
Accountability in Security Protocols
(preprint)

Robert Künnemann1, Deepak Garg2, and Michael Backes3

1 CISPA, Saarland University
2 MPI-SWS

3 CISPA
Saarland Informatics Campus

Abstract. A new paradigm in secure protocol design is to hold parties
accountable for misbehaviour instead of postulating that they are trust-
worthy. Recent approaches in defining this property, called accountabil-
ity, have highlighted the difficulty of characterising malicious behaviour.
So far, no satisfactory solution has been found. Consequently, existing
definitions are either not truly protocol agnostic or require complete
monitoring of all parties.
To our knowledge, this work is the first to formalize misbehavior in the
following sense: a deviation from the behaviour prescribed by the pro-
tocol that caused a security violation. We propose a definition for the
case where it is known which parties deviated in which respect, and ex-
tend this definition to the case where neither these deviations are known,
nor the complete trace of the protocol. We point out that, under real-
istic assumptions, it is impossible to determine all misbehaving parties,
however, we show that completeness can be relaxed to exclude spurious
causal dependencies. We demonstrate the use of our definition with two
case studies, a delegation protocol with a central trusted authority, and
an actual accountability protocol from the literature. In both cases, we
discover accountability violations and apply our definition to the fixed
protocols.

1 Introduction

Trust in other parties is the foundation of all security protocols. In scenarios like
electronic voting, certified e-mail, online transactions, or processing of personal
data, however, the agents involved cannot be trusted to behave according to
the protocol. Nevertheless, if the protocol can detect agents causing security
violations, there is an incentive to avoid malicious deviation from the protocol.
The ability of a protocol to provide the necessary information for detection is
what we call accountability in this work. While juridical notions of accountability
also require intent, foreseeability etc. to actually assign blame, we concentrate on
the protocol’s part in this process: assuring that all violations of some security
property can be traced back to the agent or agents who caused it.

We call these parties misbehaving. Intuitively, a protocol provides account-
ability if it can always hold all misbehaving parties accountable. Many security

properties (soundly) approximate misbehaving parties by instead using the no-
tion of a dishonest party, a party controlled by some arbitrary global adversary.
A party may be dishonest from the start, but whether it is misbehaving in the
actual case depends on whether this adversary actually decides to do something
harmful. Moreover, it may depend on other parties, e.g., when two parties need
to collude to break security. A dishonest party may not be misbehaving, but ob-
viously a misbehaving party needs to be dishonest to deviate from the protocol.

Despite the conceptual difference between these two notions, analysing dis-
honest parties instead of misbehaving parties has shown sufficient for many secu-
rity properties. Typically, the aim is to show that the protocol exhibits a certain
behaviour (e.g., a secure multi-party computation protocol computes the correct
results) if all parties are honest, but also if some parties are dishonest. The prop-
erty to be achieved may be weaker in the latter case (e.g., only honest parties
compute the correct results), but the guarantees for the honest parties are not
weakened by the misclassification of dishonest parties that are not misbehaving.
This is different for accountability. Ideally, the protocol should hold all misbe-
having parties accountable, but only those parties. The latter, called soundness
or fairness, is achieved if the judge never holds an honest party accountable. The
former, however, which is called completeness, requires a proper notion of a mis-
behaving party, as any dishonest party might just behave according to protocol
and thus be unrecognizable.

Hence previous definitions had no means of capturing completeness w.r.t.
truly misbehaving parties, and thus had to rely on protocol specific policies
specifying completeness; some even going as far as saying that accountability
cannot be defined generally, but requires a policy [KTV10]. In Section 2 we go
into detail about why such policies are either incomplete or need to be adapted
to the protocol’s auditing mechanism to an extent that calls their use as a spec-
ification into question.

There have been approaches to capture causation in protocols [GM15,FJW11,
DGK+15], some with the aim of identifying misbehaving parties, but they focus
on protocol actions as causes. While this is a useful building block for removing
causally irrelevant communication from traces, so far the approach was not able
to fulfil its promise to capture the completeness aspect of accountability. The
underlying problem is that parties effectuating protocol actions that are causally
related to a violation may do so without misbehaving, e.g., if A uses a confused
deputy B to attack C, then B would be a cause for the attack, but probably not
be held accountable. We therefore propose a new approach in which the fact that
A deviates from the protocol is considered a (potential) cause rather than the
individual action performed. In the above example, A’s deviation alone suffices
to cause the attack; even if B and C were modified to follow the protocol to
the letter. We hence formalize and explore the following idea in this paper: (I)
Accountability is the ability to point out all misbehaving parties. (II) Misbehav-
ing parties are those who deviated and whose deviations alone are sufficient to
violate the given security property.

Following this idea, we specify what constitutes a correct (a sound and com-
plete) verdict in the case where these deviations are known a posteriori (Sec-
tion 4.2). In practical scenarios, however, these deviations are not known. More-
over, we understand accountability as a property of the protocol itself, which
manifests itself as a guarantee for every possible combination of deviations. Un-
fortunately, a fundamental problem negates a straightforward lifting of correct-
ness in the above sense to all possible deviations, which we call the provocation
problem. It occurs whenever two parties may communicate in secret, as any at-
tacking party A can claim to be provoked by a message another party B sent.
It would be illusory to assume all communication is visible; even if that is the
case in the model, off-band communication can hardly be preempted in reality.
Thus, it is always possible for A to shift the blame by claiming causal relations
that are not inherent to its epistemic state or the protocol itself.

It is thus not possible to achieve completeness w.r.t. our understanding of
what constitutes misbehaviour. However, we can achieve completeness w.r.t. op-
timal deviations which assume the absence of some of those spurious relations.
In practice, this is what we desire in cases like the above: we want the protocol to
point to A only; causal dependencies to other parties like B should be neglected.
We present and discuss two notions of optimality and show that accountability
w.r.t. either preserves soundness — hence we strictly advance the state of the
art. We show that our definition is applicable by analyzing two very different
case studies (Section 5): First, a protocol with a centralized trusted account-
ability monitor; second, a practical protocol for accountable algorithms from the
literature, where accountability is provided from distributed logs and where no
party is trusted. For both, we discover that accountability is not achieved. We
subsequently repair these protocols and show accountability w.r.t. to the second
notion of optimality for both protocols.

2 Related work

Various works from social and political science to computer science, from regu-
latory frameworks to IT-management guidelines, from governance standards to
risk assessment procedures provide definitions of what accountability means in
their respective contexts. Some definitions point out key elements such as disclo-
sure, liability and non-repudiation, others only consider these measures to imple-
ment accountability. But while the means by which accountability is achieved
in these domains differ, there is wide agreement on the overarching goal, i.e.,
entities such as organisations or individuals need to give account for actions and
thus be rewardable or punishable for them (see, e.g., the survey by Papaniko-
laou and Pearson [PP11]). Within the scope of this work, we presume the ability
to reward or to punish (in contrast to, e.g., Feigenbaum et al. [FJW11]) and
thus regard accountability as the requirement for a protocol to provide sufficient
account for such actions.

This has been widely recognized, but most work on this subject provides
or uses a notion of accountability in either an informal way, or tailored to the

protocol and its security [ASW98,Kro15,BCS05,BFM13]. There has been work
on general definitions, but no definition to date defines completeness, i.e., the
property that all parties that deviate in a malicious way are blamed.

Defining completeness. The difficulty lies in distinguishing whether a deviation
from the behaviour prescribed by the protocol was harmless, or may have caused
a security violation. For many security properties, e.g., secure multi-party com-
putation, a misbehaving party is abstracted by giving control to the adversary,
equating “dishonest”, or potentially deviating, with “behaving maliciously”. Ex-
pressing soundness is oblivious to this approximation, e.g., Küsters et al. define
soundness as follows: whenever the judge gives some verdict, every party men-
tioned is dishonest [KTV10]. But the approach falls flat when expressing com-
pleteness näıvely: if a party is dishonest, the judge should mention it in the
verdict, but the adversary might decide to not deviate after all, or deviate in
some way that cannot be recognised. Some approaches still follow this idea, con-
sidering any trace that cannot be produced by the honest protocol malicious
behavior [HKD07,JJPR09]. For distributed systems, which classically aimed at
masking faults, systems like PeerReview [HKD07] can detect faults in the Byzan-
tine setting. Our corruption model is also Byzantine, however, we work in an
adversarial setting and we do not assume that a complete view of every compo-
nent or all the communication is available. Even if all communication is public –
which is unrealistic considering possible off-band communication – any account-
able protocol would be required to verify the behaviour of every party in full
detail, even if this party is not involved in later phases (e.g., registration au-
thorities in e-voting protocols) or cannot meaningfully disrupt communication.
Consequently, Haeberlen et al. focus on faults in distributed systems [HKD07],
where the component’s adherence to specification is a design goal, while Ja-
gadeesan et al. admit that in their model “the only auditor capable of providing
[completeness] is one which blames all principals who are capable of dishonesty,
regardless of whether they acted dishonestly or not” [JJPR09].

Policies for accountability. There is a middle-ground between protocol-specific
and fully protocol-agnostic definitions, where accountability is defined w.r.t.
a policy. These policies, however, cannot reliably express completeness in a
protocol-agnostic way. This is discussed in detail in the long version [Ano17].

In the following, we show that such policies sometimes have to depend on the
specific protocol to be useful, hence they are not truly protocol agnostic. Küsters
et al. propose policies of the form α =⇒ p1 | · · · | pn and define completeness
as follows: if a trace matches α, the verdict should imply some pi. Consider the
scenario where each of the two parties A and B might violate a security property
by deviating on its own, and assume the log always provides indication that this
is the case. We would like to express that A and B shall be held accountable in
case both deviate, as each deviation on their own would entail a violation. Let
α match traces with said security violation. How could such a simple policy be
expressed?

– α =⇒ A is too weak, as B’s participation is disregarded in case only B
deviates (and unfair towards A). Same for α =⇒ B.

– α =⇒ A ∧B is unfair to A or B in cases only one of them deviates.
– α =⇒ A∨B permits uncertainty in the verdict as it would suffice to blame
A∨B in case either deviates, but as A and B’s behavior is visible, this policy
is unnecessarily weak.

– α =⇒ A | B: In this case, the verdict needs to imply either A or B, hence
a verdict A would suffice even if both deviate. The same holds for the policy
α =⇒ A | B | A ∧B.

Hence the only choice is to split α into two formulas, αA and αB , which capture
traces where A, respectively B, misbehaves. Then αA and αB may intersect in
case both deviate and {αA =⇒ A,αB =⇒ B} constitutes a policy that
enforces actual completeness.

But at this point, the policy does not serve as a specification anymore – αA
and αB describe the accountability mechanism itself, not the security property.
For one, this means that the policy is protocol specific, i.e., not applicable to a
class of protocols, e.g., all voting protocols, anymore. But most importantly, the
policy validates the accountability mechanism with itself, hence the approach
begs the problem.

Accountability from causal relations between protocol events The remaining ap-
proaches in the literature focus on protocol actions as causes for security vio-
lations [GM15,DGK+15,FJW11]. The main issue with the approach is that not
all protocol actions that are related to an attack are malicious, e.g, a key-server
distributing public keys used in the attack. While protocol actions as causes,
i.e., cause traces, may help in filtering out parties that were altogether unin-
volved in the attack, they nonetheless refer us back to the original question:
What constitutes malicious misbehaviour? For this reason, none of the existing
works formalising causality on protocol events arrive at answering this question.
Datta et al. propose cause traces as a building block and sketch a procedure
for blame assignment, but there the key-server would be blamed unless he fol-
lowed the protocol to the letter [DGK+15]. First, this is overly strict, as, e.g., a
slight deviation in the format of certificates would lead to the key-server being
blamed even if this deviation is not causally related to the violation. Second,
in cases where private communication is possible, the precise messages the key-
server sent out might be unknown, and thus it would be unclear whether the
server needs to be blamed. The same problem affects Feigenbaum et al.’s line
of work, where causation on protocol events is used as a black-box. Their work
focuses, however, on punishment (possibly protecting the parties’ identities), a
question we are currently not treating [FJW11]. Gössler et al. focus on traces
and assume an explicit dependency relation to recognize faulty components in
a system [GM15]. Due to this focus, the case of parties colluding privately is
excluded from the start.

Summarizing, existing approaches are either protocol specific, or require the
slightest deviation to be punished, even if the normative behaviour would have

had the same causal dependencies. In scenarios where parties can communicate
privately, however, this approach reaches its limits.

3 Process calculus

In this section, we introduce a process calculus we use to discuss accountability
in security protocols. It draws heavily from the applied-π calculus [AF01], with
the difference that it incorporates the effectuating party of a process within the
calculus. We describe a protocol in terms of the overall structure of the process,
which determines which parties run in parallel and which parties share secrets,
and the normative behaviour, which determines which process each party runs.
Any party may choose to run a different process, which we call a deviation. We
will first introduce the term algebra and the process calculus (closely following
the applied-π calculus) before we specify how parties might deviate.

Notation Let Nn = {0, .., n}. For two functions f and g, f [g] denotes the
function mapping any x ∈ dom(g) to g(x), and any x ∈ dom(f) \ dom(g) to
f(x). For l = (e1, . . . , en) and 1 ≤ i ≤ n, we write l|i to refer to ei and l′ ≤ l
if l′ is a prefix of l. We denote domain restriction of a function f to a subset
S ⊆ dom(f) as f |S . We filter a sequence l by a set S, denoted l|S , by removing
each element that is not in S, and by a partial function π : S ⇀ T , denoted l|π, by
computing l|π = (s1, . . . , sn−1)|π · π(sn) or (s1, . . . , sn−1)|π, if π(sn) undefined.

Terms and equational theories We model messages by abstract terms. As-
sume a countably infinite set of names X used to model cryptographic keys and
nonces, and a countably infinite set of variables V. Given a signature Σ, i.e., a
set of function symbols with an arity each, we write f/n for function symbol f
of arity n. Let TermsΣ be the set of terms built over Σ, X , and V, and names(t),
respectively vars(t), denote the set of names, respectively variables, appearing
in a term t. The set of ground terms, i.e., terms without variables, is denoted
by MΣ . When Σ is fixed or clear from the context we omit it and simply write
Terms for TermsΣ and M for MΣ .

We equip the term algebra with an equational theory E, i.e., a finite set of
equations of the form m = m′ where m,m′ ∈ Terms. From the equational theory
we define the binary relation =E on terms, which is the smallest equivalence
relation containing equations in E that is closed under application of function
symbols, bijective renaming of names and substitution of variables by terms of
the same sort.

Example 1. The signature Σsig ··= {true/0, pk/1, sig/2, versig/3, extract/1} and
the following equational theory model digital signatures: extract(sig(x, y)) = y
and versig(pk(x), sig(x, y), y) = true. As usual, extract/1 over-approximates the
capacity of parties to learn the value of the signed message, however, realistic
protocols should not rely on this function symbol, given that many implemen-
tations of digital signatures do not provide this feature.

From now on, assume that E refers to some fixed equational theory and
that the signature and equational theory always contain symbols and equa-
tions for pairing and projection, i.e., Σpairs ··= {〈., .〉, π1, π2} ⊆ Σ and equa-
tions π1(〈x, y〉) = x and π2(〈x, y〉) = y are in E . We will sometimes use
〈x1, x2, . . . , xn〉 as a shortcut for 〈x1, 〈x2, 〈. . . , 〈xn−1, xn〉 . . .〉. Set membership
modulo E is denoted by ∈E and defined as e ∈E S iff ∃e′ ∈ S. e′ =E e.
A substitution σ is a partial function from variables xi to terms ti written
σ = {t1/x1

, . . . ,tn /xn}. We homomorphically extend σ to apply to terms and
use a postfix notation to denote its application, e.g., tσ applies σ to t.

〈P ,Q〉 ::= (plain processes)
| 0
| νn;P
| in(x); P
| out(m); P
| if m = m′ then P else Q
| event t; P

〈A,B〉 ::= (extended process)
| A | B
| νn;P
| νx;P
| {m/x}
| ·p for p ∈ P
| P

Fig. 1. Syntax, where n ∈ X , x ∈ V and m,m′ ∈ Terms

Grammar and operational semantics In contrast to the applied-π calcu-
lus [AF01], this calculus incorporates the effectuating party of a process. Since
processes running in parallel can represent threads or programs running in paral-
lel as well as computers in an asynchronous network, this annotation is necessary.
Assume a set of parties P, a subset of which, T ⊂ P, is trusted to never deviate
from normative behaviour.

Plain processes (defined by the grammar in Figure 1) usually define the be-
haviour of a single party as a combination of message input and out on a public
channel, conditionals w.r.t. =E and scope restriction (νn;P) which creates a
fresh name n and then behaves like P . Furthermore, plain processes are able to
emit events, which can be used to model signalling behaviour (see Example 2
below) as well as append-only logs (see Example 11). We will omit else-branches
with zero processes for brevity. We exclude parallel composition in plain pro-
cesses and any kind of replication for simplicity, as otherwise we would need to
track several processes per party. This could be easily achieved, e.g., by drawing
fresh names as session identifiers [Bla02]. Extended processes combine extended
or plain processes via parallel composition (A | B). Scope restrictions on names
can be used to distribute shared secrets. An active substitution {m/x} acts as
a “floating” substitution operation and can, in combination with scope restric-
tion on variables, be used to transmit terms between processes (see below). As
usual, names and variables have scopes delimited by restrictions and by inputs.
We write fv(A), fn(A) for the set of free variables and names of A, respectively.
Finally, the “hole” operator ·p serves as a placeholder for the normative behav-
ior of a party p ∈ P or its eventual deviations. We thus require the following
condition for the well-formedness w.r.t. deviations.

Definition 1 (skeleton process). A skeleton process is defined by the gram-
mar for extended processes without the last production rule (which includes plain
processes) and at most one hole ·p per party p ∈ P.

A protocol is now defined in terms of a skeleton process determining how
information, i.e., names and terms, are initially shared between parties, and a
function that maps every party to a plain process.

Definition 2 (protocol). A protocol π = (A,n) consists of a skeleton process
A such that for every p ∈ P, there is exactly one occurrence of the hole operator
·p in A, and a function n from P to plain processes, such that for all p ∈ P,
all fn(n(p)) and fv(n(p)) are bound in the scope of ·p in A. We call n(p) p’s
normative behaviour.

A straightforward approach to achieve accountability is to have a trusted
monitor, which executes requests but only accepts signed requests. The next
example follows this paradigm. We use it to explain the semantics of our calculus,
but will show later that this particular monitor fails to provide accountability.

Example 2 (delegation example, broken). Assume the signature Σ consisting of
Σpairs, Σsig, Σlog = {Log/2,Exec/1} and Σact = {NAct/0,SAct/0,UnAct/0,
isAct/1}, along with the equation isAct(a) = true for a either NAct , SAct or
UnAct , and the equations in Example 1. Assume four parties, A, B, I and T ;
among those only T = {T} is trusted. The following skeleton process defines the
generation of A and B’s signing keys and the distribution of their public parts:

νskA; νskB ; {pk(skA)/pkA ,
pk(skB) /pkB}; ·A | ·B | ·I | ·T .

The party A processes two kinds of actions, normal actions and special ac-
tions. Normal action are signed and sent to T for execution. Special actions are
forwarded to B for authorisation, which signs the request identifier na. Finally,
A sends both signatures T for processing.

n(A) := in(a); if a = NAct then out(〈a, sig(skA, a)〉)
else if a = SAct then νna; out(〈na, sig(skA, 〈a, na〉)〉);

in (r); if versig(pkB , r, na) = true then out(〈a, na, sig(skA, 〈a, na〉), r〉)
n(B) := in(m); if versig(pkA, π2(m), 〈SAct , π1(m)〉) = true

then out(sig(skB , π1(m)))

The trusted monitor T verifies the signature of incoming requests, but not which
action they contain. But it takes note of the responsibility to later identify who
request, e.g., an unusuaul action. This strategy is typical in scenarios where
security violations may only be determined after the fact, e.g., if T cannot tell
usual from unusual actions. For example, in a hospital, it may be unusual for a
doctor (A) to retrieve data belonging to another doctor’s (B’s) patient. Still, in
case of an emergency, B should be able to request this special action without
further ado, but has to justify it later. The responsibility of T is to enforce that
the necessary information is present. Let xa, xn, s1, s2 in the second branch
abbreviate xa = π1(m), xn = π1(π2(m)), s1 = π1(π2(π2(m))) etc. such that
m = 〈xa, xn, s1, s2〉. Then,

n(T) := in(m); if versig(pkA, π2(m), π1(m)) = true then
event Log(A, π1(m)); event Exec(π1(m))
else if versig(pkA, s1, 〈xa, xn〉) = true then

if versig(pkB , s2, xn) = true then event Log(〈A,B〉, xa); event Exec(xa)

The party I with n(I) := out (SAct); out (〈pkA, pkB〉) models an intruder who
knows A’s and B’s public key and triggers some communication between A and
B leading to a normal run.

Then (if t1 = t2 then P else Q)pA
pA−−→ PpA if t1 =E t2

Else (if t1 = t2 then P else Q)pA
pA−−→ QpA if t1 6=E t2

Comm (out(x);P)pA | (in(x);Q)pB
(pA,pB ,x)−−−−−−→ PpA | QpB

Event (event m;P)pA
(pA,m)−−−−−→ PpA

Fig. 2. Reduction rules

The operational semantics are exactly the same as for the applied-π calculus,
except that a) the top-most processes inserted at a hole operator ·p is annotated
with the party p (skipping scope restrictions), and these annotations are pre-
served during reduction, and b) reductions are additionally labelled with the
effectuating party for internal reductions, and with sending party and recipient
in case of communication (see Figure 2). Appendix A recalls the applied-pi cal-
culus, including our modifications, in detail. We obtain the following notion of
traces.

Definition 3 (Traces). Let traces(A) = {(l1, . . . , ln) ∈ ((P × P × Terms)]
(P × Terms)] P)∗ | A l1−→ · · · ln−→}.

Whenever fv(A) = ∅, i.e., all variables in A are initially bound, then traces(A) ⊆
((P × P ×M)] (P ×M)] P)∗. Given a set of parties Q ⊆ P, we use � Q =
(Q×P×Terms)∪ (P×Q×Terms)∪ (Q×Terms) to filter out everything except
the communication with and the events emitted by members in Q from a trace.

Deviations A deviation is a function that overwrites the normative behaviour
of untrusted parties and may only refer to names and variables the normative
behaviour uses, e.g., a deviation for A in Example 2 may refer to pkB , which is
bound to pk(skB), but not skB .

Definition 4 (protocol deviation / instance). For a protocol π = (A,n),
any partial function d from P\T to plain processes such that fv(d(p)) ⊆ fv(n(p))
and fn(d(p)) ⊆ fn(n(p)) for every p ∈ dom(d) is called a deviation and induces
and instance of π, π[d], where each occurrence of ·p is substituted by d(p), if

defined, and n(p) otherwise. In both cases, the top-most process which is not of
the form νm;P within this subprocess is annotated with p.

For the empty deviation ∅, the instance π[∅] is an extended process modelling
characterized by the normative behaviour of all parties. By Definition 2, the free
names and variables of all plain processes in the domain of n are bound in the
scope of ·p in A, hence any instance of the protocol is closed. We remove the
non-determinism in the reduction of an extended process A and capture the
order in which parties act, by means of a context u ∈ ((P × P)] P)∗. Let
traces(A, u) be the set of t ∈ traces(A) such that u = t|γ , where γ maps the
reduction of conditionals and events to the executing party, i.e., pA 7→ pA and
(pA, t) 7→ (pA), and communication to the sender and recipient of the message,
i.e., (pA, pB ,m) 7→ (pA, pB). This removes all non-determinism.

Lemma 1. For any protocol π = (A,n), deviation d, and context u, traces(π[d],
u) is either empty or singleton modulo E.

Proof. W.l.o.g., let any chain of reduction A0
l1−→ A1

l2−→ · · · ln−→ An be such

that each variable x in any transition Ai
(pA,pB ,x)−−−−−−→ Ai+1 is unique and follows

some fixed order — this can always be achieved using Subst. We show the
claim by showing the following stronger property: There is a context u′ and a

substitution σ such that for all A0
l1−→ A1

l2−→ · · · ln−→ An such that A0 = π[d]:
and all i ∈ {0, . . . , n},

a) Pi ≡ ν~n.Q1 | · · · | Qk|{~m/~x} where all Qi, i ∈ Nk, are annotated with a
unique party p, fv(Qi) ⊆ ~x, fv(Qi) ⊆ ~n and {~m/~x} ⊆E σ.

b) li|γ = ui,

Induction on n. In the initial case, a) follows from the fact that the holes in
skeleton processes are unique and by application of New-P and Subst for re-
naming variables and moving the ν to the top. Given this structure, b) holds as
the rules Then, Else, Comm, and Event are mutually exclusive and each carry
a different label, i.e., whichever rule applies determines l1, or li respectively.

Inductive step: a) holds because each reduction rule preserves this structure
and since any variable x transmitted either was previously part of the substitu-
tion, or a new substitution was created by Alias, in which case the substitution
maps x to some message m with fv(m) ⊆ vars(σ) by induction hypothesis. This
substitution can only be rewritten by Rewr. As E is closed under application
of function symbols, this implies that the new variable always maps to the same
message, modulo E. The argument for b) is identical to the argument in the base
case.

Hence trace(π[d], u) := t s.t. t ∈ traces(π[d], u) is a well-defined partial func-
tion. We define the log of a trace as the events emitted, e.g., log(t) = t|P×Terms

for a trace t, and define security in terms of properties on logs ϕ : (P×Terms)∗ →
{0, 1}. We write ϕ(t) for ϕ(log(t)) and require properties to be congruent w.r.t.
E, i.e. for all t, t′, t′ =E t =⇒ ϕ(t) = ϕ(t′), so ϕ(trace(π[d], u)) is well defined.

Definition 5 (satisfaction). A protocol π with deviations d satisfies ϕ in con-
text u, written (π, u) � [d]ϕ, if ϕ(trace(π[d], u)) is defined and equals 1.

Example 3. The delegation protocol (Ex. 2) shall hold parties accountable for
effectuating actions that are neither normal nor special, i.e., for violating ϕ(t) ··=
∀e ∈ t. e =E Exec(a) =⇒ a ∈E {NAct ,SAct}.

4 Accountability

In this section, we formalise the notion of a verdict, which models the findings
of a judge, a jury or a similar entity on the question “Which parties caused
the misbehaviour (jointly or on their own)?”. We then define the a posteriori
verdict, which formalises which parties should be held accountable, if we know
the processes executed by these parties are known a posteriori. The a posteriori
verdict forms the basis for our later treatment of unknown deviations: Ideally, an
accountability mechanism should always give a verdict that coincides with the
a posteriori judgement. But if “always” means “for all deviations and contexts”,
then many protocols do not provide accountability, unless they make the un-
realistic assumption that there are no private communication channels between
untrusted parties.

We recover applicability by weakening the requirement to correctness w.r.t.
short, rational, or in some other way optimal deviations that produce a given
trace. We discuss two such notions and their respective limitations, and present
our notion of accountability, which is parametric in the optimality notion used.
This approach preserves soundness, but gives up completeness to some extent.
However, we gain a clear understanding of which deviations are disregarded.

4.1 Verdict

In many scenarios, only parts of the trace are observable or considered trusted,
consequently we may only consider a subset of the observations, V ⊆ (P × P ×
Terms)] (P ×Terms)]P. Given a protocol π, traces(π[∅])|V denotes the visible
projections of the traces of this protocol.

Definition 6 (verdict). Given a protocol π and V , a verdict is a set of subsets

of P. It is derived from a trace using a total function verdict : traces(π)|V → 22
P

congruent w.r.t. E. We sometimes write a verdict v as a propositional formula

with parties as atoms of the form
∨
C∈v

(∧
p∈C p

)
to clarify its semantics.

The verdict provides the set of independently accountable groups of agents,
such that all agents within such a group are jointly accountable. For example, if
a verdict (A ∧ B) ∨ (B ∧ C) ∨ (A ∧ C) is given, the way any two of the parties
A, B, C actually deviated was sufficient to provoke the violation, e.g., when a
simple majority was sufficient to accept a faulty input, and all three did in fact
misbehave. We discuss the choice of sufficient causation in Section 4.3.

The verdict function abstracts whatever entity is giving the verdict, be it
an actual judge or jury, or a designated party which is part of the protocol.
In the latter case, the verdict function would only take events emitted by this
designated party into account. As verdict is total on traces(P)|V and congruent
w.r.t. E, we abbreviate verdict(trace(π[d], u)|V) by verdict(π[d], u, V).

Example 4 (Verdict for Example 2). In Example 2, the task of the monitor is
to provide sufficient evidence of the parties deviating from protocol by issuing
an unusual action. We thus assume only the events of the trusted party to be
visible, V = {T} × Terms, and consider the verdict function verdict(t) ··=

{{A,B}} if Exec(a),Log(〈A,B〉, a) ∈ t ∧ a 6∈ {SAct ,NAct},
{{A}} Exec(a),Log(A, a) ∈ t ∧ a 6= NAct ,

∅ otherwise.

This example shows how events can provide for an append-only log, which in
Example 2 is used by a trusted party. Example 11 will show that even untrusted
parties can emit events, in which case their log may, however, not be trustworthy
and thus the protocol design requires more sophistication. In the present exam-
ple, a judge inspects the visible part of the trace, i.e., T ’s log, after the protocol
run. A slightly different protocol could use the same conditions to derive a ver-
dict while the protocol is running, in which case the verdict function would only
interpret the corresponding events emitted, e.g., by T . The use of events carries
the explicit assumption that this specific log can only be written to by T , that it
is append-only and that it is never disputed. Even in the case where untrusted
parties emit events, the semantics guarantee at least the append-only property.

Küsters, Truderung and Vogt pointed out the relationship between verifiabil-
ity and accountability by relating the verdict to whether the security property
was violated in the same run [KTV10].

Definition 7 (verifiability). A verdict function verdict provides a protocol π =
(A,n) with verifiability for a property ϕ and visibility set V , if for any deviation
d and t ∈ traces(π[d]), ϕ(t) ⇐⇒ verdict(t|V) = ∅.

4.2 A posteriori verdict

The a posteriori verdict defines which parties should be held accountable (jointly
or independently), given that the processes executed by these parties are known
a posteriori, e.g., if forensic findings determine the program they ran. Given a
deviation and a context, we consider a run of the protocol with only parts of this
deviation by reverting some parties to their normative behaviour. For any set of
parties S claimed to be sufficient to cause a violation of security property ϕ, it
must be the case that reverting all other parties to their normative behaviour,
i.e., restricting d to S, indeed results in a violation, i.e., (π, u′) � [d|S]¬ϕ for
an appropriately chosen context u′. The intuition is that the deviation of these
parties alone was sufficient to ensure the violation takes place. We are interested

in minimal such sets, in order to capture independently accountable groups of
agents. E.g., if either of A and B’s deviation suffices to cause a violation, we
want the verdict to be {{A}, {B}} (read as A ∨B).

Definition 8 (a posteriori verdict). Given a protocol π = (A,n), a property
ϕ, a context u and a deviation d, the a posteriori verdict apvϕ(π, u, d) is defined

{S | (π, u) � ¬ϕ and S is minimal s.t. ∀S′ ⊇ S.∃u′ : u′ =S′ u ∧(π, u′) � [d|S′]¬ϕ} .

Here, u′ =S′ u is short for u′|
S′ = u|
S′ , with
 S′ ··= (S′×P)∪(P×S′)∪(S′).

As deviations can have a different structure from the normative behaviour,
the context u′, which controls the scheduling, allows parties that are reverted
to their normative behaviour to behave differently. In contrast, the parties not
reverted, e.g., those in S′, are bound to their previous scheduling u|
S′ . We
discuss the quantification over all S′ in the next section.

Example 5. Consider a deviation d for Example 2 with d(B) ··= out(skB) and
d(A) defined as follows:

in (xsk); νna; out(〈UnAct , na, sig(skA, 〈UnAct , na〉), sig(xsk , na)〉)

Within context u = ((B,A), A, (A, T), T, T, T, T), B sends her signing key to
A, who fakes B’s authorisation and then instructs T to execute an unusual
action. W.r.t. the property that no unusual action was executed, i.e., ϕ(t) ··=
Exec(UnAct) 6∈E t, the a posteriori verdict apvϕ(π, u, d) is {{A,B}}, as reverting
either A or B to their normative behaviour avoids ϕ. In contrast, if d(A) ··=
out(sig(skA,UnAct)) and B shares its signing key with I, i.e., d(B) ··= out(skB)

and d(I) ··= in (m), then apvϕ(π, u, d) = {A}, for the obvious context u, as B’s
behaviour, even if it was reckless, had no bearing on the coming about of ϕ.

4.3 Discussion

In this section, we discuss different aspects of the definition and motivate the
decisions we made with distinguishing examples.
Relation to causation Similar to the structural-model approach to causa-
tion [HP13], we determine causal relations between deviating from the norma-
tive behaviour and the occurrence of a violation by intervening on potential
causal factors, in our case: the fact whether a party deviates at all. A host of
recent definitions of actual causation follows this approach [HP13,Hal15] going
back to Lewis [Lew73] and possibly Hume [Hum, Section VII]. These definitions
all follow the idea that A causes B, if B would not have happened, had it not
been for A, i.e., intervening in a way that removes A results in B. This kind
of intervention is reflected within the deviation d and the manipulation thereof.
Still, this causation defines A as a necessary cause, also known as condicio sine
qua non. Recent work, however, points out that parts of necessary causes lack
a clear interpretation, whereas sufficient causes a) are dual to necessary causes
and b) capture joint causation directly [BGK17]. A is a sufficient cause for B, if

intervening on every other object beside A still leads to B in any case. Further-
more, as with necessary causes, minimality is required. The only intervention we
regard here is restriction of the domain of d, i.e., reverting the deviation of some
party to its normative behaviour. Hence, the a posteriori verdict equal to the
set of deviations that are sufficient causes for ϕ with respect to the mentioned
notion of intervention, with one difference: sufficiency is tested for all supersets
of S, i.e., all subsets of P \ S are reverted to their normative behaviour.

Coordination. Definition 8 requires a violation to occur for all supersets S′ of
S instead of just S. This is motivated by the following example.

Example 6 (coordination attack). Let P\T = {A,B,C}. Assume C could mount
an attack, but n(C) prescribes to not do so. Both n(A) and n(B) send 0 to C,
which is ignored by n(C). Consider a deviation d where d(C) attacks if A’s and
B’s message are equal, and d(A) and d(B) both send 1. The attack is part of the
actual trace, disappears if any of them is reverted to their normative behaviour,
but is present if both are reverted. Hence there is a causal relation between d(A)
sending 1 and d(C) mounting the attack. As, e.g., d|{A,C} does not cause the
attack, the a posteriori verdict is {{A,B,C}}.

Some readers might have a different intuition about this example, as the
attack would still have happened had A and B behaved normally. As Pearl put
it: “causal explanation is a man-made concept” [Pea00]. If this is desired, the
pragmatic solution is to only regard S′ = S.

Choosing the counterfactual context The context u′ for each counterfactual
d|S′ is chosen existentially, but has to match u for the parties that are not
reverted to their normative behaviour, enforcing that they behave the same and
that messages they send reach the same party. This permits deviating parties
to “talk behind the backs” of the other parties, however, if in u they address a
party outside S, this party has to receive some message.

Consider the case where A and B are not supposed to do anything, but de-
viate as follows: A corresponds with B, and then mounts an attack on C. B
would be part of a verdict merely for the fact that A waits for a response, which
is acceptable. Consider, however, the case where A sends a message to B before
mounting the attack, but does not wait for B’s response. Here B would be part
of the verdict {{A,B}}, as n(B) would never pick up the message sent by A,
and thus there would be no u′ =S′ u for S′ = {A} that contains (A,B). This is
clearly an artefact of the semantics of our protocol calculus, however, similar to
the applied π-calculus, the network attacker should be regarded as an evaluation
context or a party running in parallel to the protocol as, e.g., represented by I in
Example 2. For the purpose of automated verification, the operational semantics
of the applied π-calculus were later streamlined and complemented by verifica-
tion methods that consider an arbitrary network attacker by default [Bla09];
we expect something similar in future work. For now, we prefer to model direct
communication for generality and clarity of presentation.

4.4 Accounting for hidden deviations

We extend the definition introduced in the previous section to cases where the
deviation of some parties may remain unknown. This gives rise to a definition of
accountability as a meta property of a protocol. We say that a protocol provides
accountability for a property, if there is a verdict for this property, and this
verdict is always correct w.r.t. the a posteriori verdict. But if “always” means
“for all deviations and contexts”, then many protocols do not provide account-
ability, unless they make the unrealistic assumption that there are no private
communication channels between untrusted parties.

We recover applicability by weakening the requirement to correctness w.r.t.
short, rational, or in some other way optimal deviations that produce a given
trace. We discuss two such notions and their respective limitations, and present
our notion of accountability, which is parametric in the optimality notion used.
This approach preserves soundness, but gives up completeness to some extent.
However, we gain a clear understanding of which deviations are disregarded.

The trouble with provocations One would expect that accountability for ϕ
can be captured by requiring the actual verdict to coincide with the a posteriori
verdict for ¬ϕ for all d and u.

Example 7. Consider a deviation d with dom(d) = {A,B} and d(A) as follows:

in (m); if m =Hello then behave maliciously, violating ϕ else behave honestly

and d(B) is out (Hello). Then (π, u) � [d]¬ϕ, but (π, u) � [d|{A}]ϕ, thus A alone
is not sufficient to cause ¬ϕ, hence {A,B} is minimal.

Now assume there is no way to discover whether this communication between
B and A took place – it is impossible to determine whether A was running d(A)
or some d′ with dom(d′) = {A}, mounting the attack herself. Hence A can
plausibly discredit B.

This problem arises whenever private communication with a potentially pro-
voking party is possible, hence, unless one were willing to assume all commu-
nication was public, no protocol could provide accountability. Note that this
problem would also arise if Definition 8 took necessary causation rather than
sufficient causation as a basis. Instead, we chose to only regard deviations which
are a) plausible regarding the observed trace and b) optimal. Obviously there is
a risk that the guarantees provided are weakened if the optimality notion is too
strong. But consider the following two arguments for weakening accountability
in this respect: First, we want the definition to be practically applicable; a def-
inition that applies to no real protocol is useless, no matter how appealing it
is. Example 7 is not an artefact of our definition: intuition requires that both A
and B be held accountable for the first deviation, but only A for the second.

Second, if we step back from the idea that an accountable protocol needs to
blame all accountable parties, but rather consider accountability as the capability
of supplying enough information to a judge to do so, provocation loses its scare.

In Example 7, if the protocol would only blame A, but A can somehow prove
(e.g., by revealing d) that B was implicated, the judge would take this claim
into consideration. However, as nothing points to B, A deviating alone provides
the simplest explanation consistent with the observation, and is plausible in the
sense that A was indeed able to mount exactly the attack observed. There is
no uncertainty that A was deviating in a way enabling the attack, and could
have done with or without provocation. Thus it makes sense to only require the
verdict to point to A — if A acted on provocation, e.g., A was part of a bot-net,
A needs to provide evidence that this was the case. As we will see, we sacrifice
completeness for applicability, but we can do so in a controlled manner.

Note that provocation is not simply a matter of excluding publicly derivable
messages, such as the message used for provocation, from consideration. If that
were the case, the problem could be solved by considering an adversarial context
C, running in parallel to A and B, that could input messages deducible from
the observable output, i.e., a network adversary. In this (potential, but failing)
solution, we would always consider an arbitrary such context C, but not consider
it a party and thus never include it in a verdict. This would solve the provocation
problem, as the context itself could trigger A’s malicious behaviour and thus
reflect that B’s input was not necessary to produce the observed message.

Nevertheless, this solution is not adequate in a different scenario where A
exploits a ‘confused deputy’ B, i.e., B is trusted but can be misused to mount
an attack. While C may exploit B just like A did, A is in fact the party to
be held accountable in this case. Hence, we really do care about optimality of
deviations, which is the subject of Section 4.5.

Accountability We provide a definition of accountability which specifies the
correctness of a verdict function, i.e., its soundness and completeness, and takes
a posteriori knowledge about the actual deviation dp into account. This a pos-
teriori knowledge models certainty about the way some parties deviated, it may
however be incomplete or even empty. Correctness should hold for any visible
trace produced by the protocol, but there are many deviations and contexts that
produce a given trace. Nevertheless, an accountable protocol needs to provide
a verdict with certainty. These are conflicting goals, which we resolve by only
considering optimal deviations. In Section 4.5, we discuss several notions of op-
timality. For the moment, we will just require this notion of optimality to be
sane, i.e., for all deviations d′,dp and every visible trace tV ∈ trace(π[d′[dp]]),
every optimal deviation d and context u has w.r.t. dp, tV = trace(π[d[dp]], u)|V ,
i.e., it explains tV . Furthermore, there is at least one optimal deviation and con-
text for each such tV . Then, the idea is the following: no matter which trace
t we observe, the verdict that the accountability mechanism derives from the
visible part t|V equals the a posteriori verdict, for any optimal deviations (and
contexts) explaining t|V .

Definition 9 (accountability). A function verdictdp : traces(π)|V → 22
P

pro-
vides a protocol π = (A,n) with accountability for a property ϕ assuming a pos-
teriori knowledge of some deviation dp, if for any trace t ∈ traces(π[d′[dp]])

(for some d′), and any optimal d, u explaining t|V w.r.t. dp, verdictdp(t|V) =
apvϕ(π, u, d[dp]).

We define optimality in Section 4.5. In the common case where all deviations
are unknown, dp is the empty map and thus d[dp] = d.

If we consider the weakest sane optimality notion, e.g., all all deviations
reproducing t|V are optimal, then this notion, of course, suffers from the provo-
cation problem: As verdict is a function on t|V , all optimal deviations explaining
tV need to have the same a posteriori verdict. Hence, independent of the verdict
function, should V permit unobservable communication, then both deviations d
and d′ from Example 7 explain the same observation, but have different a pos-
teriori verdicts, and therefore, no verdict function can provide accountability.

Discussion We relay the discussion of our choice of the optimality notion to
the next section and discuss other aspects in the following.

Explicit verdict. We define accountability with respect to a verdict function.
First, a functioning accountability mechanism needs the verdict function to be
explicit. Second, the verdict function might be constrained to be efficiently com-
putable, to be derivable from information that can be made public etc. Hence,
different verdict functions may be appropriate for different contexts.

Enforcing certainty. Definition 9 obtains certainty from the fact that verdict is
a function on traces. Hence all optimal deviations reproducing the visible part of
the trace need to have the same a posteriori verdict. As the optimal deviations
and contexts considered are not necessarily including the actual deviation (which
may be non-optimal), they are universally quantified to capture cases where the
remaining uncertainty prohibits accountability. Optimality should be defined so
that all non-optimal deviations should be implausible, or at least acceptable to
be postponed.

Example 8 (Whodunit). S and A coordinate on some value a as follows: n(S)
chooses a and sends it to A; n(A) receives this value. Both report it to a trusted
party T ; only messages sent to T are visible. In actuality, d(A) sends an a∗

different from S’s reported choice to T . In this case, a verdict is impossible with-
out additional information on S’s and A’s deviation, as two minimal scenarios
are plausible: S deviated and sent a∗ to A, but reported a, or A deviated and
received a, but reported a∗ to blame S.

Both deviations are optimal w.r.t. to the notions discussed below. Blaming
S or A based on one or the other could well be incorrect, hence we require
the verdict to coincide for all optimal explanations of a given trace. As both
deviations lead to different a posteriori verdict, no verdict can coincide with
both. We stress that this is different from the disjunction within the verdict: if
the verdict is {{S}, {A}}, i.e., S ∨ A, it means that both a deviation of S or
a deviation of A on their own are sufficient to cause ¬ϕ, however, the optimal
deviation that explains t requires both S and A to deviate.

Soundness (Fairness). Our definition preserves soundness. As our case studies
demonstrate applicability, and previous definitions could not capture complete-
ness in realistic scenarios, this means we strictly improve the state of the art.

Lemma 2 (Soundness/Fairness). If, assuming a posteriori knowledge dp,
verdictdp provides π with accountability for ϕ w.r.t. a sane notion of optimality,
then for all deviations d and contexts u, if S ∈ verdict(π[d], u, V) and p ∈ S for
some S and p, then p ∈ dom(d) and d(p) 6= n(p).

Proof. If d(p) = n(p) or p 6∈ dom(d), then (π, u′) � [d|S′]¬ϕ, implies (π, u′) �
[d|S′\{p}]¬ϕ, for any u′ and S′ ⊇ S. Thus, no S ∈ apvϕ(π, u, d[dp]) contains
p for any d and u due to the minimality requirement in Definition 8. As any
S ∈ verdict needs to be contained in at least one a posteriori verdict by sanity,
this implies the claim.

4.5 Notions of optimality

Many deviations and contexts can produce the same visible trace. This trace
can indicate causal relations inherent to the protocol, e.g., if A signed a message
that should never appear, however, some deviations introduce additional causal
relations like provocation (Example 7), which we wish to ignore. Optimality
should be weak enough to recognize uncertainty, e.g., both plausible deviations
in Example 8, and preserve the causal information indicated by t|V , yet strong
enough to remove the second form of causal relations.

Example 9 (2-out-of-3 vote, [DGK+15, Section IV]). For an attack to be suc-
cessful, two out of three servers A, B, C need to validate a compromised certifi-
cate for a trusted party T . All of them deviate by accepting it, which is publicly
visible.

In order for apvϕ(π, u, d) to enforce the correct verdict, (A∧B)∨ (B ∧C)∨
(A∧C), d and u need to contain all the causal information in the trace relating
to the security violation. All optimality notions we discuss here thus require d
and u to reproduce the visible part of the trace. Hence the question remains how
to choose among these d and u.

Verdict-optimal deviation The first option is to minimize over the a poste-
riori verdict of each candidate deviation and context. We define the following
order based on logical implication.

Definition 10 (verdict order). S1 ≤ S2 if
∨

S∈S2
∧
p∈S p =⇒

∨
S∈S1

∧
p∈S p.

The a posteriori verdict gives the empty verdict ∅ if no violation occurs in
the given deviation and trace. As a propositional formula, this translates to∨

S∈∅
∧
p∈S p = ⊥. As there are no negative atoms in these formulas, ∅ ≤ S2

only if S2 = ∅. Hence ∅ is the bottom element of this order, while {∅} is the top
element, however, this a posteriori verdict only occurs if the normative behaviour

of the protocol may produce a violation by itself. Note further, that, if S2 6= ∅,
then,

S1 ≤ S2 ⇐⇒ ∀S′ ∈ S2∃S ∈ S1.S ⊆ S′. (1)

∀S′ ∈ S2∃S ∈ S1.S ⊆ S′

=⇒ ∀S′ ∈ S2∃S ∈ S1.
∧
p∈S′

p =⇒
∧
p∈S

p

=⇒ ∀S′ ∈ S2.
∧
p∈S′

p =⇒
∨

S∈S1

∧
p∈S

p

=⇒
∨

S′∈S2

∧
p∈S′

p =⇒
∨

S∈S1

∧
p∈S

p if S2 6= ∅.

⇐⇒ S1 ≤ S2.

For the other direction, we show that ∃S′ ∈ S2∀S ∈ S1.S 6⊆ S′ implies S1 6≤ S2
by contradiction. Hence we assume that S1 ≤ S2 and fix S1, S2 and S′ such that

S1 ≤ S2 ⇐⇒
∨

S′∈S2

∧
p∈S′

p =⇒
∨

S∈S1

∧
p∈S

p (2)

As S′ ∈ S2, ∧
p∈S′

p =⇒
∨

S∈S2

∧
p∈S

p.

Hence by (2), ∧
p∈S′

p =⇒
∨

S∈S1

∧
p∈S

p.

And thus there must be S ∈ S1 such that∧
p∈S′

p =⇒
∧
p∈S

p.

Hence S ⊆ S′, contradicting the assumption.

Definition 11 (verdict-optimal). Deviation and context d, u are verdict-opti-
mal w.r.t. some (visible) trace tV and an a posteriori deviation dp if tV =E

trace(π[d[dp]], u)|V and apvϕ(π, u, d[dp]) is minimal w.r.t. to the above order on
verdicts.

Coming back to the provocation example, given that only A’s malicious be-
havior is visible and sufficient to provoke a violation, apvϕ(π, u, d) = {{A}} for d
mapping A to a process behaving maliciously. Assuming that no deviation may
provoke the violation without A behaving this way, this deviation and context
are verdict optimal, and the deviation where A is provoked by B is ignored in
favour of this simpler explanation, as A ∧B implies A.

While Lemma 2 guarantees an empty verdict if every party is following
its normative behaviour, the following theorem provides assurance that non-
violating traces are recognized as such, and that at least someone is blamed if
something bad happens.

Theorem 41 (accountability implies verifiability). If verdict provides π
with accountability for some ϕ, V such that ϕ(t) ⇐⇒ ϕ(t|V) for all traces t
and w.r.t. any sane notion of optimality, then it provides π with verifiability.

Proof. Let t be fixed but arbitrary. Note first that, by the sanity requirement,
and assumptions of ϕ, for any optimal deviation d and context u explaining t|V :

ϕ(t) ⇐⇒ ϕ(t|V)

⇐⇒ ϕ(trace(π[d], u)|V)

⇐⇒ ϕ(trace(π[d], u))

⇐⇒ (π, u) � [d]ϕ

The proof has two steps:

ϕ(t) ⇐⇒ apvϕ(π, u, d) = ∅ for all optimal d, u (3)

⇐⇒ verdict(t|V) = ∅. (4)

Step 1 holds because:

– (=⇒) If ϕ(t), then for any optimal deviation and context and any subset of
parties B, there is S′ = P ⊇ S such that u′ = u reproduces a non-violating
trace, i.e., (π, u) � [d|S′]¬ϕ does not hold as ϕ(t) ⇐⇒ (π, u′) � [d]ϕ.

– (⇐=) Assume ¬ϕ(t), then there are optimal deviation and context d, u
such that t|V ∈ trace(d, u)|vis (by sanity requirement) and for S = P and
all S′ ⊇ S, i.e., S′ = S, (π, u′) � [d|S′]¬ϕ as d|S′ = d. Thus, at least S = P or
a subset thereof is in apvϕ(π, u, d).

The second step holds by assumption and Definition 9.

Verdict-optimal accountability gives a very strong guarantee: all deviations
and contexts that are disregarded because they are not verdict-optimal actually
imply the verdict, hence a) no one is blamed that would not be blamed otherwise,
and b) from (1) we conclude that for every conjunct of the weaker verdict, which
we can understand as a group of agents “working together” to produce the
violation, at least one representative appears in a conjunct of the actual verdict,
and can hence point out more subtle degrees of responsibility (or take all the
blame).

Knowledge-optimal deviation The second notion of optimality we propose
is based on the amount of knowledge parties need to share in order to reproduce
the visible part of the trace. We assume that all parties can share information
over invisible channels, but make the information shared explicit. Hence we relax
Definition 4 so that all deviating parties can share some knowledge initially, but
we will forbid communication between deviating parties later.

Definition 12 (relaxed deviation). A relaxed deviation for a protocol π =
(A,n), is a partial function d from P \T to plain processes, such that fv(d(p)) ⊆⋃
p′∈dom(d) fv(n(p′)) and fn(d(p)) ⊆

⋃
p′∈dom(d) fn(n(p′)) for every p ∈ dom(d).

The idea is that a deviating party can use any free name or variable used
by another deviating party, giving us a measure of the information shared. (Al-
though not a very precise one: a deviation of party A that obtains a single sig-
nature from B requires as much information sharing as a deviation that obtains
hundreds of signatures: B’s signing key.) We can now compare two deviations
by comparing the information available to deviating parties, excluding the in-
formation allowed to be shared, i.e, fv(n(p)) and fn(n(p)).

Definition 13 (knowledge order). d1 ≤ d2 if dom(d1) ⊆ dom(d2), and for all
p ∈ dom(d1), fv(d1(p))\fv(n(p)) ⊆ fv(d2(p))\fv(n(p)), and fn(d1(p))\fn(n(p)) ⊆
fn(d2(p)) \ fn(n(p)).

Definition 4 and Lemma 1 are trivially extended to relaxed deviations. For
Definition 8, we slightly modify the restriction operator: d|S(p) is undefined if
p 6∈ S, and defined ν~n′.d(p)σ where σ and the sequence of names ~n′ are chosen
such that names or variables that become unavailable as a result of the restric-
tion are assigned fresh names, or structurally similar terms with fresh names.4

E.g., skA and pkA are substituted by skdum and pk(skdum) if the active substi-
tution in the protocol mapped pkA to pk(skA). This preserves the requirements
of Definition 12 and captures the intuition that removing any party from the
deviation also removes information that only this party could have shared.

As all information is exchanged before the protocol run, we restrict all de-
viating parties to not communicate with each other, in order to quantify the
amount of information they share by their free variables and names. We modify
Definition 8, such that, for any S ⊆ P, we only consider contexts in which de-
viating parties do not communicate with each other, i.e., (π, u) � [d|S]ϕ implies
that (pA, pB) 6∈ u for all pA, pB ∈ dom(d).

Definition 14 (knowledge-optimal). A relaxed deviation and context d, u are
knowledge-optimal w.r.t. some (visible) trace tV and a posteriori deviation dp if

4 Formally, we assume a bijection ρ between the set of names occurring in fn(d(p)) ∪
fn(fv(t)σA) \

⋃
p′∈dom(d)∩S fn(n(p′)) (for σA the active substitutions in scope of

·p in π = (A,n)) and a sufficiently large set of fresh names. Then σ substitutes
every name n ∈ fn(d(p)) \

⋃
p′∈dom(d)∩S fn(n(p′)), not available due to the re-

striction anymore by a (unique) fresh name according to ρ, and every variable
v ∈ fv(d(p)) \

⋃
p′∈dom(d)∩S fv(n(p′)), by ρ applied to σA(v).

trace(π[d[dp]], u)|V =E t|V , (p1, p2) 6∈ u for all p1, p2 ∈ dom(d), and d minimal
w.r.t. to the above order on relaxed deviations.

Knowledge-optimality is motivated by the observation that deviations such
as Example 7 rely on causal dependencies that are not apparent from the ob-
served trace and the protocol itself, but are artificial in the sense that they
result from the behaviour of the deviating parties alone. Hence these deviations
are explanations for the observable behavior which can be constructed after the
fact. Knowledge-optimality aims at excluding these “artificial” deviations when
reviewing all possible explanations for a visible trace. It restricts communication
to sharing of secrets, which induces causal dependencies between deviating par-
ties which are inherent to the protocol, hence not “artificial”. In the case studies
we considered, this notion is indeed successful in eliminating these deviations.

For most applications we considered, the visible trace only consists of events
emitted by parties, modelling claims or trusted public logs. Hence, for these
examples, relaxed deviations are complete with respect to visible traces.

Lemma 3 (relaxed deviations completeness). For any protocol π, devia-
tion d and context u with t ∈ trace(π[d], u), there is a relaxed deviation d′ and a
context u′ with (p1, p2) 6∈ u′ for all p1, p2 ∈ dom(d′), such that trace(π[d′], u′) =E

t|δ, where δ = P] P × Terms] {(pA, pB ,m) | pA, pB 6∈ dom(d′)}.

Proof. Let π, d, u and t be fixed but arbitrary. Let m = |t|. Then there is a chain

of reductions A0
t1−→ A1

t2−→ · · · tm−−→ Am with A0 = π[d]. Any extended process
Ai can be brought into form Ai ≡ ν~n.({~m/~x} | . . . | P1| · · · |Pk) [AF01]. Here ~n is
a sequence of names n1, . . . nm and ν~n is shorthand for νn1; . . . , νnm. Moreover,
observing that in the initial extended process π[d], P1 to Pk each correspond to
exactly one party, we can require the form

Ai ≡ ν~n.({~m/~x} | Pp1 | · · · |Ppk)

for some ordering of {p1, . . . , pk} = P w.l.o.g. (i.e., keeping 0 processes even if
parties have finished execution).

Contrary to the applied π-calculus, plain processes lack replication and thus
w.l.o.g. we can assume all fresh values are contained in ~n and Pp1 to Ppk contain
only conditionals, events and message input and message output. Furthermore,
w.l.o.g., any name transmitted is unique and every variable bound by in is unique.
Thus we can assume

A0 ≡ ν~n0.({~m0/~x0
} | Pp1 | · · · |Ppk)

and every subsequent Ai, i > 0:

Ai ≡ ν~n0.({~m0/~x0
} |ν~xp1{~mp1/~xp1 } | Pp1
| · · · |ν~xpk{~mpk /~xpk }Ppk)

where ~xp are the variables transmitted to p so far. For each p ∈ P and m ∈ ~mp,
any variable in m is bound either in σp′ ··= {~mp′/~xp′} where p′ was the sending

party or in σ0 ··= {~m0/~x0
}. As there is a total order on the message transmission,

this implies that the process is closed.
We now apply the following transformation to the reduction sequence: each

transition Ai−1
ti−→ Ai with ti = (pA, pB , x) for pA and pB both in dom(d) is

removed by equating both Ai−1 and Ai to the following process A′i−1. As this
transition is an instance of Comm,

Ai−1 ≡ ν~n0.(σ0 |σpA | (out(x).P)pA | σpB | (in(x).Q)pB
| σp3 | Pp3 | σpk | · · ·Ppk)

and

Ai ≡ ν~n0.(σ0 |σpA | PpA | σpA | QpB
| σp3 | Pp3 | σpk | · · ·Ppk)

for some P and Q, we chose A′i−1 = Ai, i.e., instead of transmitting a message,

we make sure they are contained a priori in ~x. Then A′i−1
ti+1−−→ Ai+1. We can

apply this process backwards and obtain A′0
t|δ|1−−−→ A′1

t|δ|2−−−→ · · · t|δ|′m−−−→ A′m for
m′ = |t|δ|. Syntactically, all corresponding (according to ~t) input and output
constructs in each Pp for p ∈ dom(d) in A0 are removed to produce A′0. Hence
we can formulate A′0 as follows:

A′0 ≡ ν~n0.({~m0/~x0
} | σp1 | P ′p1 | σpk | · · ·P

′
pk

)

where the corresponding process P ′p in A0 contains free variables for each ~xp, i.e.,

fv(P ′p) = fv(n(p)) ∪ {x ∈ ~xp | (p′, p, x) ∈ ~t, p′ ∈ dom(d)} and fn(P ′p) = fn(n(p)),
as opposed to Pp in A0, where fv(Pp) = fv(n(p)) and fn(Pp) = fn(n(p)).

We can show by induction on the variables in

{x ∈ ~xp | p′, p ∈ dom(d), (p′, p, x) ∈ ~t}

in order of transmission in ~t, that for each p ∈ dom(d), x ∈ ~xp, fv(x) ⊆⋃
p′∈dom(d) fv(n(p′)) and fn(x) ⊆

⋃
p′∈dom(d) fn(n(p′)), since for each m ∈ ~mp,

each variable is bound either by σp′ where p′ was the sending party, or by
σ0. Hence we can conclude that by applying Subst for each x ∈ ~xp for each
p ∈ dom(d), A0 is equivalent to an instance π[d′] for a relaxed deviation d′.

This lemma holds because communication is not authenticated, and relaxed
deviations can share necessary secrets beforehand. In the extreme case, one de-
viating party can act on behalf of all others.

Similar to Theorem 41, which does not apply to relaxed deviations, we can
assure ourselves that accountability w.r.t. knowledge-optimal parties provides
verifiability.

Theorem 42 (knowledge-optimal acc. implies verifiability). Assume V
does not contain communication (V ∩ (P ×P ×M) = ∅) and ϕ(t) ⇐⇒ ϕ(t|V)
for all t ∈ traces(π). Then, if verdict provides π with knowledge-optimal account-
ability for some ϕ, V , verdict provides π with verifiability.

Proof. Let ϕ(t). Then apvϕ(π, u, d) = ∅ for the deviation and context d′, u′ with
t ∈ trace(π[d], u). By Lemma 3, we can assume a relaxed deviation d∗ and a
context u∗ with (p1, p2) 6∈ u for all p1, p2 ∈ dom(d), and trace(d∗, u∗) =E t|δ
as above. Since ϕ(t) ⇐⇒ ϕ(t|δ), for t′ ∈ trace(π, d∗, u) t′|V |δ = t′|V =E t|V ,
ϕ(t′) and thus apvϕ(π, u′, d′) = ∅, too. Thus either the protocol does not provide
verdict-optimal accountability, or verdict(t|V) = ∅.

Let verdict(t|V) = ∅. Thus for all knowledge-optimal d, u with trace(π[d],
u)|V =E t|V , apvϕ(π, u, d) = ∅. Hence there are no knowledge-optimal deviation
d and context u such that apvϕ(π, u, d) 6= ∅, as otherwise the protocol would
not provide knowledge-optimal accountability. By Lemma 3, there is a relaxed
deviation and context d∗ and u∗ for the actual deviation and context da and ua
that produced t, i.e., d∗ and u∗ with trace(π[d∗], u∗)|V =E t|V . W.l.o.g. d∗ and
u∗ are knowledge-optimal. But if apvϕ(π, u∗, d∗) = ∅, then even for S = P, there
is no u′ vP u∗, i.e., u′ = u∗, such that (π, u′) � [d]¬ϕ). Hence ¬ϕ(t) cannot be
true, and thus ϕ(t).

There is a class of examples where knowledge-optimal accountability is re-
quired, as verdict-optimal accountability is not applicable. Unsurprisingly, they
rely on artificial causal dependencies between deviating parties. Reconsider Ex-
ample 9. It is plausible to assume that any of the three servers, say C, com-
municated with the two others, A and B, deciding to only deviate if A and
B deviate. For such a deviation and context d, u, apvϕ(π, u, d) = {{A,B}},
since (π, u′) � [d|i,C]ϕ for i ∈ {A,B} and some u′ ={i,C} u. Barring knowledge
about the actual deviation, this argument can be made for B or A in place of
C. Hence, the protocol described in Example 9 is not accountable w.r.t. verdict-
optimal deviations. One might agree — after all, d is plausible — and decide
this protocol does not provide accountability. On the other hand, C’s behaviour
was only observed in the case where A and B actually deviate. What C would
have done if this was not the case can be neither proven nor refuted, d is just one
possible explanation, and arguably not the simplest one. This situation, which
is an instance of the provocation problem restricted to deviating parties, occurs
whenever there are two or more parties in a set that is part of a verdict given
by the verdict function. This is the case in both our case studies, however, there
are scenarios where only one party is untrusted, e.g., Kroll’s original analysis of
the accountable computation protocol [Kro15].

Knowledge-optimal accountability is applicable in this case. Observe that
no exchange of secrets is necessary to produce the observed trace, hence, no
matter which knowledge-optimal deviation and context d∗, u∗ are chosen, a
restriction of the domain of d∗ does not alter the message sent from either
server to the client. Thus, for all knowledge-optimal deviations, apvϕ(π, u∗, d∗) =
{{A,B}, {B,C}, {A,C}}. Note, however, that if we modify the example so that
T provides a side-channel, e.g., it relays A’s decision to B, knowledge-optimality
again suffers the same problem. In this case, knowledge-optimality would con-
servatively reject the protocol. Protocols with such side-channels may require a
more refined notion of optimality, which we leave as an open question. As the
attacks and proofs in the next section will demonstrate, accountability w.r.t.

knowledge-optimality is applicable to both our case studies, which tackle two
frequent use cases which are very different from each other.

We stress that, in the context of Definition 9, knowledge-optimality is not
an assumption on the actual behaviour of the deviating parties, but an assump-
tion on which kind of explanations should be considered when determining the
verdict. If the reader considers Definition 8 appropriate, then the provocation
problem witnesses that, for realistic protocols, no distinct verdict can capture all
possible explanations for a violation. The conclusion is that either unambiguity
of the verdict needs to be dropped, the corruption model be changed (e.g., to
a single adversary controlling all deviating parties), or completeness be weak-
ened to some extent. We chose to leave the first two options for future work and
concentrate on the third.

We conclude that the provocation problem requires weakening accountability
by regarding only optimal deviations and contexts producing the trace. Verdict-
optimality provides the guarantee a represantative from each set of jointly mis-
behaving agents, but it can only apply in cases where all a posteriori verdicts
are empty or consist of singleton sets (e.g., access control [BCS05], random-
ness generation [BFM13] and holding trusted third parties accountable [ASW98,
KTV10]). Knowledge-optimality assumes that deviating parties share no more
information than necessary, but still guarantees soundness (Lemma 2) and that
at least some deviating party is blamed in case of misbehaviouar (Theorem 42).

5 Case studies

In this section, we come back to the central accountability monitor in Exam-
ple 2, but will focus on an accountability protocol based on zero-knowledge
proofs and commitments which is actually implemented. This protocol provides
a “framework [..] to enable meaningful after-the-fact oversight [of computations
conducted by authorities], consistent with the norm in law and policy” [Kro15],
and hence our analysis may be of interest for protocol designers. As opposed
to the centralized accountability monitor, this protocol has no trusted parties,
hence the evidence collected for accountability might be tampered with by de-
viating parties.

The goal is to show that our definition is able to find subtle attacks in the
centralized and the decentralized setting, but still allows to show accountability
under reasonable assumptions, and in both settings. Furthermore, the proofs (in
the long version [Ano17]) are of reasonable length and complexity.

5.1 Delegation (Example 2)

Consider the protocol defined in Example 2. The task of the monitor is thus to
provide enough evidence of the parties deviating from the protocol by issuing
an unusual action. We thus assume only the events of the trusted party to be
visible, V = {T}×Terms. As mentioned before, the monitor should hold parties

responsible for the execution of unusual actions accountable:

ϕ(t) ··= ∀e ∈ t. e =E Exec(a) =⇒ a ∈E {NAct ,SAct}.

It is obvious that the protocol provides for verifiability (Definition 7), since a Log
event is always triggered before an Exec event appears, and any event Exec(a)
with an a which is not an action or a special action leads to a verdict. However,
the protocol as defined in Example 2 allows A to trick B into making itself
appear partially responsible for a violation, despite being honest. Further, any
party can produce a verdict that blames A and only A.

It is obvious that the protocol provides for verifiability, since a Log event
is always triggered before a Exec event appears, and any event Exec(a) with
an a which is not an action or a special action leads to a verdict. However,
the protocol as defined in Example 2 allows A to trick B into making itself
appear partially responsible for a violation, despite being honest, and any party
to produce at verdict that blames A and only A. We think that it is instructive
to first explain how these attacks manifests in our framework. We then proceed
to repair the protocol and show it secure w.r.t. the same verdict, and knowledge-
optimal deviations.

Two incorrect verdicts We will now show that both non-empty verdicts
{{A}} and {{A,B}} may be incorrect w.r.t. Definition 9 and knowledge-optima-
lity. Assume the verdict is {{A}} for some fixed but arbitrary knowledge-optimal
d and u, i.e., the trace t ∈ trace(π, u, d) contains Log(A, a) ∈ t ∧ a 6= NAct .
While this implies that a messagem such that versig(pk(skA), π2(m), π1(m)) was
transmitted to T , it is possible for any party to deduce such message and trigger
the verdict. A responds to a term SAct with a pair 〈na, sig(skA, 〈SAct(a′), na〉)〉
for some name na. Thus, any single deviating party, e.g., I, can trigger the
violation without any further knowledge. Hence the set of knowledge-optimal
deviations and contexts disagree on their respective a posteriori verdicts.

Now assume the verdict is {{A,B}} for some fixed but arbitrary knowledge-
optimal d and u, i.e., the trace t ∈ trace(π, u, d) contains Log(〈A,B〉, a) but
¬(isAct(a) = true). By definition of n(T), this implies that T has received
a message m such that m =E 〈a, y, sig(skA, 〈a, y〉), sig(skB , y)〉 for some term
y. The four terms that constitute this message can be constructed, even if A
alone is deviating. As n(B)’s response is not bound to the action in particular,
d(A) can create a message 〈na, sig(skA, 〈SAct , na〉)〉, receive sig(skB , nB) and
construct the pair m for any a. Hence there is a knowledge-optimal (d, u) with
dom(d) = {A} and fv(d(A)) = fv(n(A)) with apvϕ(π, u, d) = {A}, contradicting
accountability in this case, too.

Example 10 (delegation, fixed). Consider the signature and equational theory
described in Example 2, but the normal behaviour modified as follows:

n(T) ··= in(m);
if versig(pkA, π2(m), π1(m)) = true then

if isAct(π1(m)) = true then

event Log(A, π1(m)); event Exec(π1(m))
else if versig(pkA, s1, 〈xa, xn〉) = true then

if versig(pkB , s2, xn) = true then
if isAct(xa) = true then
event Log(〈A,B〉, xa); event Exec(xa)

(As before, in the second branch m = 〈xa, s1, s2〉.)

n(A) := in(a); if a = NAct then out 〈a, sig(skA, a)〉
else if a = SAct then

out 〈a, sig(skA, 〈a, a〉)〉;
in r; if versig(pkB , r, sig(skA, 〈a, a〉)) = true then
out 〈a, sig(skA, 〈a, a〉), r〉

n(B) ··= in(m);
if versig(pkA, π2(m), 〈SAct ,SAct〉) = true

then out sig(skB , π2(m))

n(I) := out SAct; out 〈pkA, pkB〉

Now, T verifies that its input contains an action (which might still be an
unusual action). Instead of binding B’s validation of an action via a nonce that
A can later misuse, B’s response contains the action it meant to validate. A’s
request to B only needs to contain the action now, but to avoid T confusing this
message with a signed normal action, A sends the signature of a 〈a, a〉 instead
of just a.

Theorem 1. The verdict in Example 4 provides the protocol described in Ex-
ample 10 with accountability for the property ϕ w.r.t. V = {T} × Terms and
knowledge-optimality.

Proof. Case distinction over an arbitrary but fixed t. Let t s.t. verdict(t|V) = ∅.
ϕ holds, as a Log event is always triggered before an Exec event appears (by the
structure of n(T)), and any event Exec(a) where a is not a normal action or a
special action leads to a verdict. Hence apvϕ(π, u, d) = ∅ for all d and u such
that t|V ∈ trace(π[d], u).

Let t s.t. verdict(t|V) = {{A}}. Then Exec(a) ∈ t|V , Log(A, a) ∈ t|V and
a 6= NAct , and thus, by definition of n(T), t|V = (Log(A, a),Exec(A, a)). For
any derivation producing t, a message 〈a,m〉 with m =E sig(skA, a) for a ∈
{SAct ,UnAct}. must be transmitted Such a message can either be constructed
knowing skA, or deduced from other protocol output. In the first case, we deduce
that A must be deviating. As V defines only the events emitted by T as visible,
we can chose any relaxed deviation d and context u that reproduce these exact
event. Consider d : A 7→ out m for above m, and u = ((A, T), T, T, T, T),
which explain t. We verify that apvϕ(π, u, d) = {{A}} and fn(d(A)) = skA,
fv(d(A)) = ∅. As argued before, the empty deviation cannot produce a violating
trace, hence d and u are knowledge-minimal. Coming back to the case where
m is deduced from some protocol output, we only need to consider cases where

A follows its normative behaviour, as any other S would not be minimal. Even
considering arbitrary deviations of B and I, such an m cannot be constructed
by either, nor can it be deduced from one of the three outputs within n(A),
as any reduction labelled (A,X,m′) of π[d] with A 6∈ dom(d) for any X ∈ P
and term m′ has form 〈a, sig(sk(pkA), a)〉, or 〈a, sig(sk(pkA), 〈a, a〉)〉, for some
a previously available, but of the form NAct(a′) or SAct(a′) for some term a′, or
is just a forwarding of the message received. Hence, if a message of form m can
be deduced from this message, it is also deducible without it. Therefore, {{A}}
is the unique minimal verdict.

Let t s.t. verdict(t|V) = {{A,B}}, which is the last case. Then Exec(a) ∈ t|V ,
Log(A,B, a) ∈ t|V and a 6= SAct , and thus, by definition of n(T), t|V =
(Log(〈A,B〉, a),Exec(〈A,B〉, a)). For any derivation producing t, a messagem =E

〈xa, xn, s1, s2〉 such that versig(pkA, s1, 〈xa, xn〉) = true, versig(pkB , s2, xn) =
true and isAct(xa) = true was transmitted. Therefore, (X,T,m) ∈ t for some
X ∈ P. By definition of =E , any such m is of form m =E 〈a, sig(skA, 〈a, a〉),
sig(skB , sig(skA, 〈a, a〉)〉 for a ∈ {NAct ,UnAct}. This message can either be con-
structed knowing skA and skB or deduced from other protocol output. For the
first case, we show that this is possible indeed and thus {{A,B}} = apvϕ(π, u, d)
for some d and u with dom(d) = {A,B} and fn(d(A)) = fn(n(B)) ∪ fn(n(A)).
Then, we show that for either A and I, or B and I deviating, it is impossi-
ble to deduce such an m. For one, this shows knowlege-minimality of d, sec-
ond, this shows that {{A,B}} is indeed a unique minimal a posteriori verdict.
The deviation d mapping B to 0 and A to ν a; out(m) along with the con-
text u = (A, (A, T), T, T, T) produces a trace with the same visible part t|V =
(Log(A,B, a),Exec(〈A,B〉, a)). We can verify that apvϕ(π, u, d) = {{A,B}}, as
either substituting A or B by their normative behaviour remedies the violation,
in particular, d|{A}(A) undefined. It is left to show, that no derivation d with
dom(d) = {A, I} or dom(d) = {A, I} can coincide with t|V , which (as men-
tioned before) requires emitting m. First, if dom(d) = {A, I}, then the name
skA available does not suffice to construct m. The only additional message that
may be learned is the output of n(B), but it is of form sig(skB ,SAct). Second,
if dom(d) = {B, I}, then the name skB available does not suffice to construct
m (due to its subterm sig(skA, a)). The only additional message learned is the
output of n(A), but it is either of form 〈a, sig(skA,NAct)〉 (in which case the
same argument as in the last case applies) or of form

〈SAct , sig(skA, 〈SAct ,SAct〉), sig(skB , sig(skA, 〈SAct ,SAct〉)〉

for some a′. While it is possible to extract the action SAct , again it is not possible
to deduce m or the mentioned subterm. This shows that the verdict is correct
in the last case, and thus concludes the proof.

5.2 Accountable algorithms

We have analysed the accountable algorithms protocol due to Kroll [Kro15,
Chapter 5], which lets an authority A, e.g., a tax authority, make accountable

Public log Authority A Subject S1 Subject Sn

Init(Cy)

Init(Cy)

Init(Cy)

〈x1, sign ··= sig(skS1 , x1)〉

z1 ··= f(x1, y)

r ··= sig(skA, 〈z1, rz1 , rx1〉)

Log(〈sign, 〈Cx1 , Cz1 ,ZK (. . .)〉〉)

Log(〈sign, 〈Cx1 , Cz1 ,ZK (. . .)〉〉)

〈x1, z1, r〉

repeat for S2, . . . , Sn

Final

· · ·

Fig. 3. Honest protocol run for Example 11

computations for any number of subjects S1 to Sn. It is useful for many tasks
in which a central authority computes a function for a large number of subjects
that provide inputs, e.g., validation of tax returns. A secret input y may be
used to hold elements of some policy secret, but fixed from the start, e.g., a
threshold on the gross income to decide when someone will undergo a tax audit.
The most interesting aspect is that, in contrast to Example 2 and many other
protocols providing accountability, there is no central trusted party, all parties
that provide evidence might deviate and thus lie.

The protocol has been implemented with hash functions and Zero-Knowledge
Succinct Non-interactive Arguments of Knowledge (ZK-SNARKs). It is efficient
on many examples; Kroll discusses applications ranging from credit scoring to
various machine learning classifiers. Previous analysis [Kro15, Section 5.2.2] was
informal and only considered holding the authority accountable. We discover
that any subject can falsely accuse the authority A of misbehaviour, resulting in
a situation reminiscent of Example 8. Such a claim by a single subject, e.g. an
angry taxpayer, would subvert the trust into the system and hence render the
accountability mechanism useless. We thus extended the protocol considerably
to provide accountability w.r.t. knowledge-optimality.

Example 11 (Accountable algorithms). Assume the signature Σ to contain Σsig

(see Example 1), pairs and the following sets:

ΣZK ··= {ZK/9, verZK/1,Pub/1, true/0}
Σcomm ··= {comm/2, open/2}
Σchannel ··= {ch/2, retr/2, check/2}

Σlog ··= {Init/1,Log/1,Final/0, readLog/1,

isLog/1, readInit/1}.

Assume the following equations for zero knowledge proofs

Pub(ZK (Cx, Cy, Cz, x, y, z, rx, ry, rz)) = 〈Cx, Cy, Cz〉
verZK (ZK (Cx, Cy, Cz, x, y, z, rx, ry, rz)) = true,

where z = f(x, y), Cx = comm(x, rx), Cy = comm(y, ry) and Cz = comm(z, rz).
Furthermore, the following equations for commitments, secure channels and logs:

open(comm(m, r), r) = m readLog(Log(l)) = l

retr(x, ch(x, z)) = z readInit(Init(l)) = l

check(x, ch(x, z)) = true isLog(Log(l)) = true.

Let f ∈ Σ be a constructor that models an arbitrary function, the algorithm
to be made accountable. The set of parties P consists of A, the authority, and
a set of n subjects S1 to Sn, as well as some bystander E which models a
network adversary. Each subject Si has some arbitrary but fixed input xi ∈
Terms which it signs and sends to A (see Figure 3). The authority, which has
previously committed on some value y, computes the function f on each xi and
the value y which remains secret. It keeps a log that proves the authenticity of
the commitments and the fact that f was indeed used to compute the resulting z.
This z, along with information to open the commitments to x and z (but not y!)
is then signed and sent to Si. Si checks the signature and uses this information to
validate x and z with the commitments in the log. If those are correct, it checks
the zero-knowledge proof in the log for consistency with the commitments to x
and z, as well as the earlier comittment to y, to be sure that z was computed
using f and said y. Only then Si reports its input xi and the output z received,
along with the message signed by A, which is used to resolve disputes in case the
log entries made by A and Si are inconsistent. Formally, we define the protocol
π = (B,n) as follows:

B = νskA; νskS1 ; · · ·; νskSn ; νskL;
ν cA,S1 , . . . , cA,Sn ; νcS1,A, . . . , cSn,A;

{pk(skA)/pkA ,
pk(skS1) /pkS1 , · · · ,

pk(skSn) /pkSn };
·A | ·S1 | · · · | ·Sn | ·E

and n(E) ··= out(〈pkA, pkS1
, . . . , pkSn

〉) so that fv(n(E)) contains all public keys.
Names cA,Si and cSi,A are used to model authenticated channel from authority
to subjects and vice versa. The authority shall behave as follows:

n(A) := νy,ry; event (Init(comm(y, ry)));
out (comm(y, ry)); (repeated n times) ; PA,1

where

PA,i := in(m); if check(cSi,A,m) = true then
if versig(pkSi

, sign, x) = true then

event(Log(〈sign, log)〉));
out(ch(cA,Si , sig(skA, 〈z, rz, rx〉)));
out(Log(log)); PA,i+1

with

x = π1(retr(cSi,A,m)), Cx = comm(x, rx),

sign = π2(retr(cSi,A,m)), Cy = comm(y, ry),

z = f(x, y), Cz = comm(z, rz),

log = 〈Cx, Cz,ZK (Cx, Cy, Cz, x, y, z, rx, ry, rz)〉
and PA,n+1 ··= event (Final). The subjects Si, i = 1, . . . n, have the following
normative behaviour:

n(Si) ··= in (init); out(ch(cSi,A, sig(skSi , xi)));
in (m1); if check(cA,Si ,m1) = true then
if versig(pkA, r, 〈z, rz, rx〉) = true then

in (m2); if Cx = comm(xi, rx) then
if Cz = comm(z, rz) then
if 〈Cx, Cy, Cz〉 = Pub(Z) then event(〈xi, z, r〉)

where

〈z, rz, rx〉 = extract(r), r = retr(cA,Si ,m1),

〈Cx, Cz, Z〉 = readLog(m2), Cy = readInit(init).

The subjects Si need to be able to retrieve log entries correctly, hence we
model the logging mechanism as a constraint on traces enforcing that the mes-
sages m1 and m2 received by n(Si) have matching entries in the log.

α(t) ··=∀l.(A,Si,Log(l)) ∈E t =⇒ (A,Log(l)) ∈E t

∧ (A,Si, Init(l)) ∈E t =⇒ (A, Init(l)) ∈E t

Now we can formulate the goal of the protocol. Each party receives the cor-
rect output with respect to the input it claims to have sent, and the private
information A has committed to with her first message. We model this violation
separately for each party to facilitate analysis. Hence, the security property is
ϕ(t) =

∧
i∈Nn ϕi, with

ϕi(t) ··=α(t) =⇒ ∀Cy, ry.(A,Final), (A, Init(Cy)) ∈E t

=⇒ ∃x, y, x, rx, ry, rz.
(Si, 〈x, z, r〉) ∈E t ∧ z =E f(x, open(Cy, ry))

∧ ∀(Si, l) ∈E t. l =E 〈x, z, r〉

For simplicity, we focus on a single, but arbitrary, Si and we assume only the
claims of A and Si are visible:

V ··= {(A, t) | ∃t′, f.t =E f(t′),

f ∈ {Init ,Log} ∨ t =E Final} ∪ {(Si, t)}.

Simplifications. We have simplified the protocol in comparison to the original
presentation [Kro15] by removing randomness generation for f . In the original
protocol, A commits to a random seed which is then fed into a verifiable random
function along with random bits from a public source. As the scope of this case
study is in the decentralised accountability mechanism, we opted for a simpler
presentation at the cost of generality. Kroll proposes an accountable green card
lottery on the basis of a probabilistic f , which is an instance of an application
that our simplification excludes. As previously mentioned, our modelling of the
log via α is ad-hoc and we focus on individual correctness ϕi, as we want to
emphasize the arguments concerning accountability.

Violation of accountability. On the other hand, we extended the protocol so that
A and Si authenticate the origin of their messages with signatures sign and r
(see Figure 3). This is needed for accountability: Assume Si decides to send a
value x̂i to A, which is different from the actual value xi. Si can claim to have
sent xi, and without these signatures, there is no way for A to show that Si
itself is behaving maliciously, similar to B’s situation in Example 8. Similarly,
if Si brings forward a claim that A misbehaved, it needs to protect itself from
unjustified claims by A that Si’s claim is based on false evidence, in essence: Si
needs to back its claims. Hence Si requires a signature on zi and other values.

This attack translates to the original protocol, which was apparently de-
signed to only hold A accountable. As blind trust in the subjects to only submit
correct claims would be the downfall of such a system in the real-world, we ex-
tend the protocol to provide authenticity of origin for whatever xi the authority
A receives, as to hold A and Si accountable. Note that Kroll assumes an au-
thenticated and secret channel between A and Si, but this does not guarantee
non-repudiation, which we need here.

Similar to many application-specific definitions, Kroll’s modelling and anal-
ysis focuses on accountability as a property of the cryptographic algorithms
executed by A and the subjects, thus disregarding the actual communication
between (possibly deviating) parties and therefore neglecting the possibility that
a subject can make false claims. This confirms the need for a formal notion of
accountability such as the one we provide in this work. Our preliminary analysis
pointed to this possible attack, as for an inconsistent log t with (Si, x̂), (A, zk) ∈
t|V with zk = ZK (Cx, Cy, Cz, x, y, z, rx, ry, rz), verZK (zk) = true and x̂ 6=E x,
both a single deviating A and a single deviating Si explain the visible part of
this trace, if the signature were left out.

Note that our extension of the protocol comes with a loss of confidentiality:
although most digital signature schemes do not reveal the signed message in
full, they might leak some information about it. One could avoid disclosing the
signature, e.g., by incorporating it within the zero-knowledge proof, however,
we found a patch which stays close to the original protocol and its existing
implementation more instructive within the context of accountability.

Security analysis Let us now define a verdict function which provides account-
ability for the repaired protocol. Similar to the security property, we have one
verdict per subject. This is simpler to define, as otherwise the verdict would
need to point out all misbehaving Si at once. To achieve the same goal, these
verdicts can be combined. Hence we define

verdict i(t) ··=

{
∅ if ϕi(t)

{ACi ∪AD ∪ SCi ∪ SDi} otherwise,

where ACi validates the consistency of A’s logs:

ACi ··= {A |¬∃Cx, Cy, Cz, rx, Z, sign.

(A, Init(Cy)), (A,Final), (A,Log(〈sign, 〈Cx, Cz, Z〉) ∈E t∧
〈Cx, Cy, Cz〉 =E Pub(Z) ∧ verZK (Z) =E true∧
versig(pk(skSi), sign, open(Cx, rx)) =E true}.

SCi validates the consistency of Si’s claim with A’s log: the claimed input and
output should be consistent with the randomness A has signed, the commitments
A has published; the input claimed should be the one previously signed by Si.

SCi ··= {Si |¬∃r, rz, rx, Cx, Cz, Z, sign.

(Si, 〈open(Cx, rx), open(Cz, rz), r〉) ∈E t∧
(A,Log(〈sign, 〈Cx, Cz, Z〉)) ∈E t∧
versig(pk(skSi), sign, open(Cx, rx)) = true∧
versig(pk(skA), r, 〈open(Cz, rz), rz, rx〉) = true}.

SDi and AD complement these consistency checks by verifying that Si, respec-
tively A, has not written contradicting entries to the log.

SDi ··= {Si | ∃t1t2.(Si, t1), (Si, t2) ∈E t ∧ t1 6= t2}
ADi ··= {A | ∃t1t2.(Si, Init(t1)), (Si, Init(t2)) ∈E t∨

((Si,Log(t1)), (Si,Log(t2)) ∈E t) ∧ t1 6= t2∧
∃m1,m2.versig(pk(skSi), π1(t1),m1)

=E versig(pk(skSi), π1(t2),m2) =E true)}.

Theorem 2. The verdict described above provides the protocol in Example 11
with accountability for ϕi w.r.t. knowledge-minimal deviations.

Proof. Case distinction over an arbitrary but fixed t. Let t s.t. verdict i(t|V) =
∅. This is equivalent to ACi = SCi = SDi = AD = ∅. Hence, there are
Cy, sign, Cx, Cz, Z such that (A, Init(Cy)), (A,Log(〈sign, 〈Cx, Cz, Z〉) and (A,
Final) ∈E t, where verZK (Z) =E true, and 〈Cx, Cy, Cz〉 =E Pub(Z)∧ thus
Cz = comm(f(x, y), rz), Cy = comm(y, rz), Cx = comm(x, rx), for some x, y and
ry, rz, rx. Furthermore, from SCi = ∅ and AD = ∅, we obtain (Si, 〈x′, z, r〉) ∈E
t with 〈z, r′z, r′x〉 = extract(r), such that Cx =E comm(x′, r′x), and Cz =E

comm(z, r′z), for some x′, z, r, r′z and r′x. From Cz =E comm(z, r′z), and Cz =
comm(f(x, y), rz), we conclude that rz = r′z and z =E f(x, y). From Cx =
comm(x, rx), and Cx =E comm(x′, r′x), we conclude that rx = r′x and x =E x′.
Hence (Si, 〈x, z, r〉) ∈E t with z =E f(x, y) =E f(x, open(Cy, ry). This shows
that an empty verdict implies ϕ(t|V). The converse follows by definition of
verdict i.

Let t s.t. verdict i(t|V) = {A}. By definition, either ACi = {A} or AD =
{A}, or both. In the first case, there is no consistent log by A, however, by
SCi = ∅, we see that Si’s output is correct w.r.t. to the inconsistent log, and
by SDi, we see that it is unique. In the second case, A produced differing Init-
events, in which case the violation is triggered immediately, or differing Log-
events, in which case one of these was not received, which contradicts α, i.e.,
the assumption that ¬ϕi(t) which is necessary for verdict i(t|V) = {A}. There
is a knowledge-optimal deviation d and a context u that reproduce t|V (by
Lemma 3), but dom(d) might be any subset of parties containing A, as the
events could contain subterms otherwise not derivable. However, no matter what
the deviation, A can only communicate with parties that are not deviating by
definition of relaxed deviations and context. For any violation resulting from
t|V , substituting all terms that are not deducible by A with a fresh name still
yields a violation by definition of ϕi. Hence (π, u) � [d|S′]¬ϕ for all S′ ⊇ {A,Si}.
As SCi = SDi = ∅, the observations produced by d(Si) are consistent with its
normative behaviour, hence (π, u) � [d|S′]¬ϕ for all S′ ⊇ {A}, but (π, u) � [d|∅]ϕ
by definition of π. Hence, apvϕ(π, u, d) = {A}. There are no other knowledge-
optimal deviation d′ and context u′ that produce the same visible trace but
where A is not an element of some S ∈ apvϕ(π, u′, d′). Any such d′ has A
in its domain, since the normative behaviour is otherwise not able to produce
any of the observations implied by ACi or ADi. But as SCi = SDi = ∅ for
all t ∈ trace(π[d′], u′), and d′(Si) does not communicate with any other party
(see above), SCi = ∅ also holds for all t′ ∈ trace(π[d′|dom(d′)\{A}], u

′′), for all
u′′ ={A} u

′. Hence, (Si, 〈x, z, r〉) ∈ t′ and (A,Log(〈sign, 〈Cx, Cz, Z〉),∈E t with
x = extract(sign), versig(pk(skSi), sign, x) = true, versig(pk(skA), r, 〈z, rz, rx〉),
open(Cx, rx) = x, and open(Cz, rz) = z. By definition of n(A), sign witnesses
that A indeed received x and thus computed z such that z =E f(x, open(Cy, ry))
for the values ry and Cy given upon initialisation and finalisation. Together with
the statement implied by SDi = ∅, we conclude ϕ(t′). Thus A needs to be an
element of any S ∈ apvϕ(π, u′, d′), for all d′ and u′ producing the same visible
trace, as otherwise this S would be insufficient. For this reason, the verdict {{A}}
is the unique minimum.

Let t s.t. verdict i(t|V) = {Si}. By definition, either SCi = {Si} or SDi =
{Si}, or both. In the first case, Si’s claim is inconsistent with the log, but by
ACi = ADi = ∅, the A’s log itself is consistent, including (A,Log(〈sign, 〈Cx, Cz,
Z〉) ∈E t with sign signed by skSi . In the second case, Si produced differing
claims, in which case a violation is triggered immediately. There is a knowledge-
optimal deviation d and a context u that reproduce t|V (see Lemma 3), but
dom(d) might be any subset of parties, as the events could contain informa-
tion otherwise not derivable. However, no matter what the deviation, A can
only communicate with parties that are not deviating by definition of relaxed
deviations and context. For any violation resulting from t|V , substituting all
terms that are not deducible by Si with a fresh name still yields a violation
by definition of ϕi Hence (π, u) � [d|S′]¬ϕ for all S′ ⊇ {A,Si}. As ACi =
ADi = ∅, the observations produced by d(A) are consistent with its norma-
tive behaviour, hence (π, u) � [d|S′]¬ϕ for all S′ ⊇ {Si}, but (π, u) � [d|∅]ϕ
by definition of π. Hence, apvϕ(π, u, d) = {Si}. There are no other knowledge-
optimal deviation d′ and context u′ that produce the same visible trace but
where Si is not an element of some S ∈ apvϕ(π, u′, d′). Any such d′ has Si
in its domain, since the normative behaviour is otherwise not able to produce
any of the observations implied by SCi or SDi. But as ACi = ADi = ∅ for
t ∈ trace(π[d′], u′), and d′(A) does not communicate with any other party (see
above), ACi = ∅ also holds for t′ ∈ trace(π[d′|dom(d′)\{A}], u

′′), for all u′′ ={A}
u′. Hence for all Cx, Cy, Cz, rx, ry, (A, Init(Cy)), (A,Final) ∈E t′, as well as
(A,Log(〈sign, 〈Cx, Cz, Z〉) ∈E t′ with 〈Cx, Cy, Cz〉 =E Pub(Z), verZK (Z) =E

true versig(pk(skSi), sign, open(Cx, rx)) =E true. By Definition of α within ϕ,
either ϕ(t′) is trivially true, or n(Si) indeed receives 〈sign, 〈Cx, Cz, Z〉 (which
is unique by AD = ∅). From the definition of n(Si) it follows that if Si emits
any event, it emits 〈xi, z, r〉 where z is such that Cz = comm(z, rz) and Cx =
comm(xi, rx) holds for xi. From verZK (Z) =E true we can therefore conclude
that z = f(xi, y

∗) for some y∗ and ry such that Cy = comm(y∗, ry), e.g.,
z = f(xi, open(Cy, ry)). This shows that ϕ(t′). Thus Si needs to be an element
of any S ∈ apvϕ(π, u′, d′), for all d′ and u′ producing the same visible trace, as
otherwise this S would be insufficient. For this reason, the verdict {{Si}} is the
unique minimum.

Let t s.t. verdict i(t|V) = {A,Si}. In this case, it is trivial to find a knowlege-
optimal deviation d with a context u that reproduces t|V . No matter what the
deviation, communication occurs only between Sj , j ∈ Nn and A, either by
definition of relaxed deviations and context, or by n. For any violation result-
ing from t|V , substituting all terms that are not deducible by Si with a fresh
name still yields a violation by definition of ϕi. Hence (π, u) � [d|S′]¬ϕ for all
S′ ⊇ {A,Si}. We proceed to show that all knowledge-optimal deviations produce
the same a posteriori verdict. There are no knowledge-optimal deviation d′ and
context u′ that produce the same visible trace but where {A,Si} is not a subset
of some S ∈ apvϕ(π, u′, d′). Any such d′ has Si and A in its domain, since the
normative behaviour is otherwise not able to produce any of the observations
implied by SCi or SDi, and ACi or AD, respectively. But as ACi 6= ∅ ∨ADi 6= ∅

and SCi 6= ∅ ∨ SDi 6= ∅ for all t ∈ trace(π[d′], u′), and d′(A) and d′(Si) both
do not communicate with any other party or each other, the same holds for
any t′ ∈ trace(π[d′|dom(d′)\{Si,A}], u

′′), for all u′′ ={A} u
′. In the previous two

cases, we have argued that, for any knowledge-optimal deviation and context
d′′, u′′ a) if ACi 6= ∅ ∨ AD =6= ∅, but SCi = SCi = ∅, A is an element of
all S ∈ apvϕ(π, u′′, d′′). b) if SCi 6= ∅ ∨ SDi =6= ∅, but ACi = AC = ∅, Si is
an element of all § ∈ apvϕ(π, u′′, d′′). This d′′ and u′′ can be instantiated with
d′|dom(d)\{Si} and some u′′ ={Si} u, or d′|dom(d)\{A} and some u′′ ={A} u, re-
spectively. Hence applying the previous arguments conjunctively, we conclude
that {A,Si} is a subset of all parts of a posteriori verdicts for relaxed deviations
and contexts such that their trace agree with t.

6 Conclusion and future work

We have presented a definition of accountability that presumes parties to behave
optimally. We found verdict-optimality to have a sound interpretation, but not
applicable in scenarios where several parties may be blamed at once. Knowledge-
optimality is useful in this case, it is applicable to real protocols and helped iden-
tifying attacks in both case studies. In our opinion, the most promising solution
to the dilemma between completeness and applicability implied by provocation
are optimality notions that provide guarantees for non-optimal adversaries, like
verdict-optimality does. We hope other optimality notions with similar guaran-
tees can be identified in the future. Further assurance in our definition can be
reached by connecting it to definitions of cause trace by restricting interven-
tion on protocol events to similar events produced by the normative behaviour.
In terms of Pearl’s causality framework, e.g., this would correspond to a more
precise definition of the range of a variable. The technical challenge lies in the
dynamic nature of this range, as it is responsive to other interventions as well
as the scheduling.

Another open question is whether our approach can be used to reason about
accountability w.r.t. equivalence properties, in particular with regard to the com-
putational setting. While a computational variant of our definition could be de-
rived from our notion based on trace-properties (see Küsters et.al. [KTV10]),
cryptographers favour indistinguishability notions. A viable approach may be to
transform real-or-random games so the adversary only wins if he wins the game
and the scheme produces an incorrect verdict, but this remains to be shown.

For practical use, we found that modelling a global log via events was tedious.
A model in which a central trusted party is gathering the logs and checks the
absence of protocol messages, could detect the adversary misbehaving by stalling
progress, i.e., verify timeliness or accountability w.r.t. to timeliness. We wish
to integrate our definition with recent work on liveness properties in security
protocols [BDKK17], which provides a protocol calculus with resilient channels,
local progress and a way to model timeouts.

Finally, handwritten proofs are very tedious to conduct and much of the work
is similar to traditional protocol verification. We conjecture the existence of suf-

ficient conditions for accountability for some class of protocol and verdicts. The
notion of relaxed deviations required for knowledge-optimality appears compat-
ible with the prevalent paradigm of approximating dishonest parties by a single
adversary that takes control over them. Then, e.g., minimality can be shown by
restricting the a priori knowledge of this adversary and verifying impossibility
of deriving any trace producing the verdict in question.

References

AF01. Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure
communication. In 28th ACM Symp. on Principles of Programming Lan-
guages (POPL’01), pages 104–115. ACM, 2001.

Ano17. Anonymized. Accountability in security protocols. Technical re-
port, 2017. available at http://upload.preliminary.bplaced.net/

accountability-long.pdf.
ASW98. N. Asokan, Victor Shoup, and Michael Waidner. Asynchronous protocols

for optimistic fair exchange. In IEEE Symposium on Security and Privacy
(S&P’98), pages 86–99. IEEE Comp. Soc., 1998.

BCS05. Michael Backes, Jan Camenisch, and Dieter Sommer. Anonymous yet ac-
countable access control. In Proceedings of the 2005 ACM Workshop on
Privacy in the Electronic Society, WPES 2005, pages 40–46. ACM, 2005.

BDKK17. Michael Backes, Jannik Dreier, Steve Kremer, and Robert Künnemann. A
novel approach for reasoning about liveness in cryptographic protocols and
its application to fair exchange. In Proceedings of the 2nd IEEE European
Symposium on Security and Privacy (Euro S&P ’17). IEEE Computer So-
ciety, 2017.

BFM13. Michael Backes, Dario Fiore, and Esfandiar Mohammadi. Privacy-
preserving accountable computation. In 18th European Symposium on Re-
search in Computer Security, pages 38–56. Springer, 2013.

BGK17. Michael Backes, Deepak Garg, and Robert Künnemann. Capturing causality
in security protocols. Technical report, Saarland University, 2017.

Bla02. Bruno Blanchet. From Secrecy to Authenticity in Security Protocols.
In 9th International Static Analysis Symposium (SAS’02), pages 342–359.
Springer, September 2002.

Bla09. Bruno Blanchet. Automatic verification of correspondences for security pro-
tocols. Journal of Computer Security, 17(4):363–434, July 2009.

DGK+15. Anupam Datta, Deepak Garg, Dilsun Kaynar, Divya Sharma, and Arunesh
Sinha. Program actions as actual causes: A building block for accountability.
In 2015 IEEE 28th Computer Security Foundations Symposium, pages 261–
275. IEEE, 2015.

FJW11. Joan Feigenbaum, Aaron D. Jaggard, and Rebecca N. Wright. Towards a
formal model of accountability. In Proceedings of the 2011 New Security
Paradigms Workshop, NSPW ’11, pages 45–56. ACM, 2011.

GM15. Gregor Gößler and Daniel Le Métayer. A general framework for blaming in
component-based systems. Sci. Comput. Program., 113:223–235, 2015.

Hal15. Joseph Y. Halpern. A modification of the halpern-pearl definition of causal-
ity. In Qiang Yang and Michael Wooldridge, editors, Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, IJ-
CAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 3022–3033.
AAAI Press, 2015.

http://upload.preliminary.bplaced.net/accountability-long.pdf
http://upload.preliminary.bplaced.net/accountability-long.pdf

HKD07. Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. Peerreview:
Practical accountability for distributed systems. In Proceedings of Twenty-
first ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07,
pages 175–188. ACM, 2007.

HP13. Joseph Y. Halpern and Judea Pearl. Causes and explanations: A structural-
model approach — part 1: Causes. CoRR, abs/1301.2275, 2013.

Hum. David Hume. An Enquiry concerning Human Understanding.

JJPR09. Radha Jagadeesan, Alan Jeffrey, Corin Pitcher, and James Riely. Towards a
theory of accountability and audit. In Computer Security–ESORICS 2009,
pages 152–167. Springer, 2009.

Kro15. Joshua A. Kroll. Accountable Algorithms. PhD thesis, Princeton University,
2015.

KTV10. Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Accountability: Defi-
nition and relationship to verifiability. In Proceedings of the 17th ACM Con-
ference on Computer and Communications Security, pages 526–535. ACM,
2010.

Lew73. David Lewis. Causation. Journal of Philosophy, 70(17):556–567, 1973.

Pea00. Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge Uni-
versity Press, New York, NY, USA, 2000.

PP11. Nick Papanikolaou and Siani Pearson. A cross-disciplinary review of the con-
cept of accountability. In Proceedings of the DIMACS/BIC/A4Cloud/CSA
International Workshop on Trustworthiness, Accountability and Forensics
in the Cloud (TAFC), 2011.

A Operational semantics

In this section we define the denotational semantics of our calculus for extended
processes that do not contain holes, but in which the top-most process of any
plain process is annotated with an effectuating party. Initially (cf. Definition 4),
the top-most subprocess of every plain-process inserted at a hole operator ·p is
annotated with the party p, but scope restrictions are skipped. As we will see,
only plain processes are annotated, but never scope restriction.

Structural equivalence is the smallest relation closed under α-conversion of
names and variables, as well as application of evaluation contexts5, such that:

Par-0 ApA | 0pB ≡ ApA
Par-C ApA | BpB ≡ BpB | ApA
Par-A ApA | (BpB |CpC) ≡ (ApA |BpB) | CPC
New-0 νu; 0pA ≡ 0pA
New-C νuνv; 0pA ≡ νvνu; 0pA
New-P ApA | νu;BpB ≡ νu; (ApA | BpB)

(if u 6∈ fv(A) ∪ fn(A))

Alias 0pA ≡ νx; {M/x}
Subst {M/x} | ApA ≡ {M/x} | A′pA

(where A′ = A{M/x})
Rewr {M/x} ≡ {N/x} if M =E N

(For brevity, Ap or Bp can stand for an unannotated process, in which case
p = ⊥). Like in the applied pi calculus, we always assume that active substitu-
tions are cycle-free, and that there is at most one active substitution for each
variable in an extended process. Furthermore, there is exactly one active sub-
stitution when the variable is restricted. Later on, we will use variables to iden-
tify transmitted messages, hence we assume all variables to be unique from the
start and define P{m/x} as usual, but leave it undefined whenever P contains
a subprocess of form in(x);P ′ to avoid dynamic renaming of variables. Using
these rules, every closed extended process A can be brought into form [AF01]:
A ≡ νn1; . . . νnm; ({m1/x1

} | . . . | {ml/xl} | P1| · · · |Pk), where P1,. . . ,Pk are
closed plain processes, i.e., all variables are bound or defined by an active sub-
stitution. (The proof to Lemma 1 precises this statement w.r.t. the annotations.)

Internal reduction is the smallest relation on extended processes closed by
structural equivalence and application of evaluation contexts such that:

Then (if t1 = t2 then P else Q)pA
pA−−→ PpA if t1 =E t2

Else (if t1 = t2 then P else Q)pA
pA−−→ QpA if t1 6=E t2

Comm (out(x);P)pA | (in(x);Q)pB
(pA,pB ,x)−−−−−−→ PpA | QpB

Event (event m;P)pA
(pA,m)−−−−−→ PpA

W.l.o.g., pA, pB 6= ⊥, as structural equivalence preserves that the top-most non-
ν position of any plain process remains annotated with an effectuating party.

5 Evaluation contexts are defined by the grammar

〈C〉 ::= · | νn; 〈C〉 | νx; 〈C〉 | (A | 〈C〉) | (〈C〉 | A).

Along with Alias and Subst, Comm permits the transmission of terms: Assume
x 6∈ fv(M) ∪ fv(P), then

(out(t);P)|(in(x);Q) ≡ νx; ({t/x}|(out(x);P)|(in(x);Q))

→ νx; ({t/x}|P | Q) ≡ P | Q{t/x}.

Hence, we write A
(PA,PB ,m)−−−−−−−→ B if A

(PA,PB ,x)−−−−−−−→ B and x is in scope of an active
substitution {m/x} in A.

	Accountability in Security Protocols (preprint)

