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Abstract. We present a general framework of the related-key linear

attack that can be applied to a class of block ciphers including the key-

alternating iterative ones with linear or affine key schedules. In contrast

with the existing linear attacks that use linear characteristics with linear

correlations up to around ±2−n/2, where n is the block length of the

block cipher, the proposed attack can use linear characteristics with

linear correlations up to around ±2−k/2, where k is the key length, by

exploiting related-key linear approximations introduced in this work. The

attack utilizes the key differences as the additional data source so it can

use data of size larger than the codebook size. Thus it can cover more

rounds than the current linear attacks when the key length is much larger

than the block length. The attack is meaningful when the product of the

computational complexity and the data size is less than 2k+n considering

the generic known related-key attack mentioned by J. Kelsey et al. at

Crypto ‘96 that is an extension of the chosen related-key attack by R.

Winternitz et al. Our new attack has significance even when it requires

more computation and data than the single-key linear attacks since it

can utilize related-key data such that the number of data entries for each

related key is not large.
We also present a method of the related-key linear attack using multiple

independent linear trails that provides a way to estimate the computa-

tional complexity, the data complexity, and the success probability of

the attack in terms of the capacity of the system of the linear approx-

imations. It is based on hypothesis testing with new decision rule and

can be regarded as an alternative approach of the attack provided by A.

Biryukov et al. at Crypto 2004 that is based on maximum likelihood

approach and cannot estimate the success probability.
By applying the framework to Simon, we get various attack results. Then

we justify our claims by presenting experimental results that are close to

expected ones with a small-scale variant of Simon.

Keywords: related-key attack, linear cryptanalysis, linear key schedule,
multiple linear attack, Simon

1 Introduction

In the last decades many lightweight block ciphers have been proposed tar-
geting resource-constrained platforms. They adopt simple key schedules to get



competitive performance figures in terms of the resource requirements. In this
regard not a few of them have linear or affine key schedules. (e.g. Gift [2],
Skinny [5], Midori [1], Simon [3], Zorro [16], Prince [12], Led [17], Pic-

colo [28], Katan [13].) But no effective cryptanalytic methods have been
discovered utilizing the linearity of the key schedule in the general framework
as yet. Since the linear attack was made public by M. Matsui [24], there have
been many extensions such as attacks using linear hulls [25] or multiple linear
approximations [20] [6] [18]. Also there are lots of works regarding the related-key
attacks against block ciphers using differential characteristics. But there are not
many works dealing with the related-key linear attacks, in striking contrast with
the fact that the differential attack and the linear attack are regarded as the
most important cryptanalytic methods to evaluate the security of block ciphers.

Our Contributions

– We present a general framework of the related-key linear cryptanalysis that
can be applied to the key-alternating iterative block ciphers with simple
and close-to-affine key schedules. The framework enables us to convert a
single-key linear attack to a related-key linear attack with similar number of
rounds covered and similar attack complexities when the key schedule is affine.
Moreover, It enables us to cover more rounds of such a block cipher than
the existing linear attacks when the key length of the cipher is considerably
larger than its block length.

– We present a method of the related-key linear attack using multiple inde-
pendent trails. We provide an explicit formula based on hypothesis testing
to estimate the complexity of the attack taking the success probability into
account.

– We present related-key linear attacks on Simon 32/64, Simon 48/96, Simon

64/128, and Simon 128/256 whose results are summarized in Table 1. Some
of the attack results are better than the generic known related-key attack in
terms of the attack complexities as highlighted in the table.

– We present experimental results that show the validity of our framework
including the appropriateness of the key hypotheses we presume.

Related Works

Related-key linear attacks. There are not so many works referring to the related-
key linear attack in the literature. P. Vora et al. [29] presented an attack on
a round-reduced DES claiming that using related keys one can amplify the
weakness exploited in the single key recovery. M. Hermelin et al. [19] claim that
using related keys, one can attack the full Present-128. A. Bogdadov et al. [9]
presented a key recovery attack using some related-key linear distinguishers with
chosen key differences. C. Beierle et al. [5] argue that the Skinny family of
block ciphers are secure against related-tweakey linear attacks by presenting
bounds on the correlations of linear trails as the number of rounds increases,
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Table 1. Attack results on Simon

cipher (# rounds) # attacked rounds computation data Prsuccess Ref.

Simon 32/64 (32) 27 261.34 260 0.5 This Work

25 255.26 255 0.5 This Work

23 256.3 231.19 0.28 [14]

Simon 48/96 (36) 34 293.94 293 0.5 This Work

27 271 270.88 0.5 This Work

25 288.28 247.92 N/A [14]

Simon 64/128 (44) 44 2125.94 2125 0.5 This Work

32 295.54 295.3 0.5 This Work

31 2120 263.53 N/A [14]

Simon 128/256 (72) 72 2240.18 2240.1 0.5 This Work

60 2190.44 2190.39 0.5 This Work

53 2175.07 2174.72 0.5 This Work

53 2248.01 2127.6 N/A [14]

taking into account the fact that the attacker may utilize the tweakey as the
additional source of data. But the general framework of the linear attacks using
the related-key linear approximations is introduced in this work for the first time.

Generic related-key attacks. R. Winternitz and M. Hellman presented a chosen
related-key attack that can be applied to any block cipher [30]. The attack uses
keys with chosen differences and the product of the number of related keys and
the computational complexity is 2k in the attack. Its success probability is 1.
Later J. Kelsey et al. [21] mentioned that the attack can be extended to a known

related key-attack with similar complexity. The average success probability seems
to be somewhat less than 0.5 when k > n. In either attack, the plaintexts used
in the attack are the same regardless of the key differences. So in the setting
where the attacker cannot control the plaintext, the attacker needs to get about
M2n pairs of key difference and plaintext to get M � 1 related keys if such pairs
are randomly chosen. Thus the product of the data size and the computational
complexity is about 2k+n in such a setting.

Multiple linear attacks and the success probability. A linear attack using multiple
trails was first introduced in [20]. But the method has severe limitations in
applications as mentioned in [6], where the authors presented an attack using
independent linear trails. They provided an explicit formula for the gain of the
attack in terms of the capacity of the system of the linear approximations and
the data size based on a maximum likelihood approach, but they were not able
to estimate the success probability of the attack. Our multiple linear attack is
based on hypothesis testing and makes use of a new decision rule that leads to
an explicit formula for attack complexities together with the success probability.
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On the other hand, extensions of Matsui’s Algorithm 2 using linear hulls were
introduced and their computational complexity and the success probability were
estimated with standard key hypotheses [25] [27]. Recently, the legitimacy of the
standard key hypotheses for the linear attacks has been questioned and some
adjusted key hypotheses have been considered [8] [7] [11] [10]. But the complexities
of our related-key attacks can be estimated accurately with the standard key
hypotheses.

Organization of the paper In Sect. 2 we introduce the terminology and
notations used in the paper. In Sect. 3 we describe the general framework of the
related-key linear cryptanalysis with emphasis on its application to block ciphers
with affine key schedules. In Sect. 4 we present attack results on Simon obtained
from the framework presented in Sect. 3 together with some dedicated analysis.
In Sect. 5 we provide experimental results on a small-scale variant of Simon that
corroborate the claims of the paper. In Sect. 6 we discuss the validity of the
attacks in more detail. We conclude in Sect. 7.

2 Terminology and Notations

F2 denotes the field with 2 elements 0 and 1. A word is a bit string of the length
w=12, 16, 24, 32, or 64. For integers i, j with i ≤ j, [i..j] denotes the set of integers
x such that i ≤ x ≤ j. The inner product of a mask γ and a value x of the same
length is denoted by 〈γ, x〉. For a Boolean function G : Fl2 → F2, the correlation
of G is defined to be the imbalance (|{x : G(x) = 0}| − |{x : G(x) = 1}|)/2l. For
a vectorial Boolean function F : Fl2 → Fm2 , an l-bit mask γ, and an m-bit mask λ,
the (linear) correlation of F with respect to the mask pair (γ, λ) is defined to be
the correlation of the Boolean function G given by G(x) = 〈γ, x〉 ⊕ 〈λ, F (x)〉 and
is denoted by εF (γ, λ). R denotes the number of the rounds of the iterative block
cipher in consideration. The intermediate state of such a block cipher just before
xoring with the (i+1)-th round key is denoted by Xi (i = 0, . . . , R−1). Eji is the
subcipher of the block cipher from the (i+1)-th round to the (j+1)-th round. The
first mask and the last mask of a linear trail are called the initial (intermediate)
mask and the final (intermediate) mask, respectively. The intermediate state of
a block cipher coupled with the initial mask and the final mask are called the
initial intermediate value and the final intermediate value, respectively. k and n
denote the key length and the block length of the block cipher, respectively. K∗
denotes the unknown fixed key to be recovered. rk∗i denotes the round key for
the (i+ 1)-th round derived from K∗. The difference of the round keys for the
(i + 1)-th round derived from K∗ and K∗ ⊕∆K is denoted by δrki. The LSB
(least significant bit) of a word is indexed as 0 and is located at the rightmost
position. The (i + 1)-th rightmost bit of a word x is denoted by x[i] so that
x[0] denotes the LSB of x. For a bit string X with even length, XL and XR
denote the left half and right half of X, respectively. For a w-bit word x, x[i] with
i /∈ [0..(w − 1)] means x[i mod w]. x≪ a and x≫ a denote the circular shift
of a word x to the left and right by a bits, respectively. The Hamming weight of
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Fig. 1. a long-key cipher

a word x, denoted by wt(x), is the number of the nonzero bits of x. The support
of a w-bit word x is defined to be the set of indices {i ∈ [0..(w − 1)] : x[i] 6= 0}
and is denoted by supp(x). ‖ denotes the concatenation of bit strings. Bit strings
such as words and masks are expressed in the hexadecimal representations. For
example, c201 represents the bit string 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1. For
real numbers µ and σ > 0, N(µ, σ2) denotes the normal distribution with the
mean µ and the standard deviation σ. Φ denotes the cumulative distribution
function of the standard normal distribution.

3 The Related-Key Linear Cryptanalysis

3.1 The General Framework

Our related-key linear attacks incorporate both of Matsui’s Algorithm 1 and
Algorithm 2. But unlike the single-key linear attacks, they make use of the newly
introduced related-key linear approximations that involve the key differences
together with the intermediate values and the round keys. Let R, r, and s be
integers with 0 ≤ s ≤ s + r ≤ R and let E : Fk2 × Fn2 → Fn2 be an R-round
key-alternating iterative block cipher with k-bit keys and n-bit blocks. We will
describe an attack on E that adds outer rounds to an r-round related-key linear
approximation that is obtained from an r-round linear trail of the long-key cipher
and approximations between the key differences and the round keys. Let Ẽ be
the long-key cipher corresponding to E and ϕ be the key scheduling function.
That is, Ẽ is a function FRn2 × Fn2 → Fn2 defined by

Ẽ(rk0‖rk1‖ · · · ‖rkR−1, x) = FR(rkR−1 ⊕ · · ·F2(rk1 ⊕ F1(rk0 ⊕ x)) · · · )

as in Fig. 1, where each Fi is a fixed n-bit permutation, ϕ is a function Fk2 → FRn2 ,
and E(K,x) = Ẽ(ϕ(K), x) for (K,x) ∈ Fk2 × Fn2 .

Getting a related-key linear approximation Suppose that we have an r-
round linear trail [γs, γs+1, . . . , γs+r] for Ẽ such that the correlation εFi+1(γi, γi+1)
for the (i+ 1)-th round is εi for each i ∈ [s..(s+ r− 1)]. It is well-known that the
average of the empirical correlations over long keys is ε̃ = εs · · · εs+r−1. That is,

Prx,rk(〈γs, x〉 ⊕ 〈γs+r, Ẽ
s+r−1
s (rk, x)〉 ⊕

⊕r−1

i=0
〈γs+i, rks+i〉 = 0) = 1 + ε̃

2 , (1)
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where rk = rk0‖rk1‖ · · · ‖rkR−1 and Ẽji is the subcipher of Ẽ from the (i+ 1)-th
round to the (j + 1)-th round. (See e.g. [25].) Let K∗ be the fixed unknown
key to be recovered. Let ϕ(K∗) = rk∗ = rk∗0‖rk∗1‖ · · · ‖rk∗R−1 and let δrk :=
ϕ(K∗ ⊕∆K)⊕ ϕ(K∗) be δrk0‖δrk1‖ · · · ‖δrkR−1. By (1), the correlation of the
approximation

〈γs, x〉 ⊕ 〈γs+r, E
s+r−1
s (K∗ ⊕∆K,x)〉 ⊕

⊕r−1

i=0
〈γs+i, rk

∗
s+i ⊕ δrks+i〉, (2)

i.e. the imbalance of the approximation as (x,∆K) takes all the values in Fn+k
2 ,

is very close to ε̃ regardless of K∗. Suppose that ϕ admits a linear approximation

〈γ̄s+i, ∆K〉 ⊕ 〈γs+i, δrks+i〉 = 0 (3)

with the correlation ε̄s+i for each i ∈ [0..(r − 1)]. Such linear approximations
between the key differences and the round key differences are trivially obtained
if ϕ is affine, and in this case ε̄s+i = 1 for each i. If not, we can try to get such
approximations by combining two “same” linear approximations between the
keys and the round keys. Now, using approximations (2) and (3), we get a linear
approximation

〈γs, x〉⊕ 〈γs+r, E
s+r−1
s (K∗⊕∆K,x)〉⊕

⊕r−1

i=0
(〈γ̄s+i, ∆K〉⊕ 〈γs+i, rk

∗
s+i〉) = 0,

(4)
whose correlation, i.e. the imbalance of the approximation as (x,∆K) takes all
the values in Fn+k

2 , is very close to ε := ε̃
∏r−1
i=0 ε̄s+i by the Piling-up Lemma

assuming that all the approximations are independent. Thus we may assume that
the correlation of (4) is ε. We call (4) a related-key linear approximation.

The attack using a single linear approximation Since we have fixed the
unknown key K∗,

⊕r−1

i=0
〈γs+i, rk

∗
s+i〉 is a constant. Thus (4) leads to the linear

approximation

〈γs, Xs〉 ⊕ 〈γs+r, Xs+r〉 ⊕
⊕r−1

i=0
〈γ̄s+i, ∆K〉 = 0, (5)

with the correlation ±ε that involves the key differences as well as the initial and
the final intermediate values. We perform an attack using (5) as the distinguisher:
To check whether a candidate key K is correct, for many triples (P,C,∆K) with
C = E(K∗⊕∆K,P ), we compute 〈γs, Xs〉, 〈γs+r, Xs+r〉, and

⊕r−1

i=0
〈γ̄s+i, ∆K〉,

where Xs = Es−1
0 (K⊕∆K,P ) and ER−1

s+r (K⊕∆K,Xs+r) = C and then compute

〈γs, Xs〉 ⊕ 〈γs+r, Xs+r〉 ⊕
⊕r−1

i=0
〈γ̄s+i, ∆K〉 (6)

(See Fig. 2.) If K satisfies certain conditions that K∗ does, the imbalance of
(6) is likely to be close to ±ε. If not, the imbalance is likely to be close to 0. We
assume that we have the related-key linear approximation (5) with the correlation

6



rk0 ⊕ δrk0

rks−1 ⊕ δrks−1

rk∗s ⊕ δrks

rk∗s+r−1 ⊕ δrks+r−1

rks+r ⊕ δrks+r

rkR−1 ⊕ δrkR−1

P

Xs

Xs+r

C

linear trails here

initial intermediate value

final intermediate value

outer rounds

outer rounds

Fig. 2. The outline of the linear attacks using related-key linear approximations

±ε. We also assume that we have data {(Pi, Ci, ∆Ki) : 1 ≤ i ≤ N} of size N
available for the attack, where Ci = E(K∗ ⊕∆Ki, Pi) for each i. For a linear
attack, we usually have to perform the data compression first to reduce the
computational complexity. The data compression in a linear attack is a process
that collapses the data into a new data with multiplicity considering the outer
round computations. It is part of the distillation [6] and is also called the linear
compression by others [23]. But the data compression in our related-key setting
needs to handle the key differences unlike that in the single-key linear attacks. So
the “compression function” Hc : F2n+k

2 → Fd2 with 2d � N we need to get for the
data compression is one such that the computation of (6) using some of the “outer”
round key bits and (P,C,∆K) can be carried out using the same round key bits
and Hc(P,C,∆K). More specifically, 〈γs, Xs〉⊕〈γs+r, Xs+r〉⊕

⊕r−1

i=0
〈γ̄s+i, ∆K〉

can be computed as h(Hc(P,C,∆K), rkO) ⊕ g(rkO) for some functions h and
g, where rkO is the concatenation of the outer round key bits. Note that the
pair (h, g) is not unique but we just need to choose one. Then the set of
the concatenations of outer round key bits can be partitioned into outer key
classes1 and the second input of h is actually an outer key class. Then we
apply the compression function to the data set to get the compressed data set

1 Two concatenations rk and rk′ of outer round key bits are in the same outer key

class if and only if h(v, rk) = h(v, rk′) for all v. In many cases, the outer key classes

can be represented by the concatenation of some outer round key bits involved in

the computation.
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Alg. 1 Related-key linear attack using a single trail
1. Perform the data compression to get the compressed set of size 2d and set τ(z) for

each z ∈ Z.
2. For each entry (v, nv) in the compressed data,

– For each z ∈ Z, compute h(v, z) and increment or decrement τ(z) by nv

depending on whether h(v, z) is 0 or 1.

3. For each z for which |τ(z)| ≥ tN |ε|, try to recover the whole key bits using z.

{(v, nv) ∈ Fd2 × Z : nv = |{i : Hc(Pi, Ci, ∆Ki) = v}|}. We let Z be the set of the
outer key classes used in the computation of (6) and let kO = log2 |Z|.

Hypothesis testing and the decision rule. Suppose that we mount a related-key
linear attack using a single linear approximation (5) with available data of
size N . For each z ∈ Z, let τ(z) := |{i : h(Hc(Pi, Ci, ∆Ki), z) = 0}| − |{i :
h(Hc(Pi, Ci, ∆Ki), z) = 1}|. Let z∗ be the correct outer key class. Then the right
key hypothesis and the wrong key hypothesis we presume are that τ(z)/N can
be regarded as a random variable such that
– τ(z∗)/N follows N(±ε, (1− ε2)/N) ≈ N(±ε, 1/N) and
– τ(z)/N follows N(0, 1/N) for z 6= z∗.

We determine whether z is correct or not by the decision rule |τ(z)/N | ≥ t|ε|.
Here t > 0 is the threshold parameter that enables us to get a tradeoff between
the computational complexity and the success probability.

The attack algorithm. The attack proceeds as in Alg. 1. Consider the list of z’s
in Z for which |τ(z)| ≥ tN |ε|. The attack is successful if z∗ is in the list, and the
list may also contain many wrong entries that are called the false alarms. We let
cN,ε :=

√
N |ε|. By Lemmas 2 and 1, the success probability of the attack is

Φ ((1− t)cN,ε) + Φ ((−1− t)cN,ε)

and the false alarm probability is 2Φ(−tcN,ε), which implies that the list is
expected to contain about 2Φ(−tcN,ε)|Z| = 2kO+1Φ(−tcN,ε) wrong entries.
Lemma 1. Let µ, t, σ be positive real numbers and let Y be a random variable

with Y ∼ N(±µ, σ2) . Then

Pr (|Y | ≥ tµ) = Φ ((1− t)µ/σ) + Φ ((−1− t)µ/σ) .

Lemma 2. Let µ, t, σ be positive real numbers and let Y be a random variable

with Y ∼ N(0, σ2) . Then

Pr (|Y | ≥ tµ) = 2Φ (−tµ/σ) .

To compare the computational complexity of the attack with that of the exhaustive
key search, we say that the complexity of 1 encryption (including the key schedule)
is 1. Let cp be the complexity of 1 computation of Hc and co be the complexity
of 1 computation of h using an entry in the compressed data and a candidate
outer key class. Then we have
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Theorem 1. The computational complexity of the attack using Alg. 1 is

cpN + co2d+kO + 2k+1Φ(−tcN,ε)

with the success probability Φ ((1− t)cN,ε) + Φ ((−1− t)cN,ε).
Here we have assumed that the restored outer key class z reveals simple indepen-
dent relations between the bits of K∗, meaning that using the kO-bit information
that z reveals about K∗, we can recover the whole k bits of K∗ using other
simple (k − kO) relations between the bits of K∗. (This is mostly the case if, for
example, the key schedule is affine.) We will also present an attack method that
can halve the computational complexity in some cases without much loss in the
success probability later.

The related-key linear attack using multiple linear approximations We
can also consider the related-key linear attack that uses multiple linear trails
to reduce the attack complexity as in the single-key setting. We present an
attack method based on hypothesis testing using a newly introduced decision
rule. Suppose that we have a system of m ≥ 1 independent related-key linear
approximations

〈γ(j)
s , Xs〉 ⊕ 〈γ(j)

s+r, Xs+r〉 ⊕
⊕r−1

i=0
〈γ̄(j)
s+i, ∆K〉 ⊕

⊕r−1

i=0
〈γ(j)
s+i, rk

∗
s+i〉 = 0 (7)

(1 ≤ j ≤ m) and the correlation of the j-th approximation is ε(j). We let

ε =
(∑m

j=1
ε2(j)

)1/2
, the square of which is called the capacity of the system in

the literature [6]. Suppose that we have related-key data {(Pi, Ci, ∆Ki)} of size
N . Suppose also that we have a function Hc : F2n+k

2 → Fd2 from which we get a
compressed data set {(v, nv)} such that the computation of the m values

〈γ(j)
s , Xs〉 ⊕ 〈γ(j)

s+r, Xs+r〉 ⊕
⊕r−1

i=0
〈γ̄(j)
s+i, ∆K〉 (j = 1, . . . ,m) (8)

using some of the outer round key bits and (P,C,∆K) can be carried out using the
same round key bits andHc(P,C,∆K). That is, for each j, there are functions h(j)

and g(j) such that (8) can be computed as h(j)(Hc(P,C,∆K), rkO)⊕ g(j)(rkO),
where rkO is the concatenation of the outer round key bits. For each j, let Z(j)

O

be the set of outer key classes determined by h(j). Let ZO be the set of outer
key classes determined by all the h(j)’s. That is, two concatenations rk and rk′
of outer round key bits are in the same outer key class in ZO if and only if
h(j)(v, rk) = h(j)(v, rk′) for all j and v. Every zO in ZO can be represented as
z

(1)
O ∩ . . . ∩ z

(m)
O , where z(j)

O ∈ Z(j)
O for each j ∈ [1..m]. So for each j and each

zO ∈ ZO, there is a unique z(j)
O ∈ Z

(j)
O such that zO ⊂ z(j)

O . We denote the correct
outer key class by z∗O ∈ ZO. Let e∗(j) =

⊕r−1

i=0
〈γ(j)
s+i, rk

∗
s+i〉 ⊕ g(j)(rkO∗) and

θ∗(j) = (−1)e
∗
(j) for each j ∈ [1..m]. The m “parity bits” e∗(1), . . ., e∗(m) also have to

be guessed in the multiple linear attack. We let z∗I be the m-bit value such that
z∗I [j] = e∗(j+1) for each j ∈ [0..m− 1]. zI will denote a guess for z∗I and ZI will
denote the set of all zI ’s. Let kI = m so that |ZI | = 2kI . We let cN,ε =

√
N |ε|.
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Alg. 2 Related-key linear attack using multiple linear trails
1. Perform the data compression to get the compressed set of size 2d. Set τ(j)(zO)=0

for each j and zO.

2. For each entry (v, nv) in the compressed data,

– For each zO ∈ ZO and each j ≥ 1, compute h(j)(v, zO) and increment τ(j)(zO)

by nv if h(j)(v, zO) is 0. Otherwise, decrement τ(j)(zO) by nv.

3. For each (zO, zI) for which∑m

j=1
ε(j)(−1)

zI [j−1]τ(j)(zO) ≥ tNε2,

try to recover the whole key bits from (zO, zI).

Hypothesis testing and the decision rule. Suppose that we mount a (related-
key) multiple linear attack using m linear approximations (7) with the correla-
tions ε(j) (j = 1, . . . ,m) with available data of size N . For each j ∈ [1..m]
and zO ∈ ZO, let τ(j)(zO) := |{i : h(j)(Hc(Pi, Ci, ∆Ki), zO) = 0}| − |{i :
h(j)(Hc(Pi, Ci, ∆Ki), zO) = 1}|. Then the wrong key hypothesis and the right
key hypothesis we presume are that

– For each j, τ(j)(zO)/N is a random variable following N(0, 1/N) if z(j)
O con-

taining zO is wrong,
– For each j, τ(j)(zO)/N is a random variable following N(θ∗(j)ε(j), (1−ε2(j))/N) ≈

N(θ∗(j)ε(j), 1/N) if z(j)
O containing zO is correct, and

– τ(1)(zO)/N, . . . , τ(m)(zO)/N are independent for each zO.

Under the right key hypothesis,

Pr
(∑m

j=1
θ∗(j)ε(j)τ(j)(z∗O)/N ≥ tε2

)
= Φ((1− t)cN,ε) (9)

by Lemma 3 that seems to be well-known.

Lemma 3. Let a1, . . . , am, b be real numbers with at least one aj nonzero and

let µ1, . . . , µm, σ1, . . . , σm be real numbers with each σj > 0. Let Y1, . . . , Ym be

independent random variables with Yj ∼ N(µj , σ2
j ) for each j. Then

Pr
(∑m

j=1
ajYj ≥ b

)
= Φ

((∑m

j=1
ajµj − b

)
/
(∑m

j=1
a2
jσ

2
j

)1/2
)
.

The attack algorithm. We mount the related-key multiple linear attack as in Alg.
2. (Note that the decision rule used in Step 3 is a new one introduced in this
work for the first time.) Let kO = log2 |ZO|. Since (z∗O, z∗I ) with z∗I [j] = e∗(j+1)
for each j is the correct one we are looking for in the attack algorithm and

Pr
(∑m

j=1
ε(j)(−1)z∗I [j−1]τ(j)(z∗O) ≥ tNε2

)
= Pr

(∑m

j=1
θ∗(j)ε(j)τ(j)(z∗O)/N ≥ tε2

)
,

10



the success probability of the attack is Φ ((1− t)cN,ε) by (9). Now we consider the
false alarm probability. Let zO ∈ ZO and zI ∈ ZI be given. Let θ(j) = (−1)zI [j−1]

for j ∈ [1..m]. Let SO = SO(z∗O, zO) and SI = SI(z∗I , zI) be subsets of [1..m]
such that z(j)

O ∈ Z
(j)
O containing zO is correct exactly for j ∈ SO and θ(j) = θ∗(j)

exactly for j ∈ SI . Then∑m

j=1
ε(j)(−1)zI [j−1]τ(j)(zO) ≥ tNε2

⇔
∑m

j=1
θ(j)ε(j)τ(j)(zO) ≥ tNε2

⇔
∑m

j=1
ujθ
∗
(j)ε(j)τ(j)(zO) ≥ tNε2

where uj = θ∗(j)θ(j) for each j. Thus,

Pr
(∑m

j=1
ε(j)(−1)zI [j−1]τ(j)(zO) ≥ tNε2

)
= Φ

(
− tcN,ε + q(SO, SI)

)
,

where q(U, V ) := N1/2(
∑
j∈U∩V ε

2
(j) −

∑
j∈U\V ε

2
(j))/|ε| for U, V ⊂ [1..m] by

Lemma 3. Thus the false alarm probability with the threshold parameter t is

pfa(t) =
∑

(U,V ) 6=([1..m],[1..m])

ν(z∗O, U)
2kO+kI

Φ
(
− tcN,ε + q(U, V )

)
, (10)

where ν(z∗O, U) is the number of zO’s such that zO ∈ ZO is contained in the
correct z(j)

O ∈ Z
(j)
O exactly for j ∈ U . Let cp be the complexity of 1 computation

of Hc, c(j)
o be the complexity of the computation of h(j) from an entry in the

compressed data and zO, and ca be the complexity of 1 integer addition. Then
we have

Theorem 2. The computational complexity of the attack using Alg. 2 is

cpN + 2kO

(∑m

j=1
c(j)
o 2d +mca2kI

)
+ 2kpfa(t)

with the success probability Φ((1− t)cN,ε).

In Theorem 2 we have assumed further that the restored (z∗O, z∗I ) reveal simple
independent relations between the bits of K∗. (This is mostly the case if the
key schedule is affine.) Though (10) may vary according to z∗O, we can check
whether it is the same regardless of z∗O. If, as in most cases, each ν(z∗O, U) is
the same regardless of z∗O, then so is (10). In addition, if |{zO ∈ ZO : zO ⊂
z

(j)
O }| = |{zO ∈ ZO : zO ⊂ z′(j)O }| for any z

(j)
O , z

′(j)
O ∈ Z(j)

O , then pfa(t) is bounded
by

∑m

j=1
2−k

(j)
O Φ((1 − t)cN,ε) + Φ(−tcN,ε), where k(j)

O = log2 |Z
(j)
O | for each j:

Separate the summands in (10) into two parts using the condition U 6= ∅ or
U = ∅.

11



– The number of zO’s for which z
(j)
O containing zO is correct for some j is

bounded by
∑m

j=1
2kO−k(j)

O = 2kO

(∑m

j=1
2−k

(j)
O

)
. Note that q(U, V ) ≤ cN,ε

for each (U, V ).
– If U = ∅, then q(U, V ) = 0 for each V .

So if, for example, the capacity ε2 of the system of the related-key linear
approximations is larger than 2−k+2 and it admits data compression with
2kO

(∑m

j=1
c

(j)
o 2d +mca2kI

)
� 2k−1 and

∑m

j=1
2−k

(j)
O � 1, we have an ef-

fective attack with the data complexity ε−2 by setting t = 1 and N = ε−2.

An improved attack using a single linear trail When we use a single trail,
by guessing the additional parity bit

⊕r−1
i=0 〈γs+i, rk

∗
s+i〉 ⊕ g(rkO∗), we can get

an attack with the reduced computational complexity in some cases. The attack
proceeds as in Alg. 2 with kI = 1. Then we have

Corollary 1. The computational complexity of the attack with a single linear

trail using Alg. 2 is

cpN + co2d+kO + 2kpfa(t)

with the success probability Φ((1−t)cN,ε), where pfa(t) = (2kO−1)Φ(−tcN,ε)/2kO +
Φ((−1− t)cN,ε)/2kO+1 ≈ Φ(−tcN,ε).

So as long as cpN + co2d+kO � 2kΦ(−tcN,ε), we have an attack whose computa-
tional complexity is about half of the previous attack performed by Alg. 1 while
maintaining almost the same success probability.

3.2 Related-Key Linear Attack on the Block Ciphers with the
Affine Key Schedules

The attacks described in Sect. 3.1 are particularly powerful when k � n and the
key schedule is affine, i.e., when each round key rki is expressed as Li(K)⊕ bi
for a linear function Li and a constant bi. In this case, we have the following
advantages compared with other types of key schedules:

– The difference of round keys for each round can be computed directly from
the key difference with probability 1. That is, δrki = Li(∆K). So from a
linear trail [γs, γs+1, . . . , γs+r] for the long-key cipher, we get a related-key
linear approximation

〈γs, Xs〉⊕〈γs+r, Xs+r〉⊕
⊕r−1

i=0
〈γs+i, Ls+i(∆K)〉⊕

⊕r−1

i=0
〈γs+i, rk

∗
s+i〉 = 0

without any decrease in the absolute value of the correlation compared with
the long-key cipher since no additional probabilities are introduced from
the key schedule. Here

⊕r−1

i=0
〈γs+i, Ls+i(∆K)〉 can be written simply as

〈λ,∆K〉 for some mask λ.

12



– The data compression for adding rounds before or/and after the related-key
linear approximation(s) can be performed efficiently: Each rki ⊕ δrki can be
computed as the xor of rki and a term determined only by ∆K.

– The restored (z∗O, z∗I ) is very likely to reveal simple independent relations
between the whole key bits in Alg. 2.

Thus if a block cipher has an affine key schedule and its key length is much larger
than its block length, then it is very likely to be subject to a related-key linear
attack that covers more rounds than the best single-key linear attacks.

4 Related-Key Linear Attacks on SIMON

The NSA published two families of lightweight block ciphers Simon and Speck [3].
They have remarkable performance figures on most software and hardware
platforms and Simon is the more hardware-oriented of the two. They have been
the subject of intensive security analysis since their publication. The designers of
Simonexpect that it is secure against related-key attacks [4].

4.1 The SIMON Family of Block Ciphers

Simon n/k is a block cipher of the classical Feistel structure with k-bit keys
and n-bit blocks. Its round function f sends an n/2-bit input x onto ((x≪
8)&(x≪ 1)) ⊕ (x≪ 2).(See Fig. 3.) It has an affine key schedule. We focus
on the following ciphers whose key lengths are double the block lengths: Simon

32/64, Simon 48/96, Simon 64/128, and Simon 128/256. The details of this
section can be applied equally well to the variant of Simon to be used in Sect. 5.

4.2 Related-Key Linear Approximations of SIMON

Since Simon n/k has the classical Feistel structure, an r-round linear trail can be
represented as a sequence of (r+2) n/2-bit masks: Γs.Γs+1. · · · .Γs+r+1 represents
a linear trail such that at the (i+ 1)-th round, the input and output masks are
Γi‖Γi+1 and Γi+1‖Γi+2, respectively, for each i ∈ [s..(s + r − 1)]. (See Fig. 3.)
Such a linear trail leads to the related-key linear approximation

〈Γs, Xs,L〉 ⊕ 〈Γs+1, Xs,R〉 ⊕ 〈Γs+r, Xs+r,L〉 ⊕ 〈Γs+r+1, Xs+r,R〉

⊕〈Λ,∆K〉 ⊕
⊕r−1

i=0
〈Γs+i+1, rk

∗
s+i〉 = 0 (11)

betweenXs,∆K,Xs+r, where Λ is a mask with 〈Λ,∆K〉=
⊕r−1

i=0
〈Γs+i+1, δrks+i〉.

Such a mask exists and is easily obtained since the key schedule is affine.

13



f

Xi,L Xi,R

rki

Xi+1,L Xi+1,R

f∗

Γi+1Γi

Γi+2Γi+1

Fig.3. A round of Simon and a 1-round linear trail

4.3 Adding Outer Rounds

One of the pivotal processes of the related-key attacks as described in Alg. 1 and
Alg. 2 is to get effective data compression with the related-key linear approxima-
tion(s). For Simon, we can get effective data compression for prepending and
appending many rounds when both the initial mask and the final mask have
small Hamming weights. We will describe the way how to add outer rounds to a
single linear trail from which how to do so to multiple linear trails can be easily
deduced. In this subsection, we will explain in detail how to add 2+2 rounds,
i.e., how to prepend 2 rounds and append 2 rounds at the same time. How to
add s+ s rounds for s = 3, 4, 5 will be explained in Appendix D, from which how
to add s+ s′ rounds for s 6= s′ and 2 ≤ s, s′ ≤ 5 will be obvious. For simplicity
a + b and ab (or a • b) denote the XOR and AND of a, b ∈ F2 in this section,
respectively.

2-round computation. Let rk0 and rk1 be the round keys derived from the
candidate key K for the first 2 rounds. For a plaintext P = PL‖PR and a key
difference ∆K, let δrk0 and δrk1 be the derived round key differences for the
first 2 rounds. Note that δrk0 and δrk1 can be computed directly from ∆K since
the key schedule is affine. We want to express each bit of X2 = X2,L‖X2,R =
E1

0(K⊕∆K,P ) in terms of P , rk0, rk1, δrk0, and δrk1. Let A = f(PL)⊕PR⊕δrk0,
and B = PL⊕δrk1. (See Fig. 4.) Since X2,R = X1,L = f(PL)⊕PR⊕δrk0⊕rk0 =
rk0 ⊕A and X2,L = f(X1,L)⊕ PL ⊕ δrk1 ⊕ rk1 = f(rk0 ⊕A)⊕B ⊕ rk1,

X2,L[i] = rk0[i− 8]rk0[i− 1] + rk0[i− 8]A[i− 1] +A[i− 8]rk0[i− 1]
+A[i− 8]A[i− 1] + rk0[i− 2] +A[i− 2] +B[i] + rk1[i],

X2,R[i] = rk0[i] +A[i]

Here

– X2,L[i] can be easily computed in terms of rk0[i−8], rk0[i−1], A[i−8], A[i−1],
up to A[i− 2] +B[i] xored with a constant determined only by rk0, rk1.

– The underlined terms rk0[i− 2], rk1[i], and rk0[i] depending only on rk0, rk1
are absorbed into g(rkO) and thus they will be ignored in the case of using

14



f

f

PL PR

δrk0

A
rk0

δrk1
B

rk1

X1,L X1,R

X2,L X2,R

f

f

XR−2,L XR−2,R

rkR−2
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Fig. 4. 2-round computations of Simon

a single trail since they will not affect the absolute value of τ(z) for each
guessed value of rk0, rk1. They will only affect the sign of τ(z). But they are
relevant to the multiple linear attack and the improved linear attack.

By symmetry of the cipher structure, we get similar expressions for bits of XR−2,R
and XR−2,L in terms of A′ = f(CR)⊕ CL ⊕ δrkR−1, B′ = CR ⊕ δrkR−2, rkR−2,
and rkR−1. (See Fig. 4.)

The data compression. The above arguments tell us how to compress the data
when adding 2+2 rounds. Suppose that we want to make use of the related-key
linear approximation (11) with s = 2 and s + r + 2 = R. Let w = n/2 be the
word size. Let IL = supp(Γs) = {i ∈ [0..(w − 1)] : Γs[i] 6= 0}, IR = supp(Γs+1),
I ′L = supp(ΓR−2), and I ′R = supp(ΓR−1). The compression function extracts the
following values from each data entry (P,C,∆K):

– A[i] for i such that (i+ 8) mod w ∈ IL or (i+ 1) mod w ∈ IL
– A′[i] for i such that (i+ 8) mod w ∈ I ′R or (i+ 1) mod w ∈ I ′R
–
⊕

i∈IL
(A[i−2]⊕B[i])⊕

⊕
i∈IR

A[i]⊕
⊕

i∈I′R
(A′[i−2]⊕B′[i])⊕

⊕
i∈I′L

A′[i]⊕
〈Λ,∆K〉

In the attacks, the outer key classes are represented by the following outer round
key bits that we need to guess:

– rk0[i] for i such that (i+ 8) mod w ∈ IL or (i+ 1) mod w ∈ IL
– rkR−1[i] for i such that (i+ 8) mod w ∈ I ′R or (i+ 1) mod w ∈ I ′R

Note that
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– the number kO of guessed round key bits for outer rounds is at most 2wt(Γs)+
2wt(Γs+r+1) and

– d, log2 of the size of the compressed data set, is kO + 1.

4.4 Attacks on SIMON

Now we are ready to present the attacks on Simon whose results are summarized
in Table 1. Each attack is the “improved” related-key linear one using a single
linear trail and we can argue that co ≤ Radd/R, where R is the number of rounds
for the reduced Simon and Radd is the number of the added outer rounds. In
each attack, the outer key classes are represented by the concatenations of the
round key bits in some fixed positions that we will describe. We use the linear
trails presented in Appendix C and set the threshold parameter t for each attack
to 1 so that the success probability of each attack is Φ(0) = 0.5 by Corollary 1.
The attack method presented in this work can be applied to other Simon n/k
with k > n in a straightforward manner.

Attacks on SIMON 32/64 We have a 21-round linear trail with the correlation
2−30 whose initial and final mask are 00010044 and 44401010, respectively. We
can add 3+3 rounds to this linear trail as explained in Appendix D:
– kO = 26: Each outer key class is represented by a concatenation of 26 round

key bits. The guessed round key bits are rk0[0, 1, 5, 6, 7, 10, 13, 14], rk1[8, 15],
rk25[3, 4, 11, 12], rk26[1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14].

– d = kO + 1 = 27.

Since cp � 1 and kO+d� 61, if we let N = 260, then cN,ε = 1 and the complexity
of the improved attack on the 27-round reduced Simon 32/64 is about 261.34.
Likewise, using a 19-round subtrail with the correlation 2−26 whose initial and
final mask are 00010044 and 44000100, respectively, we get an attack on the
25-round reduced Simon 32/64 with data complexity 255 and computational
complexity 255.26 by adding 3+3 rounds.

Attacks on SIMON 48/96 We have a 27-round linear trail with the correla-
tion 2−47 whose initial and final mask are 000001000044 and 440040010000,
respectively. We can add 4+3 rounds to this linear trail:
– kO = 37: The guessed outer round key bits are rk0[0, 3, 4, 6, 7, 10, 12, 13, 14, 16,

17, 19, 20, 21, 23], rk1[1, 5, 8, 14, 15, 18, 21, 22], rk2[16, 23], rk32[8, 15], and rk33
[0, 5, 6, 7, 10, 13, 14, 17, 21, 22].

– d = kO + 1 = 38.

Since cp � 1 and kO + d � 93, if we let N = 293, then cN,ε = 2−0.5 and the
complexity of the improved attack on the 34-round reduced Simon is about
293.94. Similarly, using a 19-round subtrail with the correlation 2−33 whose initial
and final mask are 000001000044 and 000040000000, respectively, we get an
attack on the 27-round reduced Simon 48/96 with data complexity N = 270.88

and computational complexity 271 by adding 3+5 rounds.
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Attacks on SIMON 64/128 We have a 36-round linear trail with the
correlation 2−63 whose initial mask is 4000000400000001 and final mask is
0000000400000001. We can add 4+4 rounds to this linear trail:

– kO = 56: The guessed round key bits are rk0[1, 6, 10, 12, 13, 16, 17, 18, 19, 20, 22,
23, 24, 25, 26, 27, 29, 30, 31], rk1[0, 14, 18, 20, 21, 24, 25, 27, 28, 31], rk2[1, 22, 26,
29], rk41[24, 31], rk42[1, 6, 22, 23, 26, 29, 30], and rk43[0, 8, 14, 15, 18, 20, 21, 22,
24, 25, 27, 28, 29, 31].

– d = kO + 1 = 57.

Since cp � 1 and kO + d � 125, if we let N = 2125, then cN,ε = 2−0.5 and the
complexity of the improved attack on the full Simon 64/128 is about 2125.34.
Also, using a 26-round trail with the correlation 2−45 whose initial and final
mask are 0000000100004044 and 0000100000004400, respectively, we get an
attack on the 32-round reduced Simon 64/128 with data complexity 295.30 and
computational complexity 295.54 by adding 3+3 rounds.

Attacks on SIMON 128/256 We have a 62-round linear trail with the
correlation 2−118 whose initial mask is 00...004‖00...00 and final mask is 4

00...004‖00...001. We can add 5+5 rounds to this linear trail with kO ≤
39 + 2 · 18 + 39 = 114 and d = kO + 1 ≤ 115. Since cp � 1 and kO + d� 240, if
we let N = 2240.1, then cN,ε = 22.05 and the complexity of the improved attack on
the full Simon 128/256 is about 2240.18. Similarly, using a 51-round subtrail with
the correlation 2−92 whose initial and final mask are 00...004‖00...00 and 00...

001‖400...004, respectively, we get an attack on the 60-round reduced Simon

128/256 with data complexity 2190.39 and computational complexity 2190.44 by
adding 5+4 rounds. Also, using a 45-round subtrail with the correlation 2−84

whose initial and final mask are 100...001‖4400...004 and 400...004‖100...00,
respectively, we get an attack on the 53-round reduced Simon 128/256 with data
complexity 2174.72 and computational complexity 2175.07 by adding 4+4 rounds.

5 Experiments

We carry out related-key linear attacks on an 18-round cipher that is a small-scale
variant of Simon with 48-bit keys and 24-bit blocks. The round function and the
key schedule of the cipher are defined exactly in the same way as Simon 32/64.
The 31-bit constant used in the key schedule is also the same. We perform the
following 3 experiments with the attack algorithms presented in Sect. 4 with
n = 24:

1. A key recovery attack on the cipher using Alg. 1 by adding 2+2 rounds to a
14-round linear approximation with the correlation 2−13.

2. An improved key recovery attack on the 14-round reduced cipher by adding
2+2 rounds to a 10-round linear approximation with the correlation 2−9.

3. A related-key multiple linear attack on the 14-round reduced cipher using
Alg. 2 by adding 2+2 rounds to two 10-round linear approximations with
the correlations 2−9.

17



Table 2. Experimental result - key recovery using a single linear trail

log2 N 25 26 27 28 29

t T E T E T E T E T E

0.5 pS 0.783 0.776 0.758 0.776 0.777 0.807 0.843 0.864 0.921 0.930

pfa 0.724 0.676 0.617 0.580 0.480 0.449 0.317 0.300 0.157 0.146

1.0 pS 0.579 0.572 0.523 0.523 0.502 0.538 0.500 0.528 0.500 0.541

pfa 0.480 0.445 0.317 0.297 0.157 0.148 0.046 0.043 0.005 0.004

1.5 pS 0.400 0.390 0.315 0.300 0.240 0.255 0.159 0.177 0.079 0.085

pfa 0.289 0.272 0.134 0.123 0.034 0.032 0.003 0.003 .001 .001

‘T’ and ‘E’ stand for “theoretical” and “experimental”, resp.

In each experiment, the related-key data is chosen such that the number of data
entries per related key is 212. Note that the first experiment is an attack using
a linear trail with the correlation whose absolute value is less than 2−n/2 that
alone is not so useful in the single-key linear attacks.

5.1 A Key Recovery Using a Single Linear Approximation

We perform a related-key linear attack on an 18-round toy cipher that can be
regarded as Simon 24/48. The attack proceeds as in Alg. 1 by adding 2+2 rounds
to the following 14-round linear trail with the correlation 2−13 :

001.000.001.410.001.000.001.410.001.000.001.410.001.000.001.400

So the guessed outer round key bits are rk0[4, 11], rk17[2, 9], the number kO of
the guessed outer round key bits is 4, and the size of the compressed data set is
25. In the experiment:
– For each fixed K∗ we do not recover the whole key bits. Instead we stop

when we obtain the list of zO’s with |τ(zO)| ≥ tN |ε|. The attack is successful
if the correct round key bits are obtained and the experimental false alarm
probability is measured as the ratio of the number of the wrong entries in
the list to 2kO .

– We repeat the experiment using 1,000 different keys K∗ so that the ex-
perimental success probability is measured as the number of the successful
attempts divided by 1,000, and the average false alarm probability is obtained
as the average of the experimental false alarm probabilities.

The theoretical success probability pS is Φ ((1− t)cN,ε) + Φ ((−1− t)cN,ε) and
the false alarm probability pfa is 2Φ(−tcN,ε) where cN,ε =

√
N |ε| by Theorem

1. The result is shown in Table 2 from which we can see that the experimental
probabilities are close to the theoretical ones.

5.2 An Improved Key Recovery Using a Single Approximation

We perform an improved related-key linear attack on the cipher described in
Sect. 5.1 reduced to 14-rounds by adding 2+2 rounds to a 10-round trail. The
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Table 3. Experimental result - improved key recovery using a single linear trail

log2 N 17 18 19 20 21

t T E T E T E T E T E

0.5 pS 0.638 0.640 0.691 0.706 0.760 0.759 0.841 0.835 0.921 0.924

pfa 0.344 0.345 0.291 0.293 0.225 0.228 0.149 0.151 0.074 0.077

1.0 pS 0.500 0.502 0.500 0.529 0.500 0.512 0.500 0.500 0.500 0.497

pfa 0.227 0.230 0.149 0.152 0.074 0.075 0.021 0.022 0.002 0.002

1.5 pS 0.401 0.422 0.362 0.365 0.309 0.320 0.240 0.257 0.159 0.162

pfa 0.137 0.138 0.063 0.063 0.016 0.016 0.001 0.001 .001 .001

linear trail is

001.000.001.410.001.000.001.410.001.000.001.400 (12)

with the correlation ε = 2−9. So the guessed outer round key bits are rk0[4, 11]
and rk13[2, 9], the number kO of the guessed outer round key bits is 4, and the
size of the compressed data set is 25. The total number of guessed key bits is
kO + 1 = 5 with 1 additional parity bit. Proceeding the experiment similarly as
in Sect. 5.1, we get the result as shown in Table 3 from which we can see that the
theoretical probabilities obtained by Corollary 1 are close to the experimental
ones in this case, too.

5.3 A Key Recovery Using Multiple Approximations

We also perform a related-key multiple linear attack on the same 14-round cipher
using 2 independent linear trails with the correlations 2−9. One of the linear
trails is (12) presented in the preceding experiment and the other is

004.000.004.041.004.000.004.041.004.000.004.001

that is obtained by rotating all the intermediate masks in (12) by 2 bits to the
left. We try to restore the following 10 bits:

– 8 outer round key bits: rk0[1, 4, 6, 11], rk13[2, 4, 9, 11]
– 2 parity bits

The result of the experiment is shown in Table 4. The theoretical probabilities
obtained by Theorem 2 are close to the experimental ones again.

6 Discussions

6.1 Linear Trails versus Linear Hulls

The formulations in Sect. 3.1 indicate that in our related-key linear attacks it
seems natural to use linear trails rather than linear hulls since they incorporate
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Table 4. Experimental result - key recovery using 2 linear trails

log2 N 16 17 18 19 20

t T E T E T E T E T E

0.5 pS 0.638 0.638 0.691 0.676 0.760 0.753 0.841 0.853 0.921 0.929

pfa 0.362 0.362 0.310 0.310 0.245 0.246 0.170 0.170 0.099 0.099

1.0 pS 0.500 0.522 0.500 0.508 0.500 0.502 0.500 0.490 0.500 0.470

pfa 0.241 0.240 0.162 0.160 0.084 0.084 0.029 0.029 0.007 0.007

1.5 pS 0.362 0.377 0.309 0.302 0.240 0.236 0.159 0.163 0.079 0.079

pfa 0.146 0.145 0.069 0.068 0.020 0.019 0.003 0.003 .001 .001

Matsui’s Algorithm 1 and the use of the key differences in the attacks seems
to make it hard or inherently impossible to utilize the linear hulls. Though the
use of a linear trail is known to lead to inaccurate analysis for single-key linear
attacks [25], especially when the linear trail is not dominant, the experimental
results in Sect. 5 show that our analyses of the complexities of the related-key
linear attacks are accurate even when we use linear trails that are not dominant
when many related keys are used. All the linear trails in the experiments in Sect. 5
are not dominant. For example, we have at least three 10-round linear trails
with the correlation 2−9 whose initial and final mask are 001000 and 001400,
respectively, other than the one used in Sect. 5.2: 001.000.001.410.001.000.0

01.c10.001.000.001.400, 001.000.001.c10.001.000.001.410.001.000.001.400,
and 001.000.001.c10.001.000.001.c10.001.000.001.400.

6.2 Key Hypotheses

The standard key hypotheses for single-key linear attacks are regarded as rather
misleading and some adjusted key hypotheses are adopted in recent works [8]
[7] [11] [10]. But we claim that the standard key hypotheses are adequate for
our attacks in the typical related-key scenario where the attacker has randomly
chosen related-key data, or related-key data that is not concentrated at a small
number of related keys. The standard right key hypothesis is applicable in our
related-key setting since many keys are involved in the attack and the average of
the empirical correlations of the linear trail as the key varies is much more uniform
than when just a single key is involved. The standard wrong key hypotheses are
also appropriate in the typical related-key scenario. In the extreme nontypical
case when we have only one related key, our attack becomes one in the single-
key setting and we may have to consider some adjusted wrong key hypotheses
especially when the data size is large. But our hypotheses are appropriate in
the typical related-key scenario. The reason is that the distribution of observed
correlations for wrong keys in the single-key setting has deviation O(2−n) from
J. Daemen and V. Rijmen’s analysis [15] on the distribution of the correlations
of linear approximations for n-bit permutations. But in our related-key setting,
we just need to consider (k + n)-bit-to-n-bit functions where the additional k
bits come from key differences so the deviation of the distribution might be
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O(2−(k+n)) that is negligible compared to 1/N with the data size N being much
smaller than 2k+n. The validity of the standard wrong key hypothesis in Matsui’s
Algorithm 2 in the single-key linear attack is questionable especially when the
capacity is close to 2−n. But the experimental result in Sect. 5.1 using a linear
trail with correlation whose absolute value is less than 2−n/2 provides an evidence
of our claims on the wrong key hypotheses as well as the right key hypotheses in
our related-key attacks.

7 Conclusions

We have introduced a general framework of the related-key linear cryptanalysis
on block ciphers. The attack is most effective when the key schedule of the cipher
is affine and in this case it is very likely to cover more rounds than the existing
linear attacks if the key length of the cipher is much larger than its block length.
We also have provided a method of the multiple related-key linear attack with an
explicit formula for the attack complexities taking both the success probability
and the false alarm probability into account. Using the framework, we are able
to get effective related-key linear attacks on Simon that cover longer rounds
than the previous attacks and also have advantages over the generic related-key
attack in terms of the attack complexities. Then we have performed experiments
with a small-scale variant of Simon, which corroborates the validity of the attack
together with the suitability of the key hypotheses. Though the attack may be
hard to apply in practice due to the requirement of large related-key data, it is
certainly one that should be taken into account in the design of a block cipher
with a small block length and a simple key schedule. A remarkable feature of our
attack is that the complexity of the attack does not depend much on the detail
of the key schedule once the key schedule is affine. As possible extensions of the
current work, the followings seem worth investigation:

– Applying the attack method presented in this work to various block ciphers
with affine key schedules other than Simon.

– Extending the current method to various cryptographic constructions based
on block ciphers.
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A Proof of Lemma 3

Lemma 3 follows easily from Lemma 4 that seems to be well-known.

Lemma 4. Let a1, . . . , am, b be real numbers with at least one aj nonzero and let

Z1, . . . , Zm be independent random variables with Zj ∼ N(0, 1) for each j. Then

Pr
(∑m

j=1
ajZj ≤ b

)
= Pr

(∑m

j=1
ajZj ≥ −b

)
= Φ

(
b/
(∑m

j=1
a2
j

)1/2
)
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Proof. Replacing Zj by −Zj if necessary, we may assume that aj ≥ 0 for each j.
Let p be the density function defined by p(x1, . . . , xm) = ( 1√

2π )mexp
(
−
∑m

j=1
x2
j/2
)

and let D be the half space {(x1, . . . , xm) ∈ Rm :
∑m

j=1
ajxj ≤ b} in Rm. Let ρ

be a rigid motion in Rm having 0 as a fixed point that maps D to the half space
{(x1, x2, . . . , xm) ∈ Rm : x1 ≤ b/(

∑m

j=1
a2
j )1/2}. Since p is invariant under the

rigid motions having 0 as a fixed point,

Pr
(∑m

j=1
ajZj ≤ b

)
=
∫
D
p dx

=
∫
ρ(D)

p dx = Φ
(
b/
(∑m

j=1
a2
j

)1/2
)
.

�

To prove Lemma 3, let Zj = (Yj − µj)/σj for each j. Then each Zj follows
N(0, 1) and

∑m

j=1
ajYj ≥ b if and only if

∑m

j=1
ajσjZj ≥ b−

∑m

j=1
ajµj . So

the lemma follows by Lemma 4.

B Searching Method for the Linear Trails of SIMON

Linear trails with the correlations whose absolute values are less than 2−n/2 for
Simon n/k are not found in the previous works. To find good linear trails of
Simon n/k whose correlations are around ±2−n, we apply an efficient search
algorithm that we have designed by slightly modifying the searching method
described in [23] that is based on M. Matsui’s branch-and-bound algorithm.
As noted before, an r-round linear trail of Simon n/k can be represented as
a sequence of (r + 2) n/2-bit masks: Γs.Γs+1. · · · .Γs+r+1 represents a linear
trail such that at the (i+ 1)-th round, the input and output masks are Γi‖Γi+1
and Γi+1‖Γi+2, respectively, for each i ∈ [s..(s + r − 1)]. Such a linear trail
leads to the related-key linear approximation (11). The linear correlation of the
round function of Simon with respect to various input-output mask pairs can
be easily computed as explained in [22] and [23]. Throughout this section, f
denotes the round function of Simon n/k that sends an n/2-bit input x onto
((x≪ 8)&(x≪ 1))⊕ (x≪ 2). The following is a basic fact about the linear
trails of Simon noted in the previous works:

– If Γs. · · · .Γs+r+1 is a linear trail with the correlation ε, so are the reversed
trail Γs+r+1. · · · .Γs and the rotated trail (Γs ≪ l). · · · .(Γs+r+1 ≪ l) for
each l.

For each l ≥ 0, let Ll be the list of mask pairs (α, β) such that εf (α, β) = 2−l.
We denote − log2(εf (β≫ 2, β)) by lac(β). Then the mask pairs in Ll are exactly
those (α, β)’s for which lac(β) = l and εf (α, β) 6= 0. A mask β is called a
rotational representative if (β≪ j) ≥ β for each j. For each l ≥ 0, let Lred

l be
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Table 5. − log2 |correlation| of the best linear trails found

block length | # rounds 21 22 23 24 27 28 29 30 35 36 37 38 39

32 28 31 33 37 - - - - - - - - -

48 34 36 37 39 45 48 49 52 - - - - -

64 34 36 37 39 45 48 49 52 62 63 64 66 67

the set of mask pairs (α, β) in Ll such that β is a rotational representative. For an
r-round trail T = Γ0.Γ1. · · · .Γr+1 and l ≤ r+1, Tl denotes Γl and lac(T ) denotes∑r

l=1
lac(Γl). Also for l ≤ r, T |l denotes the l-round subtrail Γ0.Γ1. · · · .Γl+1.

When we search for an r-round trail T , we impose the following restrictions on
the masks in the trail:

– lac(Ti) ≤ 4 for i = 0, . . . , r.
– If T1 = 0, T0 is a rotational representative. Otherwise, T1 is a rotational

representative.

It turns out that these restrictions let us quickly find out the trails suitable for
our purposes. For each r, let Br be the minimum of lac(T ) when T runs among all
the r-round trails such that each mask in the trail except the last one has lac ≤ 4.
It is easy to see that B1 = 0, B2 = 1, and B3 = 2. In the search algorithm, for
each r ≥ 4, we get Br and an r-round linear trail T with lac(T ) = Br assuming
that we have already computed B1, . . ., Br−1. The search algorithm is presented
as Alg. 3. Before running it, we prepare two lists of n/2-bit masks in advance for
acceleration: One with β’s such that lac(β) ≤ 4 and the other with β’s such that
lac(β) ≤ 4 and β is a rotational representative. Br’s we have obtained are the
same as those presented in [23] for Simon n/k with n=32, 48, or 64 whenever
Br ≤ n. We remark that by modifying Alg. 3, we can also find many linear trails
with large correlations and various constraints on the intermediate masks.

C Linear Trails of SIMON

We get linear trails for Simon with large correlations as in Table 5, using the
algorithm described in the preceding section. But we also get trails with large
correlations that have small Hamming weights for the initial and final masks.
The linear trails we have used in our attacks on Simon in Sect. 4.4 are as follows:

– a 21-round trail for Simon 32/64 with the correlation 2−30:
0001.0044.0010.0040.0000.0040.0010.0044.0001.4044.1010.4440.0100.4

400.1000.4000.0000.4000.1000.4400.0100.4440.1010

– a 27-round trail for Simon 48/96 with the correlation 2−47:
000001.000044.000010.000040.000000.000040.000010.000044.000001

.400044.100010.440040.610000.4c0040.300010.400044.000001.000044.

000010.000040.000000.000040.000010.000044.000001.400044.100010.

440040.010000
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Alg. 3 The search algorithm
Set B̄ = Br−1 − 1, and found = 0.

repeat
B̄++

ProcessR1( )

until found == 1

Output T , B̄

function ProcessR1( )

ProcessR2A( )

for l← 1 to min(4, B̄ −Br−1) do
for (α, β) ∈ Lred

l do
ProcessR2(α, β)

end for
end for
return

end function

function ProcessR2A( )

for l← 1 to min(4, B̄ −Br−2) do
for (α, β) ∈ Lred

l do
Set T0 = β, T1 = 0, T2 = β, T3 = α.
ProcessR(3)

end for
end for
return

end function

function ProcessR2(α,β)
Set c = lac(β).

for l← 0 to min(4, B̄ − c−Br−2) do
for (α1, β1) ∈ Ll for which lac(α⊕ β1) ≤ 4 do

Set T0 = α⊕ β1, T1 = β, T2 = β1, T3 = β ⊕ α1.

ProcessR(3)

end for
end for
return

end function

– a 26-round trail for Simon 64/128 with the correlation 2−45:
00000001.00004044.00001010.00004440.00000100.00004400.0000100

0.00004000.00000000.00004000.00001000.00004400.00000100.00004

440.00001010.00004044.00000061.0000404c.00001030.00004440.0000

0100.00004400.00001000.00004000.00000000.00004000.00001000.00

004400

– a 36-round trail for Simon 64/128 with the correlation 2−63:
40000004.00000001.00000004.00000000.00000004.00000001.400000
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Alg. 3 The search algorithm (continued)
function ProcessR(m)

Set βm = Tm, c = lac(βm).

if m < r then
if (lac(T |m−1) + c+Br−m > B̄) or (c > 4) then

return
else

for αm for which εf (αm, βm) 6= 0 do
Set Tm+1 = αm ⊕ Tm−1.

ProcessR(m+ 1)

end for
end if

else
if lac(T |m−1) + c == B̄ then

Choose an αm for which εf (αm, βm) 6= 0.

Set Tm+1 = αm ⊕ Tm−1.

Set found = 1, and exit all the functions.

else
return

end if
end if

end function

04.10000000.44000004.01000001.04400004.06100000.04c00004.03000

001.44000004.10000000.40000004.00000001.00000004.00000000.000

00004.00000001.40000004.10000000.44000004.01000001.04400004.06

100000.04c00004.03000001.44000004.10000000.40000004.00000001.0

0000004.00000000.00000004.00000001

– a 62-round trail for Simon 128/256 with the correlation 2−118:
0000000000000004.0000000000000000.0000000000000004.0000000

000000001.· · · .0000000000000004.0000000000000000.00000000000

00004.0000000000000001.· · · .1000000000000000.4000000000000004.

0000000000000001

Linear trails for Simon 32/64, Simon 48/96, Simon 64/128 were found by the
search algorithm described in the preceding section. The linear trail for Simon

128/256 was constructed from an iterative trail in [23].

D Adding More Rounds to Related-Key Linear

Approximations of SIMON

In this section, we will explain how to add rpre + rpost rounds for (rpre, rpost) =
(3,3), (4,4), or (5,5). For simplicity a+ b and ab (or a • b) denote the XOR and
AND of a, b ∈ F2, respectively. Let w = n/2 be the word size as before.

Adding 3+3 rounds
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3-round computation. Let rk0, rk1, rk2 be the round keys derived from the
candidate key K for the first 3 rounds. For a plaintext P = PL‖PR and a key
difference ∆K, let δrk0, δrk1, δrk2 be the derived round key differences for the
first 3 rounds. Let A = f(PL)⊕ PR ⊕ δrk0, and B = PL ⊕ δrk1 as before. Then
using the relations X3,R = X2,L and X3,L = f(X2,L) ⊕ X2,R ⊕ δrk2 ⊕ rk2, we
can compute each bit of X3 = X3,L‖X3,R = E2

0(K ⊕∆K,P ) in terms of bits of
A,B, rk0, rk1, rk2, δrk0, δrk1, δrk2 as follows:

X3,L[i] =
(
rk0[i− 9]rk0[i− 2] + rk0[i− 9]A[i− 2] +A[i− 9]rk0[i− 2]

+A[i− 9]A[i− 2] + rk0[i− 3] +A[i− 3] +B[i− 1] + rk1[i− 1]
)
•(

rk0[i− 16]rk0[i− 9] + rk0[i− 16]A[i− 9] +A[i− 16]rk0[i− 9]
+A[i− 16]A[i− 9] + rk0[i− 10] +A[i− 10] +B[i− 8] + rk1[i− 8]

)
+rk0[i− 10]rk0[i− 3] + rk0[i− 10]A[i− 3] +A[i− 10]rk0[i− 3]
+A[i− 10]A[i− 3] + rk0[i− 4] +A[i− 4] +B[i− 2] + rk1[i− 2]
+rk0[i] +A[i] + rk2[i] + δrk2[i],

X3,R[i] = X2,L[i].

Thus

– X3,L[i] can be easily computed in terms of rk0[i − 9], rk0[i − 2], rk0[i − 3],
rk0[i−16], rk0[i−10], rk1[i−8], rk1[i−1], A[i−9], A[i−2], A[i−3], A[i−16],
A[i − 10], B[i − 1], B[i − 8], xored with A[i − 4] + B[i − 2] + A[i] + δrk2[i]
and a constant determined only by rk0, rk1, rk2.

– X3,R[i] can be easily computed in terms of rk0[i−8], rk0[i−1], A[i−8], A[i−1],
xored with A[i− 2] +B[i] and a constant determined only by rk0, rk1, rk2.

– The underlined terms that depend only on the outer round keys rk0, rk1, rk2
will be ignored in the attack using a single trail as in the 2-round computa-
tions.

By symmetry of the cipher structure, we get similar expressions for bits of XR−3,R
and XR−3,L in terms of A′ = f(CR)⊕CL⊕ δrkR−1, B′ = CR ⊕ δrkR−2, δrkR−3,
rkR−1, rkR−2, and rkR−3.

The data compression. Suppose that we want to make use of the related-key
linear approximation (11) with s = 3 and s + r + 3 = R. Let IL = supp(Γs),
IR = supp(Γs+1), I ′L = supp(ΓR−3), and I ′R = supp(ΓR−2). The compression
function extracts the following values from each data entry (P,C,∆K):

– A[i] for i such that one of i+ 9, i+ 2, i+ 3, i+ 16, i+ 10 mod w is in IL
– B[i] for i such that one of i+ 1, i+ 8 mod w is in IR
– A′[i] for i such that one of i+ 9, i+ 2, i+ 3, i+ 16, i+ 10 mod w is in I ′R
– B′[i] for i such that one of i+ 1, i+ 8 mod w is in I ′L
–
⊕

i∈IL
(A[i − 4] + B[i − 2] + A[i] + δrk2[i]) ⊕

⊕
i∈IR

(A[i − 2] + B[i]) ⊕⊕
i∈I′R

(A′[i−4]+B′[i−2]+A′[i]+δrkR−3[i])⊕
⊕

i∈I′L
(A′[i−2]+B′[i])⊕

〈Λ,∆K〉
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In the attacks the outer round key bits we need to guess are as follows:
– rk0[i] for i such that one of i+ 9, i+ 2, i+ 3, i+ 16, i+ 10 mod w is in IL
– rk1[i] for i such that one of i+ 1, i+ 8 mod w is in IL
– rk0[i] for i such that one of i+ 1, i+ 8 mod w is in IR
– rkR−1[i] for i such that one of i+ 9, i+ 2, i+ 3, i+ 16, i+ 10 mod w is in I ′R
– rkR−2[i] for i such that one of i+ 1, i+ 8 mod w is in I ′R
– rkR−1[i] for i such that one of i+ 1, i+ 8 mod w is in I ′L

Note that
– the number kO of guessed round key bits for outer rounds is at most 7wt(Γs)+

2wt(Γs+1) + 2wt(Γs+r) + 7wt(Γs+r+1) and
– d, log2 of the size of the compressed data set, is kO + 1.

Adding 4+4 rounds Let A = f(PL)⊕PR⊕δrk0, and B = PL⊕δrk1 as before.
Using the relations X4,R = X3,L and X4,L = f(X3,L)⊕X3,R⊕ δrk3⊕ rk3, we see
that X4,L[i] (up to a constant determined only by rk0, rk1, rk2, rk3) is a function
of the following values and round key bits
– rk0[i − 1, i − 3, i − 4, i − 5, i − 8, i − 10, i − 11, i − 12, i − 17, i − 18, i − 24],
A[i− 1, i− 3, i− 4, i− 5, i− 8, i− 10, i− 11, i− 12, i− 17, i− 18, i− 24]

– rk1[i− 2, i− 3, i− 9, i− 10, i− 16], B[i− 2, i− 3, i− 9, i− 10, i− 16]
– rk2[i− 1, i− 8], δrk2[i− 1, i− 8]

xored with A[i − 6] + B[i] + B[i − 4] + δrk2[i − 2] + δrk3[i]. Note also that
X4,R[i] = X3,L[i] and the backward computations can be carried out similarly.
So when we use a single trail, we have a compression with
– kO ≤ 18wt(Γs) + 7wt(Γs+1) + 7wt(Γs+r) + 18wt(Γs+r+1) and
– d = kO + 1.

Adding 5+5 rounds Let A = f(PL)⊕PR ⊕ δrk0, and B = PL ⊕ δrk1. X4,L[i]
(up to a constant determined only by rk0, rk1, rk2, rk3, rk4) is a function of the
following values and round key bits
– rk0[i−2, i−3, i−4, i−5, i−6, i−7, i−9, i−10, i−11, i−12, i−13, i−14, i−

16, i−18, i−19, i−20, i−25, i−26, i−32], A[i−2, i−3, i−4, i−5, i−6, i−7, i−
9, i−10, i−11, i−12, i−13, i−14, i−16, i−18, i−19, i−20, i−25, i−26, i−32]

– rk1[i − 1, i − 3, i − 4, i − 5, i − 8, i − 10, i − 11, i − 12, i − 17, i − 18, i − 24],
B[i− 1, i− 3, i− 4, i− 5, i− 8, i− 10, i− 11, i− 12, i− 17, i− 18, i− 24]

– rk2[i− 1, i− 2, i− 3, i− 8, i− 9, i− 10, i− 16], δrk2[i− 1, i− 2, i− 3, i− 8, i−
9, i− 10, i− 16]

– rk3[i− 1, i− 8], δrk3[i− 1, i− 8]

xored withA[i]+A[i−4]+A[i−8]+B[i−6]+δrk2[i]+δrk2[i−4]+δrk3[i−2]+δrk4[i].
We also have X5,R[i] = X4,L[i] and the backward computations can be carried
out similarly. So when we use a single trail, we have a compression with
– kO ≤ 39wt(Γs) + 18wt(Γs+1) + 18wt(Γs+r) + 39wt(Γs+r+1) and
– d = kO + 1.
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