A note on the equivalence of IND-CCA \& INT-PTXT and IND-CCA \& INT-CTXT

Daniel Jost, Christian Badertscher, Fabio Banfi
Department of Computer Science, ETH Zurich, Switzerland
daniel.jost@inf.ethz.ch
christian.badertscher@inf.ethz.ch
fabio.banfi@inf.ethz.ch

Abstract

The security for authenticated encryption schemes is often captured by demanding CCA security (IND-CCA) and integrity of plaintexts (INT-PTXT). In this short note, we prove that this implies in particular integrity of ciphertexts, i.e., INT-CTXT. Hence, the two sets of requirements mentioned in the title are equivalent.

1 The Security Games

We treat the stateful notions in this short note since they are the most widely used notions for authenticated encryption (the main use case is realizing a cryptographic channel). A proof for the non-stateful versions would follow along the same lines. We restate the relevant stateful notions from [BKN04] formally in Figure 1 and Figure 2. A (stateful) authenticated encryption scheme consists of a triple of algorithms $\Psi=(\operatorname{Gen}, \mathcal{E}, \mathcal{D})$ for key generation, encryption, and decryption, respectively, as defined in detail in [BKN04] (including the definitions of correctness and being stateful). The message space is denoted by \mathcal{M} and the ciphertext space is denoted by \mathcal{C}. Our notation follows basically the notation of [BN08; BKN04].

$\mathrm{IND}^{2} \mathrm{sfCCA}{ }_{\Psi}$

```
Initialization
    \(k \leftarrow\) Gen
    \(b \longleftarrow\{0,1\} \quad \triangleright\) Sampling u.a.r. from \(\{0,1\}\).
    \(i \leftarrow 0\)
    \(j \leftarrow 0\)
    sync \(\leftarrow 1\)
    \(C \leftarrow \emptyset\)
Oracle LR
Input: \(\left(m_{0}, m_{1}\right) \in \mathcal{M} \times \mathcal{M}\)
    \(i \leftarrow i+1\)
    \(c \leftarrow \mathcal{E}\left(k, m_{b}\right)\)
    \(C[i] \leftarrow c\)
    return \(c\)
```

```
Oracle Dec
Input: \(c \in \mathcal{C}\)
    \(j \leftarrow j+1\)
    \(m \leftarrow \mathcal{D}(k, c)\)
    if \(j>i \vee c \neq C[j]\) then
        sync \(\leftarrow 0\)
    if sync \(=0\) then
        return \(m\)
    else
        return \(\perp\)
Finalization
Input: \(d \in\{0,1\}\)
    return \((d=b)\)
```

Figure 1: IND-sfCCA Ψ_{Ψ} security for stateful CCA security of an authenticated encryption scheme.

$\mathrm{INT}^{\mathrm{sfCTXT}}{ }_{\Psi}$

Initialization	Oracle VF
$k \leftarrow$ Gen	Input: $c \in \mathcal{C}$
$i \leftarrow 0$	$j \leftarrow j+1$
$j \leftarrow 0$	$m \leftarrow \mathcal{D}(k, c)$
sync $\leftarrow 1$	if $j>i \vee c \neq C[j]$ then
$C \leftarrow \emptyset$	L sync $\leftarrow 0$
win $\leftarrow 0$	if $m \neq \perp \wedge$ sync $=0$ then
Oracle Enc	win $\leftarrow 1$
Input: $m \in \mathcal{M}$	
$i \leftarrow i+1$	Finalization
$c \leftarrow \mathcal{E}(k, m)$	return win
$C[i] \leftarrow c$ return c	

INT-sfPTXT ${ }_{\Psi}$

Initialization	Oracle VF
$k \leftarrow$ Gen	Input: $c \in \mathcal{C}$
$i \leftarrow 0$	$j \leftarrow j+1$
$j \leftarrow 0$	$m \leftarrow \mathcal{D}(k, c)$
sync $\leftarrow 1$	if $j>i \vee m \neq S[j]$ then
$S \leftarrow \emptyset$	sync $\leftarrow 0$
win $\leftarrow 0$	if $m \neq \perp \wedge$ sync $=0$ then
Oracle Enc	$\llcorner\operatorname{win} \leftarrow 1$
Input: $m \in \mathcal{M}$	
$i \leftarrow i+1$	Finalization
$c \leftarrow \mathcal{E}(k, m)$	return win
$S[i] \leftarrow m$ $\text { return } c$	

Initialization
$k \leftarrow$ Gen
$j \leftarrow 0$
sync $\leftarrow 1$
$S \leftarrow \emptyset$

Oracle Enc
Input: $m \in \mathcal{M}$
$i \leftarrow i+1$
$c \leftarrow \mathcal{E}(k, m)$
return c

Oracle VF

Input: $c \in \mathcal{C}$
$j \leftarrow j+1$
$m \leftarrow \mathcal{D}(k, c)$
f $j>i \vee m \neq S[j]$ then
sync $\leftarrow 0$
if $m \neq \perp \wedge$ sync $=0$ then win $\leftarrow 1$
return $(m \neq \perp)$

nalization

return win

Figure 2: The INT-sfPTXT Ψ_{Ψ} and INT-sfCTXT $_{\Psi}$ security games for stateful plaintext- and ciphertext-integrity, respectively, of an authenticated encryption scheme.

2 INT-PTXT \& IND-CCA implies INT-CTXT

Let \mathcal{A} denote an INT-sfCTXT attacker. In the following we show that

$$
\operatorname{Adv}_{\Psi, \mathcal{A}}^{\text {IND-sfCTXT }} \leq \operatorname{Adv}_{\Psi, \mathcal{A}_{1}}^{\text {IND-sfCCA }}+\operatorname{Adv}_{\Psi, \mathcal{A}_{2}}^{\text {IND-sfCCA }}+3 \operatorname{Adv}_{\Psi, \mathcal{A}_{3}}^{\text {IND-sfPTXT }}
$$

where $\mathcal{A}_{1}, \mathcal{A}_{2}$, and \mathcal{A}_{3} denote slight modifications of \mathcal{A} with roughly the same efficiency.
As a first hybrid, we consider the game \mathbf{H}_{0} depicted in Figure 3, that essentially works like INT-sfCTXT Ψ_{Ψ}, but initially flips a uniform random bit z, and then the encryption oracle instead of encrypting the message m encrypts $z^{|m|}$, i.e., either the all-zero or all-one bit string of the length of m. By definition of the advantage of an adversary in the forgery game, we have

$$
\begin{align*}
& \operatorname{Adv}_{\Psi, \mathcal{A}}^{\text {IND-sfCTXT }}:=\operatorname{Pr}\left[\mathcal{A}^{\text {INT-sfCTXT}}{ }_{\Psi} \Rightarrow 1\right] \\
& =\operatorname{Pr}\left[\mathcal{A}^{\mathbf{H}_{0}} \Rightarrow 1\right]+\left(\operatorname{Pr}\left[\mathcal{A}^{\mathbf{I N T}-\mathbf{s f C T X T}} \mathbf{T}_{\Psi} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathcal{A}^{\mathbf{H}_{0}} \Rightarrow 1\right]\right) \tag{1}
\end{align*}
$$

In the following, we will first upper bound the second term, and then proceed to upper bound $\operatorname{Pr}\left[\mathcal{A}^{\mathbf{H}_{0}} \Rightarrow 1\right]$ as a second step.

2.1 Upper bounding the second term

Consider the following bit-guessing game \mathbf{G}_{0}, shown in Figure 4, that initially flips a bit b and then either behaves exactly like INT-sfCTXT \mathbf{T}_{Ψ}, if $b=0$, or like \mathbf{H}_{0} if $b=1$, and the goal of the adversary is to guess b in the end. In addition, the adversary also gets access to an oracle HasWon that allows him to query the win flag of INT-sfCTXT Ψ_{Ψ} or \mathbf{H}_{0}, respectively.

We now define \mathcal{A}_{0} as follows: \mathcal{A}_{0} internally runs \mathcal{A} forwarding all queries and responses to the Enc and VF oracles. Once \mathcal{A} calls Finalization, \mathcal{A}_{0} first queries the HasWon oracle, and then calls Finalization with $d=0$ if HasWon returned true and $d=1$ otherwise. Observe that the bit-guessing game \mathbf{G}_{0} behaves exactly as INT-sfCTXT${ }_{\Psi}$ if $b=0$ and exactly like \mathbf{H}_{0} if $b=1$. By definition of \mathbf{G}_{0} and \mathcal{A}_{0} we obtain

$$
\left.\begin{array}{rl}
\operatorname{Pr}\left[\mathcal{A}_{0}^{\mathbf{G}_{0}} \Rightarrow 1 \mid b=0\right] & =\operatorname{Pr}^{\mathcal{A}_{0}^{\mathbf{G}_{0}}}[d=b \mid b=0]=\operatorname{Pr}^{\mathcal{A}_{0}^{\mathbf{G}_{0}}}[d=0 \mid b=0] \\
& =\operatorname{Pr}^{\mathcal{A}_{0}^{\mathbf{G}_{0}}}[\mathbf{w i n}=1 \mid b=0]=\operatorname{Pr}\left[\mathcal{A}^{\mathbf{I N T}-\mathbf{s f C T X T}} \mathbf{T}_{\Psi}\right.
\end{array} 1\right]
$$

INT-sfCTXT ${ }_{\Psi}$ and H_{0}

Initialization

$-\overline{-}-\overline{\mathrm{Gen}}$
$i \leftarrow 0$
$j \leftarrow 0$
sync $\leftarrow 1$
$C \leftarrow \emptyset$
win $\leftarrow 0$
Oracle Enc
Input: $m \in \mathcal{M}$
$i \leftarrow i+1$
$c \leftarrow \mathcal{E}(k, m)$
${ }^{1} c \leftarrow \overline{\mathcal{E}}\left(\bar{k}, z^{|m|}\right)$
$\bar{C}[\bar{i}] \leftarrow \bar{c}$
return c

Oracle VF

Input: $c \in \mathcal{C}$
$j \leftarrow j+1$
$m \leftarrow \mathcal{D}(k, c)$
if $j>i \vee c \neq C[j]$ then
sync $\leftarrow 0$
if $m \neq \perp \wedge$ sync $=0$ then
$\operatorname{win} \leftarrow 1$
return $(m \neq \perp)$

Finalization

return win

Figure 3: The first hybrid \mathbf{H}_{0} compared to the original INT-sfCTXT ${ }_{\Psi}$ security game.

G_{0} and G_{1}

Initialization
$z \leftarrow\{0,1\}$
$b \leftarrow\{0,1\}$
$k \leftarrow$ Gen
$i \leftarrow 0$
$j \leftarrow 0$
sync $\leftarrow 1$
$C \leftarrow \emptyset$
win $\leftarrow 0$

Oracle Enc
Input: $m \in \mathcal{M}$
$i \leftarrow i+1$
if $b=0$ then
$c \leftarrow \mathcal{E}(k, m)$
else
$c \leftarrow \mathcal{E}\left(k, z^{|m|}\right)$
$C[i] \leftarrow c$
return c

Oracle VF
Input: $c \in \mathcal{C}$
$j \leftarrow j+1$
$m \leftarrow \mathcal{D}(k, c)$
if $j>i \vee c \neq C[j]$ then
sync $\leftarrow 0$
if $m \neq \perp \wedge$ sync $=0$ then
$\operatorname{win} \leftarrow 1$
return $(m \neq \perp)$
 return $(m \neq \perp)$
;else
I_ _return_1. _ _ _ _ '
Oracle HasWon
return win
Finalization
Input: $d \in\{0,1\}$
return $d=b$

Figure 4: The bit-guessing games \mathbf{G}_{0} and \mathbf{G}_{1}.

\mathbf{G}_{1} and \mathbf{G}_{2}

Initialization	
	$b *\{0,1\}$
	$k \leftarrow$ Gen
	$i \leftarrow 0$
	$j \leftarrow 0$
	sync $\leftarrow 1$
	$C \leftarrow \emptyset$
	win $\leftarrow 0$
Oracle Enc	
Input: $m \in \mathcal{M}$	
	$i \leftarrow i+1$
	if $b=0$ then
	$c \leftarrow \mathcal{E}(k, m)$
	else
	L $c \leftarrow \mathcal{E}\left(k, z^{\|m\|}\right)$
	${ }_{1} \bar{m}_{0}^{-} \bar{\tau}^{-} \bar{m}^{---1}$
	' $m_{1} \leftarrow z^{\|m\|}$,
	${ }_{1}^{\prime} c \leftarrow \leftarrow \mathcal{E}\left(k, m_{b}\right)$ '
	$\bar{C} \bar{C} \bar{i}] \stackrel{-}{\leftarrow} \stackrel{\text { c }}{ }$
	return c

```
Oracle VF
Input: \(c \in \mathcal{C}\)
    \(j \leftarrow j+1\)
    \(m \leftarrow \mathcal{D}(k, c)\)
    if \(j>i \vee c \neq C[j]\) then
        sync \(\leftarrow 0\)
    if sync \(=0\) then
        \(m \leftarrow m\)
    'else
        \(m \leftarrow \perp\)
    if \(m \neq \perp \wedge\) sync \(=0\) then
        win \(\leftarrow 1\)
    if \(\operatorname{sync}=0\) then
        return \((m \neq \perp)\)
    else
        return 1.
Oracle HasWon
    return win
Finalization
Input: \(d \in\{0,1\}\)
    return \(d=b\)
```

Figure 5: The bit-guessing games \mathbf{G}_{2} in comparison to \mathbf{G}_{1}.
and

$$
\begin{aligned}
\operatorname{Pr}\left[\mathcal{A}_{0}^{\mathbf{G}_{0}} \Rightarrow 1 \mid b=1\right] & =\operatorname{Pr}^{\mathcal{A}_{0}^{\mathbf{G}_{0}}}[d=b \mid b=1]=\operatorname{Pr}^{\mathcal{A}_{0}^{\mathbf{G}_{0}}}[d=1 \mid b=1] \\
& =\operatorname{Pr}^{\mathcal{A}_{0}^{\mathbf{G}_{0}}}[\text { win }=0 \mid b=1]=1-\operatorname{Pr}\left[\mathcal{A}^{\mathbf{H}_{0}} \Rightarrow 1\right],
\end{aligned}
$$

which yields

$$
\begin{align*}
& \operatorname{Pr}\left[\mathcal{A}^{\text {INT-sfCTXT}}{ }_{\Psi} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathcal{A}^{\mathbf{H}_{0}} \Rightarrow 1\right] \\
& \quad=\operatorname{Pr}\left[\mathcal{A}_{0}^{\mathbf{G}_{0}} \Rightarrow 1 \mid b=0\right]+\operatorname{Pr}\left[\mathcal{A}_{0}^{\mathbf{G}_{0}} \Rightarrow 1 \mid b=1\right]-1 \tag{2}\\
& \quad=2\left(\operatorname{Pr}\left[\mathcal{A}_{0}^{\mathbf{G}_{0}} \Rightarrow 1\right]-\frac{1}{2}\right) .
\end{align*}
$$

We now proceed by bounding $\operatorname{Pr}\left[\mathcal{A}_{0}^{\mathbf{G}_{0}} \Rightarrow 1\right]$ using a sequence of simple modifications:
\mathbf{G}_{1} The game \mathbf{G}_{1}, as depicted in Figure 4, behaves like \mathbf{G}_{0} except that the VF oracle returns true instead of $(m \neq \perp)$ if sync $=1$. Since sync $=1$ implies $c=C[j]$ and $\perp \notin \mathcal{M}$, however, by correctness of the scheme this behavior is equivalent.
\mathbf{G}_{2} Consider the game \mathbf{G}_{2} as depicted in Figure 5. Observe that in the Enc oracle the same message gets encrypted as in \mathbf{G}_{1}. In the $\mathbf{V F}$ oracle it sets m to \perp if sync $\neq 0$. Note however, that in this case the value of m does not matter anymore. Thus, \mathbf{G}_{1} and \mathbf{G}_{2} behave equivalently.
It is now easy to see that winning \mathbf{G}_{2} can be reduced to winning $\mathbf{I N D}-$ sfCCA $_{\Psi}$ as sketched in Figure 6. For every adversary \mathcal{A}_{0} against \mathbf{G}_{2} we can build \mathcal{A}_{1} against IND-sfCCA ${ }_{\Psi}$ that works as follows: it initially flips a bit z and then internally runs \mathcal{A}_{0} and for every query m of the Enc oracle it queries the $\mathbf{L R}$ oracle of $\mathbf{I N D - s f C C A} \mathbf{A}_{\Psi}$ with $m_{0}=m$ and $m_{1}=z^{|m|}$. In addition, \mathcal{A}_{1} keeps track whether \mathcal{A}_{0} is still in sync, so that on a query c to the VF oracle by

G_{2}

Initialization

$$
\begin{aligned}
& : z\{0,1\} \\
& \hdashline i \leftarrow 0 \\
& k \leftarrow\{0,1\} \\
& j \leftarrow 0 \\
& \text { sync } \leftarrow 1 \\
& C \leftarrow \emptyset \\
& \hdashline w i t
\end{aligned}
$$

Oracle Enc
Input: $m \in \mathcal{M}$
$i \leftarrow i+1$
${ }^{\prime} \overline{m_{0}} \bar{\leftarrow} \bar{m}$
$\left.{ }^{\prime} m_{1} \leftarrow z^{|m|}\right|_{1} ^{\prime}$
$c \leftarrow \mathcal{E}\left(k, m_{b}\right)$
$C[i] \leftarrow c$
return c

Oracle VF
Input: $c \in \mathcal{C}$
$j \leftarrow j+1$
$m \leftarrow \mathcal{D}(k, c)$
if $j>i \vee c \neq C[j]$ then

$$
\text { sync } \leftarrow 0
$$

if sync $=0$ then

$$
m \leftarrow m
$$

else
$m \leftarrow \perp$
, $\overline{\mathbf{i f f}} \bar{m} \neq \bar{\perp} \wedge$ sync $=0$ then
$\operatorname{win} \leftarrow 1$
,if sync $=0$ then
return $(m \neq \perp)$
else
return_1.
Oracle HasWon

Finalization
Input: $d \in\{0,1\}$
return $d=b$

Figure 6: The reduction from \mathbf{G}_{2} to $\mathbf{I N D}-$ sfCCA $_{\Psi}$. The lines with the blue shade and the solid border belong to the IND-sfCCA Ψ_{Ψ} game, whereas the green shaded ones with the dashed border belong to the reduction. The uncolored lines are for bookkeeping that is replicated in both the IND-sfCCA Ψ_{Ψ} game as well as the reduction.
\mathcal{A}_{0} it can query the decryption oracle on c and then reply correctly to \mathcal{A}_{0}. It is easy to see that \mathcal{A}_{1} guesses b correctly if and only if \mathcal{A}_{0} guesses b correctly by simply forwarding the guess.

Thus we obtain

$$
\operatorname{Pr}\left[\mathcal{A}_{0}^{\mathbf{G}_{0}} \Rightarrow 1\right]=\operatorname{Pr}\left[\mathcal{A}_{0}^{\mathbf{G}_{1}} \Rightarrow 1\right]=\operatorname{Pr}\left[\mathcal{A}_{0}^{\mathbf{G}_{2}} \Rightarrow 1\right]=\operatorname{Pr}\left[\mathcal{A}_{1}^{\mathrm{IND}-\mathbf{s f C C A}} \boldsymbol{A}_{\Psi} \Rightarrow 1\right],
$$

and combining this with (2) yields the desired bound

$$
\begin{align*}
\operatorname{Pr}\left[\mathcal{A}^{\mathbf{I N T}_{-s f C T X T}^{W}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathcal{A}^{\mathbf{H}_{0}}\right. & \Rightarrow 1]=2\left(\operatorname{Pr}\left[\mathcal{A}_{0}^{\mathbf{G}_{0}} \Rightarrow 1\right]-\frac{1}{2}\right) \\
& =2\left(\operatorname{Pr}\left[\mathcal{A}_{1}^{\mathrm{IND}-\text { sfCCA}_{\Psi}} \Rightarrow 1\right]-\frac{1}{2}\right)=: \operatorname{Adv}_{\Psi, \mathcal{A}_{1}}^{\mathrm{IND}-\mathbf{s C C A}}, \tag{3}
\end{align*}
$$

where in the last step we used the definition of the (bit-guessing) advantage of a CCA adversary.

2.2 Bounding the first winning probability

In the following section we upper bound the probability $\operatorname{Pr}\left[\mathcal{A}^{\mathbf{H}_{0}} \Rightarrow 1\right]$ using the hybrids \mathbf{H}_{1} and \mathbf{H}_{2}, depicted in Figure 7 and Figure 8, respectively.
\mathbf{H}_{1} The game \mathbf{H}_{1} replaces the sync and the win flags of \mathbf{H}_{0} by two pairs of flags (sync ${ }_{1}$, sync $_{2}$) and (win $_{1}$, win $_{2}$), respectively. Note that sync ${ }_{2}$ in \mathbf{H}_{1} is defined exactly equivalent to sync of \mathbf{H}_{0}, and thus win ${ }_{1} \vee$ win $_{2}$ is true in \mathbf{H}_{1} if and only if win is true in \mathbf{H}_{0}. Hence, the two games behave equivalently.

H_{0} and H_{1}

```
Initialization
    \(z \leftarrow\{0,1\}\)
    \(k \leftarrow\) Gen
    \(i \leftarrow 0\)
    \(j \leftarrow 0\)
    sync \(\leftarrow 1\)
    \(\overline{\text { sync }}_{1}-\overline{1}\),
    \({ }_{1}\) sync \(_{2} \leftarrow 1\)
    \(\bar{C}-\emptyset\)
    \(\stackrel{-}{S_{-} 亡} \leftarrow\)
    win \(\leftarrow 0\)
    \({ }_{1} \overline{w i n}_{1}^{-} \leftarrow \overline{0}\)
    \({ }^{\prime} \mathrm{win}_{2} \leftarrow 0\)
Oracle Enc
Input: \(m \in \mathcal{M}\)
    \(i \leftarrow i+1\)
    \(c \leftarrow \mathcal{E}\left(k, z^{|m|}\right)\)
    \(C[i] \leftarrow c\)
```



```
    return \(c\)
```

```
Oracle VF
Input: \(c \in \mathcal{C}\)
    \(j \leftarrow j+1\)
    \(m \leftarrow \mathcal{D}(k, c)\)
    if \(j>i \vee c \neq C[j]\) then
    - sync \(\leftarrow 0\)
    \(\overline{\text { if }} \bar{j} \overline{>}>\bar{i} \bar{\vee} \quad-\bar{m} \bar{S}[\bar{j}]\) then
        sync \(_{1} \leftarrow 0\)
    if \(j>i \vee c \neq C[j]\) then
        sync \(_{2} \leftarrow 0\)
    if \(m \neq \perp \wedge\) sync \(=0\) then
        \(\operatorname{win} \leftarrow 1\)
    \({ }_{1} \overline{\text { if }} m \neq \bar{\perp} \wedge \operatorname{sync}_{1}=0 \wedge \operatorname{sync}_{2}=0\) then
        \(\operatorname{win}_{1} \leftarrow 1\)
    ;if \(m \neq \perp \wedge\) sync \(_{1}=1 \wedge\) sync \(_{2}=0\) then
    \(\square \operatorname{win}_{2} \leftarrow 1\)
    return \((m \neq \perp)\)
Finalization
    return win
    return \(\operatorname{win}_{1} \vee \operatorname{win}_{2}\),
```

Figure 7: The game \mathbf{H}_{1} is equivalent to \mathbf{H}_{0}, which is best seen by observing that the sync ${ }_{2}$ flag is identical to the sync one of \mathbf{H}_{0}.

H_{1} and H_{2}

Initialization	Oracle VF
$z \leftrightarrow\{0,1\}$	Input: $c \in \mathcal{C}$
$k \leftarrow$ Gen	$j \leftarrow j+1$
$i \leftarrow 0$	$m \leftarrow \mathcal{D}(k, c)$
$j \leftarrow 0$	if $j>i \vee m \neq S[j]$ then
sync $_{1} \leftarrow 1$	- sync $_{1} \leftarrow 0$
sync $_{2} \leftarrow 1$	if $j>i \vee c \neq C[j]$ then
$C \leftarrow \emptyset$	\square sync $_{2} \leftarrow 0$
$\begin{aligned} & S \leftarrow \emptyset \\ & \operatorname{win}_{1} \leftarrow 0 \end{aligned}$	if $m \neq \perp \wedge$ sync $_{1}=0 \wedge$ sync $_{2}=0$ then $\operatorname{win}_{1} \leftarrow 1$
$\mathrm{win}_{2} \leftarrow 0$	
Oracle Enc	
Input: $m \in \mathcal{M}$	if $\bar{m} \neq \perp \wedge \operatorname{sync}_{1}=1 \wedge$ sync $_{2}=0$ then
$i \leftarrow i+1$	$\left\llcorner\operatorname{win}_{2} \leftarrow 1\right.$
$c \leftarrow \mathcal{E}\left(k, z^{\|m\|}\right)$	return ($m \neq \perp$)
$C[i] \leftarrow c$	
$S[i] \leftarrow z^{\|m\|}$	Finalization
return c	return $\operatorname{win}_{1} \vee$ win $_{2}$

Figure 8: The game \mathbf{H}_{2} is equivalent to \mathbf{H}_{1} as well. Observe that sync ${ }_{1}=0$ implies that $j>i$ or $m \neq S[j]$ for some j. In the latter case, the correctness of the scheme however implies that $c[j] \neq C[j]$ and thus sync $_{2}=0$ as well.

P_{0} and C_{C}

```
Initialization
    z}\leftarrow{0,1
    k\leftarrowGen
    i\leftarrow0
    j}\leftarrow
    \mp@subsup{\mathrm{ ynnc}}{1}{}\leftarrow1
    \mp@subsup{\mathrm{ sync }}{2}{}\leftarrow1
    C\leftarrow\emptyset
    S\leftarrow\emptyset
    \mp@subsup{\operatorname{win}}{1}{}\leftarrow0
    \mp@subsup{\operatorname{win}}{2}{}\leftarrow0
```

Oracle Enc
Input: $m \in \mathcal{M}$
$i \leftarrow i+1$
$c \leftarrow \mathcal{E}\left(k, z^{|m|}\right)$
$C[i] \leftarrow c$
$S[i] \leftarrow z^{|m|}$
return c

```
Oracle VF
Input: \(c \in \mathcal{C}\)
    \(j \leftarrow j+1\)
    \(m \leftarrow \mathcal{D}(k, c)\)
    if \(j>i \vee m \neq S[j]\) then
        sync \(_{1} \leftarrow 0\)
    if \(j>i \vee c \neq C[j]\) then
        sync \(_{2} \leftarrow 0\)
    if \(m \neq \perp \wedge\) sync \(_{1}=0\) then
        \(\operatorname{win}_{1} \leftarrow 1\)
    if \(m \neq \perp \wedge\) sync \(_{1}=1 \wedge\) sync \(_{2}=0\) then
        \(\operatorname{win}_{2} \leftarrow 1\)
    return \((m \neq \perp)\)
```

Finalization
return win $_{1}$
${ }^{1}$ return ${ }^{\text {win }}$

Figure 9: The games \mathbf{P}_{0} and \mathbf{C}_{0} are identical to \mathbf{H}_{2}, except that the winning condition win $_{1} \vee$ win $_{2}$ of the latter has been replaced by checking only one of the respective flags.
\mathbf{H}_{2} The game \mathbf{H}_{2} is equivalent to \mathbf{H}_{1} except that the former no longer checks for sync ${ }_{2}=0$ when setting win ${ }_{1}$ to true. Observe however that by the correctness of the scheme we have that $m \neq S[j]$ implies $c \neq C[j]$ and thus sync ${ }_{1}=0$ implies sync $_{2}=0$. Hence, the two games are equivalent as well.

Now, consider the two games \mathbf{P}_{0} and \mathbf{C}_{0} as depicted in Figure 9. Observe that each of those games is equivalent to \mathbf{H}_{2} except for the winning condition that only checks for win_{1} or win_{2}, respectively, instead of $\operatorname{win}_{1} \vee \operatorname{win}_{2}$. Using the union bound we therefore obtain

$$
\begin{equation*}
\operatorname{Pr}\left[\mathcal{A}^{\mathbf{H}_{0}} \Rightarrow 1\right]=\operatorname{Pr}\left[\mathcal{A}^{\mathbf{H}_{1}} \Rightarrow 1\right]=\operatorname{Pr}\left[\mathcal{A}^{\mathbf{H}_{2}} \Rightarrow 1\right] \leq \operatorname{Pr}\left[\mathcal{A}^{\mathbf{P}_{0}} \Rightarrow 1\right]+\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{0}} \Rightarrow 1\right] . \tag{4}
\end{equation*}
$$

We proceed by bounding those two terms separately in the next sections.

2.3 Upper bounding the advantage on P_{0}

Consider the game \mathbf{P}_{1} as shown in Figure 10, which basically corresponds to \mathbf{P}_{0} with all code related to the two unused flags win $_{2}$ and sync $_{2}$ removed. Moreover, the Enc-oracle has slightly been rewritten without changing the behavior. It is now easy to reduce any adversary \mathcal{A} winning \mathbf{P}_{1} to another adversary \mathcal{A}_{3} winning INT-sfPTXT \mathbf{T}_{Ψ}, as highlighted in Figure 11: \mathcal{A}_{3} initially flips a bit z and then whenever \mathcal{A} queries the Enc oracle on m, \mathcal{A}_{3} queries the actual Enc-oracle on $m^{\prime}=z^{|m|}$. Clearly, \mathcal{A}_{3} wins INT-sfPTXT T_{Ψ} if and only if \mathcal{A} wins \mathbf{P}_{1}. As a consequence, we have

$$
\begin{equation*}
\operatorname{Pr}\left[\mathcal{A}^{\mathbf{P}_{0}} \Rightarrow 1\right]=\operatorname{Pr}\left[\mathcal{A}^{\mathbf{P}_{1}} \Rightarrow 1\right]=\operatorname{Pr}\left[\mathcal{A}_{3}^{\text {INT-sfPTXT }_{\Psi}} \Rightarrow 1\right]=\operatorname{Adv} v_{\Psi, \mathcal{A}_{3}}^{\text {IND-sPTXT }^{2}} . \tag{5}
\end{equation*}
$$

2.4 Upper bounding the advantage on C_{0}

In the following section, we upper bound $\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{0}} \Rightarrow 1\right]$ using a sequence of hybrids $\mathbf{C}_{1}, \mathbf{C}_{2}, \mathbf{C}_{3}$, $\mathbf{C}_{4}, \mathbf{C}_{5}$, and \mathbf{C}_{6}.

P_{0} and ${ }^{\prime} \overline{\mathrm{P}}_{1}$ '

Initialization
$z \longleftarrow\{0,1\}$
$k \leftarrow$ Gen
$i \leftarrow 0$
$j \leftarrow 0$
sync $_{1} \leftarrow 1$
$\operatorname{sync}_{2} \leftarrow 1$
$C \leftarrow$
$S \leftarrow \emptyset$
$\operatorname{win}_{1} \leftarrow 0$
$\operatorname{win}_{2} \leftarrow 0$
Oracle Enc
Input: $m \in \mathcal{M}$
$i \leftarrow i+1$
$c \leftarrow \mathcal{E}\left(k, z^{|m|}\right)$
$C[i] \leftarrow c$
$S[i] \leftarrow z^{\mid m}$
$\cdots m^{\prime} \leftarrow z^{|m|}$
' $c \leftarrow \mathcal{E}\left(k, m^{\prime}\right)$ ।
${ }^{\prime} S[i] \leftarrow m^{\prime}$
return c

```
Oracle VF
Input: \(c \in \mathcal{C}\)
    \(j \leftarrow j+1\)
    \(m \leftarrow \mathcal{D}(k, c)\)
    if \(j>i \vee m \neq S[j]\) then
        sync \(_{1} \leftarrow 0\)
    if \(j>i \vee c \neq C[j]\) then
        sync \(_{2} \leftarrow 0\)
    if \(m \neq \perp \wedge\) sync \(_{1}=0\) then
        \(\operatorname{win}_{1} \leftarrow 1\)
    if \(m \neq \perp \wedge\) sync \(_{1}=1 \wedge \operatorname{sync}_{2}=0\) then
        \(\operatorname{win}_{2} \leftarrow 1\)
    return \((m \neq \perp)\)
```

Finalization
return win $_{1}$

Figure 10: The game \mathbf{P}_{1} that is equivalent to \mathbf{P}_{0}.

P_{1}

Initialization
$1-\bar{z}-\overline{1}=\overline{1}\}$
$k \leftarrow$ Gen
$i \leftarrow 0$
$j \leftarrow 0$
sync $_{1} \leftarrow 1$
$S \leftarrow \emptyset$
$\operatorname{win}_{1} \leftarrow 0$
Oracle Enc
Input: $m \in \mathcal{M}$
$i \leftarrow i+1$
$\mathfrak{| m ^ { \prime }} \leftarrow z^{|m|} \mid$
$c \leftarrow \mathcal{E}\left(k, m^{\prime}\right)$
$S[i] \leftarrow m^{\prime}$
return c

Oracle VF
Input: $c \in \mathcal{C}$
$j \leftarrow j+1$
$m \leftarrow \mathcal{D}(k, c)$
if $j>i \vee m \neq S[j]$ then sync $_{1} \leftarrow 0$
if $m \neq \perp \wedge$ sync $_{1}=0$ then $\operatorname{win}_{1} \leftarrow 1$
return $(m \neq \perp)$
Finalization
return win $_{1}$

Figure 11: The reduction from \mathbf{P}_{1} to $\mathbf{I N T}$-sfPTXT \mathbf{T}_{Ψ}. The lines with the blue shade and the solid border belong to the INT-sfPTXT Ψ_{Ψ} game, whereas the green shaded ones with the dashed border belong to the reduction.

${ }^{\left[\bar{C}_{0}\right.}{ }^{1}$ and C_{1}

```
Initialization
    \(z \leftarrow\{0,1\}\)
    \(k \leftarrow\) Gen
    \(i \leftarrow 0\)
    \(j \leftarrow 0\)
    sync \(_{1} \leftarrow 1\)
    sync \(_{2} \leftarrow 1\)
    \(C \leftarrow \emptyset\)
    \(S \leftarrow \emptyset\)
    iwin \(_{1} \leftarrow 0!\)
\(\operatorname{win}_{2} \leftarrow 0\)
Oracle Enc
Input: \(m \in \mathcal{M}\)
    \(i \leftarrow i+1\)
    \(c \leftarrow \mathcal{E}\left(k, z^{|m|}\right)\)
    \(C[i] \leftarrow c\)
    \(S[i] \leftarrow z^{|m|}\)
    return \(c\)
```

```
Oracle VF
Input: \(c \in \mathcal{C}\)
    \(j \leftarrow j+1\)
    \(m \leftarrow \mathcal{D}(k, c)\)
    if \(j>i \vee m \neq S[j]\) then
        sync \(_{1} \leftarrow 0\)
    if \(j>i \vee c \neq C[j]\) then
        sync \(_{2} \leftarrow 0\)
    if \(\bar{m} \neq \bar{\perp} \wedge\) sync \(_{1}=\overline{0}\) then
        \(\operatorname{win}_{1} \leftarrow 1\)
    if \(m \neq \perp \wedge\) sync \(_{1}=1 \wedge\) sync \(_{2}=0\) then
        \(\operatorname{win}_{2} \leftarrow 1\)
    return \((m \neq \perp)\)
```

Finalization
return win $_{2}$

Figure 12: The game \mathbf{C}_{1} that is equivalent to \mathbf{C}_{0}.
\mathbf{C}_{1} The game \mathbf{C}_{1}, as depicted in Figure 12, corresponds to \mathbf{C}_{0} with all code related to the unused flag win_{1} removed. Hence, the two games behave obviously equivalent.
\mathbf{C}_{2} The game \mathbf{C}_{2} corresponds to \mathbf{C}_{1} with the winning flag win ${ }_{2}$ replaced by a variable d guessing z. It is depicted in Figure 13. Note that $\operatorname{sync}_{1}=1$ implies $m=S[j]$, and thus $m=z^{\ell}$ for some length $\ell>0$ (we use here that the empty bit-string is not in the message space). Hence, setting d to the first bit of m implies that the game is won, and is thus equivalent to setting the winning flag in \mathbf{C}_{1}.
\mathbf{C}_{3} The game \mathbf{C}_{3}, as depicted in Figure 14, corresponds to \mathbf{C}_{2} but with d initialized to 0 instead of \perp giving an adversary a fifty percent chance of winning the game without setting the win_{2} flag. This makes \mathbf{C}_{3} a bit-guessing game. Observe that

$$
\operatorname{Pr}^{\mathcal{A}^{\mathrm{C}_{3}}}\left[\operatorname{win}_{2}=1\right]=\operatorname{Pr}^{\mathcal{A}^{\mathbf{C}_{2}}}\left[\operatorname{win}_{2}=1\right]=\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{2}} \Rightarrow 1\right]
$$

and

$$
\operatorname{Pr}^{\mathcal{A}^{\mathrm{C}_{3}}}\left[d=z \wedge \operatorname{win}_{2}=1\right]=\operatorname{Pr}^{\mathcal{A}^{\mathrm{C}_{3}}}\left[\operatorname{win}_{2}=1\right]
$$

yielding

$$
\begin{aligned}
\operatorname{Pr}\left[\mathcal{A}^{\mathrm{C}_{3}} \Rightarrow 1\right] & =\operatorname{Pr}^{\mathcal{A}^{\mathrm{C}_{3}}}[d=z] \\
& =\operatorname{Pr}^{\mathcal{A}^{\mathrm{C}_{3}}}\left[d=z \wedge \operatorname{win}_{2}=1\right]+\operatorname{Pr}^{\mathcal{A}^{\mathrm{C}_{3}}}\left[d=z \wedge \operatorname{win}_{2}=0\right] \\
& =\operatorname{Pr}^{\mathcal{A}_{3}}\left[d=z \wedge \operatorname{win}_{2}=1\right]+\operatorname{Pr}^{\mathcal{A}^{\mathrm{C}_{3}}}\left[d=z \mid \operatorname{win}_{2}=0\right] \operatorname{Pr}^{\mathcal{A}^{\mathrm{C}_{3}}}\left[\operatorname{win}_{2}=0\right] \\
& =\operatorname{Pr}^{\mathcal{A}_{3}}\left[d=z \wedge \operatorname{win}_{2}=1\right]+\frac{1}{2}\left(1-\operatorname{Pr}^{\mathcal{A}^{\mathrm{C}_{3}}}\left[\operatorname{win}_{2}=1\right]\right) \\
& =\operatorname{Pr}\left[\mathcal{A}^{\mathrm{C}_{2}} \Rightarrow 1\right]+\frac{1}{2}\left(1-\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{2}} \Rightarrow 1\right]\right) .
\end{aligned}
$$

Rewriting the last equation we obtain

$$
\begin{equation*}
\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{2}} \Rightarrow 1\right]=2\left(\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{3}} \Rightarrow 1\right]-\frac{1}{2}\right) . \tag{6}
\end{equation*}
$$

C_{1} and $\overline{\mathrm{C}}_{2}$

Initialization
$z \leftarrow\{0,1\}$
$k \leftarrow$ Gen
$i \leftarrow 0$
$j \leftarrow 0$
$\operatorname{sync}_{1} \leftarrow 1$
$\operatorname{sync}_{2} \leftarrow 1$
$C \leftarrow \emptyset$
$S \leftarrow \emptyset$
win $_{2} \leftarrow 0$
$1 \bar{d} _\square_{-}$
Oracle Enc
Input:m $m \in \mathcal{M}$
$i \leftarrow i+1$
$c \leftarrow \mathcal{E}\left(k, z^{\|m\|}\right)$
$C[i] \leftarrow c$
$S[i] \leftarrow z^{\|m\|}$
return c

```
Oracle VF
Input: \(c \in \mathcal{C}\)
    \(j \leftarrow j+1\)
    \(m \leftarrow \mathcal{D}(k, c)\)
    if \(j>i \vee m \neq S[j]\) then
        sync \(_{1} \leftarrow 0\)
    if \(j>i \vee c \neq C[j]\) then
        sync \(_{2} \leftarrow 0\)
    if \(m \neq \perp \wedge\) sync \(_{1}=1 \wedge\) sync \(_{2}=0\) then
        \(\operatorname{win}_{2} \leftarrow 1\)
        \(\overline{\mathrm{j}} \overline{\mathrm{d}} \leftarrow \bar{m} \overline{(1)} \bar{\prime}\)
    return \((m \neq \perp)\)
Finalization
    return win \(_{2}\)
    return \((\bar{r}=\bar{z})\)
```

Figure 13: The game \mathbf{C}_{2}, where $m(1)$ denotes the first bit of m. Note that sync $=1$ implies $m=S[j]=z^{\ell}$ for some $\ell>0($ since $\lambda \notin \mathcal{M})$. Hence, we have $\operatorname{win}_{2}=1$ iff $d=z$.

```
\(\mathrm{C}_{2}\) and \(\mathrm{C}_{3}\)
Initialization
    \(z 世\{0,1\}\)
    \(k \leftarrow\) Gen
    \(i \leftarrow 0\)
    \(j \leftarrow 0\)
    sync \(_{1} \leftarrow 1\)
    sync \(_{2} \leftarrow 1\)
    \(C \leftarrow \emptyset\)
    \(S \leftarrow \emptyset\)
    \(\operatorname{win}_{2} \leftarrow 0\)
    \(d \leftarrow \perp\)
    ! \(\bar{d}\) E-
Oracle Enc
Input: \(m \in \mathcal{M}\)
Oracle VF
Input: \(c \in \mathcal{C}\)
    \(j \leftarrow j+1\)
    \(m \leftarrow \mathcal{D}(k, c)\)
    if \(j>i \vee m \neq S[j]\) then
        sync \(_{1} \leftarrow 0\)
    if \(j>i \vee c \neq C[j]\) then
        sync \(_{2} \leftarrow 0\)
    if \(m \neq \perp \wedge\) sync \(_{1}=1 \wedge\) sync \(_{2}=0\) then
            \(\operatorname{win}_{2} \leftarrow 1\)
    \(d \leftarrow m(1)\)
    return \((m \neq \perp)\)
Finalization
    return ( \(d=z\) )
    \(i \leftarrow i+1\)
    \(c \leftarrow \mathcal{E}\left(k, z^{|m|}\right)\)
    \(C[i] \leftarrow c\)
    \(S[i] \leftarrow z^{|m|}\)
    return \(c\)
```

Figure 14: The bit-guessing game \mathbf{C}_{3}. Observe that in comparison to \mathbf{C}_{2}, the adversary has a fifty percent chance of winning the game without managing to set the win_{2} flag.

C_{3} and C_{4}

```
Initialization
    z}\leftarrow{0,1
    k\leftarrowGen
    i\leftarrow0
    j}\leftarrow
    sync
    sync}\mp@subsup{\mp@code{2}}{2}{\leftarrow
    C\leftarrow\emptyset
    S\leftarrow\emptyset
    \
Oracle Enc
Input: m\in\mathcal{M}
    i\leftarrowi+1
    c\leftarrow\mathcal{E}(k,\mp@subsup{z}{}{|m|})
    C[i]}\leftarrow
    S[i]}\leftarrow\mp@subsup{z}{}{[m
    return c
```

```
Oracle VF
Input: \(c \in \mathcal{C}\)
    \(j \leftarrow j+1\)
    \(m \leftarrow \mathcal{D}(k, c)\)
    if \(j>i \vee m \neq S[j]\) then
        sync \(_{1} \leftarrow 0\)
    if \(j>i \vee c \neq C[j]\) then
        sync \(_{2} \leftarrow 0\)
    if \(m \neq \perp \wedge\) sync \(_{1}=1 \wedge\) sync \(_{2}=0\) then
        \(d \leftarrow m(1)\)
    'if \(\bar{m} \neq \bar{\perp} \wedge \overline{\mathrm{sync}}_{2}=0\) then
        if sync \(_{1}=1\) then
                \(d \leftarrow m(1)\)
            else
```



```
    return \((m \neq \perp)\)
Finalization
    return \((d=z)\)
```

Figure 15: The game \mathbf{C}_{4}, that introduces the bad flag. It behaves equivalent to \mathbf{C}_{3}, however, since bad is an internal variable only.
\mathbf{C}_{4} The game \mathbf{C}_{4}, as depicted in Figure 15, corresponds to \mathbf{C}_{3} with a bad flag introduced. The two games behave obviously equivalent.
\mathbf{C}_{5} The game \mathbf{C}_{5} is depicted in Figure 16 and is identical until bad to \mathbf{C}_{5}. Hence, by the Fundamental Lemma of game-playing we have

$$
\begin{equation*}
\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{4}} \Rightarrow 1\right] \leq \operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{5}} \Rightarrow 1\right]+\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{4}} \text { sets bad }\right] . \tag{7}
\end{equation*}
$$

We defer bounding the probability of bad being set to the end of the proof and continue bounding $\operatorname{Pr}\left[\mathcal{A}^{\mathrm{C}_{5}} \Rightarrow 1\right]$.
\mathbf{C}_{6} The game \mathbf{C}_{6}, as depicted in Figure 17, is a version of \mathbf{C}_{5} with the internal bad flag removed. This, in addition, allows removing all code related to the sync ${ }_{1}$ flag without altering the behavior.
\mathbf{C}_{7} The game \mathbf{C}_{7} is depicted in Figure 18. First, compared to \mathbf{C}_{6} the Enc-oracle has slightly been rewritten without modifying the behavior. Then, in the VF-oracle, in case of sync ${ }_{2}=1$ we no longer return $(m \neq \perp)$ but true. Since sync ${ }_{2}=1$ implies $c=C[j]$, however, we have by correctness that $m \in \mathcal{M}$ and thus $m \neq \perp$. Moreover, if $\operatorname{sync}_{2}=1$, we then reset m to \perp without affecting the behavior. Hence, \mathbf{C}_{7} and \mathbf{C}_{6} behave equivalently.

Now, observe that \mathbf{C}_{7} can be easily reduced to $\mathbf{I N D}^{\text {sfCCA}} \mathbf{A}_{\Psi}$, as shown in Figure 19. For every adversary \mathcal{A} against \mathbf{C}_{7} we can build \mathcal{A}_{2} against IND-sfCCA ${ }_{\Psi}$ that works as follows: it internally runs \mathcal{A} and for every query m of the Enc oracle it queries the LR oracle of IND-sfCCA \boldsymbol{A}_{Ψ} with $m_{0}=0^{|m|}$ and $m_{1}=1^{|m|}$. In addition, \mathcal{A}_{2} keeps track whether \mathcal{A} is still in sync, so that on a query c to the VF oracle by \mathcal{A} it queries the decryption oracle on c and then replies correctly to \mathcal{A}. Moreover, once it detects that \mathcal{A} is out of sync and the ciphertext decrypted to a valid ciphertext, it uses the first bit of the decrypted message as the guess of z. It is now easy to see that

$$
\begin{equation*}
\operatorname{Pr}\left[\mathcal{A}^{\mathrm{C}_{7}} \Rightarrow 1\right]=\operatorname{Pr}\left[\mathcal{A}_{2}^{\mathrm{IND}_{-s f C C A}^{W}} \Rightarrow 1\right] . \tag{8}
\end{equation*}
$$

C_{4} and C_{5}

Initialization
$z \leftarrow\{0,1\}$
$k \leftarrow$ Gen
$i \leftarrow 0$
$j \leftarrow 0$
$\operatorname{sync}_{1} \leftarrow 1$
$\operatorname{sync}_{2} \leftarrow 1$
$C \leftarrow \emptyset$
$S \leftarrow \emptyset$
$d \leftarrow 0$
bad $\leftarrow 0$
Oracle Enc
Input: $m \in \mathcal{M}$
$i \leftarrow i+1$
$c \leftarrow \mathcal{E}\left(k, z^{\|m\|}\right)$
$C[i] \leftarrow c$
$S[i] \leftarrow z^{\|m\|}$
$\operatorname{return} c$

```
Oracle VF
Input: \(c \in \mathcal{C}\)
    \(j \leftarrow j+1\)
    \(m \leftarrow \mathcal{D}(k, c)\)
    f \(j>i \vee m \neq S[j]\) then
        sync \(_{1} \leftarrow 0\)
    if \(j>i \vee c \neq C[j]\) then
        sync \(_{2} \leftarrow 0\)
    if \(m \neq \perp \wedge\) sync \(_{2}=0\) then
        if sync \(_{1}=1\) then
            \(d \leftarrow m(1)\)
            else
            bad \(\leftarrow \underline{1}\)
            id \(\leftarrow \bar{m} \overline{(1)}\)
    return \((m \neq \perp)\)
Finalization
    return \((d=z)\)
```

Figure 16: The game \mathbf{C}_{4} that is identical until bad to the game \mathbf{C}_{5}.

C_{5} and $\overline{\mathrm{C}}_{6}$

Initialization
$z \leftarrow\{0,1\}$
$k \leftarrow$ Gen
$i \leftarrow 0$
$j \leftarrow 0$
sync $_{1} \leftarrow 1$
sync $_{2} \leftarrow 1$
$C \leftarrow \emptyset$
$S \leftarrow \emptyset$
$d \leftarrow 0$
bad $\leftarrow 0$
Oracle Enc
Input: $m \in \mathcal{M}$
$i \leftarrow i+1$
$c \leftarrow \mathcal{E}\left(k, z^{|m|}\right)$
$C[i] \leftarrow c$
$S[i] \leftarrow z^{|m|}$
return c

Oracle VF
Input: $c \in \mathcal{C}$
$j \leftarrow j+1$
$m \leftarrow \mathcal{D}(k, c)$
if $j>i \vee m \neq S[j]$ then

- sync $_{1} \leftarrow 0$
if $j>i \vee c \neq C[j]$ then sync $_{2} \leftarrow 0$
if $m \neq \perp \wedge$ sync $_{2}=0$ then
if sync $_{1}=1$ then
$d \leftarrow m(1)$
else
bad $\leftarrow 1$
$d \leftarrow m(1)$
$\bar{d} \leftarrow \bar{m} \overline{(1)}$
return $(m \neq \perp)$
Finalization
return $(d=z)$

Figure 17: The game \mathbf{C}_{6}. Since bad is an internal variable only, removing this flag and all then unused code related to setting it does not affect the behavior.

C_{6} and $\overline{\mathrm{C}}_{7}$

Initialization

 \(z \longleftarrow\{0,1\}\)
 \(k \leftarrow\) Gen
 \(i \leftarrow 0\)
 \(j \leftarrow 0\)
 sync \(_{2} \leftarrow 1\)
 \(C \leftarrow \emptyset\)
 \(d \leftarrow 0\)
 Oracle Enc
Input: $m \in \mathcal{M}$
$i \leftarrow i+1$
$c \leftarrow \mathcal{E}\left(k, z^{|m|}\right)$
$----\overline{m^{-}} \bar{m}^{-}$
$1 m_{0} \leftarrow 0 \mid$
${ }_{1} m_{1} \leftarrow 1^{|m|}$
${ }_{\llcorner } c \leftarrow \mathcal{E}\left(k, m_{z}\right)_{1}^{\prime}$
$\stackrel{\llcorner }{ } \bar{C}[\bar{i}] \leftarrow \bar{c}$
return c

```
Oracle VF
```

Oracle VF
Input: $c \in \mathcal{C}$
Input: $c \in \mathcal{C}$
$j \leftarrow j+1$
$j \leftarrow j+1$
$m \leftarrow \mathcal{D}(k, c)$
$m \leftarrow \mathcal{D}(k, c)$
if $j>i \vee c \neq C[j]$ then
if $j>i \vee c \neq C[j]$ then
sync $_{2} \leftarrow 0$
sync $_{2} \leftarrow 0$
if sync $_{2}=0$ then
if sync $_{2}=0$ then
$m \leftarrow m$
$m \leftarrow m$
'else
'else
$\stackrel{m}{\leftarrow} \leftarrow \perp$
$\stackrel{m}{\leftarrow} \leftarrow \perp$
if $\bar{m} \overline{\neq \perp}{ }^{-} \operatorname{sync}_{2}=0$ then
if $\bar{m} \overline{\neq \perp}{ }^{-} \operatorname{sync}_{2}=0$ then
$d \leftarrow m(1)$
$d \leftarrow m(1)$
return $(m \neq \perp)$
return $(m \neq \perp)$
${ }_{1} \overline{\mathrm{if}} \overline{\mathrm{sync}}_{2}=\overline{0}$ then
${ }_{1} \overline{\mathrm{if}} \overline{\mathrm{sync}}_{2}=\overline{0}$ then
return $(m \neq \perp)$
return $(m \neq \perp)$
'else
'else
_return_1 _ _

```
    _return_1 _ _
```

Finalization
return $(d=z)$

Figure 18: The game \mathbf{C}_{7}. Observe that in the VF oracle, if $\operatorname{sync}_{2}=1$, then we have $c=C[j]$, which by correctness in turn implies that the cyphertext decrypts to the original message that is not equal to \perp. Moreover, if $\operatorname{sync}_{2}=1$, then m is unused for the rest of the oracle call.

C_{7}	
Initialization	Oracle VF
$z \leftarrow\{0,1\}$	Input: $c \in \mathcal{C}$
$k \leftarrow$ Gen	$j \leftarrow j+1$
$i \leftarrow 0$	$m \leftarrow \mathcal{D}(k, c)$
$j \leftarrow 0$	if $j>i \vee c \neq C[j]$ then
	sync $_{2} \leftarrow 0$
	$\begin{aligned} & \text { if } \text { sync }_{2}=0 \text { then } \\ & m \leftarrow m \end{aligned}$
Oracle Enc	${ }_{\text {else }}^{\text {el }}$ m¢
Input: $m \in \mathcal{M}$	- -1 ¢
$\stackrel{i}{\leftarrow}+1$	if $m \neq \perp \wedge$ sync $_{2}=0$ then
' $m_{0} \leftarrow 0^{\|m\|} \mid$ '	if sync ${ }_{2}=0$ then
! $m_{1} \leftarrow 1{ }^{1 m \mid}$	return ($m \neq \perp$)
$c \leftarrow \mathcal{E}\left(k, m_{z}\right)$	'else
$C[i] \leftarrow c$	-- return_
return c	Finalization
	return ($d=z$)

Figure 19: The reduction from \mathbf{C}_{7} to $\mathbf{I N D - s f C C A}{ }_{\Psi}$. The lines with the blue shade and the solid border belong to the $\mathbf{I N D}^{-s f C C A} \Psi_{\Psi}$ game, whereas the green shaded ones with the dashed border belong to the reductions. The uncolored lines are for bookkeeping that is replicated in both the IND-sfCCA Ψ game as well as the reduction.

Putting all together - especially (6), (7), and (8) - we obtain

$$
\begin{align*}
\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{0}} \Rightarrow 1\right] & =\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{1}} \Rightarrow 1\right] \\
& =\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{2}} \Rightarrow 1\right] \\
& =2\left(\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{3}} \Rightarrow 1\right]-\frac{1}{2}\right) \\
& =2\left(\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{4}} \Rightarrow 1\right]-\frac{1}{2}\right) \\
& \leq 2\left(\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{5}} \Rightarrow 1\right]+\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{4}} \text { sets bad }\right]-\frac{1}{2}\right) \tag{9}\\
& =2\left(\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{6}} \Rightarrow 1\right]+\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{4}} \text { sets bad }\right]-\frac{1}{2}\right) \\
& =2\left(\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{7}} \Rightarrow 1\right]+\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{4}} \text { sets bad }\right]-\frac{1}{2}\right) \\
& =2\left(\operatorname{Pr}\left[\mathcal{A}_{2}^{\text {IND-sfCCAA}} \neq 1\right]+\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{4}} \text { sets bad }\right]-\frac{1}{2}\right) \\
& =\operatorname{Adv}_{\Psi, \mathcal{A}_{2}}^{\text {IND-sfCCA }}+2 \operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{4}} \text { sets bad }\right] .
\end{align*}
$$

It remains to bound $\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{4}}\right.$ sets bad $]$. To this end, consider the game \mathbf{B}_{0}, depicted in Figure 20, which is identical to \mathbf{C}_{4} except that the winning condition is no longer win being set, but bad being set. Hence, by definition we have

$$
\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{4}} \text { sets bad }\right]=\operatorname{Pr}\left[\mathcal{A}^{\mathbf{B}_{0}} \Rightarrow 1\right]
$$

and moreover, it is easy to see that both \mathbf{B}_{1} and \mathbf{B}_{2} behaves equivalently as well, as seen in Figures 20 and 21. Finally, observe that \mathbf{B}_{2} is almost identical to the game \mathbf{P}_{1} defined above, as shown in Figure 22. Thus, using (5) we obtain

$$
\begin{equation*}
\operatorname{Pr}\left[\mathcal{A}^{\mathbf{C}_{4}} \text { sets bad }\right]=\operatorname{Pr}\left[\mathcal{A}_{3}^{\text {INT-sfPTX } \mathbf{T}_{\Psi}} \Rightarrow 1\right] \tag{10}
\end{equation*}
$$

Combining (1), (3), (4), (5), (9), and (10) concludes the proof.

B_{0} andi B_{1}

Initialization
$z \leftarrow\{0,1\}$
$k \leftarrow$ Gen
$i \leftarrow 0$
$j \leftarrow 0$
$\operatorname{sync}_{1} \leftarrow 1$
$\operatorname{sync}_{2} \leftarrow 1$
$C \leftarrow \emptyset$
$S \leftarrow \emptyset$
$d \leftarrow 0$
bad $\leftarrow 0$
Oracle Enc
Input: $m \in \mathcal{M}$
$i \leftarrow i+1$
$c \leftarrow \mathcal{E}\left(k, z^{\|m\|}\right)$
$C[i] \leftarrow c$
$S[i] \leftarrow z^{\|m\|}$
return c

Oracle VF
Input: $c \in \mathcal{C}$
$j \leftarrow j+1$
$m \leftarrow \mathcal{D}(k, c)$
if $j>i \vee m \neq S[j]$ then
sync $_{1} \leftarrow 0$
if $j>i \vee c \neq C[j]$ then
sync $_{2} \leftarrow 0$
if $m \neq \perp \wedge$ sync $_{2}=0$ then
if sync $_{1}=1$ then
$d \leftarrow m(1)$
else
\square bad $\leftarrow 1$
${ }_{1} \overline{\mathrm{if}} \mathrm{sync}_{1}=\overline{0}$ then
\square bad $\leftarrow 1$
return $(m \neq \perp)$

Finalization

return bad

Figure 20: The games \mathbf{B}_{0} and \mathbf{B}_{1}. The former is identical to \mathbf{C}_{4} except that in the finalization now the bad flag gets checked. Moreover, \mathbf{B}_{1} behaves equivalent to \mathbf{B}_{0}, since d is unused.

\mathbf{B}_{1} and \mathbf{B}_{2}

Initialization

$z \nVdash\{0,1\}$
$k \leftarrow$ Gen
$i \leftarrow 0$
$j \leftarrow 0$
sync $_{1} \leftarrow 1$
$\operatorname{sync}_{2} \leftarrow 1$
$C \leftarrow \emptyset$
$S \leftarrow \emptyset$
bad $\leftarrow 0$
Oracle Enc
Input: $m \in \mathcal{M}$
$i \leftarrow i+1$
$c \leftarrow \mathcal{E}\left(k, z^{|m|}\right)$
$C[i] \leftarrow c$
$S[i] \leftarrow z^{|m|}$
return c

Oracle VF
Input: $c \in \mathcal{C}$
$j \leftarrow j+1$
$m \leftarrow \mathcal{D}(k, c)$
if $j>i \vee m \neq S[j]$ then
$\left\llcorner\right.$ sync $_{1} \leftarrow 0$
if $j>i \vee c \neq C[j]$ then
sync $_{2} \leftarrow 0$
if $m \neq \perp \wedge$ sync $_{2}=0$ then
if sync $_{1}=0$ then
bad $\leftarrow 1$
if $m \neq \perp \wedge$ sync $_{1}=0$ then
$\mathfrak{- b a d} \leftarrow 1$
return $\bar{m} \neq \bar{\perp})^{---------1}$
Finalization
return bad

Figure 21: The game \mathbf{P}_{2}. Note that by correctness sync ${ }_{1}=0$ implies sync ${ }_{2}=0$, and thus removing the former check does not change the behavior.

B_{2} and ${ }^{\prime} \overline{\mathrm{P}}_{1}$?

```
Initialization
    z}\leftarrow{0,1
    k\leftarrowGen
    i\leftarrow0
    j\leftarrow0
    \mp@subsup{\mathrm{ yncc}}{1}{}\leftarrow1
    S\leftarrow\emptyset
    bad \leftarrow0
    -\mp@subsup{)}{}{----}
Oracle Enc
Input: m}\in\mathcal{M
    i\leftarrowi+1
    l\leftarrow\imath+1
    c
M
|}c\leftarrow\mathcal{E}(k,\mp@subsup{m}{}{\prime}
:}S[i]\leftarrowm
return c
Oracle VF
Input: c\in\mathcal{C}
Input: c\in\mathcal{C}
    j\leftarrowj+1
    m\leftarrow\mathcal{D}(k,c)
    if j>i\veem\not=S[j] then
        sync
        if m\not=\perp\wedge sync
        bad \leftarrow1
        i\mp@subsup{)}{\overline{\prime}}{1}\mp@code{\leftarrow-1}
    return ( }m\not=\perp\mathrm{ )
Finalization
    return bad
    'return--``-
```

Figure 22: It is easy to verify that \mathbf{B}_{2} is equivalent to the game \mathbf{P}_{1} that has already been defined above.

References

[BKN04] M. Bellare, T. Kohno, and C. Namprempre, "Breaking and provably repairing the SSH authenticated encryption scheme", ACM Transactions on Information and System Security, vol. 7, no. 2, pp. 206-241, 2004. DOI: 10.1145/996943. 996945. [Online]. Available: https://eprint.iacr.org/2002/078.pdf.
[BN08] M. Bellare and C. Namprempre, "Authenticated encryption: Relations among notions and analysis of the generic composition paradigm", Journal of Cryptology, vol. 21, no. 4, pp. 469-491, 2008. DOI: 10.1007/s00145-008-9026-x. [Online]. Available: https://cseweb.ucsd.edu/\{~\}ihir/papers/oem. pdf.

