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Abstract

The random oracle paradigm allows us to analyze the security of protocols and constructions
in an idealized model, where all parties have access to a truly random function. This is one
of the most popular and well-studied models in cryptography. However, being such a strong
idealized model, it is known to be susceptible to various weaknesses when implemented naively
in “real-life”, as shown by Canetti, Goldreich and Halevi (J. ACM 2004).

As a counter-measure, one could try to identify and implement only one or few of the proper-
ties a random oracle possesses that are needed for a specific setting. Such a systematic study was
initiated by Canetti (CRYPTO 1997), who showed how to implement the property that the out-
put of the function does not reveal anything regarding the input by constructing a point function
obfuscator. This property turned out to suffice in many follow-up works and applications.

In this work, we tackle another natural property of random oracles and implement it in the
standard model. The property we focus on is non-malleability, where it is required that the
output on an input cannot be used to generate an output on any related point. We construct
a point obfuscator that is both hiding (à la Canetti) and is non-malleable for a non-trivial class
of mauling functions. Our construction does not use heavy cryptographic machinery (such as
zero-knowledge proofs) and is comparable to that of Canetti in terms of time complexity and
obfuscation size. The security of our construction relies on variants of the DDH and power-DDH
assumptions.

On the technical side, we introduce a new technique for proving the security of a construction
based on a DDH-like assumption. We call this technique “double-exponentiation” and believe it
will be useful in the future.
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1 Introduction

The Random Oracle model [BR93] is one of the most well-studied models in the cryptographic
literature. In this model, everyone has access to a single random function. It is usually possible
to show clean and simple constructions that are information-theoretically secure in this idealized
model. Also, in many cases, it allows proving unconditional lower bounds.

One major question is when (and under what assumptions) can we replace the Random Oracle
with a “real life” object. It is known that such a transformation is impossible in the general case, but
the counterexamples are usually quite contrived [CGH04, GK03, BFM15]. This leaves the possibility
that for specific applications of a Random Oracle such a transformation could exist. One of the
obstacles in answering the aforementioned question is that it seems hard to formalize and list all the
properties such a generic transformation should preserve. In practice, this difficulty is circumvented
by replacing the Random Oracle with an ad-hoc “cryptographic hash function” (e.g., MD5, SHA-1,
SHA-256) which results with protocols and constructions that have no provable security guarantees,
and often tend to be broken [WY05, WYY05, SBK+17].

Motivated by the above, Canetti [Can97] initiated the systematic study of identifying useful prop-
erties of a Random Oracle and then realizing them in the standard model. In his work, he focused
on one property called “point obfuscation” (or “oracle hashing”). This property ensures that when
the Random Oracle is applied on an input, the output value is completely uncorrelated to the input,
and at the same time, it is possible to verify whether a given output was generated from a given
input. Canetti formally defined this notion and gave a construction of such a primitive in the stan-
dard model based on a variant of the decisional Diffie-Hellman assumption (DDH). Since then, other
instantiations of this primitive were suggested. Wee [Wee05] gave a construction whose security is
based on a strong notion of one-way permutations, Goldwasser et al. [GKPV10] gave a construction
based on the Learning With Errors assumption, and more recently Bellare and Stepanovs [BS16]
proposed a framework for constructing point obfuscators. The latter result gives a generic construc-
tion of point obfuscators based on either (1) indistinguishability obfuscation [BGI+12, GGH+13]
and any one-way function, (2) deterministic public-key encryption [BBO07], or (3) UCEs [BHK13].

While hiding the point is a natural and useful goal, there are many setting where this is not
enough to replace a Random Oracle. One other natural property we wish to realize in “real life” is
that of non-malleability : given the value of a Random Oracle on a random point x, it is infeasible
to get the value of the Random Oracle at any “related” point (e.g., the point x + 1). The work of
Canetti and Varia [CV09] identified this property and the goal of realizing it. Their work provided
definitions (of non-malleable obfuscation for general circuits, and not only for point functions) and
constructions of non-malleable (multi) point obfuscators in the random oracle model.

In this work, we focus on constructing non-malleable point obfuscators in the plain model.
Observe that many of the known constructions of point obfuscators are malleable. For example, let
us recall the construction of Canetti [Can97] which involves a group G with a generator g ∈ G. For
an input point x and randomness r (interpreted as a random group element) the obfuscation is:

O(x; r) = (r, rx).

Indeed, the obfuscation of x + 1 can be computed by multiplying rx by r and outputting the
pair (r, rx+1). In other words, the obfuscation of a point is malleable. The point obfuscators of
Wee [Wee05] and of Goldwasser et al. [GKPV10] admit similar attacks (i.e., they are malleable).1

1The work of [BS16] is an exception since it gives constructions based on generic primitives, so we need non-
malleability of the underlying building block. The required notion of non-malleability is usually very strong. Consider,
for example, their construction from DPKE, where the point function obfuscation includes a ciphertext and a public-
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Thus, we ask whether we can remedy this situation and provide a construction of a secure point
obfuscator in the plain model that is provably non-malleable under simple and concrete assumptions.
We view this as a necessary and vital step towards understanding the possibility of realizing a
Random Oracle in “real life”.

1.1 Our Results

We provide a construction of a secure point obfuscator that is non-malleable for a wide class of
mauling functions. Our notion of non-malleability is parametrized by a distribution X over the
input domain X and by a class of possible mauling attacks F = {f : X → X}. Roughly speaking,
our notion guarantees that for every function f ∈ F , any polynomial-time adversary, when given
the obfuscation of a point x← X , cannot generate the obfuscation of the point f(x).2

We give a construction of a (public-coin3) point obfuscator that is non-malleable for any well-
spread distribution X (i.e., a distribution that has super-logarithmic min-entropy) and the class
of mauling functions F which can be described by univariate polynomials of bounded polynomial
degree (in the security parameter). Our construction involves a group G with a generator g ∈ G.
For an input point x and randomness r (interpreted as a random group element) the obfuscation is:

O(x; r) = (r, rg
h(x)

),

where h(x) = x4 +x3 +x2 +x. We prove security and non-malleability of the above point obfuscator
under variants of the DDH and power-DDH assumptions (see Section 2.2). We also present two ways
to support more general mauling functions F by strengthening the underlying security assumption
(yet the construction remains the same). First, we show how to support a larger class of mauling
function by assuming (sub-)exponential security of the underlying assumption. Second, we show
that our construction is secure against any mauling function f for which one cannot distinguish the
triple (g, gx, gh(f(x))) from a triple (g, gr1 , gr2), where r1, r2 are random exponents. We do not have
a simple characterization of the functions f for which this assumption holds.

In terms of efficiency, our construction is quite efficient: it involves only two group exponentiation
(Canetti’s construction requires a single exponentiation), does not rely on any setup assumptions,
and does not rely on expensive machinery such as zero-knowledge proofs, which are usually employed
to achieve non-malleability. Moreover, it satisfies the same privacy guarantees as of Canneti’s
obfuscator. As such, our point obfuscator can be used in any application where point obfuscators
are used. These include encryption schemes [Can97], storing passwords [WG00, CV09], reusable
fuzzy extractors [CFP+16], round-efficient zero-knowledge proofs and arguments [BP12], and more.

Applications to non-interactive non-malleable commitments. It is possible to view our
obfuscator as a non-interactive non-malleable commitment that is secure when committing to strings
that come from a distribution with super-logarithmic entropy. To commit to a string x, compute the
obfuscation of x and that would be the commitment. The opening is x itself (and thus for security it
has to have entropy). The resulting commitment scheme is computationally hiding by the security
of the point obfuscator, and also non-malleable against a large class of mauling functions.

key (of some encryption scheme). To get non-malleability for the point obfuscator we need non-malleability for the
DPKE for an adversary that can maul not only the ciphertext but also the public-key.

2We also require that the obfuscation that the adversary outputs is verifiable, that is, it looks like an obfuscation
of the value f(x) (i.e., it comes from the “same family” of circuits). This prevents trivial attacks that treat the input
circuit as a black-box.

3An obfuscator is public-coin if the random bits used for the obfuscation are given as part of the output of the
obfuscator.
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Previously, constructions of non-interactive non-malleable commitments (in the plain model,
without any setup assumptions) required an ad-hoc and non-standard primitive called “adaptive
injective one-way functions” that has built-in some form of non-malleability [PPV08]. More recent
works provide constructions that are secure against uniform adversaries [LPS17] or ensure limited
forms of non-malleability (“with respect to opening”) [KS17]. These constructions, however, allow
to commit on worst-case inputs and handle arbitrary mauling functions.

1.2 Related Work

Non-malleable cryptography. Non-malleability was introduced as a measure to augment and
strengthen cryptographic primitives (such as encryption schemes or commitment schemes) in such a
way that it does not only guarantee privacy but also that it is hard to manipulate a given ciphertext
(or commitment) of one value into a ciphertext of another.

Non malleability was first defined in the seminal work of Dolev, Dwork, and Naor [DDN03] where
they presented a non-malleable public-key encryption scheme, a non-malleable string commitment
scheme, a non-malleable zero-knowledge protocol. Since then, there has been a long line of works on
non-malleability. See [PSV06, BGR+15, GKS16, GPR16, PR08, LP15, Pas16, LPS17, LPS17, KS17]
to name just a few.

A particular type of non-malleable protocols (or primitives) that may a-priori be related to
non-malleable point obfuscators are non-interactive commitments and encryption schemes. These
were the focus of multiple works (see, for example, [DDN03, Sah99, CKOS01, FF11] and some of
the references given above). However, these notions do not imply point obfuscators as they do not
support public verification on a given input (without revealing the randomness which completely
breaks security).

In the context of obfuscation, the only work we are aware of is that of Canetti and Varia [CV09]
who gave several incomparable definitions for non-malleable obfuscation. They also gave a con-
struction of a (multi-bit) non-malleable point obfuscator (under each definition), however, their
construction is in the Random Oracle model.

A related work to ours is the one of Applebaum, Harnik, and Ishai [AHI11] which studies
the security of encryption schemes under related-key attacks (RKA). In this model, the adversary
needs to break an encryption scheme by invoking it with several secret-keys which satisfy some
known relation. Their RKA-secure scheme is based on the power-DDH assumption and the proof
of security resembles some of our techniques.

Obfuscation with high min-entropy. Canetti, Micciancio and Reingold [CMR98] gave a con-
struction of a point obfuscator that satisfies a relaxed notion of security where the input is guaranteed
to come from a source with high min-entropy. Their underlying assumption is any collision resistant
hash function. There is a significant (qualitative) difference between this notion and the original
notion of Canetti [Can97] that we consider in this work. We refer to Wee [Wee05, Section 1.3] for
an elaborate discussion.

Boldyreva et al. [BCFW09] showed how to make the point obfuscator of [CMR98] non-malleable
using non-interactive zero-knowledge proofs (assuming a common reference string). Following the
work of Boldyreva et al., Baecher et al. [BFS11] presented a game-based definition of non-malleability
which is very similar to ours (see also [CQZ+16]). However, they did not provide new constructions
in the plain model.

3



1.3 Our Techniques

Our starting point is Canetti’s point function construction [Can97], who presented a construction
under a variant of the DDH assumption (and no random oracles). Recall that the DDH assumption
involves a group ensemble G = {Gλ}λ∈N with a generator g and it asserts that (gx, gy, gxy) is
computationally indistinguishable from a sequence of random group elements, where x and y are
chosen uniformly at random. Canetti’s variant is that the foregoing indistinguishability holds even
if x has high enough min-entropy (yet y is completely random). For an input point x and using
randomness r, viewed as a random group element of Gλ, Canetti’s construction is:

O(x; r) = r, rx.

As we mentioned, it is easy to modify rx to get rx+1, giving an obfuscation of the point x+ 1. Let
us first focus on the goal of modifying the construction such that it is non-malleable against this
function: f(x) = x+ 1. Towards this end, we change the construction to be:

O(x; r) = r, rx
2
.

The claim is that under a suitable variant of the power-DDH assumptions this is a non-malleable
point obfuscator against the function f . Roughly speaking, we assume that (gx, gx

2
, gx

3
, . . .) is

indistinguishable from a sequence of random group elements, where x comes from a distribution
with high enough min-entropy. Assume first that the adversary outputs a point obfuscation of x+ 1
under the same randomness r as she received. That is, on input r, w, the output is r, w′ for an
element w′ ∈ G. Later, we show how to handle adversaries that output an obfuscation of x + 1
under new randomness.

The point obfuscation of x+ 1 under this construction (with the same randomness r) is (r, w),
where w = rx

2+2x+1. Suppose that there is an adversary A that given r, rx
2

can compute w, then
we show how to break the security of our assumption. We are given a challenge (g, gz1 , gz2), where
either zi = xi or zi = ri and each ri is chosen at random. Then, we can run the adversary on
the input gs, gsz2 , for a random s to get w. We compute w′ = gs(z2+2z1+1) and compare it to w.
If w = w′ we output 1, and otherwise we output a random bit. In the case that zi = xi, the
adversary gets gs, gsx

2
which is exactly the distribution of a point obfuscation of x and thus will

output w = gs(x
2+2x+1) = w′ with some non-negligible probability. Otherwise, the adversary gets

gsr2 for a random r2 and the probability that she outputs w′ = gs(r2+2r1+1) is negligible as she
has no information regarding r2 (this is true even for unbounded adversaries). Overall, we have a
non-negligible advantage in distinguishing the two cases.

While the above construction is non-malleable against the function f(x) = x+ 1, it is malleable
for the function f(x) = 2x. Indeed, given rx

2
one can simply compute (rx

2
)4 = r4x

2
= r(2x)

2
which

is a valid obfuscation of the point 2x. Our second observation is that we can modify the construction
to resist this attack by defining:

O(x; r) = r, rx
2+x.

The proof of non-malleability is similar to the proof above; we run the adversary A on gs, gs(z2+z1)

to get w, and compute w′ = gs(4z2+2z1). If zi = xi, then the adversary sees exactly the distribution
of a point obfuscation of x and thus will output w = gs(4z2+2z1) = w′ with some non-negligible
probability. Otherwise, the adversary gets gs(r2+r1) for random ri’s. We bound the probability that
A outputs w′ = gs(4r2+2r1). This is again an information theoretic argument where we assume that
the adversary gets r2+r1 and needs to compute 4r2+2r1. The argument follows since the adversary
has only information regarding the sum r2 + r1 which leaves the random variable corresponding to
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4r2 +2r1 with high min-entropy (given the adversary’s view), and thus the probability of outputting
w = w′ is negligible.

One important thing to notice is that the proof relied on the fact that the adversary only had
the sum r1 + r2 which is a linear combination of (r1, r2) with the coefficients (1, 1) but the final goal
was to output a different combination with the coefficients (4, 2), which are linearly independent of
(1, 1). That is, the key observation is that for h(x) = x2 + x the polynomial h(f(x)) for f(x) = 2x
has (non-free) coefficients which are not all the same. Generalizing this argument, we can show that
the construction is non-malleable against any linear function f(x) = ax + b for any constants a, b
such that the function h(f(x)) written as a polynomial over x has at least 2 different (non-free)
coefficients. For non-linear functions, a similar proof works but the running time of the security
reduction (that is, the loss in the security of our scheme) will be proportional to the degree of f(x).

Given the above observation, we can easily check if our construction is non-malleable for a
function f by computing the polynomial h(f(x)). It turns our that the above construction is actually
malleable for a simple function such as f(x) = 3x + 1. Indeed, h(f(x)) = (3x + 1)2 + (3x + 1) =
9x2 + 9x + 2 has the same two non-free coefficients. In order to eliminate more functions f , we
need to add more constraints to the set of equations which translates to taking a higher degree of
polynomial h(x). That is, we define h(x) = x3 + x2 + x, and construct the obfuscator:

O(x; r) = r, rx
3+x2+x.

For a function f to be malleable under this construction, it must hold that the polynomial h(f(x))
has all three non-free coefficients equal. However, there is still single function that satisfies this
condition (the function is f(x) = −x− 2 · 3−1, where 3−1 is the inverse of 3 in the relevant group).
As a final step, we modify the construction to be of one degree higher and this does eliminate all
possible functions f . Thus, we define the construction:

O(x; r) = r, rx
4+x3+x2+x.

The double exponentiation. In our exposition above, we assumed that the adversary “uses
the same randomness she received”. That is, on input r, w she mauls the point and outputs r, w′.
Suppose now that the adversary is allowed to output r′, w′, where r′ might be arbitrary. Recall that
the issue is that we cannot simulate the power of w′ from the challenge under the randomness r′

to check consistency (since we do not know the discrete log of r′). Let us elaborate on this in the
simple case where the obfuscation is r, rx (and not the degree 4 polynomial in the exponent; this is
just for simplicity). When the malleability adversary gets r, rx and returns r, w′, it is easy to check
that w′ = rf(x) by recomputing this value since we know the discrete log of r. However, when it
return r′, w′, it is hard to recompute r′f(x) since we do not know the discrete log of r (and only get
the value x in the exponent from the challenge).

In other words, we need to be able (in the security proof) to compute the obfuscation of some
input that depends on the exponents from the challenge under randomness that comes from the
adversary’s mauled obfuscation. If we knew either the discrete log of the challenge or the discrete
log of the randomness used by the adversary we would be done.

In the description above we actually used this property. Since we assumed that the adversary
outputs the same randomness r (that we chose and know the discrete log of), we could use r = gs to
compute the obfuscation of the challenge we received. However, if the adversary outputs randomness
r′, then not only we no longer know the discrete log of r′ (and this is hard to compute), but we also
do not have the discrete log of the challenge.

Thus, we need to modify our construction such that we can compute the obfuscation of x given
only gx and while given the public coins r explicitly (without given their discrete log). Towards this
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end, we introduce a new technique that we call “double exponentiation”. Consider any mapping of
the group elements Gλ → Z∗q where q is the order of Gλ (e.g., their binary representation as strings).
Then, we define the final version of our construction:

O(x; r) = r, rg
x4+x3+x2+x

.

One can observe that it is possible to compute the obfuscation of x given only gx
4+x3+x2+x and

given r by a single exponentiation. In addition, the construction is still efficient, consists of just two
group elements, and involves only two exponentiations.

A final remark about security. Proving that the resulting construction is still a point obfuscator is
not immediate a-priori. Our proof works by a reduction to the security of Canetti’s construction via
an intermediate notion of security called virtual gray-box obfuscation [BC14]. We refer to Section 4
for more details.

2 Preliminaries

For a distribution X we denote by x ← X the process of sampling a value x from the distribution
X. Similarly, for a set X we denote by x← X the process of sampling a value x from the uniform
distribution over X . For a randomized function f and an input x ∈ X , we denote by y ← f(x) the
process of sampling a value y from the distribution f(x). For an integer n ∈ N we denote by [n] the
set {1, . . . , n}.

Throughout the paper, we denote by λ the security parameter. A function neg : N → R+ is
negligible if for every constant c > 0 there exists an integer Nc such that neg(λ) < λ−c for all
λ > Nc. Two sequences of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computation-
ally indistinguishable if for any probabilistic polynomial-time algorithm A there exists a negligible
function neg(·) such that

∣∣Pr[A(1λ, Xλ) = 1]− Pr[A(1λ, Yλ) = 1]
∣∣ ≤ neg(λ) for all sufficiently large

λ ∈ N.

2.1 Point Obfuscation

For an input x ∈ {0, 1}n, the point function Ix : {0, 1}n → {0, 1} outputs 1 on input x and 0
everywhere else. A point obfuscator is a compiler that gets a point x as input and outputs a circuit
that has the same functionality as Ix but where x is (supposedly) computationally hidden. Let us
recall the definition of security of Canetti [Can97] (called there oracle simulation).

Definition 2.1 (Functional equivalence). We say that two circuits C and C ′ are functionally equiv-
alent and denote it by C ≡ C ′ if they compute the same function (i.e., ∀x : C(x) = C ′(x)).

Definition 2.2 (Point obfuscation). A point obfuscator O for a domain X = {Xλ}λ∈N of inputs is
a probabilistic polynomial-time algorithm that gets as input a point x ∈ Xλ, and outputs a circuit
C such that

1. Completeness: For all λ ∈ N and all x ∈ Xλ, it holds that

Pr[O(x) ≡ Ix] = 1,

where the probabilities are over the internal randomness of O.
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2. Soundness: For every probabilistic polynomial-time algorithm A, and any polynomial func-
tion p(·), there exists a probabilistic polynomial-time simulator S, such that for every x ∈ Xλ,
any predicate P : Xλ → {0, 1}, and all large enough λ ∈ N,∣∣∣Pr[A(O(x)) = P (x)]− Pr[SIx(1λ) = P (x)]

∣∣∣ ≤ 1

p(λ)
,

where the probabilities are over the internal randomness of A and O, and S, respectively.

The obfuscation is called public coin if it publishes its internal coin tosses as part of its output.

Indistinguishability-based secrity. Another way to formalize the security of a point obfuscator is
via an indistinguishability-based security definition (rather than simulation-based). Canetti [Can97]
suggested such a definition (termed distributional indistinguishability there): the input comes from a
distribution Xλ over the input space Xλ and the guarantee is that for any adversary A that outputs
a single bit, the following two distributions are computationally indistinguishable:

(x,A(O(x; r))) ≈c (x,A(O(y; r))), (2.1)

where r is the randomness (chosen uniformly) for the point obfuscator and x and y are chosen
independently from Xλ.

One of Canetti’s results [Can97, Theorem 4] was that the indisinguishability-based definition is
equivalent to the simulation-based definition given in Equation (2.1) if the indisinguishability-based
security holds with respect to all distributions that have super-logarithmic min-entropy (over the
message space). Such a distribution is called a well-spread distribution:

Definition 2.3 (Well-spread distribution). An ensemble of distributions X = {Xλ}λ∈N, where Xλ
is over {0, 1}λ, is well-spread if for all large enough λ ∈ N, it has super-logarithmic min-entropy.
Namely,

H∞(Xλ) = − min
x∈{0,1}λ

log2 Pr[X = x] ≥ ω(log λ).

Definition 2.4 (Component-wise well-spread). An ensemble of distributions X = {Xλ}λ∈N, where
Xλ is over tuples (x1, . . . , xt) ∈ {0, 1}λ×t is component-wise well-spread if for all large enough λ ∈
N, the marginal distribution of any component conditioned on all other components has super-
logarithmic min-entropy. Namely, for any (x1, . . . , xt) ∈ {0, 1}λ×t in the support of X and for any
i ∈ [t] it holds that

H∞(Xλ|(x1, . . . , xi−1, xi+1, . . . , xt)) ≥ ω(log λ).

Canetti’s construction. In [Can97], Canetti provided a construction that satisfies Definition 2.2.
In his construction, the domain of inputs Xλ is Zp for prime p ≈ 2λ. Let G = {Gλ}λ∈N be a group
ensemble with uniform and efficient representation and operations, where each Gλ is a group of prime
order p ∈ (2λ, 2λ+1). The public coin point obfuscator O for points in the domain Zp is defined as
follows: O(Ix) samples a random generator r ← G∗λ and outputs the pair (r, rx). Evaluation of the
obfuscation at point z is done by checking whether rx = rz.

Canetti proved that this construction satisfies Equation (2.1) for any well-spread distribution
under the strong variant of the DDH assumption, that we review below (see Assumption 2.5).
Thereby, the result is that under the same assumption his construction satisfies Definition 2.2, as
well.
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2.2 Hardness Assumptions

The DDH and Power-DDH assumptions. The DDH assumption says that in a suitable group,
the triple of elements (gx, gy, gxy) is pseudorandom for random x and y. The power-DDH assumption
says that the power sequence (g, gx, gx

2
, . . . , gx

t
) is pseudorandom, for a random x and a polynomially

bounded t. While the power-DDH assumption is less common in the literature, many works explicitly
rely on it (see, for example, [GJM02, Gen06, CNS07, AHI11]). To the best of our knowledge, the
power-DDH assumption is incomparable to the DDH assumption.

Throughout this section, let G = {Gλ}λ∈N be a group ensemble with uniform and efficient
representation and operations, where each Gλ is a group of prime order p ∈ (2λ−1, 2λ).

Assumption 2.5 (Entropic DDH). The entropic DDH assumption asserts that for the group Gλ

with associated generator g, for every well-spread distribution Xλ the ensembles (gx, gy, gxy) and
(gx, gy, gz) are computationally indistinguishable, where x← Xλ and y, z ← Z∗p.

Assumption 2.6 (Entropic Power-DDH). The entropic power-DDH assumption asserts that for the
group Gλ with associated generator g, for every polynomially bounded function t(·), for every well-
spread distribution Xλ there exists a component-wise well-spread distribution X ′λ over t-tuples such

that the ensembles (g, gx, gx
2
. . . , gx

t
) and (g, gr1 , gr2 . . . , grt) are computationally indistinguishable,

where x← Xλ and (r1, . . . , rt)← X ′λ.

Our entropic DDH assumption (Definition 2.5) is the same assumption that is used in
Canetti [Can97]. To the best of our knowledge, the entropic power-DDH assumption is new to
this work. The reason why we require the existence of a distribution X ′λ rather than choosing the
ri’s uniformly at random is that the latter is in fact a false assumption. For instance, consider a
distribution Xλ that chooses a uniformly random x conditioned on having the bit representation of
gx starting with 0. This is a well-spread distribution, but is easily distinguishable from gr1 if r1 is
chosen uniformly at random.4

We chose to circumvent this attack by relaxing the distribution of the ri’s so that in the above
example, we can choose the ri’s uniformly at random conditioned on the bit representation of
gr1 starting with a 0. Another way to circumvent this attack is to prevent the distribution from
depending on g. This can be achieved for example by letting g be chosen at random and including
it in the experiment, rather than being fixed. However, in this case, our non-malleable obfuscator
would need to have this generator in a CRS (whereas with the solution we chose there is no need
for a CRS).

3 Non-Malleable Point Obfuscation

We define non-malleability of point function obfuscators. Such obfuscators not only hide the obfus-
cated point, but they also (informally) ensure that an obfuscation of a point x cannot be transformed
into an obfuscation of a related (yet different) point.

There are several ways to formalize this notion of security. We focus on a notion of security
where the objective of the adversary, given an obfuscation of x, is to come up with a circuit (of
prescribed structure) that is a point function on a related point (a similar definition is given in
[BFS11]). We discuss the relation to the notions of Canetti and Varia [CV09] below.

Definition 3.1 (Verifier). A PPT algorithm V for a point obfuscator O for the ensemble of domains
{Xλ}λ∈N domain is called a verifier if for all λ ∈ N and all x ∈ Xλ, it holds that Pr[V(O(x)) = 1] = 1,
where the probability is taken over the randomness of V and O.

4We thank James Bartusek, Fermi Ma and Mark Zhandry for pointing us to this attack.
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Notice that there is no guarantee as to what V is supposed to output when its input is not a
valid obfuscation. In particular, a verifier that always outputs 1 is a legal verifier. In many cases,
including the obfuscator of Canetti [Can97] and our own, one can define a meaningful verifier.

Definition 3.2 (Non-malleable point function). Let O be a point obfuscator for an ensemble of
domains {Xλ}λ∈N with an associated verifier V. Let {Fλ}λ∈N = {f : Xλ → Xλ}λ∈N be an ensemble
of families of functions, and let {Xλ}λ∈N be an ensemble of distributions over X.

The point obfuscator O is a non-malleable obfuscator for F and X if for any polynomial-time
adversary A, there exists a negligible function neg(·), such that for any λ ∈ N it holds that:

Pr

[
V(C) = 1, f ∈ Fλ, and If(x) ≡ C

∣∣∣∣∣ x← Xλ
(C, f)← A(O(x))

]
≤ neg(λ).

That is, the adversary A, given an obfuscation of a point x sampled from Xλ, cannot output a
function f ∈ Fλ and a valid-looking obfuscation of the point f(x), except with negligible probability.

The verifier V. We require that an attacker outputs an obfuscation with a prescribed structure so
that it passes the verifier V. Without such a requirement, there is a trivial attack for the adversary:
use the given circuit Ĉw to create a new circuit that gets x, computes f−1(x) and then applies Ĉw
on this value. The result is a circuit that accepts the point f(w).

In general, it might be hard to come up with a verifier V that tests whether a given circuit is
legal, but here we are interested in the case where this can be done efficiently. In our case, it will be
very easy to define V since a “valid-looking” obfuscation will consist of all pairs of group elements
(in some given group).

Adaptivity of f . We stress that our definition is adaptive with respect to the family Fλ. That is,
the adversary first gets to see the obfuscation O(x) of the point x and then may choose the function
it wishes to maul to. This definition is stronger than a static version in which the function f is fixed
and known in advance (before the adversary sees the challenge).

3.1 Relation to Canetti-Varia

The work of Canetti and Varia [CV09] presented a systematic study of non-malleable obfuscation
both specifically for point functions and also for general functionalities. They gave two definitions
for non-malleability, called functional non-malleability and verifiable non-malleability.

The verifiable non-malleability definition is more related to ours since there they also require
that there is a verifier V that gets an alleged obfuscated circuit and checks whether it is a legitimate
output of the obfuscator. Recall that the obfuscator of Canetti (as well as ours) has this property:
An obfuscation can be verified by simply checking whether the obfuscation consists of two group
elements in the desired group.

The verifiable non-malleability notion of Canetti and Varia asserts that, roughly, whatever maul-
ing attack one can apply on an obfuscation, there exists a simulator that has only oracle access to
the input circuit and outputs a “similarly mauled” obfuscation. To prevent trivial attacks (that
treat the input circuit as a black-box), they allow the simulator to output a circuit that has oracle
gates to its own oracle (namely, to the input circuit). The verifiability ensures that the output of
the adversary (and the simulator) have a “legal” structure. The precise definition is subtle and it
captures a wide range of mauling attacks in a meaningful way. We refer to [CV09] for their elaborate
discussions on the matter. We provide their formal definition, restricted to point functions next.
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Definition 3.3 (Verifiable non-malleable point obfuscation [CV09]). Let O be a point obfuscator
for a domain X = {Xλ}λ∈N with an associated verifier V. For every PPT adversary A and every
polynomial p(·), there exists a PPT simulator S such that for all sufficiently large λ ∈ N, for any
input x ∈ Xλ and any polynomial-time computable relation E : Xλ×Xλ → {0, 1} (that may depend
on x), it holds that

Pr [C 6= O(x), V(C) = 1 and (∃y ∈ Xλ s.t. Iy ≡ C and E(x, y) = 1) | C ← A(O(x))]−

Pr
[
V(C) = 1 and

(
∃y ∈ Xλ s.t. Iy ≡ CIx and E(x, y) = 1

)
| C ← SIx(1λ)

]
≤ 1

p(λ)
.

We observe that our definition is related to the above definition albeit with the following mod-
ifications. First, the input for our obfuscator is sampled from a well-spread distribution, rather
than being worst-case. Second, the non-malleablility in our definition is parametrized with a family
of functions, whereas the above definition requires non-malleability for all possible relations. The
modified definition is given next.

Definition 3.4. Let O be a point obfuscator for a domain X = {Xλ}λ∈N with an associated verifier
V. Let {Fλ}λ∈N = {f : Xλ → Xλ}λ∈N be an ensemble of families of functions, and let {Xλ}λ∈N be
an ensemble of distributions over X. For every PPT adversary A and every polynomial p(·), there
exists a PPT simulator S such that for all sufficiently large λ ∈ N, for any function f ∈ Fλ, it holds
that

Pr
x←Xλ

[
C 6= O(x), V(C) = 1 and If(x) ≡ C | C ← A(O(x))

]
−

Pr
x←Xλ

[
V(C) = 1 and If(x) ≡ CIx | C ← SIx(1λ)

]
≤ 1

p(λ)
.

Definition 3.4 is a special case of Definition 3.3 since it has restrictions on the input to the
obfuscator and the set of relations it supports. In the next claim, we show that our notion of
non-malleability from Definition 3.2 implies the notion from Definition 3.4.

Claim 3.5. A point obfuscator satisfying Definition 3.2 with respect to an ensemble of families of
functions F and an ensemble of distributions X also satisfies Definition 3.4 with respect to F and
X .

Proof. Let O be an obfuscator that satisfies Definition 3.2 with respect to the function in F and the
distribution X . Thus, for any f ∈ F , there is no PPT adversary that can generate a valid-looking
circuit C such that If(x) ≡ C for x← X , except with negligible probability. Namely,

Pr
x←X

[
C 6= O(x), V(C) = 1 and If(x) ≡ C | C ← A(O(x))

]
≤ neg(λ).

Hence, a simulator that does nothing (say, outputs ⊥) will satisfy security requirement of Defini-
tion 3.4.

A discussion. Our definition is thus, morally, equivalent to the strong definition of [CV09], albeit
with the assumption that the input comes from a well-spread distribution and the mauling is re-
stricted to functions rather than relations. Getting a construction in the plain model that resolves
these two issues is left as an open problem.

Lastly, observe that in the above proof, the simulator is, in fact, independent of the adversary
A and independent of the distinguishability gap (the polynomial p(·)). Thus, we actually get one
simulator for all adversaries and the computational distance between the output of the adversary
and the output of the simulator is negligible.
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4 Our Obfuscator

Let λ ∈ N be the security parameter and letXλ = Z2λ be the domain. Let Fpoly = {f : Xλ → Xλ}λ∈N
be the ensemble of classes of all functions that can be computed by polynomials of degree poly(λ),
except the constant functions and the identity function.

Let G = {Gλ}λ∈N be a group ensemble with uniform and efficient representation and operations,
where each Gλ is a group of prime order q ∈ (2λ−1, 2λ). We assume that for every λ ∈ N there
is a canonical and efficient mapping between the elements of Gλ and the domain Xλ. Let g be
the generator of the group G5λ. Our obfuscator gets as input an element x ∈ Xλ and randomness
r ∈ G5λ and computes:

O(x; r) =

(
r, rg

x4+x3+x2+x

)
.

The verifier V for a valid-looking obfuscation is the natural one: it checks whether the obfus-
cation consists of merely two group elements in G5λ. In the next two theorems we show that our
obfuscator is both secure and non-malleable. The first part is based on the entropic DDH assump-
tion (Assumption 2.5) and the second is based on (Assumption 2.6). Thus, overall, our obfuscator is
both secure and non-malleable under the assumption that there is a group where both the Entropic
DDH and Entropic power-DDH assumptions hold.

Theorem 4.1. Under the entropic DDH assumption (Assumptions 2.5), the obfuscator O above is
a point obfuscator according to Definition 2.2.

Theorem 4.2. Let Xλ be any well-spread distribution over Xλ. Under the entropic power-DDH
assumption (Assumption 2.6), the obfuscator O above is non-malleable according to Definition 3.2
for the family of functions Fpoly and the distribution Xλ.

The proofs of these theorems appear in the following two subsections.

4.1 Proof of Theorem 4.1

For completeness, we first notice that for any x ∈ Xλ it holds that x4 + x3 + x2 + x ≤ 25λ and thus
for any distinct x, y ∈ Xλ it holds that y4 + y3 + y2 + y 6= x4 + x3 + x2 + x. Therefore, we get that
for every x ∈ Xλ it holds that O(x) ≡ Ix, as required.

To prove soundness, we reduce to the security of our construction to the security of the r, rx

construction of Canetti [Can97]. We prove the following general claim regarding point function
obfuscators.

Claim 4.3. Let f : Xλ → X ′λ be an injective polynomial-time computable function, and let O be a
secure point obfuscator. Then, O′(x) = O(f(x)) is also a secure point obfuscator.

Proof. We prove that for any probabilistic polynomial-time algorithm A, there is a probabilistic
polynomial-time simulator S and a negligible function neg(·), such that for all x ∈ Xλ and all λ ∈ N,∣∣∣∣Pr

A,O
[A(O′(x)) = 1]− Pr

S
[SIx(1λ)) = 1]

∣∣∣∣ ≤ neg(λ),

where the probabilities are over the internal randomness of A,O and S.

11



Let A be such an adversary and let S be the corresponding simulator whose existence is guar-
anteed by the fact that O is a secure point obfuscator. It holds that for every x ∈ Xλ:∣∣∣∣Pr

A,O
[A(O(x)) = 1]− Pr

S
[SIx(1λ)) = 1]

∣∣∣∣ ≤ neg(λ),

As a first step, we construct a simulator S ′ that is inefficient yet makes only a polynomial-number
of queries to its oracle (we will get rid of this assumption later using a known transformation). We
define a simulator S ′ (with oracle access to Ix) that works by simulating S as follows. When S
performs a query y to its oracles, then S ′ finds x′ such that f(x′) = y. If no such x′ exists, then S ′
replies with 0. Otherwise, if S ′ found such an x′, then it performs the query to its oracle with x′

and answers with the reply of the oracle. Since f is injective, we have that f(x) = y if and only if
x′ = x. Thus, it holds that

Pr
S

[SIf(x)(1λ)) = 1] = Pr
S′

[S ′Ix(1λ)) = 1].

Thus, we get that ∣∣∣∣Pr
A,O

[A(O′(x)) = 1]− Pr
S′

[S ′Ix(1λ)) = 1]

∣∣∣∣ ≤ neg(λ).

We are left to take care of the fact that the simulator is inefficient. For this we use a result of
Bitansky and Canetti [BC14] who showed that this can be solved generically. Let us elaborate.

Bitansky and Canetti called obfuscators in which the simulation is inefficient yet the number
of queries is bounded by a polynomial as gray-box obfuscation. This is in contrast to virtual-black
box obfuscation where the simulator is required to be both efficient in its running time and the
number of queries and indistinguishability obfuscation [BGI+12, GGH+13], which can be phrased
as a simulation-based definition where the simulator is unbounded in both running time and number
of queries (see [BC14, Proposition 3.1]). One of the main results of Bitansky and Canetti was that
for point functions, the virtual-black box and virtual-gray box notions are equivalent: a simulator
that runs in unbounded time yet makes a polynomial number of queries can be turned into one that
runs in polynomial-time and makes a polynomial number of queries.5

Using their result for our construction, we obtain a simulator that works in polynomial-time and
makes a polynomial number of queries to its oracle. This completes the claim.

We finish the proof by applying the claim with f(x) = gx
4+x3+x2+x, noticing that this function

is injective and efficiently computable.

4.2 Proof of Theorem 4.2

Assume that there exists an adversary A, and a distribution Xλ such that given an obfuscation of
a point x← Xλ, the adversary A outputs a function f ∈ Fpoly and a valid-looking obfuscation (i.e.,
an obfuscation that passes the verification of V) of f(x) with probability at least ε > 0. Denote by
t = t(λ) the degree of f (written as a polynomial over Xλ). Let X ′λ be the corresponding component-
wise well-spread distribution. We show how to construct an adversary A′ that breaks the entropic
power-DDH assumption for the power sequence of length T = 4t.

Suppose we are given (gz0 , gz1 , . . . , gzT ), where z0 = 1 and either ∀i ∈ [T ] : zi = xi for a random
x ← Xλ or (r1, . . . , rT ) ← X ′λ. Our goal is to show that A′ can distinguish between the two cases.

5See [BCKP14] for more general families of functions where a similar equivalence holds.
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The algorithm A′, on input (gz0 , . . . , gzT ), first samples a random generator r ← G and computes
gz1+z2+z3+z4 . Then, it runs A on the input pair (r, rg

z1+z2+z3+z4 ) to get a function f and an output
pair (rA, wA). We assume that we are given the coefficients of the polynomial that represents the
function f , as otherwise, we can learn these coefficients by interpolation of random evaluations of f
(according to the distribution of the inputs Xλ).

Let h(x) = x4 + x3 + x2 + x and let us write the polynomial h(f(x)) as a polynomial of degree
at most 4t with coefficients bi:

h(f(x)) = (f(x))4 + (f(x))3 + (f(x))2 + f(x) =
4t∑
i=0

bix
i.

Using these values, it computes u = g
∑T
i=0 bizi and wreal = ruA. Finally, the adversary A′ outputs 1 if

and only if wreal = wA. The precise description of A′ is given in Figure 1.

The algorithm A′(gz0 , gz1 , . . . , gzT ):

1. Choose a random generator r ← G and compute gz1+z2+z3+z4 .

2. (f, rA, wA)← A(r, rg
z1+z2+z3+z4 ).

3. Compute the coefficients bi for i ∈ [T ] of h(f(x)).

4. Compute wreal = rg
∑T
i=0 bizi

A .

5. If wreal = wA, then output 1. Otherwise, output 0.

Figure 1: The adversary A′ that breaks the entropic power-DDH assumption.

We argue that A′ successfully breaks the entropic power-DDH assumption.

The power case. Observe that if zi = xi for each i ∈ [T ], then the distribution that A sees is

exactly the distribution (r, rg
x4+x3+x2+x

) and thus with probability at least ε, the adversary A will
maul the point obfuscation of x to a point obfuscation of f(x). That is,

wA = rg
h(f(x))

A = rg
∑T
i=0 bix

i

A = rg
∑T
i=0 bizi

A = wreal.

Thus, A′ will output 1 with probability at least ε.

The component-wise well-spread case. Suppose that zi = ri where (r1, . . . , rT ) are sampled
from X ′λ. We show that the probability that wreal = wA is negligible (in λ). This is an informa-
tion theoretic claim that holds against unbounded adversaries. The adversary A is given r and
rg
r1+r2+r3+r4 and let us even assume that she knows s = r1 + r2 + r3 + r4. In order for A′ to succeed,

she needs to be able to compute s′ =
∑T

i=0 biri (recall that A′ is unbounded). We show that the
min-entropy of this value s′ given all the information the adversary knows is high and therefore it
cannot guess it with noticeable probability. Denote by view(A) a random variable that corresponds
to the view of A and denote by S′ a random variable that corresponds to the value of s′.

We first show that if the degree of f (denoted above by t) is at least 2, then the min-entropy of
S′ is at least ω(log λ). This means that A′ will be able to guess it with only negligible probability.

Claim 4.4. If t ≥ 2, then H∞(S′ | view(A)) ≥ ω(log λ).
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Proof. If the degree of f is at least 2, then the degree of h(f(·)) is at least 5 and thus there exist
i > 4 such that bi 6= 0. In this case, since ri has min-entropy ω(log λ) given r1, . . . , r4, then the
random variable S′ has min-entropy ω(log λ) given the view of A.

The case where f is a linear function (i.e., a degree 1 polynomial) is slightly harder to handle
and here we use properties of the exact choice of our degree 4 polynomial. Let f be written as
f(x) = ax + b for some fixed a, b ∈ Xλ. We expand the polynomial h(f(x)) and rewrite it by
grouping terms:

h(f(x)) =(ax+ b)4 + (ax+ b)3 + (ax+ b)2 + (ax+ b)

=a4x4 + (4a3b+ a3)x3 + (6a2b2 + 3a2b+ a2)x2+

(4ab3 + 3ab2 + 2ab+ a)x+ b4 + b3 + b2 + b.

We show that the coefficients of h(f(·)) cannot be all identical.

Claim 4.5. The coefficients of h are not all identical.

Proof. If they were identical, then

a4 = 4a3b+ a3 = 6a2b2 + 3a2b+ a2 = 4ab3 + 3ab2 + 2ab+ a.

Solving this set of equations gives that the only solutions are a = 0, b = ∗ (i.e., b is arbitrary) and
a = 1, b = 0 (i.e., the identity function). However, these are illegal according to our definition of
Fpoly: this class contains neither constant functions nor the identity function.

Using the fact that the coefficients are not all identical, we claim that the min-entropy of S′

is ω(log λ) even given the view of A. Thus, again, the probability of guessing correctly the value is
negligible.

Lemma 4.6. Let X ′λ be a component-wise well-spread distribution and let (R1, R2, R3, R4) ← X ′λ
be the corresponding random variables. Let their sum be S = R1 + R2 + R3 + R4 ∈ X5λ. Let
b1, b2, b3, b4 ∈ Xλ be arbitrary constants that are not all the same. Let S′ = b1R1+b2R2+b3R3+b4R4.
Then, H∞(S′ | S) ≥ ω(log λ).

Proof. We lower bound the min-entropy by giving an upper bound on Pr[S′ = s′ | S = s] for any
s, s′ ∈ Xλ. This probability is exactly the fraction of tuples (r1, r2, r3, r4) such that r1+r2+r3+r4 = s
and b1r1 + b2r2 + b3r3 + b4r4 = s′. Writing this in matrix form we have

[
1 1 1 1
b1 b2 b3 b4

]
︸ ︷︷ ︸

A

·


r1
r2
r3
r4

 =

[
s
s′

]
.

Let Q1 be the total number of valid solutions and let Q2 be the support size of X ′λ. Since not all
the bi’s are equal, we have that A’s rank is 2, and thus for any s, s′ ∈ Xλ the space of solutions has
dimension 2. Therefore, there exists i 6= j such that once ri and rj and fixed there is only one valid
solution (r1, . . . , r4). However, given ri, rj we know that the support size of any other component of
X ′λ is at least of size 2ω(log λ). That is, we get that Q2 ≥ Q1 · 2ω(log λ). Thus, for every s, s′ ∈ Xλ, it
holds that

Pr[S′ = s′ | S = s] =
Q1

Q2
≤ 2−ω(log λ).

Thus, the min-entropy of S′ given S is at least ω(log λ).
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Combining the above, we get that overall, the probability of distinguishing is:∣∣∣Pr[A′(gx1 , . . . , gxT ) = 1]− Pr[A′(gr1 , . . . , grT ) = 1]
∣∣∣ ≥ ε− neg(λ)

which contradicts the security of the entropic power-DDH assumption.

4.3 Supporting More Functions

In our construction above, we have shown how to get a point function obfuscator that is non-
malleable against any function that can be written as a univariate polynomial of a polynomial
degree. The reason that there is a bound on the degree of the polynomial is that the security
reduction runs in time that is proportional to the degree. In particular, to be resilient against a
function f of degree t we had to construct gh(f(x)) in the reduction given the sequence {gxi}4ti=0

(recall that h(x) = x4 + x3 + x2 + x).

Uber assumption. Instead of building the polynomial h(f(x)) in the proof monomial by monomial
in order to break the entropic power-DDH assumption, we can, alternatively, modify our assumption
to get a more direct security proof without the large security loss. Concretely, instead of having
the reduction computing gh(f(x)) given {gzi}4ti=0, where t is the degree of f , we assume an “uber”
entropic power-DDH assumption that is parametrized by a class of functions F = {f : Zp → Zp}
(and thus can thought of as a collection of assumptions, one per f ∈ F). The assumption says that
for any f ∈ F and well-spread distribution X , there exists a well-spread distribution X ′ such that
for any stateful PPT adversary A there exists a negligible function neg(·) such that:

∣∣∣∣Pr

[
A
(
gh(f(x))

)
= 1

∣∣∣∣ x← X
f ← A

(
gx, gh(x)

)]− Pr

[
A (gs) = 1

∣∣∣∣ x← X , s← X ′

f ← A
(
gx, gh(x)

)]∣∣∣∣ ≤ neg(λ) .

Having such an assumption for a class of mauling functions F implies that our construction is
non-malleable for the same class F .
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