and HybB,1,2,
then there exists an adversary which can break iO for programs of size σ′ in time t(λ) + poly(λ) with
distinguishing advantage ε(λ).

Proof. The only difference between programs SFake and SFakeB,1 is that SFakeB,1 uses a punctured key
EKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). This is without changing functionality,
since SFake never needs to encrypt a plaintext with level `∗0, since `∗0 = [0, µ1

∗] and SFake encrypts levels
with value at least 1.

Lemma 66. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybB,1,2 and HybB,1,3,
then there exists an adversary which can break security of constrained decryption of sender-fake relaxed
ACE in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. We give a reduction from indistinguishability of hybrids HybB,1,2 and HybB,1,3 to security of con-
strained decryption of sender ACE.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It samples all keys used in programs (except

EKS ,DKS), namely keys EK,DK of the main ACE, keys EKR,DKR of the receiver ACE, key kS of the sparse
extracting PRF SG of the sender, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random s∗, r∗ and sets µ1
∗ = SGkS (s∗,m∗0), µ2

∗ = RGkR(r∗, µ1
∗). It computes levels `∗0 =

GenZero(µ1
∗), L∗0 = Transform(`∗0, µ2

∗). It sets µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0).

Next the reduction sends the set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0) to puncture encryption key

and sets P`∗0 ,∅ to puncture decryption key to the challenger of constrained decryption game. The challenger
samples keys EKS , DKS and it sends back to the reduction EKS{P`∗0} and key which is either DKS{P`∗0} or
DKS{∅}.

Next the reduction computes s′ = EncEKS{P`∗0}
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0) (note that this point is not punctured).

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
(fig. 97, fig. 98) and P2,Dec,RFake (fig. 19). It gives obfuscated programs to the adversary, together
with s′, r∗, µ1

∗, µ2
∗, µ3

∗. If challenge key was DKS{∅}, then the resulting distribution is exactly the
distribution from HybB,1,2. If key was DKS{P`∗0}, then the resulting distribution is exactly the distribution
from HybB,1,3.

Lemma 67. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybB,1,3 and HybB,1,4,
then there exists an adversary which can break the strong computational extractor property of the PRF SG in
time t(λ) + poly(λ) with distinguishing advantage ε(λ).
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Proof. We give a reduction from indistinguishability of hybrids HybB,1,3 and HybB,1,4 to strong computa-
tionally extracting PRF SGkS .

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It sends the point m∗0 to the challenger of

strong extractor game. The challenger samples the key kS for SG and either chooses µ1
∗ at random or

computes it as µ1
∗ = SGkS (s∗,m∗0) for randomly chosen s∗. The reduction gets back from the challenger

the key kS and the value µ1
∗.

Next the reduction reconstructs the rest of the distribution as follows. It samples all keys used in programs
(except kS), namely keys EK,DK of the main ACE, keys EKS ,DKS of the sender ACE, keys EKR,DKR

of the receiver ACE, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of the level
system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random r∗ and sets µ2
∗ = RGkR(r∗, µ1

∗). It computes levels `∗0 = GenZero(µ1
∗), L∗0 =

Transform(`∗0, µ2
∗). It sets µ3

∗ = EncEK(m∗0, µ1
∗, µ2

∗, L∗0) and s′ = EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0).

Next it computes punctured keys EKS{P`∗0}, DKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
(fig. 98) and P2,Dec,RFake (fig. 19). It gives obfuscated programs to the adversary, together with
s′, r∗, µ1

∗, µ2
∗, µ3

∗. If challenge µ1
∗ was SGkS (s∗,m∗0), then the resulting distribution is exactly the distri-

bution from HybB,1,3. If µ1
∗ was randomly chosen, then the resulting distribution is exactly the distribution

from HybB,1,4.

Lemma 68. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybB,1,4 and HybB,1,5, then there exists an adversary which can break
iO for programs of size σ′ in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The only difference between programs P3B,2 and P3B,3 is that P3B,3 uses a punctured key EK{p},
where p = (1⊕m∗0, µ1

∗, µ2
∗, L∗0). We argue that the program never needs to encrypt any plaintext of the

form (∗, µ1
∗, µ2

∗, L∗0), and therefore puncturing this point doesn’t change the functionality:

Note that, since µ1
∗ is random, it is outside of the image of a PRF SG with overwhelming probability, and

thus validity check can pass only if P3 is run on some (s,m, µ1
∗, µ2

∗), where s encodes m,µ1
∗ (and other

values). However, note that P3B,2 on such input can only execute trapdoor step (and not the main step);
thus the key in the main step can be safely punctured. Further, in order for the program to run encryption
algorithm in the trapdoor step on any plaintext of the form (∗, µ1

∗, µ2
∗, L∗0), fake s should encode level `∗0.

However, note that DKS is punctured at the set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), and thus

P3B,2 rejects all fake s with `∗0 inside except s which encodes (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), that is, s′. Finally,

note that running P3B,2 on (s′,m, µ1
∗, µ2

∗) will pass validity check only if m = m∗0 (again, since µ1
∗ is

outside of the image of PRF SG). Thus (s′,m∗0, µ1
∗, µ2

∗) is the only potentially problematic input. However,
running P3B,2 on (s′,m∗0, µ1

∗, µ2
∗) will not trigger encryption algorithm, since the program directly outputs

the value µ3
∗ encoded in s′. Thus P3B,2 never encrypts any plaintext of the form (∗, µ1

∗, µ2
∗, L∗0) in the

trapdoor step.

Lemma 69. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
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respectively. Further, assume that µ1
∗ is outside the image of the PRF SG. Then, if there exists an adversary

which can (t(λ), ε(λ))-distinguish HybB,1,5 and HybB,1,6, then there exists an adversary which can break
security of constrained decryption of the main ACE in time t(λ) + poly(λ) with distinguishing advantage
ε(λ).

Proof. We give a reduction from indistinguishability of hybrids HybB,1,5 and HybB,1,6 to security of con-
strained decryption of main ACE.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It samples all keys used in programs (except

EK,DK), namely keys EKS ,DKS of sender ACE, keys EKR,DKR of the receiver ACE, key kS of the sparse
extracting PRF SG of the sender, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random r∗ and sets µ1
∗ at random, µ2

∗ = RGkR(r∗, µ1
∗). It computes levels `∗0 = GenZero(µ1

∗),
L∗0 = Transform(`∗0, µ2

∗).

Next the reduction sends the set consisting of a single point p = (1⊕m∗0, µ1
∗, µ2

∗, L∗0) to puncture encryption
key and sets p,∅ to puncture decryption key to the challenger of constrained decryption game. The challenger
samples keys EK, DK and it sends back to the reduction EK{p} and key which is either DK{p} or DK{∅}.

Next the reduction computes µ3
∗ = EncEK{p}(m

∗
0, µ1

∗, µ2
∗, L∗0) (note that this point isn’t punctured, thus

the reduction can indeed encrypt it).

It punctured keys EKS{P`∗0}, DKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), and sets

s′ = EncEKS{P`∗0}
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3,SFake
(fig. 99) and P2,Dec,RFake (fig. 100, fig. 101). It gives obfuscated programs to the adversary, together with
s′, r∗, µ1

∗, µ2
∗, µ3

∗. If challenge key was DK{∅}, then the resulting distribution is exactly the distribution
from HybB,1,5. If key was DKS{p}, then the resulting distribution is exactly the distribution from HybB,1,6.

Lemma 70. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and ρ̂∗ is outside of the image of
the prg. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybB,1,6 and HybB,2,1, then
there exists an adversary which can break security of iO for σ′-sized programs in time t(λ) + poly(λ) with
distinguishing advantage 1

3 · ε(λ).

Proof. In this analysis we assume that r∗ is outside the image of receiver ACE, and thus ACE.DecDKR(r∗) =
′fail′.

Programs P2 and P2B,2. We present case analysis to show that the behavior of programs P2 and P2B,2 on
each input is the same:

• Case r = r∗:

– Case µ1 = µ1
∗: P2 outputs µ2

∗ via main step since r∗ is outside of image of ACE. P2B,2 outputs
µ2
∗ due to hardwired instruction.

– Case µ1 6= µ1
∗: P2 executes main step and outputs RGkR(r∗, µ1) since r∗ is outside of image of

ACE. P2B,2 executes main step and outputs RGkR(r∗, µ1) due to hardwired instruction.
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• Case r = r′:

– Case µ1 = µ1
∗: P2 outputs µ2

∗ via trapdoor step. P2B,2 outputs µ2
∗ due to hardwired instruction.

– Case µ1 6= µ1
∗: P2 skips the trapdoor step since r′ contains the wrong µ1

∗ 6= µ1, and outputs
RGkR(r′, µ1). P2B,2 executes main step due to hardwired instruction and outputs RGkR(r′, µ1).

• Case r 6= r′, r∗: P2 and P2B,2 execute the same code, since punctured keys preserve functionality on
all inputs which are not punctured. Note that keys are never used at punctured points.

Programs Dec and DecB,2. Next we compare programs Dec and DecB,2. Note that validity check passes on
the same set of inputs in programs Dec and DecB,2, since programs P2 and P2B,1 are functionally equivalent.
We present the analysis assuming inputs passed the validity check.

• Case r = r∗:

– Case (µ1, µ2) = (µ1
∗, µ2

∗):

∗ Case µ3 = µ3
∗: Dec outputs m∗0 via main step since r∗ is outside of image of ACE. DecB,1

outputs m∗0 due to hardwired instruction.

∗ Case µ3 6= µ3
∗: since r∗ is outside of image of ACE, Dec executes the main step. DecB,2

skips the trapdoor step due to hardwired instruction and performes exactly the same actions
in the main step.

– Case (µ1, µ2) 6= (µ1
∗, µ2

∗): Dec executes main step since r∗ is outside of image of ACE. DecB,2
skips the trapdoor step due to hardwired instruction and performes exactly the same actions in
the main step.

• Case r = r′:

– Case (µ1, µ2) = (µ1
∗, µ2

∗):

∗ Case µ3 = µ3
∗: Dec outputs m∗0 via trapdoor step. DecB,2 outputs m∗0 due to hardwired

instruction.

∗ Case µ3 6= µ3
∗: Dec executes trapdoor step. That is, it tries to decrypt µ3 and either outputs

its plaintext or ′fail′. In order for Dec to outputs a plaintext (and not ′fail′), µ1, µ2 should be
the same in the input, in µ3, in r′, and in L′′, and moreover, isLess(L′, L′′) should be true.
Since r′ has level L′ = L∗0, isLess is true for all L′′ of the form [i, µ1

∗, µ2
∗], where i > 0.

In other words, µ3 should be an encryption of (m,µ1
∗, µ2

∗, L′′), where L′′ = [i, µ1
∗, µ2

∗],
i > 0, and m is arbitrary. We call it condition 1.

DecB,2 is instructed to skip the trapdoor step and execute the main step. That is, it decrypts
µ3 and either outputs its plaintext or ′fail′. In order for DecB,1 to outputs a plaintext (and not
′fail′), µ1, µ2 should be the same in the input, in µ3, and in L′′ (however, unlike Dec, there
is no “isLess(L′, L′′) = true” condition). In other words, µ3 should be an encryption of
(m,µ1

∗, µ2
∗, L′′), where L′′ = [i, µ1

∗, µ2
∗], i ≥ 0, and m is arbitrary. We call it condition

2.

Thus, the only difference in these conditions for Dec and DecB,2 is that, given an encryption
of (m,µ1

∗, µ2
∗, [0, µ1

∗, µ2
∗]) for any m (that is, µ3

∗ or µ3
∗), condition 1 instructs to output

′fail′ and condition 2 instructs to output m. However, we claim that both programs Dec
and DecB,2 still behave the same on inputs µ3

∗ or µ3
∗. Indeed, recall that if the input was
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(r′, µ1
∗, µ2

∗, µ3
∗), both programs would output m∗0 as analysed in the previous case. If the

input was (r′, µ1
∗, µ2

∗, µ3
∗), both programs would output ′fail′, since decryption key DK of

the main ACE is punctured at the point p = (1⊕m∗0, µ1
∗, µ2

∗, [0, µ1
∗, µ2

∗]).

Thus, in this case both programs have the same functionality.

– Case (µ1, µ2) 6= (µ1
∗, µ2

∗): Dec skips the trapdoor step since r′ contains the wrong (µ1
∗, µ2

∗) 6=
(µ1, µ2), and executes the main step. DecB,2 skips the trapdoor step due to hardwired instruction
and executes the main step.

• Case r 6= r′, r∗: Dec and DecB,2 execute the same code, since punctured keys preserve functionality
on all inputs which are not punctured. Note that DecB,2 never uses key DKR at the punctured points,
thus puncturing it doesn’t change the functionality of the program. Note that the key DKp can be used
by Dec and DecB,2 to decrypt an encryption of p, however it is punctured at both programs and thus
functionality of both programs is the same in this case.

Programs RFake and RFakeB,2. Next we compare programs RFake and RFakeB,2. Note that the only
difference is that RFakeB,2 uses a punctured key EKR{Sρ̂∗}, where Sρ̂∗ = {(∗, ∗, ∗, ∗, ∗, ρ̂∗)} for randomly
chosen ρ̂∗. By assumption of the lemma, ρ̂∗ is outside of the image of this prg, and thus RFakeB,2 never
needs to encrypt any of points ending with ρ̂∗. Therefore puncturing the key doesn’t change the functionality
of the program.

Lemma 71. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and ρ̂∗ is outside of the image of
the prg. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybB,2,1 and HybB,2,2, then
there exists an adversary which can break security of of a puncturable PRF RGkR in time t(λ) + poly(λ)
with distinguishing advantage ε(λ).

Proof. The proof is very similar to the proof of indistinguishability of hybrids HybA,2,HybA,3, except that
the reduction is for PRF of the receiver, not the PRF of the sender.

We give a reduction to security of a puncturable PRF RGkR at the punctured point (r∗, µ1
∗).

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. Next it chooses random r∗, µ1

∗ and sends the
point (r∗, µ1

∗) to the challenger of puncturable PRF game. The reduction gets back from the challenger the
punctured key kR{(r∗, µ1

∗)} and the value µ2
∗, which is either RGkR(r∗, µ1

∗) or randomly chosen.

Next the reduction reconstructs the rest of the distribution as follows. It samples all keys used in programs
(except kR{(r∗, µ1

∗)}), namely keys EK,DK of the main ACE, keys EKS ,DKS of the sender ACE, keys
EKR,DKR of the receiver ACE, key kS of the sparse extracting PRF SG of the sender. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It computes levels `∗0 = GenZero(µ1
∗), L∗0 = Transform(`∗0, µ2

∗). It sets µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗) for randomly chosen ρ̂∗.

Next it computes punctured keys DKR{r∗, r′}, kR{(r∗, µ1
∗), (r′, µ1

∗)} (by additionally puncturing challenge
kR{(r∗, µ1

∗)} at (r′, µ1
∗)), and EKR{Sρ̂∗}, Sρ̂∗ = {(∗, ∗, ∗, ∗, ∗, ρ̂∗)} for randomly chosen ρ̂∗. It also

punctures keys EKS{P`∗0}, DKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), and EK{p},

DK{p} at p = (1⊕m∗0, µ1
∗, µ2

∗, L∗0).

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
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(fig. 99) and P2,Dec,RFake (fig. 102). It gives obfuscated programs to the adversary, together with
s′, r∗, µ1

∗, µ2
∗, µ3

∗. If challenge µ2
∗ was RGkR(r∗, µ1

∗), then the resulting distribution is exactly the
distribution from HybB,2,1. If µ2

∗ was randomly chosen, then the resulting distribution is exactly the
distribution from HybB,2,2.

Note that this reduction is using the fact that an adversary who holds the punctured key can additionally
puncture it at another point. We note that the construction of an extracting puncturable PRF of [SW14] is
based on GGM PRF and satisfies this property.

Lemma 72. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and ρ̂∗ is outside of the image of
the prg. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybB,2,2 and HybB,2,3, then
there exists an adversary which can break the symmetry of a receiver-fake relaxed ACE in time t(λ) + poly(λ)
with distinguishing advantage ε(λ).

Proof. The proof is very similar to the proof of indistinguishability of hybrids HybA,3,HybA,4, except that
the reduction is to the ACE of the receiver, not ACE of the sender.

We give a reduction to symmetry of receiver ACE.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. Next it samples all keys used

in programs (except EKR,DKR), namely keys EK,DK of the main ACE, keys EKS ,DKS of the
sender ACE, key kS of the sparse extracting PRF SG of the sender, key kR of the sparse ex-
tracting PRF RG of the receiver. It also runs setup of the level system to create the code of
GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random µ1
∗, µ2

∗. It computes levels `∗0 = GenZero(µ1
∗), L∗0 = Transform(`∗0, µ2

∗). It sets
µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0), s′ = EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).

Next the reduction chooses ρ̂∗ at random and sends p = (m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, ρ̂

∗) as the challenge point
to the challenger of the symmetry of ACE. The challenger chooses random r∗, samples keys EKR,DKR

of ACE and computes r′ = EncEKR(p), and punctures EKR at Sρ̂∗ = {(∗, ∗, ∗, ∗, ∗, ρ̂∗)} and DKR at r∗, r′

(DKR is first punctured at one of the strings r∗, r′ which is lexicographically smaller, and then at the other).
The reduction gets back from the challenger (r1, r2,EKR{Sρ̂∗}, DKR{r∗, r′}), where r1 = r∗, r2 = r′ or
r1 = r′, r2 = r∗.

Next it computes punctured keys EKS{P`∗0}, DKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), and EK{p}, DK{p} where p = (1⊕m∗0, µ1
∗, µ2

∗, L∗0).

Next the reduction computes punctured key kR{(r1, µ1
∗), (r2, µ1

∗)}. Then it uses variables and code created
above to construct and obfuscate programs P1,P3,SFake, (fig. 99) and P2,Dec,RFake (fig. 102). In
particular, in every place where r∗, r′ appear, e.g. in code of programs, or as a punctured point, the reduction
first uses one of the strings r1, r2 which is lexicographically smaller, and then the other (note that r∗, r′

always appear together in the distribution, except for the value given to the adversary as randomness of the
receiver).

Next the reduction gives obfuscated programs to the adversary, together with s′, r1, µ1
∗, µ2

∗, µ3
∗. If challenge

r1, r2 are r∗, r′, then the resulting distribution is exactly the distribution from HybB,2,2. If r1, r2 are r′, r∗,
then the resulting distribution is exactly the distribution from HybB,2,3.
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Lemma 73. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and ρ̂∗ is outside of the image of
the prg. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybB,2,3 and HybB,2,4, then
there exists an adversary which can break security of a puncturable PRF RGkR in time t(λ) + poly(λ) with
distinguishing advantage ε(λ).

Proof. The proof is very similar to the proof of indistinguishability of hybrids HybB,2,1,HybB,2,2, except
that r′ and not r∗ is given to the adversary as randomness of the receiever.

We give a reduction to security of a puncturable PRF RGkR at the punctured point (r∗, µ1
∗).

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. Next it chooses random r∗, µ1

∗ and sends the
point (r∗, µ1

∗) to the challenger of puncturable PRF game. The reduction gets back from the challenger the
punctured key kR{(r∗, µ1

∗)} and the value µ2
∗, which is either RGkR(r∗, µ1

∗) or randomly chosen.

Next the reduction reconstructs the rest of the distribution as follows. It samples all keys used in programs
(except kR{(r∗, µ1

∗)}), namely keys EK,DK of the main ACE, keys EKS ,DKS of the sender ACE, keys
EKR,DKR of the receiver ACE, key kS of the sparse extracting PRF SG of the sender. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It computes levels `∗0 = GenZero(µ1
∗), L∗0 = Transform(`∗0, µ2

∗). It sets µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗) for randomly chosen ρ̂∗.

Next it computes punctured keys DKR{r∗, r′}, kR{(r∗, µ1
∗), (r′, µ1

∗)} (by additionally puncturing challenge
kR{(r∗, µ1

∗)} at (r′, µ1
∗)), and EKR{Sρ̂∗}, Sρ̂∗ = {(∗, ∗, ∗, ∗, ∗, ρ̂∗)} for randomly chosen ρ̂∗. It also

punctures keys EKS{P`∗0}, DKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), and EK{p},

DK{p} at p = (1⊕m∗0, µ1
∗, µ2

∗, L∗0).

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
(fig. 99) and P2,Dec,RFake (fig. 102). It gives obfuscated programs to the adversary, together with
s′, r′, µ1

∗, µ2
∗, µ3

∗. If challenge µ2
∗ was RGkR(r∗, µ1

∗), then the resulting distribution is exactly the
distribution from HybB,2,4. If µ2

∗ was randomly chosen, then the resulting distribution is exactly the
distribution from HybB,2,3.

Note that this reduction is using the fact that an adversary who holds the punctured key can additionally
puncture it at another point. We note that the construction of an extracting puncturable PRF of [SW14] is
based on GGM PRF and satisfies this property.

Lemma 74. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and ρ̂∗ is outside of the image of
the prg. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybB,2,4 and HybB,2,5, then
there exists an adversary which can break security of iO for σ′-sized programs in time t(λ) + poly(λ) with
distinguishing advantage 1

3 · ε(λ).

Proof. The proof is identical to the proof of lemma 70.

Lemma 75. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybB,2,5 and HybB,2,6, then there exists an adversary which can break
security of a prg in time t(λ) + poly(λ) with distinguishing advantage ε(λ).
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Proof. We give a reduction to security of a prg.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary.

It samples all keys used in programs, namely keys EK,DK of the main ACE, keys EKS ,DKS of the sender
ACE, keys EKR,DKR of the receiver ACE, key kS of the sparse extracting PRF SG of the sender, key kR
of the sparse extracting PRF RG of the receiver. It also runs setup of the level system to create the code of
GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

Next it chooses random r∗, µ1
∗ and computes µ2

∗ = RGkR(r∗, µ1
∗). It computes levels `∗0 = GenZero(µ1

∗),
L∗0 = Transform(`∗0, µ2

∗). It sets µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0), s′ = EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).

It receives ρ̂∗ from a challenger of a prg game which is either randomly chosen or prg(ρ∗) for randomly
chosen ρ∗. Then the reduction sets r′ = EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗).

Next it punctures keys EKS{P`∗0}, DKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), and

EK{p}, DK{p} at p = (1⊕m∗0, µ1
∗, µ2

∗, L∗0).

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
(fig. 99) and P2,Dec,RFake (fig. 101). It gives obfuscated programs to the adversary, together with
s′, r′, µ1

∗, µ2
∗, µ3

∗. If challenge ρ̂∗ was an image of a prg, then the resulting distribution is exactly the distri-
bution from HybB,2,6. If ρ̂∗ was randomly chosen, then the resulting distribution is exactly the distribution
from HybB,2,5.

Lemma 76. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybB,2,6 and HybB,3,1, then there exists an adversary which can break
security of constrained decryption of the main ACE in time t(λ) + poly(λ) with distinguishing advantage
ε(λ).

Proof. The proof is very similar to the proof of indistinguishability of hybrids HybB,1,5,HybB,1,6, except
that r′ and not r∗ is given to the adversary as randomness of the receiver.

Lemma 77. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybB,3,1 and HybB,3,2, then there exists an adversary which can break
security of iO for σ′-sized programs in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is identical to the proof of lemma 68.

Lemma 78. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybB,3,2 and HybB,3,3,
then there exists an adversary which can break the strong computational extractor property of a PRF SGkS
in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is very similar to the proof of indistinguishability of hybrids HybB,1,3,HybB,1,4, except
that r′ and not r∗ is given to the adversary as randomness of the receiver.
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Lemma 79. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybB,3,3 and HybB,3,4,
then there exists an adversary which can break security of contrained decryption of a sender-fake relaxed
ACE in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is very similar to the proof of indistinguishability of hybrids HybB,1,2,HybB,1,3, except
that r′ and not r∗ is given to the adversary as randomness of the receiver.

Lemma 80. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybB,3,4 and HybB,3,5, then there exists an adversary which can break
security of iO for σ′-sized programs in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is identical to the proof of lemma 65.

Finally, we note that the distributions in HybB,3,5 and HybC are 2−λ-close (the reasoning is similar to
distributions HybB,HybB,1,1).

8.2.3 Reductions in the proof of lemma 56 (Semantic Security)

Let t(λ) be any function in Ω(poly(λ)), and let ε(λ) be a negligible function in w(2−λ). Assuming the
sender-fake relaxed ACE, receiver-fake relaxed ACE, main ACE, sparse extracting puncturable PRF, and iO
for program size σ′ are (t(λ), ε(λ))-secure, we show that no time-t(λ) adversary can distinguish between
HybC and HybD with more than O(ε(λ)) +O(2−τ(λ)) advantage.

(Note that security loss O(2−τ(λ)) comes from conditioning on the fact that µ1
∗, µ2

∗ are outside of the image
of the corresponding PRFs. Conditioning on s∗, r∗ incurs only 2−λ loss and therefore we omit it.).

Lemma 81. Statistical distance between distributions HybC ,HybC,1,1 is at most 2 · 2−λ.

Proof. Same as indistinguishability between hybrids HybB,HybB,1,1.

Lemma 82. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,1,1 and HybC,1,2,
then there exists an adversary which can break security of iO for σ′-sized programs in time t(λ) + poly(λ)
with distinguishing advantage ε(λ).

Proof. The only difference between programs SFake and SFakeC,1 is that SFakeC,1 uses a punctured key
EKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). This is without changing functionality,
since SFake never needs to encrypt a plaintext with level `∗0, since `∗0 = [0, µ1

∗] and SFake encrypts levels
with value at least 1.

Lemma 83. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,1,2 and HybC,1,3,
then there exists an adversary which can break security of contrained decryption of a sender-fake relaxed
ACE in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. Same as indistinguishability between hybrids HybB,3,3,HybB,3,4.
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Lemma 84. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,1,3 and HybC,1,4,
then there exists an adversary which can break the strong computational extractor property of a PRF SGkS
in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. Same as indistinguishability between hybrids HybB,3,2,HybB,3,3.

Lemma 85. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybC,1,4 and HybC,1,5, then there exists an adversary which can break the
strong computational extractor property of a PRF RGkR in time t(λ)+poly(λ) with distinguishing advantage
ε(λ).

Proof. The proof is similar to the proof of indistinguishability of hybrids HybB,1,3,HybB,1,4, except that the
reduction is to the strong extracting PRF of the receiver, not the sender.

We give a reduction to strong computationally extracting PRF RGkR .

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It chooses µ1

∗ at random and sends the point
µ1
∗ to the challenger of strong extractor game. The challenger samples the key kR for RG and either chooses

µ2
∗ at random or computes it as µ2

∗ = RGkR(r∗, µ1
∗) for randomly chosen r∗. The reduction gets back

from the challenger the key kR and the value µ2
∗.

Next the reduction reconstructs the rest of the distribution as follows. It samples all keys used in programs
(except kR), namely keys EK,DK of the main ACE, keys EKS ,DKS of the sender ACE, keys EKR,DKR of
the receiver ACE, key kS of the sparse extracting PRF SG of the sender. It also runs setup of the level system
to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It computes levels `∗0 = GenZero(µ1
∗), L∗0 = Transform(`∗0, µ2

∗). It sets µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0),

s′ = EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗.

Next it computes punctured keys EKS{P`∗0}, DKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0).

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
(fig. 105) and P2,Dec,RFake (fig. 107). It gives obfuscated programs to the adversary, together with
s′, r′, µ1

∗, µ2
∗, µ3

∗. If challenge µ2
∗ was RGkR(r∗, µ1

∗), then the resulting distribution is exactly the
distribution from HybC,1,4. If µ2

∗ was randomly chosen, then the resulting distribution is exactly the
distribution from HybC,1,5.

Lemma 86. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and µ2
∗ is outside the image of

the PRF RG. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,1,5 and HybC,2,1,
then there exists an adversary which can break security of iO for σ′-sized programs in time t(λ) + poly(λ)
with distinguishing advantage ε(λ).

Proof. The only difference between programs P3B,2 and P3B,3 is that P3B,3 uses a punctured key
EK{p0, p1}, where p0 = (m∗0, µ1

∗, µ2
∗, L∗0), p1 = (m∗1, µ1

∗, µ2
∗, L∗0). We argue that the program never
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needs to encrypt p0, p1, and therefore puncturing these points doesn’t change the functionality:

Since we assumed that µ1
∗ is outside of the image of a PRF SG, validity check can pass only if P3 is

run on some (s,m, µ1
∗, µ2

∗), where s encodes m,µ1
∗ (and other values). However, note that P3C,2 on

such input can only execute trapdoor step (and not the main step); thus the key in the main step can be
safely punctured. Further, in order for the program to run encryption algorithm in the trapdoor step on
input p0 or p1, fake s should encode level `∗0. However, note that DKS is punctured at the set P`∗0 =
{(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), and thus P3C,2 rejects all fake s with `∗0 inside except s which
encodes (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), that is, s′. Finally, note that running P3C,2 on (s′,m, µ1
∗, µ2

∗) will pass
validity check only if m = m∗0 (again, since µ1

∗ is outside of the image of PRF SG). Thus (s′,m∗0, µ1
∗, µ2

∗)
is the only potentially problematic input (in particular, the key is never used to encrypt p1). However, running
P3C,2 on (s′,m∗0, µ1

∗, µ2
∗) will not trigger encryption algorithm, since the program directly outputs the

value µ3
∗ encoded in s′. Thus P3C,2 never encrypts p0 or p1 in the trapdoor step.

Lemma 87. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and µ2
∗ is outside the image of

the PRF RG. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,2,1 and HybC,2,2,
then there exists an adversary which can break security of constrained decryption of main ACE in time
t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is similar to the proof of indistinguishability of hybrids HybB,3,3,HybB,3,4, except that EK
is additionally punctured at another point, and µ2

∗ is randomly chosen.

We give a reduction to security of constrained decryption of main ACE.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It samples all keys used in programs (except

EK,DK), namely keys EKS ,DKS of sender ACE, keys EKR,DKR of the receiver ACE, key kS of the sparse
extracting PRF SG of the sender, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random µ1
∗, µ2

∗. It computes levels `∗0 = GenZero(µ1
∗), L∗0 = Transform(`∗0, µ2

∗).

Next the reduction sends the set consisting of two points p0 = (m∗0, µ1
∗, µ2

∗, L∗0), p1 = (m∗1, µ1
∗, µ2

∗, L∗0)
to puncture encryption key, sets p1,∅ to puncture decryption key, and plaintext p0 to the challenger of
constrained decryption game (note that plaintext p0 doesn’t belong to the set {p1} for puncturing DK
and thus this is a valid query to the challenger of constrained decryption game). The challenger samples
keys EK, DK and it sends back to the reduction EK{p0, p1}, key which is either DK{p1} or DK{∅}, and
µ3
∗ = EncEK(p0).

Next the reduction punctures keys EKS{P`∗0}, DKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), and sets s′ = EncEKS{P`∗0}
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ =

EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗.

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3,SFake
(fig. 106) and P2,Dec,RFake (fig. 107, fig. 108). It gives obfuscated programs to the adversary, together with
s′, r′, µ1

∗, µ2
∗, µ3

∗. If challenge key was DK{∅}, then the resulting distribution is exactly the distribution
from HybC,2,1. If key was DKS{p1}, then the resulting distribution is exactly the distribution from HybC,2,2.

236



Lemma 88. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and µ2
∗ is outside the image of

the PRF RG. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,2,2 and HybC,2,3,
then there exists an adversary which can break security of iO for σ′-sized circuits in time t(λ) + poly(λ) with
distinguishing advantage 1

2ε(λ).

Proof. We start with analyzing program Dec: The only difference between programs DecC,1 and DecC,2
is that DecC,1 uses key DK{p1} and DecC,2 uses DK{p0, p1}, i.e. the key is additionally punctured at p0

(here p0 = (m∗0, µ1
∗, µ2

∗, L∗0), p1 = (m∗1, µ1
∗, µ2

∗, L∗0)). We will argue that if DecC,1 on input µ3
∗ =

ACE.EncEK(p0) reaches the line where it needs to decrypt µ3
∗, then it always outputs ′fail′. Therefore

puncturing this point (and thus forcing DecC,2 to output ′fail′ when attempt to decrypt µ3
∗) doesn’t change

the functionality:

First, note that if input µ3 = µ3
∗, but (µ1, µ2) 6= (µ1

∗, µ2
∗) and the program reached decryption of µ3

∗, then
the program outputs ′fail′: indeed, µ3

∗ encrypts µ1
∗, µ2

∗ and thus the check (µ1, µ2) = (µ1
∗, µ2

∗) will not
pass.

Second, by assumption µ2
∗ is outside of the image of a PRF RG, and thus validity check can pass only if

DecC,1 is run on some (r, µ1
∗, µ2

∗, µ3
∗), where r encodes µ1

∗, µ2
∗ (and other values). However, note that

DecC,1 on such input can only execute the trapdoor step (and not the main step); thus the key in the main
step can be safely punctured. Further, in order for the program to output m after decryption in the trapdoor
step, the condition “isLess(L′, L′′)” should hold. However, when input µ3 = µ3

∗, L′′ is equal to [0, µ1
∗, µ2

∗],
which is the smallest possible level and therefore there doesn’t exist L′ such that isLess(L′, L′′) = true.
Thus, if DecC,1 reached decryption in the trapdoor step on input µ3

∗, it will anyway output ′fail′ due to failed
“isLess” check and therefore we can puncture DK at p0 such that an attempt to decrypt µ3

∗ would cause Dec
to output ′fail′ immediately.

Next we analyze program RFake. The difference between RFakeC,1 and RFakeC,2 is that the key DK, which
is already punctured at p1, is additionally punctured at p0. In order to preserve the functionality of RFake
on input µ3

∗, we additionally instruct RFake to use level L∗0 = [0, µ1
∗, µ2

∗] on input µ3
∗ (without actually

decrypting µ3
∗). Note that this is what RFakeC,1 would do on input µ3

∗; thus this doesn’t change the
functionality.

Lemma 89. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and µ2
∗ is outside the image of

the PRF RG. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,2,3 and HybC,2,4,
then there exists an adversary which can break indistinguishability of ciphertexts of main ACE in time
t(λ) + poly(λ) with distinguishing advantage 1

2ε(λ).

Proof. We give a reduction to indistinguishability of ciphertexts of main ACE.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It samples all keys used in programs (except

EK,DK), namely keys EKS ,DKS of sender ACE, keys EKR,DKR of the receiver ACE, key kS of the sparse
extracting PRF SG of the sender, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random µ1
∗, µ2

∗. It computes levels `∗0 = GenZero(µ1
∗), L∗0 = Transform(`∗0, µ2

∗).

Next the reduction sends the set consisting of two points p0 = (m∗0, µ1
∗, µ2

∗, L∗0), p1 = (m∗1, µ1
∗, µ2

∗, L∗0)
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to puncture encryption key, the same set {p0, p1} to puncture decryption key, and plaintexts p0, p1 to the
challenger of indistinguishability of ciphertexts game (note that plaintexts belong to both punctured sets
and thus this is a valid query to the challenger of indistinguishability of ciphertexts game). The challenger
samples keys EK, DK and it sends back to the reduction EK{p0, p1}, DK{p0, p1}, and µ3

∗ which is either
EncEK(p0) or EncEK(p1).

Next the reduction punctures keys EKS{P`∗0}, DKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), and sets s′ = EncEKS{P`∗0}
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ =

EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗.

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3,SFake
(fig. 106) and P2,Dec,RFake (fig. 109). It gives obfuscated programs to the adversary, together with
s′, r′, µ1

∗, µ2
∗, µ3

∗. If challenge µ3
∗ was EncEK(p0), then the resulting distribution is exactly the distribution

from HybC,2,3. If µ3
∗ was EncEK(p1), then the resulting distribution is exactly the distribution from HybC,2,4.

Lemma 90. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and µ2
∗ is outside the image of

the PRF RG. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,2,4 and HybC,2,5,
then there exists an adversary which can break security of iO for σ′-sized circuits in time t(λ) + poly(λ) with
distinguishing advantage 1

2ε(λ).

Proof. The proof is very similar to the proof of lemma 88, except that in this hybrid µ3
∗ = EncEK(p1) instead

of p0, and we unpuncture DK at p1 instead of p0.

We start with analyzing program Dec: The only difference between programs DecC,3 and DecC,2 is that
DecC,3 uses key DK{p0} and DecC,2 uses DK{p0, p1}, i.e. the key is additionally punctured at p1 (here
p0 = (m∗0, µ1

∗, µ2
∗, L∗0), p1 = (m∗1, µ1

∗, µ2
∗, L∗0)). We will argue that if DecC,3 on input µ3

∗ = EncEK(p1)
reaches the line where it needs to decrypt µ3

∗, then it always outputs ′fail′. Therefore puncturing this point
(and thus forcing DecC,2 to output ′fail′ when attempt to decrypt µ3

∗) doesn’t change the functionality:

First, note that if input µ3 = µ3
∗, but (µ1, µ2) 6= (µ1

∗, µ2
∗) and the program reached decryption of µ3

∗, then
the program outputs ′fail′: indeed, µ3

∗ encrypts µ1
∗, µ2

∗ and thus the check (µ1, µ2) = (µ1
∗, µ2

∗) will not
pass.

Second, since µ2
∗ is random, it is outside of the image of a PRF RG with overwhelming probability, and thus

validity check can pass only if DecC,3 is run on some (r, µ1
∗, µ2

∗, µ3
∗), where r encodes µ1

∗, µ2
∗ (and other

values). However, note that DecC,3 on such input can only execute trapdoor step (and not the main step);
thus the key in the main step can be safely punctured. Further, in order for the program to output m after
decryption in the trapdoor step, the condition “isLess(L′, L′′)” should hold. However, when input µ3 = µ3

∗,
L′′ is equal to [0, µ1

∗, µ2
∗], which is the smallest possible level and therefore there doesn’t exist L′ such that

isLess(L′, L′′) = true. Thus, if DecC,3 reached decryption in the trapdoor step on input µ3
∗, it will anyway

output ′fail′ due to failed “isLess” check and therefore we can puncture DK at p1 such that an attempt to
decrypt µ3

∗ would cause Dec to output ′fail′ immediately.

Next we analyze program RFake. The difference between RFakeC,3 and RFakeC,2 is that the key DK, which
is already punctured at p0, is additionally punctured at p1. In order to preserve the functionality of RFake
on input µ3

∗, we additionally instruct RFake to use level L∗0 = [0, µ1
∗, µ2

∗] on input µ3
∗ (without actually

decrypting µ3
∗). Note that this is what RFakeC,3 would do on input µ3

∗; thus this doesn’t change the
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functionality.

Lemma 91. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and µ2
∗ is outside the image of

the PRF RG. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,2,5 and HybC,2,6,
then there exists an adversary which can break security of constrained decryption of main ACE in time
t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is similar to the proof of indistinguishability of hybrids HybC,2,1,HybC,2,2, except that we
unpuncture DK at p0 instead of p1, and our third message is µ3

∗ = EncEK(p1) instead of µ3
∗ = EncEK(p0).

We give a reduction to security of constrained decryption of main ACE.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It samples all keys used in programs (except

EK,DK), namely keys EKS ,DKS of sender ACE, keys EKR,DKR of the receiver ACE, key kS of the sparse
extracting PRF SG of the sender, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random µ1
∗, µ2

∗. It computes levels `∗0 = GenZero(µ1
∗), L∗0 = Transform(`∗0, µ2

∗).

Next the reduction sends the set consisting of two points p0 = (m∗0, µ1
∗, µ2

∗, L∗0), p1 = (m∗1, µ1
∗, µ2

∗, L∗0)
to puncture encryption key, sets p0,∅ to puncture decryption key, and plaintext p1 to the challenger of
constrained decryption game (note that plaintext p1 doesn’t belong to the set {p0} for puncturing DK
and thus this is a valid query to the challenger of constrained decryption game). The challenger samples
keys EK, DK and it sends back to the reduction EK{p0, p1}, key which is either DK{p0} or DK{∅}, and
µ3
∗ = EncEK(p1).

Next the reduction punctures keys EKS{P`∗0}, DKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), and sets s′ = EncEKS{P`∗0}
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), r′ =

EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗.

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3,SFake
(fig. 106) and P2,Dec,RFake (fig. 110, fig. 107). It gives obfuscated programs to the adversary, together with
s′, r′, µ1

∗, µ2
∗, µ3

∗. If challenge key was DK{∅}, then the resulting distribution is exactly the distribution
from HybC,2,6. If key was DKS{p0}, then the resulting distribution is exactly the distribution from HybC,2,5.

Lemma 92. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG, and µ2
∗ is outside the image of

the PRF RG. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,2,6 and HybC,2,7,
then there exists an adversary which can break security of iO for σ′-sized programs in time t(λ) + poly(λ)
with distinguishing advantage ε(λ).

Proof. The proof is identical to the proof of lemma 86.

Lemma 93. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybC,2,7 and HybC,3,1, then there exists an adversary which can break the
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strong computational extractor property of a PRF RGkR in time t(λ)+poly(λ) with distinguishing advantage
ε(λ).

Proof. The proof is identical to the proof of indistinguishability of hybrids HybC,1,4,HybC,1,5, except that
µ3
∗ = EncEK(m∗1, µ1

∗, µ2
∗, L∗0) instead of µ3

∗ = EncEK(m∗0, µ1
∗, µ2

∗, L∗0).

Lemma 94. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,3,1 and HybC,3,2,
then there exists an adversary which can break the strong computational extractor property of a PRF SGkS
in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is similar to the proof of indistinguishability of hybrids HybC,1,3,HybC,1,4 (with the
difference that µ3

∗ = EncEK(m∗1, µ1
∗, µ2

∗, L∗0) instead of µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0), and the reduction

is made for the point (s∗,m∗1) instead of (s∗,m∗0)).

Lemma 95. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,3,2 and HybC,3,3,
then there exists an adversary which can break security of contrained decryption of a sender-fake relaxed
ACE in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is similar to the proof of indistinguishability of hybrids HybC,1,2,HybC,1,3 (with the
difference that µ3

∗ = EncEK(m∗1, µ1
∗, µ2

∗, L∗0) instead of µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0), and µ1

∗ =
SG(s∗,m∗1) instead of µ1

∗ = SG(s∗,m∗0)).

Lemma 96. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybC,3,3 and HybC,3,4,
then there exists an adversary which can break security of iO for σ′-sized programs in time t(λ) + poly(λ)
with distinguishing advantage ε(λ).

Proof. The only difference between programs SFake and SFakeC,1 is that SFakeC,1 uses a punctured key
EKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). This is without changing functionality,
since SFake never needs to encrypt a plaintext with level `∗0, since `∗0 = [0, µ1

∗] and SFake encrypts levels
with value at least 1.

Finally, we note that the distributions in HybC,3,4 and HybD are O(2−λ)-close (the reasoning is similar to
distributions HybB,HybB,1,1).

8.2.4 Reductions in the proof of lemma 57 (Indistinguishability of Levels)

Let t(λ) be any function in Ω(poly(λ)), and let ε(λ) be a negligible function in w(2−λ). Assuming the
sender-fake relaxed ACE, sparse extracting puncturable PRF, and iO for program size σ′ are (t(λ), ε(λ))-
secure, and assuming the level system is (t(λ), ε1(λ, T, τ))-secure, we show that no time-t(λ) adversary can
distinguish between HybD and HybE with more than O(ε(λ)) + ε1(λ, T, τ) advantage.

(Note that security loss O(2−τ(λ)) comes from conditioning on the fact that µ1
∗ is outside of the image of

the corresponding PRF. Conditioning on s∗, r∗ incurs only 2−λ loss and therefore we omit it.).

Lemma 97. Statistical distance between distributions HybD,HybD,1,1 is at most 2 · 2−λ.
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Proof. Same as indistinguishability between hybrids HybB,HybB,1,1.

Lemma 98. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybD,1,1 and HybD,1,2,
then there exists an adversary which can break security of iO for σ′-sized programs in time t(λ) + poly(λ)
with distinguishing advantage ε(λ).

Proof. The only difference between programs SFake and SFakeD,1 is that SFakeD,1 uses a punctured key
EKS{P`∗0}, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). This is without changing functionality,
since SFake never needs to encrypt a plaintext with level `∗0, since `∗0 = [0, µ1

∗] and SFake encrypts levels
with value at least 1.

Lemma 99. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybD,1,2 and HybD,1,3,
then there exists an adversary which can break security of constrained decryption of sender-fake relaxed
ACE in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is similar to the proof of indistinguishability of hybrids HybB,1,2,HybB,1,3 (with the
difference that r′ instead of r∗ is given to the adversary, and µ3

∗ = EncEK(m∗1, µ1
∗, µ2

∗, L∗0) instead of
µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0), µ1

∗ = SG(s∗,m∗1) instead of µ1
∗ = SG(s∗,m∗0)).

Lemma 100. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybD,1,3 and HybD,1,4,
then there exists an adversary which can break computational strong extractor property of the PRF SG in
time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is similar to the proof of indistinguishability of hybrids HybB,1,3,HybB,1,4 (with the
difference that r′ (instead of r∗) is given to the adversary, µ3

∗ = EncEK(m∗1, µ1
∗, µ2

∗, L∗0) instead of
µ3
∗ = EncEK(m∗0, µ1

∗, µ2
∗, L∗0), and the reduction is made for the point (s∗,m∗1) instead of (s∗,m∗0)).

Lemma 101. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybD,1,4 and HybD,2,1, then there exists an adversary which can break
security of iO for σ′-sized programs in time t(λ) + poly(λ) with distinguishing advantage 1

2ε(λ).

Proof. The difference between programs in the two hybrids is that in HybD,2,1 programs use only punctured
versions of programs of the level system. We argue that this doesn’t change the functionality of the programs
of deniable encryption, since these programs never need to call programs of the level system on punctured
inputs.

We start with analyzing program P3D,2. By assumption, µ1
∗ is outside of the image of a PRF SG, and

thus when µ1 = µ1
∗ validity check can pass only if P3 is run on some (s,m, µ1

∗, µ2), where s encodes
m,µ1

∗ (and other values). However, note that P3D,2 on such input can only execute trapdoor step (and
not the main step); thus in the main step we can use GenZero[µ1

∗] which is punctured at µ1
∗. Moreover,

since GenZero[µ1
∗] never outputs `∗0, we can also use Transform[(`∗0, µ2

∗)] which is punctured at the input
(`∗0, µ2

∗).
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It remains to argue that we can puncture Transform[(`∗0, µ2
∗)] at the input (`∗0, µ2

∗) in the trapdoor step as
well. Note that in order to run Transform on this input in the trapdoor step, P3 should take as input fake
s which encodes `∗0 (among other things). However, since DKS is punctured at P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0), the only such fake s is ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), that is, s′. Further, in

order for “(m,µ1) = (m′, µ1
′)” check to pass, inputs to P3 should be m = m∗0 and µ1 = µ1

∗. Finally, in
order to call Transform on (`∗0, µ2

∗), the input µ2 to P3 should be µ2
∗. In other words, the only input on

which P3 could potentially run Transform at the punctured point is (s′,m∗0, µ1
∗, µ2

∗); however, in this case
P3 simply outputs µ3

∗, which is encoded in s′, without running Transform at all. Thus we can puncture
Transform safely.

Next we analyze program SFakeD,2. By assumption, µ1
∗ is is outside of the image of a PRF SG, and thus

validity check can pass only if SFake is run on some (s,m, m̂, µ1
∗, µ2, µ3), where s encodes m,µ1

∗ (and
other values). However, note that SFakeD,2 on such input can only execute trapdoor step (and not the main
step); thus in the main step we can use GenZero[µ1

∗] which is punctured at µ1
∗.

Lemma 102. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybD,2,1 and HybD,2,2, then there exists an adversary which can break
security of the level system with an upper bound T and tag size τ in time t(λ) + poly(λ) with distinguishing
advantage ε(λ).

Proof. We give a reduction to security of the level system.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It samples all keys used in programs, namely

keys EK,DK of the main ACE, keys EKS ,DKS of the sender ACE, keys EKR,DKR of the receiver ACE,
key kS of the sparse extracting PRF SG of the sender, key kR of the sparse extracting PRF RG of the receiver.

It chooses random r∗ and µ1
∗ and computes µ2

∗ = RGkR(r∗, µ1
∗). It sends µ1

∗, µ2
∗ as the first and the

second tag to the challenger of the level system. The challenger chooses bit b at random and runs setup of the
level system to obtain programs GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags. Then
it computes `∗0 = GenZero(µ1

∗), `∗1 = Increment(`∗0), and L∗0 = Transform(`∗0, µ2
∗). It also obfuscates

punctured programs GenZero[µ1
∗], Increment,Transform[(`∗b , µ2

∗)], isLess,RetrieveTag,RetrieveTags. It
sends these obfuscated punctured programs to the reduction, together with `∗b and L∗0.

The reduction computes µ3
∗ = EncEK(m∗1, µ1

∗, µ2
∗, L∗0), s′ = EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗b), and r′ =
EncEKR(m∗0, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗.

Next the reduction punctures keys EKS{P`∗b}, DKS{P`∗b} at the set P`∗b = {(∗, ∗, ∗, ∗, `∗b)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗b).

Then the reduction uses variables and code obtained from the challenger to construct and obfuscate programs
P1,P3,SFake, (fig. 114, fig. 115) and P2,Dec,RFake (fig. 19). It gives obfuscated programs to the
adversary, together with s′, r′, µ1

∗, µ2
∗, µ3

∗. If challenge bit b is 0, then the resulting distribution is exactly
the distribution from HybD,2,1. If b is 1, then the resulting distribution is exactly the distribution from
HybD,2,2.

Lemma 103. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
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which can (t(λ), ε(λ))-distinguish HybD,2,2 and HybD,2,3, then there exists an adversary which can break
security of iO for σ′-sized programs in time t(λ) + poly(λ) with distinguishing advantage 1

2ε(λ).

Proof. This proof is very similar to the proof of lemma 101, except that Transform is punctured at (`∗1, µ2
∗)

instead of (`∗0, µ2
∗).

The difference between programs in HybD,2,2,HybD,2,3 is that in HybD,2,2 programs use only punctured
versions of programs of the level system. We argue that this doesn’t change the functionality of the programs
of deniable encryption, since these programs never need to call programs of the level system on punctured
inputs.

We start with analyzing program P3D,4. By assumption µ1
∗ is outside of the image of a PRF SG, and

thus when µ1 = µ1
∗ validity check can pass only if P3 is run on some (s,m, µ1

∗, µ2), where s encodes
m,µ1

∗ (and other values). However, note that P3D,4 on such input can only execute trapdoor step (and
not the main step); thus in the main step we can use GenZero[µ1

∗] which is punctured at µ1
∗. Moreover,

since GenZero[µ1
∗] never outputs `∗1, we can also use Transform[(`∗1, µ2

∗)] which is punctured at the input
(`∗1, µ2

∗).

It remains to argue that we can puncture Transform[(`∗1, µ2
∗)] at the input (`∗1, µ2

∗) in the trapdoor step as
well. Note that in order to run Transform on this input in the trapdoor step, P3D,5 should take as input fake
s which encodes `∗1 (among other things). However, since DKS is punctured at P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), the only such fake s is ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), that is, s′. Further, in

order for “(m,µ1) = (m′, µ1
′)” check to pass, inputs to P3 should be m = m∗0 and µ1 = µ1

∗. Finally, in
order to call Transform on (`∗1, µ2

∗), the input µ2 to P3 should be µ2
∗. In other words, the only input on

which P3 could potentially run Transform at the punctured point is (s′,m∗0, µ1
∗, µ2

∗); however, in this case
P3 simply outputs µ3

∗, which is encoded in s′, without running Transform at all. Thus we can puncture
Transform safely.

Next we analyze program SFakeD,4. Since µ1
∗ is outside of the image of a PRF SG, and thus validity check

can pass only if SFake is run on some (s,m, m̂, µ1
∗, µ2, µ3), where s encodes m,µ1

∗ (and other values).
However, note that SFakeD,4 on such input can only execute trapdoor step (and not the main step); thus in
the main step we can use GenZero[µ1

∗] which is punctured at µ1
∗.

Lemma 104. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybD,2,3 and HybD,3,1, then there exists an adversary which can break
security of iO for σ′-sized programs in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The only difference between programs SFakeD,5 and SFakeD,6 is that in SFakeD,6 the key EKS is also
punctured at P`∗0 , where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} (in addition to being punctured at P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1)). This is without changing functionality, since SFake never needs to encrypt a plaintext
with level `∗0, since `∗0 = [0, µ1

∗] and SFake encrypts levels with value at least 1.

Lemma 105. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybD,3,1 and HybD,3,2, then there exists an adversary which can break
security of constrained decryption of sender-fake relaxed ACE in time t(λ) + poly(λ) with distinguishing
advantage ε(λ).
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Proof. The proof is similar to the proof of indistinguishability of hybrids HybD,1,2,HybD,1,3, except that
`∗1 instead of `∗0 is used in the distribution, and keys EK, DK are additionally punctured at the set P`∗1 =
{(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1).

We give a reduction to security of constrained decryption of sender ACE.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It samples all keys used in programs (except

EKS ,DKS), namely keys EK,DK of the main ACE, keys EKR,DKR of the receiver ACE, key kS of the sparse
extracting PRF SG of the sender, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random r∗ and µ1
∗ and computes µ2

∗ = RGkR(r∗, µ1
∗). It computes levels `∗0 = GenZero(µ1

∗),
`∗1 = Increment(`∗0), L∗0 = Transform(`∗0, µ2

∗). It sets µ3
∗ = EncEK(m∗1, µ1

∗, µ2
∗, L∗0).

Next the reduction sends the set P`∗0 ∪ P`∗1 as a set to puncture encryption key (where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)},
P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1)), and sends sets P`∗1 and P`∗0 ∪ P`∗1 as sets to puncture
decryption key to the challenger of constrained decryption game. The challenger samples keys EKS , DKS

and it sends back to the reduction EKS{P`∗0 ∪ P`∗1} and key which is either DKS{P`∗1} or DKS{P`∗0 ∪ P`∗1}.

Next the reduction computes s′ = EncEKS{P`∗0∪P`∗1}
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1) (note that this point is not punc-

tured) and r′ = EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗.

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
(fig. 117, fig. 118) and P2,Dec,RFake (fig. 19). It gives obfuscated programs to the adversary, together
with s′, r′, µ1

∗, µ2
∗, µ3

∗. If challenge key is DKS{P`∗0 ∪ P`∗1}, then the resulting distribution is exactly the
distribution from HybD,3,2. If key is DKS{P`∗1}, then the resulting distribution is exactly the distribution
from HybD,3,1.

Lemma 106. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybD,3,2 and HybD,3,3, then there exists an adversary which can break
security of constrained decryption of sender-fake relaxed ACE in time t(λ) + poly(λ) with distinguishing
advantage ε(λ).

Proof. The proof is similar to the proof of indistinguishability of hybrids HybD,3,1,HybD,3,2, except that we
unpuncture DK at the set P`∗1 = {(∗, ∗, ∗, ∗, `∗1)}\ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1) instead of P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} .
We give a reduction to security of constrained decryption of sender ACE.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It samples all keys used in programs (except

EKS ,DKS), namely keys EK,DK of the main ACE, keys EKR,DKR of the receiver ACE, key kS of the sparse
extracting PRF SG of the sender, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random r∗ and µ1
∗ and computes µ2

∗ = RGkR(r∗, µ1
∗). It computes levels `∗0 = GenZero(µ1

∗),
`∗1 = Increment(`∗0), L∗0 = Transform(`∗0, µ2

∗). It sets µ3
∗ = EncEK(m∗1, µ1

∗, µ2
∗, L∗0).

Next the reduction sends the set P`∗0 ∪ P`∗1 as a set to puncture encryption key (where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)},
P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1)), and sends sets P`∗0 and P`∗0 ∪ P`∗1 as sets to puncture
decryption key to the challenger of constrained decryption game. The challenger samples keys EKS , DKS

and it sends back to the reduction EKS{P`∗0 ∪ P`∗1} and key which is either DKS{P`∗0} or DKS{P`∗0 ∪ P`∗1}.
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Next the reduction computes s′ = EncEKS{P`∗0∪P`∗1}
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1) (note that this point is not punc-

tured) and r′ = EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗.

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
(fig. 118, fig. 119) and P2,Dec,RFake (fig. 19). It gives obfuscated programs to the adversary, together
with s′, r′, µ1

∗, µ2
∗, µ3

∗. If challenge key is DKS{P`∗0 ∪ P`∗1}, then the resulting distribution is exactly the
distribution from HybD,3,2. If key is DKS{P`∗0}, then the resulting distribution is exactly the distribution
from HybD,3,3.

Lemma 107. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybD,3,3 and HybD,3,4, then there exists an adversary which can break
security of iO for σ′-sized programs in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The only difference between programs SFakeD,8 and SFakeD,9 is that in SFakeD,8 the key EKS is
also punctured at P`∗1 , where P`∗1 = {(∗, ∗, ∗, ∗, `∗1)} \ (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1) (in addition to being punctured
at P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}). We argue that this is without changing functionality:

First, note that the trapdoor step never needs to encrypt the plaintext with `∗1: for that SFake would need to
get as input some fake s which encodes `∗0, but such fake s doesn’t exist since DKS is punctured on the whole
set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}.

Second, in order to encrypt `∗1 in the main step, SFakeD,9 should get µ1
∗ as input. However, in order to

pass validity check with µ1
∗ (which is outside of the image of PRF SG), SFakeD,9 should get as input

some (s,m, m̂, µ1
∗, µ2, µ3), where s is fake and encodes (m,µ1

∗) (among other things). But on such input
SFakeD,9 never executes the main step - it executes the trapdoor step. Thus we can additionally puncture EK
at P`∗1 in the main step.

Lemma 108. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybD,3,4 and HybD,3,5, then there exists an adversary which can break
security of constrained decryption of sender-fake relaxed ACE in time t(λ) + poly(λ) with distinguishing
advantage ε(λ).

Proof. The proof is similar to the proof of indistinguishability of hybrids HybD,3,2,HybD,3,3, except that
EKS , DKS are punctured at different sets. We give a reduction to security of constrained decryption of sender
ACE.

The reduction first takes plaintexts m∗0,m
∗
1 from the adversary. It samples all keys used in programs (except

EKS ,DKS), namely keys EK,DK of the main ACE, keys EKR,DKR of the receiver ACE, key kS of the sparse
extracting PRF SG of the sender, key kR of the sparse extracting PRF RG of the receiver. It also runs setup of
the level system to create the code of GenZero, Increment,Transform, isLess,RetrieveTag,RetrieveTags.

It chooses random r∗ and µ1
∗ and computes µ2

∗ = RGkR(r∗, µ1
∗). It computes levels `∗0 = GenZero(µ1

∗),
`∗1 = Increment(`∗0), L∗0 = Transform(`∗0, µ2

∗). It sets µ3
∗ = EncEK(m∗1, µ1

∗, µ2
∗, L∗0).

Next the reduction sends the set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} as a set to puncture encryption key, and sends sets P`∗0
and ∅ as sets to puncture decryption key to the challenger of constrained decryption game. The challenger
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samples keys EKS , DKS and it sends back to the reduction EKS{P`∗0} and key which is either DKS{P`∗0} or
DKS{∅}.

Next the reduction computes s′ = EncEKS{P`∗0}
(m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1) (note that this point is not punctured)

and r′ = EncEKR(m∗0, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗.

Then the reduction uses variables and code created above to construct and obfuscate programs P1,P3, SFake,
(fig. 118, fig. 119) and P2,Dec,RFake (fig. 19). It gives obfuscated programs to the adversary, together with
s′, r′, µ1

∗, µ2
∗, µ3

∗. If challenge key is DKS{P`∗0}, then the resulting distribution is exactly the distribution
from HybD,3,4. If key is DKS{∅}, then the resulting distribution is exactly the distribution from HybD,3,5.

Lemma 109. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Further, assume that µ1

∗ is outside the image of the PRF SG. Then, if there exists an adversary
which can (t(λ), ε(λ))-distinguish HybD,3,5 and HybD,3,6, then there exists an adversary which can break
security of iO for σ′-sized programs in time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The only difference between programs SFakeD,9 and SFakeD,10 is that in SFakeD,9 the key EKS is
punctured at P`∗0 , where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}. This is without changing functionality, since SFake never
needs to encrypt a plaintext with level `∗0, since `∗0 = [0, µ1

∗] and SFake encrypts levels with value at least
1.

Lemma 110. Assume s∗, r∗ are outside of the image of the sender-fake ACE and the receiver-fake ACE,
respectively. Then, if there exists an adversary which can (t(λ), ε(λ))-distinguish HybD,3,6 and HybD,3,7,
then there exists an adversary which can break computational strong extractor property of the PRF SG in
time t(λ) + poly(λ) with distinguishing advantage ε(λ).

Proof. The proof is identical to the proof of indistinguishability of hybrids HybD,1,3,HybD,1,4, except that
fake s′ is computed using level `∗1 instead of `∗0.

Finally, we note that the distributions in HybD,3,7 and HybE are O(2−λ)-close (the reasoning is similar to
distributions HybB,HybB,1,1).
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9 Proof of off-the-record deniability of our encryption protocol

In this section we show that our scheme also satisfies off-the-record property, which says that the adversary
who gets contradicting claims from parties (that is, the sender claims that the plaintext was m∗0 and shows
consistent randomness, but the receiver claims that the plaintext was m∗1 and also shows consistent random-
ness) cannot tell which party is lying (if not both) and which plaintext was actually sent. In other words,
neither party can prove which plaintext was used in the protocol. We underline however that this property
only holds as long as parties act honestly during the protocol: indeed, a malicious party can always choose its
randomness as a result of a prg and provide the seed of this prg as a proof that its randomness is genuine.

Recall the definition of off-the-record deniability states that the following three distributions are computation-
ally indistinguishable:

• the sender claims m∗0 was sent, the receiver claims m∗1 was sent, the plain-
text was m∗0 : (PP,m∗0,m

∗
1,m

∗
2, s
∗, r′, tr(s∗, r∗,m∗0)), where s∗, r∗ are randomly

chosen, r′ = RFake(m∗1, µ1
∗, µ2

∗, µ3
∗; ρ∗) for randomly chosen ρ∗, and PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup.

• the sender claims m∗0 was sent, the receiver claims m∗1 was sent, the plaintext was
m∗1 : (PP,m∗0,m

∗
1,m

∗
2, s
′, r∗, tr(s∗, r∗,m∗1)), where s∗, r∗ are randomly chosen, s′ =

SFake(s∗,m∗1,m
∗
0, µ1

∗, µ2
∗, µ3

∗), and PP = Setup(1λ; P1,P2,P3,Dec,SFake,RFake; rSetup) for
randomly chosen rSetup.

• the sender claims m∗0 was sent, the receiver claims m∗1 was sent, the plaintext was
m∗2 : (PP,m∗0,m

∗
1,m

∗
2, s
′, r′, tr(s∗, r∗,m∗2)), where s∗, r∗ are randomly chosen, s′ =

SFake(s∗,m∗2,m
∗
0, µ1

∗, µ2
∗, µ3

∗), r′ = RFake(m∗1, µ1
∗, µ2

∗, µ3
∗; ρ∗) for randomly chosen ρ∗, and

PP = Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup.

Note that the first distribution is the same as the following distribution, since RFake(m∗1, µ1
∗, µ2

∗, µ3
∗; ρ∗)

outputs ACE.EncEKR(m∗1, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)):

HybA = (PP,m∗0,m
∗
1, s
∗, r′, tr(s∗, r∗,m∗0)), where s∗, r∗ are randomly chosen,

r′ = ACE.EncEKR(m∗1, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗, and PP =

Setup(1λ; P1,P2,P3,Dec,SFake,RFake; rSetup) for randomly chosen rSetup.

Further, note that the second distribution is statistically close to the following distribution, since
SFake(s∗,m∗1,m

∗
0, µ1

∗, µ2
∗, µ3

∗) with overwhelming probability over the choice of s∗ outputs
ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1):

HybE = (PP,m∗0,m
∗
1, s
′, r∗, tr(s∗, r∗,m∗1)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), and PP = Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for

randomly chosen rSetup.

Finally, note that the third distribution is statistically close to the following distribution:

HybD′ = (PP,m∗0,m
∗
1,m

∗
2, s
′, r′, tr(s∗, r∗,m∗2)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly cho-
sen ρ∗, and PP = Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup.

Thus to prove off-the-record deniability it suffices to show indistinguishability between hybrids HybA, HybE ,
and HybD′ . The proof of this statement consists of the same main components as the proof of deniability,
albeit in a different order and with slight changes. Below we describe the structure of the proof and comment
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on the differences with the proof of deniability. Conscretely, we show that HybA ≈ HybB ≈ HybC
≈ HybD ≈ HybE and that HybC ≈ HybD′ , where hybrids are as follows:

1. Indistinguishability of explanations of the sender: starting from HybA, we switch real s∗ to fake s′,
which encodes plaintext m∗0, transcript µ1

∗, µ2
∗, µ3

∗, and level `∗ = [0, µ1
∗], moving to the following

distribution:

HybB = (PP,m∗0,m
∗
1,m

∗
2, s
′, r′, tr(s∗, r∗,m∗0)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0), r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly
chosen ρ∗, and PP = Setup(1λ; P1,P2,P3,Dec,SFake,RFake; rSetup) for randomly chosen rSetup.

The proof of this step is identical to the proof of lemma 54, except that everywhere (in all hybrids and
reductions) we additionally generate r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly
chosen ρ∗ and give r′ (instead of r∗) to the adversary.

2. Indistinguishability of levels: we switch the level encoded in s′ from `∗0 = [0, µ1
∗] to `∗1 = [1, µ1

∗]
(while keeping L∗0 = [0, µ1

∗, µ2
∗] the same), moving to the following distribution:

HybC = (PP,m∗0,m
∗
1,m

∗
2, s
′, r′, tr(s∗, r∗,m∗0)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly
chosen ρ∗ and PP = Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup.

The proof of this step is identical to the proof of lemma 57, except that in all hybrids and reduc-
tions we generate r′ = RFake(m∗1, µ1

∗, µ2
∗, µ3

∗; ρ∗) instead of r′ = RFake(m∗0, µ1
∗, µ2

∗, µ3
∗; ρ∗),

µ3
∗ = ACE.EncEK(m∗0, µ1

∗, µ2
∗, L∗0) instead of µ3

∗ = ACE.EncEK(m∗1, µ1
∗, µ2

∗, L∗0), and µ1
∗ =

SG(s∗,m∗0) instead of µ1
∗ = SG(s∗,m∗1) (except when µ1

∗ is randomly chosen).

3. Semantic security: we switch the transcript from encrypting m∗0 to encrypting m∗1, moving to the
following distribution:

HybD = (PP,m∗0,m
∗
1,m

∗
2, s
′, r′, tr(s∗, r∗,m∗1)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly
chosen ρ∗, and PP = Setup(1λ; P1,P2,P3,Dec,SFake,RFake; rSetup) for randomly chosen rSetup.

The proof of this step is identical to the proof of lemma 56, except that in all hybrids and reduc-
tions we generate r′ = RFake(m∗1, µ1

∗, µ2
∗, µ3

∗; ρ∗) instead of r′ = RFake(m∗0, µ1
∗, µ2

∗, µ3
∗; ρ∗),

for randomly chosen ρ∗, and s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1) instead of s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗0).

4. Indistinguishability of explanations of the receiver: we switch fake r′, which encodes plaintext m∗1,
transcript µ1

∗, µ2
∗, µ3

∗, and level L∗ = [0, µ1
∗, µ2

∗], to real (randomly chosen) r∗, thus moving to the
following distribution:

HybE = (PP,m∗0,m
∗
1,m

∗
2, s
′, r∗, tr(s∗, r∗,m∗1)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), and PP = Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for

randomly chosen rSetup.

The proof of this step is very close to the proof of lemma 55, except for a couple of changes. First,
we switch the role of m∗0,m

∗
1 everywhere (in hybrids and reductions), and we generate s′ using level

`∗1 instead of `∗0. However, we still generate s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1) (as opposed

to s′ = ACE.EncEKS (m∗1, µ1
∗, µ2

∗, µ3
∗, `∗1)), and we use the set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} (isntead of

P`∗0 = {(∗, ∗, ∗, ∗, `∗0)} \ (m∗1, µ1
∗, µ2

∗, µ3
∗, `∗0)).

248



For the ease of verification, in the paragraph below we present the list of hybrids proving indistin-
guishability of HybD and HybE .

Semantic security for plaintext m∗2: besides showing indistinguishability between HybC and HybD, we
also show indistinguishability between HybC and HybD′ , i.e. we switch the transcript from encrypting m∗0 to
encrypting m∗2, moving from HybC to the following distribution:

HybD′ = (PP,m∗0,m
∗
1,m

∗
2, s
′, r′, tr(s∗, r∗,m∗2)), where s∗, r∗ are randomly chosen, s′ =

ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly cho-
sen ρ∗, and PP = Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup.

The proof of this step is identical to the proof of lemma 56, except that in all hybrids and reductions we generate
r′ = RFake(m∗1, µ1

∗, µ2
∗, µ3

∗; ρ∗) instead of r′ = RFake(m∗0, µ1
∗, µ2

∗, µ3
∗; ρ∗), for randomly chosen ρ∗,

and s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1) instead of s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗0). Also,
everywhere in hybrids and reductions we use p0 = (m∗0, µ1

∗, µ2
∗, L∗0), p2 = (m∗2, µ1

∗, µ2
∗, L∗0) instead of

p0 = (m∗0, µ1
∗, µ2

∗, L∗0), p1 = (m∗1, µ1
∗, µ2

∗, L∗0).

List of hybrids for the proof of indistinguishability of HybD and HybE

Now we present the list of hybrids for the proof of indistinguishability of receiver explanation of off-the-record
deniability. We do not present the reductions since they are very similar to the corresponding reductions
(section 8.2.2), used for hybrids in section 8.1.2 in the proof of lemma 55. For a more convenient reference to
security reductions, we do not change enumeration of hybrids from section 8.1.2, and we keep hybrids in the
same order as there (starting from randomly chosen r∗, and moving to fake r′).

We also present programs (those which require changes compared to their version in the proof of lemma 55).

List of hybrids. First in a sequence of hybrids we “eliminate” complementary ciphertext µ3
∗ =

ACE.EncEK(1⊕m∗1, µ1
∗, µ2

∗, L∗0), i.e. make programs Dec and SFake reject it:

• HybB,1,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; s∗, r∗ are cho-
sen at random, µ1

∗ = SG(s∗,m∗1), µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1). Programs can be found in fig. 96 (programs of the sender)

and fig. 100 (programs of the receiver).

Note that this distribution is exactly the distribution from HybD, conditioned on the fact that s∗, r∗ are
outside of images of their ACE.

• HybB,1,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,1,P2,P3B,1,Dec, SFakeB,1,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗1), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗1, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1). Programs can be found in fig. 97 (programs of the sender)
and fig. 100 (programs of the receiver).

That is, in program SFake we puncture encryption key EKS of the sender-fake ACE at the set
P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}. Indistinguishability holds by iO, since this modification doesn’t change
the functionality of SFake due to the fact that SFake never encrypts plaintexts with level `∗0.

• HybB,1,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,2,P2,P3B,2,Dec, SFakeB,2,RFake; rSetup) for randomly chosen rSetup; s∗, r∗
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are chosen at random, µ1
∗ = SG(s∗,m∗1), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗1, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1). Programs can be found in fig. 98 (programs of the sender)
and fig. 100 (programs of the receiver).

That is, in programs P1,P3,SFake we puncture decryption key DKS of the sender-fake ACE at the
same set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}. Indistinguishability holds by security of constrained key of ACE,
since the corresponding encryption key EKS is already punctured at the same set.

• HybB,1,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,2,P2,P3B,2,Dec, SFakeB,2,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1). Programs can be found in fig. 98 (programs of the sender)

and fig. 100 (programs of the receiver).

That is, we choose µ1
∗ at random instead of computing it as µ1

∗ = SGkS (s∗,m∗1). Indistinguishability
holds by the strong extracting property of the sender PRF SG (note that s∗ was not used anywhere else
in the distribution).

• HybB,1,5. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2,P3B,3,Dec, SFakeB,3,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1). Programs can be found in fig. 123 (programs of the sender)

and fig. 100 (programs of the receiver).

That is, in program P3 we puncture encryption key EK of the main ACE at the point p = (1 ⊕
m∗1, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by iO, since P3 never needs to encrypt this point. Roughly,

this is because of the following: since µ1
∗ is random and outside of the image of a PRF SG, P3 never

encrypts p in the main step. In order to encrypt it in trapdoor step, P3 needs to take as input some fake
s encoding level `∗0, which doesn’t exist due to the fact that DKS is punctured at the set P`∗0 .

• HybB,1,6. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,1,P3B,3,DecB,1,SFakeB,3,RFakeB,1; rSetup) for randomly chosen rSetup; r∗ is
chosen at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1). Programs can be found in fig. 123 (programs of the sender)

and fig. 124 (programs of the receiver).

That is, in programs Dec,RFake we puncture decryption key DK of the main ACE at the same point
p = (1⊕m∗1, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by security of constrained key of ACE, since

the corresponding encryption key EK is already punctured at this point.

Now µ3
∗ = ACE.EncEK(1 ⊕ m∗1, µ1

∗, µ2
∗, L∗0) is rejected by Dec and RFake. In the following hybrids,

similarly to previous lemma, we switch the roles of r∗ and r′, using the fact that programs treat them similarly,
once µ3

∗ is eliminated33.

• HybB,2,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

33The problem with µ3
∗ is that unmodified Dec on input (r∗, µ1

∗, µ2
∗, µ3

∗) outputs 1 ⊕ m∗1 (via main step), and on input
(r′, µ1

∗, µ2
∗, µ3

∗) it outputs ′fail′ (via trapdoor step, since levels in r′ and µ3
∗ are both 0 and “isLess = true” check fails. Because

of this difference, in HybB,2,1 we wouldn’t be able to modify program Dec such that the code treats r∗ and r′ in the same way.
However, after HybB,1,6 µ3

∗ is not a valid ciphertext anymore and thus in HybB,2,1 we can instruct Dec to output ′fail′ on both r∗

and r′.
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Setup(1λ; P1B,3,P2B,2,P3B,3,DecB,2,SFakeB,3,RFakeB,2; rSetup) for randomly chosen rSetup; r∗ is
chosen at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1). Programs can be found in fig. 123 (programs of the sender)

and fig. 125 (programs of the receiver).

That is, we modify programs of the receiver (P2,Dec,RFake) by puncturing encryption key of receiver-
fake ACE EKR{p} at the point p = (m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗), decryption key of receiver-fake ACE

DKR{r∗, r′} at r∗ and r′ (where r′ = ACE.EncEKR(p)), and the key kR of extracting PRF RG of the
receiver at the points (r∗, µ1

∗) and (r′, µ1
∗). In addition, we hardwire certain outputs inside programs

of the receiver to make sure that functionality of the programs doesn’t change. Indistinguishability
holds by iO.

• HybB,2,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r∗, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,2,P3B,3,DecB,2,SFakeB,3,RFakeB,2; rSetup) for randomly chosen
rSetup; r∗ is chosen at random, µ1

∗ is chosen at random, µ2
∗ is chosen at random,

µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1). Programs
can be found in fig. 123 (programs of the sender) and fig. 125 (programs of the receiver).

That is, we choose µ2
∗ at random instead of computing it as µ2

∗ = RGkS (r∗, µ1
∗). Indistinguishability

holds by pseudorandomness of the PRF SG at the punctured point (r∗, µ1
∗).

• HybB,2,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,2,P3B,3,DecB,2,SFakeB,3,RFakeB,2; rSetup) for randomly cho-
sen rSetup; r∗ is chosen at random, µ1

∗ is chosen at random, µ2
∗ is chosen at ran-

dom, µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1),
r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗) for randomly chosen ρ̂∗. Programs can be found in fig.

123 (programs of the sender) and fig. 125 (programs of the receiver).

That is, we switch the roles of r∗ and r′ everywhere in the distribution: namely, we give r′ (instead
of r∗) to the adversary as randomness of the receiver, and we change r∗ to r′ and r′ to r∗ everywhere
in the programs. Note that this doesn’t change the code of the programs since programs use r∗ and
r′ in the same way. Indistinguishability holds by the symmetry of receiver-fake ACE, which says
that (r∗, r′,EKR{p},DKR{r∗, r′}) is indistinguishable from (r′, r∗,EKR{p},DKR{r′, r∗}), where
p = (m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗), r∗ is randomly chosen, r′ = ACE.EncEKR(p).

• HybB,2,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,2,P3B,3,DecB,2,SFakeB,3,RFakeB,2; rSetup) for randomly chosen rSetup; r∗ is
chosen at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗) for randomly

chosen ρ̂∗. Programs can be found in fig. 123 (programs of the sender) and fig. 125 (programs of the
receiver).

That is, we compute µ2
∗ as µ2

∗ = RGkR(r∗, µ1
∗) instead of choosing it at random. Indistinguishability

holds by pseudorandomness of the PRF RG at the punctured point (r∗, µ1
∗).

• HybB,2,5. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,1,P3B,3,DecB,1,SFakeB,3,RFakeB,1; rSetup) for randomly chosen rSetup; r∗ is
chosen at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, ρ̂
∗) for randomly
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chosen ρ̂∗. Programs can be found in fig. 123 (programs of the sender) and fig. 124 (programs of the
receiver).

That is, we revert all changes we made to programs in HybB,2,1 and thus use original programs
P2,Dec,RFake, except that DK remains punctured at the point p = (1 ⊕m∗1, µ1

∗, µ2
∗, L∗0). Indis-

tinguishability holds by iO, since we remove puncturing without changing the functionality of the
programs.

• HybB,2,6. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2B,1,P3B,3,DecB,1,SFakeB,3,RFakeB,1; rSetup) for randomly cho-
sen rSetup; s∗, r∗ are chosen at random, µ1

∗ = SGkS (s∗,m∗1), µ2
∗ = RG(r∗, µ1

∗),
µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), r′ =
ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗. Programs can be found
in fig. 123 (programs of the sender) and fig. 124 (programs of the receiver).

That is, we replace randomly chosen ρ̂∗ with prg(ρ∗) for randomly chosen ρ∗, when generating r′.
Indistinguishability holds by security of a prg.

Finally, in the following hybrids we revert all changes we made in hybrids HybB,1,1 - HybB,1,6, thus restoring
all programs (and making µ3

∗ a valid ciphertext):

• HybB,3,1. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,3,P2,P3B,3,Dec, SFakeB,3,RFake; rSetup) for randomly chosen rSetup; r∗

is chosen at random, chosen at random, µ1
∗ is chosen at random, µ2

∗ = RG(r∗, µ1
∗),

µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0), s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), r′ =
ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for randomly chosen ρ∗. Programs can be found
in fig. 123 (programs of the sender) and fig. 100 (programs of the receiver).

That is, in programs Dec,RFake we unpuncture decryption key DK of the main ACE at the point
p = (1⊕m∗1, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by security of constrained key of ACE, since

the corresponding encryption key EK is punctured at this point.

• HybB,3,2. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,2,P2,P3B,2,Dec, SFakeB,2,RFake; rSetup) for randomly chosen rSetup; r∗ is chosen
at random, µ1

∗ is chosen at random, µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs can be found in fig. 98 (programs of the sender) and fig. 100 (programs
of the receiver).

That is, in program P3 we unpuncture encryption key EK of the main ACE at the point p = (1 ⊕
m∗1, µ1

∗, µ2
∗, L∗0). Indistinguishability holds by iO, because of the same reason as in HybB,1,5.

• HybB,3,3. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,2,P2,P3B,2,Dec, SFakeB,2,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗1), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗1, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), r′ = ACE.EncEKR(m∗1, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for

randomly chosen ρ∗. Programs can be found in fig. 98 (programs of the sender) and fig. 100 (programs
of the receiver).

That is, we choose µ1
∗ as µ1

∗ = SGkS (s∗,m∗1) instead of computing it at random. Indistinguishability
holds by the strong extracting property of the sender PRF SG (note that s∗ is not used anywhere else in
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the distribution).

• HybB,3,4. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1B,1,P2,P3B,1,Dec, SFakeB,1,RFake; rSetup) for randomly chosen rSetup; s∗, r∗

are chosen at random, µ1
∗ = SG(s∗,m∗1), µ2

∗ = RG(r∗, µ1
∗), µ3

∗ = ACE.EncEK(m∗1, µ1
∗, µ2

∗, L∗0),
s′ = ACE.EncEKS (m∗0, µ1

∗, µ2
∗, µ3

∗, `∗1), r′ = ACE.EncEKR(m∗1, µ1
∗, µ2

∗, µ3
∗, L∗0, prg(ρ∗)) for

randomly chosen ρ∗. Programs can be found in fig. 97 (programs of the sender) and fig. 100 (programs
of the receiver).

That is, in programs P1,P3,SFake we unpuncture decryption key DKS of the sender-fake ACE at the
same set P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}. Indistinguishability holds by security of constrained key of ACE,
since the corresponding encryption key EKS is already punctured at the same set.

• HybB,3,5. We give the adversary (PP,m∗0,m
∗
1, s
′, r′, µ1

∗, µ2
∗, µ3

∗), where PP =

Setup(1λ; P1,P2,P3,Dec, SFake,RFake; rSetup) for randomly chosen rSetup; s∗, r∗ are cho-
sen at random, µ1

∗ = SG(s∗,m∗1), µ2
∗ = RG(r∗, µ1

∗), µ3
∗ = ACE.EncEK(m∗1, µ1

∗, µ2
∗, L∗0),

s′ = ACE.EncEKS (m∗0, µ1
∗, µ2

∗, µ3
∗, `∗1), r′ = ACE.EncEKR(m∗1, µ1

∗, µ2
∗, µ3

∗, L∗0, prg(ρ∗)) for
randomly chosen ρ∗. Programs can be found in fig. 96 (programs of the sender) and fig. 100 (programs
of the receiver).

That is, in program SFake we unpuncture encryption key EKS of the sender-fake ACE at the set
P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}. Indistinguishability holds by iO, since this modification doesn’t change the
functionality of SFake due to the fact that SFake never encrypts plaintexts with level `∗0.

Note that HybB,3,5 is the same as HybC , conditioned on the fact that s∗, r∗ are outside of image of
ACE.
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Programs P1B,3,P3B,3, SFakeB,3.
Program P1B,3(s,m)
Inputs: sender randomness s, message m.
Hardwired values: punctured decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)},
key kS of an extracting PRF SG.

1. Trapdoor step:
(a) out ← ACE.DecDKS{P`∗0}

(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m = m′ then return µ1
′;

2. Main step:
(a) Return µ1 ← SGkS (s,m).

Program P3B,3(s,m, µ1, µ2)
Inputs: sender randomness s, message m, the first and the second messages µ1, µ2 in the protocol.
Hardwired values: obfuscated code of algorithms P1B,3, GenZero, Transform, RetrieveTag; punctured
decryption key DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}, punctured encryption key
EK{p} of main ACE, where p = (1⊕m∗1, µ1

∗, µ2
∗, L∗0).

1. Validity check: if P1B,3(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1, µ2 = m′, µ1
′, µ2

′ then return µ3
′;

(c) If m,µ1 = m′, µ1
′ then:

i. If µ1 6= RetrieveTag(`′) then abort;
ii. Set L← Transform(`′, µ2);

iii. Return µ3 ← ACE.EncEK{p}(m,µ1, µ2, L);
3. Main step:

(a) Set L0 ← Transform(GenZero(µ1), µ2);
(b) Return µ3 ← ACE.EncEK{p}(m,µ1, µ2, L0).

Program SFakeB,3(s,m, m̂, µ1, µ2, µ3)
Inputs: sender randomness s, real message m, fake message m̂, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P1B,3, GenZero, Increment; punctured encryption and
decryption keys EKS{P`∗0},DKS{P`∗0} of sender-fake ACE, where P`∗0 = {(∗, ∗, ∗, ∗, `∗0)}.

1. Validity check: if P1B,3(s,m) 6= µ1 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKS{P`∗0}
(s); if out = ′fail′ goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, `′);

(b) If m,µ1 = m′, µ1
′ then

i. Set `+1 ← Increment(`′); if `+1 = ′fail′ then abort;
ii. Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `+1).
3. Main step:

(a) Set `1 ← Increment(GenZero(µ1));
(b) Return ACE.EncEKS{P`∗0}

(m̂, µ1, µ2, µ3, `1).

Figure 123: Programs P1B,3,P3B,3, SFakeB,3, used in the proof indistinguishability of explanations of the
receiver for off-the-record deniability.
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Programs P2B,1,DecB,1,RFakeB,1.
Program P2B,1(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: decryption key DKR of receiver-fake ACE, key kR of an extracting PRF RG.

1. Trapdoor step:
(a) out ← ACE.DecDKR(r); if out = ′fail′ then goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(b) If µ1 = µ1
′ then return µ2

′;
2. Main step:

(a) Return µ2 ← RGkR(r, µ1).

Program DecB,1(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P2, isLess, RetrieveTags; decryption key DKR of receiver-
fake ACE, punctured decryption key DK{p} of the main ACE, where p = (1⊕m∗1, µ1

∗, µ2
∗, L∗0).

1. Validity check: if P2(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) out ← ACE.DecDKR(r); if out′ = ′fail′ then goto main step; else parse out′ as
(m′, µ1

′, µ2
′, µ3

′, L′, ρ̂);
(b) if µ1, µ2, µ3 = µ1

′, µ2
′, µ3

′ then return m′;
(c) out← ACE.DecDK{p}(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1

′′, µ2
′′, L′′);

(d) If µ1, µ2 = µ1
′, µ2

′ then
i. If (µ1

′, µ2
′) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) and isLess(L′, L′′) = true then return m′′;

ii. Else abort.
3. Main step:

(a) out← ACE.DecDK{p}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
(b) If (µ1, µ2) = (µ1

′′, µ2
′′) = RetrieveTags(L′′) then return m′′;

(c) Else abort.

Program RFakeB,1(m̂, µ1, µ2, µ3; ρ)
Inputs: fake message m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: encryption key EKR of receiver-fake ACE, punctured decryption key DK{p} of the main
ACE, where p = (1⊕m∗1, µ1

∗, µ2
∗, L∗0).

1. out← ACE.DecDK{p}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
2. Return r′ ← ACE.EncEKR(m̂, µ1, µ2, µ3, L

′′, prg(ρ)).
Figure 124: Programs P2B,1,DecB,1,RFakeB,1, used in the proof of lemma 55 (indistinguishability of
explanations of the receiver).
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Programs P2B,2,DecB,2,RFakeB,2.
Program P2B,2(r, µ1)
Inputs: receiver randomness r, the first message µ1 in the protocol.
Hardwired values: punctured decryption key DKR{r∗, r′} of receiver-fake ACE, punctured key
kR{(r∗, µ1

∗), (r′, µ1
∗)} of an extracting PRF RG, variables r∗, r′, µ1

∗, µ2
∗.

1. Trapdoor step:
(a) If (r, µ1) = (r∗, µ1

∗) or (r, µ1) = (r′, µ1
∗) then return µ2

∗;
(b) If r = r∗ or r = r′ then goto main step;
(c) out ← ACE.DecDKR{r∗,r′}(r); if out = ′fail′ then goto main step, else parse out as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(d) If µ1 = µ1
′ then return µ2

′;
2. Main step:

(a) Return µ2 ← RGkR{(r∗,µ1
∗),(r′,µ1

∗)}(r, µ1).

Program DecB,2(r, µ1, µ2, µ3)
Inputs: receiver randomness r, protocol transcript µ1, µ2, µ3.
Hardwired values: obfuscated code of algorithms P2B,2, isLess, RetrieveTags; punctured decryption
key DKR{r∗, r′} of receiver-fake ACE, punctured decryption key DK{p} of the main ACE, where p =
(1⊕m∗1, µ1

∗, µ2
∗, L∗0), variables r∗, r′, µ1

∗, µ2
∗, µ3

∗,m∗1.
1. Validity check: if P2B,2(r, µ1) 6= µ2 then abort;
2. Trapdoor step:

(a) If (r, µ1, µ2, µ3) = (r∗, µ1
∗, µ2

∗, µ3
∗) or (r, µ1, µ2, µ3) = (r′, µ1

∗, µ2
∗, µ3

∗) then return m∗1;
(b) If (r, µ1, µ2) = (r∗, µ1

∗, µ2
∗) or (r, µ1, µ2) = (r′, µ1

∗, µ2
∗) then then goto main step;

(c) If r = r∗ or r = r′ then goto main step;
(d) out ← ACE.DecDKR{r∗,r′}(r); if out′ = ′fail′ then goto main step; else parse out′ as

(m′, µ1
′, µ2

′, µ3
′, L′, ρ̂);

(e) if µ1, µ2, µ3 = µ1
′, µ2

′, µ3
′ then return m′;

(f) out← ACE.DecDK{p}(µ3); if out′′ = ′fail′ then abort, else parse out′′ as (m′′, µ1
′′, µ2

′′, L′′);
(g) If µ1, µ2 = µ1

′, µ2
′ then

i. If (µ1
′, µ2

′) = (µ1
′′, µ2

′′) = RetrieveTags(L′′) and isLess(L′, L′′) = true then return m′′;
ii. Else abort.

3. Main step:
(a) out← ACE.DecDK{p}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1

′′, µ2
′′, L′′);

(b) If (µ1, µ2) = (µ1
′′, µ2

′′) = RetrieveTags(L′′) then return m′′;
(c) Else abort.

Program RFakeB,2(m̂, µ1, µ2, µ3; ρ)
Inputs: fake message m̂, protocol transcript µ1, µ2, µ3, random coins ρ.
Hardwired values: punctured encryption key EKR{Sρ̂∗} of receiver-fake ACE, where Sρ̂∗ =
{∗, ∗, ∗, ∗, ∗, ρ̂∗} for randomly chosen ρ̂∗, punctured decryption key DK{p} of the main ACE, where
p = (1⊕m∗1, µ1

∗, µ2
∗, L∗0).

1. out← ACE.DecDK{p}(µ3); if out = ′fail′ then abort, else parse out as (m′′, µ1
′′, µ2

′′, L′′);
2. Return r′ ← ACE.EncEKR{Sρ̂∗}(m̂, µ1, µ2, µ3, L

′′, prg(ρ)).

Figure 125: Programs P2B,2,DecB,2,RFakeB,2, used in the proof of lemma 55 (indistinguishability of
explanations of the receiver).
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A On Flexible Deniability: Discussion

This weaker notion of deniability [CDNO96, OPW11, BNNO11, Dac12, AFL16, CIO16, GKW17], some-
times called flexible deniability, multi-distributional deniability or dual-scheme deniability postulates two
schemes, S and S′, where S is “deniable with respect to S′”. When applied to sender-deniability, the
requirement is roughly as follows: The sender can use scheme S to encrypt plaintext m with random string
r to obtain ciphertext c, and then can present an appropriate fake random string r̃ such that c is obtained
as an encryption of m′ 6= m with randomness r̃, but under the scheme S′. In other words, this security
property assumes that the adversary doesn’t know which scheme was used by the sender, S or S′, and that the
adversary is willing to believe the sender who claims to have used the non-deniable version. Another way to
look at flexible schemes is to say that S is a “trapdoored” version of S′, i.e. when parties generate a ciphertext
according to deniable scheme S, they additionally generate a faking trapdoor which is required to compute
fake randomness; in constrast, in S′ no such trapdoor is generated. Deniability holds only as long as this
trapdoor remains secret; upon coercion, the parties claim that they never generated a trapdoor to begin with.

In contrast, in the standard definition of deniable encryption [CDNO96] the adversary is fully aware of the
fact that the sender is using a deniable algorithm, and thus has the right to demand to see any potential “faking
trapdoors” or any information which may be required for generating fake randomness.

On a positive side, flexibly deniable encryption already guarantees plausible deniability, since the coercer
cannot prove that S was used - even though it may have reasons to believe so. Thus, flexible deniability
already protects parties in many scenarios where plausible deniability suffices, e.g. in court. Another benefit
of flexible schemes is their efficiency: unlike fully deniable schemes (including this work and [SW14]) which,
to date, are only known from obfuscatoin, known flexibly deniable schemes can be implemented in practice.
Flexible deniability, due to having a weaker security guarantee, allows for fewer rounds, more efficiency,
and weaker assumptions than fully deniable schemes, and requires no setup. For instance, [OPW11] build a
2-message flexibly bideniable encryption from LWE and from simulatable encryption. In fact we even have
more advanced encryption schemes (like identity-based encryption [OPW11], functional encryption [CIO16],
and attribute-based encryption ([AFL16])) with flexible deniability, and we have flexibly deniable encryption
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scheme with succinct keys [GKW17], where the size of a key is proportional to the number of possible fake
messages (which can be smaller than the total number of possible plaintexts).

However, flexible notion of deniability has significant drawbacks. Indeed, having two different algorithms,
which have two different security guarantees and which are up to the parties to choose, leaves room for
suspicion, misuse, and can even cause harm to parties themselves. It also requires additional coordination
between parties. But most importantly, flexible deniability doesn’t provide perhaps the most desirable benefit
of deniability - preventing coercion in the first place by making it useless. Below we explain these issues in
more detail.

First, refusal to provide keys for deniable version could significantly increase the adversary’s certainty that
parties are lying - compared to the ideal channels case where the coercer has nothing besides parties’ claims.
Indeed, in the real world the opinion of the coercer will be shifted by its certainty that deniable version was
used. However, this is not captured by security definition of flexible deniability, which doesn’t take into
account how exactly parties choose an algorithm, e.g. by assuming some distribution on the choices of S
and S′, or considering rational behavior. For instance, one could argue that rational players would prefer S
over S′ because of better security guarantees, which is further aggravated by the fact that flexible deniability
could actually harm those who use the non-deniable version. Indeed, as [CHK+08], who analyze plausible
deniability of TrueCrypt hidden volume, put it, “deniability cuts both ways, and sometimes that’s not a
benefit”.

Second, note that fully deniable encryption doesn’t allow parties to prove what their plaintext was even if they
want to34. This is crucial in preventing bribery or vote selling. In contrast, in flexibly deniable encryption
parties can choose whether they want it or not by choosing deniable or non-deniable algorithm. As a result,
with fully deniable encryption one could set up receipt-free voting scheme using a physical booth which, for
instance, provides parties with randomness (so that they can still lie about their vote, but cannot use preset
randomness to sell their vote). But if flexible scheme is used, then voters can lie about their vote but at the
same time sell their true vote if they want (if deniable version is used), or can do neither (if non-deniable
version is used).

Another important issue which arises in flexible setting is the need for coordination. That is, parties need a
way to agree whether they run S or S′, and do so by the time of encryption35. It is not clear how to do such
coordination without another deniable channel. As a result, well-being of each party is in the other party’s
hands: e.g. the sender’s claim will look credible only as long as the receiver also used deniable algorithm
at time of encryption, also decided to fake at time of coercion, and used the same fake plaintext. This is a
problem not only when the receiver turns against the sender, but also when the receiver remains honest but
doesn’t know what actions to take out of lack of coordination.

Finally and most importantly, as already pointed out by [OPW11], deniable encryption not only allows to
withstand coercion, but also makes in useless in the first place - just like it is useless in the ideal world, where
there is no way of verifying parties’ claims. However, flexible deniability doesn’t give this guarantee: the
coercer (who suspects that deniable version could be used) can gradually increase the pressure - be it a sum
of money or “enhanced interrogation” - until the parties find it more preferable to prove what their plaintext
was by disclosing keys of deniable version, S.

To summarize this discussion, we think that flexible deniability as a real-life application already suffices in
34As discussed before, this property only holds if parties execute the protocol correctly.
35However coordination is not required for correctness and semantic security, since these properties hold even if the sender and

the receiver use different schemes [OPW11].
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many cases - e.g. when plausible deniability is sufficient, or when the coercer is not aware of the concept of
deniable encryption and will be satisfied by seeing some working key. However, to obtain security guarantees
of the ideal channel, one should use encryption which is (fully) deniable and off-the-record deniable.

Needless to say, we still believe that flexible deniability is a fascinating concept to explore. For instance,
coming up with flexible scheme where S′ is some standard encryption, e.g. RSA, would mitigate some issues
mentioned above, thus making flexible deniability as good as full deniability for many practical purposes.
Further, flexibly deniable encryption is an interesting primitive whose connections to non-committing
encryption and full deniability are yet to be explored.

B On removing layers of obfuscation

When our construction described in section 6 is instantiated with ACE from [CHJV14], relaxed ACE described
in section C, and the level system described in section 7 (which in turn uses ACE of [CHJV14]), the resulting
CRS ends up containing three layers of obfuscation. Since even a single obfuscation incurs a significant
blowup in the program size, ideally we would like to have only one layer of obfuscation.

In this section we explain why the whole proof of bideniability and off-the-record deniability can still go
through, if we use non-obfuscated version and “unroll” all the proofs. More concretely, we do the following:

• Instead of using ACE keys and the programs of the level system, which are all obfuscated programs,
we use their non-obfuscated versions. Still, we use one layer of obfuscation on top of programs of
deniable encryption. We pad the size of the non-obfuscated programs of deniable encryption to size σ
such that σ is larger than the size of any (non-obfuscated) program (including programs variants in the
hybrids) of deniable encryption, ACE, relaxed ACE, or the level system.

• In the proof we replace each hybrid reducing to security of any of ACE, relaxed ACE, or the level
system with a sequence of hybrids proving the corresponding property of the primitive.

Now we briefly comment on why each security reduction can still be proven. Let program C1 of a primitive
∆1, and program C2 of a primitive ∆2 be such that C1 uses an obfuscated version of C2, i.e. iO(C2), as a
black box (e.g. ∆1 can be deniable encryption and ∆2 can be relaxed ACE, ACE or the level system, or ∆1

can be the level system and ∆2 can be ACE). We denote this by C1[iO(C2)]. Further, let C1[C2] be program
C1 which uses program C2, instead of iO(C2). Note that this is syntactically well-defined since C1 uses
iO(C2) as a black box and since iO(C2) and C2 have the same syntax.

Further, let all reductions in the security proof of ∆1 use iO(C2) as a black box. We claim that the “unrThen
all reductions in security proofs of deniable encryption, ACE, relaxed ACE, and the level system can be
classified as follows:

Reductions in the proof of security of ∆1:

• Reductions which rely on security of ∆2: we replace each reduction with a sequence of reductions
from the proof of ∆2, and as we argue later, they all still can be proven.

• Reductions which do not rely on security of ∆2, but which use the fact that iO(C2) has a certain
functionality (e.g. an iO-based reduction, which uses the fact that the functionality of C1 in the two
consecutive hybrids doesn’t change, and analyzes functionality of iO(C2) as part of the argument). We
claim that if such a reduction is possible with C1[iO(C2)], then it is also possible with C1[C2]. This is
because iO preserves the functionality with all-but-negligible probability over the randomness of iO.
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• All other reductions: these reductions merely use the fact that in the reduction it is possible to
reconstruct iO(C2) in polynomial time. Note that this is true for C2 as well, thus such reductions still
go through.

Reductions in the proof of security of ∆2

• Reductions to security of obfuscation for a program C2, relying on the fact that C2 has the same
functionality in the two consecutive hybrids: we claim that we can instead reduce to security of
obfuscation for a program iO(C1[C2]). Indeed, since C1 uses iO(C2) as a black box, and since iO
preserves functionality except for negligible probability over the choice of randomness of iO, C1[C2]
also has the same functionality in those two hybrids. Thus, as long as we pad the program C1[C2]
sufficiently, the reduction to security of iO still holds.

• Reductions which rely on the fact that in some cases iO allows to extract a differing input of programs
C ′2, C

′′
2 , given iO(C ′2), iO(C ′′2 ). We argue that security of there hybrids can still be reduced to security

of iO and one-way functions, even though the resulting programs C1[C ′2] and C1[C ′′2 ] can be different
on exponentially many inputs. Recall that those security reductions work by constructing a circuit
M2 such that M2 is the same as C ′2 or C ′′2 , and use it do to binary search over a differing value, which
could be an input, or part of an input, or some intermediate variable in the program. But this means
that the reduction in the “unrolled” proof can do the same binary search, over the same differing value,
by using program M1 = C1[M2], which can be constructed using iO(C1[C ′2]), iO(C1[C ′′2 ]): indeed,
since M2 is the same as either C ′2 or C ′′2 , C1[M2] is the same as either C1[C ′2] or C1[C ′′2 ].

• All other reductions: in such reductions we need to make sure that the reduction can reconstruct the
whole distribution, which now includes an obfuscated program iO(C1[C2]), together with any values
the adversary is supposed to get as part of the game for primitive ∆1. We note that this can be done:
since it was possible to do in the reduction (of the proof for ∆1) to security of ∆2, it should be possible
as well for every hybrid in security proof of ∆2, since otherwise the reduction of the proof of ∆1 can
be used as a distinguisher for ∆2. Indeed, since the reduction uses iO(C2) as a black box, we can
replace iO(C2) with C2 and the reduction still succeeds.

C Construction of relaxed ACE

In this section we describe how to modify the construction of ACE from [CHJV14] to obtain relaxed ACE (def.
9). Recall that the differences between ACE and relaxed ACE are that relaxed ACE doesn’t necessarily satisfy
indistinguishability of ciphertexts; that its distinguishing advantage in security of constrained decryption game
is negligible for certain sets (as opposed to being proportional to size of those sets); and that it additionally
satisfies symmetry.

Brief motivation and explanation of the construction. The first attempt to remove dependency on the size
of the sets is perhaps to use the technique from [GPS16] - that is, instead of having a single PRF-based
signature on the plaintext m, have |m| signatures of each prefix of m. This allows to change the key on
many inputs (with the same prefix) in a single step. However, with this approach we are not able to prove
symmetry: it requires to switch c∗ = Enc(m∗) to random and thus to puncture all keys for each PRF; however,
such puncturing cannot be done without changing the functionality of the encryption program, since e.g.
puncturing the PRF which is applied on the first bit already prohibits encrypting of half of all inputs.

To deal with this, we notice that in the proof of deniable encryption we use security of relaxed ACE on sets of
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special structure, which is either all strings ending with the same suffix of a fixed size, or all such strings
except one. Thus we require relaxed ACE to be parametrized with prefix parameter t, which denotes the size
of this prefix. 36 An encryption of m will be an ACE ciphertext where instead of a single PRF signature of m,
we will have n− t+ 1 PRF signatures of suffixt(m), . . . , suffixn(m). We say that a set S is consistent with
some suffix suf of size t, if S consists of all strings ending with suf; we say that a plaintext m is consistent
with suf, if m ends with suf. Using n− t+ 1 signatures allows us to prove the following:

• symmetry for random c∗ and c′ = Enc(m∗), as long as encryption key is punctured at the set S, and
both S and m∗ are consistent with the same suffix suf of size t;

• security of constrained decryption with distinguishing advantage independent of set sizes, as long as
S1 \ S0 is either Ssuf (e.g. a set consistent with some suf of size t), or Ssuf \ {m}, where both S and
m are consistent with the same suf of size t.

Security of constrained decryption follows a by-now standard proof, which punctures the key at the whole
set Ssufi at once (for each i = t + 1, . . . , n), by adding an injective prg on top of a signature check and
then switching the prg image to random (in the actual proof we instead use an injective OWF to minimize
assumptions). For the case S1 \ S0 = Ssuf it is enough to do one step, and for the case S1 \ S0 = Ssuf \ {m}
we need n− t steps.37

Symmetry argument is essentially a Sahai-Waters [SW14] symmetry argument in the proof of deniable
encryption, with a difference that they didn’t use ACE as an abstraction, and we instead decided to formulate
it on ACE level to shorten the main proof of deniable encryption. The proof follows essentially the same
steps, except that, since we have more signatures, we also need to argue that in the proof the decryption key
can be punctured at a certain set of points (this is done using an argument similar to the proof of security
of constrained decryption, since encryption key is already punctured on those points). Indeed, the proof of
[SW14] uses the fact that the (only) signature uniquely defines the plaintext. This is not true in our case
anymore, since some signatures only define the corresponding prefix of the plaintext. This introduces “bad”
plaintexts which we need to get rid of. To do this, we rely on the fact that S \ {m∗} can be represented as a
union of Ssufi , where all sufi are different from suffixes of m∗.

Construction of relaxed ACE. The construction of relaxed ACE is the same as the construction of ACE
from [CHJV14], except that we use different programs. Namely, let Ft, . . . , Fn be injective PRFs with sparse
images, mapping t, . . . , n bits, respectively, to nout = O(λ) bits. Let F be a PRF mapping nout bits to O(λ)
bits. Then a (possibly punctured) encryption key is obfuscated GEnc(m), a (possibly punctured) decryption
key is obfuscated GDec(m), and a ciphertext-based punctured key is obfuscated GPuncture(c)[c

(0), c(1)], where
one of c(0), c(1) is a valid ciphertext and the other is randomly chosen. Programs can be found on fig. 126.

Theorem 4. Assuming iO and injective one way functions, the construction of [CHJV14] instantiated with
programs on fig. 126 is a relaxed ACE for plaintext length n and suffix parameter t. Concretely, assuming
iO is (t1, ε1)-secure and one way function is (t2, ε2)-secure, and let (t3, ε3) be such that ε3 ≥ ε

o(1)
1 , and

t3 · 1
ε1

(n− t) = O(t2).

Then the resulting ACE is (min(t1, t3), O((n− t) · (ε1 + ε2 + ε)))-secure.

36In the construction of deniable encryption, t = |`0| for the sender ACE and t = |prg(ρ)| for the receiver ACE.
37We write S0, S1 (sets to puncture keys at in the security game) and Ssuf (a set denoting all strings ending with suf), somewhat

abusing the notation, since the subscript means an index in the former case and a prefix in the latter. However, all our suffixes are of
length at least t, so there should be no confusion.
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Programs of relaxed ACE.
Program GEnc(m)
Inputs: message m.
Hardwired values: keys Kt, . . . ,Kn,K of PRFs Ft, . . . , Fn, F ; circuit CU describing set U . Parameters
t, n.

1. If CU (m) then return ⊥;
2. For each i = t, . . . , n set αi ← Fi(Ki; suffixi(m));
3. Set β ← F (K;αn)⊕m;
4. Return (αt, . . . , αn, β).

Program GDec(c)
Inputs: ciphertext c.
Hardwired values: keys Kt, . . . ,Kn,K of PRFs Ft, . . . , Fn, F ; circuit CS . Parameters t, n.

1. Parse c = (αt, . . . , αn, β);
2. Set m← F (K;αn)⊕ β
3. If CS(m) then return ⊥;
4. For each i = t, . . . , n do: if αi 6= Fi(Ki; suffixi(m)) then return ⊥;
5. Return m.

Program GPuncture(c)
Inputs: ciphertext c.
Hardwired values: keys Kt, . . . ,Kn,K of PRFs Ft, . . . , Fn, F . In addition, strings c(0) and c(1), hardwired
in lexicographic order. Parameters t, n.

1. If c = c(0) or c = c(1) then return ⊥; (c(0) and c(1) are written in lexicographic order)
2. Parse c = (αt, . . . , αn, β);
3. Set m← F (K;αn)⊕ β
4. For each i = t, . . . , n do: if αi 6= Fi(Ki; suffixi(m)) then return ⊥;
5. Return m.

Figure 126: Programs of constrained keys of relaxed ACE. By suffixi(m) we denote mn−i+1, . . . ,mn.

264



Proof. Correctness. All necessary correctness properties follow from correctness of iO, injectivity of PRFs
and can be immediately verified.

Security of constrained decryption with negligible advantage. We prove security for a harder case of
S1 \ S0 = Ssuft \ {m∗} (the case when S1 \ S0 = Ssuft can be shown by doing a single step of this proof
for the PRF Ft). Note that S1 \ S0 = Ssuft \ {m∗} can be represented as Ssufn ∪ . . . ∪ Ssuft+1 , where
sufn = m∗1,m

∗
2, . . . ,m

∗
n, sufn−1 = m∗2,m

∗
3, . . . ,m

∗
n, suft+1 = m∗n−t+1,m

∗
n−t+2, . . . ,m

∗
n.

We start with a distribution corresponding to the key DK which is punctured at S0 (which we denote by
Hyb0) and eventially reach a distribution where the key DK is punctured at S1 (which we denote by Hybn,5).
We show indistinguishability via a sequence of hybrids Hybj,k for j = t+ 1, . . . , n, k = 0, . . . , 5. Programs
can be found on fig. 127:

• Hyb0 corresponds to the game where DK is punctured at S0, i.e. the adversary gets
(EK{U}, DK{S0}).

• Hybj,0: the adversary gets (EK{U}, DKj,0), where DKi is an obfuscation of a program Gj,0Dec (fig.
127). Note that when j = t+ 1, Hybj,0 = Hyb0.

• Hybj,1: the adversary gets (EKj,1, DKj,1), where DKj,1 is an obfuscation of a program Gj,1Dec, where
z∗ = Fj(Kj ; sufj)), and EKj,1 is an obfuscation of Gj,1Enc. Indistinguishability from the previous
hybrid follows from iO, since both pairs of programs have the same functionality. Indeed, in Gj,0Dec

and Gj,1Dec we replaced the condition αj = Fj(Kj ; suffixj(m)) with two different checks for the case
suffixj(m) 6= sufj and suffixj(m) = sufj . For the former, we didn’t change the check (but punctured
the key Kj at sufj), and for the latter, we replaced the check αj = Fj(Kj ; sufj) with the check
g(αj) = z∗, where z∗ = g(Fj(Kj ; sufj)). Since g is injective, this doesn’t change the functionality.

In Gj,1Enc we punctured the key Kj at sufj . This is without changing the functionality, since the program
outputs ⊥ on input m ∈ Ssufj ⊂ U .

• Hybj,2: the adversary gets (EKj,1, DKj,1), where DKj,1 is an obfuscation of a program Gj,1Dec, where
z∗ = g(y∗) for random y∗, and EKj,1 is an obfuscation of Gj,1Enc. Indistinguishability holds by security
of a punctured PRF Fj at sufj .

• Hybj,3: the adversary gets (EKj,1, DKj,3), where DKj,3 is an obfuscation of a program Gj,3Dec, where
z∗ = g(y∗) for random y∗, and EKj,1 is an obfuscation of Gj,1Enc. In other words, we instruct the
program to output ⊥ instead of m when g(αj) = z∗.

Similar to lemma 1 from [BCP14], we argue that if any adversary can distinguish between hy-
brids Hybj,2 and Hybj,3 and iO is secure, then we can invert the one-way function g. Note that in
our case programs differ on exponentially many inputs; however, differing inputs are a subset of
{αt, . . . , αj = y∗, . . . , αn, β}, where y∗ = g−1(z∗) and other values can be arbitrary. In other words,
differing inputs share the block y∗, and we can do binary search over y∗ similar to how the proof of
lemma 1 does a binary search over a single differing input.

More concretely, the extractor works as follows. It creates a program M which on input
αt, . . . , αj , . . . , αn, β first checks if αj < y′ (where y′ is a binary search guess for y∗, i.e. in the
first iteration y′ = 2|αj |/2). If so, then M executes Gj,1Dec, otherwise it executes Gj,3Dec. Note that if
y∗ < y′, then M is functionally equivalent to Gj,1Dec, and if y∗ ≥ y′, then M is functionally equivalent
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to Gj,3Dec. (Indeed, if y∗ < y′, then for all input αj ≥ y′ the line with the check g(αj) = z∗ in both
Gj,1Dec, Gj,3Dec will never be executed, since g is injective and its only preimage y∗ < y′. Since this is
the only difference in the programs, these programs are functionally equivalent for the case αj ≥ y′,
and therefore for all inputs M is functionally equivalent to Gj,1Dec. The case y∗ ≥ y′ can be analyzed
similarly). If by assumption there is an adversary which distinguishes between Hybj,2 and Hybj,3 with
probability at least η and iO is ν-secure, where ν = ηo(1), then the adversary can run the adversary
O(1/η) times, estimate its distinguishing probability, learn the first bit of y∗, and continue binary
search similar to the proof of lemma 1.

• Hybj,4: the adversary gets (EKj,1, DKj,3), where DKj,3 is an obfuscation of a program Gj,3Dec, where
z∗ = g(Fj(Kj ; sufj)), and EKj,1 is an obfuscation of Gj,1Enc. In other words, we switch y∗ back to
Fj(Kj ; sufj) from random. Indistinguishability holds by security of a punctured PRF Fj at sufj .

• Hybj,5: the adversary gets (EK{U}, DKj+1,0), where DKj+1,0 is an obfuscation of a program
Gj+1,0

Dec . In other words, we unpuncture the key Kj at sufj , and, since the program now always returns
⊥ when suffixj(m) = sufj , we remove the line with z∗-check and instead make the program output
⊥ when m ∈ Ssufj . indistinguishability holds by iO, since this doesn’t change the functionality (the
reasoning why the key can be unpunctured is the same as in Hybj,1).

Note that Hybj,5 = Hybj+1,0.

Note that in Hybn,5 program Gn+1,0
Dec outputs ⊥ when s ∈ S0 or m ∈ Ssufn ∪ . . . ∪ Ssuft+1 = S1 \ S0. In

other words, it outputs ⊥ when m ∈ S1, and thus this program is equivalent to DK{S1}, which concludes
security proof.

Finally, note that security loss depends only logarithmically on the size of S1 \ S0, as required by security of
constrained decryption of relaxed ACE.
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Programs of relaxed ACE.

Program Gj,1Enc(m)
Inputs: message m.
Hardwired values: keys Kt, . . . ,Kn,K (where Kj{sufj} is punctured at sufj) of PRFs Ft, . . . , Fn, F ;
circuit CU describing set U . Parameters t, n.

1. If CU (m) then return ⊥;
2. For each i = t, . . . , n, i 6= j, set αi ← Fi(Ki; suffixi(m)); set αj ← Fj(Kj{sufj}; suffixi(m));
3. Set β ← F (K;αn)⊕m;
4. Return (αt, . . . , αn, β).

Program Gj,0Dec(c)
Inputs: ciphertext c.
Hardwired values: keysKt, . . . ,Kn,K of PRFs Ft, . . . , Fn, F ; circuit CS0 . Parameters t, n. Set of suffixes
sufn, . . . , suft+1 describing S1 \ S0.

1. Parse c = (αt, . . . , αn, β);
2. Set m← F (K;αn)⊕ β
3. If CS0(m) then return ⊥;
4. If m ∈ Ssufj−1

∪ Ssufj−2
∪ . . . ∪ Ssuft+2 ∪ Ssuft+1 then return ⊥;

5. For each i = t, . . . , n do: if αi 6= Fi(Ki; suffixi(m)) then return ⊥;
6. Return m.

Program Gj,1Dec(c)
Inputs: ciphertext c.
Hardwired values: keys Kt, . . . ,Kn,K (where Kj{sufj} is punctured at sufj) of PRFs Ft, . . . , Fn, F ;
circuit CS0 . Parameters t, n. Set of suffixes sufn, . . . , suft+1 describing S1 \ S0, injective owf g, value z∗.

1. Parse c = (αt, . . . , αn, β);
2. Set m← F (K;αn)⊕ β
3. If CS0(m) then return ⊥;
4. If m ∈ Ssufj−1

∪ . . . ∪ Ssuft+1 then return ⊥;
5. For each i = t, . . . , n, i 6= j do: if αi 6= Fi(Ki{sufj}; suffixi(m)) then return ⊥;
6. If suffixj(m) = sufj then: if g(αj) = z∗ then return m, else return ⊥;
7. If suffixj(m) 6= sufj then: if αj = Fj(Kj{sufj}; suffixj(m)) then return m, else return ⊥.

Program Gj,3Dec(c)
Inputs: ciphertext c.
Hardwired values: keys Kt, . . . ,Kn,K (where Kj{sufj} is punctured at sufj) of PRFs Ft, . . . , Fn, F ;
circuit CS0 . Parameters t, n. Set of suffixes sufn, . . . , suft+1 describing S1 \ S0, injective owf g, value z∗.

1. Parse c = (αt, . . . , αn, β);
2. Set m← F (K;αn)⊕ β
3. If CS0(m) then return ⊥;
4. If m ∈ Ssufj−1

∪ . . . ∪ Ssuft+1 then return ⊥;
5. For each i = t, . . . , n, i 6= j do: if αi 6= Fi(Ki{sufj}; suffixi(m)) then return ⊥;
6. If suffixj(m) = sufj then: if g(αj) = z∗ then return ⊥, else return ⊥;
7. If suffixj(m) 6= sufj then: if αj = Fj(Kj{sufj}; suffixj(m)) then return m, else return ⊥.
8. Return ⊥.

Figure 127: Programs used in the proof of security of constrained decryption of relaxed ACE.
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Symmetry. Recall that from the definition of symmetry U = Ssuft is a set of plaintexts ending with the same
suffix of size t, and the challenge plaintextm∗ ends with suft as well. Let suf∗n, . . . , suf∗t denote n, . . . , t-long
suffixes of m∗ (note that suft = suf∗t ). Further, as in the proof of security of constrained decpryption, let
sufn, . . . , suft+1 be such that U \ {m∗} = Ssufn ∪ . . . ∪ Ssuft+1 . (Note that for each i = t + 1, . . . , n sufi
and suf∗i only differ in the first bit).

We show symmetry of ACE in a sequence of hybrids, for b = 0, 1. Programs can be found on fig. 128.

• Hybb0: The distribution in this hybrid is (c(0), c(1), EK{U}, DK{c(0), c(1)}), where cb is randomly
chosen and c1−b is Enc(EK,m∗).

• Hybb1: The distribution in this hybrid is (c(0), c(1), EK ′, DK ′), where EK ′, DK ′ are instead ob-
fuscations of programs G′Enc and G′Puncture, respectively. Denote c = (αt, . . . , αn, β), and c(0), c(1)

accordingly (in particular, α(1−b)
n = Fn(Kn;m∗)). (fig. 128).

We argue that indistinguishability between Hybb0 and Hybb1 for any b holds by iO. Indeed, since for
all i = t, . . . , n Ssuf∗i

⊂ U and Ssufi ⊂ U , G′Enc outputs ⊥ on any input m ∈ Ssuf∗i
or m ∈ Ssufi , for

all i = t, . . . , n, anyway and thus each Fi is never computed on suf∗i , sufi, i = t, . . . , n. Thus we
can puncture each Fi at suf∗i , sufi, i = t, . . . , n (note that suft = suf∗t and thus Ft is only punctured
once). Further, since Fn is injective, and is never run on suf∗n = m∗, F is never computed on
α

(1−b)
n = Fn(Kn;m∗), thus we can puncture K at α(1−b)

n . Finally, since α(b)
n is randomly chosen and

Fn has sparse image, with overwhelming probability α(b)
n is outside of the image of Fn and we can

puncture key K at α(b)
n as well.

In G′Puncture we can puncture K at α(0)
n , α

(1)
n since before that there is an instruction to output ⊥ if

αn is equal to one of these values. We argue that this instruction doesn’t change the functionality:
indeed, α(b)

n is outside of the image of Fn with high probability and therefore the program would reject
anyway. Next, if α = α

(1−b)
n , since Fn is injective, the only way to satisfy the Fn-check is to have

β = F (K;α
(1−b)
n ) ⊕m∗ = β(1−b). But then, to satisfy other PRF checks, αt, . . . , αn−1 should be

equal to α(1−b)
t , . . . , α

(1−b)
n−1 , in which case c = c(1−b) and the program outputs ⊥ in the very beginning.

• Hybb2: The distribution in this hybrid is (c(0), c(1), EK ′, DK ′′), where EK ′, DK ′′ are obfuscations of
programs G′Enc and G′′Puncture, respectively. In other words, we instruct the program G′′Puncture to output
⊥ if m ∈ Ssufn ∪ Ssufn−1 ∪ . . . ∪ Ssuft+2 ∪ Ssuft+1 . Indistinguishability of this hybrid can be shown
similarly to the proof of the security of constrained decryption. That is, for each sufi, i = t+ 1, . . . , n,
we can make this program reject all m ∈ Ssufi by puncturing the PRF Fi, changing Fi(Ki; sufi) to
random, replacing the PRF check with OWF check, and arguing that the program can abort (instead
of outputting m) if OWF check passes, since otherwise OWF can be inverted. (Importantly, note that
indeed the value Fi(Ki; sufi), for i = t + 1, . . . , n, isn’t used anywhere else in the distribution: in
particular, it is not required to compute c(0) or c(1), and moreover program G′Enc only uses a punctured
key Ki{sufi}).

Indistinguishability holds by security of punctured PRFs Ft+1, . . . , Fn, one-wayness of injective OWF,
and security of iO.

• Hybb3: The distribution in this hybrid is (c(0), c(1), EK ′, DK ′′′), where EK ′, DK ′′′ are obfuscations
of programs G′Enc and G′′′Puncture, respectively. In other words, we instruct program G′′′Puncture to output
⊥ when m ∈ Ssuft . We argue this doesn’t change the functionality. Indeed, the condition “m ∈
Ssufn ∪Ssufn−1 ∪ . . .∪Ssuft+1” covers all m ∈ Ssuft except m∗. Therefore requiring to output ⊥ when
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m ∈ Ssuft is equivalent to additionally ask to output ⊥ when m = m∗. However, when m = m∗,
c = c(1−b) and therefore the program outputs ⊥ in the very beginning.

Further, in program G′′′Puncture we puncture all keys Ki, i = t, . . . , n, at suf∗i . This can be done since
the program never needs to compute any of these values since when m ∈ Ssuft , the program outputs ⊥.

• Hybb4: The distribution in this hybrid is (c(0), c(1), EK ′, DK ′′′), where EK ′, DK ′′′ are obfuscations
of programs G′Enc and G′′′Puncture, respectively, and c(1−b) is chosen at random instead of as a result of
PRFs. Security holds by security of PRFs F, Ft, . . . , Fn punctured at α(b)

n , suf∗t , . . . , suf∗n, respectively.

Finally, note that the distributions in Hyb0
4 and Hyb1

4 are the same. Thus concludes the proof of the symmetry
of ACE.

D Encrypting longer plaintexts

Our main security proof holds for the case when 1-bit plaintexts are used. Here we outline the changes in the
proof when the scheme is used to encrypt long plaintexts from some plaintext spaceM.

The only change is that in the proof of indistinguishability of explanations of the receiver (lemma 55), instead
of eliminating a single complementary ciphertext µ3

∗ = ACE.EncEK(1 ⊕ m∗0, µ1
∗, µ2

∗, L∗0), we need to
eliminate all complementary ciphertexts {ACE.EncEK(m,µ1

∗, µ2
∗, L∗0) : m ∈M,m 6= m∗0}. This change

is required both in the proof of deniability and off-the-record deniability.

Concretely, changes are the following:

• In hybrid HybB,1,5 (similarly, in HybB,3,2) in program P3 we puncture encryption key EK of the main
ACE at all points {(m,µ1

∗, µ2
∗, L∗0) : m ∈M,m 6= m∗0}. Indistinguishability holds by the same

reasoning as in the orginal proof. The description of the program P3 on fig. 99 should be changed
accordingly.

• In hybrid HybB,1,6 (similarly, in HybB,3,1) we puncture decryption key DK of the main ACE at the
same set of points p = {(m,µ1

∗, µ2
∗, L∗0) : m ∈M,m 6= m∗0}. Indistinguishability holds by security

of constrained decryption of ACE, since the corresponding encryption key EK is already punctured at
these points. The description of the programs Dec,RFake on fig. 101 should be changed accordingly.
Note however that this incurs security loss proportional to |M|, since security loss in constrained
decryption game depends on the size of the punctured set.

Thus the proof can be adapted to the case of longer plaintexts, with additional multiplicative factor of |M| in
security loss. However, the resulting scheme is only statically secure, i.e. both real and fake plaintexts have
to be fixed before the CRS is generated. To achieve adaptive security, one can guess both plaintexts in the
proof and lose another factor of |M|2.

Thus the scheme can be used for encrypting and denying longer messages, albeit with additional multiplicative
factor of |M|3 in security loss.
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Programs of relaxed ACE.
Program G′Enc(m)
Inputs: message m.
Hardwired values: punctured keysKt{suf∗t , suft},Kt+1{suf∗t+1, suft+1}, . . . ,Kn{suf∗n, sufn},K{α(0)

n , α
(1)
n }

of PRFs Ft, . . . , Fn, F ; circuit CU describing set U . Parameters t, n.
1. If CU (m) then return ⊥;
2. For each i = t, . . . , n set αi ← Fi(Ki{suf∗i , sufi}; suffixi(m));
3. Set β ← F (K{α(0)

n , α
(1)
n };αn)⊕m;

4. Return (αt, . . . , αn, β).

Program G′Puncture(c)
Inputs: ciphertext c.
Hardwired values: keys Kt, . . . ,Kn,K{α(0)

n , α
(1)
n } of PRFs Ft, . . . , Fn, F ; circuit CU describing set U .

In addition, strings c(0) and c(1), hardwired in lexicographic order. Parameters t, n.
1. If c = c(0) or c = c(1) then return ⊥; (c(0) and c(1) are written in lexicographic order)
2. Parse c = (αt, . . . , αn, β); c(0) = (α

(0)
t , . . . , α

(0)
n , β(0)); c(1) = (α

(1)
t , . . . , α

(1)
n , β(1));

3. If αn = α
(0)
n or αn = α

(1)
n then return ⊥; (α(0)

n and α(1)
n are written in lexicographic order)

4. Set m← F (K{α(0)
n , α

(1)
n };αn)⊕ β;

5. For each i = t, . . . , n do: if αi 6= Fi(Ki; suffixi(m)) then return ⊥;
6. Return m.

Program G′′Puncture(c)
Inputs: ciphertext c.
Hardwired values: keys Kt, . . . ,Kn,K{α(0)

n , α
(1)
n } of PRFs Ft, . . . , Fn, F ; circuit CU describing set U .

In addition, strings c(0) and c(1), hardwired in lexicographic order. Parameters t, n.
1. If c = c(0) or c = c(1) then return ⊥; (c(0) and c(1) are written in lexicographic order)
2. Parse c = (αt, . . . , αn, β); c(0) = (α

(0)
t , . . . , α

(0)
n , β(0)); c(1) = (α

(1)
t , . . . , α

(1)
n , β(1));

3. If αn = α
(0)
n or αn = α

(1)
n then return ⊥; (α(0)

n and α(1)
n are written in lexicographic order)

4. Set m← F (K{α(0)
n , α

(1)
n };αn)⊕ β;

5. If m ∈ Ssufn ∪ Ssufn−1 ∪ . . . ∪ Ssuft+2 ∪ Ssuft+1 then return ⊥;
6. For each i = t, . . . , n do: if αi 6= Fi(Ki; suffixi(m)) then return ⊥;
7. Return m.

Program G′′′Puncture(c)
Inputs: ciphertext c.
Hardwired values: punctured keysKt{suf∗t }, . . . ,Kn{suf∗n},K{α

(0)
n , α

(1)
n } of PRFs Ft, . . . , Fn, F ; circuit

CU describing set U . In addition, strings c(0) and c(1), hardwired in lexicographic order. Parameters t, n.
1. If c = c(0) or c = c(1) then return ⊥; (c(0) and c(1) are written in lexicographic order)
2. Parse c = (αt, . . . , αn, β); c(0) = (α

(0)
t , . . . , α

(0)
n , β(0)); c(1) = (α

(1)
t , . . . , α

(1)
n , β(1));

3. If αn = α
(0)
n or αn = α

(1)
n then return ⊥; (α(0)

n and α(1)
n are written in lexicographic order)

4. Set m← F (K{α(0)
n , α

(1)
n };αn)⊕ β;

5. If m ∈ Ssuft then return ⊥;
6. For each i = t, . . . , n do: if αi 6= Fi(Ki{suf∗i }; suffixi(m)) then return ⊥;
7. Return m.

Figure 128: Programs of constrained keys. Note that everywhere where c(0), c(1) or α(0)
n , α

(1)
n appear, they

are written in lexicographic order (in particular, in the GGM-based punctured PRF, keyK{α(0)
n , α

(1)
n } doesn’t

depend on the order of puncturing and only depends on lexicographically sorted set
{
α

(0)
n , α

(1)
n

}
). For

convenience we denote the punctured Kt by Kt{suf∗t , suft} (similar to other keys), even though suf∗t = suft
and the key is only punctured at one point.
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