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Abstract

We present the first computationally sound symbolic analysis of Yao’s garbled circuit construction
for secure two party computation. Our results include an extension of the symbolic language for crypto-
graphic expressions from previous work on computationally sound symbolic analysis, and a soundness
theorem for this extended language. We then demonstrate how the extended language can be used to
formally specify not only the garbled circuit construction, but also the formal (symbolic) simulator re-
quired by the definition of security. The correctness of the simulation is proved in a purely syntactical
way, within the symbolic model of cryptography, and then translated into a concrete computational in-
distinguishability statement via our general computational soundness theorem. We also implement our
symbolic security framework and the garbling scheme in Haskell, and our experiment shows that the
symbolic analysis performs well and can be done within several seconds even for large circuits that are
useful for real world applications.

1 Introduction

Secure computation protocols [Yao82,Yao86,GMW87,BGW88], showing that any function can be evaluated
by two or more distrustful parties in a secure way, are a cornerstone of cryptography, and one of the most
complex security problems ever envisioned and solved by cryptographers. The complexity of designing
and analyzing (general) secure computation protocols stems in good part from the fact that they require the
construction of not just a single security application, but of an entire class of applications, each described
by a function specified in a (low level, but still general purpose) computational model, e.g., that of arbitrary
Boolean circuits. So, in a sense, protocols for secure computation problems are not individual security
applications, but compilers to translate specifications (e.g., circuits to be computed) to secure solutions,
often to be validated with respect to a strong simulation-based definition of security. In fact, much work on
the implementation of secure computation (e.g., see [BNP08,MNPS04,BLW08,Mal11]) takes the form of
compilers and execution engines. In this paper, we focus on the two party secure computation problem and
Yao’s garbled circuits [Yao82,Yao86], the first, and still most popular (in its many variants) solution to this
problem. Even disregarding implementation issues, it is indicative of the complexity of this problem, that
the first proof of security for Yao’s garbled circuit construction [LP09] appeared approximately 30 years after
the protocol was originally proposed [Yao82,Yao86].
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Following a line of research initiated by Abadi and Rogaway [AR07], we consider the possibility of
simplifying and formalizing the design and analysis of secure (two-party) computation protocols using a
hybrid approach, consisting of the following steps:

• Setting up a symbolic execution model, which provides a simple language to describe (and analyze)
cryptographic computations without all the details and complications of concrete (complexity based)
computational models.

• Proving a general computational soundness result, showing that what can be proved symbolically in
this abstract model of computation, also holds true when the symbolic language is instantiated with
computational cryptographic functions satisfying standard (computational) notions of security.

• Prove that the protocol is secure in a purely symbolic/syntactical way, i.e., within the abstract model.
• Conclude, via the computational soundness theorem, that the standard implementation of the protocol

(using a concrete, computational instantiation of the cryptographic primitives) satisfies the compu-
tational indistinguishability security properties expected by cryptographers, and demanded by actual
applications.

The usefulness and viability of this computationally sound symbolic approach to security analysis has been
investigated and demonstrated in a number of papers. Previous work includes foundational results [AR07,
MW04,Mic10], and applications to a number of different settings, like key distribution protocols [MP06,
Pan07,MP08], access control in XML databases [AW08], password guessing attacks [BWA10], and more.

The goal of this paper is to demonstrate the applicability of this attractive methodology to the analysis
of secure computation protocols, and, specifically, Yao’s protocol for secure two party computation. Perhaps
surprisingly, we are able to show that a very simple extension of symbolic cryptography languages already
considered in the past are sufficient to both model and analyze this type of protocols. While we focus on Yao’s
protocol in one of its simplest variants, we believe that there is a general lesson to be learned: computation-
ally sound symbolic analysis can be a powerful tool to manage the complexity of high level cryptographic
applications.

We believe that the use of these methods is not limited to the mechanic validation of protocols that are
seemingly too complex to be checked by hand, but it can actually help to carry out the security analysis at
a sufficiently high (still precise and computationally meaningful) level of abstraction, so that formal proofs
can be validated (and, most importantly, understood) by humans. Further extensions of the language and
techniques described in this paper may also offer a basis to study optimizations and extensions of Yao’s basic
protocol, and, perhaps, even the construction of verified optimizing compilers for secure computation that
translate between different variants of cryptographic constructions, while at the same time checking that the
transformations preserve both functionality and security.

Contributions and Technical Overview As outlined above, our goal is to describe Yao’s garbled circuits
by simple “symbolic” cryptographic expressions, e.g., expressions of the form ⦃(K1,⦃K2⦄K1

)⦄K3
, represent-

ing the encryption under key K3 of a pair, consisting of a key K1 and a random message K2 encrypted under
K1. Here we are using the compact notation ⦃m⦄k, quite common in symbolic cryptography, to represent the
encryption of m under k. (In this introduction we appeal on the reader’s intuition to interpret the meaning of
symbolic expressions, and refer to Section 2 for formal definitions.) It is important to note that expressions
like E = ⦃(K1,⦃K2⦄K1

)⦄K3
do not represent the result of running an set of encryption algorithms, but they

are purely syntactical objects, and can be manipulated as such. Of course, expressions like these can also be
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mapped to probability distributions over bit-strings, once an appropriate encryption scheme has been chosen
to implement ⦃⋅⦄k, and random values are chosen for all the Ki symbols used in the expression. The resulting
distribution is what an real adversary would see when the protocol is implemented and executed in practice.

A simple language of this type was suggested in the pioneering work of Abadi and Rogaway [AR07],
which also showed how to map these expressions to symbolic patterns that capture the adversary’s view or
knowledge of the computation. E.g., the expressionE described above could be mapped to the pattern ⦃□⦄,
representing the fact that the adversary can tell this is a cipher-text, but nothing else because it does not know
the encrypting key K3. More realistically, this expression could be mapped to the pattern ⦃⦇K,⦃K⦄⦈⦄K3

to
capture the fact that the standard notion of encryption does not hide the size of the message being encrypted
(and, thereby, it may reveal information on the “structure” or “shape” ⦇K,⦃K⦄⦈ of the payload,) and may
also reveal partial information about the encryption key K3. (Protecting the identity of the recipient key K3 is
an extra security feature, typically called “anonymous encryption”.) Abadi and Rogaway [AR07] also proved
a computational soundness result, showing that the symbolic notion of equivalence induced by these patterns
(i.e., two expressions are equivalent if they map to the same symbolic pattern, possibly up to variable renam-
ing), matches precisely the computational notion of computational indistinguishability (i.e., the probability
distributions generated by the two expressions cannot be told apart by any efficient adversary), provided a
certain technical condition of encryption cycles is met.

In this work, we follow the approach of [Mic10], which allows to bypass the key-cycles technicality by
using a co-inductive definition of symbolic adversarial knowledge. The language of [AR07,Mic10] allows
to use only (arbitrarily nested) encryption, but it has been extended in [Mic09] to provide a computationally
sound treatment of pseudo-random generators. As a first contribution of this work, we further extend the
language (and computational soundness results) of [AR07,Mic10,Mic09] allows to include also randomly
chosen bits, and a controlled-swap operation �[b](e0, e1) that randomly permutes {e0, e1} depending on the
value of the (randomly chosen) bit b. (This is described in Section 2.)

Next, we show how this simple extended language is enough to express Yao’s garbling procedure in a
purely symbolic way. This requires to describe a method to map arbitrary circuits to symbolic expressions,
rather than simply providing a single expression or sequence of expressions (as used, for example, in a multi-
step protocol.) In turn, this requires a good way to handle arbitrary circuits within symbolic computations.
The way circuits are typically formalized (as an unstructured list of gates and wires, similar to representing a
graph by unstructured sets of nodes and edges) is not very convenient. As a second contribution of this work,
we propose an inductive method and syntax to describe circuits, where larger circuits are built in a modular
way from smaller ones, starting from the basic case of single gates. (For simplicity, we consider only two
types of gates: a NAND gate mapping two Boolean inputs to one output, and a “duplicate” gate mapping a
single input to two identical outputs.) This modular description of circuits supports both the formal definition
of circuit mapping functions, and associated proofs of security, by structural induction. We remark that this
circuit description language is by no means new, and it is strongly inspired by similar ideas used in modern
high level programming languages, like Hughes’ arrows [Hug00,Hug04].

As a disclaimer, we should note that the arrow syntax used in this paper is a good match for the math-
ematical definition of circuits, and it is a convenient formalism to specify and analyze circuit-manipulating
programs (like compilers for secure computation), but it is not necessarily intended as a user friendly method
to specify computations. But alternative syntax to describe circuit/arrow computations in a programmer
friendly way exist [Pat01, LWY10], it can be automatically translated into the mathematical (inductive) ar-
rows notation, and it is readily found implemented in mainstream programming languages like Haskell to
structure complex software libraries, like graphical user interfaces, robotics applications, hardware descrip-
tion languages, and more. So, we will not be concerned on the usability of the arrow notation to directly
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specify application circuits, and refer the interested reader to the programming language literature for more
information.

What is more relevant, in the context of this paper, is that we are able to use our extended language for
symbolic cryptography, and the structural arrow-like formalization of circuits, to give a formal, yet concep-
tually simple description of

• Yao’s circuit garbling procedure,
• a symbolic simulator, used to prove the security of Yao’s construction, and
• a detailed, formal proof showing that the output of Yao’s garbling and the output of the simulator, are

symbolically equivalent, i.e., they map to equivalent symbolic patterns.
We remark that all these definitions and proofs are purely symbolic, and they work by induction on the
structure of the circuits, reducing the security analysis to the verification of a small number of base cases and
inductive steps. It follows from our computational soundness theorem that, when implemented using standard
cryptographic primitives, the resulting construction achieves the standard security notion of computational
indistinguishability used in cryptography.

It is important to note that the connection between symbolic security, and computational security is not
established at the level of garbled circuits, but it is proved in the context of a general soundness theorem for
a generic, simple language of cryptographic expressions. The language is designed to be powerful enough
to express garbled circuits and the associated simulation procedure, but it is otherwise independent of the
specific circuit garbling problem. We believe that this greatly simplifies and elucidates both the computa-
tional soundness result (which is proved for a simple, application independent language,) and the application
to garbled circuits (which is described and analyzed in a purely symbolic manner.)

Other related work Since the detailed security proof of garbled circuits in [LP09], there have been many
studies on various security properties of garbled circuits. For a recent summary see for example [BHR12b].
The security notion used in [LP09] is sometimes called selective security, in which an adversary must choose
an input before the circuit is provided to the simulator. A more useful notion in practice is adaptive security,
in which a simulator must be able return a simulated garbled circuit back to the adversary given only the
circuit, and the adversary can adaptively choose an input value after seeing the garbled circuit. There is a
number of works that explore adaptive security of garbled circuits, for example [BHR12a,BGG+14,HJO+16].
Jafargholi andWichs [JW16] showed that Yao’s original construction of garbled circuits is already adaptively
secure with a security loss of 2O(d), where d is the circuit depth, and this result has been further generalized
in [JKK+17]. As a first step toward the symbolic modeling of garbling schemes, in this paper, we focus on
selective security.

Adaptive security in general can be solved by using the “erasure” approach [BH92] or by assuming
non-standard primitives such as non-committing encryption [CFGN96]. In the symbolic setting, adaptive
security with standard assumptions was considered in the past in the context of symmetric-key encryption
protocols [Pan07]. That approach can be adapted to our symbolic model to deal with adaptive security of
garbled circuits. But such extension may require a non-trivial amount of work and is beyond the scope of the
current paper, so we leave it for future study.

Machine-checked proofs have been developed for cryptographic systems through several computer-aided
verification tools such as CryptoVerif [Bla06], CertiCrypt [BGZB09], EasyCrypt [BGHB11], and so on.
These tools apply formal methods in conjunction with cryptography-specific constructions, and they impose
rigorous proof styles. However, the proofs written in these systems are usually long and require expert
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knowledge in the underlying logic systems, and they are not easily accessible to cryptographers who are
more familiar with complexity based proofs. In contrast, thanks to the symbolic framework used in this
paper, our security formulations and proofs are more comprehensible to cryptographers, while they are still
rigorous and precise to be automated using verification tools.

Paper organization The rest of the paper is organized as follows. In Section 2 we provide formal def-
initions for symbolic cryptography, background on computational soundness, and our extended symbolic
language (and computational soundness theorem) to describe garbled circuits. Our inductive method to de-
fine circuits is presented in Section 3. In Section 4, we use our language of symbolic cryptography and the
structural definition of circuits, to give a formal description of Yao’s circuit garbling procedure. Section 5
contains the main results of the paper, with the description of a symbolic simulator, and a formal proof that it
is (symbolically) equivalent to real garbled circuit computations. Computational security of garbled circuits,
as described in this paper, automatically follows from the general soundness results given in Section 2. Fi-
nally in Section 6, we report our implementation of the symbolic garbling procedure and the simulator, and
we provide some experimental results on automated testings performed against our implementation.

2 Preliminaries

In this section we introduce basic notation used by symbolic and computational cryptography. For a positive
integer n, we write [n] = {1,… , n}. We use the bit 0 for the Boolean value false, and 1 for true. For n ≥ 1,
{0, 1}n is the set of all Boolean vectors of length n. We can concatenate two Boolean vectors x ∈ {0, 1}n
and y ∈ {0, 1}m to obtain xy ∈ {0, 1}n+m. For any x ∈ {0, 1}n, we can think x as a concatenation of n bits,
written as x = x1⋯ xn, where x1,… , xn ∈ {0, 1}. For any x, y ∈ {0, 1}, the NAND function x↑y = ¬(x∧y)
maps x and y to 0 if and only if both x and y are 1.

2.1 Symbolic cryptography

Our symbolic cryptographic expressions extend those defined in [Mic09] with random bits and a swap op-
eration, which we need to model garbled circuits. Informally, symbolic expressions are built from random
keys and (possibly random) bits, using a symmetric encryption scheme, a (length doubling) pseudo-random
generator, a pairing (concatenation) operation, and the (random) permutation of pairs. Just as in computa-
tional cryptography it is convenient to group bit-strings according to their length, in symbolic cryptography
it is customary to classify expressions according to their shape, which captures the expression size in a repre-
sentation independent way. The set of possible shapes for a symbolic expression is defined by the grammar:

Shape → B ∣ K ∣ ⦇Shape,Shape⦈ ∣ ⦃Shape⦄

representing the shapes of bits, keys, pairs (of two sub-expressions of arbitrary shape), and encryptions (of
messages of arbitrary shape), respectively. For example ⦇K,⦃B⦄⦈ is the shape of a pair consisting of a key
and the encryption of a single bit message. Let B = {Bi ∣ i = 1, 2,…} be a set of atomic bit symbols, and
K = {Ki ∣ i = 1, 2,…} a set of atomic key symbols, representing independent uniformly random bits and
independent uniformly random keys, respectively. For any shape s ∈ Shape, we define a corresponding set
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of expressions of shape s (denoted Exp(s)) according to the grammar rules:
Exp(B) → 0 ∣ 1 ∣ Bi ∣ ¬Exp(B)
Exp(K) → Ki ∣ G0(Exp(K)) ∣ G1(Exp(K))

Exp(⦃s⦄) → ⦃Exp(s)⦄Exp(K)

Exp(⦇s, t⦈) → (Exp(s),Exp(t))
Exp(⦇s, s⦈) → �[Exp(B)](Exp(s),Exp(s)).

where s, t range over Shape, Bi ranges over B, and Ki ranges over K. Most symbols are self explanatory:
¬b represents the logical negation of bit b, (G0(k),G1(k)) represents the output of a length doubling pseudo-
random generator on seed k (with G0(k) the first half of the output, and G1(k) the second half,) ⦃e⦄k is the
encryption of e under key k, (e0, e1) is the ordered pair with sub-expressions e0 and e1, and for any bit b
and expressions e0, e1 of the same shape, �[b](e0, e1) represents the pair (e0, e1) with the two components
swapped if b = 1. For example, ⦃G0(K1)⦄G1(K1) represents the encryption of the first halfG0(K1) of a pseudo-
random string (obtained by applying the pseudo-random generator on seed K1,) encrypted under the second
half of the pseudo-random string, while �[B1](G0(K1),G1(K1)) represents a pseudo-random string (output
by the length doubling pseudo-random generator on random seed K1), with the first and second half of the
string permuted (swapped) at random depending on the value of the (random) bit B1.

Note that we can iteratively apply the pseudo-random generator on a key expression k to obtain expres-
sions such as Gb1(Gb2(⋯ (Gbn(k)))) for n ≥ 0 and b1, b2,… , bn ∈ {0, 1}. Such expressions are abbreviated
as Gb1b2…bn(k). Let " denote the empty bit-string, and let {0, 1}∗ denote the set of all bit-strings. For any set
S ⊆ Exp(K), we define the sets

G∗(S) = {Gw(k) ∣ k ∈ S,w ∈ {0, 1}∗}
G+(S) = {Gw(k) ∣ k ∈ S,w ∈ {0, 1}∗, w ≠ "}

obtained by applying the (first or second half of the) pseudo-random generator zero (resp. one) or more
times to a key in S. So, for example, G∗(K) = Exp(K) is the set of all (random or pseudo-random) keys.
For convenience, we write K∗ for G∗(K) and K+ for G+(K). If S = {k} is a singleton set, we usually write
G+(k) and G∗(k) instead of G+({k}) and G∗({k}).

Patterns are extensions of expressions that include the construct ⦃s⦄Exp(K) to represent the encryption of
an unknown expression of shape s. The pattern ⦃s⦄Exp(K) has shape ⦃s⦄. Formally, patterns are defined by
a grammar with variables Pat(s) indexed by s ∈ Shape, and the same set of rules as those given for Exp(s),
with the addition of one more rule

Pat(⦃s⦄) → ⦃s⦄Exp(K).

Pat(s) is the set of all patterns of shape s, and Pat is the set of all patterns (of any shape). Notice that
Pat(B) = Exp(B) and Pat(K) = Exp(K) because only encryption gives raise to nontrivial patterns.

Computational evaluation Throughout this paper we let � be the security parameter used for the evalua-
tion of cryptographic expressions in the computational setting. For simplicity, all keys are assumed to have
length �. We consider a fixed pseudo-random generator  ∶ {0, 1}� → {0, 1}2� , and symmetric encryp-
tion scheme ( ,) with keys of length �. We assume that the size of a cipher-text (k, m) is a function
of the size of the input m, i.e., if two messages have the same length, then their encryption also have the
same length. We do not make any special assumption on the encoding of pairs (e0, e1), except that e0 and
e1 can be recovered from (e0, e1), and that the size of (e0, e1) depends only on the size of e0 and the size of
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e1. For any x ∈ {0, 1}� , let 0(x) and 1(x) be the first and second halves of the bit-string (x), so that
(x) = 0(x)1(x). Let � be a function mapping B to {0, 1}, and K to {0, 1}� . We can extend � to map any
symbolic expression to a distribution on bit-strings as follows:

�(0) = 0, �(1) = 1,
�(G0(k)) = 0(�(k)), �(¬b) = 1 − (�(b)),
�(G1(k)) = 1(�(k)), �(⦃e⦄k) = (�(k), �(e)),

�((e0, e1)) = (�(e0), �(e1)), �(�[b](e0, e1)) =
{

(�(e0), �(e1)) if �(b) = 0
(�(e1), �(e0)) if �(b) = 1

where k ∈ Exp(K), and b ∈ Exp(B). The computational evaluation JeK of an expression e is defined as the
probability distribution obtained by first choosing a uniformly random key and bit assignment �, and then
picking a sample from �(e).1 It is easy to check (by induction) that any two expressions of the same shape
evaluate to bit-strings of the same length.
Lemma 1. For any shape s, all strings in JExp(s)K have the same bit-length.

Using this property, we can associate a bit-length to any shape s as the bit-length |s| of any string in the
set JExp(s)K, and extend the evaluation of expressions to evaluation of patterns by defining

�(⦃s⦄k) = (�(k), 0|s|).

Independence of pseudo-random keys The following definitions are given in [Mic09] to provide a (com-
putationally sound) treatment of symbolic pseudo-random generators. For any two keys k1, k2 ∈ K∗, if
k2 ∈ G∗(k1) then we say that k1 yields k2, and denote this as k1 ⪯ k2, meaning that k2 can be obtained from
k1 by repeated application of the pseudo-random generator. By k1 ≺ k2 we mean that k1 ⪯ k2 and k1 ≠ k2.
We say that k1 and k2 are independent if neither k1 ⪯ k2 nor k2 ⪯ k1. The keys {k1,… , kn} form an inde-
pendent set if ki and kj are independent for all i ≠ j. The root of any set of keys S isRoots(S) = S ⧵G+(S).
Thus S is independent if and only if S = Roots(S). We recall the following theorem from [Mic09] which
shows that independent symbolic keys correspond to (computational) pseudo-random bit-strings.
Theorem 1 ([Mic09, Theorem 1]). Let k1,… , kn ∈ K∗ be a sequence of symbolic keys. Then for any secure
length-doubling pseudo-random generator , the following two conditions are equivalent:

1. The keys k1,… , kn are symbolically independent (i.e., ki ⪯ kj if and only if i = j).

2. The probability distribution Jk1,… , knK is computationally indistinguishable from Jr1,… , rnK where
r1,… , rn ∈ K are distinct atomic key symbols.

Equivalence and Renaming of patterns We consider patterns up to simple operations that do not change
the probability distributions associated to them. First, let ≡ be the smallest congruence relation on Pat such
that

¬0 ≡ 1 �[0](e0, e1) ≡ (e0, e1)
¬1 ≡ 0 �[1](e0, e1) ≡ (e1, e0)

¬(¬b) ≡ b �[¬b](e0, e1) ≡ �[b](e1, e0)
1Notice that, even for fixed � and e, the image �(e) is a probability distribution because it involves the use of a probabilistic

encryption scheme  .
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for all e0, e1 ∈ Pat(s), and b ∈ Pat(B). It should be clear from the computational interpretation of �[b] and
¬b that for any two equivalent patterns e0 ≡ e1 and any assignment �, the probability distributions �(e0) and
�(e1) are identical. Similarly, we define a random bit renaming as a function �B ∶ B → {b,¬b ∣ b ∈ B}
such that its projection �′B ∶ B → B (defined by the condition �B(b) ∈ {�′B(b),¬�

′
B(b)}) is a bijection on B.

Random bit renamings are extended to patterns �B ∶ Pat(s) → Pat(s) in the obvious way, and it is easy to
check that for any pattern e ∈ Pat(s) and assignment �, the distributions �(e) and �(�B(e)) are identical.

For keys, we consider a form of renaming that may change the distribution associated to an expression
or pattern, but in a computationally indistinguishable way. Following [Mic09], we define a pseudo-random
key renaming as a mapping �K ∶ S → K∗ on S ⊆ K∗ that preserves G, i.e.,

Gw(k1) = k2 ⟺ Gw(�K (k1)) = �K (k2)

for all w ∈ {0, 1}∗ and k1, k2 ∈ S. We restate some useful properties of key renamings proved in [Mic09]:
1. [Mic09, Lemma 1] Any valid pseudo-random key renaming �K ∶ S → K∗ is a bijection from S to
�K (S). Moreover, S is independent if and only if �K (S) is independent.

2. [Mic09, Lemma 2] Any pseudo-random key renaming �K with domainS can be uniquely extended to a
pseudo-random key renaming �̄K with domainG∗(S). In particular, any pseudo-random key renaming
can be uniquely specified as an extension �̄K of a bijection �K ∶ A → B between independent sets
A = Roots(S) and B = �K (A).

3. [Mic09, Lemma 5] For any pseudo-random key renaming �K ∶ S → K∗ and set of keys A ⊆ S,
�K (Roots(A)) = Roots(�K (A)).

Pseudo-random key renamings �K can also be extended to patterns �K ∶ Pat(s) → Pat(s) in the obvious
way, and while the distributions �(e) and �(�K (e)) may, in general be different, they are always computa-
tionally indistinguishable.

The following lemma is an easy consequence of Theorem 1, and, despite the fact that we use a larger
class of expressions, the proof is virtually identical to that of [Mic09, Corollary 1]. For completeness, a
formal proof can be found in the appendix.
Lemma 2. For any pattern e and pseudo-random key renaming �K , the distributions JeK and J�K (e)K are
computationally indistinguishable.

We refer to a pair of mappings � = (�B, �K ) (consisting of a random bit renaming �B and a pseudo-
random key renaming �K ) as a pseudo-random renaming, or simply a renaming. For any pattern e ∈ Pat(s),
we write �(e) = �K (�B(e)) = �B(�K (e)) for the result of applying the renamings to the pattern e.2 Two
patterns e0 and e1 are equivalent up to renaming, denoted as e0 ≈ e1, if there exists a renaming � = (�B, �K )
such that e0 ≡ �(e1). When we want to emphasize the renaming �, we write e0 ≈� e1. It follows from the
previous statements that patterns that are equivalent up to renaming evaluate to probability distributions that
are computationally indistinguishable.

Pattern computation Following [Mic10], the mapping from expressions to patterns is defined by two
functions:

• A function p(e, S) mapping an expression (or pattern) e and set of keys S ⊆ K∗ to the pattern repre-
senting the view of e to an adversary that can decrypt under (all and only) the keys in S.

2Notice that the mappings �B and �K commute, so they can be applied in any order.
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p(b, S) = b p((e0, e1), S) = (p(e0, S),p(e1, S))
p(k, S) = k p(�[b](e, e0), S) = �[b](p(e, S),p(e0, S))

p(⦃s⦄k, S) = ⦃s⦄k p(⦃e⦄k, S) =
{

⦃p(e, S)⦄k if k ∈ S
⦃s⦄k if k ∉ S

Figure 1: The pattern function p ∶ Pat × ℘(K∗) → Pat, defined for all b ∈ Exp(B), k ∈ Exp(K),
e, e0 ∈ Exp(s), e1 ∈ Exp(t)

Keys(b) = ∅ Parts(b) = {b}
Keys(k) = {k} Parts(k) = {k}

Keys(⦃e⦄k) = {k} ∪Keys(e) Parts(⦃e⦄k) = {⦃e⦄k} ∪ Parts(e)
Keys(⦃s⦄k) = {k} Parts(⦃s⦄k) = {⦃s⦄k}

Keys((e0, e1)) = Keys(e0) ∪Keys(e1) Parts((e0, e1)) = {(e0, e1)} ∪ Parts(e0) ∪ Parts(e1)
Keys(�[b](e0, e1)) = Keys(e0) ∪Keys(e1) Parts(�[b](e0, e1)) = {�[b](e0, e1)} ∪ Parts((e0, e1))

Figure 2: The definition of the keys and parts of a sub-expression. As usual b ∈ Exp(B), k ∈ Exp(K).

• A function r(p) mapping a pattern p to a corresponding set of keys, which may be recoverable by an
adversary that sees all the parts of p.

The definition of these functions is virtually identical to the one given in [Mic09] for expressions with pseudo-
random keys, extended with an additional case for our “controlled swap” expressions. Informally, p(e, S)
replaces all subexpressions of e of the form ⦃e′⦄k for some k ∉ S and e′ ∈ Pat(s), with the pattern ⦃s⦄k.
The formal definition is given in Figure 1.

The formal definition of r is more technical, and uses the auxiliary functionsKeys and Parts describing
the keys and parts of an expression given in Figure 2. As a matter of notation, for any two expressions e′ and
e, we say that e′ is a sub-expression of e, denoted as e′ ⋐ e, if e′ ∈ Parts(e). Notice that encryption keys
k are not considered sub-expressions of ⦃e⦄k, as, even an adversary with unlimited decryption capabilities
cannot, in general, recover k from⦃e⦄k. Informally, r(e) is defined as the set of all keys that can be potentially
recovered from Parts(e). In [Mic09], this is defined using a general framework to model partial information
in symbolic security analysis. For simplicity, here we only give the definition specialized to our class of
expressions.
Definition 1. For any e ∈ Pat, we define the key recovery function r ∶ Pat → ℘(K∗) as follows:

r(e) = G∗ ({k ∈ Keys(e) ∣ (k ⋐ e) ∨ (∃k′ ∈ Keys(e).k ≺ k′)}
)

Informally, r(e) contains all keys k from Keys(e) (and pseudo-random keys that can be derived from k)
such that either k appears in e as a sub-expression, or k is related to some other key inKeys(e). The intuition
behind this definition is that the adversary can learn a key k either by reading it directly from the parts of e,
or by combining different pieces of partial information about k. We refer the reader to [Mic09] for further
discussion and justification of this definition.
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One can check by induction that the following commutative properties hold for p and r: For any pattern
e ∈ Pat, set of keys S ⊆ K∗, and pseudo-random renaming �, we have �(p(e, S)) = p(�(e), �(S)), and
�(r(e)) = r(�(e)).

Computational soundness We can now return to the framework of [Mic10] to associate computationally
sound symbolic patterns to cryptographic expressions. The functions p and r are used to define, for any
e ∈ Pat, a key recovery operator

e(S) = r(p(e, S))

mapping any set of keys S ⊆ G∗(K), to the set of keys potentially recoverable by an adversary that is
capable of decrypting under the keys in S. This operator is used in [Mic10] to prove the following general
computational soundness result.
Theorem 2 ([Mic10, Theorem 1]). Assume the functions p, r satisfy the following properties:

1. p(e,K∗) = e

2. p(p(e, S), T ) = p(e, S ∩ T ) for all S, T ⊆ K∗

3. r(p(e, T )) ⊆ r(e) for all T ⊆ K∗

4. The distributions JeK and Jp(e, r(e))K are computationally indistinguishable.

Then, the key recovery operator e has a (unique) greatest fixed point Fix(e) = ∩i>0
(i)
e (K∗), and the

pattern
Pattern(e) = p(e,Fix(e))

is computationally sound, in the sense that JPattern(e)K and JeK are computationally indistinguishable dis-
tributions.

One can check that the functions p and r satisfy all the conditions 1 to 3 in Theorem 2. For the last
condition, the following lemma shows that JeK and Jp(e, r(e))K are indistinguishable for all patterns e. The
proof can be found in the appendix. Using the soundness theorem of the general symbolic framework of
[Mic10] we can then conclude that our symbolic semantics is computationally sound.
Lemma 3. For any e ∈ Pat, the probability distributions JeK and Jp(e, r(e))K are computationally indistin-
guishable.

Recall that renamings commute with the pattern function p, i.e., for any expression e and for any set of
keys S ⊆ K∗, p(�(e), �(S)) = �(p(e, S)). It follows that Pattern(�(e)) = �(Pattern(e)), and therefore
we can extend the computational soundness theorem to pattern equivalence up to renaming. That is, for
any two expressions e1 and e2, symbolic equivalence (up to pseudo-random renaming) of their patterns
Pattern(e1) and Pattern(e2) implies that the two probability distributions Je1K and Je2K are computationally
indistinguishable.
Theorem 3. For any two symbolic expressions e0, e1, if Pattern(e0) ≈ Pattern(e1), then Je0K and Je1K are
computationally indistinguishable.
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3 Inductive Circuits

Traditionally, boolean circuits are described by two sets of gates {gi}qi=1 and wires {wi}
p
i=1 and a descriptionof how they are connected together. Each wire carries a boolean value, that is either given as part of the input

to the circuit, or is computed by a gate. Each gate is associated to a number of input and output wires, and
sets the value of the output wires to some fixed function of the values of the input wires. For simplicity, we
consider circuits using just two types of gates:

• a NAND gate that on input two boolean values x0, x1, computes the output y = x0 ↑ x1, and
• a DUP gate, which duplicates the value on its single input wire x to its two output wires y0 = y1 = x.

The NAND function itself is complete for the set of all boolean functions, and the DUP gate can be used to
implement arbitrary fan-out. So any boolean circuit can be converted to this notation. A circuit with n input
wires and m output wires computes a boolean function f ∶ {0, 1}n → {0, 1}m.

This traditional formalization of circuits is completely unstructured, making it inconvenient to use in
symbolic constructions and proofs of security. Below we present an alternative way to describe boolean
circuits, which is inductive (larger circuits are built from smaller ones), and supports definitions and proofs
by structural induction.

We begin by putting some structure on the set of input and output wires of a circuit, by defining the
notion of a wire bundle. Informally, the shape of a wire bundle is defined by a well parenthesized expression
like (◦, (◦, ◦)). Formally, we can define bundle to be either a single wire (represented by the symbol ◦), or an
ordered pair (u, v) where u and v are wire bundles. The size of a bundle is simply the number of wires in it,
i.e., the number of ◦ subexpressions. Each wire ◦ carries a bit b ∈ {0, 1}, and a bundle of n wires naturally
carries a bit vector in {0, 1}n, but the additional bundle structure will give us easier access to individual bits,
without having to index them. We remark that the grouping of wires is not associative, i.e., ((u, v), w) is
different from (u, (v,w)).

We define circuits inductively, specifying a number of basic circuits, and some general operations to
combine them together. Each circuit takes as input a bundle of wires, and produces as output another bundle.
The set of circuits with input shape s and output shape t is denoted by Circuit(s, t). Circuits, their inputs and
outputs, and the functions they compute, are formally specified in the following definition, with the base and
inductive cases illustrated in Figures 3 and 4.
Definition 2. A circuit is either a basic circuit from the set {Swap,Assoc,Unassoc,Dup,NAnd}, or it is a
composite circuit built using operations⋙ and First. The semantics of basic circuits are:

• Swap consumes wires (u, v) and produces wires (v, u).

• Assoc consumes wires (u, (v,w)) and produces wires ((u, v), w).

• Unassoc consumes wires ((u, v), w) and produces wires (u, (v,w)).

• Dup consumes a single wire w and produces wires (w,w).

• NAnd consumes wires (u, v), where u and v are single wires carrying bits x and y, and its output is a
single wire that carries the bit x ↑ y.

For composite circuits, assume C0 is a circuit that takes u as input wires and produces output wires w,
and C1 a circuit that takes w as input wires and produces output wires v. Then
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S

Swap

A

Assoc

U

Unassoc

D

Dup

↑
N

NAnd

Figure 3: The atomic circuits Swap, Assoc, Unassoc, Dup, andNAnd. The dotted lines indicate how values
are transferred from input wires to output wires. For Swap, Assoc, and Unassoc, an arrow may represent a
bundle of more than one wires.

C0 C1

C0 ⋙ C1

C

First(C)

Figure 4: Composite circuits C0 ⋙ C1 and First(C) using operations⋙ and First on circuits C0, C1, C .
Dotted lines draw the boundaries of composite circuits.

• C0 ⋙ C1 is a circuit that takes input u and produces output v, obtained by first applying C0 on u to
get an intermediate result w, and then applying C1 on w to get v.

• First(C0) is a circuit that takes input wires (u, u′) and produces output wires (w, u′) for any wires u′,
where w is the output of C0 on input u, and u′ is left unchanged by the circuit.

To evaluate a circuit, we define the function Ev(C,w) that takes a circuit C ∈ Circuit(s, t) and a wire
bundle w of shape s, and return a bundle of shape t according to the above semantics. For simplicity, we
usually just write C(x) for the boolean value carried on the wires u = Ev(C,w) where x is the value carried
on w.

We remark that the circuit concatenation operation⋙ is associative, i.e., (C0⋙ C1)⋙ C2 and C0⋙
(C1⋙C2) produce the same circuit. So, we may omit the parentheses when writing a sequence of concate-
nations C0 ⋙ C1 ⋙ C2.

For a circuit C , we say that C ′ is a sub-circuit of C if one of the following holds:
• C ′ = C , or
• C = C0 ⋙ C1 and C ′ is a sub-circuit of C0 or C1, or
• C = First(C0) and C ′ is a sub-circuit of C0.
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Example 1. To illustrate our circuit notation, consider the function f ((x, y), z) = (x ∧ y, y → z), where
y → z ≡ ¬y ∨ z is the logical implication operation. First we define an operation Second on circuits such
that Second(C) is a circuit that takes as input a wire bundle (u, v) and produces as output a bundle (u,w),
where v is the input of C and w is the output of C:

Second(C) = Swap⋙ First(C)⋙ Swap

Since x↑x = ¬x, the circuit Not = Dup⋙NAnd computes the negation of an input bit, and the circuit
And = NAnd⋙ Not = NAnd⋙ Dup⋙ NAnd computes the function (x, y) ↦ (x ∧ y). Since y → z =
(¬y) ∨ z = y ↑ (¬z), the circuit Imp = Second(Not)⋙ NAnd computes the function (y, z) ↦ (y → z).
Putting them together, we obtain a circuit

C = First(Second(Dup)⋙ Assoc)⋙ Unassoc
⋙ First(And)⋙ Second(Imp)

for the function f ((x, y), z) = (x ∧ y, y → z), illustrated graphically in Figure 5. Notice how the first part
of the computation consisting of the Dup, Assoc and Unassoc gates is used to route the input wires to the
appropriate subcircuit.

D
A

U

x

y

z

↑ D ↑

D ↑ ↑

(x ∧ y)

(y→ z)

And

Imp

Figure 5: The circuit that computes the function f ((x, y), z) = (x ∧ y, y→ z).

Remark 1. With our circuit notation, a circuit with q gates and pwires can be represented using a string of size
O(qd log q), where d is the depth of the circuit. We can convert the traditional DAG-like circuit notation to
our inductive circuit representation by organizing gates into layers according to their depth. For a layer with
qi gates, the computation of these gates can be described using qi log qi many First and Second operations
together with qi basic circuits. To rearrange wires after a layer of qi gates, we can add O(qi log qi) many
Swap, Assoc, and Unassoc gates. The entire circuit can be concatenated from layers using⋙ operations.
So the size of such representation is O(qd log q).

4 Symbolic Garbling

Let us first recall the definition of circuit garbling schemes.
Definition 3. A garbling scheme is defined by a pair of PPT algorithms (Garble, GEval)3where

3Usually a garbling scheme consists of three algorithms (GCircuit, GInput, GEval) such that GCircuit produces a garbled
circuit and labels for the input wires, and GInput produces garbled input using the labels. Such a syntax is useful to define adaptive
security. However, we choose a simplified syntax of two algorithms that is sufficient to define selective security and convenient for
our analysis.

13



• Garble(C, x) = (C̃, x̃): The circuit garbling algorithm takes a circuit C and a boolean vector x as
input, and it produces a garbled circuit C̃ and a garbled input x̃.

• GEval(C̃, x̃) = y: The garbled circuit evaluation algorithm takes a garbled circuit C̃ and a garbled
input x̃ as input, and it produces a boolean vector y as output.

Definition 4. A garbling scheme (Garble, GEval) is correct if
GEval(Garble(C, x)) = C(x)

for all circuits C and boolean vectors x. The garbling scheme is (selectively) secure if there exists a PPT
simulator Simulate(⋅, ⋅) such that for any circuit C and input x, the distributions

Simulate(C,C(x)) ≃ Garble(C, x)

are computationally indistinguishable.

Strictly speaking, a simulator should not gain access to a circuit, and instead, it should take the topology
of a circuit as input. To simplify discussion, we use the actual circuit as its topology representation rather
than introducing new notations. This can be justified by the facts that 1) there is only one primitive gate in
our circuit notation, namely the NAND gate, and 2) our simulator (defined later) does not exploit the function
computed by the NAND gate.

Symbolic garbled circuit We consider garbling schemes where the output of all algorithms Garble,
GEval, and Simulate are expressions in our symbolic language Exp. This will allow us to analyze both
the correctness and security properties of the scheme in a purely symbolic manner, without resorting to the
power (and complications) of the full computational model of cryptography. The circuit garbling construc-
tion described here is essentially the one with the point-and-permute technique as described in [BMR90].
In this section we present Garble and GEval, and we will define Simulate and prove security in the next
section.

Let � denote a special symbolic expression whose computational evaluation is the empty string. We
slightly change the notation of atomic key symbols by using both subscripts and superscripts to index them:
an atomic key is a symbol Kji where i ∈ {1, 2,…} and j ∈ {0, 1}. With this notation, the set of atomic keys
is nowK = {K0

1,K
1
1,K

0
2,K

1
2,…}. To hide the input of a circuit, the garbling algorithm encodes values carried

on wires using labels of shape ⦇B, ⦇K,K⦈⦈, one for each wire. We call a bundle of labels a label expression.
Formally, we first define a function Label that on input a bundle shape s, outputs a collection of wire

labels:
Label(◦) = (Bℎ, (K0

ℎ,K
1
ℎ)) where

ℎ← new
Label((s, t)) = (Label(s), Label(t))

The instruction ℎ ← new picks a fresh index ℎ (e.g., using a counter), used to define a new symbolic label
(Bℎ, (K0

ℎ,K
1
ℎ)).A garbled input has two parts: an encoded input expression that is a bundle of shape (B,K), and an output

mask expression that is a bundle of bits. The function GEnc encodes a boolean vector using bits and keys in
a label expression:
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GEnc((B, (K0,K1)), 0) = (B,K0)
GEnc((B, (K0,K1)), 1) = (¬B,K1)
GEnc((L0, L1), (x0, x1)) = (GEnc(L0, x0), GEnc(L1, x1))

The output masks are used to decode an encoded expression. It is formed by the bits in a label expression:
GMask((B, (K0,K1))) = B
GMask((L0, L1)) = (GMask(L0), GMask(L1))

The core of the garbling algorithm is a recursive function Gb, which takes as input a circuit and a label
expression for the input wires, and outputs a symbolic expression of the garbled circuit and a label expression
for the output wires.

Gb :: Circuit(s, t) × Exp→ Exp × Exp
Gb(Swap, (u, v)) = �, (v, u)
Gb(Assoc, (u, (v,w))) = �, ((u, v), w)
Gb(Unassoc, ((u, v), w)) = �, (u, (v,w))
Gb(C0 ⋙ C1, u) = (C̃0, C̃1), v where
C̃0, w = Gb(C0, u)
C̃1, v = Gb(C1, w)

Gb(First(C), (u,w)) = C̃, (v,w) where
C̃, v = Gb(C, u)

Gb(Dup, (b, (k0, k1))) = �,w where
w = ((b,G0(k0),G0(k1)), (b,G1(k0),G1(k1)))

Gb(NAnd, ((bi, (k0i , k
1
i )), (bj , (k

0
j , k

1
j )))) = C̃, w where

ℎ← new
C̃ = �[bi](�[bj](⦃⦃(¬Bℎ,K1

ℎ)⦄k0j⦄k0i ,⦃⦃(¬Bℎ,K
1
ℎ)⦄k1j⦄k0i ),

�[bj](⦃⦃(¬Bℎ,K1
ℎ)⦄k0j⦄k1i ,⦃⦃(Bℎ,K

0
ℎ)⦄k1j⦄k1i ))

w = (Bℎ, (K0
ℎ,K

1
ℎ))

The full garbling procedure can be obtained by composing the above functions. On input a circuit C and
a boolean vector x, it picks random labels for the input wires using Label, calls Gb to generate a garbled
circuit C̃ and output labels, and then calls GEnc and GMask to produce a garbled input x̃.

Garble :: Circuit(s, t) × {0, 1}n → Exp
Garble(C, x) = (C̃, x̃) where
u ← Label(s)
C̃, v = Gb(C, u)
x̃ = (GEnc(u, x), GMask(v))

Next, we consider the garbled circuit evaluation algorithm GEval. The core part of GEval is a recursive
function GEv that takes a garbled circuit and an encoded input expression, producing an encoded output
expression. Any encoded output is also an encoded input for evaluating subsequent garbled circuits. We
include a circuit as another input of GEv, which is used to determine the shapes of output wires. Ideally we
can use the circuit’s topology instead, but for simplicity we just use the circuit itself and we do not exploit
the function computed by a circuit.
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GEv ∶∶ Circuit(s, t) × Exp × Exp → Exp
GEv(Swap, �, (u, v)) = (v, u)
GEv(Assoc, �, (u, (v,w)) = ((u, v), w)
GEv(Unassoc, �, (u, (v,w)) = ((u, v), w)
GEv(Dup, �, (b, k) = ((b,G0(k)), (b,G1(k)))
GEv(NAnd, C̃, ((b′0, k0), (b

′
1, k1))) = (b, k) where

�[b0](r0, r1) = C̃
�[b1](e0, e1) = if b′0 ≡ b0 then r0 else r1
⦃⦃(b, k)⦄k1⦄k0 = if b′1 ≡ b1 then e0 else e1

GEv(C0 ⋙ C1, (C̃0, C̃1), u) = GEv(C1, C̃1, w) where
w = GEv(C0, C̃0, u)

GEv(First(C), C̃, (u,w)) = (v,w) where
v = GEv(C, C̃, u)

We briefly explain how GEv works. For the basic circuits Swap, Assoc, Unassoc, and Dup whose
corresponding garbled circuits are �, it simply rearranges the bits and keys in the encoded input to form an
encoded output, except forDupwhere it generates and then splits a pseudo-random key in the encoded output.
For NAnd, it parses the corresponding garbled circuit as permutations controlled by atomic bits b0, b1, and
it selects the entry corresponding to the bits b′0, b′1. One can verify that, if (b′i, ki) is in the encoded input to
NAnd for i ∈ {0, 1}, then b′i ∈ {bi,¬bi} and the entry selected using bits b′0, b′1 are doubly encrypted under
keys k0,k1. So the expression (b, k) extracted by GEv is well-defined. For the composite circuits C0 ⋙ C1
and First(C), GEv produces an encoded output expression recursively in a way similar to how Ev evaluates
these circuits.

Notice that the output of GEv are bit symbols rather than boolean values. The function Decode uses the
output masks to decode a garbled output into a boolean vector:

Decode((b, k), b′) = if b ≡ b′ then 0 else 1
Decode((u0, u1), (d0, d1)) = (Decode(u0, d0), Decode(u1, d1))

Finally, the full evaluation algorithm GEval is defined as:
GEval ∶∶ Circuit(s, t) × Exp × Exp → {0, 1}n

GEval(C, C̃, x̃) = Decode(GEv(C, C̃, u), d) where
(u, d) = x̃

The following theorem shows that our garbling scheme is correct. Briefly speaking, the encoded input
expressions contain the sufficient bits and keys to obtain the encoded output from the garbled circuit expres-
sion, and the output masks provide information for decoding the encoded output. The formal proof can be
found in the appendix.
Theorem 4. For any circuit C ∈ Circuit(s, t) and any boolean vector x of shape s, GEval(Garble(C, x)) =
C(x).

5 Symbolic simulation and proof of security

In this section we define a simulator Simulate(⋅, ⋅), and we then present our proof that, for any circuit C and
any boolean vector x, the expressions Garble(C, x) and Simulate(C,C(x)) are equivalent upto renaming.
Together with the computational soundness theorem of our symbolic framework, such proof implies that the
garbled circuit scheme of the previous section is computationally secure.
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Symbolic simulator Recall that a simulator must output a symbolic expression that represent a garbled
circuit and a garbled input, and a garbled input consists of an encoded input and output masks. The simulator
has no access to the circuit input values, so it picks the random bit and the first random key from each label
to form the encoded input:

SEnc((B, (K0,K1))) = (K0,B)
SEnc((L0, L1)) = (SEnc(L0), SEnc(L1))

In order to correctly evaluate the simulated garbled circuit on the simulated garbled input, we adjust the output
masks according to the circuit output value. Given a label expression and a boolean vector representing the
circuit output value, the function SMask computes the output masks:

SMask((B, (K0,K1)), 0) = B
SMask((B, (K0,K1)), 1) = ¬B
SMask((L0, L1), (y0, y1)) = (SMask(L0, y0), SMask(L1, y1))

The core of our simulator is a recursive function Sim that consumes a circuit and a label expression for
input wires, and produces a symbolic expression of the simulated garbled circuit and a label expression for
output wires:

Sim :: Circuit(s, t) × Exp → Exp × Exp
Sim(Swap, (u, v)) = �, (v, u)
Sim(Assoc, (u, (v,w))) = �, ((u, v), w)
Sim(Unassoc, ((u, v), w)) = �, (u, (v,w))
Sim(C0 ⋙ C1, u) = (Ĉ0, Ĉ1), v where
Ĉ0, w = Sim(C0, u)
Ĉ1, v = Sim(C1, w)

Sim(First(C), (u,w)) = Ĉ, (v,w) where Ĉ, v = Sim(C, u)
Sim(Dup, (b, (k0, k1))) = �,w where
w = ((b, (G0(k0),G0(k1))), (b, (G1(k0),G1(k1))))

Sim(NAnd, ((bi, (k0i , k
1
i )), (bj , (k

0
j , k

1
j )))) = Ĉ, w where

ℎ← new
Ĉ = �[Bi](�[Bj](⦃⦃(Bℎ,K0

ℎ)⦄k0j⦄k0i ,⦃⦃(Bℎ,K
0
ℎ)⦄k1j⦄k0i ),

�[Bj](⦃⦃(Bℎ,K0
ℎ)⦄k0j⦄k1i ,⦃⦃(Bℎ,K

0
ℎ)⦄k1j⦄k1i ))

w = (Bℎ, (K0
ℎ,K

1
ℎ))

Notice that, for any circuit C and any label expression u, if C̃, v = Gb(C, u) and Ĉ, w = Sim(C, u), then
the subscript ℎ of any atomic key symbol Kiℎ that appears in (C̃, v) and (Ĉ, w) follows the same ordering.

Our simulator is composed by above functions. It takes a circuit C and a boolean vector y as input, and
it generates a simulated garbled circuit using Sim and a simulated garbled input using SEnc and SMask:

Simulate :: Circuit(s, t) × {0, 1}m → Exp
Simulate(C, y) = (Ĉ, x̂) where
u← Label(s)
Ĉ, v = Sim(C, u)
x̂ = (SEnc(u), SMask(v, y))
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Symbolic proof of security For this paper we present a pen-and-paper symbolic security proof, which can
also be adapted to a machine-checked proof using verification tools. For any bit expression b ∈ Pat(B) and
any x ∈ {0, 1}, we introduce the notation b⊕x to shorten our proofs:

b⊕x =
{

b if x = 0
¬b if x = 1

We say that a label expression w is strongly independent if Keys(w) is a set of independent keys and, if
w = (b, (k0, k1)) is a single label then k0 ≠ k1, and if w = (u, v) where u and v are label expressions, then u
and v are both strongly independent and Keys(u) ∩Keys(v) = ∅.

Let us start with some technical lemmas that are helpful to derive our main result. The first lemma can
be easily verified by induction on the definition of Gb.
Lemma 4. For any circuit C and label expression u, if C̃, v = Gb(C, u) and k ∈ Keys(C̃) ∩ Parts(C̃), then
k ∈ K is an atomic key symbol.

Our next lemma shows that Gb produces strongly independent output labels from strongly independent
input labels. Furthermore, any key in the output label expression is yielded from either a new atomic key
introduced in the garbled circuit or a key in the input labels, and it does not yield any other key in the garbled
circuit. The proof is done using structural induction on circuits, and it can be found in the appendix.
Lemma 5. For any circuit C and any strongly independent label expression u such that C̃, v = Gb(C, u), v
is strongly independent, and the following hold for all k ∈ Keys(v):

1. G+(k) ∩Keys((C̃, u)) = ∅;

2. ∃k′ ∈ Keys((C̃, u)) ∩ Parts((C̃, u)).k′ ⪯ k.

A quick observation on Gb is that, for any circuit C , if k ∈ Pat(K) appears in C̃ , then either k is in
a plaintext message and so k ∈ Parts(C̃), or k is used as an encryption key. The former case has been
considered in Lemma 4. The following lemma characterizes the latter case. Again, this lemma can be proved
using previous lemmas and structural induction on circuits, and the proof can be found in the appendix.
Lemma 6. For any circuit C and any label expression u such that u is strongly independent and C̃, v =
Gb(C, u), if ⦃e⦄k ∈ Parts(C̃) for some expression e and some key k ∈ Pat(K), then the following hold:

1. G+(k) ∩Keys(C̃) = ∅;

2. G∗(k) ∩Keys(v) = ∅;

3. ∃k′ ∈ Keys((C̃, u)) ∩ Parts((C̃, u)).k′ ⪯ k.

For the rest of paper, let us fix a circuit C ∈ Circuit(s, t) and a boolean vector x ∈ {0, 1}n, where s is
a shape of n wires and t is a shape of m wires. Let e = (C̃, x̃) = Garble(C, x) be the symbolic expression
of the garbled circuit and the garbled input of C on input x. Since e is monotone, the greatest fixed point
of e exists and it can be computed in polynomially many steps. Let S = Fix(e) and e′ = p(e, S). Then
Roots(S) ⊆ Keys(e) and S = e(S) = r(p(e, S)) = r(e′). For any label (b, (k0, k1)), we say that it satisfies
the label invariant if

b ∈ B,∃z ∈ {0, 1} such that kz ∈ S, k1−z ∉ S, (1)
and we call z the actual value of the label (b, (k0, k1)).
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Lemma 7. For any sub-circuit C ′ of C , and for any label expression u, if C̃ ′, v = Gb(C ′, u) and all labels
(b, (k0, k1)) ⋐ u satisfy the label invariant, then all labels (b̄, (k̄0, k̄1)) ⋐ v satisfy the label invariant.

Proof. We use induction on the structure of circuit C ′. For the base case, C ′ is an atomic circuit:
• C ′ = Swap, Assoc, or Unassoc: Any label (b̄, (k̄0, k̄1)) ⋐ v is also a sub-expression of u. So the

lemma holds.
• C ′ = Dup: Suppose u = (b, (k0, k1)) satisfies the label invariant with an actual value z. If (b̄, (k̄0, k̄1)) ⋐
v, then b̄ = b, k̄0 = Gℎ(k0), and k̄1 = Gℎ(k1) for some ℎ ∈ {0, 1}. So b̄ ∈ B. Let z̄ = z. Then
k̄z̄ = Gℎ(kz) ∈ S. Assume towards a contradiction that k̄1−z̄ ∈ S. Then Gℎ(k1−z) = k̄1−z̄ ∈ G∗(k′)
for some k′ ∈ Keys(e′) where k′ ∈ Parts(e′) or ∃k′′ ∈ Keys(e′) such that k′ ≺ k′′. Notice that e′ =
p((C̃, x̃), S) = (p(C̃, S),p(x̃, S)), and x̃ contains only atomic keys. So k′′ ∈ Keys(C̃ ′) ⊆ Keys(C̃).
We have two cases:

– Gℎ(k1−z) ≠ k′: k1−z ∈ G∗(k′) ⊆ S, a contradiction.
– Gℎ(k1−z) = k′: Now k′ ∉ Parts(e′), and thus ⦃g′⦄k′ ∈ Parts(e′) for some pattern g′. So
⦃g′⦄k′ ∈ Parts(p(C̃, S)) and ⦃g⦄k′ ∈ Parts(C̃) for some expression g such that g′ = p(g, S).
By Lemma 6, G+(k′) ∩Keys(C̃) = ∅ and hence k′′ ∉ Keys(C̃), a contradiction.

Therefore (b̄, (k̄0, k̄1)) satisfies the label invariant.
• C ′ = NAnd: The only label in v is (Bℎ, (K0

ℎ,K
1
ℎ)). Notice that the expressions in Parts(e) that contain

K0
ℎ,K

1
ℎ are the following and their sub-expressions:

⦃⦃(¬Bℎ,K1
ℎ)⦄k0j⦄k0i ,⦃⦃(¬Bℎ,K

1
ℎ)⦄k0j⦄k1i ,

⦃⦃(¬Bℎ,K1
ℎ)⦄k1j⦄k0i ,⦃⦃(Bℎ,K

0
ℎ)⦄k1j⦄k1i ,

where ((bi, (k0i , k1i )), (bj , (k0j , k1j ))) = u. Observe that these four expressions can be generated as

⦃⦃(B⊕(xi↑xj )
ℎ ,Kxi↑xjℎ )⦄kxjj ⦄k

xi
i
for xi, xj ∈ {0, 1}.

Let z̄ = zi ↑ zj . By assumption, we have kzii , k
zj
j ∈ S and k1−zii , k1−zjj ∉ S, so kz̄ = Kz̄ℎ ∈ S and

k1−z̄ = K1−z̄
ℎ ∉ S, and Condition 1 holds for (Bℎ, (K0

ℎ,K
1
ℎ)).

Next, consider composite circuits. Assume the lemma holds for all sub-circuits of C ′. Then we have
these cases:

• C ′ = C ′
0 ⋙ C ′

1: Suppose C̃ = (C̃ ′
0, C̃

′
1) where C̃ ′

0, w = Gb(C ′
0, u) and C̃ ′

1, v = Gb(C ′
1, w). Since C ′

0and C ′
1 are both sub-circuits of C ′, by assumption we see that Condition 1 holds for all labels in u and

consequently, for all labels in w, and so it holds for all labels in v.
• C ′ = First(C ′′): Suppose u = (u′′, w) and v = (v′′, w) such that C̃, v′′ = Gb(C ′′, u′′). For any label

(b̄, (k̄0, k̄1)) ⋐ v, it is either a sub-expression of v′′ or it is a sub-expression of w. For the former case,
since C ′′ is a sub-circuit of C ′, Condition 1 holds for (b̄, (k̄0, k̄1)) by induction hyperthesis. For the
latter case, since w ⋐ u, Condition 1 holds for this label by assumption.

Therefore the lemma holds for any circuit C .
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Let f = (Ĉ, x̂) = Simulate(C,C(x)) be the symbolic expression of simulated garbled circuit of C on
output C(x). Let T = Fix(f ), which satisfies f (T ) = r(p(f, T )) = T . The following lemma shows that,
for each key pair k0, k1 in f , exactly one of k0 and k1 is in T .
Lemma 8. For any sub-circuit C ′ of C and any label expression u such that Ĉ ′, v = Sim(C ′, u), if all labels
(b, (k0, k1)) ⋐ u satisfy the label invariant with actual value 0, then all labels (b̄, (k̄0, k̄1)) ⋐ v satisfy the
label invariant with actual value 0.

Proof. We can directly apply the proof of Lemma 7 except for the base case when C ′ = NAnd:
• C ′ = NAnd: The label in v is (Bℎ, (K0

ℎ,K
1
ℎ)). The expressions in Parts(f ) that contain K0

ℎ,K
1
ℎ are thefollowing and their sub-expressions:

⦃⦃(Bℎ,K0
ℎ)⦄k0j⦄k0i ,⦃⦃(Bℎ,K

0
ℎ)⦄k0j⦄k1i ,

⦃⦃(Bℎ,K0
ℎ)⦄k1j⦄k0i ,⦃⦃(Bℎ,K

0
ℎ)⦄k1j⦄k1i ,

where ((bi, (k0i , k1i )), (bj , (k0j , k1j ))) = u. Let z̄ = 0. By assumption, k0i , k0j ∈ T and k1i , k1j ∉ T . So
kz̄ = K0

ℎ ∈ T and k1−z̄ = K1
ℎ ∉ T , and Condition 1 holds for (Bℎ, (K0

ℎ,K
1
ℎ)) with actual value 0.

For the rest of the cases, the proof of Lemma 7 applies with actual value 0.
Now we are ready to prove our main result that the patterns of the real garbled circuit and the simulated

garbled circuit are equivalent upto renaming.
Theorem 5. For any circuit C ∈ Circuit(s, t) and any boolean vector x ∈ {0, 1}n, where s is a shape of n
wires, Pattern(Garble(C, x)) ≈ Pattern(Simulate(C,C(x))).

Proof. Let u = ((B1, (K0
1,K

1
1)),… , (Bn, (K0

n,K
1
n))) be the label expression in Garble. Let C̃, v = Gb(C, u).

One can check that, for any sub-circuit C ′ of C , if C̃ ′, v′ = Gb(C ′, u′) and Ĉ ′, w′ = Sim(C ′, u′) for any label
expression u′ of an appropriate shape, then v′ = w′. Since Sim is also applied on C and u in Simulate, we
can write Ĉ, v = Sim(C, u).

Let e = (C̃, x̃) = Garble(C, x), f = (Ĉ, x̂) = Simulate(C,C(x)), S = Fix(e), and T = Fix(f ).
We can write C̃ = (C̃1,… , C̃q) and Ĉ = (Ĉ1,… , Ĉq), where C̃i, vi = Gb(Ci, ui) and Ĉi, vi = Sim(Ci, ui) for
some atomic sub-circuit Ci of C and some label expression ui. To show Pattern(e) = p(e, S) ≈ p(f, T ) =
Pattern(f ), we first show (p(C̃1, S),… ,p(C̃q, S)) ≈ (p(Ĉ1, T ),… ,p(Ĉq, T )) with respect to a pseudoran-
dom renaming � = (�B, �K ), and then we show p(x̃, S) ≈� p(x̂, T ).

For the first part, let �B be the random bit renaming �B(Bi) = B
⊕zi
i for all Bi ∈ B, where zi is the actual

value of the label that contains Bi. Let �K be the bijection on K such that �K (Kzii ) = K0
i and �K (K1−zi

i ) = K1
i

for each K0
i ,K

1
i . We claim that, for any sub-circuit C ′ of C and for any label expression u′, if C̃ ′, v′ =

Gb(C ′, u′) and Ĉ ′, v′ = Sim(C ′, u′), then Condition 1 holds for all labels in v′ and p(C̃ ′, S) ≈� p(Ĉ ′, T ).
Proof of claim: Notice that all labels in u satisfy Condition 1. By Lemma 7, all labels in v′ also satisfy

Condition 1.
We use induction on the structure of C ′ to show p(C̃ ′, S) ≈� p(Ĉ ′, T ). For the base case, C ′ is an atomic

circuit:
• C ′ = Swap, Assoc, Unassoc, or Dup: Both C̃ ′ and Ĉ ′ are the empty garbled circuit �, so p(C̃ ′, S) =

p(Ĉ ′, T ).
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• C ′ = NAnd: Suppose u′ = ((bi, (k0i , k
1
i )), (bj , (k

0
j , k

1
j ))) and v′ = (Bℎ, (K0

ℎ,K
1
ℎ)). Let zi, zj and zℎ

be the actual values of the labels (bi, (k0i , k1i )), (bj , (k0j , k1j )) and (Bℎ, (K0
ℎ,K

1
ℎ)), respectively. We know

from the proof of Lemma 7 that zℎ = zi ↑ zj . So we can apply �K and get

C̃ ′= �[Bi](�[Bj](⦃⦃(B
⊕(0↑0)
ℎ ,K0↑0

ℎ )⦄k0j⦄k0i ,

⦃⦃(B⊕(0↑1)
ℎ ,K0↑1

ℎ )⦄k1j⦄k0i ),

�[Bj](⦃⦃(B
⊕(1↑0)
ℎ ,K1↑0

ℎ )⦄k0j⦄k1i ,

⦃⦃(B⊕(1↑1)
ℎ ,K1↑1

ℎ )⦄k1j⦄k1i ))

≈� �[B
⊕zi
i ](�[B⊕zjj ](⦃⦃(B⊕(0↑0)⊕zℎ

ℎ ,K(0↑0)⊕zℎ
ℎ )⦄k0j⦄k0i ,

⦃⦃(B⊕(0↑1)⊕zℎ
ℎ ,K(0↑1)⊕zℎ

ℎ )⦄k1j⦄k0i ),

�[B⊕zjj ](⦃⦃(B⊕(1↑0)⊕zℎ
ℎ ,K(1↑0)⊕zℎ

ℎ )⦄k0j⦄k1i ,

⦃⦃(B⊕(1↑1)⊕zℎ
ℎ ,K(1↑1)⊕zℎ

ℎ )⦄k1j⦄k1i ))

≡ �[Bi](�[Bj](⦃⦃(B
⊕�(zi,zj )
ℎ ,K⊕�(zi,zj )ℎ )⦄k0j⦄k0i ,

⦃⦃(B⊕�(zi,1−zj )ℎ ,K⊕�(zi,1−zj )ℎ )⦄k1j⦄k0i ),

�[Bj](⦃⦃(B
⊕�(1−zi,zj )
ℎ ,K⊕�(1−zi,zj )ℎ )⦄k0j⦄k1i ,

⦃⦃(B⊕�(1−zi,1−zj )ℎ ,K⊕�(1−zi,1−zj )ℎ )⦄k1j⦄k1i )),

where �(di, dj) = (di ↑ dj) ⊕ zℎ for di, dj ∈ {0, 1}. In particular, �(zi, zj) = 0. By Condition 1,
kzii , k

zj
j ,K

zℎ
ℎ ∈ S, k1−zii , k1−zjj ,K1−zℎ

ℎ ∉ S, and b⊕zii , b⊕zjj ∈ Parts(p(e, S)). So k0i , k0j ∈ �(S), k1i , k1j ∉
�(S), and the pattern �(p(C̃ ′, S)) = p(�(C̃ ′), �(S)) is equivalent to

�[Bi](�[Bj](⦃⦃(Bℎ,K0
ℎ)⦄k0j⦄k0i ,⦃⦃B ∗ K⦄k1j⦄k0i ),

�[Bj](⦃⦃B ∗ K⦄⦄k1i ,⦃⦃B ∗ K⦄⦄k1i ))

On the other hand, by Lemma 8, k0i , k0j ,K0
ℎ ∈ T and k1i , k1j ,K1

ℎ ∉ T . So the pattern p(Ĉ ′, S) of Ĉ ′ is

�[Bi](�[Bj](⦃⦃(Bℎ,K0
ℎ)⦄k0j⦄k0i ,⦃⦃B ∗ K⦄k1j⦄k0i ,

�[Bj](⦃⦃B ∗ K⦄⦄k1j ),⦃⦃B ∗ K⦄⦄k1j ))

Thus p(C̃ ′, S) ≈� p(Ĉ ′, T ).
For the induction step, assuming the claim holds for sub-circuits C ′

0 and C ′
1 of C , it is easy to check thatthe claim also holds for the cases C ′ = First(C ′

0) and C ′ = C ′
0 ⋙ C ′

1. Therefore our claim follows.
For the second part, let y = C(x). Then for any i ∈ [m], yi is the actual value of the corresponding output

wire. Since x̃ = (⟨(Kx11 ,B
⊕x1
1 ),… , (Kxnn ,B

⊕xn
n )⟩, (b1,… , bm)), we can calculate

�(x̃) = (⟨(K0
1,B1),… , (K0

n,Bn)⟩, (b
⊕yi
1 ,… , b⊕ymm )) = x̂.

So x̃ ≈� x̂, and thus p(x̃, S) ≈� p(x̂, T ).
Therefore the theorem holds.
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As a corollary of Theorem 3 and 5, we can now conclude that our garbled circuit scheme is computa-
tionally secure.
Corollary 1. For any circuit C ∈ Circuit(s, t) and any x ∈ {0, 1}n where s is a shape of n wires, the
probability distributions JGarble(C, x)K and JSimulate(C,C(x))K are computationally indistinguishable.

6 Implementation and automated tests

As a proof of concept, we have implemented our symbolic framework as well as the garbling scheme and the
simulator in Haskell. Our symbolic framework implementation closely follows the definitions in Section 2.1.
In addition, we added a normalization operation norm on patterns, for example:

norm (Not (Bit False)) = Bit True
norm (Not (Bit True)) = Bit False
norm (Not (Not e)) = norm e
norm (Perm (Bit False) p q) = Pair (norm q) (norm p)
norm (Perm (Bit True) p q) = Pair (norm p) (norm q)
norm (Perm (Not b) p q) = norm (Perm b q p)

The equivalence relation ≡ on patterns, defined in Section 2.1, is checked using syntactic equality on nor-
malized patterns. Random bit renaming and pseudo-random key renaming are implemented using maps on
normalized bit and key patterns. Thus we can check equivalence upto renaming by first applying renaming
maps to normalized patterns and then checking for equivalence.

To build symbolic expressions of the real and the simulated garbled circuits, the pseudo-code definitions
of the garbling scheme and the simulator in Sections 4 and 5 were directly translated into Haskell code. The
bit and key renamings �B and �K were constructed recursively as in the proof of Lemma 5.

So far, given a circuit and a boolean vector of an appropriate shape, our programs are able to produce
symbolic expressions of the real and the simulated garbled circuits, compute their patterns, and check if these
patterns are equivalent upto renaming. The whole implementation consists of about 500 lines of Haskell
code, and its performance is fairly good: For example, with a randomly generated circuit that contains about
10000 NAND subcircuits and a 112-dimension boolean vector, the entire process of generating the real and
the simulated garbled circuits, computing their patterns, and checking for symbolic equivalence runs in about
1.3 second on a Linux desktop with an Intel I7-4790 CPU running at 3.60GHz. Notice that the number of
NAND subcircuits and the dimension of the input vector together determine the number of atomic keys in
the garbled circuit expression, which affects how fast the greatest fixed point of the recoverable key set can
be reached. Further optimization is possible, for example, we could expand our circuit notation by adding
AND and XOR as basic circuits. As a reference, an AES encryption circuit usually consists of about 5k AND
and 20k XOR gates, which can be implemented using about 90k NAnd inductively.

We conducted automated tests using the QuickCheck test framework to perform symbolic security anal-
ysis on randomly generated circuits and boolean vectors, and the performance results are shown in Figure 6.

We remark that our automated tests run on a circuit-by-circuit basis, that is, given a circuit and a boolean
vector, the test ensures that the resulting garbled circuit is computationally secure. In fact, our program can
check that, for any cryptographic system that is built using primitives in our symbolic framework, an instance
for a given input is computationally secure. It is also interesting to translate our proofs into amachine-checked
flavor using verification tools, but such work is out of the scope of the current paper, and we would like to
explore it in the future.
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Figure 6: Running times of proving symbolic security of the garbling scheme using our implementation.
Experiments were run on a Linux desktop with an Intel I7-4790 CPU running at 3.60GHz. Each point
corresponds to a randomly generated test case, where the circuit may contain upto 250k NAnd subcircuits
and the input vector may have upto 128 components. For each test case we measure the total time spent on
generating the real and the simulated garbled circuit expressions, computing their patterns, and then checking
for symbolic equivalence on patterns. The horizontal axis measures the number of NAnd subcircuits in a
circuit, and the vertical axis measures the time in seconds.
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A Proofs of Lemmas

The proofs of some lemmas and theorems were omitted from the main paper due to space limit. We provide
them in this section for completeness.
Lemma 2. For any pattern e and pseudo-random key renaming �K , the distributions JeK and J�K (e)K are
computationally indistinguishable.

Proof. The pseudo-random renaming �K can be treated as an extension of a bijection � ∶ A → B, where
A = Roots(Keys(e)) andB = �K (Roots(Keys(e))) are independent sets of keys. SupposeA = {k1,… , kn}.
For every distinguisher that can distinguish JeK and J�K (e)Kwith advantage �, we can build a distinguisher
 for JAK and JBK with the same advantage.  takes as input a sample � of either JAK or JBK, where
� = {x1,… , xn} for bitstrings xi of length �. Given this sample, computes an evaluation of e or �K (e) as
follows: For every atomic bit symbol B ∈ B, evaluate it to 0, for every ki ∈ Roots(Keys(e)), i = 1,… , n,
evaluate it to xi, and evaluate e as a natural extension according the computational evaluation rules of our
expressions. Finally  runs  on the resulting evaluation, and returns whatever  returns.

Notice that the input to is JeK if and only if the input to is JAK. Since A (resp. B) is an independent
set of keys, JAK (resp. JBK) is indistinguishable from a set of n truly random keys, and JAK and JBK are
indistinguishable. Therefore � is negligible, and JEK and J�K (e)K are industinguishable.
Theorem 4. For any circuit C ∈ Circuit(s, t) and any boolean vector x of shape s, GEval(Garble(C, x)) =
C(x).

Proof. Formally, the correctness of our garbling scheme can be seen as follows. Let � ∶ Exp(B) → {0, 1}
be a function such that

�(b) =
{

0 if b ≡ Bi for some Bi ∈ B
1 if b ≡ ¬Bi for some Bi ∈ B

Suppose C̃ and x̃ are the garbled circuit and the garbled input expressions for a circuitC and a boolean vector
x. We claim that, if (b, (k0, k1)) is a label and (b′, k′) is an encoded input/output for a wire, and if z is the
boolean value on that wire when evaluating C on x, then �(b) = z and k′ = kz. One can easily check that our
claim holds for input wires of a circuit. We show the claim holds for output wires by structural induction:

• C ∈ {Swap,Assoc,Unassoc,Dup}: The bits in the encoded output are exactly the bits in encoded
input, so the claim holds.
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• C = NAnd: Suppose (b0, (k00, k10)) and (b1, (k01, k11)) are the input labels used by Gb to generate C̃ . No-
tice that C̃ is a permutation (as two swaps controlled by bits b0, b1) of four ciphertexts ⦃⦃(b,Kzℎ)⦄ki0⦄kj1for i, j ∈ {0, 1} and z = i ↑ j, such that b ≡ Bℎ for some Bℎ ∈ B if and only if i ↑ j = 0. Let (b′0, k′0)and (b′1, k

′
1) be the encoded input, and let z0 = �(b′0) and z1 = �(b′1). Then by assumption we see that

the encoded output (b,Kzℎ) is doubly encrypted under keys kz00 ,kz11 in the ciphertext corresponding to
b′0, b

′
1. So �(b) = z = z0 ↑ z1 and our claim holds for NAnd.

• C = C0 ⋙ C1 or C = First(C ′): These two cases can be easily verified by induction.
We can extend � to a bundle of bits in the obvious way. Our claim implies �(v) = y where v is the encoded
output of evaluating C̃ on x̃ and y = C(x). Notice that �(v) can be computed by Decode on v and the output
mask d, so GEval(C̃, x̃) = C(x) and our garbling scheme is correct.
Lemma 3. For any e ∈ Pat, the probability distributions JeK and Jp(e, r(e))K are computationally indistin-
guishable.

Proof. We first prove the case where Roots(Keys(e)) ⊆ K. Let e′ = p(e, r(e)). By the definition of p, we
see that e′ is obtained from e by replacing all subexpressions of the form ⦃e′′⦄k, where k ∈ Keys(e) ⧵ r(e)
and e′′ ∈ Pat(s), by the pattern ⦃s⦄k. LetR = Keys(e)⧵r(e). For any k ∈ R, the following three properties
must be satisfied:

• k ∈ K: If k ∉ K, then by assumption thatRoots(Keys(e)) ⊆ K, we have k ∈ Keys(e)⧵Roots(Keys(e)),
and thus k′ ⪯ k for some k′ ∈ Keys(e). This implies that k ∈ r(e), a contradiction.

• G∗(k) ∩ Parts(e) = ∅: If k ∈ Parts(e), then k ∈ r(e). If Gw(k) ∈ Parts(e) for some non-empty
bitstring w, then Gw(k) ∈ Keys(e) and Gw(k) ≺ k, which implies k ∈ r(e).

• G+(k) ∩ Keys(e) = ∅: If Gw(k) ∈ Keys(e) for some non-empty bitstring w, then as in the previous
property, Gw(k) ≺ k and thus k ∈ r(e).

These properties show that we can obtain JeK as follows: First we independently sample two random assign-
ments � and �. For each sub-expression of e, if it has the form⦃e′⦄k for some k ∈ R, then we evaluate it using
�; otherwise we evaluate it using �. Moreover, if we let � be the assignment such that �(⦃e′⦄k) = (k, 0|s|)
for all k ∈ R, where s is the shape of e′, then the resulting distribution is just Jp(e, r(e))K. This means that
we can turn a distinguisher for JeK and Jp(e, r(e))K into an adversary attacking the IND-CPA security of the
encryption scheme ( ,). Therefore JeK and p(e, r(e)) are computationally indistinguishable.

For the general case, suppose Roots(Keys(e)) = {k1,… , kn} and let �̄K be the extension of the pseudo-
random key renaming �K ∶ Roots(Keys(e)) → {K1,… ,Kn} such that �k(ki) = Ki for i = 1,… , n. Notice
that �K (Roots(Keys(e))) = Roots(Keys(�K (e))), so it follows from the above analysis that J�K (e)K and
Jp(�K (e)), r(�K (e))K are indistinguishable. Since p(�K (e), r(�K (e))) = p(�K (e), �K (r(e))) = �K (p(e, r(e))),
the distributions J�K (e)K and J�K (p(e, r(e)))K are also indistinguishable. Hence JeK and Jp(e, r(e))K are in-
distinguishable.
Lemma 5. For any circuit C and any strongly independent label expression u such that C̃, v = Gb(C, u), v
is strongly independent, and the following hold for all k ∈ Keys(v):

1. G+(k) ∩Keys((C̃, u)) = ∅;

2. ∃k′ ∈ Keys((C̃, u)) ∩ Parts((C̃, u)).k′ ⪯ k.
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Proof. Assume u is strongly independent. We use induction on the structure of C . As the base cases, let us
first consider atomic circuits:

• C = Swap, Assoc, Unassoc, or Dup: Since C̃ = �, Keys((C̃, u)) = Keys(u) and Parts((C̃, u)) =
Parts(u). Using directly the definition of Gb, it is easy to check that the lemma is satisfied for these
circuits.

• C = NAnd: v contains two distinct atomic keys K0
ℎ and K1

ℎ, so v is strongly independent. Clearly
Parts(C̃) = {K0

ℎ,K
1
ℎ} and G+(Kiℎ) ∩Keys((C̃, u)) = ∅ for all i ∈ {0, 1}, so the lemma is satisfied.

Next, consider the composite circuits First(C ′) and C0 ⋙ C1. Assume the lemma holds for all proper
sub-circuits of C . Then:

• C = First(C ′): Suppose u = (u′, w), v = (v′, w), and C̃ = C̃ ′ such that C̃ ′, v′ = Gb(C ′, u′). Since
u is strongly independent, u′ is strongly independent, and by induction we have that v′ is strongly
independent. Fix any k ∈ Keys(w), and assume towards a contradiction that ∃k′ ∈ G∗(k) ∩Keys(v′).
Then by induction on C̃ ′ and k′,there is k′′ ∈ Keys((C̃ ′, u′)) ∩ Parts((C̃ ′, u′)) such that k′′ ⪯ k′,
and so k′′ ⪯ k or k ≺ k′′. If k′′ ⪯ k, since u is independent, we have k′′ ∉ Keys(u′), and thus
k′′ ∈ Parts(C̃ ′), which contradicts k ∈ Keys(w). If k ≺ k′′, then k′′ is not atomic and k′′ ∉
Parts(C̃ ′), and so k′′ ∈ Keys(u′), which implies u is not independent, a contradiction too. Therefore
G∗(k) ∩Keys(v′) = ∅ and v is strongly independent.
To check (1) and (2), fix any k ∈ Keys(v), and there are two cases:

– k ∈ Keys(v′): By induction on C ′ and u′, there exists k′ ∈ Keys((C̃ ′, u′)) ∩Parts((C̃ ′, u′)) such
that k′ ⪯ k, and (2) holds. Since v is strongly independent and G+(k) ∩ Keys((C̃ ′, u′)) = ∅, we
have G+(k) ∩Keys(w) = ∅. So (1) holds.

– k ∈ Keys(w): (2) holds immediately. Since u is strongly independent, G+(k) ∩ Keys(u) = ∅.
Since v is strongly independent, G∗(k) ∩ Keys(v′) = ∅ and thus G+(k) ∩ Keys(C̃ ′) = ∅. So (1)
also holds.

• C = C0⋙C1: Suppose C̃ = (C̃0, C̃1) where C̃0, w = Gb(C0, u) and C̃1, v = Gb(C1, w). By induction,
w is independent and so v is independent.
Now fix any k ∈ Keys(v). By induction, we have G+(k) ∩ Keys((C̃1, w)) = ∅, and there exists
k′ ∈ Keys((C̃1, w)) ∩ Parts((C̃1, w)) such that k′ ⪯ k. There are two cases:

– k′ ∈ Parts(C̃1): Clearly (1) holds. We also have that k′ is atomic, and so k′ = k and G+(k′) ∩
Keys((C̃0, u)) = ∅; hence (2) holds.

– k′ ∈ Parts(w): By induction, G+(k′)∩Keys((C̃0, u)) = ∅, and there exists k′′ ∈ Keys((C̃0, u))∩
Parts((C̃0, u)) such that k′′ ⪯ k′ ⪯ k. So both (1) and (2) hold.

Therefore the lemma follows.
Lemma 6. For any circuit C and any label expression u such that u is strongly independent and C̃, v =
Gb(C, u), if ⦃e⦄k ∈ Parts(C̃) for some expression e and some key k ∈ Pat(K), then the following hold:

1. G+(k) ∩Keys(C̃) = ∅;

2. G∗(k) ∩Keys(v) = ∅;
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3. ∃k′ ∈ Keys((C̃, u)) ∩ Parts((C̃, u)).k′ ⪯ k.

Proof. We use induction on the structure of C . For the base case, consider the atomic circuits: If C = Swap,
Assoc, Unassoc, or Dup, then C̃ = � and the lemma holds trivially. If C = NAnd, then k ∈ Keys(u) ∩
Parts(u), and one can easily verify that all three statements hold.

For a composite circuit C , assume the lemma holds for all proper sub-circuits of C . Then:
• C = First(C ′): Suppose u = (u′, w) and v = (v′, w) such that C̃ ′, v′ = Gb(C ′, u′) and C̃ = C̃ ′.

If ⦃e⦄k ∈ Parts(C̃) = Parts(C̃ ′), by induction hyperthesis we have G+(k) ∩ Keys(C̃ ′) = ∅ and
so (1) holds, and there exists k′ ∈ Keys((C̃ ′, u′)) ∩ Parts((C̃ ′, u′)) such that k′ ⪯ k and so (3) holds.
Furthermore, if k′ ∈ Parts(C̃ ′), then k′ is a new atomic key introduced in C̃ ′ andG∗(k)∩Keys(w) = ∅;
if k′ ∈ Parts(u′), then by strongly independence of u, we also have G∗(k) ∩ Keys(w) = ∅. So
G∗(k) ∩Keys(v) = ∅ and (2) holds.

• C = C0 ⋙ C1: Suppose C̃ = (C̃0, C̃1) where C̃0, w = Gb(C0, u) and C̃1, v = Gb(C1, w). Fix ⦃e⦄k ∈
Parts(C̃), and we have two cases:

– ⦃e⦄k ∈ Parts(C̃0): By induction hyperthesis we haveG+(k)∩Keys(C̃0) = ∅,G∗(k)∩Keys(w) =
∅, and ∃k′ ∈ Keys((C̃0, u)) ∩ Parts((C̃0, u)) such that k′ ⪯ k. So (3) holds immediately.
Assume towards a contradiction that there exists k′′ ∈ G+(k) ∩ Keys(C̃1). Then k′′ is not
atomic and ⦃e′⦄k′′ ∈ Parts(C̃1) for some expression e′. So by induction on C̃1, there exists
r ∈ Keys((C̃1, w)) ∩Parts((C̃1, w)) such that r ⪯ k′′. Then either k ⪯ r or r ≺ k. There are two
subcases:

∗ If r ∈ Parts(C̃1), then r is a new atomic key introduced in C̃1 and r ⪯ k. So k ∉ Keys(C̃0),
a contradiction.

∗ If r ∈ Parts(w), then r ∈ Keys(w). By Lemma 5 we have G+(r) ∩ Keys(C̃0) = ∅. Since
G∗(k) ∩ Keys(w) = ∅, we cannot have k ⪯ r. So r ≺ k, which contradicts the fact that
k ∈ Keys(C̃0).

Both cases lead to a contradiction, so G+(k) ∩Keys(C̃) = ∅ and (1) holds.
To check (2), assume there exists k′′ ∈ G∗(k) ∩ Keys(v). By Lemma 5, there exists r ∈
Keys((C̃1, w)) ∩ Parts((C̃1, w)) such that r ⪯ k′′. Using the same argument as above, we see
that G∗(k) ∩Keys(v) = ∅ and hence (2) holds.

– ⦃e⦄k ∈ Parts(C̃1): By induction hyperthesis we haveG+(k)∩Keys(C̃1) = ∅,G∗(k)∩Keys(v) =
∅ and so (2) holds, and there exists k′ ∈ Keys((C̃1, w)) ∩ Parts((C̃1, w)) such that k′ ⪯ k. We
consider two cases of k′:

∗ k′ ∈ Parts(C̃1): (3) holds immediately. By Lemma 4, k′ is a new atomic key in C̃1, and
hence G∗(k′) ∩Keys(C̃0) = ∅. So G+(k) ∩Keys(C̃0) = ∅ and (1) holds.

∗ k′ ∈ Parts(w): By Lemma 5,G+(k′)∩Keys((C̃0, u)) = ∅, and there exists k′′ ∈ Keys((C̃0, u))∩
Parts((C̃0, u)) such that k′′ ⪯ k′. It follows that G+(k) ∩Keys(C̃0) = ∅ and k′′ ⪯ k. So (1)
and (3) hold.

Therefore the lemma holds.
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