
Constrained PRFs for NC1 in Traditional Groups

Nuttapong Attrapadung1, Takahiro Matsuda1, Ryo Nishimaki2,
Shota Yamada1, Takashi Yamakawa2

1National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
{n.attrapadung,t-matsuda,yamada-shota}@aist.go.jp
2NTT Secure Platform Laboratories, Tokyo, Japan
{nishimaki.ryo,yamakawa.takashi}@lab.ntt.co.jp

February 8, 2018

Abstract

We propose new constrained pseudorandom functions (CPRFs) in traditional groups. Traditional
groups mean cyclic and multiplicative groups of prime order that were widely used in the 1980s and
1990s (sometimes called “pairing free” groups). Our main constructions are as follows.

• We propose a selectively single-key secure CPRF for circuits with depth O(logn) (that is, NC1

circuits) in traditional groups where n is the input size. It is secure under the L-decisional
Diffie-Hellman inversion (L-DDHI) assumption in the group of quadratic residues QRq and the
decisional Diffie-Hellman (DDH) assumption in a traditional group of order q in the standard
model.

• We propose a selectively single-key private bit-fixing CPRF in traditional groups. It is secure
under the DDH assumption in any prime-order cyclic group in the standard model.

• We propose adaptively single-key secure CPRF for NC1 and private bit-fixing CPRF in the
random oracle model.

To achieve the security in the standard model, we develop a new technique using correlated-input
secure hash functions.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Our Contributions . 3
1.3 Technical Overview . 3
1.4 Other Related Works . 8

2 Preliminaries 8
2.1 Complexity Assumptions . 9
2.2 Pseudorandom Function . 9
2.3 Constrained Pseudorandom Function . 10
2.4 Private Constrained PRF . 12
2.5 Correlated-Input Secure Hash Function . 15
2.6 Collision Resistant Hash Function . 17

3 Building Block: Correlated-input Secure Hash 17
3.1 Naor-Reingold PRF and Our Variant . 17
3.2 Bellare-Cash CIH Construction and Our Variant . 21

4 CPRF for NC1 Circuits 23
4.1 Our Basic Constrained PRF . 23
4.2 Selectively-secure CPRF in the Standard Model . 27
4.3 Adaptively-secure CPRF in the Random Oracle Model 33

5 Private Constrained PRF for Bit-fixing 37
5.1 Construction in the Standard Model . 37
5.2 Construction in the Random Oracle Model . 42

6 Application to Secret-Key ABE 46
6.1 Definitions . 46
6.2 Construction . 48

1 Introduction

1.1 Background

Pseudorandom functions (PRFs) are one of the most fundamental notions in cryptography [GGM86]. A
PRF is a deterministic function PRF(·, ·) : K×D → RwhereK,D, andR are its key space, domain, and
range, respectively. Roughly speaking, we say that PRF is a secure PRF if outputs of PRF(msk, ·) look
random for any input x ∈ D and a randomly chosen key msk ∈ K. Not only are PRFs used to construct
secure encryption schemes but also they frequently appear in the constructions of various cryptographic
primitives.

Constrained PRF. Boneh and Waters introduced the notion of constrained PRFs (CRPFs) [BW13] (Ki-
ayias, Papadopoulos, Triandopoulos, and Zacharias [KPTZ13] and Boyle, Goldwasser, and Ivan [BGI14]
also proposed the same notion in their concurrent and independent works). CPRFs are an advanced
type of PRFs. Specifically, if we have a master secret key msk of a CPRF PRF, then we can generate a
“constrained” key skf for a function f : D → {0, 1}. We can compute the value PRF(msk, x) from skf
and x if f(x) = 0 holds; otherwise cannot. For an input x such that f(x) = 1, the value PRF(msk, x)
looks pseudorandom.1

CPRFs with various types of function classes have been considered. Here, we explain the classes of
bit-fixing functions and circuits since we present new CPRFs for these functions.

Bit-fixing functions: Let {0, 1}n be the domain of a CPRF. Each function in this class is specified by a
“constraint vector” c = (c1, . . . , cn) ∈ {0, 1, ∗}n, from which a bit-fixing function fc : {0, 1}n →
{0, 1} is defined as follows. If ci = ∗ or xi = ci holds for all i ∈ [n], then fc(x) = 0; otherwise
fc(x) = 1.

Circuits: This class consists of functions {fC} computable by polynomial-sized boolean circuits C,
defined by fC(·) := C(·). We call a CPRF for this function class simply a CPRF for circuits. If a
CPRF supports functions computable by polynomial-sized boolean circuits with depth O(logn),
where n is the input-length of the circuits, then we call it a CPRF for NC1.

The number of constrained keys that can be released (to a potentially malicious party) is one of the
important security measures of CPRFs. If a-priori unbounded polynomially many constrained keys could
be released (i.e., the number of queries is not a-priori bounded), then a CPRF is called collusion-resistant.
If only one constrained key can be released, it is call a single-key secure CPRF. Boneh and Waters [BW13]
showed that (collusion-resistant) CPRFs have many applications such as broadcast encryption with optimal
ciphertext length. (See their paper and references therein for more details.)

Private CPRF. Boneh, Lewi, and Wu [BLW17] proposed the notion of privacy for CPRFs (Ki-
ayias et al. also proposed policy privacy as essentially the same notion [KPTZ13]). Roughly speaking,
private CPRFs do not reveal information about constraints embedded in constrained keys beyond what is
leaked from the evaluation results using the constrained keys.

Known instantiations. The first papers on CPRFs [BW13, KPTZ13, BGI14] observed that the
Goldreich-Goldwasser-Micali [GGM86] PRF yields a puncturable PRF2 (and a CPRF for related
simple functions). However, it turned out that achieving CPRFs for other types of function classes are

1We note that the role of the constraining function f is “reversed” from the definition by Boneh and Waters [BW13], in the
sense that the evaluation by a constrained key skf is possible for inputs x with f(x) = 1 in their definition, while it is possible
for inputs x for f(x) = 0 in our paper. Our treatment is the same as Brakerski and Vaikuntanathan [BV15].

2A constrained key in which a set of points is hard-wired enables us to compute an output if an input is not in the specified set.

1

quite challenging. Here, we review some prior works on CPRFs whose function classes are related to
those we focus on in this study (i.e., bit-fixing functions and NC1 circuits).

Boneh and Waters [BW13] constructed a left-right CPRF3 in the random oracle model (ROM) from
bilinear maps and a collusion-resistant bit-fixing CPRF and collusion-resistant CPRF for circuits from
multilinear maps [GGH13] in the standard model. After that, Brakerski and Vaikuntanathan [BV15]
constructed a single-key secure CPRF for circuits from standard lattice-based assumptions, without relying
on multilinear maps.

Boneh et al. [BLW17] constructed a collusion-resistant private CPRF for circuits from indistinguisha-
bility obfuscation (IO) [BGI+12, GGH+16], and a single-key private bit-fixing CPRF and puncturable
CPRF from multilinear maps [BLW17]. After that, a single-key private puncturable PRF [BKM17], a
single-key private CPRF for NC1 [CC17], and a single-key private CPRF for circuits [BTVW17, PS18]
were constructed from standard lattice assumptions.

Our motivation. (Private) CPRFs have been attracting growing attention as above since they are useful
tools to construct various cryptographic primitives [BW13, BLW17]. A number of other types of CPRFs
have been constructed [HKKW14, HKW15, DKW16, HKW15, HKKW14, BFP+15, AFP16]. However,
all of known sufficiently expressive (private) CPRFs (such as bit-fixing, circuits) rely on IO, multilinear
maps, or lattices, and there is currently no candidate of secure multilinear maps.

Very recently, Bitansky [Bit17] and Goyal, Hohenberger, Koppula, and Waters [GHKW17] proposed
sub-string match4 CPRFs in traditional groups to construct verifiable random functions. In this paper,
by traditional groups we mean the multiplicative groups of prime order5 that have been widely used to
construct various cryptographic primitives such as the ElGamal public-key encryption scheme, around
two decades before bilinear maps dominate the area of cryptography [BF03]. (Of course, they are still
being used for many cryptographic primitives). However, their CPRFs are not expressive enough and do
not satisfy the standard security requirements of CPRFs6. See Tables 1 and 2 for comparisons. There is no
construction of expressive enough (private) CPRF in traditional groups. This status might be reasonable
since lattices and multilinear maps are stronger tools.

Based on the motivation mentioned above, we tackle the following question:

Is it possible to construct sufficiently expressive (private) CPRFs in traditional groups?

In this study, we give affirmative answers to this question and show that traditional groups are quite
powerful tools. From the theoretical point of view, the more instantiations of cryptographic primitives are
available, the more desirable. One reason is that constructions from different tools can be alternatives
when one tool is broken (like multilinear maps). Another reason is that, generally, new instantiations
shed light on how to construct the studied primitive, and widen and deepen our insights on it. One
remarkable example of this line of research would be the recent work by Döttling and Garg [DG17],
who constructed an identity-based encryption (IBE) scheme and a hierarchical IBE scheme in traditional
groups. Another example would be the work by Boyle, Isahai, and Gilboa [BGI16], who constructed
communication-efficient secure two-party protocols in traditional groups. It is also expected that new
instantiations provide us with insights on how to use the studied primitive in applications (in the real
world or in the construction of another primitive as a building block).

3There are left and right constrained keys in which v` and vr are hard-wired, respectively. We can compute outputs by using
the left (resp. right) constrained key if the first (resp. last) half of an input is equal to v` (resp. vr).

4This is the negation of bit-fixing functions, that is, fc(x) = 0 if there exists an index i such that xi 6= ci (i-th bit of a
constraint) and ci 6= ∗. It can be seen as and the generalization of punctured predicate.

5For example, cyclic group H ⊂ Z∗q of a prime order p such that q = 2p+ 1 where q is also a prime.
6In their sub-string match CPRFs, adversaries are not given access to the evaluation oracle, which gives outputs of a CPRF

for queried inputs. We call such security no-evaluation security in this paper.

2

1.2 Our Contributions

In this paper, we present new construction of a CPRF and a private CPRF in traditional groups as main
contributions.

Properties of our CPRFs are summarized as follows.

• Our first CPRF is a selectively single-key secure7 CPRF for NC1 in traditional groups. It is secure
under the L-decisional Diffie-Hellman inversion (L-DDHI) assumption8 in the group of quadratic
residues QRq and the decisional Diffie-Hellman (DDH) assumption9 in a traditional group G of
order q in the standard model. Here, QRq denotes the group of quadratic residue modulo q, where
q is a prime such that q = 2p+ 1 and p is also a prime. We need to use this specific type of group
for technical reasons. See Section 1.3 and Section 4 for the details.

• Our second CPRF is a selectively single-key private bit-fixing CPRF in traditional groups. Specif-
ically, it is secure under the standard DDH assumption in any prime-order cyclic group in the
standard model.

• Our third and fourth CPRFs are an adaptively10 single-key secure CPRF for NC1 circuits and an
adaptively single-key private bit-fixing CPRF, both in the ROM. Our standard model and ROM
constructions of CPRFs for NC1, share high-level ideas behind the constructions in common, and
the same is true for our bit-fixing CPRFs. These connections are explained in Section 1.3.

The main technique that enables us to achieve the above results, is a novel use of correlated-input
secure hash functions. We will explain the technical overview in Section 1.3.

As an application of our results, we can obtain a single-key secret-key attributed-based encryption
(ABE) scheme with optimal ciphertext overhead in traditional groups. A (multi-key) public-key ABE
scheme with optimal ciphertext overhead was presented by Zhandry [Zha16], but it is based on multilinear
maps. See Section 6 for more details.

1.3 Technical Overview

In this section, we provide an overview of our construction ideas. We ignore many subtle issues in this
section and focus on the essential ideas for simplicity.

Basic construction satisfying no-evaluation security. To illustrate our ideas in a modular manner, we
start with a no-evaluation secure CPRF for NC1, that is, adversaries do not have access to the evaluation
oracle. We denote the PRF by PRFNE. It turns out that even in this simple setting, it is non-trivial to
construct a CPRF for NC1 in traditional groups (or bilinear groups) since known constructions use some
sort of “fully homomorphic” properties of lattices or multilinear maps, both of which are not available in
traditional groups. In the following, let λ be the security parameter.

The first challenge is how to implement an NC1 circuit constraint in a key. Our idea is to encode an
NC1 circuit f 11 into a bit string f = (f1, . . . , fz) ∈ {0, 1}z and then embed this into a secret key. When
evaluating a PRF value on input x = (x1, . . . , xn) ∈ {0, 1}n, we will “homormorphically” evaluate
U(·, x) on the secret key, where U(·, ·) is a universal circuit that outputs U(f, x) = f(x) on input (f, x).

7Adversaries commit a function to be embedded in a constrained key at the beginning of the security experiment and have
access to the evaluation oracle, which gives outputs of CPRFs for queried inputs.

8TheL-DDHI assumption in a groupH of orderp [BB04,CHL05] says that it is hard to distinguish (g, gα, gα
2
, . . . , gα

L

, g1/α)
from (g, gα, gα

2
, . . . , gα

L

, gz) where g R← H, α, z R← Zp. See Section 2.1 for the rigorous definition.
9The DDH assumption in a group G of order q says that it is hard to distinguish (g, gx, gy, gxy) from (g, gx, gy, gz) where

g
R← G, x, y, z R← Zq .
10Adversaries can decide a function for which it makes the key query at any time.
11Here, we identify a circuit that computes a function f with f itself.

3

Table 1: Comparison of CPRFs (we omit constructions based on multilinear maps or IO). In “Function”

column, sub-match is sub-string match. Prefix-fixing means that a constrained key with prefix p enables

us to compute outputs for inputs p‖∗. “# keys” column means the number of issuable constrained

keys. “Eval.O” column means the evaluation oracle is available for adversaries or not. “Tool” column

means what kind of cryptographic tools are used. GGM, pairing, and group mean the PRF by Goldreich,

Goldwasser, and Micali [GGM86], bilinear maps, and traditional groups, respectively. In “Assumptions”

column, OWF, BDDH, LWE, and 1D-SIS means one-way function, bilinear Diffie-Hellman, learning

with errors, and one-dimensional short integer solution assumptions, respectively. In “Model” column,

Std means the standard model. In “Misc” column, key-hom means key-homomorphic property.

Reference Function # keys Eval.O Tool Assumptions Model Misc

[BW13] puncturea N/A N/A GGM OWF Std
[BW13] left/right multi X pairing BDDH ROM
[KPTZ13] puncturea N/A N/A GGM OWF Std
[BGI14] puncturea N/A N/A GGM OWF Std
[BFP+15] prefix-fixing multi X lattice LWE Std key-hom
[BV15] circuit single X lattice LWE, 1D-SIS Std
[Bit17] sub-match single no group DDH Std
[GHKW17] sub-match single no group L-power DDH Std
[GHKW17] sub-match single no group Φ-hiding Std
Ours NC1 single X group DDH, L-DDHI Std

a More precisely, they consider slightly different functions, but we write just “puncture” for simplicity
since their constructions are based on the GGM PRF. See their papers for details.

Table 2: Comparison of private CPRFs (we omit constructions based on multilinear

maps and IO). See Table 1 for terms.
Reference Predicate # keys Eval.O Tool Assumptions Model

[KPTZ13] puncturea N/A N/A GGM OWF Std
[BKM17] puncture N/A N/A lattice LWE, 1D-SIS Std
[CC17] bit-fixing single X lattice LWE Std
[CC17] NC1 single X lattice LWE Std
[BTVW17] circuit single X lattice LWE Std
[PS18] circuit single X lattice LWE, 1D-SIS Std
Ours bit-fixing single X group DDH Std

a Same as in Table 1.

To make the representation of the universal circuit U(·, ·) compatible with our algebraic setting, we regard
U(·, ·) as a degree-D polynomial of the variables {fi} and {xj}, such that D is some fixed polynomial
of λ.12 Furthermore, we extend the input space of U(·, ·) to be non-binary, where the computation is
done over Zp using the polynomial representation of U(·, ·). Specifically, we allow the input of the form
((b1, . . . , bz), x) ∈ Zzp × {0, 1}n.

Now, we give a more detailed description of PRFNE. A master secret key msk of PRFNE is
of the form (b1, . . . , bz, α, g), where bi

R← Zp for each i ∈ [z] and α R← Z∗p, and g is a generator
of a traditional group H of order p. (We will turn to the explanation on this group H later in this
subsection.) The evaluation algorithm of PRFNE outputs gx′/α, where x′ = U((b1, . . . , bz), x) ∈ Zp. To
compute a constrained key skf of an NC1 circuit f , we set b′i := (bi − fi)α−1. The constrained key is
skf = (f, b′1, . . . , b′z, g, gα, gα

2
, . . . , gα

D−1).
We then look closer at why this construction achieves the constraint defined by the NC1 circuit f .

12We can construct universal circuit U whose depth is only constant times deeper than that of f by the result of Cook and
Hoover [CH85]. It is well known that an NC1 circuit can be represented by a polynomial with polynomial degree (for example,
this fact is used for functional encryption for NC1 [GVW12]).

4

When we compute x′ := U((b1, . . . , bz), x) by using bi = α · b′i + fi, we can write the computation of U
in the following way:

x′ = U((α · b′1 + f1, . . . , α · b′z + fz), x) = f(x) +
D∑
j=1

cjα
j ,

where the coefficients {cj}j are efficiently computable from the descriptions of U and f , {b′i}i, and
x since the degree D is polynomial in the security parameter. This can be seen by observing that
U((α·b′1+f1, . . . , α·b′z+fz), x) should be equal to f(x)whenα = 0 since we haveU((f1, . . . , fz), x) =
f(x) by the definition of a universal circuit.

• If f(x) = 0, then we can compute gx′/α = g
f(x)/α+

∑D−1
j=0 cjα

j

since the gf(x)/α part disappears
and the remaining part is computable from skf = (f, b′1, . . . , b′z, g, gα, . . . , gα

D−1) and x.

• If f(x) = 1, then gx′/α = g
f(x)/α+

∑D−1
j=0 cjα

j

looks random since g1/α looks random even if
(g, gα, . . . , gαD−1) is given, due to the (D − 1)-DDHI assumption in H.

This is a high-level intuition for why PRFNE for NC1 is no-evaluation secure. This CPRF PRFNE is our
base construction, and the idea behind our construction here is inspired by the affine partitioning function
used in the recent construction of a verifiable random function by Yamada [Yam17].

On the other hand, this construction can be broken by making only one evaluation query: Suppose
that x 6= x̂ satisfy f(x) = f(x̂) = 1. Then we can write PRFNE(msk, x) = g

1/α+
∑D−1

j=0 cjα
j

and
PRFNE(msk, x̂) = g

1/α+
∑D−1

j=0 ĉjα
j

by using {cj}j and {ĉj}j that are efficiently computable by an

adversary. Then we have PRFNE(msk, x̂) = PRFNE(msk, x) · g
∑D−1

j=0 (ĉj−cj)αj . Therefore if an adversary
obtains PRFNE(msk, x), then it can efficiently compute PRFNE(msk, x̂) and break the security of the
PRF.

Single-key secure construction in the ROM. To achieve security against adversaries making a-priori
unbounded polynomially many evaluation queries (i.e., the number of queries is polynomial, but not fixed
in advance), we consider using a random oracle as an intermediate step. (This construction is denoted by
PRFrom.) PRFrom is the same as PRFNE except that an output is now computed by H(gx′/α), instead of
gx
′/α, where H : H→ {0, 1}n′ is a cryptographic hash function. In the ROM where H is modeled as a

random oracle, adversaries make hash queries and obtain outputs of the hash function H . If f(x) = 1,
then an adversary cannot compute gx′/α due to the no-evaluation security, and thus H(gx′/α) seems
uniformly random from the view of the adversary. Therefore evaluation queries from an adversary can
be answered with uniformly random strings, and the adversary cannot notice whether this is a correct
behavior of the evaluation oracle as long as it does not find a collision (x1, x2) such that gx′1/α = gx

′
2/α

where x′i = U((b1, . . . , bz), xi). Our real construction is slightly modified from the above construction so
that such a collision exists only with negligible probability (see Section 4.1 for the detail).

The second challenge is how to remove the random oracle and achieve security against a-priori
unbounded polynomially evaluation queries in the standard model.

Replacing a random oracle with a correlated-input secure hash function. We observe that we do
not need the full power of random oracles to prove the security of CPRFs. Specifically, we can use a
correlated-input secure hash function (CIH) [IKNP03, GL10, BC10a, GOR11]13, instead of random
oracles.

13Several works defined similar notions in different names such as related-key security. We use the name “correlated-input
security” since we think it is the most suitable name for our usage.

5

Here, we briefly recall the definition of a CIH whose definition is associated with a class of functions
Ψ. At the beginning, the challenger chooses the challenge bit coin R← {0, 1}, a function description CIH,14
and a random element r from the domain of CIH. The adversary is given CIH and access to an oracle that,
upon a query ψi ∈ Ψ from the adversary, answers CIH(ψi(r)) if coin = 1; otherwise the oracle answers
the query with RF(ψi(r)), where RF is a truly random function. If it is hard for adversaries to distinguish
the case coin = 1 from the case coin = 0, we say that CIH is correlated-input pseudorandom for Ψ (or
simply, a CIH for Ψ).15.

If there exists a CIH for group-induced functions ψ∆ : H→ H such that ∆ ∈ H and ψ∆(y) := y ·∆
(denoted by CIH0) where · is the group operation ofH, then CIH0(PRFNE(msk, x)) is a secure CPRF. This
can be seen as follows: For x satisfying f(x) = 1, PRFNE(msk, x) can be written as g1/α · g

∑D−1
j=0 cjα

j

where g1/α is pseudorandom and g
∑D−1

j=0 cjα
j

is efficiently computable from the view of an adversary as
discussed above. By applying the security of a CIH by setting y := g1/α and ∆ = g

∑D−1
j=0 cjα

j

, we can
see that CIH0(PRFNE(msk, x)) is computationally indistinguishable from RF(PRFNE(msk, x)). This is
computationally indistinguishable from a random function as long as PRFNE(msk, x) has no collision, and
the actual construction of PRFNE(msk, x) is made collision-free as mentioned in the previous paragraph.

However, there is one subtle issue: The only known instantiation of CIH for group induced functions
which satisfies our security requirements is the CIH based on the DDH assumption by Bellare and
Cash [BC10a] (denoted by CIHBC). In CIHBC, we consider them-dimensional, component-wise group-
induced functions Ψg-indc

m := {ψ~a | ~a ∈ (Z∗q)m}, whereψ~a : (Z∗q)m → (Z∗q)m is defined byψ~a(~r) := ~a?~r
and ? denotes the component-wise group operation on Z∗q . Here, the domain of CIHBC is not compatible
with the range of PRFNE (the output is gx′/αi ∈ H). One might think that m-folded parallel running
of PRFNE on H := Z∗q works, but this is not the case. This is because if H := Z∗q , then the L-DDHI
assumption can be easily broken by computing the Jacobi symbol.

We observe that the attack based on the Jacobi symbol does not work if we consider the group of
quadratic residues modulo q, denoted by QRq instead of Z∗q , and it is reasonable to assume the L-DDHI
assumption holds on QRq. However, if we set H := QRq, then we cannot simply use the security of
CIHBC since it is not obvious if the security of CIHBC still holds when we restrict the domain of CIHBC to
QRmq . We resolve the issue by proving that the CIH obtained by restricting the domain of CIHBC to QRmq
(denoted by CIHB̃C) is also secure as a CIH for component-wise group operations on QRmq under the
DDH assumption on a group of an order p = q−1

2 if p is a prime. See Section 3 for more details of CIHB̃C.
It is ready to explain our CRPF PRF for NC1. It uses multiple instances of PRFNE and apply a CIH

form-dimensional component-wise group-induced functions to the outputs from those instances. That is,
we define

PRFNC1(msk, x) := CIHB̃C

(
PRFNE(msk1, x), . . . ,PRFNE(mskm, x)

)
.

Now, we look closer at why correlated-input pseudorandomness helps us achieve security in the
presence of a-priori unbounded polynomially many evaluation queries. In PRFNE, when the inputs x
with f(x) = 1 are used, we can view its output as consisting of two separate parts. Specifically, we
can write gx′/α = g

f(x)/α+
∑D−1

j=0 cjα
j

= Aux(msk) · SEval(skf , x) if we define Aux(msk) := g1/α and

SEval(skf , x) := g
∑D−1

j=0 cjα
j

(where SEval stands for “semi”-evaluation). The first part is computable
only from msk, and the second part is computable from skf and x. Thanks to the (D − 1)-DDHI
assumption, it is now easy to see that Aux(msk) is indistinguishable from a random element even if skf is

14In the formal security definition, the function is parameterized by a public parameter generated by some setup procedure. We
ignore the public parameter in the explanation below for simplicity. See Section 2.5 for the rigorous security definition for CIHs.

15The definition of CIHs in this paper can be seen as a hybrid of correlated-input pseudorandom by Goyal. et al. [GOR11] and
RKA-PRG by Bellare and Cash [BC10a]. See Section 2.5 for the formal definition.

6

given. Therefore, it holds that

PRFNC1(msk, x) ≈c CIHB̃C

(
r1 · SEval(skf,1, x), . . . , rm · SEval(skf,m, x)

)
,

where ri
R← H for all i ∈ [m] and ≈c denotes computational indistinguishability. Furthermore, skf,i

denotes the secret key associated to f generated from mski. (Namely, it corresponds to the i-th instance.)
Here, φi := SEval(skf,i, x) ∈ H are adversarially chosen correlated values and fall in the component-wise
group-induced functions Ψg-indc

m due to (φ1, . . . , φm) ∈ Hm. Therefore, by applying the correlated-input
pseudorandomness of CIHB̃C, we obtain

CIHB̃C(r1 · φ1, . . . , rm · φm) ≈c RF(r1 · φ1, . . . , rm · φm).

As long as adversaries do not find a collision (x1, x2) such that (SEval(skf,1, x1), . . . ,SEval(skf,m, x1)) =
(SEval(skf,1, x2), . . . ,SEval(skf,m, x2)), PRFNC1(msk, ·) is pseudorandom since RF is a truly random
function. It is not difficult to see that a collision is hard to find by the universality of the modified PRFNE
(see Lemma 4.15 for the detail). Therefore, we can prove the pseudorandomness of PRF against a-priori
unbounded polynomially many evaluation queries in the standard model by using the security of CIH for
(m-dimensional, component-wise) group-induced functions.

How to achieve private constraint. Here, we give a brief explanation on how our single-key private
CPRF for bit-fixing functions is constructed. The basic strategy is the same as that of our CPRFs for
NC1. That is, we firstly construct a private bit-fixing CPRF in the ROM, and then convert it into a private
bit-fixing CPRF in the standard model via a CIH for an appropriate function class.

Our single-key private bit-fixing CPRF in the ROM is very simple. This is slightly different from what
we present in Section 5.2, but we stick to the following construction in this section since it is consistent
with the standard model construction in Section 5.1. A master secret key is msk := {si,b}i∈[n],b∈{0,1} and
a PRF output for input x isH(

∑n
i=1 si,xi) whereH is a (standard) hash function. For convenience, we

define PRFbf-NE(msk, x) :=
∑n
i=1 si,xi . A constrained key for c ∈ {0, 1, ∗}n is {ti,b}i∈[n],b∈{0,1} where

ti,b := si,b if ci = ∗ or ci = b; otherwise ti,b
R← Zp. If an input does not match the constraint c, then the

sum includes completely unrelated values and we can not compute the correct output. Adversaries are
given just random values by the random oracle. Moreover, adversaries can not distinguish two different
constraints as long as a challenge input does not satisfy the constraints since both si,b and ti,b are uniformly
random values in Zp. This construction satisfies adaptive single-key privacy in the random oracle model,
without relying on any complexity assumption.

Now we replace the cryptographic hash function (random oracle) H with a CIH CIHaff for affine
functions Φaff = {φ~u,~v : Zmp → Zmp } where ~u ∈ (Z∗p)m, ~v ∈ Zmp , and φ~u,~v(~x) := ~u� ~x+ ~v where � is
component-wise multiplication in Zp. Our private bit-fixing CPRF is defined by

PRFBF(msk, x) := CIHaff
(

PRFbf-NE(msk1, x), . . . ,PRFbf-NE(mskm, x)
)
.

A constrained key skc consists of constrained keys for c with respect to mskj , for all j ∈ [m]. It is easy
to see that the correctness holds. For the security, we set ti,b,j := si,b,j − αj for ci 6= ∗ and b = 1− ci
where αj

R← Zp. Then, we can write
∑n
i=1 si,xi,j = uαj + vj for some u ∈ [n] (especially u 6= 0)

where vj =
∑n
i=1 ti,xi,j for an evaluation query x from an adversary, since x is not allowed to satisfy the

constraint. For two different constraints, the adversary cannot distinguish which constraint is used in a
constrained key (that is, si,b,j ≈c ti,b,j + αj) since ti,b,j is uniformly random. Here, αj’s are uniformly
random and u and vj are adversarially chosen values. It is easy to see that this falls into the class of affine
functions. Thus, we can use the security of the CIH CIHaff for affine functions, and obtain

CIHaff(uα1 + v1, . . . , uαm + vm) ≈c RF(uα1 + v1, . . . , uαm + vm).

7

As long as a collision of (PRFbf-NE(msk1, ·), . . . ,PRFbf-NE(mskm, ·) is not found,RF(uα1+v1, . . . , uαm+
vm) is indistinguishable from a random value. Furthermore, it is not difficult to show that the condition
holds by the universality of Ft(x) := (uα1 + v1, . . . , uαm + vm). Therefore, we can prove the security
of our private bit-fixing CPRF. See Lemma 5.6 for the details.

1.4 Other Related Works

Whilewe focus on (private) CPRFswithout IO andmultilinearmaps, many expressive (private) CPRFs have
been proposed based on IO or multilinear maps: collusion-resistant CPRFs for circuit based on multilinear
maps [BW13, BFP+15], adaptively secure CPRFs based on IO [HKKW14, HKW15], collusion-resistant
CPRFs for Turing machines based on (differing-input) IO [DKW16, AFP16], collusion-resistant private
CPRFs for circuits based on IO [BLW17].

CPRFs and private CPRFs are useful to construct advanced cryptographic primitives. Boneh and
Waters showed that we can construct broadcast encryption with optimal ciphertext length, identity-based
non-interactive key-exchange, and policy-based key distribution fromCPRFs [BW13]. Boneh et al. showed
that private constrained message authentication code (MAC), watermarking PRF, searchable encryption,
and on-line/off-line 2-server private keyword search from private CPRFs [BLW17]. Requirements
on security of (private) CPRFs depends on these applications. Boneh, Kim, and Montgomery prove
that single-key simulation-based private CPRFs imply single-key simulation-based secure secret-key
functional encryption (FE) [BKM17]. Canetti and Chen prove that two-key indistinguishability-based
(resp. simulation-based) private CPRFs for circuits imply indistinguishability (resp. virtual black-box)
obfuscation (they also prove that private CPRFs imply secret-key FE) [CC17].

Cohen, Goldwasser, and Vaikuntanathan showed a connection between CPRFs for some class of
functions and computational learning theory [CGV15].

See the papers and references therein for more details.

Organization. The rest of the paper is organized as follows. After introducing notations, security
definitions, and building blocks in Section 2, we present our correlated-input secure hash function in
Section 3, our CPRFs for NC1 and its security proofs in Section 4, and our private bit-fixing CPRF in
Section 5.

2 Preliminaries

In this section, we review the basic notation and the definitions for complexity assumptions, tools, and
cryptographic primitives.

Basic notation. We denote by N the set of all natural numbers. If n ∈ N, then “[n]” denotes the set
{1, . . . , n}. We denote by “x := y” that y is deterministically assigned to x. If S is a finite set, then
“x R← S” denotes that x is chosen uniformly at random from S. If D and D′ are distributions (over some
set), then “x R← D” denotes that x is chosen according to the distribution D, and “D ≈c D′” denotes that
the two distributions are computationally indistinguishable. If x and y are bit-strings, then we denote by
“x‖y” the concatenation of x and y, and “(x ?= y)” is defined to be 1 if x = y and 0 otherwise. “PPT”
stands for probabilistic polynomial time. If A is a probabilistic algorithm, then “y R← A(x)” denotes
that A computes and outputs y by taking x as input and using an internal randomness that is chosen
uniformly at random. If furthermore O is a (possibly probabilistic) function, then “AO” denotes that A
has oracle access to O. A function f(·) : N → [0, 1] is said to be negligible if for all polynomials p(·)
and all sufficiently large λ ∈ N, we have f(λ) < 1/p(λ). Throughout the paper, we use “λ” to denote a
security parameter (which is given to algorithms always in the unary form 1λ). We denote by “poly(·)” an

8

unspecified integer-valued positive polynomial of λ and by “negl(λ)” an unspecified negligible function
of λ. For sets D andR, “Func(D,R)” denotes the set of all functions with domain D and rangeR.

2.1 Complexity Assumptions

Here, we review complexity assumptions on cyclic groups that we use in this paper. For convenience, we
introduce the notion of a “group generator”. We say that a PPT algorithm GGen is a group generator, if it
takes a security parameter 1λ as input and outputs a “group description” G := (G, p) where G is a group
with prime order p = Ω(2λ), from which one can efficiently sample a generator uniformly at random.

Definition 2.1 (Decisional Diffie-Hellman Assumption). Let GGen be a group generator. We say that
the decisional Diffie-Hellman (DDH) assumption holds with respect to GGen, if for all PPT adversaries
A, the advantage Advddh

GGen,A(λ) defined below is negligible:

Advddh
GGen,A(λ) :=

∣∣∣Pr[A(G, g, gx, gy, gxy) = 1]− Pr[A(G, g, gx, gy, gz) = 1]
∣∣∣,

where G = (G, p) R← GGen(1λ), g R← G, and x, y, z R← Z∗p.

Definition 2.2 (L-Diffie-Hellman Inversion Assumption). Let GGen be a group generator and L =
L(λ) = poly(λ). We say that the L-Diffie-Hellman inversion (DDHI) assumption holds with respect to
GGen, if for all PPT adversaries A, the advantage AdvL-ddhi

GGen,A(λ) defined below is negligible:

AdvL-ddhi
GGen,A(λ) :=

∣∣∣Pr[A(G, g, (gαi)i∈[L], ψ0) = 1]− Pr[A(G, g, (gαi)i∈[L], ψ1) = 1]
∣∣∣,

where G = (G, p) R← GGen(1λ), g R← G, α R← Z∗p, ψ0 := g1/α, and ψ1
R← G.

2.2 Pseudorandom Function

In this paper, we will treat a pseudorandom function (PRF) that has a public parameter. Hence, we
introduce such a definition here. Since we will later extend the syntax of a PRF here into that of a CPRF,
in which a key output from KeyGen is called a master secret key, a key for a PRF is denoted by msk here.

Formally, a PRF PRF consists of the three PPT algorithms (Setup,KeyGen,Eval) with the following
interfaces:

Setup(1λ) R→ pp: This is the setup algorithm that takes a security parameter 1λ as input, and outputs
a public parameter pp, where pp specifies the descriptions of the key space K, the input-length
n = n(λ) = poly(λ) (that defines the domain {0, 1}n), and the rangeR.

KeyGen(pp) R→ msk: This is the key generation algorithm that takes a public parameter pp as input, and
outputs a key msk ∈ K.

Eval(pp,msk, x) =: y: This is the deterministic evaluation algorithm that takes a public parameter pp, a
key msk ∈ K, and an element x ∈ {0, 1}n as input, and outputs an element y ∈ R.

Whenever clear from the context, we will drop pp from the input of Eval. Furthermore, when there is no
confusion, we may abuse the notation and use PRF to denote the evaluation algorithm itself, and use the
notations such as “PRF : K × {0, 1}n → R” and “PRF(msk, x)” (where the latter means the execution
of Eval(msk, x)) for enabling easier and more intuitive descriptions.

Definition 2.3 (Security of PRF).We say that PRF = (Setup,KeyGen,Eval) is a secure PRF if for all
PPT adversaries A, the advantage Advprf

PRF,A(λ) defined below is negligible:

Advprf
PRF,A(λ) :=

∣∣∣Pr[AEval(msk,·)(pp) = 1]− Pr[ARF(·)(pp) = 1]
∣∣∣,

where pp R← Setup(1λ), msk R← KeyGen(pp), and RF(·) R← Func({0, 1}n,R).

9

2.3 Constrained Pseudorandom Function

Here, we give the syntax and security definitions for a constrained pseudorandom function (CPRF). For
clarity, we will define a CPRF as a primitive that has a public parameter. However, this treatment is
compatible with the standard syntax in which there is no public parameter, because it can always be
contained as part of a master secret key and constrained secret keys.

Syntax. Let F = {Fλ,k}λ,k∈N be a class of functions16 where each Fλ,k is a set of functions with
domain {0, 1}k and range {0, 1}, and the description size (when represented by a circuit) of every function
in Fλ,k is bounded by poly(λ, k).

A CPRF for F consists of the five PPT algorithms (Setup,KeyGen,Eval,Constrain,CEval) where
(Setup,KeyGen,Eval) constitutes a PRF (where a key msk output by KeyGen is called a master secret
key), and the last two algorithms Constrain and CEval have the following interfaces:

Constrain(pp,msk, f) R→ skf : This is the constraining algorithm that takes as input a public parameter pp,
a master secret key msk, and a function f ∈ Fλ,n, where n = n(λ) = poly(λ) is the input-length
specified by pp. Then, it outputs a constrained key skf .

CEval(pp, skf , x) =: y: This is the deterministic constrained evaluation algorithm that takes a public
parameter pp, a constrained key skf , and an element x ∈ {0, 1}n as input, and outputs an element
y ∈ R.

As in an ordinary PRF, whenever clear from the context, we will drop pp from the inputs of Eval,
Constrain, and CEval, and the executions of them are denoted as “Eval(msk, x)”, “Constrain(msk, f)”,
and “CEval(skf , x)”, respectively.

Correctness. For correctness of a CPRF for a function class F = {Fλ,k}λ,k∈N, we require that for all
λ ∈ N, pp R← Setup(1λ) (which specifies the input length n = n(λ) = poly(λ)), msk R← KeyGen(pp),
functions f ∈ Fλ,n, and inputs x ∈ {0, 1}n satisfying f(x) = 0, we have

CEval
(

Constrain(msk, f), x
)

= Eval(msk, x).

Remark 2.4. We note that in our definition, the role of the constraining functions f is “reversed” from that
in [BW13], in the sense that correctness (i.e. the equivalence Eval(msk, ·) = CEval(skf , ·)) is required
for inputs x with f(x) = 0, while it is required for inputs x with f(x) = 1 in [BW13].

Security. Here, we give the security definitions for a CPRF. We only consider CPRFs that are secure in
the presence of a single constrained key, for which we consider two flavors of security: selective single-key
security and adaptive single-key security. The former notion only captures security against adversaries
A that decide the constraining function f (and the constrained key skf is given to A) before seeing any
evaluation result of the CPRF, while the latter notion has no such restriction and captures security against
adversaries that may decide the constraining function f at any time. Also, in Section 4, as a security
notion for a CPRF used as a building block, we will use the notion of no-evaluation security, which
captures security against adversaries that have no access to the evaluation oracle. The definition below
reflects these differences.

Formally, for a CPRF CPRF = (Setup,KeyGen,Eval,Constrain,CEval) (with input-length n =
n(λ)) for a function class F = {Fλ,k}λ,k∈N and an adversary A = (A1,A2), we define the single-key
security experiment Exptcprf

CPRF,F ,A(λ) as described in Figure 1 (left).

16In this paper, a “class of functions” is a set of “sets of functions”. Each Fλ,k in F considered for a CPRF is a set of functions
parameterized by a security parameter λ and an input-length k.

10

Exptcprf
CPRF,F ,A(λ) :

coin R← {0, 1}
pp R← Setup(1λ)
msk R← KeyGen(pp)
RF(·) R← Func({0, 1}n,R)

OChal(·) :=
{

Eval(msk, ·) if coin = 1
RF(·) if coin = 0

(f, stA) R← AOChal(·),Eval(msk,·)
1 (pp)

skf
R← Constrain(msk, f)

ĉoin R← AOChal(·),Eval(msk,·)
2 (skf , stA)

Return (ĉoin ?= coin).

Exptcprf-priv
CPRF,F ,A(λ) :

coin R← {0, 1}
pp R← Setup(1λ)
msk R← KeyGen(pp)
(f0, f1, stA) R← AEval(msk,·)

1 (pp)
skfcoin

R← Constrain(msk, fcoin)
ĉoin R← AEval(msk,·)

2 (skfcoin , stA)
Return (ĉoin ?= coin).

Figure 1: Left: The experiment for defining single-key security for a CPRF. Right: The experiment for
defining single-key privacy for a CPRF.

In the security experiment, the adversary A’s single constraining query is captured by the function f
included in the first-stage algorithm A1’s output. Furthermore, A1 and A2 have access to the challenge
oracle OChal(·) and the evaluation oracle Eval(msk, ·), where the former oracle takes x∗ ∈ {0, 1}n as
input, and returns either the actual evaluation result Eval(msk, x∗) or the output RF(x∗) of a random
function, depending on the challenge bit coin ∈ {0, 1}.

We say that an adversary A = (A1,A2) in the security experiment Exptcprf
CPRF,F ,n,A(λ) is admissible

if A1 and A2 are PPT and respect the following restrictions:

• f ∈ Fλ,n.

• A1 and A2 never make the same query twice.

• All challenge queries x∗ made by A1 and A2 satisfy f(x∗) = 1, and are distinct from any of the
evaluation queries x that they submit to the evaluation oracle Eval(msk, ·).

Furthermore, we say that A is selectively admissible if, in addition to the above restrictions, A1 makes no
challenge or evaluation queries. Finally, we say that A is a no-evaluation adversary if A1 and A2 are
PPT, and they do not make any queries, except that A2 is allowed to make only a single challenge query
x∗ such that f(x∗) = 1.

Definition 2.5 (Security of CPRF).We say that a CPRF CPRF for a function class F is adap-
tively single-key secure, if for all admissible adversaries A, the advantage Advcprf

CPRF,F ,A(λ) :=
2 · |Pr[Exptcprf

CPRF,F ,A(λ) = 1]− 1/2| is negligible.
We define selective single-key security (resp. no-evaluation security) of CPRF analogously, by

replacing the phrase “all admissible adversaries A” in the above definition with “all selectively
admissible adversaries A” (resp. “all no-evaluation adversaries A”).

Remark 2.6. As noted in [BW13], without loss of generality we can assume that A makes a challenge
query only once, because security for a single challenge query can be shown to imply security for multiple
challenge queries via a standard hybrid argument. Hence, in the rest of the paper we only use the security
experiment with a single challenge query for simplicity.

Remark 2.7. In some existing works [BW13, FKPR14, DKW16] the term “selective” is used to mean
that A has to make a challenge query at the beginning of the security experiment. On the other hand, in
this paper “selective” means that A has to make a constraining query at the beginning of the security
experiment, which is the same definitional approach as in [BV15].

11

2.4 Private Constrained PRF

Here, we define an additional security notion for a CPRF called privacy introduced byBoneh et al. [BLW17].
We only consider a CPRF that achieves privacy in the presence of a single constrained key, and as in
the case of (ordinary) security in the previous subsection, we consider two flavors: selective single-key
privacy and adaptive single-key privacy.

Formally, for a CPRF CPRF = (Setup,KeyGen,Eval,Constrain,CEval) (with input-length n =
n(λ)) for a function class F = {Fλ,k}λ,k∈N and an adversary A = (A1,A2), we define the single-key
privacy experiment Exptcprf-priv

CPRF,F ,A(λ) as described in Figure 1 (right).
In the experiment, the adversary A’s single challenge query is captured by the function pair (f0, f1)

output by its first-stage algorithm A1. Note that A1 and A2 have access to the evaluation oracle
Eval(msk, ·).

We say that an adversary A = (A1,A2) in the privacy experiment Exptcprf-priv
CPRF,F ,A(λ) is admissible if

A1 and A2 are PPT and respect the following restrictions:

• f0, f1 ∈ Fλ,n, and f0 and f1 have the same description size.

• A1 and A2 never make the same query twice.

• All evaluations queries x made by A1 and A2 satisfy f0(x) = f1(x).

Furthermore, we say that A is selectively admissible if, in addition to the above restrictions, A1 makes no
evaluation query.

Definition 2.8 (Privacy of CPRF).We say that a CPRF CPRF for a class of functions F is adap-
tively single-key private, if for all admissible adversaries A, the advantage Advcprf-priv

CPRF,F ,A(λ) :=
2 · |Pr[Exptcprf-priv

CPRF,F ,A(λ) = 1]− 1/2| is negligible.
We define selective single-key privacy of CPRF analogously, by replacing the phrase “all admissible

adversaries A” in the above definition with “all selectively admissible adversaries A”.

Simpler security notion in the selective single-key setting. So far, we have defined two kinds of
security notions: (ordinary) security and privacy. Here, for convenience, we introduce a simple security
notion that implies both of the aforementioned security notions in the selective, single-key setting. This
simple security notion makes the security analyses of our private CPRF in Section 5 simpler. (See the
proof of Theorem 5.2.)

Our security notion is a simulation-based one and involves a simulator S: We call a PPT algorithm
S a simulator if it takes a public parameter pp (output by Setup(1λ)) and the description size 1|f | of a
function f ∈ Fλ,n as input,17 and outputs some value that “looks like” a constrained key.

For a CPRF CPRF = (Setup,KeyGen,Eval,Constrain,CEval) (with input-length n = n(λ)) for a
function class F = {Fλ,k}λ,k∈N, a simulator S, and an adversary A = (A1,A2), we define the “real”
single-key experiment Exptcprf-sim-real

CPRF,F ,A (λ) and the “ideal” single-key experiment Exptcprf-sim-ideal
CPRF,F ,S,A(λ) as

described in Figure 2.
Note that in both games,A2 is given access to an oracle, which is implemented by the actual evaluation

algorithm Eval(msk, ·) in the real experiment, and by a random function RF(·) in the ideal experiment.
We say that A = (A1,A2) in the real/ideal experiments is selectively admissible if A1 and A2 are

PPT and respect the following restrictions:

• f ∈ Fλ,n.

17Our proposed private CPRFs in Section 5 are for bit-fixing functions, in which case the description size is determined by the
input-length n = n(λ) which is in turn specified in pp, and thus 1|f | is redundant information for S . The definition here is for a
case of general function classes.

12

Exptcprf-sim-real
CPRF,F ,A (λ) :

pp R← Setup(1λ)
msk R← KeyGen(pp)
(f, stA) R← A1(pp)
skf

R← Constrain(msk, f)
ĉoin R← AEval(msk,·)

2 (skf , stA)
Return ĉoin.

Exptcprf-sim-ideal
CPRF,F ,S,A(λ) :

pp R← Setup(1λ)
RF(·) R← Func({0, 1}n,R)
(f, stA) R← A1(pp)
skf

R← S(pp, 1|f |)
ĉoin R← ARF(·)

2 (skf , stA)
Return ĉoin.

Figure 2: Security experiments for defining our simulation-based single-key security for a CPRF. Left:
The “real” single-key experiment. Right: The “ideal” single-key experiment involving a simulator S.

• A2 never makes the same query twice.

• All oracle queries x ∈ {0, 1}n made by A2 satisfy f(x) = 1. (i.e. Eval(msk, x) is not trivially
computable even given skf).

Definition 2.9 (Simulation-Security of CPRF).We say that a CPRF CPRF for a function class F is
selectively single-key simulation-secure, if there exists a PPT simulator S such that for all selectively
admissible adversaries A, the advantage Advcprf-sim

CPRF,F ,S,A(λ) defined below is negligible:

Advcprf-sim
CPRF,F ,S,A(λ) :=

∣∣∣Pr[Exptcprf-sim-real
CPRF,F ,A (λ) = 1]− Pr[Exptcprf-sim-ideal

CPRF,F ,S,A(λ) = 1]
∣∣∣.

The following lemma guarantees that the above defined simulation-based security notion implies
(ordinary) security and privacy.

Lemma2.10. LetCPRF = (Setup,KeyGen,Eval,Constrain,CEval) be a selectively single-key simulation-
secure CPRF for a function class F = {Fλ,k}λ,k∈N. Then, CPRF is selectively single-key secure and
selectively single-key private as well.

Proof of Lemma 2.10. Let S be a PPT simulator that is guaranteed to exist due to the simulation-security
of CPRF, which assures that the advantage is negligible for any selectively admissible adversary. Below,
let n = n(λ) = poly(λ) denote the input-length of CPRF.

We first show the selective single-key security of CPRF, and then its selectively single-key privacy.

Selective single-key security. Let A = (A1,A2) be any selectively admissible adversary that attacks
the selective single-key security of CPRF. For simplicity, we assume that A2 makes a challenge query
only once (see Remark 2.6), and all evaluation queries x made by A2 satisfy f(x) = 1. The latter
assumption is without loss of generality, because A2 is given the constrained key skf and can by itself
compute Eval(msk, x) for x with f(x) = 0, by executing CEval(skf , x).

Using A, we will show how to construct a selectively admissible adversary B against the simulation-
security of CPRF satisfying

Advcprf
CPRF,F ,A(λ) = 2 · Advcprf-sim

CPRF,F ,S,B(λ), (1)

which will complete the proof that CPRF is selectively single-key secure.
The description of B = (B1,B2) is fairly straightforward, and is as follows:

B1(pp): B1 is identical to A1, namely, B1 runs (f, stA) R← A1(pp), and terminates with output
(f, stB := stA).

13

BO(·)
2 (skf , stB): (whereO(·) is eitherEval(msk, ·) orRF(·) R← Func({0, 1}n,R))B2 picksA’s challenge

bit coin R← {0, 1}, and runs A2(skf , stA), where B2 responds to A2’s queries as follows:

• For the challenge query x∗ fromA2 (which by definition satisfies f(x∗) = 1), if coin = 1, then
B2 forwards x∗ to its oracle O and receives the result y from O. Otherwise (i.e., coin = 0),
B2 picks a random element y R← R. In either case, B2 returns y to A2.

• For an evaluation query x fromA2 (which by our simplification assumption satisfies f(x) = 1
as well), B2 sends x to its oracle O and forwards the answer y from O to A2.

When A2 terminates with output ĉoin, B2 outputs (ĉoin ?= coin) and terminates.

The above completes the description of B. It is straightforward to see that B is selectively admissible.
Consider the case that B runs in the real experiment Exptcprf-sim-real

CPRF,F ,B (λ). It is straightforward to see
that in this case, B simulates the security experiment Exptcprf

CPRF,F ,A(λ) perfectly for A. Since B outputs 1
if and only if A succeeds in guessing the challenge bit (i.e. ĉoin = coin), due to the definition of A’s
advantage, we have

Advcprf
CPRF,F ,A(λ) = 2 ·

∣∣∣Pr[Exptcprf-sim-real
CPRF,F ,B (λ) = 1]− 1

2

∣∣∣.
On the other hand, note that when B runs in the ideal experiment Exptcprf-sim-ideal

CPRF,F ,B (λ), A’s view is
completely independent of coin. Indeed, since B’s oracle is a random function RF(·), the answer to
A’s challenge query is an output of a random function RF(·) if coin = 1, and is a random value inR if
coin = 0, and thus it is distributed uniformly overR regardless of coin. Furthermore skf and the answers
toA’s evaluation queries obviously do not contain the information of coin. This means that the probability
that A’s guess ĉoin on coin is correct (and consequently B outputs 1) is exactly 1/2, i.e., we have

Pr[Exptcprf-sim-ideal
CPRF,F ,S,B (λ) = 1] = 1

2 .

Using the above two equations in the definition of Advcprf-sim
CPRF,F ,S,B(λ), we obtain Equation (1), as

required. This completes the proof for the selective single-key security of CPRF.

Selective single-key privacy. Let A = (A1,A2) be any selectively admissible adversary that attacks
the selective single-key privacy of CPRF. For simplicity, we assume that all evaluation queries x made by
A2 satisfy f0(x) = f1(x) = 1. This is without loss of generality, because A2 is given the constrained
key skf and A2’s evaluation queries x must satisfy f0(x) = f1(x), and thus A2 can by itself compute
Eval(msk, x) for x with f0(x) = f1(x) = 0, by executing CEval(skf , x).

Using A, we will show how to construct a selectively admissible adversary B against the simulation-
security of CPRF satisfying

Advcprf-priv
CPRF,F ,A(λ) = 2 · Advcprf-sim

CPRF,F ,S,B(λ), (2)

which will complete the proof that CPRF is selectively single-key private.
The description of B = (B1,B2) is again fairly straightforward:

B1(pp): B1 runs (f0, f1, stA) R← A1(pp). Then B1 picks A’s challenge bit coin R← {0, 1}, and sets
the state information stB as all the information known to B1. Finally, B1 terminates with output
(fcoin, stB).

BO(·)
2 (skfcoin , stB): (whereO(·) is eitherEval(msk, ·) orRF(·) R← Func({0, 1}n,R))B2 runsA2(skfcoin , stA),

where B2 simulates A2’s evaluation oracle by using its own oracle O. When A2 terminates with
output ĉoin, B2 outputs (ĉoin ?= coin) and terminates.

14

The above completes the description of B. It is straightforward to see that B is selectively admissible.
Consider the case that B runs in the real experiment Exptcprf-sim-real

CPRF,F ,B (λ). It is straightforward to see
that in this case, B simulates the privacy experiment Exptcprf-priv

CPRF,F ,A(λ) perfectly for A. Since B outputs 1
if and only if A succeeds in guessing the challenge bit (i.e. ĉoin = coin), due to the definition of A’s
advantage, we have

Advcprf-priv
CPRF,F ,A(λ) = 2 ·

∣∣∣Pr[Exptcprf-sim-real
CPRF,F ,B (λ) = 1]− 1

2

∣∣∣.
On the other hand, note that when B runs in the ideal experiment Exptcprf-sim-ideal

CPRF,F ,B (λ), A’s view is
completely independent of coin. Indeed, skf is generated by S and thus is independent of coin, and A’s
evaluation queries are also answered independently of coin. This means that the probability that A’s
guess ĉoin on coin is correct (and consequently B outputs 1) is exactly 1/2, i.e., we have

Pr[Exptcprf-sim-ideal
CPRF,F ,S,B (λ) = 1] = 1

2 .

Using the above two equations in the definition of Advcprf-sim
CPRF,F ,S,B(λ), we obtain Equation (2), as

required. This completes the proof for the selective single-key privacy of CPRF, and the entire proof of
Lemma 2.10.

2.5 Correlated-Input Secure Hash Function

Here, we review the definition of a correlated-input secure hash function (CIH) that was originally
introduced in Goyal et al. [GOR11].

Syntactically, a CIH is an efficiently computable deterministic (hash) function that has a public
parameter pp that is generated by using some setup procedure, and we refer to such a pair of function
and setup procedure as a publicly parameterized function. In this paper, we will consider a CIH that is
associated with a group generator GGen. Thus, we model its setup algorithm by a “parameter generation”
algorithm PrmGen that takes a group description G generated by GGen as input, and outputs a public
parameter pp.

Formally, a publicly parameterized function CIH with respect to a group generator GGen, consists of
the two PPT algorithms (PrmGen,Eval) with the following interfaces:

PrmGen(G) R→ pp: This is the parameter generation algorithm that takes as input a group description G
output by GGen(1λ). Then, it outputs a public parameter pp, where we assume that pp contains G
and the descriptions of the domain D and the rangeR.

Eval(pp, x) =: y: This is the deterministic evaluation algorithm that takes a public parameter pp and an
element x ∈ D as input, and outputs an element y ∈ R.

When there is no confusion, we will abuse the notation and denote by “CIH(pp, x)” to mean the execution
of Eval(pp, x). Furthermore, when pp is clear from the context, we may sometimes drop pp from the
input of CIH, and treat as if it is a single function (e.g. “CIH : D → R”) for more intuitive descriptions.

Security of CIHs. The security definition of a CIH that we use in this paper is a slightly generalized
version of correlated-input pseudorandomness defined in [GOR11] (see Remark 2.12 for the differences
from related works).

Let GGen be a group generator, and CIH = (PrmGen,Eval) be a publicly parameterized function with
respect to GGen. LetF = {Fλ,z}λ∈N,z∈{0,1}∗ be a class of functions, where eachFλ,z is a set of functions

15

Exptcih
CIH,GGen,F ,A(λ) :

coin R← {0, 1}
G R← GGen(1λ)
pp R← PrmGen(G)
RF(·) R← Func(D,R)
x

R← D
ĉoin R← AO(·)(pp)
Return (ĉoin ?= coin).

O(f ∈ Fλ,pp) :

y :=
{

Eval(pp, f(x)) if coin = 1
RF(f(x)) if coin = 0

Return y.

Figure 3: Left: The security experiment for a CIH. Right: The definition of the oracle O in the
experiment.

parameterized by λ ∈ N and z ∈ {0, 1}∗,18 and it is required that for all λ ∈ N, if G R← GGen(1λ) and
pp R← PrmGen(G), then the domain and the range of functions in Fλ,pp are identical to the domain of
Eval(pp, ·).

For the publicly parameterized function CIH, the group generator GGen, the function class F , and an
adversary A, we define the security experiment Exptcih

CIH,F ,A(λ) as described in Figure 3.
Note that in the experiment, the oracleO(·) thatA has access to, takes f ∈ Fλ,pp as input, and returns

either the evaluation result CIH(pp, f(x)) or the output RF(f(x)) of the random function RF, depending
on the challenge bit coin ∈ {0, 1}.

Definition 2.11 (Security of CIH). Let CIH be a publicly parameterized function with respect to a group
generator GGen, and letF be a function class. We say that CIH is a CIH forF (or, F -CIH) with respect to
GGen, if for all PPT adversariesA, the advantage Advcih

CIH,GGen,F ,A(λ) := 2 · |Pr[Exptcih
CIH,GGen,F ,A(λ) =

1]− 1/2| is negligible.

Remark 2.12 (On the difference between CIHs and related-key secure PRFs (or PRGs)). This remark
provides additional information for readers who are familiar with related primitives. We note that
Definition 2.11 is essentially the same as the definition of a related-key secure pseudorandom generator
(RKA-PRG) by Bellare and Cash [BC10a, Section 6, Equation (27)]. A very minor difference is that
we explicitly consider public parameters in the syntax. An RKA-PRG can be seen as a generalized
version of correlated-input pseudorandomness by Goyal, O’Neill, and Rao [GOR11, Definition 7]. If A
in the security of a CIH must declare functions that will be queried to the oracle at the beginning of the
experiment (i.e., selective security) and RF(f(x)) is replaced by a uniformly random element inR, then
it is the same as correlated-input pseudorandomness. The reason why we select the name “CIH” is that it
is well-suited for our usage.

Moreover, an RKA-PRF implies an RKA-PRG19. Therefore, the RKA-PRF (or RKA-PRG) by
Bellare and Cash [BC10a, Theorem 4.2] and the RKA-PRF by Abdalla, Benhamouda, Passelègue, and
Paterson [ABPP14, Theorem 7] are secure CIHs under our definition. (Of course, supported function
classes are the same as theirs.)

In Sections 3 and 5 , we introduce two concrete function classes for CIHs used as building blocks in
our proposed CPRFs.

18For a class of functions F considered for CIHs, we allow each member of F to be parameterized by not only λ ∈ N but also
z ∈ {0, 1}∗. The role of z is to associate the functions with a public parameter pp generated by Setup(1λ). See the security
experiment in Figure 3.

19If we fix an input of a PRF and view its key as a seed of a PRG, then the former can be seen as a latter.

16

2.6 Collision Resistant Hash Function

We will also use a standard collision resistant hash function (CRHF), and thus we recall the definition
here.

Definition 2.13. We say that a publicly parameterized function Hcr = (Setup,Eval) is a collision resistant
hash function (CRHF) if for all PPT adversariesA, the advantage Advcrh

Hcr,A(λ) defined below is negligible:

Advcrh
Hcr,A(λ) := Pr[pp R← Setup(1λ); (x, x′) R← A(pp) : Eval(pp, x) = Eval(pp, x′) ∧ x 6= x′]

For notational convenience, whenever pp, and in particular the domain D and rangeR, are clear from
the context, we treat Hcr as if it is a single hash function, and use a notation like “Hcr : D → R.”

3 Building Block: Correlated-input Secure Hash

In this section, we construct a CIH for group-induced functions on QRnq , and prove its security under the
DDH assumption. The definition of group-induced functions is given in Section 3.2.

Quadratic Residuosity groups. A safe prime q is a prime such that q = 2p+ 1 for some p which is
also a prime. We denote by QRq the subgroup of all quadratic residues in Z∗q . From an elementary result,
we have that QRq is a group of prime order p. We denote by SPGGen(1λ) a group generator that outputs
a group description (G, q) where q is a safe prime and q = Ω(2λ).

3.1 Naor-Reingold PRF and Our Variant

For constructing a CIH scheme, we will use a slight variant of the Naor-Reingold PRF [NR04]. We first
recall their PRF, which can be defined with respect to any group generator GGen. We denote it by NR.
The setup takes a security parameter 1λ as input and outputs a public parameter pp = (G, g, n) where G
is a group of prime order q output from GGen(1λ), g is a generator of G, and n ∈ N. The evaluation is
done as follows.

NR : (Z∗q)n+1 × {0, 1}n −→ G(
(x0, . . . , xn) , (u1, . . . , un)

)
7−→ g(x0

∏n

i=1 x
ui
i)

Our variant is exactly the same as NR but with the key space (Z∗q)n+1 being replaced by QRn+1
q

and the group generator being confined to SPGGen. In the variant, the key is sampled from the key
space QRn+1

q uniformly at random. More precisely, our PRF is operated on QRn+1
q × {0, 1}n → G with

exactly the same evaluation as NR. We denote this PRF as NR′.
Recall that for the security of NR, we have the following lemma.

Proposition 3.1. ([NR04]) If the DDH assumption holds with respect to GGen, then NR with respect to
GGen is a secure PRF.

Regarding the security of NR′, we can show the following lemma.

Theorem 3.2. If the DDH assumption holds with respect to SPGGen, then NR′ with respect to SPGGen
is a secure PRF.

The rest of this subsection is devoted to the proof of Theorem 3.2. Before proving the theorem, we
prepare two computational assumptions, and prove that both of them are reduced to the DDH assumption.

17

Definition 3.3 (Quadratic Residuosity in the Exponent Assumption).We say that the quadratic
residuosity in the exponent (QRE) assumption holds with respect to SPGGen, if for all PPT adversaries
A, the advantage Advqre

SPGGen,A(λ) defined below is negligible:

Advqre
SPGGen,A(λ) :=

∣∣∣Pr[A(G, g, gx) = 1]− Pr[A(G, g, gx′) = 1]
∣∣∣,

where G = (G, q) R← SPGGen(1λ), g R← G, x R← QRq, and x′
R← Z∗q .

Definition 3.4 (Quadratic ExponentDecisionalDiffie-HellmanAssumption). We say that the quadratic
exponent decisional Diffie-Hellman (QE-DDH) assumption holds with respect to SPGGen, if for all PPT
adversaries A, the advantage Advqe-ddh

SPGGen,A(λ) defined below is negligible:

Advqe-ddh
SPGGen,A(λ) :=

∣∣∣Pr[A(G, g, gx, gy, gxy) = 1]− Pr[A(G, g, gx, gy, gz) = 1]
∣∣∣,

where G = (G, q) R← SPGGen(1λ), g R← G, and x, y, z R← QRq.

We then prove that the above assumptions can be reduced to the DDH assumption.

Lemma 3.5. If the DDH assumption holds with respect to SPGGen, then the QRE assumption holds with
respect to SPGGen.

Proof of Lemma 3.5. Let A be an adversary against the QRE assumption such that Advqre
SPGGen,A(λ) is

non-negligible. For any group description G = (G, q) output by SPGGen(1λ), we let

ε(G) := Pr[g R← G, x R← QRq : A(G, g, gx) = 1]

− Pr[g R← G, x R← Z∗q : A(G, g, gx) = 1].

Then, by definition, we have ∣∣∣E
G R←SPGGen(1λ)

[ε(G)]
∣∣∣ = Advqre

SPGGen,A(λ).

We first construct a PPT algorithm A′ that given (G, g, gx) predicts the Legendre symbol (xq) with
probability 1/2 + ε(G)/2. Especially, the probability that it correctly predicts the Legendre symbol does
not depend on g ∈ G or x ∈ Z∗q and only depends on G. The construction of A′ is as follows.

A′(G, g,X): It picks r R← Z∗q and x′
R← Z∗q , sets g′ := gr andX ′ := Xrx′ , and runs coin R← A(G, g′, X ′).

If coin = 1, then it outputs (x′q), and otherwise it picks β R← {−1, 1} and outputs β.

The above completes the description ofA′. For any group description G = (G, q), g ∈ G and x ∈ Z∗q , we
have

Pr
[
A′(G, g, gx) =

(
x

q

)]

= Pr
[
r

R← Z∗q , x′
R← Z∗q , g′ := gr, X ′ := (gx)rx′ : A(G, g′, X ′) = 1 ∧

(
x′

q

)
=
(
x

q

)]

+ Pr[r R← Z∗q , x′
R← Z∗q , g′ := gr, X ′ := (gx)rx′ : A(G, g′, X ′) = 0] · 1

2
= 1

2 · Pr[ĝ R← G, x̂ R← QRq : A(G, ĝ, gx̂) = 1] + Pr[G, ĝ R← G, x̂ R← Z∗q : A(G, ĝ, gx̂) = 0] · 1
2

= 1
2 + ε(G)

2 ,

18

where in the third equality we set ĝ := gr and x̂ := xx′. We say that A′ succeeds if A′(G, g, gx) outputs
(xq).

Next, we construct a PPT adversary B that breaks the DDH assumption. The construction of B is as
follows.

B(G, g,X, Y, Z): It picks r R← Z∗q and executes a R← A′(G, g,X), b R← A′(G, g, Y), c R← A′(G, g, gr)
and d R← A′(G, g, Zr). If abc = d holds, then it outputs 1 and otherwise it outputs 0.

The above completes the description of B. We remark that each of the 4 executions of A′ called by B
succeeds with probability 1/2 + ε(G)/2 and these probabilities are independent. If we have (xq)(yq) = (zq)
where X = gx, Y = gy and Z = gz, then B(G, g,X, Y, Z) returns 1 if and only if the number of
executions of A that succeed is even (i.e., that is 4, 2 or 0). This probability can be calculated as follows:(1

2 + ε(G)
2

)4
+ 6

(1
2 + ε(G)

2

)2 (1
2 −

ε(G)
2

)2
+
(1

2 −
ε(G)

2

)4

= 1
2 + ε(G)4

2 .

On the other hand, if we have (xq)(yq) 6= (zq)whereX = gx, Y = gy andZ = gz , thenB(G, g,X, Y, Z)
returns 1 if and only if the number of executions of A′ that succeed is odd (i.e., that is 3 or 1). This
probability can be calculated as:

1−
(

1
2 + ε(G)4

2

)
= 1

2 −
ε(G)4

2 .

Note also that we always have (xq)(yq) = (xyq), while if x, y, z R← Z∗p, then (xq)(yq) = (zq) and
(xq)(yq) 6= (zq) occur each with probability 1/2. Therefore, we have

Pr[g R← G, x, y R← Z∗q : B(G, g, gx, gy, gxy) = 1] = 1
2 + ε(G)4

2

and

Pr[g R← G, x, y, z R← Z∗q : B(G, g, gx, gy, gz) = 1]

= 1
2 ·
((

1
2 + ε(G)4

2

)
+
(

1
2 −

ε(G)4

2

))

= 1
2 .

19

Then, we can calculate the DDH advantage of B as follows:

Advddh
SPGGen,B(λ)

=
∣∣∣Pr[G R← SPGGen(1λ), g R← G, x, y R← Z∗q : B(G, g, gx, gy, gxy) = 1]

− Pr[G R← SPGGen(1λ), g R← G, x, y, z R← Z∗q : B(G, g, gx, gy, gz) = 1]
∣∣∣

=
∣∣∣ E
G R←SPGGen(1λ)

[
Pr[g R← G, x, y R← Z∗q : B(G, g, gx, gy, gxy) = 1]

− Pr[g R← G, x, y, z R← Z∗q : B(G, g, gx, gy, gz) = 1]
]∣∣∣

= E
G R←SPGGen(1λ)

[
ε(G)4

2

]

≥

(
E
G R←SPGGen(1λ)

[ε(G)]
)4

2

=
Advqre

SPGGen,A(λ)4

2 ,

where the inequality is due to Jensen’s inequality. The above inequality shows that if Advqre
SPGGen,A(λ) is

non-negligible, then so is Advddh
SPGGen,B(λ), and thus proves the lemma.

Remark 3.6. At first glance, it seems strange that B introduces a "dummy" element gr. This is to make the
advantage of B quartic in ε(G) so that we can apply Jensen’s inequality. (We note that we cannot apply
Jensen’s inequality if that is cubic since ε(G) may take a negative value.) Though a tighter reduction may
be possible using the random self-reducibility of an instance of the QRE problem, we give the above
reduction for simplicity.

Lemma 3.7. If the DDH assumption holds with respect to SPGGen, then the QE-DDH assumption holds
with respect to SPGGen.

Proof of Lemma 3.7. We have the following sequence of indistinguishability on quadruples of random
variables: (

(g, gx, gy, gxy) | g R← G, x R← QRq, y
R← QRq

)
≈c
(

(g, gx, gy, gxy) | g R← G, x R← Z∗q , y
R← QRq

)
(from QRE, on x)

≈c
(

(g, gx, gy, gxy) | g R← G, x R← Z∗q , y
R← Z∗q

)
(from QRE, on y)

≈c
(

(g, gx, gy, gz) | g R← G, x R← Z∗q , y
R← Z∗q , z

R← Z∗q
)
(from DDH)

≈c
(

(g, gx, gy, gz) | g R← G, x R← QRq, y
R← QRq, z

R← QRq
)
(from QRE, on x, y, z).

From this and Lemma 3.5, we can conclude this lemma.

Due to Lemma 3.5 and Lemma 3.7, we have that Theorem 3.2 follows directly from the following
lemma.

Lemma 3.8. If the QE-DDH and QRE assumptions hold with respect to SPGGen, then NR′ with respect
to SPGGen is a secure PRF.

The proof can be done in a similar manner to the original proof of NR [NR04], albeit replacing the
DDH assumption with the QE-DDH assumption. We note one difference from the original NR proof is
that the reduction incurs a multiplicative loss by the number Q of an adversary’s evaluation queries, since
an instance of the QE-DDH assumption does not have random self-reducibility. That is, the structure of
the proof proceeds more similarly to the proof for the Goldreich-Goldwasser-Micali PRF [GGM86].

20

Proof of Lemma 3.8. LetA be an adversary that attacks the PRF-security of NR′, and letQ be the number
of evaluation queries made by A. For ` ∈ [0, n], j ∈ [1, Q], we define an intermediate game as follows.

Game`,j: At the beginning, the game picks x`, . . . , xn
R← QRq and prepares an empty list L. For the k-th

evaluation query from A, say, for ~u = (u1, . . . , un) ∈ {0, 1}n, the game does as follows. Denote
~u|` = (u1, . . . , u`) and ~u|0 = ε (the empty string). It checks if a pair (~u|`, t~u|`) has already been in
the list L. If not, it does as follows.

• If k ≤ j, it picks t~u|`
R← QRq and stores (~u|`, t~u|`) into L.

• If k > j, it picks t~u|`−1
R← QRq and sets t~u|`−1‖v = t~u|`−1 × x

v
` for v ∈ {0, 1}. It stores

(~u|`−1‖v, t~u|`−1‖v) for both v ∈ {0, 1} into L.

It returns gt~u|`
∏n

i=`+1 x
ui
i to A as the response to the k-th evaluation query.

Gamefinal: The game simply returns a random element in G for each evaluation query from A.

It is clear that Game0,Q is exactly the same as the PRF security game. On the other hand, in Gamefinal,
all the returned values are completely random, and hence, the adversary A has zero advantage. Let
Adv`,j be the advantage of the adversary A in Game`,j . We claim and prove the following.

• For ` ∈ [0, n], j ∈ [2, Q], we have that Adv`,j−1 ≈ Adv`,j under the QE-DDH assumption. The
proof is as follows. We observe that the two games differ at most at the response to the j-th
evaluation query, say, for ~u?. Indeed, they differ only if the pair (~u|`, t~u|`) is not in L at the time of
the j-th evaluation query. In such a case, we simulate the games by implicitly setting

t~u?|`−1
= x, x` = y, t~u?|` = z, (3)

where (g, gx, gy, gz) is the QE-DDH challenge. We can see that if z = xy then this simulates
Game`,j−1, while if z

R← QRq then this simulates Game`,j . Therefore, if the difference of A’s
advantage in the two games is non-negligible, it can be used to break the QE-DDH assumption.

• For ` ∈ [1, n], we have that Adv`−1,Q ≈ Adv`,1 under the QE-DDH assumption. We observe that
the two games differ only at the response to the first query, say, for ~u?. We thus simulate the games
by again setting exactly as Eq. (3). We can see that if z = xy then this simulates Game`−1,Q, while
if z R← QRq then this simulates Game`,1. Therefore, if the difference of A’s advantage in the two
games is non-negligible, it can be used to break the QE-DDH assumption.

• We have Advn,Q ≈ Advfinal under the QRE assumption. In game Gamen,Q, the answer to each
evaluation query is of the form gz where z R← QRq. This can be modified to a random element in
G using the QRE assumption (applying it Q times query-by-query).

Combining all the hybrids, this concludes the proof.

3.2 Bellare-Cash CIH Construction and Our Variant

CIH for group-induced functions. The notion of (component-wise) group-induced functions with
respect to a group generator GGen is a function class Ψg-indc = {Ψg-indc

λ,z }λ∈N,z∈{0,1}∗ satisfying the
following property for all (λ, z) ∈ N × {0, 1}∗: If z can be parsed as a tuple (G, n, z′) so that
G = (G, q) is a group description output by GGen(1λ), n ∈ N, and z′ ∈ {0, 1}∗, then we have
Ψg-indc
λ,z = {ψ~a : (Z∗q)n → (Z∗q)n | ~a ∈ (Z∗q)n}, where for each ~a ∈ (Z∗q)n, ψ~a(~x) := ~a ? ~x ∈ (Z∗q)n and

? denotes the component-wise multiplication in Z∗q .

21

CIH Construction. We are now ready to describe our CIH for the (component-wise) group-induced
functions with respect to SPGGen. It can be considered as a variant of the hash function by Bellare
and Cash [BC10a], denoted as CIHBC, which we recall as follows. The public parameter consists of
the description of G, which is a cyclic group of order q, output from the group generator GGen(1λ), a
generator g of G, and a collision-resistant hash function Hcr : Gn+1 → {0, 1}n−2. The evaluation is
defined as follows.

CIHBC : (Z∗q)n+1 −→ G

~x 7−→ NR
(
~x, 11‖Hcr

(
NR(~x, e0), ...,NR(~x, en)

))
where e0 = 0n and ek = 0k−1‖1‖0n−k for k ∈ [n].

Our variant of CIH is exactly the same as CIHBC but the domain is restricted. In more detail, our CIH
is operated on QRn+1

q → G with exactly the same evaluation as CIHBC. Note that due to our restriction
on the domain, the NR evaluation inside the function is thus restricted to NR′. We denote this CIH as
CIHB̃C.

Theorem 3.9. If the DDH assumption holds with respect to SPGGen and Hcr is a CRHF, then CIHB̃C is a
secure CIH for the (component-wise) group-induced functions with respect to SPGGen.

Due to Theorem 3.2, which states that NR′ is a secure PRF under the DDH assumption, we have that
Theorem 3.9 follows directly from the following lemma.

Lemma 3.10. If NR′ with respect to SPGGen is a secure PRF and Hcr is a CRHF, then CIHB̃C is a secure
CIH for the (component-wise) group-induced functions with respect to SPGGen.

Before proving Lemma 3.10, we recall some useful properties of NR from [BC10a]. Recall
that for ~a,~b ∈ (Z∗q)n+1, we use the operator ? to denote the component wise group operation, i.e.,
~a ?~b =

(
a0 · b0, ..., an · bn

)
, where we parse ~a = (a0, ..., an),~b = (b0, ..., bn).

Proposition 3.11. ([BC10a]) There exists an efficient algorithm T satisfying the following two properties.

Key-malleability: For any ~x,~a ∈ (Z∗q)n+1, inp ∈ {0, 1}n, we have that T(~a, inp,NR(~x, inp)) = NR(~a ?
~x, inp).

Uniformity: For any ~a1, ...,~am ∈ (Z∗q)n+1 and pairwise distinct inp1, ..., inpm ∈ {0, 1}n, we have
that

(
T(~a1, inp1,RF(inp1)), ...,T(~am, inpm,RF(inpm))

)
is uniformly distributed in Gm where

RF(·) R← Func({0, 1}n,G).

Proposition 3.12. ([BC10a]) Let e0 = 0n and ek = 0k−1‖1‖0n−k for k ∈ [n]. For all~a,~a′, ~x ∈ (Z∗q)n+1

such that ~a 6= ~a′, we have that (NR(~a ? ~x, e0), ...,NR(~a ? ~x, en)) 6= (NR(~a′ ? ~x, e0), ...,NR(~a′ ? ~x, en)).

We are now ready to prove Lemma 3.10.

Proof of Lemma 3.10. Let A be an adversary that attacks the security of CIHB̃C, and let Q be the number
of evaluation queries made by A. For simplicity and without loss of generality, we assume that A does
not make the same query twice. We construct an adversary B that breaks the PRF-security of NR′. The
construction of B is as follows.

BO(1λ): B first makes evaluation queries ek to its own oracle O to obtain sk for k ∈ {0, 1, ..., n}. It
then runs A(1λ) and answers A’s queries as follows.

When A issues the i-th evaluation query ~a(i), B responds as follows. It computes t(i)k :=
T(~a(i), ek, sk) for all k ∈ {0, 1, ..., n} and u(i) := Hcr(t(i)0 , ..., t

(i)
n). If there exists i′ < i such that

22

u(i′) = u(i), then B aborts and outputs a random bit. Otherwise B makes an evaluation query
11‖u(i) to its own oracle to obtain v(i). B then computes y(i) := T(~a(i), 11‖u(i), v(i)) and gives
y(i) to A as the response to A’s k-th evaluation query.
When A halts, B outputs whatever A outputs.

The above completes the description of B.
We now prove that B breaks the PRF-security of NR′ if A breaks the CIH-security of CIHB̃C. First,

we observe that the probability that B aborts is negligible. This follows from Proposition 3.12 and
the collision resistance of Hcr. That is, if B aborts, we can construct an adversary B′ that breaks the
security of CRHF. Hence, in what follows, we assume that B does not abort. If B’s oracle O is the actual
PRF-evaluation algorithm, i.e., it is NR(~x, ·) for a randomly chosen ~x R← QRn+1

q , then B’s response y(i)

for A’s i-th evaluation query, satisfies the following equality for every i ∈ [Q]:

y(i) = T(~a(i), 11‖u(i), v(i))
= T(~a(i), 11‖u(i),NR(~x, 11‖u(i)))
= NR(~a(i) ? ~x, 11‖u(i))
= NR(~a(i) ? ~x, 11‖Hcr(t(i)0 , ..., t(i)n))
= NR(~a(i) ? ~x, 11‖Hcr(T(~a(i), e0, s0), ...,T(~a(i), en, sn)))
= NR(~a(i) ? ~x, 11‖Hcr(T(~a(i), e0,NR(~x, e0)), ...,T(~a(i), en,NR(~x, en))))
= NR(~a(i) ? ~x, 11‖Hcr(NR(~a(i) ? ~x, e0), ...,NR(~a(i) ? ~x, en)))
= CIHB̃C(~a(i) ? ~x).

This means that B correctly simulates the security experiment for CIH′BC for the case coin = 1.
It remains to prove that if B’s oracle O is a truly random function, then y(i) for all i ∈ [Q]

are independently and uniformly random, and thus B correctly simulates the security experiment
for CIH′BC for the case coin = 0. Note that the evaluation queries made by B to its own oracle
are e0, e1, ..., en, 11‖u(1), ..., 11‖u(Q). It is clear that they are pairwise distinct when B does not
abort. Therefore, by the uniformity of T we can conclude that y(i) = T(~a(i), 11‖u(i),O(11‖u(i))) for
i ∈ [Q] are independently and uniformly random. We showed that B breaks the PRF security
if A breaks the CIH-security as long as the collision does not happen. That is, we proved that
Advcih

CIH
B̃C
,SPGGen,Ψg-indc,A(λ) ≤ Advprf

NR′,SPGGen,B(λ) + Advcrh
Hcr,B′(λ).

Now, Theorem 3.9 follows by combining Theorem 3.2 and Lemma 3.10.

4 CPRF for NC1 Circuits

In this section, we first show a construction of a CPRF for NC1 circuits with no-evaluation security, where
an adversary is not allowed to make evaluation queries (Section 4.1). We then show that by combining
the scheme with our CIH in Section 3, we can upgrade the security to the selective single-key security,
where the adversary is allowed to make evaluation queries unbounded times after it is given the secret
key (Section 4.2). We also show that the adaptive security can be achieved in the random oracle model
(Section 4.3).

4.1 Our Basic Constrained PRF

Here, we give a construction of a CPRF for NC1 with no-evaluation security. We then prove that the
scheme has additional properties that we call semi-evaluability and universality. These properties will be
used in Section 4.2 and Section 4.3.

23

Notations.

In the following, we will sometimes abuse notation and evaluate a boolean circuit C(·) : {0, 1}` → {0, 1}
on input y ∈ R` for some ring R. The evaluation is done by regarding C(·) as the arithmetic circuit
whose AND gates (y1, y2) 7→ y1 ∧ y2 being changed to the multiplication gates (y1, y2) 7→ y1y2, NOT
gates y 7→ ¬y changed to the gates y 7→ 1− y, and the OR gates (y1, y2) 7→ y1 ∨ y2 changed to the gates
(y1, y2) 7→ y1 + y2 − y1y2. It is easy to observe that if the input is confined within {0, 1}` ⊆ R, the
evaluation of the arithmetized version of C(·) equals to that of the binary version. (Here, we identify ring
elements 0, 1 ∈ R with the binary bit.) In that way, we can regard C(·) as an `-variate polynomial over
R. The degree of C(·) is defined as the maximum of the total degree of all the polynomials that appear
during the computation.

Class of Functions.

Let n = poly(λ), z(n) = poly(n), and d(n) = O(logn) be parameters. The function class that will be
dealt with by the scheme is denoted by FNC1 = {FNC1

λ,n(λ)}λ∈N, where F
NC1

λ,n consists of (Boolean) circuits
f whose input size is n(λ), the description size is z(n), and the depth is d(n). We can set the parameters
arbitrarily large as long as they do not violate the asymptotic bounds above, and thus the function class
corresponds to NC1 circuits with bounded size. The following lemma will be helpful when describing
our scheme.

Lemma 4.1. Let n = poly(λ). There exists a family of universal circuit {Un}n∈N of degree D(λ) =
poly(λ) such that Un(f, x) = f(x) for any f ∈ FNC1

λ,n(λ) and x ∈ {0, 1}
n.

Proof. Due to the result by Cook and Hoover [CH85], there exists a universal circuit Un(·) of depth
O(d) = O(logn) and size poly(n, z, d) = poly(λ). Furthermore, the degree of Un(·) is bounded by
2O(d) = poly(n) = poly(λ).

Construction.

Let FNC1 = {FNC1

λ,k }λ,k∈N be the family of the circuit defined as above and {Un}n∈N be the family of the
universal circuit defined in Lemma 4.1. Let the parameter D(λ) be the degree of the universal circuit
(chosen as specified in Lemma 4.1). Since we will fix n in the construction, we drop the subscripts and
just denote FNC1 and U in the following. We also let HGen be any group generator. The description of
our CPRF CPRFNE = (Setup,KeyGen,Eval,Constrain,CEval) is given below.

Setup(1λ): It obtains the group descriptionH = (H, p) by runningH R← HGen(1λ). It then outputs the
public parameter pp := H.20

KeyGen(pp): It chooses (b1, ..., bz)
R← Zzp, α

R← Z∗p, and g, h1, . . . , hn
R← H. Then it outputs msk :=

(b1, . . . , bz, α, g, h1, . . . , hn).

Eval(msk, x): Given input x ∈ {0, 1}n, it computes and outputs

X := gU((b1,...,bz),(x1,...,xn))/α ·
∏
i∈[n]

hxii .

Constrain(msk, f): It first parses (b1, ..., bz, α, g, h1, . . . , hn)← msk. Then it sets

b′i := (bi − fi)α−1 mod p for i ∈ [z]

20 Here, we intentionally use the symbol H and HGen instead of G and GGen. Looking ahead, in Section 4.2, the latter
symbols will be used to represent yet another group of order q and corresponding group generator. There, we should require H
to be QRq .

24

where fi is the i-th bit of the binary representation of f . It then outputs

skf := (f, b′1, . . . , b′z, g, gα, . . . , gα
D−1

, h1, . . . , hn).

CEval(skf , x): It parses (f, b′1, . . . , b′z, g, gα, . . . , gα
D−1

, h1, . . . , hn)← skf . As proved in Lemma 4.2
below, it is possible to efficiently compute {ci}i∈[D] that satisfies

U((b1, . . . , bz), (x1, . . . , xn)) = f(x) +
D∑
i=1

ciα
i (4)

from skf and x. If f(x) = 0, it computes X :=
∏D
i=1(gαi−1)ci ·

∏n
j=1 h

xj
j and outputs X .

Otherwise it outputs ⊥.

Correctness and semi-evaluability.

In order to prove the correctness, it suffices to show the following lemma.

Lemma 4.2. Given skf , x, one can efficiently compute {ci}i∈[D] satisfying Eq.(4).

Proof. The algorithm evaluates the circuit U(·) on input (b′1Z + f1, . . . , b
′
zZ + fz, x1, . . . , xn) to obtain

{ci}i∈{0,1,...,D} such that

U(b′1Z + f1, . . . , b
′
zZ + fz, x1, . . . , xn) = c0 +

∑
i∈[D]

ciZi (5)

where Z denotes the indeterminant of the polynomial ring Zp[Z]. Note that the computation is done over
the ring Zp[Z] and can be efficiently performed, since we have D = poly(λ). We prove that {ci}i∈[D]
actually satisfies Equation (4). To see this, we first observe that by setting Z = 0 in Equation (5), we
obtain c0 = U(f1, . . . , fz, x1 . . . , xn) = f(x). To conclude, we further observe that by setting Z = α
in Equation (5), we recover Equation (4), since we have bj = b′jα + fj by the definition of b′j . This
completes the proof of the lemma.

The lemma implies an additional property of the CPRF that we call semi-evaluability, which will be
useful in our security proof. In more detail, we have the following lemma:

Lemma 4.3.We say that a CPRF scheme has semi-evaluability if there exist deterministic and efficient
algorithms SEval and Aux satisfying the following property. For all f ∈ FNC1 and x such that f(x) = 1
and for all possible msk R← KeyGen(pp), skf

R← Constrain(msk, f), we have

SEval(skf , x) · Aux(msk) = Eval(msk, x).

In the above, “·” indicates the group operation on H.

Proof. We define SEval and Aux as follows.

SEval(skf , x): It first parses (f, b′1, . . . , b′z, g, gα, . . . , gα
D−1

, h1, . . . , hn) ← skf . It then compute
{cj}j∈[D] that satisfies Equation (4). It finally computes X ′ :=

∏D
i=1(gαi−1)ci ·

∏
j∈[n] h

xj
j and

outputs X ′.

Aux(msk): It parses (b1, . . . , bz, α, g, h1, . . . , hn)← msk and outputs g1/α.

The lemma readily follows from Equation (4) and f(x) = 1.

25

Universality.

The following lemma indicates that the above scheme can be seen as a universal hashing. The only reason
why we need h1, . . . , hn in pp is to ensure this property. Formally, we have the following lemma. The
lemma will be used later in this section.

Lemma 4.4. For all x, x′ ∈ {0, 1}n with x 6= x′ and pp output by Setup(1λ), we have

Pr[msk R← KeyGen(pp) : Eval(msk, x) = Eval(msk, x′)] = 1
p
.

Proof. Since x 6= x′, there exists an index i such that xi 6= x′i. Let us fix msk except for hi. Then, we
can see that there exists a unique hi such that Eval(msk, x) = Eval(msk, x′) holds. Since hi is chosen
uniformly at random from H, the lemma follows.

No-evaluation security.

Theorem 4.5. If the (D− 1)-DDHI assumption holds with respect to HGen, then CPRFNE defined above
satisfies no-evaluation security as a CPRF for the circuit class FNC1 .

Proof. LetA = (A1,A2) be any no-evaluation adversary that attacks the no-evaluation security of CPRF.
We prove the above theorem by considering the following sequence of games.

Game 0: This is the real single-key security experiment Exptcprf
CPRFNE,FNC1 ,A

(λ) against the no-evaluation
adversary A = (A1,A2). Namely,
coin R← {0, 1}
pp R← Setup(1λ)
msk R← KeyGen(pp)
X∗

R← H
(f, stA) R← A1(pp)
skf

R← Constrain(msk, f)
ĉoin R← AOChal(·)

2 (skf , stA)
Return (ĉoin ?= coin)

where the challenge oracle OChal(·) is described
below.

OChal(x∗): Given x∗ ∈ {0, 1}n as input, it re-
turns Eval(msk, x∗) if coin = 1 and X∗ if
coin = 0.

We recall that OChal(·) is queried at most once
during the game.

Game 1: In this game, we change the way skf is sampled. In particular, we change the way of
choosing {bi}i∈[z] and {b′i}i∈[z]. Namely, given the constraining query f from A1, the game picks
(b′1, . . . , b′z)

R← Zzp, α
R← Z∗p, and sets bi := b′iα+ fi mod p for i ∈ [z].

Game 2 In this game, we change the challenge oracle OChal(·) as follows:

OChal(x∗): Given x∗ ∈ {0, 1}n as input, it returns SEval(skf , x∗) · Aux(msk) if coin = 1 andX∗
if coin = 0.

Game 3: In this game, we further change the challenge oracle as follows:

OChal(x∗): Given x∗ ∈ {0, 1}n as input, it first picks ψ R← H and returns SEval(skf , x) · ψ if
coin = 1 and X∗ if coin = 0.

Game 4 In this game, the oracle is changed as follows.

OChal(x∗): Given x∗ ∈ {0, 1}n as input, it returns X∗ regardless of the value of coin.

Let Ti be the event that Game i returns 1.

26

Lemma 4.6. Pr[T1] = Pr[T0]

Proof. It can be seen that the distributions of skf are exactly the same in these games. Since the change
is only conceptual, the lemma follows.

Lemma 4.7. Pr[T2] = Pr[T1]

Proof. The change is only conceptual due to the semi-evaluability and thus the lemma follows.

Lemma 4.8. If the (D − 1)-DDH assumption holds, then |Pr[T3]− Pr[T2]| = negl(λ).

Proof. For the sake of the contradiction, let us assume that |Pr[T3]−Pr[T2]| is non-negligible. We then
construct an adversary B that breaks the L-DDHI assumption using A = (A1,A2).

B(H, g, gα, gα2
, ..., gα

D−1
, ψ): Given the problem instance,B first gives the group description pp := H to

A1. Then,A1 outputs a constraining query f along with its state stA. Then, B picks coin R← {0, 1},
(b′1, ..., b′z)← Zzp, h1, . . . , hn, X

∗ R← H and gives skf = (f, b′1, . . . , b′z, g, gα, gα
2
, . . . , gα

D−1
, h1,

. . . , hn) and the state stA to A2. When A2 makes a challenge query x∗ for OChal(·), B returns
ψ · SEval(skf , x∗) if coin = 1 andX∗ if coin = 0 toA2. Finally,A2 outputs its guess ĉoin. B then
outputs (coin ?= ĉoin) as its guess.

It can easily be seen that B simulates Game2 if ψ = g1/α = Aux(msk) and Game3 if ψ
R← H. The lemma

readily follows.

Lemma 4.9. Pr[T3] = Pr[T4]

Proof. In Game 3, the response to the challenge query is a random group element of H regardless of the
value of coin. Therefore, the change is only conceptual.

Lemma 4.10. We have |Pr[T4]− 1/2| = 0.

Proof. In Game 4 everything A sees is independent from coin, and thus there is no way to guess it with
non-zero advantage.

Therefore, the advantage of A is Advcprf
CPRFNE,FNC1 ,A

(λ) = 2 · |Pr[T0] − 1/2| = negl(λ). This
completes the proof of the theorem.

4.2 Selectively-secure CPRF in the Standard Model

Here, we give our CPRF for NC1 with selectively single-key security in the standard model. The scheme
is obtained by combining our CPRF CPRFNE = (SetupNE,KeyGenNE,EvalNE,ConstrainNE,CEvalNE)
for the function class FNC1 in Section 4.1 with our CIH CIHB̃C = (PrmGenB̃C,EvalB̃C) constructed in
Section 3. For the simplicity of the notation, we will denote EvalB̃C(ppCIH, ·) by CIHB̃C(·) when ppCIH
is clear. Let SPGGen denote the group generator defined in Section 3. The construction of our scheme
CPRFNC1-Sel = (Setup,KeyGen,Eval,Constrain,CEval) is as follows:

Setup(1λ): It first runs G0
R← SPGGen(1λ) to obtain the group description G0 := (G, q). Recall that G0

also defines the description of the group QRq ⊂ Z∗q of prime order p = (q − 1)/2. We denote
the description of the group by G1 := (QRq, p). It then samples ppCIH

R← PrmGenB̃C(G0). Let
ppNE := G1. It outputs pp := (ppCIH, ppNE).

KeyGen(pp): It first parses (ppCIH, ppNE) ← pp and runs mski
R← KeyGenNE(ppNE) for i ∈ [m]. It

then outputs msk := (msk1, ...,mskm).

27

Eval(msk, x): It first parses (msk1, ...,mskm)← msk and outputs

y := CIHB̃C

(
EvalNE(msk1, x), ...,EvalNE(mskm, x)

)
.

where we recall that we have CIHB̃C : (QRq)m → G and EvalNE(mski, ·) : {0, 1}n → QRq for
i ∈ [m] (for simplicity, we omit writing ppCIH and ppNE here).

Constrain(msk, f): It first parses (msk1, ...,mskm)← msk. It then computes skf,i
R← ConstrainNE(mski, f)

for i ∈ [m] and outputs skf := (skf,1, ..., skf,m).

CEval(skf , x): It first parses (skf,1, ..., skf,m) ← skf . It then computes Xi := EvalNE(skf,i, x) for
i ∈ [m] and outputs CIHB̃C(X1, ..., Xm).

Remark 4.11. In the above, we need m instances of CPRFNE, which may seem redundant. This is
necessary because the domain of the CIH constructed in Section 3 is QRm form = poly(λ), and thus
input of the CIH must be anm-dimensional vector. If we had a CIH for group-induced function on QR,
then them times blowup could be avoided.

Remark 4.12. The algorithm Setup implicitly uses the group generator SPGGen′ that first runs SPGGen
to obtain G = (G, q) and then outputs the group description (QRq, p). Here, from the technical reason,
we assume that the description of QRq implicitly contains that of G as well. While our construction in
Section 4.1 can be instantiated with any prime-order group generator HGen, our scheme above requires to
instantiate the scheme with the specific group generator SPGGen′.

It is easy to observe that the correctness of the above scheme follows from that of the underlying
schemes. The following theorem addresses the security of the scheme.

Theorem 4.13. The above construction CPRFNC1-Sel is a selective single-key secure CPRF for the function
class FNC1 if the DDHI assumption holds with respect to SPGGen′ (see Remark 4.12) and the DDH
assumption holds with respect to SPGGen.

Proof. The security of the scheme will be proven by the no-evaluation security, semi-evaluability, and
universality ofCPRFNE as well as correlated-input security ofCIHB̃C for (component-wise) group-induced
functions. Let A = (A1,A2) be any selectively admissible adversary that attacks the selective single-key
security of CPRF. For simplicity, we assume thatA2 never makes the same query twice, makes a challenge
query only once (see Remark 2.6), and all evaluation queries x made by A2 satisfy f(x) = 1. In the
following, Q denotes the upper bound on the number of the access to the Evaluation oracle Eval(msk, ·)
made by A2. We prove the theorem by considering the following sequence of games.

Game 0: This is the actual single-key security experiment Exptcprf
CPRFNC1-Sel,FNC1 ,A

(λ) against the selective
adversary A = (A1,A2) where the coin of the game is fixed to coin = 1. Namely,

pp R← Setup(1λ)
msk R← KeyGen(pp)
(f, stA) R← A1(pp)
skf

R← Constrain(msk, f)
ĉoin R← AOChal(·),Eval(msk,·)

2 (skf , stA)
Return (ĉoin ?= 1)

where we describe Eval(msk, ·) and OChal(·) be-
low.

Eval(msk, ·): Given x ∈ {0, 1}n as input, it re-
turns Eval(msk, x).

OChal(·): Given x∗ ∈ {0, 1}n as input, it returns
y∗ = Eval(msk, x∗). (Recall that we set
coin = 1 in this game.)

Game 1: In this game, we do not differentiate the challenge oracle OChal(·) from Eval(msk, ·) and
identify them. Namely, A2 is equipped with the following oracle OMerge(·) instead of OChal(·) and
Eval(msk, ·).

28

OMerge(·): Given the j-th query x(j) ∈ {0, 1}n from the adversary, it first computes X(j)
i :=

EvalNE(mski, x(j)) for i ∈ [m] and then returns y(j) := CIHB̃C(X(j)
1 , . . . , X

(j)
m).

We note that OMerge(·) simply returns Eval(msk, x) given x. Here, we elaborate on the description
of the oracle in order to fix notations that will be used in the following. We also note that we do not
differentiate the challenge query from the evaluation query in this game, and we have x∗ = x(j∗)

for some j∗ ∈ [Q+ 1].

Game 2: Let Col be the event that there exist j1 6= j2 ∈ [Q + 1] such that (X(j1)
1 , . . . , X

(j1)
m) =

(X(j2)
1 , . . . , X

(j2)
m). If Col occurs, the game immediately aborts and outputs a uniformly random

bit. The rest is the same as the previous game.

Game 3 In this game, we change the way {X(j)
i }i∈[m],j∈[Q+1] is created. In particular, OMerge(·) works

as follows:

OMerge(·): Given the j-th query x(j) ∈ {0, 1}n from the adversary, it proceeds as follows. There
are two cases to consider:
1. For the first query x(1), the oracle computes

X
(1)
i := EvalNE(mski, x(1)) for i ∈ [m], y(1) := CIHB̃C(X(1)

1 , . . . , X(1)
m),

and returns y(1).
2. To answer evaluation queries x(j) with j > 1, it first computes

X
(j)
i := X

(1)
i · SEvalNE(skf,i, x(1))−1 · SEvalNE(skf,i, x(j)) (6)

for i ∈ [m]. Then it computes and returns y(j) = CIHB̃C(X(j)
1 , . . . , X

(j)
m).

Note that during the above phase, as soon as the game finds j1 6= j2 ∈ [Q + 1] such that
(X(j1)

1 , . . . , X
(j1)
m) = (X(j2)

1 , . . . , X
(j2)
m), the game aborts and outputs a random bit (as specified

in Game 2).

Game 4 We define Col′ as the event that there exist j1 6= j2 ∈ [Q+ 1] such that

SEvalNE(skf,i, x(j1)) = SEvalNE(skf,i, x(j2)) ∀i ∈ [m].

In this game, the game aborts when Col′ occurs instead of Col.

Game 5: In this game, we change the way X(1)
i is chosen. In particular, the first item of the description

of the oracle OMerge(·) in Game 3 is changed as follows:

1. For the first query x(1), the oracle sets

X
(1)
i

R← QRq for i ∈ [m], y(1) := CIHB̃C(X(1)
1 , . . . , X(1)

m),

and returns y(1).

Game 6 In this game, we further change the oracle OMerge(·) as follows:

OMerge(·): Given the j-th query from the adversary x(j) ∈ {0, 1}n, it picks y(j) R← G and returns
it.

29

Game 7 This is the real game with the coin being fixed to coin = 0. Namely, A2 is equipped with the
oracles OChal(·) and Eval(msk, ·) that works as follows. (We do not consider OMerge(·) any more.)

Eval(msk, ·) : Given x ∈ {0, 1}n as input, it returns Eval(msk, x).
OChal(·): Given x∗ ∈ {0, 1}n as input, it picks y∗ R← G and returns it. (Recall that we set coin = 0

in this game.)

Let Ti be the event that Game i returns 1.

Lemma 4.14. Pr[T1] = Pr[T0].

Proof. Since coin = 1 in Game 0, we haveOChal(·) = Eval(msk, ·). Therefore, this is only the conceptual
change.

Lemma 4.15. Ifm ≥ n, |Pr[T2]− Pr[T1]| = negl(λ).

Proof. It is easy to see that we have |Pr[T2]− Pr[T1]| ≤ Pr[Col]. We will show that Col occurs only
with negligible probability. We observe that

Pr[Col] ≤ Pr
[

pp R← Setup(1λ), msk R← KeyGen(pp) :
∃x, x′ ∈ {0, 1}n s.t. x 6= x′ ∧ (X1, . . . , Xm) = (X ′1, . . . , X ′m)

]

whereXi = EvalNE(mski, x) andX ′i = EvalNE(mski, x′) in the above. Therefore, it suffices to show that
for any pp output by Setup(1λ),

Pr
[

msk R← KeyGen(pp) : ∃x, x′ ∈ {0, 1}n s.t. x 6= x′ ∧ (X1, . . . , Xm) =
(
X ′1, . . . , X

′
m

)]
is negligible, We can bound the term by

≤
∑

x,x′∈{0,1}n,x 6=x′
Pr
[

msk R← KeyGen(pp) : (X1, . . . , Xm) =
(
X ′1, . . . , X

′
m

)]
=

∑
x,x′∈{0,1}n,x 6=x′

(∏
i∈[m]

Pr
[

mski
R← KeyGenNE(ppNE) : EvalNE(mski, x) = EvalNE(mski, x′)

])

≤ 22n

pm
= 4n

pm
,

where we used the union bound in the first inequality and the universality of CPRFNE (Lemma 4.4) in the
last inequality. The quantity is negligible whenm ≥ n as desired.

Lemma 4.16. Pr[T3] = Pr[T2].

Proof. We prove that the change is only conceptual. The difference between the games is that X(j)
i is

computed as EvalNE(mski, x(j)) in Game 2, whereas it is computed as the right-hand side of Equation (6)
in Game 3. We show here that they are actually equivalent. The right-hand side of Equation (6) equals to

X
(1)
i · SEvalNE(skf,i, x(1))−1 · SEvalNE(skf,i, x(j))

= AuxNE(mski) · SEvalNE(skf,i, x(1)) · SEvalNE(skf,i, x(1))−1 · SEvalNE(skf,i, x(j))
= AuxNE(mski) · SEvalNE(skf,i, x(j))
= EvalNE(mski, x(j))

where we used our simplification assumption that f(x(1)) = f(x(j)) = 1 and semi-evaluability
(Lemma 4.3) in the first and the last equations above.

30

Lemma 4.17. Pr[T4] = Pr[T3].

Proof. It suffices to show that the abort conditions Col and Col′ are equivalent. We have

SEvalNE(skf,i, x(j1)) = SEvalNE(skf,i, x(j2)) ∀i ∈ [m]
⇔ AuxNE(mski) · SEvalNE(skf,i, x(j1)) = AuxNE(mski) · SEvalNE(skf,i, x(j2)) ∀i ∈ [m]

⇔ X
(j1)
i = X

(j2)
i ∀i ∈ [m].

Hence, the change is only conceptual. The lemma readily follows.

Lemma 4.18. If CPRFNE satisfies the no-evaluation security when instantiated by the group generator
HGen := SPGGen′, we have |Pr[T5]− Pr[T4]| = negl(λ).

Proof. For the sake of the contradiction, let us assume |Pr[T5] − Pr[T4]| is non-negligible for the
adversary A = (A1,A2). We consider the following hybrid games for k ∈ {0, 1, . . . ,m}:

Game 4.k: This is the same as Game 4 with the following difference. In this game, X(1)
i is set as

X
(1)
i = EvalNE(mski, x(1)) when i > k and X̃i

R← QRq when i ≤ k.

By the definition, we have Game 4.0 (resp. Game 4.m) is equivalent to Game 4 (resp. Game 5). Therefore,
we have

|Pr[T5]− Pr[T4]| = Pr[T4.m]− Pr[T4.0]| ≥
∑
k∈[m]

|Pr[T4.k]− Pr[T4.k−1]|

where Pr[Ti] denotes the probability that Game 4.k outputs 1. By the above inequality, we have that there
exists an index k∗ such that |Pr[T4.k∗]− Pr[T4.k∗−1]| is non-negligible. We then construct an adversary
B = (B1,B2) that breaks the no-evaluation security of the underlying scheme CPRFNE. The description
of B is as follows.

B1(ppNE): Given the group description ppNE = (QRq, p), B1 first recovers the group description
G0 = (G, q) from (QRq, p) (See remark Remark 4.12). B1 then samples ppCIH

R← PrmGenB̃C(G0)
and sets pp := (ppCIH, ppNE). It then runs (f, stA) R← A1(pp) and outputs (f, stB := stA).

BOChal(·)
2 (skf , stB): Here, we denote the master secret key of the no-evaluation security game (played

for B) by msk′. The task of B2 is to distinguish whether OChal(·) corresponds to EvalNE(msk′, ·)
or RF(·). First, B2 picks mski

R← KeyGenNE(ppNE) for i ∈ {k∗ + 1, . . . ,m}. B2 then runs
A2(skf , stA) and simulates OMerge(·) for A2 as follows:

• To answer the first queryx(1) fromA2,B2 submits the samex(1) to its challenge oracleOChal(·).
Then, B2 is given R. Then, B2 sets X(1)

i = SEvalNE(mski, x(1)) for i ≥ k∗ + 1, X(1)
k∗ = R,

and samplesX(1)
i

R← QRq for i ≤ k∗− 1. Finally, B2 returns y(1) = CIHB̃C(X(1)
1 , . . . , X

(1)
m)

to A2.
• To answer the query x(j) with j > 1 from A2, B2 first parses skf → (skf,1, . . . , skf,m) and
computes X(j)

i := X
(1)
i · SEvalNE(skf,i, x(1))−1 · SEvalNE(skf,i, x(j)) for i ∈ [m]. It then

returns y(j) = CIHB̃C(X(j)
1 , . . . , X

(j)
m) to A2.

Note that during the above phase, as soon as B2 finds j1 6= j2 ∈ [Q] such that (X(j1)
1 , . . . , X

(j1)
m) =

(X(j2)
1 , . . . , X

(j2)
m), B2 aborts and outputs a random bit. When A2 terminates with output ĉoin, B2

outputs ĉoin as its guess and terminates.

31

The above completes the description of B. It is straightforward to see that B makes only single challenge
query. It is also easy to see that B simulates Game 4.(k∗ − 1) for A when B’s challenge oracle is
EvalNE(msk′, ·) and Game 4.k∗ when B’s challenge oracle is RF(·). Note that in the former case, B
implicitly sets mskk∗ := msk′. Since B outputs 1 if and only if A outputs 1, we have that B’s advantage
is |Pr[T4.k∗−1]− Pr[T4.k∗]|, which is non-negligible. This completes the proof of the lemma.

Lemma4.19. IfCIHB̃C isΨg-indc-CIHwith respect toSPGGen, thenwe have |Pr[T6]−Pr[T5]| = negl(λ).

Proof. For the sake of the contradiction, let us assume that |Pr[T6]− Pr[T5]| is non-negligible for the
adversary A = (A1,A2). We then construct an adversary B that breaks the security of CIHB̃C as follows.

BO(·)(ppCIH): At the beginning of the game, B is given the public parameter ppCIH of the CIH. Then
it parses the group description (G, q) from ppCIH and obtains the description of another group
ppNE := (QRq, p). It then sets pp := (ppCIH, ppNE) and runs (f, stA) R← A1(pp). It further
samples mski

R← KeyGenNE(ppNE) and skf,i
R← ConstrainNE(mski, f) for i ∈ [m]. It then gives

the input skf := (skf,1, . . . , skf,m) and stA to A2 and simulates OMerge(·) for A2 as follows:

• To answer the first query x(1) fromA2,B queries its oracle on input ~φ(1) := (1, . . . , 1) ∈ QRmq
to obtain y(1). It then passes y(1) to A2.

• To answer the query x(j) with j > 1 from A2, B first parses skf → (skf,1, . . . , skf,m) and
computes φ(j)

i := SEvalNE(skf,i, x(1))−1 · SEvalNE(skf,i, x(j)) for i ∈ [m]. B then sets
~φ(j) = (φ(j)

1 , . . . , φ
(j)
m) and queries ~φ(j) to its oracle. Given the response y(j) from the oracle,

B2 relays the same value to A2.

Note that during the above phase, as soon asB finds j1 6= j2 ∈ [Q] such that SEvalNE(skf,i, x(j1)) =
SEvalNE(skf,i, x(j2)) for all i ∈ [m], it aborts and outputs a random bit. When A2 terminates with
output ĉoin, B outputs the same ĉoin and terminates.

The above completes the description of B. Here, we prove that B simulates Game 5 when B’s challenge
coin coin′ is 1 and Game 6 when coin′ = 0.

We start by proving the former statement. When coin′ = 1, the CIH security experiment chooses
randomness ~R := (R1, . . . , Rm) R← QRmq during the game and the oracle O(·) returns CIHB̃C(~R ? ~φ) on
input B’s query ~φ = (φ1, . . . , φm) ∈ QRmq . The view of A2 corresponds to Game 5, with X(1)

i being
implicitly set as X(1)

i := Ri for i ∈ [m].
We next show the latter statement. When coin′ = 0, the CIH security experiment chooses randomness

~R := (R1, . . . , Rm) R← QRmq during the game and the oracle O(·) returns RF(~R ? ~φ) on input B’s query
~φ = (φ1, . . . , φm) where RF(·) is a random function. In order to prove that B simulates Game 6, it
suffices to show that all the queries made by B are distinct. We have

φ
(j1)
i = φ

(j2)
i ⇐⇒ SEvalNE(skfi , x(j1)) = SEvalNE(skf,i, x(j2))

by the definition. Since B aborts whenever Col′ occurs, this implies that B does not make the same oracle
query twice.

Lemma 4.20. We have |Pr[T7]− Pr[T6]| = negl(λ).

Proof. This can be proven by applying the same game changes as that from Game 0 to Game 6 in a
reverse order, with the only difference that the challenge query x∗ is always returned by a uniformly
random group element y∗ R← G.

32

We have

Exptcprf
CPRF,F ,n,A(λ) = 2 ·

∣∣∣∣Pr[ĉoin = coin]− 1
2

∣∣∣∣
= |Pr[A outputs 1 | coin = 1]− Pr[A outputs 1 | coin = 0]|
= |Pr[T7]− Pr[T0]|

≤
7∑
i=1
|Pr[Ti]− Pr[Ti−1]|

= negl(λ).

This completes the proof of the theorem.

4.3 Adaptively-secure CPRF in the Random Oracle Model

Here, we construct an adaptively single-key secure CPRF for NC1 in the random oracle model. As
a building block, we use our no-evaluation secure CPRF CPRFNE in Section 4.1. We first show that
CPRFNE satisfies the property that we call statistical collision resistance, which will be defined below.
Statistical collision resistance. We say that a CPRF = (Setup,KeyGen,Eval,Constrain,CEval) is
statistically collision resistant if

Pr[∃x 6= x′ s.t. Eval(msk, x) = Eval(msk, x′)] = negl(λ)

where pp R← Setup(1λ), msk R← KeyGen(pp).
We remark that CPRFNE constructed in Section 4.1 satisfies statistical collision resistance if the

underlying groupH = (H, p) is chosen so that p ≥ 22n+λ. This can be seen by

Pr[∃x 6= x′ s.t. Eval(msk, x) = Eval(msk, x′)]
≤ 22n max

x 6=x′
Pr[Eval(msk, x) = Eval(msk, x′)] (from union bound)

= 22n/p (from the universality of CPRFNE)
≤ 2−λ.

Construction. Here, we give a construction of an adaptively secureCPRFCPRFro := (Setup,KeyGen,Eval,
Constrain,CEval) in the randomoraclemodel. LetCPRFNE = (SetupNE,KeyGenNE,EvalNE,ConstrainNE,

CEvalNE) be our no-evaluation secure CPRF for a function classFNC1 in Section 4.1. LetH be a function
from {0, 1}∗ toR, which will be modeled as a random oracle in the security proof.

Setup(1λ): It runs ppNE
R← SetupNE(1λ), sets pp := ppNE, and outputs pp.

KeyGen(pp): It runs mskNE
R← KeyGenNE(pp), sets msk := mskNE, and outputs msk.

Eval(msk, x): It computes X := EvalNE(msk, x) and y := H(X) and outputs y.

Constrain(msk, f): It runs skNE
f := ConstrainNE(msk, f), sets skf := skNE

f , and outputs skf .

CEval(skf , x): It computes X := EvalNE(skf , x) and y := H(X), and outputs y.

Theorem 4.21. Our scheme CPRFro defined above is adaptively single-key secure CPRF for the function
class FNC1 in the random oracle model, if the DDHI assumption holds with respect to the group generator
HGen (which is internally used by CPRFNE.)

33

Proof. The security of the scheme will be reduced to that of CPRFNE. Let A = (A1,A2) be any
admissible adversary that attacks the adaptive single-key security of CPRFro. For simplicity, we assume
that A makes a challenge query only once (see Remark 2.6). We also assume that A never makes the
same query twice and all evaluation queries x made by A2 satisfy f(x) = 1.

Game 0: This game is Exptcprf
CPRFro,BF ,A(λ). Namely,

coin R← {0, 1}
pp := ppNE

R← SetupNE(1λ)
msk := mskNE

R← KeyGenNE(pp)
y∗

R← R
(f, stA) R← ARO(·),OEval(·),OChal(·)

1 (pp)
skf := skNE

f
R← ConstrainNE(msk, f)

ĉoin R← ARO(·),OEval(·),OChal(·)
2 (skf , stA)

Return (ĉoin ?= coin)
where RO(·), OEval(·) and OChal(·) are oracles described below.

RO(·): Given X ∈ {0, 1}m as input, it returns H(X).
OEval(·): Given x ∈ {0, 1}n as input, it computes X := EvalNE(msk, x) and y := H(X) and

returns y.
OChal(·): Given x∗ ∈ {0, 1}n as input, if coin = 1, then it works similarly to OEval. Otherwise it

returns y∗.

We remark that we simplify the experiment compared to the definition given in Section 2.3 by using
the assumption that A makes a challenge query at most once.

Game 1: In this game, the random oracle is sampled lazily. Namely, oracles RO, OEval and OChal are
modified as follows. These oracles share a list HList, which is initialized to be empty at the
beginning of the game.

RO(·): Given the input X , it returns y if there exists y ∈ R such that (X, y) ∈ HList. Otherwise
it picks y R← R, adds (X, y) to HList, and returns y.

OEval(·): Given the input x, it first computes X := EvalNE(msk, x). If there exists y ∈ R such
that (X, y) ∈ HList, then it returns y. Otherwise it picks y R← R, adds (X, y) to HList, and
returns y.

OChal(·): If coin = 1, then it works similarly to OEval. Otherwise it returns y∗ given the input x∗.

Game 2: In this game, the evaluation and the challenge oracles do not refer to HList at all, and updates
of HList by these oracles are delayed until A1 declares its constrain query. Namely, OEval and
OChal are modified as follows, and the procedure HashSet defined below runs immediately after
A1 outputs (f, stA). OEval and OChal maintain a list EList, which is initialized to be empty at the
beginning of the game, instead of HList. Note that RO still maintains and refers HList as in the
previous game.

OEval(·): Given the input x, it returns y if there exists y ∈ R such that (x, y) ∈ EList. Otherwise
it picks y R← R, adds (x, y) to EList, and returns y.

OChal(·): If coin = 1, then it works similarly to OEval. Otherwise it returns y∗ given the input x∗.
HashSet: For all x such that f(x) = 0 and there exists y ∈ R such that(x, y) ∈ EList, it computes

X := EvalNE(msk, x) and adds (X, y) to HList.

34

Game 3: In this game, the challenge oracle always returns y∗ regardless of coin. Namely, OChal is
modified as follows.

OChal(x): Given the input x∗, it returns y∗.

This completes the description of games. Let Ti be the event that Game i returns 1. Then we have to
prove that |Pr[T0]− 1/2| is negligible.

Lemma 4.22. We have Pr[T1] = Pr[T0]

Proof. The modification from Game 0 to Game 1 is just conceptual.

Lemma 4.23. If CPRFNE is no-evaluation secure, then we have |Pr[T2]− Pr[T1]| = negl(λ).

Proof. In the following, HList1 denotes the set ofX such that there exists y such that (X, y) ∈ HList and
EList1 denotes the set of x such that there exists y satisfying (x, y) ∈ EList. Game 2 differs from Game 1
only when either of the following events occurs.

1. A1 makes a query X to RO such that there exists x ∈ EList1 satisfying X = EvalNE(msk, x).

2. A2 makes a query X to RO such that there exists x ∈ EList1 satisfying X = EvalNE(msk, x) and
f(x) = 1.

3. A1 or A2 makes a query x to OEval or OChal satisfying X ∈ HList1 for X := EvalNE(msk, x).

4. A1 or A2 makes a distinct queries x and x′ to OEval or OChal such that EvalNE(msk, x) =
EvalNE(msk, x′).

If one of the above events occurs, then one of the events Bad1, Bad2 or Col defined below occurs . (If
Event 1 occurs, then Bad1 occurs, if Event 2 occurs, then Bad2 occurs, if Event 3 occurs, then Bad1 or
Bad2 occurs, and if Event 4 occurs, then Col occurs.)

Bad1: At the point just after A1 halts (before HashSet runs) in Game 2, there exist x ∈ EList1 and
X ∈ HList1 such that X = EvalNE(msk, x).

Bad2: At the end of Game 2, there exist x ∈ EList1 andX ∈ HList1 such thatX = EvalNE(msk, x) and
f(x) = 1 hold.

Col: A1 or A2 makes a distinct queries x and x′ to OEval or OChal such that EvalNE(msk, x) =
EvalNE(msk, x′).

Therefore we have |Pr[T2] − Pr[T1]| ≤ Pr[Bad1] + Pr[Bad2] + Pr[Col]. First, we prove that
Pr[Bad1] is negligible if CPRFNE is no-evaluation secure. We assume that Pr[Bad1] is non-negligible
and we construct an adversary B = (B1,B2) that breaks the no-evaluation security of CPRFNE as follows.

B1(pp): It sets stB := pp and outputs (fone, stB), where fone is a function that outputs 1 for all inputs.

BO(·)
2 (skfone , stB = pp): (where O(·) is either Eval(msk, ·) or RF(·) R← Func({0, 1}n,H)) It initializes

HList and EList to be empty, picks coin R← {0, 1} and y∗ R← R, and runsARO(·),OEval(·),OChal(·)
1 (pp).

(We remark that it can simulate oracles since they do not need msk.) It maintains HList and EList
as in Game 2. WhenA1 halts, B2 randomly picks x̃∗ R← EList1 and queries x̃∗ to its own challenge
oracle to obtain X̃∗. If X̃∗ ∈ HList1 holds, then it outputs 1 and otherwise outputs 0.

35

This completes the description of B. First, we remark that B is an admissible adversary since fone(x) = 1
for all x ∈ {0, 1}n. We prove that B distinguishes whether O(·) = EvalNE(msk, ·) where msk R←
KeyGenNE(pp) or O(·) = RF(·) where RF(·) R← Func({0, 1}n,H) with a non-negligible advantage.
(Here, we recall that the range of the function EvalNE(msk, ·) isH, which is a prime-order group defined by
pp = ppNE.) When O(·) = EvalNE(msk, ·), if Bad1 occurs, then X̃∗ ∈ HList1 holds with probability at
least 1/|EList|. Therefore B outputs 1 with probability at least Pr[Bad1]/|EList|, which is non-negligible.
On the other hand, ifO(·) = RF(·), then X̃∗ is a truly random group element ofH, and thus X̃∗ ∈ HList1
holds with probability at most |HList|/|H|, which is negligible. Therefore B distinguishes these two
cases with non-negligible advantage, and this contradicts the security of CPRFNE. Hence Pr[Bad1] is
negligible.

Next, we prove that Pr[Bad2] is negligible if CPRFNE is no-evaluation secure. We assume that
Pr[Bad2] is non-negligible and we construct an adversary C = (C1, C2) that breaks the no-evaluation
security of CPRFNE as follows.

C1(pp): It initializes HList and EList to be empty, picks coin R← {0, 1} and y∗ R← R, and runs
ARO(·),OEval(·),OChal(·)

1 (pp). (We remark that it can simulate oracles since they do not need msk.) It
takes over HList and EList from stC and maintains them as in Game 2. Let (f, stA) be an output by
A1. Then it sets stC := (stA,HList,EList) and outputs (f, stC).

CO(·)
2 (skf , stC): (whereO(·) is eitherEval(msk, ·) orRF(·) R← Func({0, 1}n,H)) It parses (stA,HList,EList)←

stC and runs ARO(·),OEval(·),OChal(·)
2 (skf , stA). (We remark again that it can simulate oracles since

they do not need msk.) It maintains HList and EList as in Game 2. When A2 halts, B2 randomly
picks x̃∗ such that f(x̃∗) = 1 from EList1 and queries x̃∗ to its own oracle to obtain X̃∗. If
X̃∗ ∈ HList1 holds, then it outputs 1 and otherwise outputs 0.

This completes the description of C. First, we remark that C is an admissible adversary since we have
f(x̃∗) = 1. We prove that C distinguishes whether O(·) = EvalNE(msk, ·) where msk R← KeyGenNE(pp)
or O(·) = RF(·) where RF(·) R← Func({0, 1}n,H) with a non-negligible advantage. When O(·) =
EvalNE(msk, ·), if Bad2 occurs, then X̃∗ ∈ HList1 holds with probability at least 1/|EList|. Therefore
B outputs 1 with probability at least Pr[Bad2]/|EList|, which is non-negligible. On the other hand,
if O(·) = RF(·), then X̃∗ is a truly random group element of H, and thus X̃∗ ∈ HList1 holds with
probability at most |HList|/|H|, which is negligible. Therefore C distinguishes these two cases with
non-negligible advantage, and this contradicts the security of CPRFNE. Hence Pr[Bad2] is negligible.

Finally, it is clear that Pr[Col] is negligible due to the statistical collision resistance of CPRFNE. By
combining the above, we can conclude that |Pr[T2]−Pr[T1]| is negligible, and the lemma is proven.

Lemma 4.24. We have Pr[T3] = Pr[T2].
Proof. Let x∗ be the A’s challenge query and ŷ∗ be the random value that is picked by OChal to answer
the query when coin = 1. (We remark that OChal must pick a fresh random value ŷ∗ since a challenge
query x∗ is different from all evaluation queries and thus x∗ /∈ EList1.) We claim that no information of
ŷ∗ is revealed to A except that from OChal. First, since we have x 6= x∗ for all evaluation queries x, ŷ∗
cannot be revealed through evaluation queries. Second, since we have f(x∗) = 1, no information of ŷ∗ is
used to create HList, and thus no information of ŷ∗ is revealed through hash queries. In summary, A
cannot obtain any information on ŷ∗, and thus A cannot notice any difference if that is replaced by a fresh
random element.

Lemma 4.25. We have |Pr[T3]− 1/2| = 0.
Proof. Game 3 uses no information on coin, and thusA cannot distinguish cases of coin = 0 and coin = 1
with a positive advantage.

This completes proof of the adaptive single-key security.

36

5 Private Constrained PRF for Bit-fixing

In this section, we construct a single-key private CPRF for bit-fixing. Our scheme is selectively secure
under the DDH assumption. We also construct an adaptively secure single-key private CPRF for bit-fixing
in the ROM in Section 5.2.

Bit-fixing functions. First, we define a function class of bit-fixing functions formally. The class
BF = {BFn}n∈N of bit-fixing functions is defined as follows 21. BFn is defined to be a set {BFc}c∈{0,1,∗}n

where BFc(x) :=
{

0 if for all i, ci = ∗ or xi = ci

1 otherwise
. By an abuse of notation, we often write c to mean

BFc when that is given as an input to an algorithm.

CIH for affine functions. We introduce the notion of affine functions for CIH since it is used in our
private CPRF for bit-fixing. The class of affine functions with respect to a group generator GGen,
denoted by Φaff = {Φaff

λ,z}λ∈N,z∈{0,1}∗ , is a function class satisfying the following property for every
(λ, z) ∈ N×{0, 1}∗: If z can be parsed as a tuple (G,m, z′) so thatG = (G, p) is a group description output
by GGen(1λ),m ∈ N, and z′ ∈ {0, 1}∗, then we have Φaff

λ,z = {φ~u,~v : Zmp → Zmp | ~u ∈ (Z∗p)m, ~v ∈ Zmp },
where for each ~u,~v, φ~u,~v(~x) := ~u� ~x+ ~v ∈ Zmp and � denotes the component-wise multiplication in Zp.

We will use the following theorem that is implicit in [ABPP14] (see also Remark 2.12).

Theorem 5.1. (implicit in [ABPP14, Theorem 7]) Let GGen be a group generator. If the DDH assumption
holds with respect to GGen, then for any polynomial m = m(λ) ∈ Ω(λ), there exists a Φaff-CIH
CIHaff = (PrmGenaff ,Evalaff) with respect to GGen, with the following property: For all λ ∈ N, if
G = (G, p) R← GGen(1λ) and pp R← PrmGenaff(G), then pp can be parsed as (G,m, z′) for some
z′ ∈ {0, 1}∗, and furthermore Evalaff(pp, ·) is a function with domain Zmp and range G.

This theorem is derived from the following facts. (1) Abdalla et al. [ABPP14] constructed RKA-PRF
for affine functions based on the DDH assumption. (2) Bellare and Cash [BC10b] show that RKA-PRF
for a function class implies RKA-PRG for the same function class. (3) Our definition of CIH is the same
as that of RKA-PRG (See Remark 2.12).

5.1 Construction in the Standard Model

Construction.

Here, we give a construction of a selectively secure private CPRF for bit-fixing. Our CPRF is built on a
Φaff-CIH, which is known to exist under the DDH assumption [ABPP14]. Let GGen be a group generator
that given 1λ, generates a description of group of an `p-bit prime order, and CIHaff = (PrmGenaff ,Evalaff)
be a Φaff-CIH. For simplicity, we denote EvalCIH(ppCIH, ·) by CIHaff(·) when ppCIH is clear. Our scheme
CPRFpriv,std = (Setup,KeyGen,Eval,Constrain,CEval) is described as follows. Let n(λ) (often denoted
as n for short) be an integer, which is used as an input length of CPRFpriv,std.

Setup(1λ) : It generates G R← GGen(1λ) to obtain the group description G := (G, p), and runs
ppCIH

R← PrmGenaff(G) to obtain ppCIH := (G,m, z′). Recall that ppCIH specifies a domain Zmp
and a rangeR of CIHaff . It outputs pp := (ppCIH, 1n).

KeyGen(pp) : It chooses si,b,j
R← Zp for i ∈ [n], b ∈ {0, 1} and j ∈ [m], and outputs msk :=

{si,b,j}i∈[n],b∈{0,1},j∈[m].

21According to the definition given in Section 2.4, we should give BFλ,n for all λ ∈ N and n ∈ N. However, since BFλ,n is
the same for all λ if n is fixed in the case of the bit-fixing, we use this simpler notation.

37

Eval(msk, x) : It parses {si,b,j}i∈[n],b∈{0,1},j∈[m] ← msk. It computes Xj :=
∑n
i=1 si,xi,j for j ∈ [m].

Then it computes y := CIHaff(X1, ..., Xm) and outputs it.

Constrain(msk, c ∈ {0, 1, ∗}n): It parses {si,b}i∈[n],b∈{0,1} ← msk, picks αj
R← Zp for j ∈ [m]. Then

it defines {ti,b,j}i∈[n],b∈{0,1},j∈[m] as follows. For all i ∈ [n], b ∈ {0, 1} and j ∈ [m], it sets

ti,b,j :=
{
si,b,j If ci = ∗ or b = ci

si,b,j − αj If ci 6= ∗ and b = 1− ci
.

Then it outputs skc := {ti,b,j}i∈[n],b∈{0,1},j∈[m].

CEval(skc, x): It parses {ti,b,j}i∈[n],b∈{0,1},j∈[m] ← skc, computes Xj :=
∑n
i=1 ti,xi,j for j ∈ [m] and

y := CIHaff(X1, ..., Xm), and outputs y.

Correctness.

For any λ ∈ N and c ∈ {0, 1, ∗}n, we let pp R← Setup(1λ), {si,b,j}i∈[n],b∈{0,1},j∈[m] = msk R←
KeyGen(pp, 1n) and {ti,b,j}i∈[n],b∈{0,1},j∈[m] = skc

R← Constrain(msk, c). For any x ∈ {0, 1}n such that
BFc(x) = 0 holds, we have ti,xi,j = si,xi,j for all i ∈ [n] and j ∈ [m]. Therefore we haveCEval(skc, x) =
CIHaff(

∑n
i=1 ti,xi,1, ...,

∑n
i=1 ti,xi,m) = CIHaff(

∑n
i=1 si,xi,1, ...,

∑n
i=1 si,xi,m) = Eval(msk, x).

Security.

Theorem 5.2. If CIH is Φaff-CIH and 22n−m`p is negligible, then the above scheme is a selectively
single-key secure CPRF for BF with a selective single-key privacy.

Proof of Theorem 5.2. Due to Lemma 2.10, we only have to prove that the above scheme is selectively
single-key simulation-secure that is defined in Section 2.4. We consider a simulator S described below.

S(1λ) : This algorithm chooses ti,b,j
R← Zp for i ∈ [n], b ∈ {0, 1} and j ∈ [m] and outputs

sk = {ti,b,j}i∈[n],b∈{0,1},j∈[m].

What we have to prove is that for any admissible adversary A = (A1,A2),

|Pr[Exptcprf-sim-real
CPRFpriv,std,BF ,A(λ) = 1]− Pr[Exptcprf-sim-ideal

CPRFpriv,std,BF ,S,A(λ) = 1]|

is negligible. (Recall that an admissible adversary only makes evaluation queries x such that f(x) = 1
where f is constraint specified by A1 and does not make the same query twice.)

To prove that, we consider the following sequence of games. Let Q be the maximum number of A’s
evaluation queries.

Game 0: This game is Exptcprf-sim-real
CPRFpriv,std,BF ,A(λ) itself. Namely,

(G, p) := G R← GGen(1λ) and pp := ppCIH
R← PrmGenaff(G)

msk := {si,b,j}i∈[n],b∈{0,1},j∈[m]
R← KeyGen(pp)

(c, stA) R← A1(pp)
skc := {ti,b,j}i∈[n],b∈{0,1},j∈[m]

R← Constrain(msk, f)
ĉoin R← AEval(msk,·)

2 (skc, stA)
Return ĉoin
where we describe Eval(msk, ·) below.

Eval(msk, ·): Given x ∈ {0, 1}n as input, it returns Eval(msk, x).

38

Game 1: In this game, we modify how {Xj}j∈[m] is generated by the evaluation oracle. Namely, the
oracle Eval(msk, ·) is modified as follows.

Eval(msk, ·): Given the k-th query x(k) from A, for j ∈ [m], it computes

u(k) := |{i ∈ [n] : ci 6= ∗ ∧ x(k)
i = 1− ci}|,

v
(k)
j :=

n∑
i=1

t
i,x

(k)
i ,j

.

Then it computesX(k)
j := u(k)αj + v

(k)
j for j ∈ [m] and y(k) := CIHaff(X(k)

1 , ..., X
(k)
m), and

returns y(k).

The rest remains unchanged from the previous game.

Game 2: In this game, we modify how to generate {ti,b,j}i∈[n],b∈{0,1},j∈[m]. Namely, for all i ∈ [n],
b ∈ {0, 1}, and j ∈ [m], the game generates ti,b,j

R← Zp. We note that αj is still generated as
αj

R← Zp for j ∈ [m] similarly to the previous game. The rest remains unchanged from the previous
game.

Game 3: In this game, we modify how the output y is computed by the evaluation query. Namely, the
oracle Eval(msk, ·) is modified as follows.

Eval(msk, ·): Given the k-th query x(k) from A, it picks a random function RF R← Func(Zmp ,Y).
For j ∈ [m], it computes

u(k) := |{i ∈ [n] : ci 6= ∗ ∧ x(k)
i = 1− ci}|,

v
(k)
j :=

n∑
i=1

t
i,x

(k)
i ,j

.

Then it computes X(k)
j := u(k)αj + v

(k)
j for j ∈ [m] and y(k) := RF(X(k)

1 , ..., X
(k)
m), and

returns y(k).

Game 4: In this game, we modify how the output y is computed by the evaluation query. Namely, the
oracle Eval(msk, ·) is modified as follows.

Eval(msk, ·): Given the k-th query x(k) from A, it picks y(k) R← Y and returns y(k).

It is easy to see that this game is identical to Exptcprf-sim-ideal
CPRFpriv,std,BF ,n,A(λ).

LetTi be the event thatA outputs1 inGame i. ThenwehavePr[T0] = Pr[Exptcprf-sim-real
CPRFpriv,std,BF ,S,A(λ) =

1] andPr[T4] = Pr[Exptcprf-sim-ideal
CPRFpriv,std,BF ,S,A(λ) = 1]|. Thus what we have to prove is that |Pr[T4]−Pr[T0]|

is negligible. We prove it by the following lemmas.

Lemma 5.3. We have Pr[T1] = Pr[T0].

Proof. The difference between these games is that for i ∈ [n], j ∈ [m] and k ∈ [Q], X(k)
j is generated as

X
(k)
j :=

n∑
i=1

s
i,x

(k)
i ,j

39

in Game 0 whereas it is generated as

X
(k)
j := u(k)αj + v

(k)
j

in Game 1. For i ∈ [n], j ∈ [m] and k ∈ [q], we have

s
i,x

(k)
i ,j

=

ti,x(k)
i ,j

If ci = ∗ or x(k)
i = ci

t
i,x

(k)
i ,j

+ αj If ci 6= ∗ and x(k)
i = 1− ci

We also have

u(k) := |{i ∈ [n] : ci 6= ∗ ∧ x(k)
i = 1− ci}|,

v
(k)
j :=

n∑
i=1

t
i,x

(k)
i ,j

.

by the definition. By using the above equations, it is easy to see that we have

u(k)αj + v
(k)
j =

n∑
i=1

s
i,x

(k)
i ,j

for all i ∈ [n], j ∈ [m] and k ∈ [Q]. Therefore these games are identical from the view of A.

Lemma 5.4. We have Pr[T2] = Pr[T1].

Proof. It is easy to see that the joint distributions of {ti,b,j}i∈[n],b∈{0,1},j∈[m] and {αj}j∈[m] in Game 1
and Game 2 are completely identical. Therefore these games are identical from the view of A.

Lemma 5.5. If CIH is Φaff-CIH, then |Pr[T3]− Pr[T2]| is negligible.

Proof. We construct an adversary B against CIH as follows.

BOCIH(·)(ppCIH): It sets pp := (ppCIH, 1n) and runsA1(ppCIH), which outputs (c, stA). Then it generates
ti,b,j

R← Zp for i ∈ [n], b ∈ {0, 1} and j ∈ [m] and runs AEval(msk,·)
2 (skc, stA). It simulates the

oracle Eval(msk, ·) as follows. When A2 makes its k-th evaluation query x(k), it computes

u(k) := |{i ∈ [n] : ci 6= ∗ ∧ x(k)
i = 1− ci}|,

v
(k)
j :=

n∑
i=1

t
i,x

(k)
i ,j

.

for j ∈ [m]. Then it queries (φ(k)
1 , ..., φ

(k)
m) to its own oracle where φ(k)

j is an affine function
defined by φ(k)

j (Z) := u(k)Z + v
(k)
j for j ∈ [m]. Let y(k) be the response by the oracle. Then B

gives y(k) to A2 as the response to the query. Finally, A2 outputs a bit ĉoin. Then, B outputs the
same bit ĉoin as its guess.

The above completes the description of B. We prove that B distinguishes whether the chal-
lenge coin for B is coin = 1 (i.e., R1, . . . , Rm

R← Zp are chosen during the game and OCIH re-
turns CIHaff(φ1(R1), . . . , φm(Rm)) on input B’s query (φ1, . . . , φm)) or coin = 0 (i.e., OCIH returns
RF(φ1(R1), . . . , φm(Rm)) on input B’s query (φ1, . . . , φm), where RF R← Func(Zmp ,R)).

First, we prove that B is an admissible adversary Φaff-CIH. Since A is an admissible adversary
against the simulation-based security of the private CPRF, all evaluation queries x(k) made by A satisfy

40

BFc(x(k)) = 1. Therefore there exists i(k) ∈ [n] that satisfies ci(k) 6= ∗ and x(k)
i(k) = 1− ci(k) . Since we

have u(k) ≤ n < p, we have u(k) 6= 0 mod p for all k ∈ [Q], which implies that B is an admissible
adversary.

We then observe that if we have coin = 1, then B perfectly simulates the environment of Game 2
(where αj chosen in the CIH experiment is implicitly set as αj := Rj for j ∈ [m]). On the other hand, if
coin = 0, then B perfectly simulates the environment of Game 3 (again αj is set as αj := Rj). Therefore
we have |Pr[T3]− Pr[T2]| = Advcih

CIHaff ,Φaff ,B(λ).

Lemma 5.6. Pr[T4]− Pr[T3] ≤ 22n−m`p

Proof. Let Col denotes the event that there exists k1 6= k2 such that

(X(k1)
1 , ..., X(k1)

m) = (X(k2)
1 , ..., X(k2)

m)

in Game 3. It is easy to see that we have

|Pr[T4]− Pr[T3]| ≤ Pr[Col]

since unless Col occurs, RF(X(k)
1 , ..., X

(k)
m) for each k ∈ [Q] is independently and uniformly distributed

on Y . In the following, we give an upper bound for Pr[Col]. We fix c and {αj}j∈[m], and define a keyed
function Ft : {0, 1}n → Zmp by

F~t(x) := (uαm + v1, ..., uαm + vm)

where ~t denotes {ti,b,j}i∈[n],b∈{0,1},j∈[m] ∈ Z2nm
p , and for j ∈ [m], we define

u := |{i ∈ [n] : ci 6= ∗ ∧ xi = 1− ci}|,

vj :=
n∑
i=1

ti,xi,j .

Then it is easy to see that for k ∈ [q], we have

(X(k)
1 , ..., X(k)

m) = F~t(x
(k)).

Since we assume that x(k1) 6= x(k2) for all k1 6= k2, we have

Pr[Col] ≤ Pr
~t

R←Z2nm
p

[∃(x, x′) ∈ ({0, 1}n)2 s.t. x 6= x′ ∧ Ft(x) = Ft(x′)].

In the following, we give an upper bound for the right hand term. It is easy to see that F~t is pairwise
independent, and especially for any fixed x 6= x′, we have

Pr
~t

R←Z2nm
p

[Ft(x) = Ft(x′)] ≤ 1/pm ≤ 2−m`p .

Therefore by the union bound, we have

Pr
~t

R←Z2nm
p

[∃(x, x′) ∈ ({0, 1}n)2 s.t. x 6= x′ ∧ Ft(x) = Ft(x′)] ≤ 22n−m`p .

Combining the above equations, the lemma is proven.

By combining the above lemmas, Theorem 5.2 is proven.

41

5.2 Construction in the Random Oracle Model

We give a construction of an adaptively secure private constrained PRF for bit-fixing in the random oracle
model. Our scheme CPRFpriv,ro = (Setup,KeyGen,Eval,Constrain,CEval) is described as follows. Let
n(λ) (often denoted as n for short) be an integer, which is used as an input length of CPRFpriv,std and H
be a hash function from {0, 1}nλ toR.

Setup(1λ): It sets pp := (1λ, 1n) and outputs pp.

KeyGen(pp): It chooses si,b
R← {0, 1}λ for i ∈ [n] and b ∈ {0, 1}. It outputs msk := {si,b}i∈[n],b∈{0,1}.

Eval(msk, x): It computes and outputs y := H(s1,x1‖...‖sn,xn).

Constrain(msk, c ∈ {0, 1, ∗}n): It parses {si,b}i∈[n],b∈{0,1} ← msk. Then, it defines {ti,b}i∈[n],b∈{0,1}
as follows. For all i ∈ [n] and b ∈ {0, 1}, it sets

ti,b

{
:= si,b If ci = ∗ or b = ci

R← Zp If ci 6= ∗ and b = 1− ci
.

Then it outputs skc := {ti,b}i∈[n],b∈{0,1}.

CEval(skc, x): It parses {ti,b}i∈[n],b∈{0,1} ← skc. It computes H(t1,x1‖...‖tn,xn) and outputs it.

Correctness.

For any λ ∈ N and c ∈ {0, 1, ∗}n, we let pp R← Setup(1λ), {si,b}i∈[n],b∈{0,1} = msk R← KeyGen(pp)
and {ti,b}i∈[n],b∈{0,1} = skc

R← Constrain(msk, c). For any x ∈ {0, 1}n such that BFc(x) = 0 holds,
we have ti,xi = si,xi for all i ∈ [n]. Therefore, we have CEval(skc, x) = H(t1,x1‖...‖tn,xn) =
H(s1,x1‖...‖sn,xn) = Eval(msk, x).

Security.

Theorem 5.7. The above scheme is an adaptively single-key secure and private CPRF for BF in the
random oracle model where H is modeled as a random oracle.

Proof.

CPRF security. We first prove the above scheme satisfies the security as an ordinary CPRF. Actually,
this can be proven very similarly to Theorem 4.21, and many parts of proofs are virtually identical.

For an admissible adversary A = (A1,A2), we consider the following sequence of games. For
simplicity, we assume that A makes a challenge query only once (see Remark 2.6). We also assume that
A never makes the same query twice and all evaluation queries x made by A2 satisfy BFc(x) = 1.

Game 0: This game is Exptcprf
CPRFpriv,ro,BF ,A(λ). Namely,

coin R← {0, 1}
si,b

R← {0, 1}λ for i ∈ [n] and b ∈ {0, 1}
msk := {si,b}i∈[n],b∈{0,1}

y∗
R← R

(c, stA) R← ARO(·),OEval(·),OChal(·)
1 (pp)

ti,b

{
:= si,b If ci = ∗ or b = ci

R← Zp If ci 6= ∗ and b = 1− ci

42

skc := {ti,b}i∈[n],b∈{0,1}

ĉoin R← ARO(·),OEval(·),OChal(·)
2 (skf , stA)

Return (ĉoin ?= coin)
where RO(·), OEval(·) and OChal(·) are oracles described below.

RO(·): Given X ∈ {0, 1}nλ as input, it returns H(X).
OEval(·): Given x ∈ {0, 1}n as input, it returns H(s1,x1‖...‖sn,xn).
OChal(·): Given x∗ ∈ {0, 1}n as input, it returns H(s1,x∗1‖...‖sn,x∗n) if coin = 1. Otherwise, it

returns y∗.

We remark that we simplify the experiment compared to the definition given in Section 2.3 by using
the assumption that A makes the challenge query at most once.

Game 1: In this game, the random oracle is sampled lazily. Namely, oracles RO, OChal and OEval are
modified as follows. These oracles shares a list HList, which is initialized to be empty at the
beginning of the game.

RO(·): Given the input X , if there exists y ∈ R such that (X, y) ∈ HList, then it returns y.
Otherwise it picks y R← R, adds (X, y) to HList and returns y.

OEval(·): Given the input x, it computes X := s1,x1‖...‖sn,xn . If there exists y ∈ R such that
(X, y) ∈ HList, then it returns y. Otherwise it picks y R← R, adds (X, y) to HList and returns
y.

OChal(·): Given the input x∗, if coin = 1, then it works similarly to OEval. Otherwise it returns y∗.

Game 2: In this game, evaluation and challenge oracles do not refer to HList at all, and updates of HList
by these oracles are delayed until A1 declares its constrain query c. Namely, OChal and OEval are
modified as follows, and a procedure HashSet defined below runs immediately after A1 outputs
(c, stA). OEval and OChal maintain a list EList, which is initialized to be empty at the beginning of
the game, instead of HList. Note that RO still maintains and refers HList as in the previous game.

OEval(·): Given the input x, if there exists y ∈ R such that (x, y) ∈ EList, then it returns y.
Otherwise it picks y R← R, adds (x, y) to EList and returns y.

OChal(·): Given the input x∗, if coin = 1, then it works similarly to OEval. Otherwise it returns y∗.
HashSet: For all x such that there exists y ∈ R such that(x, y) ∈ EList and BFc(x) = 0, it

computes X := s1,x1‖...‖sn,xn and adds (X, y) to HList.

Game 3: In this game, a challenge oracle always returns y∗ regardless of coin. Namely,OChal is modified
as follows.

OChal(·): Given the input x∗, it returns y∗.

This completes the description of games. Let Ti be the event that Game i returns 1. Then we have to
prove that |Pr[T0]− 1/2| is negligible.

Lemma 5.8. We have Pr[T1] = Pr[T0]

Proof. The modification from Game 0 to Game 1 is just conceptual.

Lemma 5.9.We have |Pr[T2] − Pr[T1]| ≤ QH(1 + QE)(2−λ + 2−nλ) + n · 2−λ where QH and QE
denote the numbers of A’s hash queries and evaluation queries, respectively.

43

Proof. In the following, HList1 denotes the set of X such that there exists y satisfying (X, y) ∈ HList
and EList1 denotes the set of x such that there exists y satisfying (x, y) ∈ EList. Game 2 differs from
Game 1 only when either of the following events occurs.

1. A1 makes a query X to RO such that there exists x ∈ EList1 satisfying X = s1,x1‖...‖sn,xn holds.

2. A2 makes a query X to RO such that there exists x ∈ EList1 satisfying X = s1,x1‖...‖sn,xn and
BFc(x) = 1 hold.

3. A1 orA2 makes a query x toOEval orOChal such thatX ∈ HList1 holds whereX := s1,x1‖...‖sn,xn .

4. A1 or A2 makes a distinct queries x and x′ to OEval or OChal such that s1,x1‖...‖sn,xn =
s1,x′1‖...‖sn,x′n .

If one of the above events occurs, then one of the events Bad1, Bad2 or Col defined below occurs . (If
Event 1 occurs, then Bad1 occurs, if Event 2 occurs, then Bad2 occurs, if Event 3 occurs, then Bad1 or
Bad2 occurs, and if Event 4 occurs, then Col occurs.)

Bad1: At the point just after A1 halts (before HashSet runs) in Game 2, there exist x ∈ EList1 and
X ∈ HList1 such that X = s1,x1‖...‖sn,xn holds.

Bad2: At the end of Game 2, there exist x ∈ EList1 and X ∈ HList1 such that X = s1,x1‖...‖sn,xn and
f(x) = 1 hold.

Col: A1 or A2 makes a distinct queries x and x′ to OEval or OChal such that s1,x1‖...‖sn,xn =
s1,x′1‖...‖sn,x′n .

Therefore we have |Pr[T2]− Pr[T1]| ≤ Pr[Bad1] + Pr[Bad2] + Pr[Col].
SinceA1 is given no information of {si,b}i∈[n],b∈{0,1}, for allx ∈ EList1, we havePr[s1,x1‖...‖sn,xn =

X ′] = 2−nλ for any X ′ ∈ {0, 1}nλ. Since we have |EList1| ≤ (1 +QE)22 and |HList| ≤ QH , we have
Pr[Bad1] ≤ QH(1+QE)2−nλ. Similarly,A2 is given no information of si,b such that ci 6= ∗ and b = 1−ci.
Therefore for anyx such thatBFc(x) = 1, there exists i such that si,xi is completely hidden fromA2. Hence
for all x ∈ EList such that BFc(x) = 1, we have Pr[s1,x1‖...‖sn,xn = X ′] = 2−λ for any X ′ ∈ {0, 1}nλ.
Since we have |EList1| ≤ (1 +QE) and |HList| ≤ QH , we have Pr[Bad2] ≤ QH(1 +QE)2−λ. Finally,
we have Pr[Col] ≤ Pr[∃i ∈ [n] s.t. si,0 = si,1] ≤ n · 2−λ due to the union bound. Hence the lemma is
proven.

Lemma 5.10. We have Pr[T3] = Pr[T2].

Proof. Let x∗ be the A’s challenge query and ŷ∗ be the random value that is picked by OChal for replying
the challenge query when coin = 1. (We remark that OChal must pick a fresh random value ŷ∗ since
the challenge query x∗ is different from all evaluation queries and thus x∗ /∈ EList1.) We claim that no
information of ŷ∗ is revealed to A except that from OChal. First, since we have x 6= x∗ for all evaluation
queries x, ŷ∗ cannot be revealed through evaluation queries. Second, since we have BFc(x∗) = 1, no
information of ŷ∗ is used to create HList, and thus no information of ŷ∗ is revealed through hash queries.
In summary, A cannot obtain any information on ŷ∗, and thus A cannot notice any difference if that is
replaced by a fresh random element.

Lemma 5.11. We have |Pr[T3]− 1/2| = 0.

Proof. Game 3 uses no information on coin, and thusA cannot distinguish cases of coin = 0 and coin = 1
with a positive advantage.

This completes the proof of CPRF security.

22 This should be QE + 1 rather than QE since OChal also accesses EList.

44

Privacy. Next, we prove that the above scheme satisfies the privacy. For an adversary A = (A1,A2),
we consider the following sequence of games. We assume that A never makes the same query twice and
all evaluation queries x made by A2 satisfy BFc0(x) = BFc1(x) = 1.

Game 0: This game is Exptcprf-priv
CPRFpriv,ro,BF ,A(λ). Namely,

coin R← {0, 1}
si,b

R← {0, 1}λ for i ∈ [n] and b ∈ {0, 1}
msk := {si,b}i∈[n],b∈{0,1}

(c0, c1, stA) R← ARO(·),OEval(·)
1 (pp)

ti,b

{
:= si,b If ccoin,i = ∗ or b = ccoin,i

R← Zp If ccoin,i 6= ∗ and b = 1− ccoin,i
skccoin := {ti,b}i∈[n],b∈{0,1}

ĉoin R← ARO(·),OEval(·)
2 (skccoin , stA)

Return (ĉoin ?= coin). where RO(·) and OEval(·) are oracles described below.

RO(·): Given X ∈ {0, 1}nλ as input, this algorithm returns H(X).
OEval(·): Given x ∈ {0, 1}n as input, this algorithm returns H(s1,x1‖...‖sn,xn).

Game 1: In this game, the random oracle is sampled lazily. Namely, oracles RO and OEval are modified
as follows. These oracles share a list HList, which is initialized to be empty at the beginning of the
game.

RO(·): Given the input X , if there exists y ∈ R such that (X, y) ∈ HList, then it returns y.
Otherwise it picks y R← R, adds (X, y) to HList and returns y.

OEval(·): Given the input x, it computes X := s1,x1‖...‖sn,xn . If there exists y ∈ R such that
(X, y) ∈ HList, then it returns y. Otherwise it picks y R← R, adds (X, y) to HList and returns
y.

Game 2: In this game, an evaluation oracle does not refer to HList at all, and updates of HList by the
oracle are delayed untilA1 declares its constrain query. Namely,OEval is modified as follows, and a
procedure HashSet defined below runs immediately afterA1 outputs (c0, c1, stA). OEval maintains
a list EList, which is initialized to be empty at the beginning of the game, instead of HList. Note
that RO still maintains and refers HList as in the previous game.

OEval(·): Given the input x, if there exists y ∈ R such that (x, y) ∈ EList, then it returns y.
Otherwise it picks y R← R, adds (x, y) to EList and returns y.

HashSet: For all x such that there exists y ∈ R such that(x, y) ∈ EList and BFc0(x) = BFc1(x) =
0, it computes X := s1,x1‖...‖sn,xn and adds (X, y) to HList.

Game 3: This game is the same as the previous game except that ti,b is independently and uniformly
sampled from Zp for i ∈ [n] and b ∈ {0, 1}.

Let Ti be the event that Game i returns 1. Then we have to prove that |Pr[T0]− 1/2| is negligible.

Lemma 5.12. We have |Pr[T2]− Pr[T0]| ≤ QH(1 +QE)(2−λ + 2−nλ) where QH and QE denote the
numbers of A’s hash queries and evaluation queries, respectively.

Proof. This can be proven similarly to Lemma 5.8 and Lemma 5.9.

Lemma 5.13. We have Pr[T3] = Pr[T2].

45

Exptcpa
SKE,A(λ) :

coin R← {0, 1}
k R← {0, 1}`k

ĉoin R← AOEnc(·,·)(1λ)
Return (ĉoin ?= coin).

OEnc(msg0,msg1) :
Return ct R← Enc(k,msgcoin).

Figure 4: Left: The security experiment for SKE. Right: The definition of the oracle OEnc in the
experiment.

Proof. If {si,b}i∈[n],b∈{0,1} is not given, then the distribution of {ti,b}i∈[n],b∈{0,1} in Game 2 is uniformly
and independently random. We remark that {si,b}i∈[n],b∈{0,1} is not used at all in Game 2 and Game 3.
Therefore these games are identical from the view of A.

Lemma 5.14. We have |Pr[T3]− 1/2| = 0.

Proof. In Game 3, no information of coin is used. Therefore A cannot distinguish the cases of coin = 0
and coin = 1 with a positive advantage.

This completes the proof of privacy.
Combining the above lemmas, the theorem is proven.

6 Application to Secret-Key ABE

In this section, we give a construction of single-key secret key attribute-based encryption (SK-ABE)
scheme based on a single-key secure CPRF. Our SK-ABE scheme achieves optimal ciphertext overhead.
Namely, a ciphertext of our SK-ABE scheme can be as compact as any CPA secure symmetric key
encryption (SKE) scheme. By instantiating the construction based on CPRFs given in Section 4, we
obtain a single-key secure SK-ABE scheme for NC1 with optimal ciphertext overhead. To the best of our
knowledge, this is the first construction of such a primitive based on traditional groups.

6.1 Definitions

Symmetric Key Encryption. We recall the definition of SKE. An SKE scheme with key size `k, a
message spaceM and a ciphertext space C consists of two PPT algorithms (SKE.Enc, SKE.Dec).

SKE.Enc(k,msg): This is the encryption algorithm that takes a key k ∈ {0, 1}`k and a messagemsg ∈M
as input, and outputs a ciphertext ct ∈ C.

SKE.Dec(k, ct): This is the decryption algorithm that takes a key k ∈ {0, 1}`k and a ciphertext ct ∈ C as
input, and outputs a message msg ∈M.

For correctness of a SKE scheme, we require that for all λ ∈ N, k ∈ {0, 1}`k , msg ∈ M, we have
SKE.Dec(k,Enc(k,msg)) = msg.

The definition of the CPA security of SKE is given below.

Definition 6.1.We say that an SKE scheme SKE = (SKE.Enc, SKE.Dec) is CPA secure if for all PPT
adversary A, the advantage Advcpa

SKE,A(λ) := 2 · |Pr[Exptcpa
SKE,A(λ) = 1] − 1/2| is negligible where

Advcpa
SKE,A(λ) is an experiment defined in Figure 4.

It is well known that we can construct a SKE scheme based on any PRF. The construction is roughly
described as follows.

46

Exptsingle-key
ABE,A (λ) :

coin R← {0, 1}
(pp,msk) R← ABE.Setup(1λ)
(f, stA) R← AOEnc(·,(·,·))

1 (pp)
skf

R← Constrain(msk, f)
ĉoin R← AOEnc(·,(·,·))

2 (skf , stA)
Return (ĉoin ?= coin).

OEnc(x, (msg0,msg1)) :
Return ct R← Enc(msk, x,msgcoin).

Figure 5: Left: The security experiment for SK-ABE. Right: The definition of the oracle OEnc in the
experiment.

SKE.Enc(k,msg): It picks r R← {0, 1}` and outputs a ciphertext ct := (r,PRF(k, r)⊕msg).

SKE.Dec(k, ct): It parses (r, ct′)← ct and outputs PRF(k, r)⊕ ct′ and a ciphertext ct ∈ C as input, and
outputs a message msg ∈M.

This scheme is CPA secure if ` = ω(log(λ)). Intuitively, this can be seen by the fact that the
probability that the same r is reused is negligible when we have ` = ω(log(λ)) and encryption is done
polynomial times.

Secret-key Attribute-based Encryption. Here, we recall the definition of SK-ABE. An SK-ABE
scheme for a function classF = {Fλ,k}λ,k∈Nwith an attribute spaceX ⊆ {0, 1}n, amessage spaceM and
a ciphertext space C consists of four PPT algorithms (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec).

ABE.Setup(1λ) R→ (pp,msk) : This is the setup algorithm that takes a security parameter 1λ as input,
and outputs a public parameter pp and a master secret key msk. We assume that pp is given as
input to all other algorithms without explicitly denoting it.23

ABE.KeyGen(msk, f) R→ skf : This is the key generation algorithm that takes a master secret key msk
and a function f ∈ F as input, and outputs a secret key skf .

ABE.Enc(msk, x,msg) R→ ct : This is the encryption algorithm that takes a master secret key msk, an
attribute x ∈ X and a message msg ∈M as input, and outputs a ciphertext ct ∈ C.

ABE.Dec(skf , x, ct′) R→ msg : This is the decryption algorithm that takes a secret key skf , an attribute
x ∈ X , a ciphertext ct ∈ C as input, and outputs a message msg ∈M.

For correctness of an SK-ABE scheme for a function class F = {Fλ,k}λ,k∈N, we require that for all
λ ∈ N, msk R← ABE.KeyGen(1λ), f ∈ Fλ,n, x ∈ X satisfying f(x) = 0, and msg ∈M, we have

ABE.Dec(ABE.KeyGen(msk, f), x,Enc(msk, x,msg)) = msg.

Remark 6.2. We note that in our definition, the decryptable condition is “reversed” from a commonly used
definition of (SK-)ABE, in the sense that correctness is required if f(x) = 0 instead of f(x) = 1. This is
for compatibility to our definition of CPRF (See also Remark 2.4).

Then we define a security notion for AB-SKE. In this paper, we only consider single-key security
where an adversary obtains at most one decryption key.

We say that an adversary A = (A1,A2) in the experiment Exptsingle-key
ABE,A (λ) is admissible if A1 and

A2 are PPT and respect the following restrictions:

23Since we consider the symmetric key setting, we can drop pp by letting msk include pp. We define pp for compatibility to
our definition of CPRF.

47

• f ∈ Fλ,n holds for f output by A1.

• All queries (x, (msg0,msg1)) made by A1 and A2 satisfy f(x) = 1.

Furthermore, we say thatA is key-selectively admissible if, in addition to the above restrictions,A1 makes
no query. That is, A sends no encryption query before it sends a key query.

Definition 6.3. We say that an SK-ABE scheme ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec)
is adaptively single-key secure if for all admissible adversary A, the advantage Advsingle-key

ABE,A (λ) :=
2 · |Pr[Exptsingle-key

ABE,A (λ) = 1] − 1/2| is negligible where Advsingle-key
ABE,A (λ) is an experiment defined in

Figure 5.
We define key-selective single-key security of ABE analogously, by replacing the phrase “all

admissible adversaries A” in the above definition with “all key-selectively admissible adversaries A”.

Remark 6.4. In an ABE setting, the term “selective” usually means that A has to make a challenge query
at the beginning of the security experiment. On the other hand, “key-selective” as defined above means
that A has to make a key query at the beginning of the security experiment, and can make a challenge
query any time.

6.2 Construction

Here, we construct a single-key secure SK-ABE scheme with optimal ciphertext overhead. Let
CPRF = (CPRF.Setup,CPRF.KeyGen,CPRF.Eval,CPRF.Constrain,CPRF.CEval) be a CPRF for
a function class F = {Fλ,k}λ,k∈N with an input length n and output space is {0, 1}`k , and SKE =
(SKE.Enc,SKE.Dec) be an SKE scheme with a key size `k, a message spaceM and a ciphertext C. We
construct an SK-ABE scheme ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec) for a function
class F = {Fλ,k}λ,k∈N with an attribute space {0, 1}n, a message spaceM and a ciphertext C as follows.

ABE.Setup(1λ) : It computes pp R← CPRF.Setup(1λ) and msk ← CPRF.KeyGen(pp), and outputs a
public parameter pp and a master secret key msk.

ABE.KeyGen(msk, f) : It computes skf ← CPRF.Constrain(msk, f), and outputs skf .

ABE.Enc(msk, x,msg) : It computes k← CPRF.Eval(msk, x) and ct← SKE.Enc(k,msg), and outputs
ct.

ABE.Dec(skf , ct) : It computes k← CPRF.CEval(skf , x), and outputs SKE.Dec(k, ct).

The correctness of the scheme is easy to see from the correctness of CPRF and SKE.
The security of the above construction is stated as follows.

Theorem 6.5. If CPRF is selectively (resp. adaptively) single-key secure and SKE is CPA secure, then
ABE is key-selectively (resp. adaptively) single-key secure.

Proof. We prove the theorem only for the selective case here because the proof can be easily extended to
the adaptive case. LetA = (A1,A2) be any adversary that attacks the key-selective single-key security of
ABE. Let Q be the maximum number of A’s query. We prove the theorem by considering the following
sequence of games.

Game 0.1: This is the actual single-key security experiment Exptsingle-key
ABE,A (λ) against the key-selective

adversary A = (A1,A2). Namely,

48

coin R← {0, 1}
pp R← CPRF.Setup(1λ)
msk R← CPRF.KeyGen(pp)
(f, stA) R← A1(pp)
skf

R← Constrain(msk, f)
ĉoin R← AOEnc(·,(·,·))

2 (skf , stA)
Return (ĉoin ?= coin)

where we describe OEnc(·, (·, ·)) below.

OEnc(·, (·, ·)): Given (x, (msg0,msg1)) as input,
it computes k := CPRF.Eval(msk, x) and
returns ct R← SKE.Enc(k,msgcoin).

Game i.0: For i ∈ [Q], Game i.0 is defined as follows. The difference from Game 0.1 is that a list L is
maintained in a game, and OEnc works in a different way. Intuitively, OEnc encrypts msg0 under an
independently random key regardless of coin for the first i− 1 distinct attributes, encrypts msgcoin
under a randomly generated key for the i-th distinct attribute, and encrypts msgcoin under a key
generated by CPRF as in Game 0.1 for the rest of attributes. Namely, a list L is initialized to be an
empty set at the beginning of the game, and OEnc works as follows.

OEnc(·, (·, ·)): Given (x, (msg0,msg1)) as input, if there exists k such that (x, k) ∈ L (i.e., x has
already appeared in A2’s query), then it returns ct R← SKE.Enc(k,msg0). Otherwise it sets
N := |L|+ 1. (N is defined so that x is the N -th distinct attribute queried by A2.)

• If we have N < i, then it picks k R← {0, 1}`k , updates L ← L ∪ {(x, k)} and returns
ct R← SKE.Enc(k,msg0).

• If we have N = i, then it picks k R← {0, 1}`k , updates L ← L ∪ {(x, k)} and returns
ct R← SKE.Enc(k,msgcoin).

• If we have N > i, then it computes k := CPRF.Eval(msk, x) and returns ct R←
SKE.Enc(k,msgcoin).

Game i.1: For i ∈ [Q], Game i.1 is defined as follows. The difference from Game i.0 is that OEnc
encrypts msg0 instead of msgcoin for the i-th distinct attribute. Namely,OEnc in this game works as
follows.

OEnc(·, (·, ·)): Given (x, (msg0,msg1)) as input, if there exists k such that (x, k) ∈ L (i.e., x has
already appeared in A2’s query), then it returns ct R← SKE.Enc(k,msg0). Otherwise it sets
N := |L|+ 1. (N is defined so that x is the N -th distinct attribute queried by A2.)

• If we have N ≤ i, then it picks k R← {0, 1}`k , updates L ← L ∪ {(x, k)} and returns
ct R← SKE.Enc(k,msg0).

• If we have N > i, then it computes k := CPRF.Eval(msk, x) and returns ct R←
SKE.Enc(k,msgcoin).

Let Ti.b be the event that Game i.b returns 1 for i = 0, 1, ..., Q and b = 0, 1. We have Advsingle-key
ABE,A (λ) =

2 · |Pr[T0.1]− 1/2|. We prove the following lemmas.

Lemma 6.6. If CPRF is selectively single-key secure, then for all i ∈ [Q], we have |Pr[T(i−1).1] −
Pr[Ti.0]| = negl(λ).

Proof. We construct an adversary B = (B1,B2) that breaks the selective single-key security of CPRF.
The description of B is as follows.

49

B1(pp) : Given a public parameter pp, it runs (f, stA) R← A1(pp) and outputs (f, stA).

BOChal(·),CPRF.Eval(msk,·)
2 (skf , stA) : Given (skf , stA), it picks coin R← {0, 1}, runs ĉoin R← AOEnc(·,(·,·))

2 (skf , stA)
and outputs (ĉoin ?= coin). Here, B2 simulates OEnc as follows. First, B2 initialize a list L to be an
empty set. For A2’s query (x, (msg0,msg1)), if there exists k such that (x, k) ∈ L, then it returns
ct R← SKE.Enc(k,msg0). Otherwise it sets N := |L|+ 1.

• If we have N < i, then it picks k R← {0, 1}`k , updates L ← L ∪ {(x, k)} and returns
ct R← SKE.Enc(k,msg0).

• If we have N = i, then it queries x to OChal to obtain k, updates L ← L ∪ {(x, k)} and
returns ct R← SKE.Enc(k,msgcoin).

• If we have N > i, then it queries x to CPRF.Eval(msk, ·) to obtain k and returns ct R←
SKE.Enc(k,msgcoin).

This completes the description of B. First, we check that B is selectively admissible adversary against
CPRF.

• We have f ∈ Fλ,n because this is required for a key-selectively admissible adversary against
SK-ABE.

• B2 never make the same query twice because if A2’s query use an attribute x that has already
appeared in a former query, then B2 refers a list L to obtain a key k, and does not query x twice to
CPRF.Eval(msk, ·).

• The query x∗ to OChal made by B2 satisfies f(x∗) = 1 because the key-selective admissibility
against SK-ABE requires that f(x) = 1 holds for all x that appears in A’s query.

Therefore B is selectively admissible. If the coin of the CPRF experiment in which B is involved is equal
to 1, OChal responds similarly to CPRF.Eval(msk, ·), and thus B perfectly simulates Game (i− 1).1 to
A. On the other hand, if the coin is equal to 0, then OChal returns a uniformly random string, and thus B
perfectly simulates Game (i−1).1 toA. Therefore we have |Pr[T(i−1).1]−Pr[Ti.0]| = Advcprf

CPRF,F ,B(λ).
Since we assume that CPRF is selectively single-key secure, this is negligible.

Lemma 6.7. If SKE is CPA secure, then for all i ∈ [Q], we have |Pr[Ti.0]− Pr[Ti.1]| = negl(λ).

Proof. We construct an adversary B that breaks the CPA security of SKE. The description of B is as
follows.

BOSKE.Enc(·)(1λ) : It picks coin R← {0, 1}, computes pp R← CPRF.Setup(1λ),msk R← CPRF.KeyGen(pp),
(f, stA) R← A1(pp), skf

R← Constrain(msk, f), and ĉoin R← AOEnc(·,(·,·))
2 (skf , stA), and outputs

(ĉoin ?= coin) where it simulates OEnc as follows. First, it initializes a list L to be an empty
set. For A2’s query (x, (msg0,msg1)), if (x,Chal) ∈ L, then it queries (msg0,msgcoin) to
OSKE.Enc to obtain ct and returns ct. Else if there exists k such that (x, k) ∈ L, then it returns
ct R← SKE.Enc(k,msg0). Otherwise it sets N := |L|+ 1.

• If we have N < i, then it picks k R← {0, 1}`k , updates L ← L ∪ {(x, k)} and returns
ct R← SKE.Enc(k,msg0).

• If we have N = i, then it queries (msg0,msgcoin) to OSKE.Enc to obtain ct, updates
L← L ∪ {(x,Chal)} and returns ct.

• Ifwe haveN > i, then it computes k := CPRF.Eval(msk, x) and returns ct R← SKE.Enc(k,msgcoin).

50

This completes the description of B. If the coin of the SKE experiment in which B is involved is equal
to 1, OSKE,Enc given (msg0,msgcoin) encrypts msgcoin and thus B perfectly simulates Game i.0 to A.
On the other hand, if the coin is equal to 0, OSKE,Enc given (msg0,msgcoin) encrypts msg0 and thus B
perfectly simulates Game i.1 to A. Therefore we have |Pr[Ti.0]− Pr[Ti.1]| = Advcpa

SKE,B(λ). Since we
assume that SKE is CPA secure, this is negligible.

Lemma 6.8. We have Pr[TQ,1] = 1/2.

Proof. In Game Q.1, coin is used only when N > Q where N is as defined in the description of OEnc in
Game Q.1. However, since A makes at most Q queries and N is incremented by at most 1 by each query,
N cannot exceedQ. Therefore coin is not used at all in Game Q.1, and thus it is information theoretically
impossible for A to guess coin with a non-zero advantage.

By combining the above lemmas, we have Advsingle-key
ABE,A (λ) = 2 · |Pr[T0.1]− 1/2| = negl(λ) and the

theorem is proven.

Discussion. Our SK-ABE scheme can be instantiated based on a CPRFs constructed in Section 4. If we
instantiate the scheme based on a CPRF given in Section 4.2, then we obtain a key-selectively single-key
secure SK-ABE scheme for NC1 based on the L-DDHI assumption on QRq and the DDH assumption
on a group G of an order q in the standard model 24. If we instantiate the scheme based on a CPRF
given in Section 4.3, then we obtain an adaptively single-key secure SK-ABE scheme for NC1 based
on the L-DDHI assumption on any prime order cyclic group in the random oracle model. We note that
if we instantiate the scheme based on the LWE-based CPRF given by Brakerski and Vaikuntanathan
[BTVW17, PS18], we obtain a key-selectively secure single-key SK-ABE scheme for circuits based on
the LWE assumption.

A ciphertext overhead (e.g., ciphertext length minus message length) of our scheme is optimal.
Namely, a ciphertext of our scheme consists of only one ciphertext of an underlying CPA secure SKE
scheme. Especially, we can make a ciphertext overhead any function `(λ) as long as `(λ) = ω(log λ).

To the best of our knowledge, the only known construction of an ABE scheme with such a compact
ciphertext without obfuscation is the one given by Zhandry [Zha16] even in secret key and single key
setting. 25 Though their scheme achieves much stronger functionality and security than ours (i.e., their
scheme is public key ABE scheme for circuits, and achieves multi-key security), their scheme is based on
a multilinear map, which is rather a strong primitive. Our construction illustrates that it is possible to
construct an ABE scheme with an optimal ciphertext overhead based on a traditional group if we relax the
functionality to be SK-ABE for NC1 and security to be the single-key security.

Acknowledgments

We thank Keita Xagawa for letting us know the relation between CIH and RKA-PRG.

References

[ABPP14] Michel Abdalla, Fabrice Benhamouda, Alain Passelègue, and Kenneth G. Paterson. Related-
key security for pseudorandom functions beyond the linear barrier. In Juan A. Garay and

24For instantiating our scheme, an output of an underlying CPRF should be a bit string whereas that is a group element in our
actual construction given in Section 4.2. However, that can be converted to a bit string by applying an appropriate key derivation
function.

25Actually, a ciphertext overhead of the scheme given in [Zha16] is O(λ). We can make it `(λ) for any `(λ) = ω(log(λ)) if
we assume an existence of an exponentially secure one-way function.

51

Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 77–94.
Springer, Heidelberg, August 2014. (Cited on page 16, 37.)

[AFP16] Hamza Abusalah, Georg Fuchsbauer, and Krzysztof Pietrzak. Constrained PRFs for
unbounded inputs. In Kazue Sako, editor, CT-RSA 2016, volume 9610 of LNCS, pages
413–428. Springer, Heidelberg, February / March 2016. (Cited on page 2, 8.)

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin
and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 56–73.
Springer, Heidelberg, May 2004. (Cited on page 3.)

[BC10a] Mihir Bellare and David Cash. Pseudorandom functions and permutations provably secure
against related-key attacks. IACR Cryptology ePrint Archive, 2010:397, 2010. Version
20150729:233210. Preliminary version appeared in CRYPTO 2010. (Cited on page 5, 6, 16,
22.)

[BC10b] Mihir Bellare and David Cash. Pseudorandom functions and permutations provably secure
against related-key attacks. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS,
pages 666–684. Springer, Heidelberg, August 2010. (Cited on page 37.)

[BF03] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing.
SIAM J. Comput., 32(3):586–615, 2003. (Cited on page 2.)

[BFP+15] Abhishek Banerjee, Georg Fuchsbauer, Chris Peikert, Krzysztof Pietrzak, and Sophie
Stevens. Key-homomorphic constrained pseudorandom functions. In Yevgeniy Dodis and
Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 31–60.
Springer, Heidelberg, March 2015. (Cited on page 2, 4, 8.)

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6:1–
6:48, 2012. (Cited on page 2.)

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519.
Springer, Heidelberg, March 2014. (Cited on page 1, 4.)

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure
computation under DDH. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part I, volume 9814 of LNCS, pages 509–539. Springer, Heidelberg, August 2016. (Cited
on page 2.)

[Bit17] Nir Bitansky. Verifiable random functions from non-interactive witness-indistinguishable
proofs. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part II, volume 10678 of LNCS,
pages 567–594. Springer, Heidelberg, November 2017. (Cited on page 2, 4.)

[BKM17] Dan Boneh, Sam Kim, and Hart William Montgomery. Private puncturable PRFs from
standard lattice assumptions. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 415–445. Springer, Heidelberg,
May 2017. (Cited on page 2, 4, 8.)

[BLW17] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions privately.
In Serge Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages 494–524. Springer,
Heidelberg, March 2017. (Cited on page 1, 2, 8, 12.)

52

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private
constrained PRFs (and more) from LWE. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017, Part I, volume 10677 of LNCS, pages 264–302. Springer, Heidelberg, November
2017. (Cited on page 2, 4, 51.)

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs from
standard lattice assumptions - or: How to secretly embed a circuit in your PRF. In Yevgeniy
Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages
1–30. Springer, Heidelberg, March 2015. (Cited on page 1, 2, 4, 11.)

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.
In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS,
pages 280–300. Springer, Heidelberg, December 2013. (Cited on page 1, 2, 4, 8, 10, 11.)

[CC17] Ran Canetti and Yilei Chen. Constraint-hiding constrained PRFs for NC1 from LWE. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume
10210 of LNCS, pages 446–476. Springer, Heidelberg, May 2017. (Cited on page 2, 4, 8.)

[CGV15] Aloni Cohen, Shafi Goldwasser, and Vinod Vaikuntanathan. Aggregate pseudorandom
functions and connections to learning. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015, Part II, volume 9015 of LNCS, pages 61–89. Springer, Heidelberg, March 2015.
(Cited on page 8.)

[CH85] Stephen A. Cook and H. James Hoover. A depth-universal circuit. SIAM J. Comput.,
14(4):833–839, 1985. (Cited on page 4, 24.)

[CHL05] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 302–321. Springer,
Heidelberg, May 2005. (Cited on page 3.)

[DG17] Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-Hellman
assumption. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume
10401 of LNCS, pages 537–569. Springer, Heidelberg, August 2017. (Cited on page 2.)

[DKW16] Apoorvaa Deshpande, Venkata Koppula, and Brent Waters. Constrained pseudorandom
functions for unconstrained inputs. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 124–153. Springer, Heidelberg,
May 2016. (Cited on page 2, 8, 11.)

[FKPR14] Georg Fuchsbauer, Momchil Konstantinov, Krzysztof Pietrzak, and Vanishree Rao. Adaptive
security of constrained PRFs. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part II, volume 8874 of LNCS, pages 82–101. Springer, Heidelberg, December 2014. (Cited
on page 11.)

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices.
In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of
LNCS, pages 1–17. Springer, Heidelberg, May 2013. (Cited on page 2.)

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. SIAM
J. Comput., 45(3):882–929, 2016. (Cited on page 2.)

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
Journal of the ACM, 33(4):792–807, October 1986. (Cited on page 1, 4, 20.)

53

[GHKW17] Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Waters. A generic approach
to constructing and proving verifiable random functions. In Yael Kalai and Leonid Reyzin,
editors, TCC 2017, Part II, volume 10678 of LNCS, pages 537–566. Springer, Heidelberg,
November 2017. (Cited on page 2, 4.)

[GL10] David Goldenberg and Moses Liskov. On related-secret pseudorandomness. In Daniele
Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 255–272. Springer, Heidelberg,
February 2010. (Cited on page 5.)

[GOR11] Vipul Goyal, Adam O’Neill, and Vanishree Rao. Correlated-input secure hash functions.
IACR Cryptology ePrint Archive, 2011:233, 2011. Version 20110517:062434. Preliminary
version appeared in TCC 2011. (Cited on page 5, 6, 15, 16.)

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 162–179. Springer, Heidelberg, August
2012. (Cited on page 4.)

[HKKW14] Dennis Hofheinz, Akshay Kamath, Venkata Koppula, and Brent Waters. Adaptively secure
constrained pseudorandom functions. Cryptology ePrint Archive, Report 2014/720, 2014.
http://eprint.iacr.org/2014/720. (Cited on page 2, 8.)

[HKW15] Susan Hohenberger, Venkata Koppula, and Brent Waters. Adaptively secure puncturable
pseudorandom functions in the standard model. In Tetsu Iwata and Jung Hee Cheon, editors,
ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 79–102. Springer, Heidelberg,
November / December 2015. (Cited on page 2, 8.)

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161.
Springer, Heidelberg, August 2003. (Cited on page 5.)

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 13, pages 669–684. ACM Press, November 2013.
(Cited on page 1, 4.)

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random
functions. Journal of the ACM, 51(2):231–262, 2004. (Cited on page 17, 20.)

[PS18] Chris Peikert and Sina Shiehian. Privately constraining and programming PRFs, the LWE
way. In PKC 2018 (to appear), 2018. IACR Cryptology ePrint Archive 2017/1094. (Cited
on page 2, 4, 51.)

[Yam17] Shota Yamada. Asymptotically compact adaptively secure lattice IBEs and verifiable
random functions via generalized partitioning techniques. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS, pages 161–193. Springer,
Heidelberg, August 2017. (Cited on page 5.)

[Zha16] Mark Zhandry. How to avoid obfuscation using witness PRFs. In Eyal Kushilevitz and
Tal Malkin, editors, TCC 2016-A, Part II, volume 9563 of LNCS, pages 421–448. Springer,
Heidelberg, January 2016. (Cited on page 3, 51.)

54

http://eprint.iacr.org/2014/720

	Introduction
	Background
	Our Contributions
	Technical Overview
	Other Related Works

	Preliminaries
	Complexity Assumptions
	Pseudorandom Function
	Constrained Pseudorandom Function
	Private Constrained PRF
	Correlated-Input Secure Hash Function
	Collision Resistant Hash Function

	Building Block: Correlated-input Secure Hash
	Naor-Reingold PRF and Our Variant
	Bellare-Cash CIH Construction and Our Variant

	CPRF for NC1 Circuits
	Our Basic Constrained PRF
	Selectively-secure CPRF in the Standard Model
	Adaptively-secure CPRF in the Random Oracle Model

	Private Constrained PRF for Bit-fixing
	Construction in the Standard Model
	Construction in the Random Oracle Model

	Application to Secret-Key ABE
	Definitions
	Construction

