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Abstract. We consider the task of constructing concurrently compos-
able protocols for general secure computation by making only black-box
use of underlying cryptographic primitives. Existing approaches for this
task first construct a black-box version of CCA-secure commitments
which provide a strong form of concurrent security to the committed
value(s). This strong form of security is then crucially used to construct
higher level protocols such as concurrently secure OT/coin-tossing (and
eventually all functionalities).

This work explores a fresh approach. We first aim to construct a concurrently-
secure OT protocol whose concurrent security is proven directly us-
ing concurrent simulation techniques; in particular, it does not rely on
the usual “non-polynomial oracles” of CCA-secure commitments. The
notion of concurrent security we target is super-polynomial simulation
(SPS). We show that such an OT protocol can be constructed from
polynomial hardness assumptions in a black-box manner, and within a
constant number of rounds. In fact, we only require the existence of
(constant round) semi-honest OT and standard collision-resistant hash
functions.

Next, we show that such an OT protocol is sufficient to obtain SPS-secure
(concurrent) multiparty computation (MPC) for general functionalities.
This transformation does not require any additional assumptions; it also
maintains the black-box nature as well as the constant round feature of
the original OT protocol. Prior to our work, the only known black-box
construction of constant-round concurrently composable MPC required
stronger assumptions; namely, verifiable perfectly binding homomorphic
commitment schemes and PKE with oblivious public-key generation.
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1 Introduction

Secure multiparty computation (MPC) protocols enable mutually distrustful
parties to compute a joint functionality on their private inputs without com-
promising the correctness of the outputs and the privacy of their inputs. They
have been studied in both two-party and multi-party cases. General construc-
tions of such protocols for computing any functionality even when a majority
of players are adversarial have been long known [51,17]. In this work, we are
interested in MPC protocols that only make a black-box use of cryptographic
primitives and maintain security in a concurrent environment with many simul-
taneous executions.

Black-box constructions. General purpose MPC protocols are often non-black-
box in nature. They use the code of the underlying primitives at some stage
of the computation, e.g., an NP reduction for general zero-knowledge proofs.
Such non-black-use of the primitives is generally undesirable since not only it
is computationally expensive, it also renders the protocol useless in situations
where such code is not available (e.g., primitives based on hardware-tokens).
One therefore seeks black-box constructions of such protocols which use the un-
derlying primitives only in black-box way (i.e., only through their input/output
interfaces).

Recently, a number of works have studied black-box constructions of general
MPC protocols. Ishai et al. [27] presented the first black-box construction of gen-
eral purpose MPC based on enhanced trapdoor permutations or homomorphic
public-key encryption schemes. Combined with the subsequent work of Haitner
[23] on black-box OT, this gives a black-box construction of general MPC based
assuming only semi-honest OT [24]. Subsequently, Wee [50] reduced the round
complexity of these constructions to O(log∗ n), and Goyal [18] to only constant
rounds. In the two-party setting, black-box construction were obtained by Pass
and Wee [46] in constant-rounds and Ostrovsky et al. [41] in optimal 5-rounds.

Concurrent security. The standard notion of security for MPC, also called stand-
alone security considers only a single execution of this protocol. While this is
sufficient for many applications, other situations (such as protocol executions
over the Internet) require stronger notions of security. Such a more demanding
setting, where there may be many protocols executions at the same time, is called
the concurrent setting. Unfortunately, it is known that stand-alone security does
not necessarily imply security in the concurrent setting [13].

Secure computation in the concurrent setting is quite challenging to define.
Canetti [4] proposed the notion of universally composable (UC) security where
protocols maintain their strong simulation based security guarantees even in
the presence of other arbitrary protocols. Achieving such strong notion of UC-
security turned out to be impossible in the plain model [4,5]. Moreover, Lindell
[35,36] proved that even in the special case where only instantiations of the
same protocol are allowed, standard notion of polynomial-time simulation is
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impossible to achieve. (This is “self composition” and corresponds to the setting
we are interested in.)

These strong negative results motivated the study of alternative notions of
security; of these, most relevant to us are super-polynomial simulation (SPS)
[43], angel-based security [48,6], and security with shielded oracles [3].

SPS Security. SPS security is similar to UC security except that the simu-
lator is allowed to run in super-polynomial time. It guarantees that what-
ever an adversary can do in the real world can also be done in the ideal
world in super-polynomial time. While SPS-security is a weaker guarantee,
it is still meaningful security for many functionalities, and allows concurrent
self-composition in the plain model. (In what follows, by SPS security we
mean SPS-security under concurrent self-composition.) Prabhakaran and Sa-
hai [48] provided the initial positive result for SPS security. Although, these
early results [48,2,37,34] relied on non-standard/sub-exponential assump-
tions, Canetti, Lin and Pass achieved this notion under standard polynomial-
time assumptions [6] in polynomially many rounds. Soon after, Garg et
al. [15] presented a constant round construction. The works of [48,37,6] ac-
tually get angel-based security, discussed below.

Angel-based Security. Angel-based UC security is the same as UC security
except that the environment/adversary and the simulator have access to
an additional entity—an angel—that allows some judicious use of super-
polynomial resources. Angel-based UC security, though weaker than UC se-
curity, is meaningful for many settings and implies SPS security. Further-
more, like UC security, it also guarantees composability. As noted above,
the works in [48,37,6] achieve angel-based security, though only [6] relies on
standard polynomial hardness. Subsequently, Goyal et al. [21] presented a

Õ(log n) round construction under the same assumptions.
Black-box constructions of angel-based secure computation were first pre-
sented by Lin and Pass [32] assuming the existence of semi-honest OT, in
O(max(nε, ROT)) rounds, where ε > 0 is an arbitrary constant and ROT is the
round complexity of the underlying OT protocol. (Hence, if the underlying
OT protocol has only constant round, the round complexity is O(nε).) Sub-
sequently, Kiyoshima [29] provided a Õ(log2 n)-round construction under the
same assumption.

Security with Shielded Oracles. Security with shielded oracles, proposed very
recently by Broadnax et al. [3], is similar to angel-based security where
the environment and the simulator have access to an additional entity—
a shielded oracle—that can perform some super-polynomial computation.
However, unlike angel-based security, the results of super-polynomial time
computation are “shielded away” from the simulator, in the sense that the
shielded oracle directly interacts with the ideal functionality; the simula-
tor cannot observe their communication. This notion lies strictly between
SPS and angel-based security, and guarantees composability. A constant-
round MPC protocol satisfying this notion were also presented in [3]; one of
their protocol is black-box and relies on standard polynomial hardness. More
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specifically, it requires (verifiable perfectly binding) homomorphic commit-
ment schemes and PKE with oblivious public-key generation.

State-of-the-art. All of the constructions of concurrently-secure MPC proto-
cols we have discussed so far, rely on first constructing non-malleable commit-
ment schemes with strong concurrent or UC-security properties; in particular
(robust) “CCA-secure commitments” or “coin tossing” or UC-secure commit-
ments. These schemes are then used to build higher level protocols such as
OT and general secure computation. However, the concurrent security of these
higher level protocols is proven indirectly, by relying on the strong concurrent
security of the CCA-secure commitments. While this approach leads to (better)
angel-based security, it is quite expensive in terms of rounds, requiring Õ(log2 n)
in [29] for black-box constructions. The work of Broadnax et al. [3] significantly
improves this situation by relaxing the angel-based security requirement to SPS
with shielded-oracles, and obtains a constant round construction. However, it
still needs stronger assumptions (see above) and represents the only approach
so far for obtaining constant round black-box constructions. In contrast, much
of the results that make non-black-box use of the primitives, can rely on the
minimal assumption of semi-honest OT. The approach of Broadnax et al. [3]
is still based on first constructing a sufficiently strong commitment scheme with
UC properties and using it to obtain OT and general functionalities. It is highly
desirable to find new approaches to construct such protocols which have the
potential to rely on minimal assumptions in constant rounds.

1.1 Our Contribution

In this work, we seek new approaches for constructing concurrently-secure black-
box MPC protocols which can lead to qualitative improvements over existing
constructions, such as minimal underlying assumptions, a constant number of
rounds, and so on. Towards this goal, we deviate from the existing approaches
which focus on incorporating both concurrent security and non-malleability into
a single primitive such as (CCA-secure) commitment schemes or coin-tossing.
Instead, we take a different approach and focus on incorporating concurrent
security into the oblivious transfer functionality. We present a black-box OT
protocol satisfying the SPS notion of concurrent-security. We achieve this by
using concurrent simulation techniques and non-malleable commitments in a
somewhat modular way where (roughly speaking) the former is primarily used
for trapdoor extraction/simulation and the latter for independence of committed
values. The protocol has constant rounds and relies only on the existence of
(constant round) semi-honest OT and standard collision-resistant hash functions
(CRHFs).

Having obtained concurrent security for OT, we proceed to construct SPS-
secure MPC protocols for all functionalities. Our method does not require any
additional assumptions, and maintains the black-box and constant round prop-
erties of the original OT protocol. Consequently, we obtain SPS-secure constant-
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round black-box MPC under much weaker assumptions than [3]. On the flip side,
our work achieves a weaker security notion than [3].

Theorem 1 (Informal). Assume the existence of constant-round semi-honest
oblivious transfer protocols and collision-resistant hash functions. Then, there
exists a constant-round black-box construction of concurrently secure MPC pro-
tocol that achieve SPS security.

The formal statement is given as Theorem 3 in Section 5.

1.2 Other Related Work

Other than the works mentioned above, there are several works that study
SPS security/angel-based security. For SPS-security, Pass et al. [45] present a
constant-round non-black-box construction of MPC from constant-round semi-
honest OT. Dachman-Soled et al. and Venkitasubramaniam [11,49] present a
non-black-box construction that satisfies adaptive security. And very recently,
Badrinarayanan et al. [1] present a non-black-box 3-round construction assum-
ing sub-exponential hardness assumptions. For angel-based security, Kiyoshima
et al. [30] present a constant-round black-box construction albeit under a sub-
exponential hardness assumption, and Hazay and Venkitasubramaniam [26] present
a non-black-box construction that achieves adaptive security.

We have not discussed several works that focus on other notions of concur-
rent security such as input-indistinguishable computation, bounded concurrent
composition, and multiple ideal-query model [44,38,19].

Black-box constructions have been extensively explored for several other
primitives such as non-malleable/CCA-secure encryption, non-malleable com-
mitments, zero-knowledge proofs and so on (e.g., [10,47,9,20,22,42]). For con-
current OT, Garay and MacKenzie [14] presented a protocols for independent
inputs under the DDH assumption, and Garg et al. [16] showed the impossibility
of this task for general input distributions.

2 Overview of Our Techniques

We obtain our MPC protocol in two steps. First, we construct a constant-round
black-box construction of a SPS-secure concurrent OT protocol. Second, we com-
pose this OT protocol with an existing constant-round OT-hybrid UC-secure
MPC protocol. We elaborate on each step below.

We remark that we consider concurrent security in the interchangeable-roles
setting. So, in the case of OT, the adversary can participate a session as the
sender while concurrently participating another session as the receiver.

2.1 Constant-round Black-box Concurrent OT

Our starting point is the (super-constant-round) black-box concurrent OT pro-
tocol of Lin and Pass [32], which is secure under angel-based security and makes
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only black-box use of semi-honest OT protocols. Our approach is to modify their
protocol so that it has only constant number of rounds (while degrading security
from angel-based security to SPS security).

Let us first recall the OT protocol of [32]. At a high level, it uses a semi-
honest OT protocol in the black-box way in a similar manner to the stand-alone
black-box OT of Haitner et al. [24] does. Specifically, the OT protocol of [32]
proceeds roughly as follows.

1. First, the sender S and the receiver R execute many instances of a semi-
honest OT protocol in parallel, where in each instance S and R use the
inputs and the randomness that are generated by a coin-tossing protocol.
(S and R execute two instances of coin tossing for each instance of OT; the
sender obtains random coin in the first coin tossing and the receiver obtains
random coin in the second coin tossing.)

2. Next, S and R do a simple trick called OT combiner, which allows them to
execute an OT with their real inputs securely when most of the OT instances
in the previous step are correctly executed. To check that most of the OT
instances in the previous step were indeed correctly executed, S and R do
the well-known cut-and-choose trick, where S (resp., R) chooses a constant
fraction of the OT instances randomly and R (resp., S) reveals the input and
randomness that it used in those instances so that S (resp., R) can verity
whether R executed those instances correctly.

(Actually, the underlying OT protocol is required to be secure against malicious
senders, but we ignore this requirement in this overview.)

The OT protocol of [32] has more than constant number of rounds because
it uses CCA-secure commitment schemes [6,7] in the coin-tossing part of the
protocol and existing constructions of CCA-secure commitment schemes have
more than constant number of rounds under standard assumptions.4 Key obser-
vations by the authors of [32] are that CCA-secure commitment schemes can be
used to obtain a “concurrently secure” coin tossing protocol,5 and that their OT
protocol is concurrently secure when its coin-tossing part is concurrently secure.

To obtain a constant-round protocol, we need to remove the CCA-secure
commitments from the protocol of [32]. A naive approach is to simply replace
the CCA-secure commitments with (concurrent) non-malleable commitments,
which provide weaker security than CCA-secure ones but are known to have
a constant-round black-box instantiation under the existence of one-way func-
tions [20]. However, this approach does not work because, as mentioned by Lin
and Pass [32], non-malleable commitment schemes only lead to “parallel secure”

4 Roughly speaking, CCA-secure commitment schemes guarantee that the hiding prop-
erty holds even when the adversary has access to the committed-value oracle, which
computes the committed value of a given commitment by brute force.

5 Concretely, the resultant coin-tossing protocol satisfies simulation soundness, which
guarantees that any concurrent man-in-the-middle adversary cannot bias the out-
come of a coin-tossing when it concurrently participates in simulated coin tossings.
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coin tossing protocols6 and the parallel security of the coin tossing protocol is
insufficient for proving the concurrent security of the OT protocol of [32].

At a high level, we remove the CCA-secure commitments from the protocol
of [32] as follows. Our starting idea is to prove the concurrent security of the OT
protocol of [32] without relying on the concurrent security of the coin tossing
part (and therefore without using CCA-secure commitments there). To prove the
concurrent security in this way, we modify the protocol of [32] so that it uses non-
malleable commitments in a similar manner to the constant-round (non-black-
box) SPS-secure concurrent MPC protocol of Garg et al. [15] does. Informally
speaking, the protocol of Garg et al. [15] uses non-malleable commitments when
each party commits to a witness for the fact that the “trapdoor statement” is
false, where the trapdoor statement is a statement about the transcript and it is
guaranteed that any adversary cannot “cheat” in the protocol when the trapdoor
statement is false. With this use of non-malleable commitments, the concurrent
security of the protocol of Garg et al. [15] is proven in two steps:

1. First, it is shown that in the real experiment (where an adversary interacts
with honest parties in multiple sessions of the protocol concurrently), the
non-malleable commitment from the adversary in each session is indeed a
commitment of a valid witness for the fact that the trapdoor statement is
false. (This is guaranteed by a zero-knowledge proof in the protocol).

2. Second, it is shown that if the non-malleable commitment in a session is
indeed a commitment of a valid witness (which implies that the trapdoor
statement is false in that session, which in turn implies that the adversary
cannot “cheat” in that session), it is possible to switch the honest parties in
that session with the simulator in an indistinguishable way, and furthermore
this switch does not affect the non-malleable commitments in the other ses-
sions (i.e., their committed values remain to be valid witnesses). (The latter
is guaranteed by non-malleability of the non-malleable commitments7.)

3. Now, the concurrent security follows from the above two since the honest
parties can be switched to the simulator in all the sessions by repeatedly
using what is shown in the second part.

Following this approach by Garg et al. [15], we first identify the trapdoor state-
ment of the OT protocol of Lin and Pass [32] and then add non-malleable com-
mitments to their protocol in such a way that the trapdoor statement is false
whenever the committed values of the non-malleable commitments satisfy a spe-
cific condition. With this modification, we can prove the concurrent security of
the OT protocol of [32] without relying on the concurrent security of coin tossing
by following the approach of [15] outlined above.

6 Very roughly speaking, this is because non-malleability allows the man-in-the adver-
sary to obtain replies from the committed-value oracle only in parallel.

7 Actually, non-malleability w.r.t. other protocols [31] is also required, where non-
malleability w.r.t. a protocol Π guarantees non-malleability against man-in-the-
middle adversaries that participates in the non-malleable commitment in the right
interaction and Π in the left interaction.
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Remark 1. It is not straightforward to use the approach of Garg et al. [15] in the
OT protocol of Lin and Pass [32] since its trapdoor statement does not have a
simple witness for the fact that the statement is false. Because of this difficulty,
we do not use non-malleable commitments to commit to a witness; rather, we use
them in such a way that there exists a condition on the committed values of the
non-malleable commitments such that the trapdoor statement is false as long as
this condition holds. For details, see Section 4 (in particular, Definitions 5 and
6 and Claims 3 and 4).

2.2 Composition of OT with OT-hybrid MPC

We next compose our OT protocol with a OT-hybrid UC-secure MPC protocol
(i.e., replace each invocation of the ideal OT functionality in the latter with
an execution of the former), thereby obtaining a MPC protocol in the plain
model. A problem is that the security of the resultant MPC protocol cannot
be derived trivially from those of the components since SPS security does not
guarantee composability. Hence, we prove the security by analyzing the MPC
protocol directly. In essence, what we do is to observe that the security proof
for our OT protocol (which consists of a hybrid argument from the real world
to the ideal world) still works even after the OT protocol is composed with a
OT-hybrid MPC protocol, and in particular we observe that the condition on
the committed values of the non-malleable commitments (which is mentioned in
Section 2.1) remains to hold in each session even after switching the OT-hybrid
MPC protocol in any session to simulation. Fortunately, this can be observed
easily thanks to the non-malleability of the non-malleable commitments, so we
can prove the concurrent security of our MPC protocol under SPS security easily.

3 Preliminaries

We denote the security parameter by n. We assume familiarity with basic cryp-
tographic protocols (e.g., commitment schemes and oblivious transfer protocols).
Some basic notions, terminologies, and definitions (about secret sharing schemes,
commitment schemes, and extractable commitment schemes) are given in Ap-
pendix A.

3.1 Non-malleable Commitment Schemes.

We recall the definition of non-malleable commitment schemes from [31]. Let
〈C,R〉 be a tag-based commitment scheme (i.e., a commitment scheme that
takes a n-bit string—a tag—as an additional input). For any man-in-the-middle
adversary M, consider the following experiment. On input security parameter
1n and auxiliary input z ∈ {0, 1}∗,M participates in one left and one right inter-
actions simultaneously. In the left interaction, M interacts with the committer
of 〈C,R〉 and receives a commitment to value v using identity id ∈ {0, 1}n of its
choice. In the right interaction,M interacts with the receiver of 〈C,R〉 and gives
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a commitment using identity ĩd of its choice. Let ṽ be the value thatM commits
to on the right. If the right commitment is invalid or undefined, ṽ is defined to
be ⊥. If id = ĩd, value ṽ is also defined to be ⊥. Let mim(〈C,R〉,M, v, z) be a
random variable representing ṽ and the view of M in the above experiment.

Definition 1. A commitment scheme 〈C,R〉 is non-malleable if for any ppt
adversary M, the following are computationally indistinguishable.

– {mim(〈C,R〉,M, v, z)}n∈N,v∈{0,1}n,v′∈{0,1}n,z∈{0,1}∗
– {mim(〈C,R〉,M, v′, z)}n∈N,v∈{0,1}n,v′∈{0,1}n,z∈{0,1}∗

The above definition can be generalized naturally so that the adversary gives
multiple commitments in parallel in the right interaction. The non-malleability
in this generalized setting is called parallel non-malleability. (It is known that
this “one-many” definition implies the “many-many” one, where the adversary
receives multiple commitments in the left session [33].)

Robust non-malleability. We next recall the definition of k-robust non-malleability
(a.k.a. non-malleability w.r.t. k-round protocols) [31]. Consider a man-in-the-
middle adversary M that participates in one left interaction—communicating
with a machine B—and one right interaction—communicating with a receiver
a commitment scheme 〈C,R〉. As in the standard definition of non-malleability,

M can choose the identity in the right interaction. We denote by mimB,M
〈C,R〉(y, z)

the random variable consisting of the view of M(z) in a man-in-the-middle ex-
ecution when communicating with B(y) on the left and an honest receiver on
the right, combined with the value M(z) commits to on the right. Intuitively,

〈C,R〉 is non-malleable w.r.t. B if mimB,M
〈C,R〉(y1, z) and mimB,M

〈C,R〉(y2, z) are indis-

tinguishable whenever interactions with B(y1) and B(y2) are indistinguishable.

Definition 2. Let 〈C,R〉 be a commitment scheme and B be a ppt ITM. We say
that a commitment scheme 〈C,R〉 is non-malleable w.r.t. B if the following
holds: For every two sequences {y1n}n∈N and {y2n}n∈N such that y1n, y

2
n ∈ {0, 1}n,

if it holds that for any ppt ITM A,{
〈B(y1n),A(z)〉(1n)

}
n∈N,z∈{0,1}∗ ≈

{
〈B(y2n),A(z)〉(1n)

}
n∈N,z∈{0,1}∗ ,

it also holds that for any ppt man-in-the-middle adversary M,{
mimB,M

〈C,R〉(y1, z)
}
n∈N,z∈{0,1}∗

≈
{

mimB,M
〈C,R〉(y2, z)

}
n∈N,z∈{0,1}∗

.

〈C,R〉 is k-robust if 〈C,R〉 is non-malleable w.r.t. any machine that interacts
with the adversary in k rounds. We define parallel k-robustness naturally.
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Black-box instantiation. There exists a constant-round black-box construc-
tion of a parallel (actually, concurrent) non-malleable commitment scheme based
on one-way functions [20]. In Appendix B, we show that any parallel non-
malleable commitment can be transformed into a parallel k-robust non-malleable
one in the black-box way by using collision-resistant hash functions (more pre-
cisely, by using statistically hiding commitment schemes, which can be con-
structed from collision-resistant hash functions). If k is constant, the round
complexity increases only by a constant factor in this transformation.

3.2 UC Security and Its SPS Variant

We next recall the definition of UC security [4] and its SPS variant [48,2,15]. A
part of the text below is taken from [15].

UC Security. We assume that the readers are familiar with the UC framework.
A brief overview is given in Appendix C. For full details, see [4].

Recall that in the UC framework, the model for protocol execution consists
of the environment Z, the adversary A, and the parties running protocol π.
In this paper, we consider static adversaries and assume the existence of au-
thenticated communication channels. Let EXECπ,A,Z(n, z) denote a random
variable for the output of Z on security parameter n ∈ N and input z ∈ {0, 1}∗
with a uniformly chosen random tape. Let EXECπ,A,Z denote the ensemble
{EXECπ,A,Z(n, z)}n∈N,z∈{0,1}∗ .

The security of a protocol π is defined using the ideal protocol. In the ideal
protocol, all the parties simply hand their inputs to the ideal functionality F ,
which carries out the desired task securely and gives outputs to the parties; the
parties then forward these outputs to Z. The adversary Sim in the execution
of the ideal protocol is often called the simulator. Let π(F) denote the ideal
protocol for functionality F .

We say that a protocol π emulates protocol φ if for any adversary A there
exists an adversary Sim such that no environment Z, on any input, can tell
whether it is interacting with A and parties running π or it is interacting with
Sim and parties running φ. We say that π securely realizes an ideal functionality
F if it emulates the ideal protocol Π(F).

UC Security with Super-polynomial Simulation. UC-SPS security is a
relaxed notion of UC security where the simulator is given access to super-
polynomial computational resources.

Definition 3. Let π and φ be protocols. We say that π UC-SPS-emulates φ if
for any adversary A there exists a super-polynomial-time adversary Sim such
that for any environment Z that obeys the rules of interaction for UC security,
we have EXECφ,Sim,Z ≈ EXECπ,A,Z .

Definition 4. Let F be an ideal functionality and let π be a protocol. We say
that π UC-SPS-realizes F if π UC-SPS-emulates the ideal process Π(F).
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The ideal OT functionality FOT interacts with a sender S and a receiver R.

– Upon receiving a message (sid, sender, v0, v1) from S, where each vi ∈ {0, 1}n,
store (v0, v1).

– Upon receiving a message (sid, receiver, u) from R, where u ∈ {0, 1}, check if
a (sid, sender, . . .) message was previously sent. If yes, send (sid, vu) to R and
(sid) to the adversary Sim and halt. If not, send nothing to R.

Fig. 1. The oblivious transfer functionality FOT .

The multi-session extension of an ideal functionality. When showing
concurrent security of a protocol π under SPS security, we need to construct a
simulator in a setting where parties execute π concurrently. To consider the sim-
ulator in this setting, we use a multi-session extension of an ideal functionality
[8]. Roughly speaking, the multi-session extension F̂ of an ideal functionality F
is a functionally that internally runs multiple copies of F .

4 Our SPS Concurrent OT Protocol

In this section, we prove the following theorem.

Theorem 2. Assume the existence of constant-round semi-honest oblivious trans-
fer protocols and collision-resistant hash functions. Let FOT be the ideal oblivi-
ous transfer functionality (Fig. 1) and F̂OT be its multi-session extension. Then,
there exists a constant-round protocol that UC-SPS realizes F̂OT , and it uses the
underlying primitives in the black-box way.

4.1 Protocol Description

In our protocol, we use the following building blocks.

– A two-round statistically binding commitment Com and a four-round sta-
tistically binding extractable commitment ExtCom, both of which can be
constructed from one-way functions in the black-box way [39,25,46].

– A O(1)-round OT protocol mS-OT that is secure against malicious senders
and semi-honest receivers.8 As shown in [24], such a OT protocol can be
obtained from any semi-honest one in the black-box way.

– A O(1)-round parallel non-malleable commitment NMCom that is parallel
k-robust for sufficiently large constant k. (Concretely, we require that k is
larger than the round complexity of the above three building blocks.) As
remarked in Section 3.1, we show in Appendix B that such a non-malleable
commitment scheme can be constructed from collision-resistant hash func-
tions in the black-box way.

8 We only requires mS-OT to be secure under a game-based definition (which is pre-
served under parallel composition). For details, see the the proofs of Lemma 5 and
Claim 5.
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Our OT protocol ΠOT is described below. As explained in Section 2.1, (1) our
protocol is based on the OT protocol of Lin and Pass [32], which roughly consists
of coin-tossing, semi-honest OT, OT combiner, and cut-and-choose, and (2) our
protocol additionally uses non-malleable commitments, which will be used in the
security proof to argue that the adversary cannot make the “trapdoor statement”
true even in the concurrent setting. Below, we give intuitive explanations in italic.

Inputs: The input to the sender S is v0, v1 ∈ {0, 1}n. The input to the receiver
R is u ∈ {0, 1}.

Stage 1: (Preprocess for cut-and-choose)
1. S commits to a random subset ΓS ⊂ [11n] of size n by using Com.
2. R commits to a random subset ΓR ⊂ [11n] of size n by using Com.
Comment: As in the OT protocol of Lin and Pass [32], the subsets that will
be used in the cut-and-choose stages are committed in advance to prevent
selective opening attacks.

Stage 2:
1. (Coin tossing for S) S commits to random strings aS = (aS1 , . . . , a

S
11n)

by using Com; let dS1 , . . . , d
S
11n be the decommitments. R then sends ran-

dom strings bS = (bS1 , . . . , b
S
11n) to S. S then defines rS = (rS1 , . . . , r

S
11n)

by rSi
def
= aSi ⊕ bSi for each i ∈ [11n] and parses rSi as si,0 ‖ si,1 ‖ τSi for

each i ∈ [11n].
2. (Coin tossing for R) R commits to random strings aR = (aR1 , . . . , a

R
11n)

by using Com; let dR1 , . . . , d
R
11n be the decommitments. S then sends ran-

dom strings bR = (bR1 , . . . , b
R
11n) to R. R then defines rR = (rR1 , . . . , r

R
11n)

by rRi
def
= aRi ⊕ bRi for each i ∈ [11n] and parses rRi as ci ‖ τRi for each

i ∈ [11n].
Stage 3: (mS-OTs with random inputs)

S and R execute 11n instances of mS-OT in parallel. In the i-th instance, S
uses (si,0, si,1) as the input and τSi as the randomness, and R uses ci as the
input and τRi as the randomness, where {si,0, si,1, τSi }i and {ci, τRi }i are the
random coins that were obtained in Stage 2. The output to R is denoted by
s̃1, . . . , s̃11n, which are supposed to be equal to s1,c1 , . . . , s11n,c11n .

Stage 4: (NMCom and ExtCom for checking honesty of R)
1. R commits to (aR1 , d

R
1 ), . . . (aR11n, d

R
11n) using NMCom. Let eR1 , . . . , e

R
11n

be the decommitments.
2. R commits to (aR1 , d

R
1 , e

R
1 ), . . . (aR11n, d

R
11n, e

R
11n) using ExtCom.

Comment: Roughly, the commitments in this stage, along with the cut-and-
choose in the next stage, will be used in the security proof to argue that even
cheating R must behave honestly in most instances of mS-OT in Stage 3.
A key point is that given the values that are committed to in NMCom or
ExtCom in this stage, one can obtain the random coins that R obtained in
Stage 2 and thus can check whether R behaved honestly in Stage 3.

Stage 5: (Cut-and-choose against R)

1. S reveals ΓS by decommitting the Com commitment in Stage 1-1.
2. For every i ∈ ΓS , R reveals (aRi , d

R
i , e

R
i ) by decommitting the i-th

ExtCom commitment in Stage 4.
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3. For every i ∈ ΓS , S checks the following.
– ((aRi , d

R
i ), eRi ) is a valid decommitment of the i-th NMCom commit-

ment in Stage 4.
– (aRi , d

R
i ) is a valid decommitment of the i-th Com commitment in

Stage 2-2.
– R executed the i-th mS-OT in Stage 3 honestly using ci ‖τRi , which

is obtained from rRi = aRi ⊕ bRi as specified by the protocol.

Comment: In other words, for each index that it randomly selected in Stage
1, S checks whether R behaved honestly in Stages 3 and 4 on that index.

Stage 6: (OT combiner) Let ∆ := [11n] \ ΓS .
1. R sends αi := u⊕ ci to S for every i ∈ ∆.
2. S computes a (6n+ 1)-out-of-10n secret sharing of v0, denoted by ρ0 =

(ρ0,i)i∈∆, and computes a (6n + 1)-out-of-10n secret sharing of v1, de-
noted by ρ1 = (ρ1,i)i∈∆. Then, S sends βb,i := ρb,i ⊕ si,b⊕αi to R for
every i ∈ ∆, b ∈ {0, 1}.

3. R computes ρ̃i := βu,i ⊕ s̃i for every i ∈ ∆. Let ρ̃ := (ρ̃i)i∈∆.
Comment: In this stage, S and R execute OT with their true inputs by using
the outputs of mS-OT in Stage 3. Roughly speaking, this stage is secure as
long as most instances of mS-OT in Stage 3 are correctly executed.

Stage 7: (NMCom and ExtCom for checking honesty of S)
1. S commits to (aS1 , d

S
1 ), . . . (aS11n, d

S
11n) using NMCom. Let eS1 , . . . , e

S
11n be

the decommitments.
2. R commits to (aS1 , d

S
1 , e

S
1 ), . . . (aS11n, d

S
11n, e

S
11n) using ExtCom.

Stage 8: (Cut-and-choose against S)
1. R reveals ΓR by decommitting the Com commitment in Stage 1-2.
2. For every i ∈ ΓR, S reveals (aSi , d

S
i , e

S
i ) by decommitting the i-th ExtCom

commitment in Stage 7.
3. For every i ∈ ΓR, R checks the following.

– ((aSi , d
S
i ), eSi ) is a valid decommitment of the i-th NMCom commit-

ment in Stage 7.
– (aSi , d

S
i ) is a valid decommitment of the i-th Com commitment in

Stage 2-1.
– S executed the i-th mS-OT in Stage 3 honestly using si,0 ‖si,1 ‖τSi ,

which is obtained from rSi = aSi ⊕ bSi as specified by the protocol.
Output: R outputs Value(ρ̃, ΓR ∩∆), where Value(·, ·) is the function that is

defined in Fig. 2.
Comment: As in the OT protocol of Lin and Pass [32], a carefully designed
reconstruction procedure Value(·, ·) is used here so that the simulator can
extract correct implicit inputs from cheating S by obtaining sharing that is
sufficiently “close” to ρ̃.

4.2 Simulator SimOT

To prove the security of ΠOT, we consider the following simulator SimOT. Recall
that our goal is to prove that ΠOT US-SPS realizes the multi-session extension
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Reconstruction procedure Value(·, ·): For a sharing s = (si)i∈∆ and a set Θ ⊂ ∆,
the output of Value(s, Θ) is computed as follows. If s is 0.9-close to a valid codeword
w = (wi)i∈∆ that satisfies si = wi for every i ∈ Θ, then Value(s, Θ) is the value
decoded from w; otherwise, Value(s, Θ) = ⊥.

Fig. 2. The function Value(·, ·).

of FOT . We therefore consider a simulator that works against adversaries that
participate in multiple sessions of ΠOT both as senders and as receivers.

Let Z be any environment, A be any adversary that participates in multiple
sessions of ΠOT. Our simulator SimOT internally invokes A and simulates each
of the sessions for A as follows.

When R is corrupted: In a session where the receiver R is corrupted, SimOT

simulates the sender S for A by extracting the implicit input u∗ ∈ {0, 1} from
A. During the simulation, SimOT extracts the committed subset and random
coins in Stages 1 and 2 by brute force; the former extraction is needed to execute
most instances mS-OT in Stage 3 with true randomness (which is crucial to use
their security in the analysis), and the latter extraction is needed to infer what
information A obtained in the mS-OT instances in Stage 3 (which is crucial to
extract the implicit input u∗ ∈ {0, 1} from A).

Concretely, SimOT simulates S for A as follows. From Stage 1 to Stage 5,
SimOT interacts with A in the same way as an honest S except for the following.

– From the Com commitments from A in Stages 1 and 2, the committed subset
ΓR and the committed strings aR = (aR1 , . . . , a

R
11n) are extracted by brute

force.
SimOT then defines rR = (rR1 , . . . , r

R
11n) by rRi

def
= aRi ⊕ bRi for each i ∈ [11n]

and parses rRi as ci ‖ τRi for each i ∈ [11n]. (Notice that rR is the outcome
of the coin-tossing that A must have obtained.)

– In Stage 3, the i-th mS-OT is executed with a random input and true ran-
domness rather than with (si,0, si,1) and τSi for every i 6∈ ΓR.

In Stage 6, SimOT interacts with A as follows.

1. Receive {αi}i∈∆ from A in Stage 6-1.
2. Determine the implicit input u∗ of A as follows. Let I0, I1 be the sets such

that for b ∈ {0, 1} and i ∈ ∆, we have i ∈ Ib if and only if:
– i ∈ ΓR, or
– A did not execute the i-th mS-OT in Stage 3 honestly using ci ‖ τRi as

the input and randomness, or
– ci = b ⊕ αi, and A executed the i-th mS-OT in Stage 3 honestly using
ci ‖τRi as the input and randomness.

Then, define u∗ by u∗
def
= 0 if |I0| ≥ 6n+ 1 and u∗

def
= 1 otherwise. (Roughly,

|Ib| is the number of strings that A can obtain out of {si,b⊕αi
}i∈∆ by re-

quiring S to reveal them in Stage 8, by cheating in mS-OT, or by executing
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mS-OT honestly with input b⊕αi. We remind the readers that {si,b⊕αi
}i∈∆

are the strings that are used to mask ρb = (ρb,i)i∈∆ in Stage 6.)
3. Send u∗ to the ideal functionality and obtains v∗.
4. Subsequently, interact with A in the same way as an honest S assuming that

the inputs to S are vu∗ = v∗ and random v1−u∗ .

From Stage 7 to Stage 8, SimOT interacts with A in the same way as an honest
S except that in Stage 7, an all-zero string is committed in the i-th NMCom
rather than (aSi , d

S
i ) for every i 6∈ ΓR, and an all-zero string is committed in the

i-th ExtCom rather than (aSi , d
S
i , e

S
i ) for every i 6∈ ΓR.

When S is corrupted: In a session where the sender S is corrupted, SimOT

simulates the receiver R for A by extracting the implicit input v∗0 , v
∗
1 from A.

During the simulation, SimOT extracts the committed subset and random coins
in Stages 1 and 2 by brute force; the former extraction is needed to execute
most instances mS-OT in Stage 3 with true randomness (which is crucial to use
their security in the analysis), and the latter extraction is needed to learn what
input A used in the mS-OT instances in Stage 3 (which is crucial to extract the
implicit input v∗0 , v

∗
1 from A).

Concretely, SimOT simulates R for A as follows. SimOT interacts with A in
the same way as an honest R in all the stages except for the following.

– From the Com commitment from A in Stage 1, the committed subset ΓS is
extracted by brute force.

– In Stage 3, the i-th mS-OT is executed with a random input and true ran-
domness rather than with ci and τRi for every i 6∈ ΓS .

– In Stage 4, an all-zero string is committed in the i-th NMCom rather than
(aSi , d

S
i ) for every i 6∈ ΓS , and an all-zero string is committed in the i-th

ExtCom rather than (aSi , d
S
i , e

S
i ) for every i 6∈ ΓS .

– In Stage 6, αi is a random bit rather than αi = u⊕ ci for every i ∈ ∆, and
ρ̃i is not computed for any i ∈ ∆.

Then, SimOT determines the implicit inputs v∗0 , v
∗
1 of A as follows.

1. From the Com commitments from A in Stage 2, extract the committed
strings aS = (aS1 , . . . , a

S
11n) by brute force.

2. Define rS = (rS1 , . . . , r
S
11n) by rSi

def
= aSi ⊕ bSi for each i ∈ [11n] and parse rSi

as si,0 ‖ si,1 ‖ τSi for each i ∈ [11n]. (Notice that rS is the outcome of the
coin-tossing that A must have obtained.)

3. Define ρextb = (ρextb,i )i∈∆ for each b ∈ {0, 1} as follows: ρextb,i
def
= βb,i ⊕ si,b⊕αi

if A executed the i-th mS-OT in stage 3 honestly using si,0 ‖ si,1 ‖ τSi , and

ρextb,i
def
= ⊥ otherwise.

4. For each b ∈ {0, 1}, define v∗b
def
= Value(ρextb , ΓR ∩∆).

Then, SimOT sends v∗0 , v
∗
1 to the ideal functionality.
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4.3 Proof of Indistinguishability

We show the indistinguishability by using a hybrid argument. Before defining
hybrid experiments, we define special messages, which we use in the definitions
of the hybrid experiments. (Essentially, they are the messages on which the
simulator applies brute-force extractions.)

– first special message is the Com commitment in Stage 1-1.
– second special message is the Com commitment in Stage 1-2.
– third special message is the Com commitments in Stage 2-1.
– fourth special message is the Com commitments in Stage 2-2.

Hybrid experiments. Now, we define hybrid experiments. Let m denote an
upper bound on the number of the sessions that A starts. Note that the number
of special messages among m sessions can be bounded by 4m. We order those
4m special messages by the order of their appearances; we use SMk to denote
the k-th special messages, and s(k) to denote the session that SMk belongs to.

We define hybrids H0 and Hk:1, . . . ,Hk:7 (k ∈ [4m]) as follows. (For conve-
nience, in what follows we occasionally denote H0 as H0:7.)

Remark 2 (Rough idea of the hybrids). In the sequence of the hybrid experi-
ments, we gradually modify the read-world experiment to the ideal-world one.
All the experiments (except for H0) involve super-polynomial-time brute-force
extraction, but we make sure that Hk:i (i ∈ [7]) involves brute-force extrac-
tion only until SMk, and it deviates from the previous hybrid only after SMk.
These properties help us prove the indistinguishability of each neighboring hy-
brids because we can think the results of brute-force extraction as non-uniform
advice and use the non-uniform security of the underlying primitives to show
the indistinguishability.9 ♦

Hybrid H0. H0 is the same as the real experiment.
Hybrid Hk:1. Hk:1 is the same as Hk−1:7 except that in session s(k), if S is
corrupted and SMk is first special message,

– the committed subset ΓS is extracted by brute force in Stage 1-1,
– the value committed to in the i-th NMCom commitment in Stage 4 is switched

to an all-zero string for every i 6∈ ΓS , and
– the value committed to in the i-th ExtCom commitment in Stage 4 is switched

to an all-zero string for every i 6∈ ΓS .

Hybrid Hk:2. Hk:2 is the same as Hk:1 except that in session s(k), if S is
corrupted and SMk is first special message, the i-th mS-OT in Stage 3 is executed
with a random input and true randomness for every i 6∈ ΓS .

9 We remark that, unlike Garg et al. [15] (who give a non-black-box constant-round
SPS protocol), we cannot replace brute-force extraction with rewinding extraction
for obtaining polynomial-time hybrids. This is because when considering black-box
constructions, we cannot easily guarantee that brute-force extraction and rewinding
one obtain the same value.
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Hybrid Hk:3. Hk:3 is the same as Hk:2 except that in session s(k), if S is
corrupted and SMk is third special message, the following modifications are made.

1. The committed strings aS = (aS1 , . . . , a
S
11n) are extracted by brute force in

Stage 2-1. Define rS = (rS1 , . . . , r
S
11n) by rSi

def
= aSi ⊕ bSi for each i ∈ [11n],

and parse rSi as si,0 ‖ si,1 ‖ τSi for each i ∈ [11n]. Define ρextb = (ρextb,i )i∈∆ for

each b ∈ {0, 1} as follows: ρextb,i
def
= βb,i⊕si,b⊕αi if A executed the i-th mS-OT

in stage 3 honestly using si,0 ‖si,1 ‖τSi , and ρextb,i = ⊥ otherwise.
2. R outputs Value(ρextu , ΓR ∩∆) rather than Value(ρ̃, ΓR ∩∆). (Recall that u

is the real input to R.)

Hybrid Hk:4. Hk:4 is the same as Hk:3 except that in session s(k), if S is
corrupted and SMk is third special message, αi is a random bit rather than
αi = u ⊕ ci for every i ∈ ∆ in Stage 6-1 and ρ̃i is no longer computed for any
i ∈ ∆ in Stage 6-3.
Hybrid Hk:5. Hk:5 is the same as Hk:4 except that in session s(k), if R is
corrupted and SMk is second special message,

– the committed subset ΓR is extracted by brute force in Stage 1-2,
– the value committed in the i-th NMCom commitment in Stage 7 is switched

to an all-zero string for every i 6∈ ΓR, and
– the value committed in the i-th ExtCom commitment in Stage 7 is switched

to an all-zero string for every i 6∈ ΓR.

Hybrid Hk:6. Hk:6 is the same as Hk:5 except that in session s(k), if R is
corrupted and SMk is second special message, the i-th mS-OT in Stage 3 is
executed with a random input and true randomness for every i 6∈ ΓR.
Hybrid Hk:7. Hk:7 is the same as Hk:6 except that in session s(k), if R is
corrupted and SMk is fourth special message, the following modifications are
made.

1. The committed strings aR = (aR1 , . . . , a
R
11n) are extracted by brute force in

Stage 2-2. Define rR = (rR1 , . . . , r
R
11n) by rRi

def
= aRi ⊕ bRi for each i ∈ [11n],

and parse rRi as ci ‖τRi for each i ∈ [11n]. Define u∗ as follows. Let I0 and I1
be the set such that for b ∈ {0, 1} and i ∈ ∆, we have i ∈ Ib if and only if:

– i ∈ ΓR, or
– A did not execute the i-th mS-OT in Stage 3 honestly using ci ‖ τRi as

the input and randomness, or
– ci = b ⊕ αi, and A executed the i-th mS-OT in Stage 3 honestly using
ci ‖τRi as the input and randomness.

Then, define u∗ by u∗
def
= 0 if |I0| ≥ 6n+ 1 and u∗

def
= 1 otherwise.

2. In Stage 6, ρ1−u∗ is a secret sharing of a random bit rather than that of
v1−u∗ .

We remark that in H4m:7, all the messages from the honest parties and their
output are computed as in SimOT.



18 Sanjam Garg, Susumu Kiyoshima, Omkant Pandey

Indistinguishability of each neighboring hybrids. Below, we show that
each neighboring hybrids are indistinguishable, and additionally show, for tech-
nical reasons, that an invariant condition holds in each session of every hybrid.

First, we define the invariant condition.

Definition 5 (Invariant Condition (when R is corrupted)). For any ses-
sion in which R is corrupted, we say that the invariant condition holds in that
session if the following holds when the cut-and-choose in Stage 5 is accepted.

1. Let (âR1 , d̂
R
1 ), . . . (âR11n, d̂

R
11n) be the values that are committed in NMCom in

Stage 4. Let Ibad ⊂ [11n] be the set such that i ∈ Ibad if and only if

(a) (âRi , d̂
R
i ) is not a valid decommitment of the i-th Com commitment in

Stage 2-2, or
(b) R does not execute the i-th mS-OT in Stage 3 honestly using ĉi ‖ τ̂Ri as

the input and randomness, where ĉi ‖ τ̂Ri is obtained from r̂Ri = âRi ⊕ bRi .
Then, it holds that |Ibad| < n.

Remark 3. Roughly speaking, this condition guarantees that most of the mS-
OTs in Stage 3 are honestly executed using the outcome of the coin tossing,
which in turn guarantees that the cheating receiver’s input can be extracted by
extracting the outcome of the coin tossing. ♦

Remark 4. When Stage 5 is accepted, we also have Ibad ∩ ΓS = ∅ from the
definition of Ibad. ♦

Definition 6 (Invariant Condition (when S is corrupted)). For any ses-
sion in which S is corrupted, we say that the invariant condition holds in that
session if the following hold when the cut-and-choose in Stage 8 is accepted.

1. Let (âS1 , d̂
S
1 ), . . . (âS11n, d̂

S
11n) be the values that are committed in NMCom in

Stage 7. Let Ibad ⊂ [11n] be the set such that i ∈ Ibad if and only if

(a) (âSi , d̂
S
i ) is not a valid decommitment of the i-th Com commitment in

Stage 2-1, or
(b) S does not execute the i-th mS-OT in Stage 3 honestly using ŝi,0 ‖ ŝi,1 ‖ τ̂Si

as the input and randomness, where ŝi,0 ‖ ŝi,1 ‖ τ̂Si is obtained from
r̂Si = âSi ⊕ bSi .

Then, it holds that |Ibad| < 0.1n.

2. For each b ∈ {0, 1}, define ρnmb = (ρnmb,i )i∈∆ as follows: ρnmb,i
def
= βb,i ⊕ ŝi,b⊕αi

if i 6∈ Ibad and ρnmb,i
def
= ⊥ otherwise. Then, for each b ∈ {0, 1}, ρnmb is either

0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρnmb,i for every
i ∈ ΓR or 0.15-far from any such valid codeword.

Remark 5. Roughly speaking, this condition guarantees that the cheating sender’s
input can be extracted from the outcome of the coin tossing. In particular, it
guarantees that the sharing that is computed from the outcome of mS-OTs (i.e.,
the sharing that is computed by the honest receiver) and the sharing that is com-
puted from the outcome of the coin tossing (i.e., the sharing that is computed
by the simulator) are very “close” (see Claim 3 below). ♦
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Remark 6. When Stage 8 is accepted, we also have Ibad ∩ ΓR = ∅ from the
definition of Ibad. ♦

Next, we show that the invariant condition holds in every session in H0 (i.e.,
the real experiment).

Definition 7. We say that A cheats in a session if the invariant condition
does not hold in that session.

Lemma 1. In H0, A does not cheat in every session except with negligible prob-
ability.

Proof. Assume for contradiction that in H0, A cheats in a session with non-
negligible probability. Since the number of the sessions is bounded by a polyno-
mial, there exists a function i∗(·) and a polynomial p(·) such that for infinitely
many n, A cheats in the i∗(n)-th session with probability at least 1/p(n); fur-
thermore, since A cheats only when either R or S is corrupted, in the i∗(n)-th
session either R is corrupted for infinitely many such n or S is corrupted for
infinitely many such n. In both cases, we derive contradiction by using A to
break the hiding property of Com.

Case 1. R is corrupted in the i∗(n)-th session. We show that when A cheats,
we can break the hiding property of the Com commitment in Stage 1-1 (i.e., the
commitment by which ΓS is committed to). From the definition of the invariant
condition (Definition 5), when A cheats, we have |Ibad| ≥ n even though the
cut-and-choose in Stage 5 is accepting (and hence Ibad ∩ ΓS = ∅ as remarked in
Remark 4), where Ibad ⊆ [11n] is the set defined from the committed values of
the NMCom commitments in Stage 4. If we can compute Ibad efficiently, we can
use it to distinguish ΓS from a random subset of size n (this is because a random
subset Γ of size n satisfies Ibad ∩ Γ = ∅ only with negligible probability when
|Ibad| ≥ n), so we can use it to break the hiding property of the commitment to
ΓS . However, Ibad is not efficiently computable since the committed values of the
NMCom commitments are not efficiently computable. We thus first show that
we can “approximate” Ibad by extracting the committed values of the ExtCom
commitments in Stage 4. Details are given below.

First, we observe that if we extract the committed values of the ExtCom com-
mitments in Stage 4 of the i∗(n)-th session, the extracted values, (âR1 , d̂

R
1 , ê

R
1 ), . . . ,

(âR11n, d̂
R
11n, ê

R
11n), satisfy the following condition.

– Let Îbad ⊂ [11n] be a set such that i ∈ Îbad if and only if

1. ((âRi , d̂
R
i ), êRi ) is not a valid decommitment of the i-th NMCom commit-

ment in Stage 4, or
2. (âRi , d̂

R
i ) is not a valid decommitment of the i-th Com commitment in

Stage 2-2, or
3. R does not execute the i-th mS-OT in Stage 3 honestly using ĉi ‖ τ̂Ri as

the input and randomness, where ĉi ‖ τ̂Ri is obtained from r̂Ri = âRi ⊕ bRi .

Then, |Îbad| ≥ n and Îbad ∩ ΓS = ∅ with probability at least 1/2p(n).
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The extracted values satisfy this condition because when A cheats, we have
|Îbad| ≥ n and Îbad∩ΓS = ∅ except with negligible probability. (We have |Îbad| ≥
n since we have Ibad ⊂ Îbad from the definitions of Ibad, Îbad and the binding
property of NMCom. We have Îbad ∩ ΓS = ∅ since when the cut-and-choose in
Stage 5 is accepting, for every i ∈ ΓS the i-th ExtCom commitment is a valid
decommitment of the i-th NMCom commitment, and Ibad ∩ ΓS = ∅.)

Based on this observation, we derive contradiction by considering the follow-
ing adversary ACom against the hiding property of Com.

ACom receives a Com commitment c∗ in which either Γ 0
S or Γ 1

S is com-
mitted, where Γ 0

S , Γ
1
S ⊂ [11n] are random subsets of size n.

Then, ACom internally executes the experiment H0 honestly except that
in the i∗(n)-th session, ACom uses c∗ as the commitment in Stage 1-1 (i.e.,
as the Com commitment in which S commits to a subset ΓS). When the
experiment H0 reaches Stage 4 of the i∗(n)-th session, ACom extracts the
committed values of the ExtCom commitments in this stage by using its
extractability.10 Let Îbad ⊂ [11n] be the set that is defined as above from
the extracted values. Then, ACom outputs 1 if and only if |Îbad| ≥ n and
Îbad ∩ Γ 1

S = ∅.

If ACom receives a commitment to Γ 1
S , ACom outputs 1 with probability at least

1/2p(n) (this follows from the above observation). In contrast, if ACom receives
a commitment to Γ 0

S , ACom outputs 1 with exponentially small probability (this
is because when no information about Γ 1

S is fed into H0, the probability that

|Îbad| ≥ n but Îbad ∩ Γ 1
S = ∅ is exponentially small). Hence, ACom breaks the

hiding property of Com.

Case 2. S is corrupted in the i∗(n)-th session. The proof for this case is similar
to (but a little more complex than) the one for Case 1. Specifically, we show
that if the invariant condition does not hold, we can break the hiding property
of Com in Stage 1-2 by approximating Ibad using the extractability of ExtCom.
We give a formal proof for this case in Appendix D. (A somewhat similar proof
is given as the proof of Claim 4 later.) ut

Finally, we show the indistinguishability between each neighboring hybrids.

Lemma 2. Assume that in Hk−1:7 (k ∈ [4m]), A does not cheat in sessions
s(k), . . . , s(4m) except with negligible probability. Then,

– Hk−1:7 and Hk:1 are indistinguishable, and
– in Hk:1, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Proof. We prove the lemma by using a hybrid argument. Specifically, we consider
the following intermediate hybrid H ′k−1:7.
Hybrid H ′k−1:7. H

′
k−1:7 is the same as Hk−1:7 except that in session s(k), if S

is corrupted and SMk is first special message,

10 This extraction involves rewinding the execution of the whole experiment, i.e., the
executions of the environment, the adversary, and all the other parties.
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– the committed subset ΓS is extracted by brute force in Stage 1-1, and
– the value committed to in the i-th ExtCom commitment in Stage 4 is switched

to an all-zero string for every i 6∈ ΓS .

Claim 1. Assume that in Hk−1:7, A does not cheat in sessions s(k), . . . , s(4m)
except with negligible probability. Then,

– Hk−1:7 and H ′k−1:7 are indistinguishable, and
– in H ′k−1:7, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Proof. We first show the indistinguishability between Hk−1:7 and H ′k−1:7. As-
sume for contradiction that Hk−1:7 and H ′k−1:7 are distinguishable. From an
average argument, we can fix the execution of the experiment up until SMk

(inclusive) in such a way that even after being fixed, Hk−1:7 and H ′k−1:7 are
still distinguishable. As remarked in Remark 2, no brute-force extraction is per-
formed after SMk in Hk−1:7 and H ′k−1:7; hence, by considering the transcript
(including the inputs and randomness of all the parties) and the extracted val-
ues up until SMk as non-uniform advice, we can break the hiding property of
ExtCom as follows.

The adversary AExtCom internally executes Hk−1:7 from SMk using the
non-uniform advice. In Stage 4 of session s(k),AExtCom sends (aRi , d

R
i , e

R
i )i 6∈ΓS

and (0, 0, 0)i 6∈ΓS
to the external committer, receives back ExtCom com-

mitments (in which either (aRi , d
R
i , e

R
i )i 6∈ΓS

or (0, 0, 0)i6∈ΓS
are committed

to), and feeds them into Hk−1:7. After the execution of Hk−1:7 finishes,
AExtCom outputs whatever Z outputs in the experiment.
When AExtCom receives commitments to (aRi , d

R
i , e

R
i )i 6∈ΓS

, the internally
executed experiment is identical with Hk−1:7, whereas when AExtCom re-
ceives a commitments to (0, 0, 0)i6∈ΓS

, the internally executed experiment
is identical with H ′k−1:7. Hence, from the assumption that Hk−1:7 and
H ′k−1:7 are distinguishable (even after being fixed up until SMk), AExtCom

distinguishes ExtCom commitments.

We next show that in H ′k−1:7, A does not cheat in sessions s(k), . . . , s(4m).
Assume for contradiction that in H ′k−1:7, A cheats in one of those sessions, say,
session s(j), with non-negligible probability. Then, from an average argument,
we can fix the execution of the experiment up until SMk (inclusive) in such a
way that even after being fixed, A cheats in session s(j) only with negligible
probability in Hk−1:7 but with non-negligible probability in H ′k−1:7. Then, by
considering the transcript and the extracted values up until SMk as non-uniform
advice, we can break the robust non-malleability of NMCom as follows. (Note
that the ExtCom commitments in sessions s(k), . . . , s(4m) starts only after SMk.)

The man-in-the-middle adversary ANMCom internally executes Hk−1:7
from SMk using the non-uniform advice. In Stage 4 of session s(k),
ANMCom sends (aRi , d

R
i , e

R
i )i 6∈ΓS

and (0, 0, 0)i6∈ΓS
to the external commit-

ter, receives back ExtCom commitments (in which either (aRi , d
R
i , e

R
i )i 6∈ΓS
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or (0, 0, 0)i6∈ΓS
are committed to), and feeds them into Hk−1:7. Also, in

session s(j), ANMCom forwards the NMCom commitments from A to the
external receiver (specifically, the NMCom commitments in Stage 4 if R
is corrupted and in Stage 7 if S is corrupted). After the execution of
Hk−1:7 finishes, ANMCom outputs its view.
The distinguisher DNMCom takes as input the view of ANMCom and the
values committed by ANMCom (which are equal to the values committed
to by A in session s(j) in the internally executed experiment). DNMCom

then outputs 1 if and only if A cheated in session s(j). (Notice that given
the committed values of the NMCom commitments, DNMCom can check
whether A cheated or not in polynomial time.)
When ANMCom receives commitments to (aRi , d

R
i , e

R
i )i 6∈ΓS

, the internally
executed experiment is identical with Hk−1:7, whereas when ANMCom re-
ceives a commitments to (0, 0, 0)i6∈ΓS

, the internally executed experiment
is identical with H ′k−1:7. Hence, from the assumption that A cheats in
session s(j) with negligible probability in Hk−1:7 but with non-negligible
probability in H ′k−1:7, ANMCom breaks the robust non-malleability of
NMCom.

This completes the proof of Claim 1. ut

Claim 2. Assume that in H ′k−1:7, A does not cheat in sessions s(k), . . . , s(4m)
except with negligible probability. Then,

– H ′k−1:7 and Hk:1 are indistinguishable, and
– in Hk:1, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

This claim can be proven very similarly to Claim 1 (the only difference is that we
use the hiding property of NMCom rather than that of ExtCom in the first part,
and use the non-malleability of NMCom rather than its robust non-malleability
in the second part). We therefore give a proof in Appendix D.

This completes the proof of Lemma 2. ut

Lemma 3. Assume that in Hk:1 (k ∈ [4m]), A does not cheat in sessions
s(k), . . . , s(4m) except with negligible probability. Then,

– Hk:1 and Hk:2 are indistinguishable, and
– in Hk:2, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Recall that hybrids Hk:1, Hk:2 differ only in the input and the randomness that
are used in some of the mS-OTs in Stage 3, where those that are derived from
the outcomes of the coin tossing is used in Hk:1 and random inputs and true
randomness are used in Hk:2. Intuitively, we prove this lemma by using the
security of the coin tossing (which is guaranteed by the hiding property of Com)
because it guarantees that the outcome of the coin tossing is pseudorandom. The
proof is quite similar to the proof of Claim 1 (we use the hiding of Com rather
than that of ExtCom), and given in Appendix D.
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Lemma 4. Assume that in Hk:2 (k ∈ [4m]), A does not cheat in sessions
s(k), . . . , s(4m) except with negligible probability. Then,

– Hk:2 and Hk:3 are indistinguishable, and
– in Hk:3, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Proof. Recall that Hk:2 and Hk:3 differ only in that in session s(k) of Hk:3, if
S is corrupted and SMk is third special message, R outputs Value(ρextu , ΓR ∩∆)
rather than Value(ρ̃, ΓR ∩∆).

For proving the lemma, it suffices to show that inHk:3, we have Value(ρextu , ΓR∩
∆) = Value(ρ̃, ΓR ∩ ∆) except with negligible probability. This is because if
Value(ρextu , ΓR ∩ ∆) = Value(ρ̃, ΓR ∩ ∆) holds in Hk:3 except with negligible
probability, Hk:2 and Hk:3 are statistically close, which implies that in Hk:3, A
does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Hence, we show that in Hk:3, we have Value(ρextu , ΓR∩∆) = Value(ρ̃, ΓR∩∆)
except with negligible probability. Since Hk:2 and Hk:3 proceed identically until
the end of session s(k), we have that in Hk:3, A does not cheat in sessions s(k)
except with negligible probability. It thus suffices to show the following two
claims.

Claim 3. For any x = (xi)i∈∆,y = (yi)i∈∆ and a set Θ, we have Value(x, Θ) =
Value(y, Θ) if the following conditions hold.

1. x and y are 0.99-close, and xi = yi holds for every i ∈ Θ.
2. If xi 6= ⊥, then xi = yi.
3. x is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = xi

for every i ∈ Θ or 0.14-far from any such valid codeword.

Claim 4. In Hk:3, if in session s(k) the sender S is corrupted, A does not cheat,
and the session is accepting, the following hold.

1. ρextu and ρ̃ are 0.99-close, and ρextu,i = ρ̃i holds for every i ∈ ΓR ∩∆.
2. If ρextu,i 6= ⊥, then ρextu,i = ρ̃i.
3. ρextu is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi =

ρextu,i for every i ∈ ΓR ∩∆ or 0.14-far from any such valid codeword.

We prove each of the claims below.

Proof (of Claim 3). We consider the following two cases.

Case 1. x is 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies
wi = xi for every i ∈ Θ: First, we observe that y is 0.9-close to w. Since w
is a valid codeword, we have wi 6= ⊥ for every i ∈ ∆; thus, for every i such
that xi = wi, we have xi 6= ⊥. Recall that from the assumed conditions, for
every i such that xi 6= ⊥, we have xi = yi. Therefore, for every i such that
xi = wi, we have yi = wi, which implies that y is 0.9-close to w.
Next, we observe that w satisfies wi = yi for every i ∈ Θ. From the assumed
conditions, we have xi = yi for every i ∈ Θ. Also, from the condition of this
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case, w satisfies wi = xi for every i ∈ Θ. From these two, we have that w
satisfies wi = yi for every i ∈ Θ.
Now, from the definition of Value(·, ·), we have Value(x, Θ) = Value(y, Θ) =
Decode(w).

Case 2. x is 0.14-far from any valid codeword w = (wi)i∈∆ that satisfies
wi = xi for every i ∈ Θ: For any valid codeword w′ = (w′i)i∈∆ that satisfies
w′i = yi for every i ∈ Θ, we observe that y is 0.1-far from w′. Since we
assume that xi = yi holds for every i ∈ Θ, we have w′i = xi for every i ∈ Θ.
Therefore, from the assumption of this case, x is 0.14-far from w′. Now,
since we assume that x and y are 0.99-close, y is 0.1-far from w′.
Now, from the definition of Value(·, ·), we conclude that Value(x, Θ) = Value(y, Θ) =
⊥.

Notice that from the assumed conditions, either Case 1 or Case 2 is true. This
concludes the proof of Claim 3. ut

Proof (of Claim 4). Recall that if A does not cheat in an accepting session in
which S is corrupted, we have the following.

1. Let (âS1 , d̂
S
1 ), . . . (âS11n, d̂

S
11n) be the values committed in NMCom in Stage 7.

Let Ibad ⊂ [11n] be the set that is defined as follows: i ∈ Ibad if and only if
(a) (âSi , d̂

S
i ) is not a valid decommitment of the i-th Com commitment in

Stage 2-1, or
(b) S does not execute the i-th mS-OT in Stage 3 honestly using ŝi,0 ‖ ŝi,1 ‖ τ̂Si

as the input and randomness, where ŝi,0 ‖ ŝi,1 ‖ τ̂Si is obtained from
r̂Si = âSi ⊕ bSi .

Then, it holds that |Ibad| < 0.1n.

2. For each b ∈ {0, 1}, define ρnmb = (ρnmb,i )i∈∆ as follows: ρnmb,i
def
= βb,i ⊕ ŝi,b⊕αi

if i 6∈ Ibad and ρnmb,i
def
= ⊥ otherwise. Then, for each b ∈ {0, 1}, ρnmb is either

0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρnmb,i for every
i ∈ ΓR or 0.15-far from any such valid codeword.

We show that the above two imply all the three conditions in the claim statement.
First, we show that ρextu and ρ̃ are 0.99-close and that ρextu,i = ρ̃i holds for every

i ∈ ΓR∩∆. From the definition of Ibad, we have ρextu,i = ρ̃i for every i 6∈ Ibad (this
is because for every i 6∈ Ibad, A executed the i-th mS-OT in Stage 3 honestly
using the coin obtained in Stage 2-1, which implies that the value s̃i that was
obtained from the i-th mS-OT is equal to the value si,ci that was obtained by
extracting the coin in Stage 2-1 by brute-force). Then, since |Ibad| < 0.1n and
Ibad∩ΓR = ∅ (the latter holds since the session would be rejected otherwise), we
have that ρextu and ρ̃ are 0.99-close and that ρextu,i = ρ̃i holds for every i ∈ ΓR∩∆.

Next, we show that if ρextu,i 6= ⊥ then ρextu,i = ρ̃i. From the definition of ρextu , if
ρextu,i 6= ⊥, A executed the i-th mS-OT in Stage 3 honestly using the coin obtained
in Stage 2-1, so we have ρextu,i = ρ̃i from the argument same as above.

Finally, we show that ρextu is either 0.9-close to a valid codeword w = (wi)i∈∆
that satisfies wi = ρextu,i for every i ∈ ΓR ∩ ∆ or 0.14-far from any such valid
codeword. From the assumption that A does not cheat, it suffices to consider
the following two cases.
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Case 1. ρnmu is 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies
wi = ρnmb,i for every i ∈ ΓR ∩ ∆: In this case, ρextu is 0.9-close to w, and
wi = ρextb,i holds for every i ∈ ΓR. This is because for every i such that
ρnmu,i = wi, we have ρnmu,i 6= ⊥ and thus we have ρnmu,i = ρextu,i from the definition
of ρnmu .

Case 2. ρnmu is 0.15-far from any valid codeword w = (wi)i∈∆ that sat-
isfies wi = ρnmb,i for every i ∈ ΓR ∩∆: In this case, ρextu is 0.14-far from any
valid codeword w′ that satisfies w′i = ρextb,i for every i ∈ ΓR ∩∆. This can be
seen by observing the following: (1) for every i ∈ ΓR ∩∆, we have i 6∈ Ibad
(this is because the session is accepting) and hence ρextu,i = ρnmu,i; (2) therefore,
for any valid codeword w′ that satisfies w′i = ρextb,i for every i ∈ ΓR ∩∆, we
have that w′ also satisfies w′i = ρnmb,i for every i ∈ ΓR ∩∆; (3) then, from the
assumption of this case, ρnmu is 0.15-far from w′; (4) now, since ρnmu and ρextu
are 0.99-close, ρextu is 0.14-far from w′.

This concludes the proof of Claim 4. ut

This concludes the proof of Lemma 4. ut

Lemma 5. Assume that in Hk:3 (k ∈ [4m]), A does not cheat in sessions
s(k), . . . , s(4m) except with negligible probability. Then,

– Hk:3 and Hk:4 are indistinguishable, and
– in Hk:4, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Recall that Hk:3 and Hk:4 differ only in that in session s(k) of Hk:4, if S
is corrupted and SMk is third special message, αi is a random bit rather than
αi = u⊕ ci for every i ∈ ∆ in Stage 6-1. Intuitively, we can prove this lemma by
using the security of mS-OT: For every i 6∈ ΓS , the choice bit ci of the i-th mS-
OT in Stage 3 is hidden from A and hence αi = u⊕ci in Hk:3 is indistinguishable
from a random bit. Formally, we prove this Lemma in the same way as we do
for Claim 1 (we use the security of mS-OT rather than the hiding of ExtCom);
the proof is given in Appendix D.

Lemma 6. Assume that in Hk:4 (k ∈ [4m]), A does not cheat in sessions
s(k), . . . , s(4m) except with negligible probability. Then,

– Hk:4 and Hk:5 are indistinguishable, and
– in Hk:5, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Since hybrids Hk:4, Hk:5 differ only in the values committed to in NMCom and
ExtCom for the indices outside of ΓR, this lemma can be proven identically with
Lemma 2. For completeness, we give a formal proof in Appendix D.

Lemma 7. Assume that in Hk:5 (k ∈ [4m]), A does not cheat in sessions
s(k), . . . , s(4m) except with negligible probability. Then,
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– Hk:5 and Hk:6 are indistinguishable, and
– in Hk:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Since hybrids Hk:5, Hk:6 differ only in the inputs and the randomness that are
used in some of the mS-OTs in Stage 3, this lemma can be proven identically
with Lemma 3 (which in turn can be proven quite similarly to Lemma 2). For
completeness, we give a formal proof in Appendix D.

Lemma 8. Assume that in Hk:6 (k ∈ [4m]), A does not cheat in sessions
s(k), . . . , s(4m) except with negligible probability. Then,

– Hk:6 and Hk:7 are indistinguishable, and
– in Hk:7, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Proof. We prove the lemma by considering the following intermediate hybrids
H ′k:6, H ′′k:6, and H ′′′k:6.
Hybrid H ′k:6. H

′
k:6 is the same as Hk:6 except that in session s(k), if R is

corrupted and SMk is fourth special message, the following modifications are
made.

1. As in Hk:7, the committed strings aR = (aR1 , . . . , a
R
11n) are extracted by

brute force in Stage 2-2, rR = (rR1 , . . . , r
R
11n) is defined by rRi

def
= aRi ⊕ bRi for

each i ∈ [11n], and rRi is parsed as ci ‖ τRi for each i ∈ [11n]. Also, I0, I1,
and u∗ are defined as in Hk:7.

2. In Stage 6, βb,i is a random bit rather than βb,i = ρb,i ⊕ si,b⊕αi
for every

b ∈ {0, 1} and i ∈ ∆ \ Ib. (Recall that, roughly, Ib ⊂ ∆ is the set of indices
on which A could have obtained si,b⊕αi

.)

Hybrid H ′′k:6. H
′′
k:6 is the same as H ′k:6 except that in session s(k), if R is

corrupted and SMk is fourth special message, the following modification is made.

1. In Stage 6, ρ1−u∗ = {ρ1−u∗,i}i∈∆ is a secret sharing of a random bit rather
than that of v1−u∗ .

Hybrid H ′′′k:6. H
′′′
k:6 is the same as H ′′k:6 except that in session s(k), if R is

corrupted and SMk is fourth special message, the following modification is made.

1. In Stage 6, βb,i is βb,i = ρb,i ⊕ si,b⊕αi
rather than a random bit for every

b ∈ {0, 1} and i ∈ ∆ \ Ib.

Notice that H ′′′k:6 is identical with Hk:7.

Claim 5. Assume that in Hk:6, A does not cheat in sessions s(k), . . . , s(4m)
except with negligible probability. Then,

– Hk:6 and H ′k:6 are indistinguishable, and
– in H ′k:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.
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Recall that Hk:6 and H ′k:6 differ only in that in session s(k) of H ′k:6, if R is
corrupted and SMk is fourth special message, βb,i is a random bit rather than
βb,i = ρb,i ⊕ si,b⊕αi for every b ∈ {0, 1} and i ∈ ∆ \ Ib. Intuitively, we can prove
this claim by using the security of mS-OT: For every i ∈ ∆ \ Ib, A executed the
i-th mS-OT honestly with choice bit (1 − b) ⊕ αi, and the sender’s input and
randomness of this mS-OT are not revealed in Stage 8; therefore, the value of
si,b⊕αi

is hidden from A and thus βb,i = ρb,i⊕si,b⊕αi
is indistinguishable from a

random bit. Formally, we prove this claim in the same way as we do for Claim 1
(we use the security of mS-OT rather than the hiding of ExtCom); a formal
proof is given in Appendix D.

Claim 6. Assume that in H ′k:6, A does not cheat in sessions s(k), . . . , s(4m)
except with negligible probability. Then,

– H ′k:6 and H ′′k:6 are indistinguishable, and
– in H ′′k:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Proof. Recall that hybrids H ′k:6, H
′′
k:6 differ only in that in Stage 6, ρ1−u∗ =

{ρ1−u∗,i}i∈∆ is a secret sharing of a random bit rather than that of v1−u∗ .
For proving the lemma, it suffices to show that we have |I1−u∗ | ≤ 6n in H ′k:6

except with negligible probability. This is because if |I1−u∗ | ≤ 6n in H ′k:6, then
β1−u∗,i is a random bit on at least 4n indices and thus ρ1−u∗,i is hidden on at least
4n indices, which implies that H ′k:6 and H ′′k:6 are statistically indistinguishable.
(Statistical indistinguishability between H ′k:6 and H ′′k:6 implies that in H ′′k:6, A
does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.)

Hence, we show that we have |I1−u∗ | ≤ 6n in H ′k:6 except with negligible
probability. Since we assume that A does not cheat in session s(k) except with
negligible probability, it suffices to show that we have either |I0| ≤ 6n or |I1| ≤ 6n
whenever A does not cheat in session s(k). Assume that A does not cheat in
session s(k). Then, since |ΓR| = n and the number of indices on which A does
not execute mS-OT using the outcome of coin-tossing is at most n, we have
|I0 ∩ I1| ≤ 2n. Now, since I0, I1 ⊂ ∆ and thus |I0 ∪ I1| ≤ |∆| = 10n, we have
|I0|+ |I1| ≤ 12n, and hence, we have either |I0| ≤ 6n or |I1| ≤ 6n. ut

Claim 7. Assume that in H ′′k:6, A does not cheat in sessions s(k), . . . , s(4m)
except with negligible probability. Then,

– H ′′k:6 and H ′′′k:6 are indistinguishable, and
– in H ′′′k:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Proof. This claim can be proven identically with Claim 5. ut

This completes the proof of Lemma 8. ut

From Lemmas 2–8, we conclude that the output of H0 and that of H4m:7 are
indistinguishable, i.e., the output of the real world and that of the ideal world
are indistinguishable. This concludes the proof of Theorem 2.
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5 Our SPS Concurrent MPC Protocol

In this section, we prove the following theorem.

Theorem 3. Assume the existence of constant-round semi-honest oblivious trans-
fer protocols and collision-resistant hash functions. Let F be any well-formed
functionality and F̂ be its multi-session extension. Then, there exists a constant-
round protocol that UC-SPS realizes F̂ , and it uses the underlying primitives in
the black-box way.

We focus on the two-party case below (the MPC case is analogues).

Protocol Description. Roughly speaking, we obtain our SPS 2PC protocol by
composing our SPS OT protocol in Section 4 with a UC-secure OT-hybrid 2PC
protocol. Concretely, let ΠOT be our SPS OT protocol in Section 4, and ΠFOT

2PC

be a UC-secure OT-hybrid 2PC protocol with the following property: The two
parties use the OT functionality FOT only at the beginning of the protocol, and
they send only randomly chosen inputs to FOT . Then, we obtain our SPS 2PC
protocol Π2PC by replacing each invocation of FOT in ΠFOT

2PC with an execution
of ΠOT (i.e., the two parties execute ΠOT instead of calling to FOT ), where all
the executions of ΠOT are carried out in a synchronous manner, i.e., in a manner
that the first message of all the executions are sent before the second message
of any execution is sent etc.

As the UC-secure OT-hybrid 2PC protocol, we use the constant-round 2PC
(actually, MPC) protocol of Ishai et al. [28], which makes only black-box use
of pseudorandom generators (which in turn can be obtained in the black-box
way from any semi-honest OT protocol). (The protocol of Ishai et al. [28] itself
does not satisfy the above property, but it can be modified to satisfy it; see
Appendix E.) Since the OT-hybrid protocol of Ishai et al. [28] is a black-box
construction and has only constant number of rounds, our protocol Π2PC is also
a black-box construction and has only constant number of rounds.

Simulator Sim. As in Section 4.2, we consider a simulator that works against
adversaries that participate in multiple sessions of Π2PC. Let Z be any environ-
ment, A be any adversary that participates in multiple sessions of Π2PC. Our
simulator SimOT internally invokes the adversary A, and simulates each of the
sessions by using the simulator of ΠOT (Section 4.2) and that of ΠFOT

2PC as follows.

1. In each execution ofΠOT at the beginning ofΠ2PC, Sim simulates the honest
party’s messages for A in the same way as SimOT.
Recall that SimOT makes a query to FOT during the simulation. When
SimOT makes a query to FOT , Sim sends those queries to the simulator of
ΠFOT

2PC in order to simulate the answer from FOT . (Recall that the simulator

of ΠFOT

2PC simulates FOT for the adversary.)

2. In the execution of ΠFOT

2PC during Π2PC, Sim simulates the honest party’s

messages for A by using the simulator of ΠFOT

2PC , who obtained the queries
to FOT as above.
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We remark that here we use the simulator of ΠFOT

2PC in the setting where multiple

sessions of ΠFOT

2PC are concurrently executed and some super-polynomial-time
computation is performed. However, the use of it in this setting does not cause
any problem because it runs in the black-box straight-line manner.

Proof of Indistinguishability. We show that the output of the environment
in the real world and that in the ideal world are indistinguishable. The proof
proceeds very similarly to the proof for our SPS OT protocol (Section 4). To
simplify the exposition, below we assume that ΠFOT

2PC makes only a single call to

FOT . (The proof can be modified straightforwardly when ΠFOT

2PC makes multiple
calls to FOT .)

Recall that Π2PC is obtained by composing our OT protocol ΠOT with a
OT-hybrid 2PC protocol ΠFOT

2PC . Roughly, we consider a sequence of hybrid ex-
periments in which:

– Each execution of ΠOT is gradually changed to simulation as in the sequence
of hybrid experiments that we considered in the proof of ΠOT (Section 4.3).

– Once the execution of ΠOT in a session of Π2PC is changed to simulation
completely, the execution of ΠFOT

2PC in that session is changed to simulation.

More concretely, we consider hybrids H0 and Hk:1, . . . ,Hk:9 (k ∈ [4m]), where
H0 andHk:1, . . . ,Hk:7 are defined as in Section 4.3, andHk:8 andHk:9 are defined
as follows.
Hybrid Hk:8. Hk:8 is the same as Hk:7 except that in session s(k), if S is
corrupted and SMk is third special message, all the messages of ΠFOT

2PC from R

are generated by the simulator of ΠFOT

2PC . More concretely, the messages of ΠFOT

2PC

from R are generated as follows. Recall that from the definition of Hybrid Hk:3,

the implicit input v∗b
def
= Value(ρextb , ΓR ∩ ∆) (b ∈ {0, 1}) to ΠOT is extracted

from the adversary in session s(k) (as ρextb are computed for both b ∈ {0, 1}).
Now, the messages of ΠFOT

2PC from R are simulated by feeding those extracted

implicit input and the subsequent messages to the simulator of ΠFOT

2PC .
Hybrid Hk:9. Hk:9 is the same as Hk:8 except that in session s(k), if R is
corrupted and SMk is fourth special message, all the messages of ΠFOT

2PC from S

are generated by the simulator of ΠFOT

2PC .

Lemma 9. Assume that in Hk:7 (k ∈ [4m]), A does not cheat in sessions
s(k), . . . , s(4m) except with negligible probability. Then,

– Hk:7 and Hk:8 are indistinguishable, and
– in Hk:8, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Lemma 10. Assume that in Hk:8 (k ∈ [4m]), A does not cheat in sessions
s(k), . . . , s(4m) except with negligible probability. Then,

– Hk:8 and Hk:9 are indistinguishable, and
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– in Hk:9, A does not cheat in sessions s(k), . . . , s(4m) except with negligible
probability.

Lemma 10 can be proven identically with Lemma 9, and Lemma 9 can be
proven quite similarly to Claim 1 (Section 4.3); the only difference is that we
use the security of ΠFOT

2PC rather than the hiding of ExtCom. We give a proof of
Lemma 9 in Appendix D.

By combining Lemmas 9 and 10 with Lemmas 2–8 in Section 4.3, we conclude
that the output of H0 and that of H4m:9 are indistinguishable, i.e., the output of
the real world and that of the ideal world are indistinguishable. This concludes
the proof of Theorem 3.
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A Additional Preliminaries

A.1 Shamir’s Secret Sharing

We first recall Shamir’s secret sharing scheme. (In this paper, we use only the
(6n+1)-out-of-10n version of it.) To compute a (6n+1)-out-of-10n secret sharing
s = (s1, . . . , s10n) of a value v ∈ GF (2n), we choose random a1, . . . , a6n ∈
GF (2n), let p(z)

def
= v + a1z + · · ·+ a6nz

6n, and set si := p(i) for each i ∈ [10n].
Given s, we can recover v by obtaining polynomial p(·) thorough interpolation
and then computing p(0). We use Decode(·) to denote the function that recovers
v from s as above.

For any positive real number x ≤ 1 and any s = (s1, . . . , s10n) and s′ =
(s′1, . . . , s

′
10n), we say that s and s′ are x-close if |{i ∈ [10n] s.t. si = s′i}| ≥

x · 10n. If s and s′ are not x-close, we say that they are (1 − x)-far. Since
the shares generated by (6n+ 1)-out-of-10n Shamir’s secret sharing scheme are
actually a codeword of the Reed-Solomon code with minimum relative distance
0.4, if a (possibly incorrectly generated) sharing s is 0.8-close to a valid codeword
w, we can recover w from s efficiently by using, for example, the Berlekamp-
Welch algorithm.

A.2 Commitment Schemes

Recall that a commitment scheme is a two-party protocol between a committer
and a receiver. We say that a commitment is accepting if the receiver does not
abort in the commit phase, and valid if there exists a value to which the commit-
ment can be decommitted (i.e., if there exists a decommitment that the verifier
accepts in the decommit phase). The committed value of a commitment is the
value to which the commitment can be decommitted. We define the committed
value of an invalid commitment as ⊥.

There exists a two-round statistically binding commitment scheme Com based
on one-way functions [39,25], and it uses the underlying one-way function in a
black-box way.

A.3 Extractable Commitment Schemes

We next recall the definition of extractable commitment schemes from [46].
Roughly speaking, a commitment scheme is extractable if there exists an ex-
pected polynomial-time oracle machine, an extractor, E such that for any adver-
sarial committer C∗ that gives a commitment to honest receiver, the extractor
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EC
∗

extracts the committed value of the commitment from C∗ as long as the
commitment is valid. We note that when the commitment is invalid, E can
output an arbitrary garbage value; this is called over-extraction.

Formally, extractable commitment schemes are defined as follows. A commit-
ment scheme 〈C,R〉 is extractable if there exists an expected polynomial-time
extractor E such that for any ppt committer C∗, the extractor EC

∗
outputs a

pair (τ, σ) that satisfies the following properties.

– τ is identically distributed with the view of C∗ that interacts with an honest
receiver R in the commit phase of 〈C,R〉. Let cτ be the commitment that
C∗ gives in τ .

– If cτ is accepting, then σ 6= ⊥ except with negligible probability.
– If σ 6= ⊥, then it is statistically impossible to decommit cτ to any value other

than σ.

There exists a four-round extractable commitment scheme ExtCom based on
one-way functions [46], and it uses the underlying one-way function in a black-
box way. Furthermore, ExtCom satisfies extractability in a stronger sense: It is
extractable even against adversarial committers that give polynomially many
ExtCom commitments in parallel. (The extractor outputs (τ, σ1, σ2, . . .) for such
committers.)

B Robust Parallel Non-malleable Commitment

We show that any parallel non-malleable commitment can be transformed into
a parallel k-robust non-malleable commitment for any constant k. If the original
parallel non-malleable commitment is a black-box construction and has a con-
stant number of rounds, the resultant parallel k-robust one is also a black-box
construction and has a constant number of rounds.

Theorem 4. Assume the existence of collision-resistant hash functions and a
r-round parallel non-malleable commitment scheme. Then, for any k ∈ N there
exists a O(r + k)-round parallel k-robust non-malleable commitment scheme,
and it uses the underlying collision-resistant hash functions and non-malleable
commitment schemes in the black-box way.

B.1 Protocol Description

In the protocol, we use the following building blocks.

– Any parallel non-malleable commitment scheme NMCom.
– The four-round statistically hiding extractable commitment scheme ExtComSH

described in Figure 3.11 We remark that the extractor for ExtComSH obtains
the committed value of a commitment by rewinding the committer and send-
ing new receiver challenge to it repeatedly.
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Let ComSH be a two-round statistically hiding commitment scheme, which can be
obtained from collision-resistant hash functions in the black-box way [40,12].

Commit Phase The committer C and the receiver R receive common inputs
1n. To commit to v ∈ {0, 1}n, the committer C does the following with the receiver
R.

commit stage.
For each i ∈ [n], the committer C chooses a pair of random n-bit strings
(a0i , a

1
i ) such that a0i ⊕ a1i = v. Then, for each i ∈ [n] in parallel, C commits

to a0i and a1i by using ComSH. For each i ∈ [n] and b ∈ {0, 1}, let cbi be the
commitment to abi .

challenge stage.
R sends random n-bit string e = (e1, . . . , en) to C.

reply stage.
For each i ∈ [n], C decommits ceii to aeii .

Decommit Phase C sends v to R and decommits cbi to abi for all i ∈ [n] and
b ∈ {0, 1}. R checks whether a01 ⊕ a11 = · · · = a0n ⊕ a1n = v.

Fig. 3. The statistically hiding extractable commitment scheme ExtCom.

Our parallel k-robust non-malleable commitment is described below.

Inputs: Common inputs 1n and id ∈ {0, 1}n are given to the committer C and
the receiver R. The committer C also takes a secret input v ∈ {0, 1}n.

Stage 1: R chooses a random subset Γ ⊂ [10n] of size n and commits to it by
using ExtComSH.

Stage 2: C computes a (n+ 1)-out-of-10n secret sharing of v, denoted by ρ =
(ρ1, . . . , ρ10n). Then, for each i ∈ [10n] in parallel, C commits to ρi by using
NMCom with tag id. Let d1, . . . , d10n be the decommitments.

Stage 3: For each i ∈ [10n] in parallel, C commits to (ρi, di) by using NMCom
with tag id.

Stage 4: For each j ∈ [k + 1] in sequence, C does the following.

– For each i ∈ [10n] in parallel, C commits to (ρi, di) by using ExtComSH.

For each j ∈ [k + 1], we call the j-th parallel ExtComSH commitments the
j-th ExtComSH row.

Stage 5:

1. R reveals Γ by decommitting the ExtComSH commitment in Stage 1.
2. For every i ∈ Γ , C reveals (ρi, di) by decommitting the i-th NMCom

commitment in Stage 3.
3. For every i ∈ Γ and j ∈ [k + 1], C decommits the i-th commitment in

the j-th ExtComSH row to (ρi, di).

11 ExtComSH satisfies extractability w.r.t. opening, which guarantees that any committer
cannot open a commitment to a value that is different from the extracted value.
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4. For every i ∈ Γ , R checks whether (ρi, di) is a valid decommitment of
the i-th NMCom commitment in Stage 2.

Decommit Phase:

1. C sends v to R, and also reveals ρ = (ρ1, . . . , ρ10n) by decommitting the
NMCom commitments in Stage 2.

2. R accepts the decommitment if and only if Value(ρ, Γ ) is equal to v,
where Value(·, ·) is the function that is defined in Fig. 2 (Section 4.1).

We remark that from the definition of the decommitment phase, the commit-
ted value of our robust parallel non-malleable commitment is defined as follows.

Definition 8. Let ρ = (ρ1, . . . , ρ10n) be the shares that are committed in the
NMCom commitment in Stage 2. Then, the committed value of the above scheme
is Value(ρ, Γ ), where Γ is the subset that is revealed in Stage 5.

B.2 Proof of Parallel Non-malleability

We first show that the commitment scheme in Appendix B.1 is parallel non-
malleable. For simplicity, we prove only standard non-malleability below; parallel
non-malleability can be proven analogously.

For any man-in-the-middle adversary M, we consider a sequence of hybrid
experiments in which the non-malleability experiment is gradually modified so
that the commitment in the left interaction does not contain any information
about the committed value in the last hybrid.

Hybrid H0. H0 is the same as the real non-malleability experiment (see Sec-
tion 3.1). Recall that the output of the experiment is the view of M and the
value that it committed in the right interaction.

Hybrid H1. H1 is the same as H0 except that the committed value of the right
interaction is defined differently.

– If the NMCom commitments in Stage 2 of the right interaction do not “over-
lap” with the receiver challenge messages of the ExtComSH commitment in
Stage 1 of the left interaction (i.e.,M does not receive the message e of that
ExtComSH commitment in the left interaction while giving those NMCom
commitments in the right interaction), the committed value of the right in-
teraction is defined as before (i.e., as per Definition 8).

– Otherwise, the committed value of the right interaction is defined as follows.
Let (ρ1, d1), . . . , (ρ10n, d10n) be the values that are committed in the NMCom
commitment in Stage 3 of the right interaction. For each i ∈ [10n], define ρ̃i
by ρ̃i := ρi if (ρi, di) is a valid decommitment of the i-th NMCom commit-
ment in Stage 2, and by ρ̃i := ⊥ otherwise. Then, the committed value of
the right interaction is defined as Value(ρ̃, Γ ), where ρ̃ := (ρ̃1, . . . , ρ̃10n).
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In what follows, we use the main NMCom row to denote the NMCom com-
mitments that are used to define the committed values of the right interaction.
Hence, in H1, the main NMCom row is the NMCom commitments in Stage 2 if
the committed value of the right interaction is defined as per Definition 8, and
it is the NMCom commitments in Stage 3 otherwise.

Lemma 11. The output of H1 is statistically indistinguishable from that of H0.

Proof. From the definition of H1, it suffices to show that we have

Value(ρ̃, Γ ) = Value(ρ, Γ ) (1)

whenever the right interaction is accepted. To prove Equality (1), we use Claim 3
in Section 4.3. In fact, Claim 3 implies that to prove Equality (1), it suffice to
show that ρ̃ and ρ satisfy the following conditions whenever the right interaction
is accepted.

1. ρ̃ and ρ are 0.99-close, and ρ̃i = ρi holds for every i ∈ Γ .
2. If ρ̃i 6= ⊥, then ρ̃i = ρi.
3. ρ̃ is either 0.9-close to a valid codeword w = (wi)i∈[10n] that satisfies wi = ρ̃i

for every i ∈ Γ or 0.14-far from any such valid codeword.

Now, we observe that ρ̃ and ρ indeed satisfy those conditions whenever the right
interaction is accepted.

1. They satisfy the first condition because of the hiding property of ExtComSH

in Stage 1 of the right interaction. Indeed, (1) because of the check in Stage
5, ρ̃ and ρ satisfy ρ̃i = ρi for every i ∈ Γ when the right interaction is
accepted, and (2) since the subset Γ that is committed in Stage 1 of the
right interaction is statistically hidden, the probability that ρ̃ and ρ is 0.01-
far but satisfy ρ̃i = ρi for every i ∈ Γ is exponentially small.

2. They satisfy the second condition because of the definition of ρ̃.
3. They satisfy the third condition because of, again, the hiding property

of ExtComSH in Stage 1 of the right interaction. Indeed, since Γ is sta-
tistically hidden, the probability that ρ̃ is 0.86-close to a valid codeword
w = (wi)i∈[10n] that satisfies wi = ρ̃i for every i ∈ Γ but ρ̃ is also 0.1-far
from w is exponentially small.

Hence, we conclude that we have Equation (1) whenever the right interaction is
accepted. ut

Hybrid H2. H2 is the same as H1 except that in the left interaction, the com-
mitted value of the ExtComSH commitment in Stage 1 is extracted by using its
extractor (let Γ̃ be the extracted value), and the experiment is aborted if the
value revealed in Stage 5 is different from the extracted value.

Lemma 12. The output of H2 is statistically indistinguishable from that of H1.
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Proof. From the definition of H2, it suffices to show that the subset extracted in
Stage 1 of the left session is equal to the subset revealed in Stage 5 except with
negligible probability. This follows directly from the extractability of ExtComSH.

ut

Remark 7. Since the extraction from a ExtComSH commitment involves rewind-
ing of the committer, in H2 the man-in-the-middle adversaryM is rewound, and
hence the right interaction is also rewound. However, the main NMCom row of
the right interaction is either fully rewound (i.e., restarted from its first message)
or not rewound at all. (This is because, from its definition, the main NMCom
row does not overlap with the receiver challenge message of the ExtComSH com-
mitment in Stage 1 of the left interaction.) We will use this property below.

Hybrid H3. H3 is the same as H2 except that in the left interaction, the value
committed in the i-th commitment of the j-th ExtComSH row is switched to
0|(ρi,di)| for every i ∈ Γ̃ and j ∈ [k + 1].

Lemma 13. The output of H3 is statistically indistinguishable from that of H2.

Proof. The indistinguishability follows directly from the statistical hiding prop-
erty of ExtComSH. (Since ExtComSH is statistically hiding, we can argue that the
committed value of the right interaction in H3 is indistinguishable from that in
H2.) ut

Hybrid H4. H4 is the same as H3 except that in Stage 3 of the left interaction,
the value committed in the i-th NMCom commitment is switched to 0|(ρi,di)| for
every i ∈ Γ̃ .

Lemma 14. The output of H4 is computationally indistinguishable from that of
H3.

Proof. The indistinguishability follows directly from the parallel non-malleability
of NMCom. Specifically, by using the parallel non-malleability of NMCom, we can
argue that the joint distribution of the view of M and the committed values of
the main NMCom row in H4 is indistinguishable from that in H3. (When argu-
ing this indistinguishability, we use the fact that the main NMCom row is either
fully rewound or not rewound at all. See Remark 7.) Now, since the committed
value of the right interaction can be computed efficiently from the committed
values of the main NMCom row, we can conclude that the output of H4 is also
indistinguishable from that of H3. ut

Hybrid H5. H5 is the same as H4 except that in Stage 2 of the left interaction,
the value committed in the i-th NMCom commitment is switched to 0|ρi| for
every i ∈ Γ̃ .

Lemma 15. The output of H5 is computationally indistinguishable from that of
H4.
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Proof. This lemma can be proven identically with Lemma 14. ut

Now, we observe that from the security of Shamir’s secret sharing scheme, the
left interaction no longer contains any information about the committed value
in H5. Hence, from the above lemmas, we conclude that the output of the non-
malleability experiment changes only indistinguishably when the value commit-
ted in the left interaction changes. This concludes the proof of non-malleability.

B.3 Proof of Parallel Robust Non-malleability

We next show that the commitment scheme in Appendix B.1 is parallel k-robust.
Again, for simplicity we prove only standard k-robustness below; parallel k-
robustness can be proven analogously.

For any man-in-the-middle adversary M, we consider the following hybrid
experiments.

Hybrid H0. H0 is the same as the real robust non-malleability experiment (see
Section 3.1). Recall that M interacts with a machine B in k rounds in the left
interaction and with a receiver of the non-malleable commitment in the right
interaction, and the output of the experiment is the view of M and the value
that M committed in the right interaction.

Hybrid H1. H1 is the same as H0 except for the following.

– In the right interaction, we say that a ExtComSH row is good if it does not
“overlap” with any of the k messages in the left interaction (i.e., if M does
not receive any message in the left interaction while giving that ExtComSH

row in the right interaction). Notice that we always have at least one good
ExtComSH row since there are k + 1 ExtComSH rows in total.
Then, in H1, the committed values of the first good ExtComSH row are
extracted by using its extractor. Let be (ρ1, d1), . . . , (ρ10n, d10n) be the ex-
tracted values. We remark that, even though the extraction from a ExtComSH

row involves rewinding the man-in-the-middle adversaryM, in H1 it is per-
formed in such a way that the left interaction is not rewound. Extracting in
this way is possible since a good ExtComSH row does not overlap with any
message in the left interaction.12

– For each i ∈ [10n], define ρ̃i by ρ̃i := ρi if (ρi, di) is a valid decommitment
of the i-th NMCom commitment in Stage 2, and by ρ̃i := ⊥ otherwise.
Then, the committed value of the right interaction is defined as Value(ρ̃, Γ )
rather than as per Definition 8, where ρ̃ := (ρ̃1, . . . , ρ̃10n).

Notice that the output of H1 is computed in polynomial time.

12 Specifically, if M requests a message in the left interaction after being rewound,
the extractor stops the interaction with M on the current “thread” and rewinds it
again. One can show that the expected number of rewinding is still bounded by a
polynomial as long as the extraction is applied to a good ExtComSH row.
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Lemma 16. The output of H0 is statistically indistinguishable from that of H1.

This lemma can be proven almost identically with Lemma 11. For completeness,
we give a proof below.

Proof. From the definition of H1, it suffices to show that we have

Value(ρ̃, Γ ) = Value(ρ, Γ ) (2)

whenever the right interaction is accepted. To prove Equality (2), we use Claim 3
in Section 4.3. In fact, Claim 3 implies that to prove Equality (2), it suffice to
show that ρ̃ and ρ satisfy the following conditions whenever the right interaction
is accepted.

1. ρ̃ and ρ are 0.99-close, and ρ̃i = ρi holds for every i ∈ Γ .
2. If ρ̃i 6= ⊥, then ρ̃i = ρi.
3. ρ̃ is either 0.9-close to a valid codeword w = (wi)i∈[10n] that satisfies wi = ρ̃i

for every i ∈ Γ or 0.14-far from any such valid codeword.

Now, we observe that ρ̃ and ρ indeed satisfy those conditions whenever the right
interaction is accepted.

1. They satisfy the first condition because of the hiding property of ExtComSH

in Stage 1 of the right interaction. Indeed, (1) because of the check in Stage
5 and the extractability of ExtComSH, ρ̃ and ρ satisfy ρ̃i = ρi for every
i ∈ Γ when the right interaction is accepted, and (2) since the subset Γ that
is committed in Stage 1 of the right interaction is statistically hidden, the
probability that ρ̃ and ρ is 0.01-far but satisfy ρ̃i = ρi for every i ∈ Γ is
exponentially small.

2. They satisfy the second condition because of the definition of ρ̃.
3. They satisfy the third condition because of, again, the hiding property

of ExtComSH in Stage 1 of the right interaction. Indeed, since Γ is sta-
tistically hidden, the probability that ρ̃ is 0.86-close to a valid codeword
w = (wi)i∈[10n] that satisfies wi = ρ̃i for every i ∈ Γ but ρ̃ is also 0.1-far
from w is exponentially small.

Hence, we conclude that we have Equation (2) whenever the right interaction is
accepted. ut

Notice that, since the output of H1 can be computed in polynomial time, the
output of H1 changes only indistinguishably when the left interaction changes
indistinguishably. Furthermore, from the above lemma, the same holds w.r.t. the
output of H0. This concludes the proof of k-robustness.

C UC Security and Its SPS Variant

We recall the definition of UC security [4] and its SPS variant [48,2,15]. A part
of the text below is taken from [15].
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C.1 UC Security

We briefly recall the UC framework. For full details, see [4].

Model for protocol execution. The model for protocol execution consists of an
environment Z, an adversary A, and the parties running protocol π. In the
execution of the protocol, the environment Z is first invoked on external input
z. The environment Z adaptively gives inputs to the parties and receives outputs
from them. In addition, Z communicates freely with A throughout the execution
of the protocol. On inputs from Z, the parties execute π by sending messages
to each other. The adversary A sees all communications between the parties
and controls the schedule of the communications. In addition, A can corrupt
parties. After corruption, A receives all internal information of the corrupted
parties. Moreover, from now on, A can fully control the corrupted parties. In
this paper, we assume that there exist authenticated communication channels.
Thus, the adversary cannot change the contents of messages sent by the honest
parties. In addition, in this paper we consider only static adversaries. In other
words, we assume that the adversary corrupts parties only at the beginning
of the protocol execution. The protocol execution ends when Z outputs a bit.
Let EXECπ,A,Z(n, z) denote a random variable for the output of Z on security
parameter n ∈ N and input z ∈ {0, 1}∗ with a uniformly-chosen random tape.
Let EXECπ,A,Z denote the ensemble {EXECπ,A,Z(n, z)}n∈N,z∈{0,1}∗ .

The security of a protocol π is defined using the ideal protocol. In the execu-
tion of the ideal protocol, all the parties simply hand their inputs to the ideal
functionality F . The ideal functionality F carries out the desired task securely
and gives outputs to the parties. The parties simply forward these outputs to
Z. Let dummy parties denote the parties in the ideal protocol. The adversary
Sim in the execution of the ideal protocol is often called the simulator. Let π(F)
denote the ideal protocol for functionality F .

Securely realizing an ideal functionality. We say that a protocol π emulates
protocol φ if for any adversary A there exists an adversary Sim such that no
environment Z, on any input, can tell with non-negligible probability whether
it is interacting with A and parties running π or it is interacting with Sim and
parties running φ. This means that, from the point of view of the environment,
running protocol π is just as good as interacting with φ. We say that π securely
realizes an ideal functionality F if it emulates the ideal protocol Π(F). More
precise definitions follow. A distribution ensemble is called binary if it consists
of distributions over {0, 1}.

Definition 9. Let π and φ be protocols. We say that π UC-emulates φ if for
any adversary A there exists an adversary Sim such that for any environment
Z that obeys the rules of interaction for UC security, we have EXECφ,Sim,Z ≈
EXECπ,A,Z .

Definition 10. Let F be an ideal functionality and let π be a protocol. We say
that π UC-realizes F if π UC-emulates the ideal process Π(F).
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C.2 UC Security with Super-polynomial Simulation

We next provide a relaxed notion of UC security by giving the simulator access
to super-polynomial computational resources.

Definition 11. Let π and φ be protocols. We say that π UC-SPS-emulates φ if
for any adversary A there exists a super-polynomial-time adversary Sim such
that for any environment Z that obeys the rules of interaction for UC security,
we have EXECφ,Sim,Z ≈ EXECπ,A,Z .

Definition 12. Let F be an ideal functionality and let π be a protocol. We say
that π UC-SPS-realizes F if π UC-SPS-emulates the ideal process Π(F).

The multi-session extension of an ideal functionality. When showing concurrent
security of a protocol π under SPS security, we need to construct a simulator
in a setting where parties execute π concurrently. (In other words, unlike in UC
security, we cannot rely on the composition theorem in SPS security.)

To consider the simulator in such a setting, we use a multi-session extension
of an ideal functionality. Let F be an ideal functionality. Recall that F expects
each incoming message to contain a special field consisting of its session ID
(SID). All messages received by F are expected to have the same SID. (Messages
that have different SIDs than that of the first message are ignored.) Similarly,
all outgoing messages generated by F carry the same SID.

Below, we recall multi-session extension of an ideal functionality from [8].
The multi-session extension of F , denoted by F̂ , is defined as follows. F̂ expects
each incoming message to contain two special fields. The first is the usual SID
field as in any ideal functionality. The second field is called the sub-session ID
(SSID) field. Upon receiving a message (sid, ssid, v) (where sid is the SID, ssid
is the SSID, and v is an arbitrary value or list of values), F̂ first verifies that
sid is the same as that of the first message, otherwise the message is ignored.
Next, F̂ checks if there is a running copy of F whose session ID is ssid. If so,
then F̂ activates that copy of F with incoming message (ssid, v), and follows the
instructions of this copy. Otherwise, a new copy of F is invoked (within F̂) and
immediately activated with input (ssid, v). From now on, this copy is associated
with sub-session ID ssid. Whenever a copy of F sends a message (ssid, v′) to
some party Pi, F̂ sends (sid, ssid, v′) to Pi, and sends ssid to the adversary.
(Sending ssid to the adversary implies that F̂ does not hide which copy of F is
being activated within F̂ .)

D Omitted Proofs

D.1 The Second Half of Proof of Lemma 1

Case 2. S is corrupted in the i∗(n)-th session. We show that when A cheats,
we can break the hiding property of the Com commitment in Stage 1-2 (i.e., the
commitment by which ΓR is committed to). From the definition of the invariant
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condition (Definition 6), when A cheats, we have Ibad ∩ ΓR = ∅ and either
|Ibad| ≥ 0.1n or ∃b ∈ {0, 1} s.t. ρnmb is 0.85-close to but 0.1-far from a valid
codeword w = (wi)i∈∆ that satisfies wi = ρnmb,i for every i ∈ ΓR, where Ibad
and ρnmb are defined from the committed values of the NMCom commitments in
Stage 7. Similar to Case 1, we first show that we can “approximate” Ibad and
ρnmb by extracting the committed values of the ExtCom commitments in Stage 7
using its extractability.

First, we observe that if we extract the committed values of the ExtCom com-
mitments in Stage 7 of the i∗(n)-th session, the extracted values, (âS1 , d̂

S
1 , ê

S
1 ), . . . ,

(âS11n, d̂
S
11n, ê

S
11n), satisfy the following.

– Let Îbad ⊂ [11n] be a set such that i ∈ Îbad if and only if

1. ((âS1 , d̂
S
1 ), êS1 ) is not a valid decommitment of the i-th NMCom commit-

ment in Stage 7, or
2. (âSi , d̂

S
i ) is not a valid decommitment of the i-th Com commitment in

Stage 2-1, or
3. S does not execute the i-th mS-OT in Stage 3 honestly using ŝi,0 ‖ ŝi,1 ‖ τ̂Si

as the input and randomness, where ŝi,0 ‖ ŝi,1 ‖ τ̂Si is obtained from
r̂Si = âSi ⊕ bSi .

Also, for each b ∈ {0, 1}, let ρ̂b = (ρ̂b,i)i∈∆ be defined as follows: ρ̂b,i
def
=

βb,i ⊕ ŝi,b⊕αi
if i 6∈ Îbad and ρ̂b,i

def
= ⊥ otherwise. Then, we have

• Îbad ∩ ΓR = ∅, and
• either |Îbad| ≥ 0.1n or there exists b ∈ {0, 1} such that ρ̂b is 0.8-close to

but 0.1-far from a valid codeword w = (wi)i∈∆ that satisfies wi = ρ̂b,i
for every i ∈ ΓR

with probability at least 1/2p(n).

More precisely, we observe that when A cheats in the i∗(n)-th session, the ex-
tracted values satisfied the above condition except with negligible probability.
Recall that when A cheats, the cut-and-choose in Stage 8 is accepting but we
have

– |Ibad| ≥ 0.1n, or
– ∃b ∈ {0, 1} s.t. ρnmb is 0.85-close to but 0.1-far from a valid codeword w =

(wi)i∈∆ that satisfies wi = ρnmb,i for every i ∈ ΓR.

Also, notice that we have Îbad ∩ ΓR = ∅ when the cut-and-choose in Stage 8 is
accepting, and have |Îbad| ≥ 0.1n when |Ibad| ≥ 0.1n (this is because we have
Ibad ⊆ Îbad from the definitions of Ibad, Îbad). Hence, to show that the extracted
values satisfy the above condition when A cheats, it suffices to show that when
∃b∗ ∈ {0, 1} s.t. ρnmb∗ is 0.85-close to but 0.1-far from a valid codeword w =

(wi)i∈∆ that satisfies wi = ρnmb∗,i for every i ∈ ΓR, we have either |Îbad| ≥ 0.1n or
ρ̂b∗ is 0.8-close to but 0.1-far from w and satisfies wi = ρ̂b∗,i for every i ∈ ΓR.
This can be shown as follows.

– If |Îbad| ≥ 0.1n, we are done.
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– If |Îbad| < 0.1n, we have that ρ̂b∗ is 0.8-close to but 0.1-far from w and
satisfies wi = ρ̂b∗,i for every i ∈ ΓR. This is because if |Îbad| < 0.1n,

1. ρ̂b∗ is 0.8-close to w since it is 0.99-close to ρnmb∗ when |Îbad| < 0.1n, and
ρnmb∗ is 0.85-close to w,

2. ρ̂b∗ is 0.1-far from w since for every i such that ρnmb∗,i 6= wi, we have
ρ̂b∗,i 6= wi from the definition of ρ̂, and

3. ρ̂b∗ satisfies wi = ρ̂b∗,i for every i ∈ ΓR since we have ρ̂b∗,i = ρnmb∗,i for
every i ∈ ΓR when the cut-and-choose in Stage 8 is accepting, and ρnmb∗
satisfies wi = ρnmb∗,i for every i ∈ ΓR.

Based on this observation, we derive contradiction by considering the follow-
ing adversary ACom against the hiding property of Com.

ACom receives a Com commitment c∗ in which either Γ 0
R or Γ 1

R is com-
mitted, where Γ 0

R, Γ
1
R ⊂ [11n] are random subsets of size n.

Then, ACom internally executes the experiment H0 honestly except that
in the i∗(n)-th session, ACom uses c∗ as the commitment in Stage 1-2 (i.e.,
as the Com commitment in which R commits to a subset ΓR). When the
experiment H0 reaches Stage 7 of the i∗(n)-th session, ACom extracts the
committed values of the ExtCom commitments in this stage by using its
extractability. Let Îbad and ρ̂b (b ∈ {0, 1}) be defined as above from the
extracted values. Then, ACom outputs 1 if and only if
– Îbad ∩ Γ 1

R = ∅, and

– either |Îbad| ≥ 0.1n or there exists b ∈ {0, 1} such that ρ̂b is 0.8-
close to but 0.1-far from a valid codeword w = (wi)i∈∆ that satisfies
wi = ρ̂b,i for every i ∈ Γ 1

R.

When ACom receives a commitment to Γ 1
R, ACom outputs 1 with probability

1/2p(n) (this follows from the above observation). It thus suffices to see that
when ACom receives a commitment to Γ 0

R, ACom outputs 1 with exponentially
small probability. This can be seen by observing that when no information about
Γ 1
S is fed into H0, the following probabilities are exponentially small.

1. the probability that |Îbad| ≥ 0.1n but Îbad ∩ Γ 1
R = ∅

2. the probability that there exists b ∈ {0, 1} such that ρ̂b is 0.8-close to but
0.1-far from a valid codeword w = (wi)i∈∆ that satisfies wi = ρ̂b,i for every
i ∈ Γ 1

R

Hence, ACom breaks the hiding property of Com.

D.2 Proof of Claim 2

Proof. We first notice that the indistinguishability between H ′k−1:7 and Hk:1

can be shown as in the proof of Claim 1. (The only difference is that we use the
hiding property of NMCom rather than that of ExtCom.)

We next show that in Hk:1, A does not cheat in sessions s(k), . . . , s(4m). As-
sume for contradiction that in Hk:1, A cheats in one of those sessions, say, session
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s(j), with non-negligible probability. Then, from an average argument, we can
fix the execution of the experiment up until SMk (inclusive) in such a way that
even after being fixed, A cheats in session s(j) only with negligible probability
in H ′k−1:7 but with non-negligible probability in Hk:1. Then, by considering the
transcript and the extracted values up until SMk as non-uniform advice, we can
break the non-malleability of NMCom as follows.

The man-in-the-middle adversary ANMCom internally executes H ′k−1:7
from SMk using the non-uniform advice. In Stage 4 of session s(k),
ANMCom sends (aRi , d

R
i )i 6∈ΓS

and (0, 0)i 6∈ΓS
to the external committer,

receives back NMCom commitments (in which either (aRi , d
R
i )i 6∈ΓS

or
(0, 0)i 6∈ΓS

are committed to), and feeds them into H ′k−1:7. Also, in ses-
sion s(j), ANMCom forwards the NMCom commitments from A to the
external receiver (specifically, the NMCom commitments in Stage 4 if R
is corrupted and in Stage 7 if S is corrupted). After the execution of
H ′k−1:7 finishes, ANMCom outputs its view.
The distinguisher DNMCom takes as input the view of ANMCom and the
values committed by ANMCom (which are equal to the values committed
to by A in session s(j) in the internally executed experiment). DNMCom

then outputs 1 if and only if A cheated in session s(j).
When ANMCom receives commitments to (aRi , d

R
i )i 6∈ΓS

, the internally ex-
ecuted experiment is identical with H ′k−1:7, whereas when ANMCom re-
ceives a commitments to (0, 0)i 6∈ΓS

, the internally executed experiment
is identical with Hk:1. Hence, from the assumption that A cheats in ses-
sion s(j) with negligible probability in H ′k−1:7 but with non-negligible
probability in Hk:1, ANMCom breaks the non-malleability of NMCom.

ut

D.3 Proof of Lemma 3

Proof. We first show the indistinguishability between Hk:1 and Hk:2. Assume for
contradiction that Hk:1 and Hk:2 are distinguishable. From an average argument,
we can fix the execution of the experiment up until SMk (inclusive) in such a
way that even after being fixed, Hk:1 and Hk:2 are still distinguishable. Then,
by considering the transcript (including the inputs and randomness of all the
parties) and the extracted values up until SMk as non-uniform advice, we can
break the hiding property of Com as follows.

The adversary ACom internally executes Hk:1 from SMk using the non-
uniform advice. In Stage 2-2 of session s(k),ACom chooses random strings
ãR = (ãR1 , . . . , ã

R
11n) in addition to aR = (aR1 , . . . , a

R
11n), sends (aRi )i 6∈ΓS

and (ãRi )i 6∈ΓS
to the external committer and receives back Com com-

mitments (in which either (aRi )i 6∈ΓS
or (ãRi )i 6∈ΓS

are committed to), and
feeds them into Hk:1; in the subsequent stages, A proceeds the experi-
ment by computing the outcome of the coin tossing assuming that the
committed values of the commitments are (aRi )i6∈ΓS

. After the execution
of Hk:1 finishes, ACom outputs whatever Z outputs in the experiment.
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When ACom receives commitments to (aRi )i 6∈ΓS
, the internally executed

experiment is identical with Hk:1, whereas when ACom receives commit-
ments to (ãRi )i 6∈ΓS

, the internally executed experiment is identical with
Hk:2 (this is because when ACom receives commitments to (ãRi )i 6∈ΓS

, the
value rRi = aRi ⊕ bRi for each i 6∈ ΓS is uniformly random for A in the
experiment and hence the mS-OT for each i 6∈ ΓS is executed with a ran-
dom input and true randomness). Hence, from the assumption that Hk:1

and Hk:2 are distinguishable, ACom distinguishes Com commitments.

We next show that in Hk:2, A does not cheat in sessions s(k), . . . , s(4m). As-
sume for contradiction that in Hk:2, A cheats in one of those sessions, say, session
s(j), with non-negligible probability. Then, from an average argument, we can
fix the execution of the experiment up until SMk (inclusive) in such a way that
even after being fixed, A cheats in session s(j) only with negligible probability
in Hk:1 but with non-negligible probability in Hk:2. Then, by considering the
transcript and the extracted values up until SMk as non-uniform advice, we can
break the robust non-malleability of NMCom as follows.

The adversary ANMCom, who interacts with a committer of Com and a
receiver of NMCom, internally executes Hk:1 from SMk using the non-
uniform advice. In Stage 2-2 of session s(k),ACom chooses random strings
ãR = (ãR1 , . . . , ã

R
11n) in addition to aR = (aR1 , . . . , a

R
11n), sends (aRi )i 6∈ΓS

and (ãRi )i 6∈ΓS
to the external committer and receives back Com commit-

ments (in which either (aRi )i 6∈ΓS
or (ãRi )i 6∈ΓS

are committed to), and feeds
them into Hk:1; in the subsequent stages, A proceeds the experiment by
computing the outcome of the coin tossing assuming that the committed
values of the commitments are (aRi )i 6∈ΓS

. Also, in session s(j), ANMCom

forwards the NMCom commitments from A to the external receiver. Af-
ter the execution of Hk:1 finishes, ANMCom outputs its view.
The distinguisher DNMCom takes as input the view of ANMCom and the
values committed by ANMCom (which are equal to the values committed
to by A in session s(j) in the internally executed experiment). DNMCom

then outputs 1 if and only if A cheated in session s(j).
When ACom receives commitments to (aRi )i6∈ΓS

, the internally executed
experiment is identical with Hk:1, whereas when ACom receives commit-
ments to (ãRi )i 6∈ΓS

, the internally executed experiment is identical with
Hk:2. Hence, from the assumption that A cheats in session s(j) with neg-
ligible probability in Hk:1 but with non-negligible probability in Hk:2,
ANMCom breaks the robust non-malleability of NMCom.

This completes the proof of Lemma 3. ut

D.4 Proof of Lemma 5

Proof. Recall that Hk:3 and Hk:4 differ only in that in session s(k) of Hk:4, if
S is corrupted and SMk is third special message, αi is a random bit rather than
αi = u⊕ ci for every i ∈ ∆ in Stage 6-1.
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We first show the indistinguishability between Hk:3 and Hk:4. Intuitively,
the indistinguishability follows from the security of mS-OT: For every i 6∈ ΓS ,
the choice bit ci of the i-th mS-OT in Stage 3 is hidden from A and hence
αi = u⊕ci in Hk:3 is indistinguishable from a random bit. Formally, we consider
the following security game against cheating sender S∗ of mS-OT.

The cheating sender S∗ first participates in 10n instances of mS-OTs in
parallel with an honest receiver R, who uses a random input ci ∈ {0, 1}
in the i-th instance. After the execution with R, S∗ receives either the
choice bits {ci} or random bits and then guesses which is the case. If S∗

guesses correctly, we say that S∗ wins the game.

From the security of mS-OT against malicious senders, any cheating S∗ wins the
game with probability at most 1/2 + negl(n). Now, we assume for contradiction
that Hk:3 and Hk:4 are distinguishable, and we derive a contradiction by con-
structing an adversary who wins the above game with probability non-negligibly
higher than 1/2. From an average argument, we can fix the execution of the
experiment up until SMk (inclusive) in such a way that even after being fixed,
Hk:3 and Hk:4 are still distinguishable. Then, by considering the transcript (in-
cluding the inputs and randomness of all the parties) and the extracted values
up until SMk as non-uniform advice, we can obtain an adversary who wins the
above game with probability non-negligibly higher than 1/2 as follows.

The adversary AOT internally executes Hk:3 from SMk using the non-
uniform advice. In Stage 3 of session s(k), AOT executes the i-th mS-
OT by itself for every i ∈ ΓS but obtains the other 10n instances of
mS-OT from the external receiver. (Recall that in Hk:3, the subset ΓS is
extracted in Stage 1-1.) Then, in Stage 6 of session s(k),AOT receives bits
{c∗i }i∈∆ from the external receiver and uses them to compute {α}i∈∆,

i.e., αi
def
= u ⊕ c∗i . After the execution of Hk:3 finishes, AOT outputs

whatever Z outputs in the experiment.
When AOT receives the choice bits of the mS-OTs as {c∗i }i∈∆, the in-
ternally executed experiment is identical with Hk:3, whereas when AOT

receives random bits as {c∗i }i∈∆, the internally executed experiment is
identical with Hk:4. Hence, from the assumption that Hk:3 and Hk:4

are distinguishable, AOT wins the game with probability non-negligibly
higher than 1/2.

We next show that in Hk:4, A does not cheat in sessions s(k), . . . , s(4m).
(The argument below is similar to the one in the proof of Lemma 2.) Assume for
contradiction that in Hk:4, A cheats in one of those sessions, say, session s(j),
with non-negligible probability. Then, from an average argument, we can fix the
execution of the experiment up until SMk (inclusive) in such a way that even
after being fixed, A cheats in session s(j) only with negligible probability in Hk:3

but with non-negligible probability in Hk:4. Then, by considering the transcript
and the extracted values up until SMk as non-uniform advice, we can break the
robust non-malleability of NMCom as follows.
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The adversary ANMCom, who participates in the above game of mS-OT
while interacting with a receiver of NMCom, internally executes Hk:3

from SMk using the non-uniform advice. In Stage 3 of session s(k), AOT

executes the i-th mS-OT by itself for every i ∈ ΓS but obtains the other
10n instances of mS-OT from the external receiver. Then, in Stage 6
of session s(k), AOT receives bits {c∗i }i∈∆ from the external receiver

and uses them to compute {α}i∈∆, i.e., αi
def
= u ⊕ c∗i . Also, in session

s(j), ANMCom forwards the NMCom commitments from A to the external
receiver. After the execution of Hk:3 finishes, ANMCom outputs its view.
The distinguisher DNMCom takes as input the view of ANMCom and the
values committed by ANMCom (which are equal to the values committed
to by A in session s(j) in the internally executed experiment). DNMCom

then outputs 1 if and only if A cheated in session s(j).
When AOT receives the choice bits of the mS-OTs as {c∗i }i∈∆, the in-
ternally executed experiment is identical with Hk:3, whereas when AOT

receives random bits as {c∗i }i∈∆, the internally executed experiment is
identical with Hk:4. Hence, from the assumption that A cheats in session
s(j) with negligible probability in Hk:3 but with non-negligible proba-
bility in Hk:4, ANMCom breaks the robust non-malleability of NMCom.

This completes the proof of Lemma 5. ut

D.5 Proof of Lemma 6

Proof. Recall that hybrids Hk:4, Hk:5 differ only in the values committed to in
NMCom and ExtCom for the indices outside of ΓR. Since the binding property
of Com guarantees that the subset opened in Stage 7 is equal to ΓR, those
commitments are never opened, and the check in Stage 8 does not fail in both
hybrids.

We prove the lemma by using a hybrid argument. Specifically, we consider
the following intermediate hybrid H ′k:4.

– H ′k:4 is the same as Hk:4 except that in session s(k), if R is corrupted and
SMk is second special message,
• the committed subset ΓR is extracted by brute force in Stage 1-2, and
• the value committed in the i-th ExtCom commitment in Stage 7 is

switched to an all-zero string for every i 6∈ ΓR.

Claim 8. Assume that in Hk:4, A does not cheat in sessions s(k), . . . , s(4m)
except with negligible probability. Then,

– Hk:4 and H ′k:4 are indistinguishable, and
– in H ′k:4, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Proof. We first show the indistinguishability between Hk:4 and H ′k:4. Assume for
contradiction that Hk:4 and H ′k:4 are distinguishable. From an average argument,



A New Approach to Black-Box Concurrent Secure Computation 49

we can fix the execution of the experiment up until SMk (inclusive) in such a
way that even after being fixed, Hk:4 and H ′k:4 are still distinguishable. Then,
by considering the transcript (including the inputs and randomness of all the
parties) and the extracted values up until SMk as non-uniform advice, we can
break the hiding property of ExtCom as follows.

The adversary AExtCom internally executes Hk:4 from SMk using the non-
uniform advice. In Stage 7 of session s(k), AExtCom sends (aSi , d

S
i , e

S
i )i 6∈ΓR

and (0, 0, 0)i 6∈ΓR
to the external committer, receives back ExtCom com-

mitments (in which either (aSi , d
S
i , e

S
i )i6∈ΓR

or (0, 0, 0)i 6∈ΓR
are commit-

ted to), and feeds them into Hk:4. After the execution of Hk:4 finishes,
AExtCom outputs whatever Z outputs in the experiment.
When AExtCom receives commitments to (aSi , d

S
i , e

S
i )i6∈ΓR

, the internally
executed experiment is identical with Hk:4, whereas when AExtCom re-
ceives a commitments to (0, 0, 0)i 6∈ΓR

, the internally executed experi-
ment is identical with H ′k:4. Hence, from the assumption that Hk:4 and
H ′k:4 are distinguishable (even after being fixed up until SMk), AExtCom

distinguishes ExtCom commitments.

We next show that in H ′k:4, A does not cheat in sessions s(k), . . . , s(4m). As-
sume for contradiction that in H ′k:4, A cheats in one of those sessions, say, session
s(j), with non-negligible probability. Then, from an average argument, we can
fix the execution of the experiment up until SMk (inclusive) in such a way that
even after being fixed, A cheats in session s(j) only with negligible probability
in Hk:4 but with non-negligible probability in H ′k:4. Then, by considering the
transcript and the extracted values up until SMk as non-uniform advice, we can
break the robust non-malleability of NMCom as follows.

The man-in-the-meddle adversary ANMCom internally executes Hk:4 from
SMk using the non-uniform advice. In Stage 7 of session s(k), ANMCom

sends (aSi , d
S
i , e

S
i )i6∈ΓR

and (0, 0, 0)i 6∈ΓR
to the external committer, re-

ceives back ExtCom commitments (in which either (aSi , d
S
i , e

S
i )i 6∈ΓR

or
(0, 0, 0)i6∈ΓR

are committed to), and feeds them into Hk:4. Also, in ses-
sion s(j), ANMCom forwards the NMCom commitments from A to the
external receiver. After the execution of Hk:4 finishes, ANMCom outputs
its view.
The distinguisher DNMCom takes as input the view of ANMCom and the
values committed by ANMCom (which are equal to the values committed
to by A in session s(j) in the internally executed experiment). DNMCom

then outputs 1 if and only if A cheated in session s(j).
When ANMCom receives commitments to (aSi , d

S
i , e

S
i )i 6∈ΓR

, the internally
executed experiment is identical with Hk:4, whereas when ANMCom re-
ceives a commitments to (0, 0, 0)i 6∈ΓR

, the internally executed experi-
ment is identical with H ′k:4. Hence, from the assumption that A cheats
in session s(j) with negligible probability in Hk:4 but with non-negligible
probability in H ′k:4, ANMCom breaks the non-malleability of NMCom.

ut
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Claim 9. Assume that in H ′k:4, A does not cheat in sessions s(k), . . . , s(4m)
except with negligible probability. Then,

– H ′k:4 and Hk:5 are indistinguishable, and
– in Hk:5, A does not cheat in sessions s(k), . . . , s(4m) except with negligible

probability.

Proof. We first notice that the indistinguishability between H ′k−1:7 and Hk:1

can be shown as in the proof of Claim 8. (The only difference is that we use the
hiding property of NMCom rather than that of ExtCom.)

We next show that in Hk:5, A does not cheat in sessions s(k), . . . , s(4m). As-
sume for contradiction that in Hk:5, A cheats in one of those sessions, say, session
s(j), with non-negligible probability. Then, from an average argument, we can
fix the execution of the experiment up until SMk (inclusive) in such a way that
even after being fixed, A cheats in session s(j) only with negligible probability
in H ′k:4 but with non-negligible probability in Hk:5. Then, by considering the
transcript and the extracted values up until SMk as non-uniform advice, we can
break the non-malleability of NMCom as follows.

The man-in-the-meddle adversary ANMCom internally executes H ′k:4 from
SMk using the non-uniform advice. In Stage 7 of session s(k), ANMCom

sends (aSi , d
S
i )i 6∈ΓR

and (0, 0)i6∈ΓR
to the external committer, receives

back NMCom commitments (in which either (aSi , d
S
i )i 6∈ΓR

or (0, 0)i6∈ΓR

are committed to), and feeds them into H ′k:4. Also, in session s(j),
ANMCom forwards the NMCom commitments from A to the external re-
ceiver. After the execution of H ′k:4 finishes, ANMCom outputs its view.
The distinguisher DNMCom takes as input the view of ANMCom and the
values committed by ANMCom (which are equal to the values committed
to by A in session s(j) in the internally executed experiment). DNMCom

then outputs 1 if and only if A cheated in session s(j).
When ANMCom receives commitments to (aSi , d

S
i )i 6∈ΓR

, the internally ex-
ecuted experiment is identical with H ′k:4, whereas when ANMCom receives
a commitments to (0, 0)i 6∈ΓR

, the internally executed experiment is iden-
tical with Hk:5. Hence, from the assumption that A cheats in session s(j)
with negligible probability in H ′k:4 but with non-negligible probability in
Hk:5, ANMCom breaks the non-malleability of NMCom.

ut

This completes the proof of Lemma 6. ut

D.6 Proof of Lemma 7

Proof. Recall that hybrids Hk:5, Hk:6 differ only in the inputs and the random-
ness that are used in some of the mS-OTs in Stage 3, where those that are
derived from the outcomes of the coin tossing is used in Hk:5 and random inputs
and true randomness are used in Hk:6. We prove the lemma by relying on the
hiding property of Com in the coin tossing.
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We first show the indistinguishability between Hk:5 and Hk:6. Assume for
contradiction that Hk:5 and Hk:6 are distinguishable. From an average argument,
we can fix the execution of the experiment up until SMk (inclusive) in such a
way that even after being fixed, Hk:5 and Hk:6 are still distinguishable. Then,
by considering the transcript (including the inputs and randomness of all the
parties) and the extracted values up until SMk as non-uniform advice, we can
break the hiding property of Com as follows.

The adversary ACom internally executes Hk:5 from SMk using the non-
uniform advice. In Stage 2-1 of session s(k),ACom chooses random strings
ãS = (ãS1 , . . . , ã

S
11n) in addition to aS = (aS1 , . . . , a

S
11n), sends (aSi )i 6∈ΓR

and (ãSi )i 6∈ΓR
to the external committer and receives back Com com-

mitments (in which either (aSi )i6∈ΓR
or (ãSi )i6∈ΓR

are committed to), and
feeds them into Hk:5; in the subsequent stages, A proceeds the experi-
ment by computing the outcome of the coin tossing assuming that the
committed values of the commitments are (aSi )i 6∈ΓR

. After the execution
of Hk:5 finishes, ACom outputs whatever Z outputs in the experiment.

When ACom receives commitments to (aSi )i 6∈ΓR
, the internally executed

experiment is identical with Hk:5, whereas when ACom receives commit-
ments to (ãSi )i 6∈ΓR

, the internally executed experiment is identical with
Hk:6 (this is because when ACom receives commitments to (ãSi )i 6∈ΓR

, the

value rSi
def
= aSi ⊕ bSi for each i 6∈ ΓR is uniformly random for A in the

experiment and hence the mS-OTs for each i 6∈ ΓR is executed with ran-
dom inputs and true randomness). Hence, from the assumption that Hk:5

and Hk:6 are distinguishable, ACom distinguishes Com commitments.

We next show that in Hk:6, A does not cheat in sessions s(k), . . . , s(4m).
Assume for contradiction that in Hk:6, A cheats in one of those sessions, say,
session s(j), with non-negligible probability. Then, from an average argument,
we can fix the execution of the experiment up until SMk (inclusive) in such a way
that after being fixed, A cheats in session s(j) only with negligible probability
in Hk:5 but with non-negligible probability in Hk:6. Then, by considering the
transcript and the extracted values up until SMk as non-uniform advice, we can
break the robust non-malleability of NMCom as follows.

The adversary ANMCom, who interacts with a committer of Com and a
receiver of NMCom, internally executes Hk:5 from SMk using the non-
uniform advice. In Stage 2-1 of session s(k),ACom chooses random strings
ãS = (ãS1 , . . . , ã

S
11n) in addition to aS = (aS1 , . . . , a

S
11n), sends (aSi )i 6∈ΓR

and (ãSi )i 6∈ΓR
to the external committer and receives back Com commit-

ments (in which either (aSi )i 6∈ΓR
or (ãSi )i 6∈ΓR

are committed to), and feeds
them into Hk:5; in the subsequent stages, A proceeds the experiment by
computing the outcome of the coin tossing assuming that the committed
values of the commitments are (aSi )i 6∈ΓR

. Also, in session s(j), ANMCom

forwards the NMCom commitments from A to the external receiver. Af-
ter the execution of Hk:5 finishes, ANMCom outputs its view.
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The distinguisher DNMCom takes as input the view of ANMCom and the
values committed by ANMCom (which are equal to the values committed
to by A in session s(j) in the internally executed experiment). DNMCom

then outputs 1 if and only if A cheated in session s(j).
When ACom receives commitments to (aSi )i 6∈ΓR

, the internally executed
experiment is identical with Hk:5, whereas when ACom receives commit-
ments to (ãSi )i6∈ΓR

, the internally executed experiment is identical with
Hk:6. Hence, from the assumption that A cheats in session s(j) with neg-
ligible probability in Hk:5 but with non-negligible probability in Hk:6,
ANMCom breaks the robust non-malleability of NMCom.

This completes the proof of Lemma 7. ut

D.7 Proof of Claim 5

Proof. Recall that Hk:6 and H ′k:6 differ only in that in session s(k) of H ′k:6, if R
is corrupted and SMk is fourth special message, βb,i is a random bit rather than
βb,i = ρb,i ⊕ si,b⊕αi for every b ∈ {0, 1} and i ∈ ∆ \ Ib.

First, we show the indistinguishability between Hk:6 and H ′k:6. Roughly, we
prove the indistinguishability using the security of mS-OT: For every i ∈ ∆ \ Ib,
A executed the i-th mS-OT honestly with choice bit (1−b)⊕αi, and the sender’s
input and randomness of this mS-OT are not revealed in Stage 8; therefore, the
value of si,b⊕αi is hidden from A and thus βb,i = ρb,i⊕si,b⊕αi is indistinguishable
from a random bit. Formally, we consider the following security game against
cheating receiver R∗ of mS-OT.

The cheating receiver R∗ gets random input-randomness pairs (ci, τ
R
i )i

of mS-OT instances as input. R∗ then participates in 9n instances of
mS-OTs in parallel with an honest sender S, who uses a random input
(si,0, si,1) in the i-th instance. After the execution with S, R∗ receives
bits (s∗i,0, s

∗
i,1)i that are defined as follows: Let b∗ ∈ {0, 1} be a randomly

chosen bit; if b∗ = 0, then for every i, s∗i,0
def
= si,0 and s∗i,1

def
= si,1; if

b∗ = 1, then for every i such that R∗ behaved honestly in the i-th mS-

OT using (ci, τ
R
i ) as input and randomness, s∗i,ci

def
= si,ci but s∗i,1−ci is a

random bit, and for every other i, s∗i,0
def
= si,0 and s∗i,1

def
= si,1. Then, R∗

guesses the value of b∗, and if the guess is correct, we say that R∗ wins
the game.

From the security of mS-OT against semi-honest receivers, any cheating R∗ wins
the game with probability at most 1/2 + negl(n). Now, we assume for contra-
diction that Hk:6 and H ′k:6 are distinguishable, and we derive a contradiction
by constructing an adversary who wins the above game with probability non-
negligibly higher than 1/2. From an average argument, we can fix the execution
of the experiment up until SMk (inclusive) in such a way that even after being
fixed, Hk:6 and H ′k:6 are still distinguishable. Then, by considering the transcript
(including the inputs and randomness of all the parties) and the extracted values
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up until SMk as non-uniform advice, we can obtain an adversary who wins the
above game with probability non-negligibly higher than 1/2 as follows.

The adversary R∗ gets random input-randomness pairs (ci, τ
R
i )i∈∆\ΓR

of
mS-OT instances as its input, and internally executes H ′k:6 from SMk us-

ing the non-uniform advice. In Stage 2-2, R∗ chooses bR = (bR1 , . . . , b
R
11n)

in such a way that rR = (rR1 , . . . , r
R
11n) satisfies rRi = ci ‖ τRi for every

i ∈ ∆ \ ΓR, namely, chooses bR such that bRi = aRi ⊕ (ci ‖ τRi ) for ev-
ery i ∈ ∆ \ ΓR. (Recall that in H ′k:6, the subset ΓR and the strings
aR = (aR1 , . . . , a

R
11n) are extracted by brute force and they are included

in the non-uniform advice.) In Stage 3 of session s(k), ANMCom obtains
the i-th mS-OT from the external sender for every i ∈ ∆ \ ΓR and ex-
ecutes other instances of mS-OT by itself. Then, in Stage 6 of session
s(k), R∗ receives bits (s∗i,0, s

∗
i,1)i∈∆\ΓR

from the external sender and uses
them to compute βb,i for every i ∈ ∆ \ ΓR, i.e., βb,i := ρb,i ⊕ s∗i,b⊕αi

.
After the execution of H ′k:6 finishes, R∗ outputs whatever Z outputs in
the experiment.
When b∗ = 0 in the security game (and hence s∗i,b⊕αi

= si,b⊕αi
for

every i and b), the internally executed experiment is identical with Hk:6,
whereas when b∗ = 1 (and hence s∗i,b⊕αi

is a random bit if i ∈ ∆ \ Ib
and s∗i,b⊕αi

= si,b⊕αi
otherwise), the internally executed experiment is

identical with H ′k:6. Hence, from the assumption that Hk:6 and H ′k:6 are
distinguishable, R∗ wins the game with probability non-negligibly higher
than 1/2.

Next, we show that in H ′k:6, A does not cheat in sessions s(k), . . . , s(4m).
(The argument below is similar to the one in the proof of Lemma 2.) Assume
for contradiction that in H ′k:6, A cheats in one of those sessions, say, session
s(j), with non-negligible probability. Then, from an average argument, we can
fix the execution of the experiment up until SMk (inclusive) in such a way that
after being fixed, A cheats in session s(j) only with negligible probability in Hk:6

but with non-negligible probability in H ′k:6. Then, by considering the transcript
and the extracted values up until SMk as non-uniform advice, we can break the
robust non-malleability of NMCom as follows.

The adversary ANMCom, who participates in the above game while inter-
acting with a receiver of NMCom, gets random input-randomness pairs
(ci, τ

R
i )i∈∆\ΓR

of mS-OT instances as its input, and internally executes
H ′k:6 from SMk using the non-uniform advice. In Stage 2-2, ANMCom

chooses bR = (bR1 , . . . , b
R
11n) in such a way that rR = (rR1 , . . . , r

R
11n)

satisfies rRi = ci ‖ τRi for every i ∈ ∆ \ ΓR, namely, chooses bR such
that bRi = aRi ⊕ (ci ‖ τRi ) for every i ∈ ∆ \ ΓR. In Stage 3 of session
s(k), ANMCom obtains the i-th mS-OT from the external sender for every
i ∈ ∆ \ ΓR and executes other instances of mS-OT by itself. Then, in
Stage 6 of session s(k), ANMCom receives bits (s∗i,0, s

∗
i,1)i∈∆\ΓR

from the
external sender and uses them to compute βb,i for every i ∈ ∆ \ΓR, i.e.,
βb,i := ρb,i⊕ s∗i,b⊕αi

. Also, in session s(j), ANMCom forwards the NMCom
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commitments from A to the external receiver. After the execution of
H ′k:6 finishes, ANMCom outputs its view.
The distinguisher DNMCom takes as input the view of ANMCom and the
values committed by ANMCom (which are equal to the values committed
to by A in session s(j) in the internally executed experiment). DNMCom

then outputs 1 if and only if A cheated in session s(j).
When b∗ = 0 in the security game (and hence s∗i,b⊕αi

= si,b⊕αi
for every i

and b), the internally executed experiment is identical with Hk:6, whereas
when b∗ = 1 (and hence s∗i,b⊕αi

is a random bit if i ∈ ∆\Ib and s∗i,b⊕αi
=

si,b⊕αi otherwise), the internally executed experiment is identical with
H ′k:6. Hence, from the assumption that A cheats in session s(j) with
negligible probability in Hk:6 but with non-negligible probability in H ′k:6,
ANMCom breaks the robust non-malleability of NMCom.

This completes the proof. ut

D.8 Proof of Lemma 9

Proof (of Lemma 9). We first show the indistinguishability between Hk:7 and
Hk:8. Assume for contradiction that Hk:7 and Hk:8 are distinguishable. From
an average argument, we can fix the execution of the experiment up until SMk

(inclusive) in such a way that even after being fixed, Hk:7 and Hk:8 are still
distinguishable. Then, by considering the transcript (including the inputs and
randomness of all the parties) and the extracted values up until SMk as non-
uniform advice, we can break the UC security of ΠFOT

2PC as follows.

The environment Z internally executes Hk:7 from SMk using the non-
uniform advice while externally participating in a single session of ΠFOT

2PC

via the dummy adversary that corrupts S. In session s(k), Z forwards
all the messages of ΠFOT

2PC from the internal A to the external dummy
adversary (including the query to FOT ),13 and those from the external
dummy adversary to the internal A. After the execution of Hk:7 finishes,
Z outputs the output of the internally emulated experiment.
When Z interacts with the dummy adversary, the internally executed
experiment is identical with Hk:7, whereas when Z interacts with the
simulator of ΠFOT

2PC , the internally executed experiment is identical with
Hk:8. Hence, from the assumption that Hk:7 and Hk:8 are distinguishable,
Z breaks the security of ΠFOT

2PC

We next show that in Hk:8, A does not cheat in sessions s(k), . . . , s(4m). As-
sume for contradiction that in Hk:8, A cheats in one of those sessions, say, session
s(j), with non-negligible probability. Then, from an average argument, we can
fix the execution of the experiment up until SMk (inclusive) in such a way that
even after being fixed, A cheats in session s(j) only with negligible probability
in Hk:7 but with non-negligible probability in Hk:8. Then, by considering the

13 Note that these messages appear after SMk
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transcript and the extracted values up until SMk as non-uniform advice, we can
break the robust non-malleability of NMCom as follows.

The adversary ANMCom, who participates in an execution of ΠFOT

2PC as the
environment (where the dummy adversary corrupts S) while interacting
with a receiver of NMCom, internally executes Hk:7 from SMk using the
non-uniform advice. In session s(k), ANMCom forwards all the messages of
ΠFOT

2PC from the internal A to the external dummy adversary (including
the query to FOT ), and those from the external dummy adversary to
the internal A. Also, in session s(j), ANMCom forwards the NMCom com-
mitments from A to the external receiver. After the execution of Hk:7

finishes, ANMCom outputs the output of the internally emulated experi-
ment.
The distinguisher DNMCom takes as input the view of ANMCom and the
values committed by ANMCom (which are equal to the values committed
to by A in session s(j) in the internally executed experiment). DNMCom

then outputs 1 if and only if A cheated in session s(j).
When ANMCom interacts with the dummy adversary in the execution of
ΠFOT

2PC , the internally executed experiment is identical with Hk:7, whereas
when ANMCom interacts with the simulator there, the internally executed
experiment is identical with Hk:8. Hence, from the assumption that A
cheats in session s(j) with negligible probability in Hk:7 but with non-
negligible probability inHk:8,ANMCom breaks the robust non-malleability
of NMCom.

This completes the proof of Lemma 9. ut

E UC-secure OT-hybrid 2PC/MPC Protocol with
Appropriate Properties

As stated in Section 5, the protocol of Ishai et al. [28] itself does not satisfy
the property that is required for our purpose, but it can be modified to satisfy
it. Specifically, we replace each invocation of FOT with the following protocol,
which uses FOT with random inputs.

1. Let (v0, v1) be the sender’s input, and u be the receiver’s one.
2. The sender and the receiver invokes FOT with random input (s0, s1) and c.
3. The receiver sends α := u⊕ c.
4. The sender sends βb := vb ⊕ sb⊕α for each b ∈ {0, 1}.
5. The receiver outputs βu ⊕ sc, where sc is obtained from FOT in the second

step.

Now, since FOT is invoked only with random input, it can be invoked at the
beginning of the protocol.
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