
qSCMS: Post-quantum certificate provisioning
process for V2X

Paulo S. L. M. Barreto1, Jefferson E. Ricardini2,3, Marcos A. Simplicio Jr.2
and Harsh Kupwade Patil3

1 University of Washington Tacoma. pbarreto@uw.edu
2 Escola Politécnica, Universidade de São Paulo, Brazil. {joliveira,mjunior}@larc.usp.br

3 LG Electronics, USA. {jefferson.ricardini,harsh.patil}@lge.com

Abstract. Security and privacy are paramount in the field of intelligent transportation
systems (ITS). This motivates many proposals aiming to create a Vehicular Public
Key Infrastructure (VPKI) for managing vehicles’ certificates. Among them, the
Security Credential Management System (SCMS) is one of the leading contenders
for standardization in the US. SCMS provides a wide array security features, which
include (but are not limited to) data authentication, vehicle privacy and revocation
of misbehaving vehicles. In addition, the key provisioning process in SCMS is realized
via the so-called butterfly key expansion, which issues arbitrarily large batches of
pseudonym certificates in response to a single client request. Although promising,
this process is based on classical elliptic curve cryptography (ECC), which is known
to be susceptible to quantum attacks. Aiming to address this issue, in this work
we propose a post-quantum butterfly key expansion process. The proposed protocol
relies on lattice-based cryptography, which leads to competitive key, ciphertext and
signature sizes. Moreover, it provides low bandwidth utilization when compared with
other lattice-based schemes, and, like the original SCMS, addresses the security and
functionality requirements of vehicular communication.
Keywords: [Vehicular communications (V2X) · post-quantum security · lattice-based
cryptography]

1 Introduction
With the growing interest in creating Intelligent Transportation Systems (ITS), the
automotive industry is challenged to develop a variety of computing and communication
capabilities [1]. In particular, we are witnessing a surge in Vehicle-to-Everything (V2X)
communication capabilities that further enables vehicles to communicate with other entities
(e.g. other vehicles, Road Side Units (RSUs), pedestrians, etc.) [2]. This trend not only
makes vehicles an integral part of the Internet of Things (IoT) paradigm, but also enable
more efficient and safe transportation systems [3]. Besides performance, security and
privacy are essential requirements for the widespread deployment of V2X. A promising
solution for addressing this requirement is the Security Credential Management System
(SCMS) [4], a Vehicular Public Key Infrastructure (VPKI) solution that is among the
leading candidates for standardization in the United States [5]. Among other functionalities,
SCMS provides revocable privacy and prevents other entities from tracking devices. These
features are accomplished with the usage of pseudonym certificates, i.e., certificates that do
not expose the identity of their owners. Such certificates are issued via an efficient process
called the butterfly key expansion, and is even more cost-effective when implemented
with the unified butterfly keys (UBK) [6]. Basically, the butterfly key expansion issues
arbitrarily large batches of certificates from a single client request, while maintaining its

mailto:pbarreto@uw.edu
mailto:joliveira@larc.usp.br,mjunior@larc.usp.br
mailto:jefferson.ricardini@lge.com,harsh.patil@lge.com

2 qSCMS: Post-quantum certificate provisioning process for V2X

privacy. Hence, any internal or external entity cannot distinguish certificates issued to the
same or different users.

Although promising, the current V2X solutions rely on classical Elliptic Curve Cryp-
tography (ECC), which is known to be susceptible to quantum attacks [7, 8]. Such an
attack can be devastating, since it would violate not only the system’s privacy, but also
its authenticity (i.e., attackers would be able to forge signatures). Although the quantum
threat is foreseeable [9], proactive countermeasures are underway. Indeed, the quantum
computer menace has recently led to the Call For Proposal (CFP) for standardization
and harmonization of post-quantum cryptosystems (PQC) by the National Institute of
Standards and Technology (NIST) [10].

Among the standardization candidates, lattice-based cryptosystems have gained signifi-
cant importance due to their high flexibility to support a large variety of cryptographic
primitives, i.e. we can build encryption, signature and key agreement schemes from the same
underlying primitives. Additionally, when defined over ideal lattices where Ring-Learning
With Errors (R-LWE) is the underlying hard problem, they offer competitive performance
in sizes (key, signature and ciphertext) and compute time. Leveraging these benefits of
RLWE-based cryptosystems, we propose a post-quantum pseudonym-certificate issuance
process for V2X communications. The proposed scheme builds upon the aforementioned
UBK approach, but replaces ECC-based operations by lattice-based constructions, creating
a post-quantum UBK version (named qUBK). Therefore, such countermeasures lead to
a post-quantum SCMS (or qSCMS, for short), which ensures that V2X communications
remain secure and highly efficient even if large quantum computers become a reality.

The remainder of this paper is as follows. Section 3 provides an overview of the
SCMS key issuing process, with a particular focus on the UBK approach. Section 4
presents basic concepts related to lattice-based cryptography and the list of notations.
Section 5 describes the proposed post-quantum UBK (qUBK). Section 7 discusses practical
aspects of qUBK, including parameterization, bandwidth occupation and efficiency. Finally,
Section 8 presents our conclusion.

2 General Notation

For convenience, Table 1 lists the main symbols and notation used along this document.
For the ECC version of UBK [6] we assume standard algorithms for data encryption,

hashing and digital signatures. For instance, the following algorithms are suggested: the
AES block cipher [11] or Present [12]) for symmetric encryption, as well as ECIES [13]
for asymmetric encryption; SHA-2 [14] or SHA-3 [15] as hash function; and ECDSA [16]
or EdDSA [17]) for implementing digital signatures.

For the post-quantum version hereby proposed, we assume the same symmetric al-
gorithms as the classic version, adjusting the key sizes accordingly. For example, for a
128-bit security level, block ciphers should employ 256-bit keys and the hash function’s
digest size should be at least 256-bit long for collision and pre-image resistance [18, 19].
The asymmetric algorithms, on the other hand, are assumed to be: Lindner-Peikert (LP)
for asymmetric encryption [20]; and qTESLA [21] for digital signatures.

Finally, to facilitate the mapping between the ECC and lattice-based versions of UBK,
we use the same symbols for both constructions. However, we use boldface fonts for the
lattice-based public and private keys aiming to avoid confusion with its ECC counterpart.
In particular, when discussing RLWE elements, we use capital bold letters (S) to represent
public uniformly random ring elements and small bold letters (s) to represent secret short
ring elements.

Paulo S. L. M. Barreto, Jefferson E. Ricardini, Marcos A. Simplicio Jr. and Harsh
Kupwade Patil 3

Table 1: General notation and symbols

Symbol Meaning
G The generator of an elliptic curve group
G Lattice public basis
sig A digital signature
cert A digital certificate

U,U Public signature keys
(stylized U : reserved for PCA)

u, U Private keys corresponding to U and U
Y, y Public and private unified caterpillar keys
Ŷ , ŷ Public and private unified cocoon keys
b Number of cocoon keys in certificate batch

f, g
Pseudo-random functions
(Subscript D: with a Gaussian distribution)

Enc(K, str) Encryption of bit-string str with key K
Dec(K, str) Decryption of bit-string str with key K
Sign(K, str) Signature of bit-string str, using key K
Ver(K, str, sig) Verification of signature sig on str, with key K

H(·), H(·) Hash function.
(stylized H: Special hash function for Lattices)

3 The Security Credential Management System
The SCMS is one of the most prominent pseudonym-based VPKI the US [22]. In fact,
it is the leading candidate design for protecting V2X communications in the United
States [5]. In this section we explain its pseudonym certificate issuing process, which
provides revocable privacy and prevents other entities from tracking devices.

In SCMS [4], vehicles are provisioned with two types of certificates:

1. An enrollment certificate, which has a long validity time (e.g., 6 years [23]). This
certificate identifies authorized vehicles in the system, enabling them to acquire
pseudonym certificates.

2. Multiple pseudonym certificates, which have short expiration times (e.g., 1 week) and
do not explicitly identify their owners. Multiple pseudonym certificates are expected
to be valid at the same time, so a vehicle can protect its own privacy by periodically
changing the pseudonym certificate employed for signing its messages.

For enabling the distribution and revocation of pseudonym certificates, SCMS’s archi-
tecture predominantly relies essentially on four entities [4]: Registration Authority (RA),
Pseudonym Certificate Authority (PCA), Linkage Authorities (LA), and Misbehavior
Authority (MA). Their roles in the system are:

• Registration Authority (RA): It receives and validates requests for generating
batches of pseudonym certificates from vehicles, which are identified by their en-
rollment certificates. The RA is responsible for expanding a vehicle’s request into
multiple individual requests, which is an integral part of the butterfly key expansion
process. Requests associated to different vehicles are then shuffled together and
forwarded to the PCA, thus preventing the latter from identifying which certificates
belong to the same vehicle.

• Pseudonym Certificate Authority (PCA): Responsible for issuing pseudonym
certificates to vehicles, upon request by the RA. It signs the certificates and encrypts

4 qSCMS: Post-quantum certificate provisioning process for V2X

them using a vehicle-provided (asymmetric) encryption key, so the RA does not learn
its contents from the PCA’s response. As a result, the RA is also unable to identify
the owner of any given pseudonym certificate.

• Linkage Authorities (LA): They generate pseudo-random bit-strings that are
placed into pseudonym certificates so they can be efficiently linked to the same
vehicle if necessary. This enables, for example, the revocation of multiple pseudonym
certificates simply by placing a small amount of information into certificate revocation
lists (CRLs). SCMS employs two LAs, which need to collaborate in order to enable
such linkage process. Consequently, no LA alone can track vehicles.

• Misbehavior Authority (MA): Responsible for receiving and processing misbe-
havior reports. If a malicious or malfunctioning vehicle is identified as a result of the
MA’s analysis, its pseudonym and enrollment certificates can be revoked via CRLs.
As an alternative newer schemes has been proposed using certificates that must be
activated before usage [24, 25]. Once a misbehavior is detected the future certificates
of that vehicle are not activated, thus avoiding large CRLs [26]. This revocation
process preserves the forward privacy of vehicles, meaning that only messages sent
after the MA-defined revocation date can be linked to the same vehicle.

Since the focus of this article is on batch certificate provisioning rather than revocation,
subsequently we further elaborate on the butterfly key expansion process. In particular,
we focus on the unified butterfly keys (UBK) version [6], since it is more efficient than
the conventional butterfly keys, and used as a basis for our post-quantum proposal. For
further details on SCMS’s revocation and certificate linkage procedure, we refer the reader
to the original SCMS proposal [4], as well as to recently proposed works that improve this
specific process [27, 26].

3.1 Unified butterfly key expansion
The butterfly key expansion process is an elegant way of enabling a proxy server (the
RA) to turn a vehicle-provided public key into multiple public keys, while allowing only
the requesting vehicle to compute the corresponding private keys. The public keys can
then be placed into pseudonym certificates, signed by a trusted authority (the PCA), and
delivered to the requester However, the original process described in [4] requires the vehicle
to provide two different keys in its request. In contrast, the UBK design preserves the
system’s security and privacy while using a single key. As a result, UBK’s efficiency gains
can reach up to 50% in comparison with the original approach [6].

Figure 1 gives a graphical illustration of the steps involved in UBK [6], which are
detailed in Table 2. First, the vehicle generates one caterpillar private/public key pair
(y, Y = y · G). It then sends the public caterpillar key Y to the RA, along with a suitable
pseudo-random function f .

Subsequently, the RA uses Y for generating b public cocoon public keys Ŷi = Y +f(i) ·G,
where 0 6 i < b for an arbitrary (usually system-defined) value of b. Before sending the
batch of cocoon keys Ŷi to the PCA, the RA shuffles keys from different devices together.
As a result, the PCA should be unable to tell whether two requests sent by the RA are
associated to the same or to different vehicles.

After receiving a cocoon key Ŷi, the PCA computes the vehicle’s public butterfly key
as Ui = Ŷi + ri · G, for a randomly picked ri. The PCA inserts Ui into a certificate
certi, together with any necessary metadata (e.g., a validity date), and digitally signs the
resulting certificate. The pair (certi, ri) is then encrypted using Ŷi, so only the vehicle
who sent the request is able to decrypt the PCA’s response. This encrypted package is
sent to the RA, which relays it (in batch) to the requesting vehicle without learning the
pseudonym certificates’ contents.

Paulo S. L. M. Barreto, Jefferson E. Ricardini, Marcos A. Simplicio Jr. and Harsh
Kupwade Patil 5

Vehicle

Registration Authority (RA)

...

Pseudonym CA (PCA)

unified key

shufflesdeshuffles

batch

1

2

34

5

Figure 1: Unified butterfly key (UBK) expansion

Finally, the vehicle decrypts the RA’s response using ŷi = y + f(i), obtaining Ui and
computing the corresponding private key ui = y + ri + f(i). To verify the correctness of
the certificate provisioning process, the vehicle also (1) verifies the PCA’s signature on
certi and (2) verifies that ui ·G = Ui.

Table 2: The ECC-based UBK protocol

Vehicle → RA → PCA -RA Vehicle

y
$← Zq

Y ← y·G Y, f
Ŷi ← Y +f(i)·G

(0 6 i < b) Ŷi

ri
$← Zq

Ui ← Ŷi + ri·G
sigi ← Sign(U, {Ui, meta})
certi ← {Ui, meta, sigi}
pkg ← Enc(Ŷi, {certi, ri})

pkg

ŷi ← y + f(i)
{certi, ri} ← Dec(ŷi, pkg)
Ver(U , {Ui, meta}, sigi)

ui ← ŷi + ri
NB: ui·G = Ui

3.2 The essential property for butterfly expansion: homomorphism

The (unified) butterfly key expansion process is only possible because ECC-based keys
display additive homomorphism, meaning that u · G + u′ · G ≡ (u+ u′) · G, where u and
u′ are integers and G is the generator of an elliptic curve group. This homomorphism
property ensures that, given two public keys U = u · G and U ′ = u′ · G, their addition
results in another valid public key, namely U ′′ = (u+ u′) · G. Moreover, the private key
related to that new public key (u′′ = u+ u′) is equivalent to the addition of the private
keys corresponding to each of the public keys U and U ′. This enables the vehicle to
blindly transfer its private caterpillar key to the RA, so it can create multiple cocoon keys,
and subsequently to the PCA, so it can randomize the resulting cocoon keys. This blind
transfer of elliptic curve points is, thus, at the heart of the ECC-based UBK protocol.

Any adaptation of the butterfly key expansion procedure to a post-quantum domain
requires, thus, a similar property to be satisfied. Fortunately, this requirement can be
fulfilled using lattice-based cryptosystems, which are discussed in the following section.

6 qSCMS: Post-quantum certificate provisioning process for V2X

4 Lattice-based cryptography
In this section, we first discuss some essential features of lattice-based cryptography,
particularly those based in the (R)LWE problem. In addition, we provide an overview of
the building blocks for qUBK, namely the qTesla signature scheme and the Lindner-Peikert
(LP) public key encryption algorithm.

4.1 (Ring) Learning with Errors – (R)LWE
Among the many lattice-based cryptosystems available in the literature, schemes based
on the Learning With Errors (LWE) problem the most efficient [28, Chapter 5.4]. The
LWE problem is defined as follows: Let Zq be the set of the integers Z/qZ. Let A be an
uniformly distributed matrix of size n×m with elements in Zq, and v a vector of size
n. Given the pair (A, v), one should tell whether the vector v was chosen uniformly at
random or computed by an equation of the form v = s ·A+ e, where s and e are integer
vectors of size n sampled from their respective distributions χs and χe.

LWE can also be instantiated by defining elements as polynomial ring elements, instead
of simply matrices and vectors, giving rise to the so-called Ring LWE (RLWE) problem.
Which allows formal security reductions in the random oracle model [29]. More formally,
the polynomial rings are defined as follows: Let n = 2k for an integer k > 0. The ring
Rq := Zq[x]/〈xn+ 1〉 is isomorphic to Znq , and the ring R := Z[x]/〈xn+ 1〉 is isomorphic to
Zn, where Znq (or Zn) represents an array of size n with elements in Zq (or Z). Therefore,
a ring element represented by a0 + · · ·+ an−1x

n−1 is associated with the coefficient vector
(a0, . . . , an−1). The RLWE problem can then be formulated as follows:

Definition 1. RLWE Problem
Let k, q ∈ N be positive integers, n = 2k, and let χ be a probability distribution over
R. Let (s, e) ∈ R × R be sampled from distributions χs and χe respectively, and
A ∈ Rq be uniformly sampled. The ring learning with errors (RLWE) problem consists of
distinguishing the RLWE distribution (A, s ·A+e) ∈ Rq×Rq from the uniform distribution
(A,U) ∈ Rq ×Rq.

Usually, the distributions χs and χe are both defined as a discrete Gaussian distribution
Dσ with standard deviation σ, defined as follows.

Definition 2. Discrete Gaussian Distribution
Let σ ∈ R be a strictly positive number. The (centered) discrete Gaussian distribution Dσ

over Z with standard deviation σ is the unique distribution such that the probability of
any z ∈ Z is ρσ(z)/ρσ(Z), where ρσ(z) := e−

z2
2σ2 and ρσ(Z) := 1 + 2

∑∞
z=1 ρσ(z).

The operation of randomly sampling an integer d with discrete Gaussian distribution
Dσ is denoted d ← Dσ. This may also be done in a pseudo-random manner, using a
seed as the seed of the pseudo-random sampler, in which case we write d ← Dσ[seed].
Likewise, the coefficient-wise extension of this operation to vectors, i.e., the sampling of
a vector d ∈ Zn whose components are all distributed according to Dσ, is denoted by
d← Dnσ or by d← Dnσ [seed] depending on whether the sampling is performed randomly
or pseudo-randomly (respectively).

4.2 The qTESLA digital signature scheme
The qTESLA signature scheme [21], which was selected in the first round of NIST’s
Post-Quantum Cryptography Standardization initiative, is the result of a long line of
research starting with the scheme proposed by Bai and Galbraith [30]. This scheme in
itself is based on the Fiat-Shamir’s construction over lattices [31]. In the current form,

Paulo S. L. M. Barreto, Jefferson E. Ricardini, Marcos A. Simplicio Jr. and Harsh
Kupwade Patil 7

qTESLA combines the benefits of TESLA] [32] and ring-TESLA [33]. Hence, it leverages
efficient implementations and Gaussian sampling algorithm from TESLA], while including
tightened security reductions from ring-TESLA. Its design can be summarized as follows.

Let π be a permutation that sorts the components of a ring element u in decreasing
order of their absolute magnitudes, i.e., |uπ(0)| ≤ · · · ≤ |uπ(n−1)|. In what follows, we
adopt the following notation. H(·) is a hash function that maps from {0, 1}∗ to a ring
element c ∈ Rq. We write maxi(u) to denote the i-th largest component of u in absolute
value, i.e., maxi(u) = uπ(i). For any integer c and for a given parameter d, [c]L denotes
the unique integer in (−2d−1, 2d−1]∩Z such that c ≡ [c]L mod 2d, i.e., the centered d least
significant bits of c. Analogously, [c]M denotes the value of (c− [c]L)/2d, i.e., the value
represented by all but the d least significant bits of c. Finally, when u is a polynomial ring
element, [u]L and [u]M denotes the application of such bit-selection operations to all the
polynomial coefficients.

Below we describe the qTESLA key generation, signature generation and verification
in Algorithms 3, 4 and 5 respectively. For more details and implementations aspects, we
refer the reader to [21].

Key generation in qTESLA requires two subroutines checkS (Algorithm 1) and checkE
(Algorithm 2), described as follows in the algorithm’s official documentation [21]:

Algorithm 1 checkS: simplifies the security reduction by ensuring that ||sc||∞ ≤ LS .
Require: s ∈ Rq
Ensure: {0, 1} . true, false

1: if
∑h−1
i=0 maxi(s) > LS then

2: return 1
3: return 0

Algorithm 2 checkE: ensures correctness of the scheme by checking that ||ec||∞ ≤ LE .
Require: e ∈ R
Ensure: {0, 1} . true, false

1: if
∑h−1
i=0 maxi(e) > LE then

2: return 1
3: return 0

Algorithm 3 qTESLAKeyGen
Require: n, q, σ, h, LS , LE ,G
Ensure: A qTESLA valid key pair . S, {s, e}

1: do
2: s $← Dnσ
3: while checkS(s) 6= 0
4: do
5: e $← Dnσ
6: while checkE(e) 6= 0
7: Compute S← s·G + e ∈ Rq
8: return The public key S, and the secret key {s, e}

8 qSCMS: Post-quantum certificate provisioning process for V2X

Algorithm 4 qTESLASign
Require: n, q,B, LS , d,G, s, e,S,msg ∈ {0, 1}n
Ensure: A qTESLA valid signature . [C,Z]

1: Sample y uniformly from [−B,B]n ∩ Z
2: V← y ·G ∈ Rq
3: C← H([V]M , S,msg) ∈ Rq
4: Z← y + s ·C ∈ Rq
5: if max0(Z) > B − LS then
6: Restart
7: W← V− e ·C ∈ Rq
8: if max0([W]L) > 2d−1 − LE or max0(W) > bq/2c − LE then
9: Restart

10: return The signature [C,Z] . typically C is represented as a short raw hash value

Algorithm 5 qTESLAVerify
Require: n, q,B, LS , d,S, [C,Z],msg ∈ {0, 1}n
Ensure: {0, 1}. Rejected, Accepted

1: if max0(Z) > B − LS then
2: return 0 . Reject Signature
3: W← Z ·G− S ·C ∈ Rq
4: C′ ← H([W]M ,S,msg) ∈ Rq
5: if C′ 6= C then
6: return 0 . Reject Signature
7: else
8: return 1 . Accept Signature

4.3 The Lindner-Peikert (LP) key encapsulation mechanism

The Lindner-Peikert (LP) scheme is a variant of the Gentry-Peikert-Vaikuntanathan
(GPV) algorithm [34], which in turn is based on the seminal Regev cryptosystem [35]. The
description of LP’s key generation, Encryption and Decryption are given in algorithms 6, 7
and 8, respectively. In these algorithms, we assume that Ḡ ∈ Rq is a uniformly sampled
ring element that is shared among the users, although in other contexts it could be
individually chosen as part of a user’s public key. The encryption base Ḡ corresponds to
the signing base −G.

Algorithm 6 LPKeyGen
Require: n, q,G
Ensure: A LP valid key pair . S, s

1: s, e $← Dnσ until s, e ∈ R×q
2: Compute S← s ·G + e ∈ R×q
3: return The public key S, and the secret key s . The e component remains secret but

is not further used.

Paulo S. L. M. Barreto, Jefferson E. Ricardini, Marcos A. Simplicio Jr. and Harsh
Kupwade Patil 9

Algorithm 7 LPEncrypt
Require: n, q, σ,G,S,msg ∈ {0, 1}λ
Ensure: The Ciphertext [C,D]

1: u,v $← Dnσ and w $← Dλσ
2: Encode msg as M← bq/2c ·msg ∈ Rq, truncated to λ out of n coefficients.
3: C← u ·G + v ∈ Rq
4: D← (u · S)|λ + w + M ∈ Rλq
5: return The Ciphertext [C,D]

Algorithm 8 LPDecrypt
Require: n, q, s, [C,D]
Ensure: Plaintext

1: Compute M′ ← D− s ·C ∈ Rq.
2: For all 0 6 j < n, decode msgj ← b|M′

j |/(q/2)e
3: return msg

If msg is less than n bits long, the D component of the cryptogram can be restricted to
its first λ bits, thereby considerably reducing bandwidth occupation and slightly speeding
up both encryption and decryption. Actually, this is the usual case since when LP is
used as a key encapsulation mechanism (KEM). In a KEM, the input for the encryption
algorithm (msg) is an ephemeral symmetric key at the desired security level: e.g., it is only
λ = 128 bits long as compared to n = 1024, or λ = 256 bits long as compared to n = 2048.

5 Post-quantum butterflies
The adaptation of the ECC-based UBK to a quantum-resistant setting requires that
underlying schemes to support both encryption and signatures under key pairs that are
related to each other. More precisely, the signature key pair needs to be derived from the
encryption key pair. Indeed, the public key Ui = ui · G that is used by the vehicle to sign
messages is derived (using the randomization factor ri) from Ŷi, which in turn is used by
the PCA to encrypt that vehicle’s certificate.

While this construction is trivially possible in the ECC setting, it precludes most
post-quantum cryptosystems. Specifically, it precludes: hash-based schemes, which only
support signatures; multivariate schemes, which mostly support signatures, while encryp-
tion/KEM are much less scrutinized for security and require entirely different algorithms
and parameters; and also code-based and isogeny-based schemes, which mostly support
encryption/KEM, while signatures are very hard to obtain, inefficient when available, and
require entirely different parameters. However, it does not precludes lattice-based schemes,
in special those based on the LWE problem.

Choosing suitable lattice-based cryptosystems for this purpose, on the other hand, must
take into account some particularities of the target scenario. Notably, the cryptosystems
must support the notion of blind transference of LWE samples, which parallels the possibility
of blind transferring elliptic curve points discussed in Section 3.2. This depends crucially on
the existence of an RLWE-based encryption (or more precisely, key encapsulation) scheme
and a digital signature scheme that:

• Support additively homomorphic keys;

• Can use the same structure for the key pairs employed in their individual operations;

• Are similarly secure for the same set of distributions and parameters.

10 qSCMS: Post-quantum certificate provisioning process for V2X

Table 3: Post-quantum UBK certificate provisioning process: qUBK

Vehicle → RA → PCA -RA Vehicle

s, e $← Dnσ
Y← s·G + e

y = {s, e}

Y,
fD, gD

Ŷi ← Y + fD(i)·G + gD(i)
(0 6 i < b) Ŷi

s′i, e′i
$← Dnσ [seedi]

Ui ← Ŷi + (s′i·G + e′i)
sigi ← Sign(U, {Ui, meta})
clipi ← (seedi, meta, sigi)
pkg ← Enc(Ŷi, clipi)

pkg

ŝi ← s + fD(i), êi ← e + gD(i)
ŷi = {ŝi, êi}

clipi ← Dec(ŷi, pkg)
s′i, e′i

$← Dnσ [seedi]
Ui ← Ŷi + (s′i·G + e′i)
Ver(U , {Ui, meta}, sigi)
certi ← (Ui, meta, sigi)

si ← ŝi + s′i, ei ← êi + e′i
ui = {si, ei}

NB: si·G + ei = Ui

The most restrictive of these properties is the first one. It essentially means that: (1)
the sum of two private keys (s, e) and (s′, e′) is still an algebraically admissible private
key (s′′, e′′) = (s + s′, e + e′); and (2) the sum of the corresponding public keys U and
U′ is not only still an algebraically admissible public key U′′ = U + U′, but actually the
same key that naturally corresponds to the sum of private keys.

This is the case, for instance, when the keys have the form U = s · G + e and
U′ = s′ ·G + e′, whereby

U′′ = U + U′

= s ·G + e + s′ ·G + e′

= (s + s′) ·G + (e + e′)
= s′′ ·G + e′′

Taking such restrictions into account, we hereby show that a lattice-based analogue of
the ECC-based UBK is possible with (minor variants of) the qTESLA digital signature
scheme and the Lindner-Peikert key encapsulation scheme described in Section 4 .

5.1 Post-quantum Unified Butterfly Keys: qUBK
Table 3 details the proposed lattice-based variant of the UBK protocol, named qUBK. As
shown in this table, the message flow in qUBK is quite similar to UBK itself, but using
RLWE keys instead of elliptic curve keys. More precisely, once again the vehicle starts by
generating a caterpillar private/public key pair. In this case, however, the private caterpillar
key has two components, the short ring elements (s and e), which are obtained by random
sampling the zero-centered discrete Gaussian distribution with standard deviation σ. The
corresponding public caterpillar key is then computed as Y = s ·G + e, which corresponds
to a ring element following the LWE distribution and, thus, is indistinguishable from
random. This public caterpillar key Y is then sent to the RA along with two suitable
pseudo-random functions fD(i) and gD(i) that deterministically emulate sampling from
Dnσ , with i as seed.

Similarly to the original UBK, the RA uses Y, as well as the pseudo-random outputs
from fD(i) and gD(i), for generating b public cocoon public keys Ŷi ← Y+fD(i)·G+gD(i),
where 0 6 i < b. Then, the RA shuffles keys from different devices as usual, and sends the
batch of cocoon keys Ŷi to the PCA.

After receiving a cocoon key Ŷi, the PCA computes the vehicle’s public butterfly key
as Ui ← Ŷi + (s′i·G + e′i). In this process, the randomization factors s′i, e′i

$← Dnσ [seedi]
play a similar role to the random factor ri in the ECC-based UBK, i.e., it prevents the RA
from learning the vehicle’s actual butterfly public key. The main difference is that they
are obtained by pseudo-random sampling the zero-centered discrete Gaussian distribution
with standard deviation σ, meaning that they can be recovered by the requesting vehicle
as long as it is provided with the the pseudo-randomness source seedi.

Paulo S. L. M. Barreto, Jefferson E. Ricardini, Marcos A. Simplicio Jr. and Harsh
Kupwade Patil 11

The corresponding pseudonym certificate is then created by the PCA similarly to the
ECC-based UBK. Namely, the PCA signs the vehicle’s public butterfly key Ui, along with
any required metadata (meta), using the qTESLA signature scheme and its own private
key U. The set (seedi, meta, sigi) is then encrypted using Ŷi, so only the vehicle who sent
the request is able to decrypt the resulting package pkg. Subsequently, as in the original
UBK, this encrypted package is sent to the RA, which forwards it to the vehicle.

Finally, the vehicle decrypts the RA’s response using the private key ŷi = {s+fD(i), e+
gD(i)}, thus recovering the set (seedi, meta, sigi). Notice that this set does not contain
the public key Ui itself, but just the (more compact) seedi that enables its computation.
Therefore, the vehicle first computes Ui = Ŷ+(s′i·G+e′i) = Y+(fD(i)+s′i)·G+(gD(i)+e′i)),
where s′i, e′i

$← Dnσ [seedi]. It then checks the PCA’s signature sigi and, if the verification
is successful, sets its i-th pseudonym certificate to certi ← (Ui, meta, sigi) The qTesla
private signature key corresponding to Ui is, thus, ui = {si, ei} = {ŝi + s′i, êi + e′i}. To
ensure that this private key is correct, the vehicle also verifies that si·G + ei = Ui.

5.2 Intuition behind the blind transference of LWE samples
Intuitively, the blind transference of LWE samples in qUBK relies on the (pseudo)random
sampling of (short and secret) ring elements by the different entities that participate in
the protocol, namely vehicle, RA and PCA. Whenever such short elements are added to a
public key, they create other valid keys that are indistinguishable from each other under
the RLWE assumption. This indistinguishability property is actually quite similar to what
happens when known ECC points are added to secret random points, as in the original
UBK.

More formally, consider the following definition:

Definition 3. A σ0-sample is a ring element on R sampled from the (zero-centered)
Gaussian distribution with standard deviation σ.

Let G and H be uniformly sampled from Rq. The RLWE assumption for a sample of
form L← s ·G + e (where s and e are Dnσ -samples) is that distinguishing between L and
H is hard. Therefore, we can write the following definition on the indistinguishability:

Definition 4. A ring element of form L← s ·G + e, where s and e are σ-samples, will be
called σ-indistinguishable (from a uniform random sample) under the RLWE assumption.

Here we assume that the RLWE assumption holds at the desired security level for all
σ ∈ [σ0,

√
kσ0] where k ∈ {1, 2, 3}. If so:

• The vehicle’s ring elements, of form Y ← s · G + e for σ0-samples s and e, are
σ0-indistinguishable from the point of view of the RA, the PCA, and other vehicles.

• The RA’s ring elements, of form Ŷi ← Y+fD(i)·G+gD(i) for fD(i), gD(i) simulating
σ0-sampling, are

√
2σ0-indistinguishable from the point of view of the PCA and

other vehicles, since they do not know fD(i) and gD(i).
This is because the RA is essentially masking the σ0-indistinguishable element Y
with another σ0-indistinguishable element, yielding a ring element identical to that
obtained from ring elements ŝi ← s + fD(i), êi ← e + gD(i), which are themselves
identical to

√
2σ0-samples by virtue of being the sum of two σ0-samples each.

• The ring elements that are signed by the PCA, and have the form Ui ← Ŷi+(s′i·G+e′i)
for σ0-samples s′i and e′i, are

√
3σ0-indistinguishable from the point of view of the

RA and other vehicles.
This is because the PCA is essentially masking the

√
2σ0-indistinguishable element

Ŷi with a σ0-indistinguishable element, yielding a ring element identical to that

12 qSCMS: Post-quantum certificate provisioning process for V2X

obtained from (the vehicle’s new secret) ring elements si ← ŝi + s′i, ei ← êi + s′i,
which are themselves identical to

√
3σ0-samples by virtue of being the sum of a√

2σ0-sample and a σ0-sample each.

5.3 Handling signature and decryption failures
When analyzing the building blocks that compose qUBK, note that qTESLA requires the
private key samples to satisfy checkS(s) and checkE(e), which means that these conditions
must hold true for the vehicle’s private key ui = {si, ei}. However, the PCA cannot
perform this verification since it does not know si nor ei, which are only known by the
vehicles themselves. As a result, the vehicle is forced to reject a received key if it fails to
pass either of those checks. Otherwise, accepting such keys might lead to failure when
verifying genuine signatures.

Fortunately, it is possible to choose parameters such that the probability of key rejection
is fairly low. Hence, by provisioning vehicles with a number of certificates that is slightly
larger than the minimum necessary for their operation, eventual key rejections should not
be an actual concern. Interestingly, this also covers the possibility of decryption failure for
LP encryption. This happens because (as further discussed in Section 5.5) the chance of
decryption failure can be negligible even though one must use qTESLA parameters and
keys.

Section 7 gives some specially tailored parameters for keeping key, signature and
decryption rejection rates under control, for different security levels.

5.4 Signature scheme
Signing only requires functions fD(i) and gD(i) to deterministically emulate sampling from
Dnσ , with i as seed. Accordingly, the PCA must sample si and ei from Dnσ .

From the RLWE assumption, Y = s ·G + e is indistinguishable from uniformly random
for s and e sampled with distribution parameter σ. Meanwhile, the Ŷi = ŝi ·G + êi are
indistinguishable from uniformly random for ŝi and êi sampled with distribution parameter√

2σ by virtue of these secret components being each the sum of 2 identically parameterized
Gaussian variables, namely ŝi = s+fD(i) and êi = e+gD(i). Finally, the Ui = si ·G+ei is
indistinguishable from uniformly random for si and ei sampled with distribution parameter√

3σ by virtue of these secret components being each the sum of 3 such variables, namely
si = s + fD(i) + s′i and ei = e + gD(i) + e′i.

The actual scheme parameters must be chosen to take these distributions into account,
i.e., they must remain secure at the desired level or above for all of these distribution
parameters. Furthermore, the parameters must ensure that all signature operations
are efficient with distribution parameter

√
3σ, and related quantities (e.g., the qTESLA

parameters LS and LE). After all, the final certificate is equivalent to keys prepared
according to this setting.

5.5 Encryption scheme
Encryption requires functions fD(i) and gD(i) to deterministically emulate sampling from
Dnσ , with i as the seed, analogously to the signature scheme. Nevertheless, encryption
imposes one additional constraint to these functions: the ring elements fD(i) and gD(i)
must be both invertible, i.e., the sampling must be repeated until fD(i), gD(i) ∈ R×q .
Accordingly, the PCA must sample s′i, e′i from Dnσ until s′i, e′i ∈ R×q .

Let Ḡ := −G, to bridge the qTESLA and LP encryption notations. From the RLWE
assumption, Y = e− s · Ḡ is indistinguishable from uniformly random for s and e sampled
with distribution parameter σ. In addition, every Ŷi = êi− ŝi ·Ḡ are indistinguishable from
uniformly random for ŝi and êi sampled with distribution parameter

√
2σ. As discussed in

Paulo S. L. M. Barreto, Jefferson E. Ricardini, Marcos A. Simplicio Jr. and Harsh
Kupwade Patil 13

Section 5.2, this is by virtue of these secret components being each the sum of 2 identically
parameterized Gaussian variables, namely ŝi = s + fD(i) and êi = e + gD(i).

Encryption occurs in the scheme only under the key pair (ŷ = {ŝi, êi}, Ŷi), so in
principle the actual scheme parameters could be chosen to take only this into account.
However, the final signature key pair already forces a more stringent condition. If the final
key pair is used by the vehicle not only for signatures but for encryption as well, then
the parameters must be doubly-checked. Nevertheless, this is unlike to be an actual issue
because the requirements for encryption tend to be less stringent than those for signatures
(e.g., the distributions need not be as precise).

6 Security analysis
As in the original SCMS, the security goals of qSCMS are to ensure [6]:

• The confidentiality of the vehicle’s private key ui;

• The confidentiality of the pseudonym certificate generated by the PCA toward other
entities;

• The integrity of the pseudonym certificates in the PCA’s response; and

• The unlinkability of the pseudonym certificates with respect to any entity (e.g.
vehicles, RSU, etc.)

Note that the above stated properties are expected to hold true as long as PCA and
RA do not collude. A more detailed security analysis of the UBK is provided in [6].

The security and privacy properties of SCMS rely on the fact that a public key on
a ECC scheme (namely a elliptic curve point P = s · G, where s is the private key)
is indistinguishable from a completely random point. On the other hand, signature
unforgeability and ciphertext indistinguishability underlie on the corresponding security of
each individual protocol, so they are referred to the original publications [16, 17, 13].

We argue that qSCMS certificate provisioning process, using the qUBK protocol,
provides the same security features as the ECC-based SCMS. Our argument comes from
the fact that, as for ECC, RLWE public keys are also indistinguishable from random.
Particularly, according to the RLWE assumption, a public key on a RLWE scheme (i.e.,
a ring element P = s ·G + e, where s and e are the private key) is indistinguishable
from a completely random ring element. On the other hand, the signature unforgeability
and ciphertext indistinguishability also underlie on security properties of the individual
protocol components, namely qTESLA signature and LP encryption schemes [21, 20].

Therefore, the base of qSCMS’s security properties are the same ones presented in the
original UBK [6]. Once the RLWE assumption is true, the property of being indistinguishable
from random guarantees to qSCMS the same privacy properties as the original SCMS.

7 Practical analysis
In this section, we provide a practical analysis of our proposal, which includes parameter
selection, key and signature sizes, and bandwidth usage.

The practical parameters were obtained by a modification of the NIST PQC standard
candidate qTESLA [21] Sage script, which in turn is based on the LWE-Estimator script
available at [36] and [37]. The analysis of all lattice-based NIST candidates is available
at [38].

Table 4 shows the value for each parameter divided in three security level parameter
sets.

14 qSCMS: Post-quantum certificate provisioning process for V2X

Table 4: Parameter sets
Parameter 2128 sec. level 2192 sec. level 2256 sec. level

q 16091137 25366529 55308289
k 10 11 11
σ 14.7102535809885 14.7102535809885 14.7102535809885
h 36 50 72
LE 1324 1839 2648
LS 1324 1839 2648
d 22 23 24
B 221 − 1 222 − 1 223 − 1

The key, signature, certificate and encrypted package sizes are shown in Table 5. The
sizes are given in bytes, and are divided in three security level parameter sets.

A public certificate certi contains:

• A qTESLA public key Ui of size |Ui| = ndlg qe bits1;

• Meta-data of size |meta| = µ bits;

• A qTESLA signature sigi of size |sigi| = κ+ n(dlg(B − LS) + 1e) bits.

Hence the certificate size, in bits, is:

|certi| = |Ui|+ |sigi|+ |meta|
= ndlg qe+ κ+ n(dlg(B − LS) + 1e) + µ

An encrypted clipped certificate pkg contains:

• An LP encryption capsule [C,D] of size |[C,D]| = |C| + |D| = (n + λ)dlg qe bits
(where C is the encryption nonce and D is the encapsulation of a λ-bit symmetric
key);

• A seed seedi of size |seedi| = κ bits for the blind LWE transfer;

• An encrypted pseudonym certificate ndlg qe+ µ+ κ+ n(dlg(B − LS) + 1e) bits;

• A MAC tag τi of size κ bits as part of the authenticated symmetric encryption of
the clipped certificate.

Hence the Encrypted package size in bits is:

|pkg| = |[C,D]|+ |cert|+ |τi|+ |seedi|
= (n+ λ)dlg qe+ ndlg qe+

µ+ 3κ+ n(dlg(B − LS) + 1e)

Interestingly, the 192-bit level parameters appear to offer little bandwidth/storage
improvements over the 256-bit parameters. This is not really surprising because there is
no suitable intermediate lattice dimension between n = 1024 and n = 2048, since n must
have form n = 2k for the usual ring Rq. This suggests that, in practice, it is reasonble to
limit parameters to the 128-bit and 256-bit levels. More options may be available with
other rings (e.g. modular lattices, which appear to support n = 1536 without an undue
decrease in the security level); however, since they are less scrutinized, we do not presently
recommend such choices.

1Note that qTESLA would include a κ-bit seed for the pseudo-random choice of the base G, but this is
omitted here since the same G must be used system-wide to preserve the vehicle’s anonymity)

Paulo S. L. M. Barreto, Jefferson E. Ricardini, Marcos A. Simplicio Jr. and Harsh
Kupwade Patil 15

Table 5: Key and Signature Sizes in bytes

2128 2192 2256

sec. level sec. level sec. level
Public Key Size 3104 6432 6688
Secret Key Size 2080 4128 4640
Signature size 2848 5920 6176
Certificate size 5920 + µ 12320 + µ 12832 + µ
Encrypted package 8288 + µ 17049 + µ 17888 + µ

8 Conclusion
Currently, the most well accepted solutions for provisioning certificates in the V2X scenario
rely on classical cryptographic primitives, like ECC. As such, they are unable to withstand
the threat posed by quantum computers, which are expected to become a reality in the
future [10]. Unfortunately, this concern also applies to prominent and quite efficient VPKI
standardization candidates, such as SCMS.

Aiming to tackle this issue, in this paper we present a post-quantum protocol for
certificate provisioning for V2X. Our protocol is an adaption of the UBK process [6], which
in turn is a simplification and optimization of the well-known butterfly key expansion from
the original SCMS architecture. The resulting post-quantum UBK (qUBK) uses lattices as
underlying primitive, in particular schemes based on the (R)LWE security assumption. We
also provide practical parameter sets for different security levels, which lead to competitive
key and signature sizes, as well as bandwidth usage, when compared to other lattice-based
protocols. By combining qUBK with SCMS’s original linkage process, we hereby propose
a post-quantum SCMS (qSCMS) architecture that, to the best of our knowledge, is the
first post-quantum VPKI in the literature.

Acknowledgements. This study was financed by LG Electronics. We also thank William
Whyte, Virendra Kumar and Jonathan Petit for their useful comments on this work.

References
[1] L. Figueiredo, I. Jesus, J. Machado, J. Ferreira, and J. Carvalho, “Towards the

development of intelligent transportation systems,” in Proc. of the IEEE Intelligent
Transportation Systems (ITSC’2001), 2001, pp. 1206–1211.

[2] J. Harding, G. Powell, R. Yoon, J. Fikentscher, C. Doyle, D. Sade, M. Lukuc, J. Simons,
and J. Wang, “Vehicle-to-vehicle communications: Readiness of V2V technology for
application,” NHTSA, Tech. Rep. DOT HS 812 014, 2014.

[3] P. Papadimitratos, A. L. Fortelle, K. Evenssen, R. Brignolo, and S. Cosenza, “Vehicular
communication systems: Enabling technologies, applications, and future outlook on
intelligent transportation,” IEEE Communications Magazine, vol. 47, no. 11, pp.
84–95, November 2009.

[4] W. Whyte, A. Weimerskirch, V. Kumar, and T. Hehn, “A security credential manage-
ment system for V2V communications,” in IEEE Vehicular Networking Conference
(VNC’13), 2013, pp. 1–8.

[5] CAMP, “Security credential management system proof–of–concept implementation –
EE requirements and specifications supporting SCMS software release 1.1,” Vehicle
Safety Communications Consortium, Tech. Rep., may 2016.

16 qSCMS: Post-quantum certificate provisioning process for V2X

[6] M. A. Simplicio-Jr., E. L. Cominetti, H. Kupwade-Patil, J. E. Ricardini, and M. V. M.
Silva, “The unified butterfly effect: Efficient security credential management system for
vehicular communications,” in 2018 IEEE Vehicular Networking Conference (VNC),
in press, see also https://eprint.iacr.org/2018/089.

[7] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer,” SIAM J. Comput., vol. 26, pp. 1484–1509, 1997.

[8] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceed-
ings of the Twenty-Eighth Annual Symposium on the Theory of Computing. ACM
Press, 1996, pp. 212–19.

[9] The National Institute of Standards and Technology (NIST), “Submission requirements
and evaluation criteria for the post-quantum cryptography standardization process,”
December, 2016. [Online]. Available: https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

[10] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-Tone,
“Report on Post-Quantum Cryptography (NIST IR 8105 draft),” National Institute of
Standards and Technology (NIST), Gaithersburg (MD), USA, Tech. Rep., 2 2016.
[Online]. Available: http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_
draft.pdf

[11] NIST, FIPS 197 – Advanced Encryption Standard (AES), National Institute
of Standards and Technology, November 2001. [Online]. Available: http:
//csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[12] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw,
Y. Seurin, and C. Vikkelsoe, “Present: An ultra-lightweight block cipher,” in Crypto-
graphic Hardware and Embedded Systems - CHES 2007, P. Paillier and I. Verbauwhede,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 450–466.

[13] IEEE, IEEE Standard Specifications for Public-Key Cryptography – Amendment 1:
Additional Techniques, IEEE Computer Society, 2004.

[14] NIST, FIPS 180-4 – Secure Hash Standard (SHS), National Institute of Standards
and Technology, August 2015.

[15] NIST, FIPS 202 – SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions, National Institute of Standards and Technology, August 2015,
dOI:10.6028/NIST.FIPS.202.

[16] ——, FIPS 186-4 – Digital Signature Standard (DSS), National Institute of Standards
and Technology, July 2013. [Online]. Available: http://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.186-4.pdf

[17] D. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-speed high-
security signatures,” Journal of Cryptographic Engineering, vol. 2, no. 2, pp. 77–89,
Sep 2012.

[18] D. J. Bernstein and T. Lange, “Post-quantum cryptography—dealing with the fallout
of physics success,” Cryptology ePrint Archive, Report 2017/314, 2017, https://eprint.
iacr.org/2017/314.

[19] D. Bernstein, “Cost analysis of hash collisions : will quantum computers make
SHARCS obsolete?” in SHARCS’09 Workshop Record – Proceedings 4th Workshop on
Special-purpose Hardware for Attacking Cryptograhic Systems), September 2009, pp.
105–116.

https://eprint.iacr.org/2018/089
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://eprint.iacr.org/2017/314
https://eprint.iacr.org/2017/314

Paulo S. L. M. Barreto, Jefferson E. Ricardini, Marcos A. Simplicio Jr. and Harsh
Kupwade Patil 17

[20] R. Lindner and C. Peikert, “Better key sizes (and attacks) for lwe-based encryption,”
in Topics in Cryptology – CT-RSA 2011, A. Kiayias, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 319–339.

[21] S. Akleylek, E. Alkim, P. S. L. M. Barreto, N. Bindel, J. Buchmann, E. Eaton,
G. Gutoski, J. Krämer, P. Longa, H. Polat, J. E. Ricardini, and G. Zanon, “Lattice-
based digital signature scheme qtesla,” qTESLA official website, 2017, https://qtesla.
org/.

[22] J. Petit, F. Schaub, M. Feiri, and F. Kargl, “Pseudonym schemes in vehicular networks:
A survey,” IEEE Communications Surveys Tutorials, vol. 17, no. 1, pp. 228–255, 2015.

[23] CAMP, “PoC Certificate Expiration Timelines,” CAMP Wiki, 2017, https://wiki.
campllc.org/display/SCP/PoC+Certificate+Expiration+Timelines.

[24] E. Verheul, “Activate later certificates for V2X: Combining ITS efficiency
with privacy,” Cryptology ePrint Archive 2016/1158, 2016. [Online]. Available:
http://eprint.iacr.org/2016/1158

[25] V. Kumar, J. Petit, and W. Whyte, “Binary hash tree based certificate access
management for connected vehicles,” in Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec’17). New York, NY, USA: ACM, 2017, pp.
145–155.

[26] M. Simplicio Jr, E. Cominetti, H. Kupwade-Patil, J. Ricardini, and M. Silva, “ACPC:
Efficient revocation of pseudonym certificates using activation codes,” Ad Hoc Net-
works, p. (in press), 2018.

[27] M. Simplicio, E. Cominetti, H. Kupwade-Patil, J. Ricardini, L. Ferraz, and M. Silva,
“A privacy-preserving method for temporarily linking/revoking pseudonym certificates
in vanets,” in 17th IEEE Int. Conf. On Trust, Security And Privacy In Computing
And Communications (TrustCom’18), 2018, see also https://eprint.iacr.org/2018/185.

[28] D. J. Bernstein, J. Buchmann, and E. Dahmen, Post-Quantum Cryptography. Hei-
delberg, Deutschland: Springer, 2008.

[29] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning with
errors over rings,” in Advances in Cryptology – Eurocrypt 2010, ser. Lecture Notes
in Computer Science, H. Gilbert, Ed., vol. 6110. French Riviera, France: Springer,
2010, pp. 1–23.

[30] S. Bai and S. D. Galbraith, “An improved compression technique for signatures based
on learning with errors,” in RSA Conference – Cryptographer’s Track – CT-RSA 2014,
ser. Lecture Notes in Computer Science, J. Benaloh, Ed., vol. 8366. San Francisco,
CA, USA: Springer, 2014, pp. 28–47.

[31] V. Lyubashevsky, “Lattice signatures without trapdoors,” in Advances in Cryptol-
ogy – Eurocrypt 2012, ser. Lecture Notes in Computer Science, D. Pointcheval and
T. Johansson, Eds., vol. 7237. Cambridge, UK: Springer, 2012, pp. 738–755.

[32] P. S. L. M. Barreto, P. Longa, M. Naehrig, J. E. Ricardini, and G. Zanon, “Sharper
ring-lwe signatures,” Cryptology ePrint Archive, Report 2016/1026, 2016, https:
//eprint.iacr.org/2016/1026.

[33] S. Gueron and F. Schlieker, “Optimized implementation of ring-TESLA,”
2016, gitHub at https://github.com/fschlieker/ring-TESLA. [Online]. Available:
https://github.com/fschlieker/ring-TESLA

https://qtesla.org/
https://qtesla.org/
https://wiki.campllc.org/display/SCP/PoC+Certificate+Expiration+Timelines
https://wiki.campllc.org/display/SCP/PoC+Certificate+Expiration+Timelines
http://eprint.iacr.org/2016/1158
https://eprint.iacr.org/2016/1026
https://eprint.iacr.org/2016/1026
https://github.com/fschlieker/ring-TESLA
https://github.com/fschlieker/ring-TESLA

18 qSCMS: Post-quantum certificate provisioning process for V2X

[34] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard lattices and new
cryptographic constructions,” in Proceedings of the Fortieth Annual ACM Symposium
on Theory of Computing, ser. STOC ’08. New York, NY, USA: ACM, 2008, pp.
197–206. [Online]. Available: http://doi.acm.org/10.1145/1374376.1374407

[35] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” J. ACM, vol. 56, no. 6, pp. 34:1–34:40, Sep. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1568318.1568324

[36] M. R. Albrecht, “lwe-estimator,” 2017. [Online]. Available: https://bitbucket.org/
malb/lwe-estimator

[37] M. R. Albrecht, B. R. Curtis, A. Deo, A. Davidson, R. Player, E. W. Postlethwaite,
F. Virdia, and T. Wunderer, “Estimate all the {LWE, NTRU} schemes! - code,”
2017. [Online]. Available: https://bitbucket.org/malb/lwe-estimator

[38] ——, “Estimate all the {LWE, NTRU} schemes!” 2017. [Online]. Available:
https://estimate-all-the-lwe-ntru-schemes.github.io/paper.pdf?v=aug18

http://doi.acm.org/10.1145/1374376.1374407
http://doi.acm.org/10.1145/1568318.1568324
https://bitbucket.org/malb/lwe-estimator
https://bitbucket.org/malb/lwe-estimator
https://bitbucket.org/malb/lwe-estimator
https://estimate-all-the-lwe-ntru-schemes.github.io/paper.pdf?v=aug18

	Introduction
	General Notation
	The Security Credential Management System
	Unified butterfly key expansion
	The essential property for butterfly expansion: homomorphism

	Lattice-based cryptography
	(Ring) Learning with Errors – (R)LWE
	The qTESLA digital signature scheme
	The Lindner-Peikert (LP) key encapsulation mechanism

	Post-quantum butterflies
	Post-quantum Unified Butterfly Keys: qUBK
	Intuition behind the blind transference of LWE samples
	Handling signature and decryption failures
	Signature scheme
	Encryption scheme

	Security analysis
	Practical analysis
	Conclusion

