
Analysis of Error-Correcting Codes for
Lattice-Based Key Exchange

Tim Fritzmann1, Thomas Pöppelmann2, and Johanna Sepulveda1

1 Technische Universität München, Germany
{tim.fritzmann,johanna.sepulveda}@tum.de

2 Infineon Technologies AG, Munich, Germany
thomas.poeppelmann@infineon.com

Abstract. Lattice problems allow the construction of very efficient key
exchange and public-key encryption schemes. When using the Learning
with Errors (LWE) or Ring-LWE (RLWE) problem such schemes exhibit
an interesting trade-off between decryption error rate and security. The
reason is that secret and error distributions with a larger standard devia-
tion lead to better security but also increase the chance of decryption fail-
ures. As a consequence, various message/key encoding or reconciliation
techniques have been proposed that usually encode one payload bit into
several coefficients. In this work, we analyze how error-correcting codes
can be used to enhance the error resilience of protocols like NewHope,
Frodo, or Kyber. For our case study, we focus on the recently introduced
NewHope Simple and propose and analyze four different options for er-
ror correction: i) BCH code; ii) combination of BCH code and additive
threshold encoding; iii) LDPC code; and iv) combination of BCH and
LDPC code. We show that lattice-based cryptography can profit from
classical and modern codes by combining BCH and LDPC codes. This
way we achieve quasi-error-free communication and an increase of the
estimated post-quantum bit-security level by 20.39 % and a decrease of
the communication overhead by 12.8 %.

Keywords: Post-quantum key exchange · NewHope Simple · Error-
correcting codes

1 Introduction

Recently, lattice-based key exchange [9,4,3], public-key encryption (PKE) [22,11]
and signature schemes [13,6,7] have attracted great interest due to their perfor-
mance, simplicity, and practicality. Aside from NTRU [19] and when focusing
on ephemeral key exchange and PKE, the Learning with Errors (LWE) problem
and the more structured Ring-LWE (RLWE) problem are the main tools to build
state of the art schemes. An interesting property of LWE and RLWE is that the
security of the problem depends on the dimension of the underlying lattices but
also on the size and shape of the distribution used to generate random secret and
error elements. When constructing key exchange or PKE schemes this is critical
as error elements cannot always be removed by the communicating parties and



2 T. Fritzmann et al.

can lead to differences in the derived key (in key exchange) or differences in the
message (in most PKE instances). Thus, small differences in the shared key or
decrypted message have to be mitigated by encoding techniques or might finally
cause a re-transmission or lead to the inability to decrypt a certain ciphertext.

A reduction of the failure probability by using a better encoding opens up
the possibility to (a) increase the LWE/RLWE secret and error terms and thus
to strengthen security or (b) to decrease the size of ciphertexts, or in general ex-
changed data, by removing more information. Moreover, it is important to distin-
guish between the requirements for ephemeral key exchange and PKE schemes.
For ephemeral key exchange, a higher failure probability may be acceptable
(e.g., around 2−40) because key agreement errors do not affect the security of
the scheme. In the presence of errors, the two parties can just repeat the key ex-
change process. The issue of decryption errors is more critical when using LWE
or RLWE-based schemes to instantiate a PKE scheme. The basic LPR10 [24]
scheme is only considered appropriately secured with respect to adaptive chosen
plaintext attacks (CPA), which is usually not sufficient in a setting where an
adversary has access to a decryption oracle. A commonly used tool for trans-
forming a CPA-secured PKE into a scheme secured against chosen-ciphertext
attacks (CCA) is the Fujisaki-Okamoto transformation [15,31]. However, a CCA
secured cryptosystem using this transformation requires a decryption/decoding
routine with a negligible error rate because an attacker could exploit decryption
errors. To increase the resilience against attacks exploiting decryption errors, the
failure rate is desired to be lower than 2−128. As in Frodo [2] and Kyber [5], in
this work we aim for a failure rate lower than 2−140 to have a sufficient margin on
the error probability. Note that existing works, such as Hila5 [29] and LAC [23],
use an independence assumption to calculate the protocol’s failure rate. This as-
sumption is related to the correlation between the coefficients of the error term
in LWE/RLWE based schemes. The effect of this correlation on the failure rate
is still an open research question and it is not in the scope of this work (see also
Section 3.2 in [28] for a discussion). However, to decrease decryption errors with-
out decreasing the security of the underlying lattice problem, the reconciliation
and en-/decoding techniques are important.

Concurrent to our work, the lattice-based algorithms Hila5 [29], KCL [32],
ThreeBears [18] and LAC [23] where developed. They explicitly use forward error
correction to achieve better resilience against decryption errors. Except of LAC,
which uses a powerful Bose-Chaudhuri-Hocquenghem (BCH) code, all aforemen-
tioned schemes apply an error correction that is only capable of correcting a few
errors. In this work, we investigate the applicability of more elaborated and
modern codes for lattice-based cryptography. Generally, error-correcting codes
can be applied in LWE/RLWE schemes when the exchanged key (or message) is
chosen by only one of the parties. For example, Frodo, Kyber and NewHope Sim-
ple can benefit from the application of powerful error-correcting codes1. For our
case study, we focus on the RLWE-based NewHope Simple scheme [3], which was

1 In order to apply error-correcting codes, some changes in the protocol may be nec-
essary, e.g. different parameter selection and/or encoding/decoding functions.



Analysis of Error-Correcting Codes for Lattice-Based Key Exchange 3

submitted with small changes to NIST’s call for post-quantum proposals [25].
Compared to an earlier version (called just NewHope) [4], NewHope Simple
features a simpler message encoding scheme that uses an additive threshold en-
coding algorithm and which exhibits a failure rate of less than 2−61. Note that
the version of NewHope submitted to the NIST process reaches a failure rate
lower than 2−140. This was achieved by reducing the variance of the error distri-
bution. However, in this paper we analyzed different approaches to reduce the
failure rate without decreasing the level of security.

Contribution. In this work, we perform an exploration of more powerful error-
correcting codes for key exchange mechanisms in order to obtain a quasi-error-
free communication and to improve important performance parameters. Our
work intensively studies the behaviour of the failure rate when different error-
correcting codes and security parameters are applied. For the first time, modern
codes, more specifically low-density parity-check (LDPC) codes, are used in this
context and compared with the performance of classical BCH codes. In general,
the results of the exploration of the design space show that there are several
design decisions that make it possible to decrease the failure rate to a value
lower than 2−140, increase the security and decrease the communication over-
head between the two parties. The selection of a coding option is driven by the
requirements of the application. In addition, regarding the protocol’s failure rate
calculation, we extend the works of [10], [9] and [28], to apply the approach to
NewHope Simple. Additionally, we provide first benchmark results. However, we
leave the optimization of the implementations with regard to cache and timing
attacks to future work as we focus on the exploration of the large design space.

2 NewHope Simple

NewHope Simple, proposed by Alkim, Ducas, Pöppelmann and Schwabe in
2016 [3] as a simplification of NewHope [4], is a lattice-based key exchange,
or more specifically a key encapsulation mechanism (KEM), that is built upon
the RLWE problem. It allows two entities (Alice and Bob) to agree on a 256-bit
shared key µ that is selected by Bob. In the following subsections, the description,
security considerations and parameters of NewHope Simple are summarized.

2.1 Notation

Let R = Zq[x]/(xn +1) be a ring of integer polynomials. All elements of the ring
R can be written in the form f(x) = a0 + a1x + a2x

2 + · · · + an−1x
n−1, where

the integer coefficients a0, a1, . . . , an−1 are reduced modulo q. We write a
$←− S

for sampling a value a from the distribution S, where sampling means to take
a random value from a set S. Let Ψk be a binomial distribution with parameter
k. The distribution is determined by Ψk =

∑k−1
i=0 bi − b′i, where bi, b

′
i ∈ {0, 1}

are uniform independent bits. The binomial distribution is centered with a zero
mean, approximates a discrete Gaussian, has variance k/2, and gives a standard
deviation of ψ =

√
k/2.



4 T. Fritzmann et al.

2.2 Protocol

Protocol 1 shows the underlying algorithm of NewHope Simple. Eight steps
are highlighted due to the relevance to the present work. For a more detailed
description of the algorithm and for details about the application of the CCA
transformation, we refer the reader to [3] and [1].

Alice (server): Bob (client):

1© seed
$←− {0, 1}256

a← Parse(SHAKE(seed))

2© s, e
$←− Ψn

16 2© s′, e′, e′′
$←− Ψn

16

3© b← as+ e
ma =encodeA(b,seed)−−−−−−−−−−−−−−→ 3© (b,seed) ← decodeA(ma)

a←Parse(SHAKE(seed))

4© v
$←− {0, 1}256

d← NHSEncode(v)
5© u← as′ + e′

c← bs′ + e′′ + d

6© (u, c)← decodeB(mb)
mb =encodeB(u, c)←−−−−−−−−−−−− 6© c← NHSCompress(c)

c′ ← NHSDecompress(c) 8© µ← SHA3-256(v)
7© d′ ← c′ − us
v′ ← NHSDecode(d′)

8© µ← SHA3-256(v′)

Protocol 1. NewHope Simple protocol. All polynomials are elements of the ring R =
Zq[x]/(xn + 1), where n = 1024 and q = 12289 [3].

1. Alice samples the seed from a random number generator. The seed is ex-
panded with the SHAKE-128 extendable-output function. The expanded
seed is used to generate the public polynomial a.

2. Alice and Bob sample the coefficients of the secret polynomials s and s′, and
the error polynomials e, e′ and e′′ according to the error distribution Ψk.

3. Alice calculates b = as + e and sends it together with the seed to Bob.
Extraction of the secret s from b is hard due to the error term e and because
b is exactly an RLWE instance. Similar to Alice, Bob can use the seed to
generate the public polynomial a.

4. Bob samples 256 bits from a random number generator and assigns them to
the secret key vector v. Then, Bob encodes v into the most significant bit of
the coefficients of polynomial d = NHSEncode(v). The function NHSEncode,
which is given in Appendix A, maps one bit of v into four coefficients of d.
This redundancy is used by the NHSDecode function in Step 7 to average
out small errors.

5. Bob calculates u = as′ + e′ and hides the secret key polynomial d in c =
bs′+e′′+d = ass′+es′+e′′+d. The polynomials u and c are again instances
of the RLWE problem.



Analysis of Error-Correcting Codes for Lattice-Based Key Exchange 5

6. Bob sends to Alice the polynomial u and the compressed polynomial c. The
goal of the compression of polynomial c is the reduction of the communication
overhead between Alice and Bob.

7. Alice removes the large noise term ass′ from the decompressed polynomial
c′ by calculating d′ = c′ − us ≈ bs′ + e′′ + d− (as′ + e′)s = ass′ + es′ + e′′ +
d− ass′− e′s = (es′− e′s) + e′′+ d. Alice obtains the term v′ after decoding
d′, using the function NHSDecode, which is also provided in Appendix A.

8. After the decoding, Alice and Bob can use v′ and v, respectively, as input
for the SHA3-256 function to obtain the shared key.

The functions NHSEncode and NHSDecode of NewHope Simple build an error-
correcting code, which is used to remove small errors and to increase the prob-
ability that Alice and Bob share a similar key. For the remainder of this paper,
this error-correcting code is denoted as additive threshold encoding algorithm.

2.3 Security of NewHope Simple

The security level of NewHope Simple depends on three parameters: the dimen-
sion n of the ring, the modulus q, and the parameter k that determines the
standard deviation of the noise distribution Ψk. In this work, the parameters
n and q are not modified. Only k is used to improve the security of NewHope
Simple as larger noise also leads to a higher security level. For determining the
security level, the test script and methodology2 from [4] can be used.

2.4 Noise Sources of the Protocol

NewHope Simple contains two noise sources: the difference noise and the com-
pression noise. As noise we define all terms that have an influence on the cor-
rectness of the decryption/decoding or reconciliation mechanisms. The reason is
that we can model the distortion caused by the convolutions of the secret and
error polynomials as noise that is added to encoded data transmitted over a
channel.

The difference noise emerges from the design of the protocol. Alice is able
to remove the strongest noise term ass′ from polynomial c (Step 7), but a small
noise term remains. This noise term is called difference noise and is equal to
(es′− e′s) + e′′. The coefficients of the secret and error polynomials are sampled
from the error distribution Ψk. When k is increased, the probability of receiving
a stronger difference noise increases as well.

The compression noise is introduced by the function NHSCompress (Step
6). It compresses the polynomial c = ass′ + es′ + e′′ + d to reduce the commu-
nication overhead between Alice and Bob. This is possible as lower-order bits
carry a high amount of noise and have low information content. To remove such
lower order bits, a coefficient-wise modulus switching between the security pa-
rameter q and 2r is performed, where r is the number of remaining bits. To
reduce the number of transmitted bytes between Alice and Bob, the transmitted

2 Script PQsecurity.py in https://cryptojedi.org/crypto/#newhope

https://cryptojedi.org/crypto/#newhope


6 T. Fritzmann et al.

polynomials b, c and u can be compressed. In the original implementation of
NewHope Simple, the compression is only applied on polynomial c, where each
coefficient of c is reduced from 14 bits to 3 bits. In this work, we further reduce
the communication overhead by compressing polynomial u as in Kyber [10]. To
obtain a moderate compression noise, a weaker compression on the coefficients
of polynomial u has to be applied. As the uniformly distributed compression
noise of u is multiplied with the binomially distributed secret s, the compression
noise of u gets magnified.

3 Failure Rate of NewHope Simple

In the original implementation of NewHope Simple, the failure rate is bounded
applying the Cramér-Chernoff inequality [3]. This approach provides a proba-
bility bound that can be far away from the real failure probability. Previous
works, such as Frodo [9], Kyber [10] and Hila5 [28], use probability convolutions
to determine the probability distribution of the difference between the keys of
Alice and Bob. With the probability distribution of the difference, it is possi-
ble to derive the protocol’s failure rate. In the following subsections, we shortly
explain how to calculate the probability distributions of the two noise terms,
difference noise and the compression noise, mentioned in Subsection 2.4, and
how to calculate the failure rate by a given error distribution.

3.1 Mathematical Operations with Random Variables

In this subsection, the mathematical background for determining the probability
distributions of the difference noise and the compression noise is given.

NewHope Simple uses a binomial distribution for sampling secret and error
polynomials. The probability mass function of a binomial random variable (RV)
X is f(i) = Pr(X = i) =

(
l
i

)
pi(1−p)l−i for i = 0, 1, . . . , l. For NewHope Simple,

p = 0.5 and l is equal to the error distribution parameter k multiplied by two.
Let us define in Theorem 1 the probability distribution of the addition and in

Theorem 2 the probability distribution of the multiplication of two independent
RVs. Since in NewHope Simple polynomial instead of conventional multiplica-
tions are required, we define in Theorem 3 the polynomial product distribution.
The proof for Theorem 3 can be found in Appendix B.

Theorem 1 (Addition of random variables). Let ΨX(x) and ΨY (y) be two
probability distributions of the independent random variables X and Y . Then the
probability distribution of the sum of both random variables corresponds to the
convolution of the individual probability distributions, which can be written as
ΨX+Y = ΨZ(z) = ΨX(x) ~ ΨY (y) [17].

Theorem 2 (Product distribution). Let ΨX(x) and ΨY (y) be two probability
distributions of the independent random variables X and Y . Then the product
distribution ΨZ(XY = c) =

∑
x∈X,y∈Y s.t.xy=c ΨX(x)ΨY (y).



Analysis of Error-Correcting Codes for Lattice-Based Key Exchange 7

Table 1. Calculating distribution of d = (es′ − e′s) + e′′

Step Action Result

Step 1 product distribution of two RVs sampled from Ψk ΨZ

Step 2 n-fold convolution of the product distribution es′

Step 3 convolve distribution of es′ with itself (es′ − e′s)
Step 4 convolve distribution of (es′ − e′s) with Ψk (es′ − e′s) + e′′

Theorem 3 (Polynomial product distribution). Let a and b be two polyno-
mials of a ring Rq with rank n and with independent random coefficients sampled
from Ψk and let c be the result of the polynomial multiplication of a and b. Then
the probability distribution of a random coefficient of c is equal to the n-fold con-
volution of the product distribution ΨZ of two random variables sampled from
Ψk.

3.2 Probability Distributions of Difference and Compression Noise

Difference Noise. The partial steps for calculating the probability distribu-
tion of the difference term are summarized in Table 1. Note that all calculated
probability distributions are related to a single coefficient of a polynomial. The
probability distribution of the polynomial product es′ can be described as an
n-fold convolution of the product distribution of two RVs sampled from Ψk. In
our case, the probability distributions of an addition and subtraction of two
RVs are equal because the RVs are sampled from a symmetrical distribution
that is centered at zero. To obtain the probability distribution for (es′ − e′s),
we convolve the probability distribution of es′ with itself. Finally, we convolve
the distribution of e′′ with the result to obtain the probability distribution of
(es′ − e′s) + e′′.

Compression Noise. The probability distribution of the compression noise
can be calculated similar to the probability distribution of the difference noise.
The polynomial c = ass′ + es′ + e′′ + d consists of the uniformly distributed
public parameter a, some terms sampled from the error distribution and the
secret key d. Depending on the respective key bit, the coefficients of polynomial
d are either zero or bq/2c. Both values, zero and bq/2c, are not affected by the
compression. They can be compressed and decompressed without any loss of
information. Consequently, the compression noise is only dependent on the term
cuncompressed = ass′ + es′ + e′′. The coefficients of the secret and error polyno-
mials are sampled from Ψk and the coefficients of a are sampled from a uniform
distribution Uq with outcomes between 0 and q − 1 (after modulus reduction).
In Figure 11 (Appendix C) the probability distribution of the difference and
compression noise is plotted.



8 T. Fritzmann et al.

3.3 From the Noise Distribution to the Failure Rate

Note that the coefficients of the product of two polynomial ring elements are
correlated and not independent anymore. This correlation does not influence
the validity of Theorem 3 and the calculations done in Subsection 3.2 because
there the calculations are related to a single coefficient. To determine the failure
rate, we apply arithmetic operations on correlated coefficients and thus assume
that the correlation between the coefficients has a negligible influence to the
final result. The experiments discussed in Appendix D have shown that this
assumption is valid at least for high failure rates. The independence assumption
is also required in Equation 2 (Subsection 5.2) to calculate the failure rate of
NewHope Simple with a t-bit error-correcting code. To have a safety margin, we
aim for a failure rate of 2−140 instead of 2−128.

In order to determine the failure rate, given a noise distribution, a closer look
at the NHSDecode function must be taken. During the decoding, when one bit is
mapped into four coefficients, the absolute values of the four coefficients that are
subtracted by bq/2c are summed up. This decoding step is done for all outcomes
of the overall error distribution (convolution of difference and compression noise
distribution). First, the values of all outcomes are subtracted by bq/2c and the
absolute values are built. Let us denote the resulting error distribution as Ψdec.
In the next step, we convolve the distribution of four coefficients Ψ ′dec = Ψdec ~
Ψdec ~ Ψdec ~ Ψdec. Note again that for this step we assume that the correlation
between the coefficients is negligible. To obtain the bit error rate (BER) of
NewHope Simple, all probabilities of the outcomes of Ψ ′dec that are lower than
or equal to q are summed up. The BER can be multiplied with the secret key
length, in our case 256, to compute the union bound. The union bound is the
upper bound for the block error rate (BLER) or failure rate of the protocol.

4 Error-Correcting Codes

4.1 Modern and Classical Error-Correcting Codes

Error-correcting codes are an essential technique for realizing reliable data trans-
missions over a noisy channel. In this work, error-correcting codes are used to
mitigate the influence of the difference and compression noise on the failure prob-
ability of RLWE based key exchange protocols. Instead of the additive threshold
encoding, which is used in the original NewHope Simple scheme, in this work
we explore the effect of using more powerful error-correcting codes. The design
objectives for the error-correcting code are: i) good error-correcting capability,
to increase the security or decrease the amount of exchanged data; ii) low fail-
ure rate, to avoid repetition of the protocol and to apply CCA transformation;
and iii) reasonable time complexity. The additive threshold encoding has usu-
ally a weak error-correcting capability and cannot efficiently achieve low failure
rates for certain noise levels. Therefore, more powerful classical3 and modern4

3 Classical codes are described by algebraic coding theory.
4 Modern codes have a new approach based on probabilistic coding theory.



Analysis of Error-Correcting Codes for Lattice-Based Key Exchange 9

codes can be used. The drawback of using powerful error-correcting codes is the
increase of computation time.

Modern codes have a strong error-correcting capability and can get close
to the channel capacity for long code lengths. The most commonly used error-
correcting codes belonging to the class of modern codes are LDPC and Turbo
codes. In comparison to Turbo codes, LDPC codes usually have a lower time
complexity since they do not require long interleavers and can abort the iteration
loop when a correct codeword is found [14]. Moreover, their error floor occurs at
lower failure rates [21]. The error floor is a phenomenon of some modern codes
that limits the performance for low failure rates. That is, the channel capacity
can only be very closely approached for moderate failure rates. Since the goal is
to have a low (or even no) error floor and to keep the time complexity low, in this
work we select LDPC instead of Turbo codes for obtaining a high error-correcting
capability.

The advantages of classical error-correcting codes are the lack of error floor
and that the number of correctable errors can be determined during the con-
struction of the code. When the number of correctable errors is known, the
performance of the code can be calculated, otherwise, simulations are required.
In contrast to classical codes, where the number of correctable errors is known,
for modern codes this value is unknown. However, it has been demonstrated by
simulation that modern codes achieve a higher error-correcting capability, when
compared to the classical approach.

There are a large number of classical error-correcting codes, e.g. Hamming,
Reed Muller and BCH codes. Among this alternatives, BCH codes are widely
spread in real world applications because of their good performance, the ability
to correct multiple errors and their flexibility in terms of code length and code
rate. These characteristics motivate us to use BCH codes in the protocol to
achieve very low failure rates.

To reach both a high error-correcting performance and a very low failure
rate, usually different codes are concatenated. The concatenation of BCH and
LDPC codes is a common method, which is used, for example, in the second
generation of the digital video broadcast standard for satellite (DVB-S2).

4.2 BCH Codes

BCH codes are a class of powerful classical error-correcting codes that were
discovered in 1960. The code length of a BCH code must be n = qm − 1, where
m ∈ Z is greater or equal to three and q equal to two for the binary BCH codes.
There exists a BCH code for any valid code length and any positive integer t <
2m−1, where t denotes the number of correctable errors [21]. Figure 1 illustrates
the encoding and decoding process of BCH codes. During the encoding, the
codeword c is built out of a message m. In the noisy channel, noise is added to
the transmitted codeword. At NewHope Simple, this would be the difference and
compression noise. The decoder is used to correct multiple errors in the received
codeword r. Generally, the decoding process consists of three parts: determining
the syndrome s, error locator polynomial σ and the zeros of σ. Berlekamp’s



10 T. Fritzmann et al.

Encoding +

Noise

Syndrome
Berlekamp-
Massey

Chien search +
c r s σ e c′m

Decoding

Fig. 1. BCH error correction

Encoding +

Noise

Calculate
LLR’s

CN update
VN update

Codeword
found/ max.
iteration?

c r

no

c′

yes
m

Decoding

Fig. 2. LDPC error correction with sum-product algorithm

algorithm, which was proposed in 1966, is an efficient method for determining
the error locator polynomial [8]. The error polynomial e can be determined by
finding the zeros of the error locator polynomial with the Chien search algorithm
[12]. The predicted codeword c′ is calculated by taking r xor e.

4.3 LDPC Codes

LDPC codes were developed by Gallager in 1962 [16]. They have become attrac-
tive since the 90’s, when the required computational power has been available.
Figure 2 shows a block diagram of an LDPC code. LDPC codes are characterized
by its parity check matrix H, which has, in case of LDPC codes, a low density,
i.e. a low number of ones. For the encoding, usually, the systematic form of H is
computed to derive the generator matrix. With the generator matrix it is pos-
sible to calculate the codeword c by a given message m. After transmitting c
through the noisy channel, the receiver obtains a noisy codeword r.

The sum-product algorithm is a very efficient soft decision message-passing
decoder. It takes as input a parity check matrix, the maximum number of itera-
tions and the log-likelihood ratios (LLR) of the received codeword r. To visualize
the decoding process, the Tanner Graph representation of the parity check ma-
trix is used. This representation consists of a bipartite graph with check nodes
(CN) and variable nodes (VN), which represent the rows and columns of H,
respectively. The sum-product algorithm iteratively sends LLR messages from
variable nodes to check nodes and vice versa until a correct codeword is found or
the maximum number of iterations is reached. A full description of the algorithm
can be found in works like [20] and [26].



Analysis of Error-Correcting Codes for Lattice-Based Key Exchange 11

4.4 Error-Correcting Codes for NewHope Simple

To meet the requirements mentioned in Subsection 4.1, we use LDPC codes to
maximize the error-correcting capability and BCH codes to achieve very low
error rates. In the following paragraphs, we investigate four design options that
make use of various combinations of these codes. The respective advantages and
disadvantages are summarized in Table 2.

Table 2. Summary of explored coding options

Option Coding technique Advantages Disadvantages

Option 1 BCH Good error correction Computationally ex-
pensive

Option 2 BCH and additive Speed up of Option 1 Weaker error correction
threshold enc. (lower Galois field) compared to Option 1

Option 3 LDPC Closer to channel ca- Does not achieve very
pacity low error rates

Option 4 LDPC and BCH Lower error rates than Computationally ex-
Option 3 achievable pensive

Option 1. For Option 1, we use a BCH(1023,258) for the error correction. The
BCH encoder builds the codeword out of 256 secret key bits, 765 redundancy
bits and 2 padding bits. By using the NHSEncode function (Step 4 in Protocol
1), each of the 1023 code bits is mapped to one coefficient of d. Then, in the
NHSDecode function (Step 7 in Protocol 1), the coefficients are mapped back to
the received codeword with a hard threshold. Finally, the BCH decoder corrects
up to 106 bit errors and returns the estimated secret key vector.

BCH(1023,258)
Enc.

1 bit to 1
coeff

+

Noise

1 coeff to
1 bit

BCH(1023,258)
Dec.

Fig. 3. Option 1, block diagram BCH(1023,258)

Option 2. For Option 2, we use a BCH(511,259) as outer code and the additive
threshold encoding as inner code. In this case, the BCH code uses 252 bits of
redundancy in order to correct up to 30 errors. The additive threshold encoding
has as input 512 bits (BCH code length with one padding bit). These bits are
mapped to 1024 coefficients, resulting into a redundancy of 512 bits. With the
additive threshold encoding, it is expected that even more than 30 errors are cor-
rectable. In comparison to Option 1, this option is faster because it only requires



12 T. Fritzmann et al.

calculations in GF(29). The drawback of this approach is a lower error-correcting
capability at the target failure rate (2−140), as shown in Subsection 5.2.

BCH(511,259)
Enc.

1 bit to 2
coeffs

+

Noise

2 coeffs to
1 bit

BCH(511,259)
Dec.

Fig. 4. Option 2, block diagram BCH(511,259) + additive threshold encoding

Option 3. For Option 3, we use an LDPC(1024,256). In this case, all available
coefficients are used for the LDPC encoding. Similar to Option 1, one bit is
mapped to one coefficient, but within the function NHSDecode, no hard thresh-
old is used. Instead, we apply a transformation on the coefficients in order to
allow the usage of the sum-product algorithm. Each received coefficient d′i is
transformed to

d′′i =
4|d′i − bq/2c|

q
− 1 . (1)

LDPC(1024,256)
Enc.

1 bit to 1
coeff

+

Noise

transfor-
mation

LDPC(1024,256)
Dec.

Fig. 5. Option 3, block diagram LDPC(1024,256)

Option 4. For Option 4, we build a concatenation of a BCH(511,259) and an
LDPC(1024,512). In this approach, the advantages of BCH and LDPC codes
are combined to achieve very low error rates and to get closer to the channel
capacity. More specifically, the LDPC(1024,512) is used to remove the strong
noise and the BCH(511,259), which can correct up to 30 errors, is applied to
remove the remaining errors and thus achieve a very low error rate.

BCH(511,259)
Enc.

LDPC(1024,512)
Enc. + 1 bit to 1
coeff

+

Noise

transformation +
LDPC(1024,512)
Dec.

BCH(511,259)
Dec.

Fig. 6. Option 4, block diagram BCH(511,259) + LDPC(1024,512)

5 Experimental Results

5.1 NewHope Simple Compression Noise

Figure 7 illustrates the influence of the compression noise on the failure rate.
The graph shows that the compression has a strong influence on the failure rate
for low values of k. For higher values of k, the difference noise dominates. To



Analysis of Error-Correcting Codes for Lattice-Based Key Exchange 13

20 40 60

10−60

10−50

10−40

10−30

10−20

10−10

100

2−40

2−140

k

B
L
E
R

with compression of c and u

with compression of c

w/o compression

Fig. 7. Influence of compression noise on NewHope Simple’s failure rate.

40 60 80 100

10−50

10−40

10−30

10−20

10−10

100

2−40

2−140

k

B
L

E
R

NewHope Simple (4 coeff./bit)

BCH(1023,258)

BCH(511,259) and 2 coeff./bit

Fig. 8. Improvement of failure rate with Option 1, BCH(1023,258); and Option 2,
concatenation of BCH(511,259) and additive threshold encoding. Compression on c
and u applied.

improve both, security and bandwidth, a balance between difference noise and
compression noise has to be found. When applying the error-correcting options
described in Subsection 4.4, we found the optimum at a compression of c from 14
to 3 bits per coefficient and a compression of u from 14 to 10 bits per coefficient.
Removing even more bits from the coefficients of c and u leads to a significantly
higher compression noise.

The curve with compression of c corresponds to the original implementation
of NewHope Simple. For a value of k = 16, a failure rate of 2−127.88 = 3.20·10−39

is determined, whereas in [3] a failure probability lower than 2−61 = 4.34 · 10−19

is claimed. This difference is not surprising because the Cramér-Chernoff bound
is based on an exponential inequality. Due to the exponential behavior, even
small changes can entail large differences.



14 T. Fritzmann et al.

5.2 NewHope Simple with BCH Code

When the failure rate of the protocol is known, the improvement using BCH
codes can be calculated. The probability that a binary vector of S bits (in our
analysis 256) has more than t errors is

BLER =

S∑
i=t+1

(
S

i

)
pib(1− pb)S−i = 1−

t∑
i=0

(
S

i

)
pib(1− pb)S−i , (2)

where pb denotes the probability of a bit error [30]. Figure 8 shows the improve-
ments with BCH codes. The results show that both BCH variants (Option 1 and
Option 2) allow a quasi-error-free communication for k’s lower than 46. While
NewHope Simple with compression of c and u has a failure rate of 1.69 ·10−3 for
k = 46, Option 1 and Option 2 achieve a failure rate of 1.83·10−57 and 2.30·10−44,
respectively. In comparison to the original implementation of NewHope Simple,
we can choose a much higher k to obtain the same failure rate when BCH codes
are used within the protocol.

5.3 NewHope Simple with LDPC Code

When a binary input additive white Gaussian noise channel (BI-AWGNC) is
used as channel model and a code length of n = 1024 (1023) is chosen, the
improvement of the applied LDPC code over the applied BCH code is for the
rate 1/2 about 2.8 dB and for the rate 1/4 about 3.8 dB at a BER of 10−6. As a
consequence, LDPC codes can get closer to the channel capacity when compared
to BCH codes, even with a moderate code length.

Figure 9 compares the original implementation of NewHope Simple (with
additional compression of u) with the implementations using an LDPC code
(Option 3) and a BCH code (Option 1). The graph shows that LDPC codes
can be used to further improve the error-correcting performance. While the
BCH(1023,258) begins to operate in the waterfall region for k’s smaller than
76, the waterfall region for the LDPC(1024,256) begins for k’s smaller than 92.
However, the error floor is expected to limit the performance of the LDPC code
for error rates smaller than about 10−10 (see analysis in [27]) so that BCH codes
perform better in this region. Interesting is also that the waterfall region of the
additive threshold encoding is less distinct (lower gradient).

5.4 NewHope Simple with Concatenation of BCH and LDPC Code

To achieve very low error rates and get closer to the channel capacity as a
pure BCH implementation, the BCH code is combined with an LDPC code
(Option 4). Figure 10 illustrates the performance of the concatenation of the
LDPC(1024,512) and the BCH(511,259).



Analysis of Error-Correcting Codes for Lattice-Based Key Exchange 15

40 60 80 100
10−4

10−3

10−2

10−1

100

k

B
L

E
R

NewHope Simple (4 coeff./bit)

LDPC(1024,256)

BCH(1023,258)

Fig. 9. Improvement of failure rate with Option 3, LDPC(1024,256). Compression on
c and u applied.

40 60 80 100

10−50

10−40

10−30

10−20

10−10

100

2−40

2−140

k

B
L
E
R

LDPC(1024,512) + BCH(511,259)

BCH(1023,258)

Fig. 10. Improvement of failure rate with Option 4, concatenation of LDPC(1024,512)
and BCH(511,259). Compression on c and u applied.

5.5 Comparison Coding Options

Table 3 summarizes the results of the different coding options. Our analysis
shows that NewHope Simple, with the original parameter set, has a much lower
failure rate than expected. However, to increase the security and decrease the
bandwidth, stronger error-correcting codes have to be applied. To achieve a
failure rate of 2−140, parameter k is set for Option 1, Option 2 and Option 4
to 48, 46 and 66, respectively. Since we cannot prove such an error rate for
the pure LDPC implementation, we chose a higher failure rate for Option 3.
Although Option 1 has a better security strength, we recommend Option 2
because it requires calculations in GF(29) instead of GF(210). This reduces the
time complexity. For moderate failure rates, Option 3 achieves the best error-
correcting capability, but for failure rates lower than about 10−10 the error floor
limits the performance. Option 4 cannot get as close to the channel capacity
as Option 3, but it achieves extremely low error rates. With Option 4, we can
realize an error rate of 2−140, an increase of the post quantum security by 20.39 %



16 T. Fritzmann et al.

Table 3. Comparison error correction options

Coding option Failure rate k Security classical/ Exchanged
quantum bytes

NewHope Simple [3] 2−127.88 a) 16 281/255 bits 4,000

Option 1, BCH(1023,258) < 2−140 48 324/294 bits 3,488

Option 2, BCH(511,259) < 2−140 46 323/292 bits 3,488
+ 1 bit to 2 coeffs.

Option 3, LDPC(1024,256) < 2−12 b) 80 348/315 bits 3,488

Option 4, LDPC(1024,512) < 2−140 66 338/307 bits 3,488
+ BCH(511,259)

a) In the reference, NewHope Simple provides a failure rate of lower than 2−61. This
bound was determined using the Cramér-Chernoff inequality. With our approach, we
determine a failure rate of 3.20 · 10−39 = 2−127.88.
b) With Option 3, a failure rate of ≈ 10−10 = 2−33.22 can be efficiently reached.

and a decrease of the communication overhead by 12.80 %. If k and thus the
security level is left unchanged and only the compression on u is increased, the
communication overhead can be reduced with Option 4 by 19.20 %.

5.6 Benchmark

This section summarizes the run times of the applied algorithms. Table 4 pro-
vides an overview of the determined results. All tests were performed on an Intel
Core i7-6700HQ (Skylake), which runs at 2.6 GHz (turbo boost disabled). The
C-code was compiled with gcc (version 5.4.0) and flags -O3 -fomit-frame-pointer
-march=corei7-avx -msse2avx. In comparison to NewHope Simple, the time com-
plexity increases for Option 1 by 238 %; for Option 2 by 40 %; for Option 3 by
6462 % (when k = 80); and for Option 4 by 4455 % (when k = 66). Option 2 has
a relatively small overhead, thus being suitable for applications that require a
low time complexity. The costs for the other options are quite high. However, as
NewHope Simple is implemented very efficiently and is already very fast, the time
overhead can be acceptable. The decoding complexity of LDPC codes depends
on the parameter k. To decrease the run time, k can be decreased. Moreover,
the min-sum algorithm can be used instead of the sum-product algorithm. Thus,
the complexity is reduced at the cost of a lower decoding performance.

6 Conclusion and Future Work

Our analysis has shown that powerful error-correcting codes within lattice-based
key exchange protocols can lead to a significant improvement of important per-



Analysis of Error-Correcting Codes for Lattice-Based Key Exchange 17

Table 4. Benchmark: median and average clock cycles with 1000 test rounds

Function Cycles median/average

NewHope Simple: KeyGen (server) 223952/ 225452
KeyGen+shared key (client) 353201/ 358821
Shared key (server) 78216/ 78614

BHC(511,259): Encoding 104520/ 108738
Decoding 157704/ 154652

BCH(1023,258): Encoding 298043/ 302021
Decoding 1259554/ 1206814

LDPC(1024,512): Encoding 2069582/ 2073136
Decoding (k = 66) 26862391/ 27464623

LDPC(1024,256): Encoding 2068959/ 2071198
Decoding (k = 80) 40282855/ 41912347

formance parameters, such as failure rate, security level and bandwidth. Modern
codes, e.g. LDPC codes, can be used to get a high error-correcting capability.
However, to obtain very low error rates, classical codes, e.g. BCH codes, should
be employed. The concatenation of LDPC and BCH codes combines their ad-
vantages to achieve a quasi-error-free key exchange with a high error-correcting
capability. With quasi-error-free communication, the CCA transformation can
be applied in order to allow protocols, like NewHope Simple, to be also used
for encryption. Before LDPC and BCH codes are used in encryption schemes,
it is necessary to investigate these codes with respect to the vulnerability to
attackers. For instance, constant-time implementations may be challenging. The
selection of the encoding technique is driven by the application characteristics.
Many applications may not require or may not be able to integrate powerful
error-correcting codes. Different application may benefit from the reduction of
data transmission by using strong error-correcting codes, even if the computa-
tion time increases. Examples are battery-powered wireless devices, where the
radio module usually represents a substantial portion of the overall energy con-
sumption.

Acknowledgments. We thank the anonymous reviewers for their valuable com-
ments and suggestions. This work was partly funded by the Fraunhofer High
Performance Center for Secure Connected Systems of Munich.

References

1. Alkim, E., Avanzi, R., Bos, J., Ducas, L., de la Piedra, A., Pöppelmann, T.,
Schwabe, P., Stebila, D.: NewHope: Algorithm Specifcations and Supporting Doc-
umentation (2017), https://newhopecrypto.org/data/NewHope 2017 12 21.pdf

2. Alkim, E., Bos, J.W., Ducas, L., Longa, P., Mironov, I., Naehrig, M., Nikolaenko,
V., Peikert, C., Raghunathan, A., Stebila, D., Easterbrook, K., LaMacchia, B.:
FrodoKEM - Learning With Errors Key Encapsulation: Algorithm Specifications

https://newhopecrypto.org/data/NewHope_2017_12_21.pdf


18 T. Fritzmann et al.

And Supporting Documentation (2017), https://frodokem.org/files/FrodoKEM-
specification-20171130.pdf

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: NewHope without reconcilia-
tion. IACR Cryptology ePrint Archive 2016, 1157 (2016)

4. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange -
A new hope. In: 25th USENIX Security Symposium, USENIX Security 16, Austin,
TX, USA, August 10-12, 2016. pp. 327–343 (2016)

5. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J.M., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-Kyber: Algorithm Specifi-
cations And Supporting Documentation (2017), https://www.pq-crystals.org/
kyber/data/kyber-specification.pdf

6. Bai, S., Galbraith, S.D.: An Improved Compression Technique for Signatures Based
on Learning with Errors, pp. 28–47. Springer International Publishing, Cham
(2014), doi:10.1007/978-3-319-04852-9 2

7. Barreto, P.S., Longa, P., Naehrig, M., Ricardini, J.E., Zanon, G.: Sharper Ring-
LWE signatures. IACR Cryptology ePrint Archive 2016, 1026 (2016)

8. Berlekamp, E.R.: Nonbinary BCH decoding. In: International Symposium on In-
formation Theory. San Remo, Italy (1966)

9. Bos, J.W., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghu-
nathan, A., Stebila, D.: Frodo: Take off the ring! practical, quantum-secure key
exchange from LWE. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-28, 2016.
pp. 1006–1018 (2016), doi:10.1145/2976749.2978425

10. Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Stehlé, D.: CRYSTALS - Kyber: a CCA-secure module-lattice-based
KEM. IACR Cryptology ePrint Archive 2017, 634 (2017)

11. Cheon, J.H., Kim, D., Lee, J., Song, Y.S.: Lizard: Cut off the tail! // practical post-
quantum public-key encryption from LWE and LWR. IACR Cryptology ePrint
Archive 2016, 1126 (2016)

12. Chien, R.T.: Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem codes.
IEEE Trans. Information Theory 10(4), 357–363 (1964), doi:10.1109/TIT.1964.
1053699

13. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. Cryptology ePrint Archive, Report 2013/383 (2013)

14. Fan, J.: Constrained Coding and Soft Iterative Decoding. The Springer Interna-
tional Series in Engineering and Computer Science, Springer US (2012)

15. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In: Advances in Cryptology - CRYPTO ’99, 19th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings. pp. 537–554 (1999), doi:10.1007/3-540-48405-1 34

16. Gallager, R.G.: Low-density parity-check codes. IRE Trans. Information Theory
8(1), 21–28 (1962), doi:10.1109/TIT.1962.1057683

17. Gitlin, R., Hayes, J., Weinstein, S.: Data Communications Principles. Applications
of Communications Theory, Springer US (2012)

18. Hamburg, M.: Supporting documentation: ThreeBears (2017), https://

csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
19. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryp-

tosystem. In: Algorithmic Number Theory, Third International Symposium,
ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings. pp. 267–288
(1998), doi:10.1007/BFb0054868

https://frodokem.org/files/FrodoKEM-specification-20171130.pdf
https://frodokem.org/files/FrodoKEM-specification-20171130.pdf
https://www.pq-crystals.org/kyber/data/kyber-specification.pdf
https://www.pq-crystals.org/kyber/data/kyber-specification.pdf
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1109/TIT.1964.1053699
https://doi.org/10.1109/TIT.1964.1053699
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1109/TIT.1962.1057683
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://doi.org/10.1007/BFb0054868


Analysis of Error-Correcting Codes for Lattice-Based Key Exchange 19

20. Hu, X., Eleftheriou, E., Arnold, D., Dholakia, A.: Efficient implementations of the
sum-product algorithm for decoding LDPC codes. In: Proceedings of the Global
Telecommunications Conference, 2001. GLOBECOM ’01, San Antonio, TX, USA,
25-29 November, 2001. p. 1036 (2001), doi:10.1109/GLOCOM.2001.965575

21. Lin, S., Costello, D.J.: Error Control Coding, Second Edition. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA (2004)

22. Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-Based En-
cryption, pp. 319–339. Springer Berlin Heidelberg, Berlin, Heidelberg (2011),
doi:10.1007/978-3-642-19074-2 21

23. Lu, X., Liu, Y., Jia, D., Xue, H., He, J., Zhang, Z.: Supporting documentation: LAC
(2017), https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-
1-Submissions

24. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with er-
rors over rings. In: Advances in Cryptology - EUROCRYPT 2010, 29th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, French Riviera, May 30 - June 3, 2010. Proceedings. pp. 1–23 (2010),
doi:10.1007/978-3-642-13190-5 1

25. National Institute of Standards and Technology: Announcing request for
nominations for public-key post-quantum cryptographic algorithms (2016),
https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-
algorithms

26. Qian, C., Lei, W., Wang, Z.: Low complexity LDPC decoder with modified Sum-
Product algorithm. Tsinghua Science and Technology 18(1), 57–61 (Feb 2013),
doi:10.1109/TST.2013.6449408

27. Richardson, T.: Error floors of LDPC codes. In: Proceedings of the annual Allerton
conference on communication control and computing. pp. 1426–1435. The Univer-
sity; 1998 (2003)

28. Saarinen, M.O.: HILA5: On reliability, reconciliation, and error correction for Ring-
LWE encryption. IACR Cryptology ePrint Archive 2017, 424 (2017)

29. Saarinen, M.J.O.: Supporting documentation: HILA5 (2017), https:

//csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
30. Safak, M.: Digital Communications. Wiley (2017)
31. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and

OAEP transforms. In: Theory of Cryptography - 14th International Conference,
TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part
II. pp. 192–216 (2016), doi:10.1007/978-3-662-53644-5 8

32. Zhao, Y., Jin, Z., Gong, B., Sui, G.: Supporting documentation: KCL
(2017), https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-
1-Submissions

https://doi.org/10.1109/GLOCOM.2001.965575
https://doi.org/10.1007/978-3-642-19074-2_21
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://doi.org/10.1007/978-3-642-13190-5_1
https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://doi.org/10.1109/TST.2013.6449408
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://doi.org/10.1007/978-3-662-53644-5_8
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions


20 T. Fritzmann et al.

A NewHope Simple Algorithms NHSEncode and
NHSDecode

Algorithm 1: NHSEncode [3]

Input: Randomized vector v ∈ {0, 1}256
Result: Polynomial d ∈ Rq

for i from 0 to 255 do
di ← vibq/2c
di+256 ← vibq/2c
di+512 ← vibq/2c
di+768 ← vibq/2c

end

Algorithm 2: NHSDecode [3]

Input: Polynomial d ∈ Rq

Result: Bit vector vi ∈ {0, 1}256
for i from 0 to 255 do

t←
∑3

j=0 |di+256j − bq/2c|
if t < q then

vi ← 1
else

vi ← 0
end

end

B Proof Theorem 3

Proof. Suppose that a and b are polynomials of a ring with coefficients sampled
from the probability distribution Ψk and let n be the rank of the polynomials.
Then the polynomials can be written as a = a0 + a1x + · · · + an−1x

n−1 and
b = b0 + b1x + · · · + bn−1x

n−1. If we multiply a with b, we can write c =
(a0 +a1x+ · · ·+an−1x

n−1)(b0 + b1x+ · · ·+ bn−1x
n−1). By using the distributive

law and grouping all terms with the same rank together, it can be obtained
c = (a0b0+· · ·−an−2b2−an−1b1)+(a0b1+· · ·−an−2b3−an−1b2)x+· · ·+(a0bn−1+
· · ·+an−2b1+an−1b0)xn−1. Where each coefficient of polynomial c is determined
by a sum of n products. Since all coefficients of a and b are independently
sampled from the probability distribution Ψk, the probability distribution of the
coefficients of c is an n-fold convolution of the product distribution of two RVs
sampled from Ψk.

C Noise Distribution

Figure 11 illustrates the probability distribution of the difference and compres-
sion noise for an error distribution parameter of k = 16 and a compression from



Analysis of Error-Correcting Codes for Lattice-Based Key Exchange 21

14 to 3 bits. In the graph, the RV X of a coefficient of a noise polynomial has
the outcomes x = 0, 1, . . . , q− 1. The compression noise is uniformly distributed
between zero and q/16, and between q − q/16 and q. All values in between are
not affected by the compression.

0 0.5 1

·104

0

0.5

1

·10−3

x

P
r(
x

)

Difference noise

Compression noise

Fig. 11. Noise distributions for k = 16 and compression from 14 to 3 bits, where
0 ≤ x ≤ q − 1

D Validation of Failure Rate Analysis

In Fig. 12, the calculated difference and compression noise distribution discussed
in Section 3 are compared with test measurements. For better visibility, this
figure illustrates only values from zero to 1,500. Unlike in Fig. 11, the logarithmic
scale is used. For the experiment, the original parameters of NewHope Simple
were used. For the tested noise distribution, we used 100,000 test rounds. With
n = 1024 this leads to 102,400,000 samples. The test measurements match the
calculated values. Only for probabilities lower than 10−5 the difference noise
shows some inaccuracies. With more test samples, the curve is expected to flatten
in this region as well.

Figure 13 shows that the independence assumption stated in Subsection 3.3
can be considered as valid for NewHope Simple with high and moderate failure
rates. It illustrates the failure probability with different mapping options within
the additive threshold encoding and with varying values of k. Each test value
matches with only minor differences the calculated value. For lower values of k
the failure probability is too small in order to find the correct value by testing.
Test results have shown that the calculated values for NewHope Simple without
compression and NewHope Simple with further compression on polynomial u
match the test values as well.



22 T. Fritzmann et al.

0 200 400 600 800 1,000 1,200 1,400
10−7

10−6

10−5

10−4

10−3

x

p
d
f(

x
)

Difference noise
calculated

Difference noise
tested

Compression noise
calculated

Compression noise
tested

Fig. 12. Comparison of tested and calculated noise distributions for k = 16 and com-
pression of c, where 0 ≤ x ≤ q − 1

45 50 55 60 65
10−5

10−4

10−3

10−2

10−1

100

k

B
L

E
R

tested 4 coeffs/bit

calculated 4 coeffs/bit

tested 2 coeffs/bit

calculated 2 coeffs/bit

tested 1 coeffs/bit

calculated 1 coeffs/bit

Fig. 13. Comparison of tested and calculated error probability with compression of c


	Analysis of Error-Correcting Codes for Lattice-Based Key Exchange
	Introduction
	NewHope Simple
	Notation
	Protocol
	Security of NewHope Simple
	Noise Sources of the Protocol

	Failure Rate of NewHope Simple
	Mathematical Operations with Random Variables
	Probability Distributions of Difference and Compression Noise
	Difference Noise.
	Compression Noise.

	From the Noise Distribution to the Failure Rate

	Error-Correcting Codes
	Modern and Classical Error-Correcting Codes
	BCH Codes
	LDPC Codes
	Error-Correcting Codes for NewHope Simple

	Experimental Results
	NewHope Simple Compression Noise
	NewHope Simple with BCH Code
	NewHope Simple with LDPC Code
	NewHope Simple with Concatenation of BCH and LDPC Code
	Comparison Coding Options
	Benchmark

	Conclusion and Future Work
	NewHope Simple Algorithms NHSEncode and NHSDecode
	Proof Theorem 3
	Noise Distribution
	Validation of Failure Rate Analysis


