
A note on the equivalence of IND-CCA & INT-PTXT and
IND-CCA & INT-CTXT

Daniel Jost, Christian Badertscher, Fabio Banfi

Department of Computer Science, ETH Zurich, Switzerland
daniel.jost@inf.ethz.ch

.

christian.badertscher@inf.ethz.ch

.

fabio.banfi@inf.ethz.ch

.

Abstract

The security for authenticated encryption schemes is often captured by demanding CCA
security (IND-CCA) and integrity of plaintexts (INT-PTXT). In this short note, we prove
that this implies in particular integrity of ciphertexts, i.e., INT-CTXT. Hence, the two sets of
requirements mentioned in the title are equivalent.

1 The Security Games
We treat the stateful notions in this short note since they are the most widely used notions for
authenticated encryption (the main use case is realizing a cryptographic channel). A proof for
the non-stateful versions would follow along the same lines. We restate the relevant stateful
notions from [BKN04

.

] formally in Figure 1

.

and Figure 2

.

. A (stateful) authenticated encryption
scheme consists of a triple of algorithms Ψ = (Gen, E ,D) for key generation, encryption, and
decryption, respectively, as defined in detail in [BKN04

.

] (including the definitions of correctness
and being stateful). The message space is denoted byM and the ciphertext space is denoted by
C. Our notation follows basically the notation of [BN08

.

; BKN04

.

].

IND-sfCCAΨ

Initialization
k ← Gen
b � {0, 1} . Sampling u.a.r. from {0, 1}.
i← 0
j ← 0
sync← 1
C ← ∅

Oracle LR

Input: (m0,m1) ∈M×M
i← i + 1
c← E(k,mb)
C[i]← c
return c

Oracle Dec

Input: c ∈ C
j ← j + 1
m← D(k, c)
if j > i ∨ c 6= C[j] then

sync← 0
if sync = 0 then

return m
else

return ⊥

Finalization
Input: d ∈ {0, 1}

return (d = b)

Figure 1: IND-sfCCAΨ security for stateful CCA security of an authenticated encryption scheme.

1

mailto:daniel.jost@inf.ethz.ch
mailto:badi@inf.ethz.ch
mailto:fabio.banfi@inf.ethz.ch

INT-sfCTXTΨ

Initialization
k ← Gen
i← 0
j ← 0
sync← 1
C ← ∅
win← 0

Oracle Enc

Input: m ∈M
i← i + 1
c← E(k,m)
C[i]← c
return c

Oracle VF

Input: c ∈ C
j ← j + 1
m← D(k, c)
if j > i ∨ c 6= C[j] then

sync← 0
if m 6= ⊥ ∧ sync = 0 then

win← 1
return (m 6= ⊥)

Finalization
return win

INT-sfPTXTΨ

Initialization
k ← Gen
i← 0
j ← 0
sync← 1
S ← ∅
win← 0

Oracle Enc

Input: m ∈M
i← i + 1
c← E(k,m)
S[i]← m
return c

Oracle VF

Input: c ∈ C
j ← j + 1
m← D(k, c)
if j > i ∨ m 6= S[j] then

sync← 0
if m 6= ⊥ ∧ sync = 0 then

win← 1
return (m 6= ⊥)

Finalization
return win

Figure 2: The INT-sfPTXTΨ and INT-sfCTXTΨ security games for stateful plaintext- and
ciphertext-integrity, respectively, of an authenticated encryption scheme.

2 INT-PTXT & IND-CCA implies INT-CTXT
Let A denote an INT-sfCTXT attacker. In the following we show that

AdvIND-sfCTXT
Ψ,A ≤ AdvIND-sfCCA

Ψ,A1
+ AdvIND-sfCCA

Ψ,A2
+3 AdvIND-sfPTXT

Ψ,A3

where A1, A2, and A3 denote slight modifications of A with roughly the same efficiency.
As a first hybrid, we consider the game H0 depicted in Figure 3

.

, that essentially works like
INT-sfCTXTΨ, but initially flips a uniform random bit z, and then the encryption oracle
instead of encrypting the message m encrypts z|m|, i.e., either the all-zero or all-one bit string
of the length of m. By definition of the advantage of an adversary in the forgery game, we have

AdvIND-sfCTXT
Ψ,A := Pr

[
AINT-sfCTXTΨ ⇒ 1

]
= Pr

[
AH0 ⇒ 1

]
+
(

Pr
[
AINT-sfCTXTΨ ⇒ 1

]
− Pr

[
AH0 ⇒ 1

])
(1)

In the following, we will first upper bound the second term, and then proceed to upper
bound Pr

[
AH0 ⇒ 1

]
as a second step.

2.1 Upper bounding the second term
Consider the following bit-guessing game G0, shown in Figure 4

.

, that initially flips a bit b and
then either behaves exactly like INT-sfCTXTΨ, if b = 0, or like H0 if b = 1, and the goal of
the adversary is to guess b in the end. In addition, the adversary also gets access to an oracle
HasWon that allows him to query the win flag of INT-sfCTXTΨ or H0, respectively.

We now define A0 as follows: A0 internally runs A forwarding all queries and responses to
the Enc and VF oracles. Once A calls Finalization, A0 first queries the HasWon oracle, and
then calls Finalization with d = 0 if HasWon returned true and d = 1 otherwise. Observe
that the bit-guessing game G0 behaves exactly as INT-sfCTXTΨ if b = 0 and exactly like H0

if b = 1. By definition of G0 and A0 we obtain

Pr
[
AG0

0 ⇒ 1
∣∣∣ b = 0

]
= PrA

G0
0 [d = b | b = 0] = PrA

G0
0 [d = 0 | b = 0]

= PrA
G0
0 [win = 1 | b = 0] = Pr

[
AINT-sfCTXTΨ ⇒ 1

]

2

INT-sfCTXTΨ and H0

Initialization

z � {0, 1}
k ← Gen
i← 0
j ← 0
sync← 1
C ← ∅
win← 0

Oracle Enc

Input: m ∈M
i← i + 1

c← E(k,m)

c← E(k, z|m|)

C[i]← c
return c

Oracle VF

Input: c ∈ C
j ← j + 1
m← D(k, c)
if j > i ∨ c 6= C[j] then

sync← 0
if m 6= ⊥ ∧ sync = 0 then

win← 1
return (m 6= ⊥)

Finalization
return win

Figure 3: The first hybrid H0 compared to the original INT-sfCTXTΨ security game.

G0 and G1

Initialization
z � {0, 1}
b � {0, 1}
k ← Gen
i← 0
j ← 0
sync← 1
C ← ∅
win← 0

Oracle Enc

Input: m ∈M
i← i + 1
if b = 0 then

c← E(k,m)
else

c← E(k, z|m|)
C[i]← c
return c

Oracle VF

Input: c ∈ C
j ← j + 1
m← D(k, c)
if j > i ∨ c 6= C[j] then

sync← 0
if m 6= ⊥ ∧ sync = 0 then

win← 1
return (m 6= ⊥)

if sync = 0 then
return (m 6= ⊥)

else
return 1.

Oracle HasWon

return win

Finalization
Input: d ∈ {0, 1}

return d = b

Figure 4: The bit-guessing games G0 and G1.

3

G1 and G2

Initialization
z � {0, 1}
b � {0, 1}
k ← Gen
i← 0
j ← 0
sync← 1
C ← ∅
win← 0

Oracle Enc

Input: m ∈M
i← i + 1
if b = 0 then

c← E(k,m)
else

c← E(k, z|m|)

m0 ← m
m1 ← z|m|

c← E(k,mb)

C[i]← c
return c

Oracle VF

Input: c ∈ C
j ← j + 1
m← D(k, c)
if j > i ∨ c 6= C[j] then

sync← 0

if sync = 0 then
m← m

else
m← ⊥

if m 6= ⊥ ∧ sync = 0 then
win← 1

if sync = 0 then
return (m 6= ⊥)

else
return 1.

Oracle HasWon

return win

Finalization
Input: d ∈ {0, 1}

return d = b

Figure 5: The bit-guessing games G2 in comparison to G1.

and

Pr
[
AG0

0 ⇒ 1
∣∣∣ b = 1

]
= PrA

G0
0 [d = b | b = 1] = PrA

G0
0 [d = 1 | b = 1]

= PrA
G0
0 [win = 0 | b = 1] = 1− Pr

[
AH0 ⇒ 1

]
,

which yields

Pr
[
AINT-sfCTXTΨ ⇒ 1

]
− Pr

[
AH0 ⇒ 1

]
= Pr

[
AG0

0 ⇒ 1
∣∣∣ b = 0

]
+ Pr

[
AG0

0 ⇒ 1
∣∣∣ b = 1

]
− 1

= 2
(

Pr
[
AG0

0 ⇒ 1
]
− 1

2

)
.

(2)

We now proceed by bounding Pr
[
AG0

0 ⇒ 1
]
using a sequence of simple modifications:

G1 The game G1, as depicted in Figure 4

.

, behaves like G0 except that the VF oracle returns
true instead of (m 6= ⊥) if sync = 1. Since sync = 1 implies c = C[j] and ⊥ /∈M, however,
by correctness of the scheme this behavior is equivalent.

G2 Consider the game G2 as depicted in Figure 5

.

. Observe that in the Enc oracle the same
message gets encrypted as in G1. In the VF oracle it sets m to ⊥ if sync 6= 0. Note
however, that in this case the value of m does not matter anymore. Thus, G1 and G2

behave equivalently.

It is now easy to see that winning G2 can be reduced to winning IND-sfCCAΨ as sketched
in Figure 6

.

. For every adversary A0 against G2 we can build A1 against IND-sfCCAΨ that
works as follows: it initially flips a bit z and then internally runs A0 and for every query m
of the Enc oracle it queries the LR oracle of IND-sfCCAΨ with m0 = m and m1 = z|m|. In
addition, A1 keeps track whether A0 is still in sync, so that on a query c to the VF oracle by

4

G2

Initialization

z � {0, 1}

b � {0, 1}
k ← Gen
i← 0
j ← 0
sync← 1
C ← ∅
win← 0

Oracle Enc

Input: m ∈M
i← i + 1
m0 ← m
m1 ← z|m|

c← E(k,mb)

C[i]← c
return c

Oracle VF

Input: c ∈ C
j ← j + 1

m← D(k, c)

if j > i ∨ c 6= C[j] then
sync← 0

if sync = 0 then
m← m

else
m← ⊥

if m 6= ⊥ ∧ sync = 0 then
win← 1

if sync = 0 then
return (m 6= ⊥)

else
return 1.

Oracle HasWon

return win

Finalization
Input: d ∈ {0, 1}

return d = b

Figure 6: The reduction from G2 to IND-sfCCAΨ. The lines with the blue shade and the solid
border belong to the IND-sfCCAΨ game, whereas the green shaded ones with the dashed border
belong to the reduction. The uncolored lines are for bookkeeping that is replicated in both the
IND-sfCCAΨ game as well as the reduction.

A0 it can query the decryption oracle on c and then reply correctly to A0. It is easy to see that
A1 guesses b correctly if and only if A0 guesses b correctly by simply forwarding the guess.

Thus we obtain

Pr
[
AG0

0 ⇒ 1
]

= Pr
[
AG1

0 ⇒ 1
]

= Pr
[
AG2

0 ⇒ 1
]

= Pr
[
AIND-sfCCAΨ

1 ⇒ 1
]
,

and combining this with (2

.

) yields the desired bound

Pr
[
AINT-sfCTXTΨ ⇒ 1

]
− Pr

[
AH0 ⇒ 1

]
= 2
(

Pr
[
AG0

0 ⇒ 1
]
− 1

2

)
= 2
(

Pr
[
AIND-sfCCAΨ

1 ⇒ 1
]
− 1

2

)
=: AdvIND-sfCCA

Ψ,A1
, (3)

where in the last step we used the definition of the (bit-guessing) advantage of a CCA adversary.

2.2 Bounding the first winning probability
In the following section we upper bound the probability Pr

[
AH0 ⇒ 1

]
using the hybrids H1 and

H2, depicted in Figure 7

.

and Figure 8

.

, respectively.

H1 The game H1 replaces the sync and the win flags of H0 by two pairs of flags (sync1, sync2)
and (win1,win2), respectively. Note that sync2 in H1 is defined exactly equivalent to sync
of H0, and thus win1 ∨ win2 is true in H1 if and only if win is true in H0. Hence, the two
games behave equivalently.

5

H0 and H1

Initialization
z � {0, 1}
k ← Gen
i← 0
j ← 0

sync← 1

sync1 ← 1
sync2 ← 1

C ← ∅
S ← ∅
win← 0

win1 ← 0
win2 ← 0

Oracle Enc

Input: m ∈M
i← i + 1
c← E(k, z|m|)
C[i]← c

S[i]← z|m|

return c

Oracle VF

Input: c ∈ C
j ← j + 1
m← D(k, c)

if j > i ∨ c 6= C[j] then
sync← 0

if j > i ∨ m 6= S[j] then
sync1 ← 0

if j > i ∨ c 6= C[j] then
sync2 ← 0

if m 6= ⊥ ∧ sync = 0 then
win← 1

if m 6= ⊥ ∧ sync1 = 0 ∧ sync2 = 0 then
win1 ← 1

if m 6= ⊥ ∧ sync1 = 1 ∧ sync2 = 0 then
win2 ← 1

return (m 6= ⊥)

Finalization

return win

return win1 ∨ win2

Figure 7: The game H1 is equivalent to H0, which is best seen by observing that the sync2 flag is
identical to the sync one of H0.

H1 and H2

Initialization
z � {0, 1}
k ← Gen
i← 0
j ← 0
sync1 ← 1
sync2 ← 1
C ← ∅
S ← ∅
win1 ← 0
win2 ← 0

Oracle Enc

Input: m ∈M
i← i + 1
c← E(k, z|m|)
C[i]← c
S[i]← z|m|

return c

Oracle VF

Input: c ∈ C
j ← j + 1
m← D(k, c)
if j > i ∨ m 6= S[j] then

sync1 ← 0
if j > i ∨ c 6= C[j] then

sync2 ← 0

if m 6= ⊥ ∧ sync1 = 0 ∧ sync2 = 0 then
win1 ← 1

if m 6= ⊥ ∧ sync1 = 0 then
win1 ← 1

if m 6= ⊥ ∧ sync1 = 1 ∧ sync2 = 0 then
win2 ← 1

return (m 6= ⊥)

Finalization
return win1 ∨ win2

Figure 8: The game H2 is equivalent to H1 as well. Observe that sync1 = 0 implies that j > i
or m 6= S[j] for some j. In the latter case, the correctness of the scheme however implies that
c[j] 6= C[j] and thus sync2 = 0 as well.

6

P0 and C0

Initialization
z � {0, 1}
k ← Gen
i← 0
j ← 0
sync1 ← 1
sync2 ← 1
C ← ∅
S ← ∅
win1 ← 0
win2 ← 0

Oracle Enc

Input: m ∈M
i← i + 1
c← E(k, z|m|)
C[i]← c
S[i]← z|m|

return c

Oracle VF

Input: c ∈ C
j ← j + 1
m← D(k, c)
if j > i ∨ m 6= S[j] then

sync1 ← 0
if j > i ∨ c 6= C[j] then

sync2 ← 0
if m 6= ⊥ ∧ sync1 = 0 then

win1 ← 1
if m 6= ⊥ ∧ sync1 = 1 ∧ sync2 = 0 then

win2 ← 1
return (m 6= ⊥)

Finalization

return win1

return win2

Figure 9: The games P0 and C0 are identical to H2, except that the winning condition win1 ∨ win2

of the latter has been replaced by checking only one of the respective flags.

H2 The game H2 is equivalent to H1 except that the former no longer checks for sync2 = 0
when setting win1 to true. Observe however that by the correctness of the scheme we have
that m 6= S[j] implies c 6= C[j] and thus sync1 = 0 implies sync2 = 0. Hence, the two
games are equivalent as well.

Now, consider the two games P0 and C0 as depicted in Figure 9

.

. Observe that each of those
games is equivalent to H2 except for the winning condition that only checks for win1 or win2,
respectively, instead of win1 ∨ win2. Using the union bound we therefore obtain

Pr
[
AH0 ⇒ 1

]
= Pr

[
AH1 ⇒ 1

]
= Pr

[
AH2 ⇒ 1

]
≤ Pr

[
AP0 ⇒ 1

]
+ Pr

[
AC0 ⇒ 1

]
. (4)

We proceed by bounding those two terms separately in the next sections.

2.3 Upper bounding the advantage on P0

Consider the game P1 as shown in Figure 10

.

, which basically corresponds to P0 with all code
related to the two unused flags win2 and sync2 removed. Moreover, the Enc-oracle has slightly
been rewritten without changing the behavior. It is now easy to reduce any adversary A winning
P1 to another adversary A3 winning INT-sfPTXTΨ, as highlighted in Figure 11

.

: A3 initially
flips a bit z and then whenever A queries the Enc oracle on m, A3 queries the actual Enc-oracle
on m′ = z|m|. Clearly, A3 wins INT-sfPTXTΨ if and only if A wins P1. As a consequence,
we have

Pr
[
AP0 ⇒ 1

]
= Pr

[
AP1 ⇒ 1

]
= Pr

[
AINT-sfPTXTΨ

3 ⇒ 1
]

= AdvIND-sfPTXT
Ψ,A3

. (5)

2.4 Upper bounding the advantage on C0

In the following section, we upper bound Pr
[
AC0 ⇒ 1

]
using a sequence of hybrids C1, C2, C3,

C4, C5, and C6.

7

P0 and P1

Initialization
z � {0, 1}
k ← Gen
i← 0
j ← 0
sync1 ← 1

sync2 ← 1
C ← ∅
S ← ∅
win1 ← 0

win2 ← 0

Oracle Enc

Input: m ∈M
i← i + 1

c← E(k, z|m|)
C[i]← c
S[i]← z|m|

m′ ← z|m|

c← E(k,m′)
S[i]← m′

return c

Oracle VF

Input: c ∈ C
j ← j + 1
m← D(k, c)
if j > i ∨ m 6= S[j] then

sync1 ← 0

if j > i ∨ c 6= C[j] then
sync2 ← 0

if m 6= ⊥ ∧ sync1 = 0 then
win1 ← 1

if m 6= ⊥ ∧ sync1 = 1 ∧ sync2 = 0 then
win2 ← 1

return (m 6= ⊥)

Finalization
return win1

Figure 10: The game P1 that is equivalent to P0.

P1

Initialization

z � {0, 1}

k ← Gen
i← 0
j ← 0
sync1 ← 1
S ← ∅
win1 ← 0

Oracle Enc

Input: m ∈M
i← i + 1

m′ ← z|m|

c← E(k,m′)
S[i]← m′

return c

Oracle VF

Input: c ∈ C
j ← j + 1
m← D(k, c)
if j > i ∨ m 6= S[j] then

sync1 ← 0
if m 6= ⊥ ∧ sync1 = 0 then

win1 ← 1
return (m 6= ⊥)

Finalization

return win1

Figure 11: The reduction from P1 to INT-sfPTXTΨ. The lines with the blue shade and the solid
border belong to the INT-sfPTXTΨ game, whereas the green shaded ones with the dashed border
belong to the reduction.

8

C0 and C1

Initialization
z � {0, 1}
k ← Gen
i← 0
j ← 0
sync1 ← 1
sync2 ← 1
C ← ∅
S ← ∅
win1 ← 0

win2 ← 0

Oracle Enc

Input: m ∈M
i← i + 1
c← E(k, z|m|)
C[i]← c
S[i]← z|m|

return c

Oracle VF

Input: c ∈ C
j ← j + 1
m← D(k, c)
if j > i ∨ m 6= S[j] then

sync1 ← 0
if j > i ∨ c 6= C[j] then

sync2 ← 0

if m 6= ⊥ ∧ sync1 = 0 then
win1 ← 1

if m 6= ⊥ ∧ sync1 = 1 ∧ sync2 = 0 then
win2 ← 1

return (m 6= ⊥)

Finalization
return win2

Figure 12: The game C1 that is equivalent to C0.

C1 The game C1, as depicted in Figure 12

.

, corresponds to C0 with all code related to the
unused flag win1 removed. Hence, the two games behave obviously equivalent.

C2 The game C2 corresponds to C1 with the winning flag win2 replaced by a variable d guessing
z. It is depicted in Figure 13

.

. Note that sync1 = 1 implies m = S[j], and thus m = z` for
some length ` > 0 (we use here that the empty bit-string is not in the message space).
Hence, setting d to the first bit of m implies that the game is won, and is thus equivalent
to setting the winning flag in C1.

C3 The game C3, as depicted in Figure 14

.

, corresponds to C2 but with d initialized to 0 instead
of ⊥ giving an adversary a fifty percent chance of winning the game without setting the
win2 flag. This makes C3 a bit-guessing game. Observe that

PrA
C3

[win2 = 1] = PrA
C2

[win2 = 1] = Pr
[
AC2 ⇒ 1

]
and

PrA
C3

[d = z ∧ win2 = 1] = PrA
C3

[win2 = 1],

yielding

Pr
[
AC3 ⇒ 1

]
= PrA

C3
[d = z]

= PrA
C3

[d = z ∧ win2 = 1] + PrA
C3

[d = z ∧ win2 = 0]

= PrA
C3

[d = z ∧ win2 = 1] + PrA
C3

[d = z | win2 = 0] PrA
C3

[win2 = 0]

= PrA
C3

[d = z ∧ win2 = 1] +
1

2

(
1− PrA

C3
[win2 = 1]

)
= Pr

[
AC2 ⇒ 1

]
+

1

2

(
1− Pr

[
AC2 ⇒ 1

])
.

Rewriting the last equation we obtain

Pr
[
AC2 ⇒ 1

]
= 2
(

Pr
[
AC3 ⇒ 1

]
− 1

2

)
. (6)

9

C1 and C2

Initialization
z � {0, 1}
k ← Gen
i← 0
j ← 0
sync1 ← 1
sync2 ← 1
C ← ∅
S ← ∅
win2 ← 0

d← ⊥

Oracle Enc

Input: m ∈M
i← i + 1
c← E(k, z|m|)
C[i]← c
S[i]← z|m|

return c

Oracle VF

Input: c ∈ C
j ← j + 1
m← D(k, c)
if j > i ∨ m 6= S[j] then

sync1 ← 0
if j > i ∨ c 6= C[j] then

sync2 ← 0
if m 6= ⊥ ∧ sync1 = 1 ∧ sync2 = 0 then

win2 ← 1

d← m(1)

return (m 6= ⊥)

Finalization

return win2

return (d = z)

Figure 13: The game C2, where m(1) denotes the first bit of m. Note that sync = 1 implies
m = S[j] = z` for some ` > 0 (since λ /∈M). Hence, we have win2 = 1 iff d = z.

C2 and C3

Initialization
z � {0, 1}
k ← Gen
i← 0
j ← 0
sync1 ← 1
sync2 ← 1
C ← ∅
S ← ∅
win2 ← 0

d← ⊥
d← 0

Oracle Enc

Input: m ∈M
i← i + 1
c← E(k, z|m|)
C[i]← c
S[i]← z|m|

return c

Oracle VF

Input: c ∈ C
j ← j + 1
m← D(k, c)
if j > i ∨ m 6= S[j] then

sync1 ← 0
if j > i ∨ c 6= C[j] then

sync2 ← 0
if m 6= ⊥ ∧ sync1 = 1 ∧ sync2 = 0 then

win2 ← 1
d← m(1)

return (m 6= ⊥)

Finalization
return (d = z)

Figure 14: The bit-guessing game C3. Observe that in comparison to C2, the adversary has a fifty
percent chance of winning the game without managing to set the win2 flag.

10

C3 and C4

Initialization
z � {0, 1}
k ← Gen
i← 0
j ← 0
sync1 ← 1
sync2 ← 1
C ← ∅
S ← ∅
d← 0
bad← 0

Oracle Enc

Input: m ∈M
i← i + 1
c← E(k, z|m|)
C[i]← c
S[i]← z|m|

return c

Oracle VF

Input: c ∈ C
j ← j + 1
m← D(k, c)
if j > i ∨ m 6= S[j] then

sync1 ← 0
if j > i ∨ c 6= C[j] then

sync2 ← 0

if m 6= ⊥ ∧ sync1 = 1 ∧ sync2 = 0 then
d← m(1)

if m 6= ⊥ ∧ sync2 = 0 then
if sync1 = 1 then

d← m(1)
else

bad← 1
return (m 6= ⊥)

Finalization
return (d = z)

Figure 15: The game C4, that introduces the bad flag. It behaves equivalent to C3, however, since
bad is an internal variable only.

C4 The game C4, as depicted in Figure 15

.

, corresponds to C3 with a bad flag introduced. The
two games behave obviously equivalent.

C5 The game C5 is depicted in Figure 16

.

and is identical until bad to C5. Hence, by the
Fundamental Lemma of game-playing we have

Pr
[
AC4 ⇒ 1

]
≤ Pr

[
AC5 ⇒ 1

]
+ Pr

[
AC4 sets bad

]
. (7)

We defer bounding the probability of bad being set to the end of the proof and continue
bounding Pr

[
AC5 ⇒ 1

]
.

C6 The game C6, as depicted in Figure 17

.

, is a version of C5 with the internal bad flag removed.
This, in addition, allows removing all code related to the sync1 flag without altering the
behavior.

C7 The game C7 is depicted in Figure 18

.

. First, compared to C6 the Enc-oracle has slightly
been rewritten without modifying the behavior. Then, in theVF-oracle, in case of sync2 = 1
we no longer return (m 6= ⊥) but true. Since sync2 = 1 implies c = C[j], however, we have
by correctness that m ∈M and thus m 6= ⊥. Moreover, if sync2 = 1, we then reset m to
⊥ without affecting the behavior. Hence, C7 and C6 behave equivalently.

Now, observe that C7 can be easily reduced to IND-sfCCAΨ, as shown in Figure 19

.

. For
every adversary A against C7 we can build A2 against IND-sfCCAΨ that works as follows:
it internally runs A and for every query m of the Enc oracle it queries the LR oracle of
IND-sfCCAΨ with m0 = 0|m| and m1 = 1|m|. In addition, A2 keeps track whether A is still
in sync, so that on a query c to the VF oracle by A it queries the decryption oracle on c and
then replies correctly to A. Moreover, once it detects that A is out of sync and the ciphertext
decrypted to a valid ciphertext, it uses the first bit of the decrypted message as the guess of z.
It is now easy to see that

Pr
[
AC7 ⇒ 1

]
= Pr

[
AIND-sfCCAΨ

2 ⇒ 1
]
. (8)

11

C4 and C5

Initialization
z � {0, 1}
k ← Gen
i← 0
j ← 0
sync1 ← 1
sync2 ← 1
C ← ∅
S ← ∅
d← 0
bad← 0

Oracle Enc

Input: m ∈M
i← i + 1
c← E(k, z|m|)
C[i]← c
S[i]← z|m|

return c

Oracle VF

Input: c ∈ C
j ← j + 1
m← D(k, c)
if j > i ∨ m 6= S[j] then

sync1 ← 0
if j > i ∨ c 6= C[j] then

sync2 ← 0
if m 6= ⊥ ∧ sync2 = 0 then

if sync1 = 1 then
d← m(1)

else
bad← 1
d← m(1)

return (m 6= ⊥)

Finalization
return (d = z)

Figure 16: The game C4 that is identical until bad to the game C5.

C5 and C6

Initialization
z � {0, 1}
k ← Gen
i← 0
j ← 0

sync1 ← 1

sync2 ← 1
C ← ∅
S ← ∅
d← 0
bad← 0

Oracle Enc

Input: m ∈M
i← i + 1
c← E(k, z|m|)
C[i]← c

S[i]← z|m|

return c

Oracle VF

Input: c ∈ C
j ← j + 1
m← D(k, c)

if j > i ∨ m 6= S[j] then
sync1 ← 0

if j > i ∨ c 6= C[j] then
sync2 ← 0

if m 6= ⊥ ∧ sync2 = 0 then
if sync1 = 1 then

d← m(1)
else

bad← 1
d← m(1)

d← m(1)

return (m 6= ⊥)

Finalization
return (d = z)

Figure 17: The game C6. Since bad is an internal variable only, removing this flag and all then
unused code related to setting it does not affect the behavior.

12

C6 and C7

Initialization
z � {0, 1}
k ← Gen
i← 0
j ← 0
sync2 ← 1
C ← ∅
d← 0

Oracle Enc

Input: m ∈M
i← i + 1

c← E(k, z|m|)

m0 ← 0|m|

m1 ← 1|m|

c← E(k,mz)

C[i]← c
return c

Oracle VF

Input: c ∈ C
j ← j + 1
m← D(k, c)
if j > i ∨ c 6= C[j] then

sync2 ← 0

if sync2 = 0 then
m← m

else
m← ⊥

if m 6= ⊥ ∧ sync2 = 0 then
d← m(1)

return (m 6= ⊥)

if sync2 = 0 then
return (m 6= ⊥)

else
return 1

Finalization
return (d = z)

Figure 18: The game C7. Observe that in the VF oracle, if sync2 = 1, then we have c = C[j], which
by correctness in turn implies that the cyphertext decrypts to the original message that is not equal
to ⊥. Moreover, if sync2 = 1, then m is unused for the rest of the oracle call.

C7

Initialization

z � {0, 1}
k ← Gen
i← 0
j ← 0
sync2 ← 1
C ← ∅
d← 0

Oracle Enc

Input: m ∈M
i← i + 1

m0 ← 0|m|

m1 ← 1|m|

c← E(k,mz)

C[i]← c
return c

Oracle VF

Input: c ∈ C
j ← j + 1

m← D(k, c)

if j > i ∨ c 6= C[j] then
sync2 ← 0

if sync2 = 0 then
m← m

else
m← ⊥

if m 6= ⊥ ∧ sync2 = 0 then
d← m(1)

if sync2 = 0 then
return (m 6= ⊥)

else
return 1

Finalization
return (d = z)

Figure 19: The reduction from C7 to IND-sfCCAΨ. The lines with the blue shade and the solid
border belong to the IND-sfCCAΨ game, whereas the green shaded ones with the dashed border
belong to the reductions. The uncolored lines are for bookkeeping that is replicated in both the
IND-sfCCAΨ game as well as the reduction.

13

Putting all together – especially (6

.

), (7

.

), and (8

.

) – we obtain

Pr
[
AC0 ⇒ 1

]
= Pr

[
AC1 ⇒ 1

]
= Pr

[
AC2 ⇒ 1

]
= 2
(

Pr
[
AC3 ⇒ 1

]
− 1

2

)
= 2
(

Pr
[
AC4 ⇒ 1

]
− 1

2

)
≤ 2
(

Pr
[
AC5 ⇒ 1

]
+ Pr

[
AC4 sets bad

]
− 1

2

)
= 2
(

Pr
[
AC6 ⇒ 1

]
+ Pr

[
AC4 sets bad

]
− 1

2

)
= 2
(

Pr
[
AC7 ⇒ 1

]
+ Pr

[
AC4 sets bad

]
− 1

2

)
= 2
(

Pr
[
AIND-sfCCAΨ

2 ⇒ 1
]

+ Pr
[
AC4 sets bad

]
− 1

2

)
= AdvIND-sfCCA

Ψ,A2
+2 Pr

[
AC4 sets bad

]
.

(9)

It remains to bound Pr
[
AC4 sets bad

]
. To this end, consider the game B0, depicted in Figure 20

.

,
which is identical to C4 except that the winning condition is no longer win being set, but bad
being set. Hence, by definition we have

Pr
[
AC4 sets bad

]
= Pr

[
AB0 ⇒ 1

]
,

and moreover, it is easy to see that both B1 and B2 behaves equivalently as well, as seen in
Figures 20

.

and 21

.

. Finally, observe that B2 is almost identical to the game P1 defined above,
as shown in Figure 22

.

. Thus, using (5

.

) we obtain

Pr
[
AC4 sets bad

]
= Pr

[
AINT-sfPTXTΨ

3 ⇒ 1
]
. (10)

Combining (1

.

), (3

.

), (4

.

), (5

.

), (9

.

), and (10

.

) concludes the proof.

14

B0 and B1

Initialization
z � {0, 1}
k ← Gen
i← 0
j ← 0
sync1 ← 1
sync2 ← 1
C ← ∅
S ← ∅
d← 0
bad← 0

Oracle Enc

Input: m ∈M
i← i + 1
c← E(k, z|m|)
C[i]← c
S[i]← z|m|

return c

Oracle VF

Input: c ∈ C
j ← j + 1
m← D(k, c)
if j > i ∨ m 6= S[j] then

sync1 ← 0
if j > i ∨ c 6= C[j] then

sync2 ← 0
if m 6= ⊥ ∧ sync2 = 0 then

if sync1 = 1 then
d← m(1)

else
bad← 1

if sync1 = 0 then
bad← 1

return (m 6= ⊥)

Finalization
return bad

Figure 20: The games B0 and B1. The former is identical to C4 except that in the finalization now
the bad flag gets checked. Moreover, B1 behaves equivalent to B0, since d is unused.

B1 and B2

Initialization
z � {0, 1}
k ← Gen
i← 0
j ← 0
sync1 ← 1

sync2 ← 1
C ← ∅
S ← ∅
bad← 0

Oracle Enc

Input: m ∈M
i← i + 1
c← E(k, z|m|)

C[i]← c

S[i]← z|m|

return c

Oracle VF

Input: c ∈ C
j ← j + 1
m← D(k, c)
if j > i ∨ m 6= S[j] then

sync1 ← 0

if j > i ∨ c 6= C[j] then
sync2 ← 0

if m 6= ⊥ ∧ sync2 = 0 then
if sync1 = 0 then

bad← 1
if m 6= ⊥ ∧ sync1 = 0 then

bad← 1
return (m 6= ⊥)

Finalization
return bad

Figure 21: The game P2. Note that by correctness sync1 = 0 implies sync2 = 0, and thus removing
the former check does not change the behavior.

15

B2 and P1

Initialization
z � {0, 1}
k ← Gen
i← 0
j ← 0
sync1 ← 1
S ← ∅
bad← 0

win1 ← 0

Oracle Enc

Input: m ∈M
i← i + 1

c← E(k, z|m|)
S[i]← z|m|

m′ ← z|m|

c← E(k,m′)
S[i]← m′

return c

Oracle VF

Input: c ∈ C
j ← j + 1
m← D(k, c)
if j > i ∨ m 6= S[j] then

sync1 ← 0
if m 6= ⊥ ∧ sync1 = 0 then

bad← 1

win1 ← 1

return (m 6= ⊥)

Finalization

return bad

return win1

Figure 22: It is easy to verify that B2 is equivalent to the game P1 that has already been defined
above.

16

References

[BKN04] M. Bellare, T. Kohno, and C. Namprempre, “Breaking and provably repairing
the SSH authenticated encryption scheme”, ACM Transactions on Information
and System Security, vol. 7, no. 2, pp. 206–241, 2004. doi: 10.1145/996943.
996945

.

. [Online]. Available: https://eprint.iacr.org/2002/078.pdf

.

.

[BN08] M. Bellare and C. Namprempre, “Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm”, Journal of Cryp-
tology, vol. 21, no. 4, pp. 469–491, 2008. doi: 10.1007/s00145-008-9026-x

.

.
[Online]. Available: https://cseweb.ucsd.edu/%7B~%7Dmihir/papers/oem.
pdf

.

.

17

https://doi.org/10.1145/996943.996945
https://doi.org/10.1145/996943.996945
https://eprint.iacr.org/2002/078.pdf
https://doi.org/10.1007/s00145-008-9026-x
https://cseweb.ucsd.edu/%7B~%7Dmihir/papers/oem.pdf
https://cseweb.ucsd.edu/%7B~%7Dmihir/papers/oem.pdf

	The Security Games
	INT-PTXT & IND-CCA implies INT-CTXT
	Upper bounding the second term
	Bounding the first winning probability
	Upper bounding the advantage on P0
	Upper bounding the advantage on C0

