
Fast Formulae for Arithmetic of Degenerate Divisors on
Genus Two Curves

Zhi Hua, Lin Wangb, Chang-An Zhaoc,d,∗

aSchool of Mathematics and Statistics in Central South University, Changsha 410083, P.R. China.
bScience and Technology on Communication Security Laboratory, Chengdu 610041, Sichuan,

P. R. China.
cDepartment of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R.China.

dGuangdong Key Laboratory of Information Security, Guangzhou 510006, China

Abstract

Scalar multiplications are the main operation in the implementation of hyperellip-
tic curve cryptosystems, where the basic arithmetic of reduced divisor classes are
required. In this paper, we derive the explicit formulae for the arithmetic of re-
duced divisor classes by exploiting Jacobian coordinates introduced by Hisil and
Costello when the degenerate divisor involves. Our results can be regarded as
a supplementary study of [1]. An efficiency analysis shows that the degenerate
divisor as a base point can be a valid alternative in scalar multiplications as well.
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1. Introduction

Hyperelliptic curves over finite fields with small genus play a vital role in the
construction of cryptographic primitives since the discrete logarithm problem in
cyclic groups of prime orders that are embedded in these curves is believed to be
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hard in the presence of the current computational power. On one hand, Diffie-
Hellman key exchange can be implemented on a Kummer surface that is related
to the Jacobian of a hyperelliptic curve with genus two [2, 3]. On the other hand,
hyperelliptic curve cryptosystems(HECC) [4] can be a valid candidate in public
key cryptography. We refer to [5, 6] for more details.

Of particular importance are scalar multiplications in the implementation of
HECC or other cryptographic protocols [7]. We should point out that generic ad-
ditions in Jacobians of hyperelliptic curves should be exploited in many practical
scenarios. Several efficient implementation techniques to speed up scalar multi-
plications on hyperelliptic curves have been presented. These include:

• Exploiting properties of the defining fields or models of hyperellitic curves.
Generally speaking, the imaginary model should be the popular choice while
a few works are devoted to accelerating the arithmetic of Jacobian of hyper-
elliptic curves in a real model [8, 9, 10]. Note that the equation of hyperel-
liptic curve depends on the characteristics of base fields. The idea of halving
a rational point on elliptic curves [11] was extended to hyperelliptic cases
over fields of even characteristic [12, 13, 14].

• Acting efficient endomorphisms on the reduced divisors. This idea was first
generated from the case of elliptic curves [15] and then widely used in many
applicable scenarios [16, 17].

• Making good use of different interpretations for group laws of Jacobians
of hyperelliptic curves. Cantor first presented an efficient algorithm for
performing the addition in Jacobian groups of hyperelliptic curves over
fields of odd characteristic [18] and Koblitz generalized it to fields of any
characteristic [4]. Harley gave a different approach to optimize the arith-
metic [19, 20]. Wollinger et al. compared these two algorithms explicitly
in [21]. The group law of Jacobian are explained from a point of geometric
view [22, 7].

• Taking advantages of different projective coordinate systems for avoiding
the inversion. Lange speeded up the arithmetic of Jacobian points by us-
ing different weighted coordinate systems [23]. Costello and Hisil gave a
significant improvement of a mixed-doubling-and-addition by introducing
a novel Jacobian coordinate system in [24, 1].

• Using the degenerate divisor as the base point. Tanja Lange gave the explicit
formulas according to the degrees of two input divisor classes first [23].
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katagi et al. investigated scalar multiplications when the degenerate divisor
is chosen to be the base point in characteristic two [12].

Note that the authors of [1] always assume that all input and output points will
be general in the whole scalar multiplication. However, it is possible to meet a
degenerate divisor even if the base point is general. In this work, we will address
this special case. Our motivations are multi-fold:

(a) By applying the idea of Jacobian coordinates to the case of the degener-
ate divisor, we give a supplementary study of the arithmetic of the divisor
classes which is in accordance with the explicit formulas of [1];

(b) When the base point is chosen to be degenerate in the implementation of
scalar multiplications, a mixed-doubling-and-addition or an addition always
requires a degenerate divisor as an input;

(c) Our work may be exploited in the implementation of hyperelliptic pairings
since input points and scalars are chosen randomly in this scenario. This
means that the degenerate divisor could involve in the computation.

On the basis of the above, we revisit the addition of two reduced divisor classes
when the degenerate one involves. In particular, we consider the addition of one
degenerate divisor and one generate divisor, the tripling of one degenerate divi-
sor, and the addition of two generate divisors (these two divisors could be same)
when their sum is degenerate. In essence, these computations can be interpreted
by the intersection of a quadratic parabola with the hyperelliptic curve. We find
the proposed formula is significantly fast in efficiency. For example, the cost
of the addition of one degenerate divisor and one generate divisor only requires
22M+6S+1D+15a in Jacobian coordinate systems, where M denotes field mul-
tiplications, S denotes squarings, D denotes multiplications by some constants
which is related to the curve parameters, and a denotes field additions respectively.
We hope that our results lead to more developments on this line of research.

The remainder of this paper is structured as follows. In Section 2, we provide
some background and notation on the arithmetic of reduced divisors. In Section 3,
we provide an explicit formula of the addition of the divisor classes when the de-
generate divisor involves in affine coordinate systems. Also, these formulas are
derived mainly by using the interpolation of a quadratic parabola. In Section 4,
we convert all the formulae in Jacobian coordinate systems and give the computa-
tional cost of them. In Section 5, we discuss the advantage of using the degenerate
divisor as the base point when endomorphisms tricks are applicable. In Section 6,
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efficiency comparisons are given. We show that our formulas have computational
advantages in efficiency. Finally, We draw our conclusion in Section 7.

2. Preliminaries

In this section we first recall some basic preliminaries of hyperelliptic curves,
and Mumford representation of a reduced divisor. Then we give some facts about
degenerate divisors since we will mainly consider the arithmetic of the reduced
divisors which involve the degenerate ones.

2.1. Definitions of hyperelliptic curves
Let Fp be a finite field of order p with characteristic greater than 3, and F̄p

be the algebraic closure of Fp. Let C be a genus g hyperelliptic curve given by
C : y2 = f (x), where f (x)∈ Fp[x] and deg f = 2g+1. Let Fp(C)/Fp be a function
field defined by C.

Let C(F̄p) = {(a,b) : a,b ∈ F̄p,b2 = f (a)}
⋃
{∞}, where ∞ is the point at

infinity. The hyperelliptic involution ¯ is defined as follows: (a,b) = (a,−b) and
∞ = ∞.

A divisor D of C(F̄p) is an element of the free abelian group over all points of
C(F̄p), e.g., D = ∑P∈C(F̄p)

nPP where nP ∈ Z and nP is zero for almost all points
P. The degree of D is defined as deg(D) = ∑P∈C(F̄p)

nP. A divisor D is called
Fp-rational if σ(D) = D for all σ ∈ Gal(F̄p/Fp). All Fp-rational divisors of C
of degree zero forms a group. Every element H ∈ Fp(C)/Fp can be related to a
divisor div(H) = ∑P∈C(F̄p)

νP(H)P via the valuations at all points of C(F̄p). Such
a divisor which corresponds to a rational function on C is called a principal divisor.
all so-called principal divisors are of degree zero and form a subgroup of the group
of degree zero divisors. The divisor class group of degree zero is the quotient of
the group of degree zero divisors by the principal divisors. Such a divisor class
group is also called the Picard group of C. We can represent a divisor class by a
divisor D = ∑

k
i=1 Pi−k∞, where Pi 6= ∞, Pi 6= Pj for i 6= j and k≤ g. Moreover, the

divisor class group is isomorphic to the Fp-rational points of the Jacobian of the
curve C, a g-dimensional abelian variety. In the following we denote this group
by JacC(Fp).

Each nontrivial divisor class in JacC(Fp) has a Mumford representatioin, i.e.,
it can be represented by a unique pair of polynomials [u(x),v(x)], u,v ∈ Fp[x],
where u is monic, degv < degu≤ g, and u|(v2− f ).

4



More precisely, denote Pi = (xi,yi). Then the divisor class of D is represented
by u(x) = ∏

k
i=1(x− xi). If Pi occurs ni times, then ( d

dx)
j[v(x)2− f (x)]|x=xi = 0,

0≤ j ≤ ni−1. Note that −D = [u(x),−v(x)].
In the following we concentrate on g = 2. The hyperelliptic curve that we

consider is given by the following equation

C : y2 = f (x) = x5 + f3x3 + f2x2 + f1x+ f0,

where fi is contained in Fp for i = 0, 1, 2 and 3. According to the Hasse-Weil
Bound, we have #JacC(Fp) = O(p2). Moreover, suppose #JacC(Fp) = hn where
n is a large prime and h is called a cofactor.

2.2. Representation of reduced divisors
A reduced divisor D= [u(x),v(x)]∈ JacC(Fp) is said to be general if degu(x)=

2. let D be a general divisor represented in Mumford form as D = [x2 + qx+
r,sx+ t]. We will sometimes represent a general divisor as [q,r,s, t] for simplicity.
Also, the divisor D is said to be degenerate if degu(x) = 1. More precisely, if
(a,b) ∈C(Fp), then D = [x−a,b] is a degenerate divisor in JacC(Fp). Degener-
ate divisors have been used in the optimization of scalar multiplications [12] and
pairing computations on hyperelliptic curves [25].

Suppose Dd = {D= [u(x),v(x)]∈ JacC(Fp) : degu(x)= 1}, then #Dd =O(p).
A general divisor D = [u(x),v(x)] ∈ JacC(Fp) is said to be decomposable, if

u(x) is reducible in Fp[x]. Given an arbitrary general divisor D = [u(x),v(x)] =
[q,r,s, t], we see that it is decomposable if and only if ∆(u(x)) = q2− 4r is a
quadratic residue in Fp.

Suppose that

Dr = {D = [u(x),v(x)]∈ JacC(Fp) : degu(x) = 2, and u(x) is reducible over Fp},

then #Dr = O(p2/2). If D = [q,r,s, t] ∈ Dr, then D can be represented as D =
D1 +D2, where D1 = [x− x1,y1],D2 = [x− x2,y2] ∈Dd . For x1 6= x2, We have

q =−(x1 + x2), r = x1x2, s =
y1− y2

x1− x2
, t =

x1y2− x2y1

x1− x2
.

That is, u(x) = (x− x1)(x− x2).
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2.3. Choosing A Base Divisor
Since general divisors take the largest proportion, most literatures choose a

general divisor as the desired cryptographic group generator, and thus concentrate
on general divisor group operations [23, 26, 1]. Compared with general divisors,
degenerate divisors are rare, but they can also be chosen as group generators. We
have the following result:

Lemma 1. Suppose D∈Dr and D = D1+D2, where D1,D2 ∈Dd . If D has prime
order n (i.e., [n]D = P∞), then either D1 or D2 also has prime order n (or divided
by n).

The proof of Lemma 1 is obvious and so we omit it here. Also, Lemma 1 says
that we can possibly get a degenerate divisor with prime order n by decomposing
a generate divisor.

3. Formulae for Arithmetic of Degenerate Divisors

In this section, we consider the addition formulae for two reduced divisors
D1,D2. We focus mainly on the arithmetic under the following condition: there
exists at least one degenerate divisor in {D1,D2,D1 + D2}. The interpolation
parabola y = h(x) = ax2 + bx + c through Pi = (xi,yi) (1 ≤ i ≤ 5) with multi-
plicities intersects the equation of the hyperelliptic curve C as shown in Figure 1.
It can be easily seen that

P1 +P2 +P3 +P4 +P5−5∞∼ div(y−h(x)) = div(y− (ax2 +bx+ c)).

where the notation div(·) means a divisor of a function on the curve C. Recall that
the involution of Pi is denoted by P̄i. We have Pi + P̄i−2∞∼ div(x− xi). We will
divide the addition of two reduced divisors into several cases when the degenerate
divisor involves in the computation as follows.

3.1. deg(u1) = 1,deg(u2) = 2
Let Pi = (xi,yi) ∈C(Fp), D1 = P1−∞, and D2 = P2+P3−2∞. Suppose D1 =

[x− x1,y1] and D2 = [u2(x),v2(x)] = [x2 + q2x+ r2,s2x+ t2]. We assume that P1
or −P1 does not occur in D2, that is u2(x1) 6= 0, then we give an explanation
for the arithmetic of degenerate divisors based on the divisor theory. Recall that
Pi + P̄i−2∞∼ div(x− xi) for i = 4, 5. It follows that

D1 +D2 = (P1−∞)+(P2 +P3−2∞) = P̄4 + P̄5−2∞∼ div(
y− (ax2 +bx+ c)
(x− x4)(x− x5)

),
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Figure 1: The intersection of a quadratic parabola with the hyperelliptic curve with genus two

where a, b and c are the undetermined coefficients.
We can determine the coefficients of the parabola ax2 + bx+ c by using La-

grange interpolation since we are given the point P1 and the divisor D2. This is
similar to Section 3 of [22]. Finally, the general formula for D3 = D1 +D2 =
[q3,r3,s3, t3] can be stated as

a =
y1− (s2x1 + t2)
x2

1 +q2x1 + r2
,b = s2 +q2 ·a,c = t2 + r2 ·a,

q3 =x1−q2−a2, r3 = f3 +q2
2− r2−a(b+ s2)+ x1 ·q3,

s3 =a ·q3−b, t3 = a · r3− c.

3.2. 3D1 with deg(u1) = 1
We are particularly interested in the arithmetic of 3D1 where D1 is degenerate

and has not order three in this subsection. Let P1 = (x1,y1) ∈ C(Fp) and D1 =
P1−∞ = [x− x1,y1]. We can compute 3D1 through the procedure D1→ 2D1→
4D1→ 3D1 = 4D1−D1. However, we introduce an alternative way to compute
D3 = 3D1 as follows: Define h(x) = ax2 + bx+ c. The two curves y = h(x) and
y2 = f (x) are tangent at P1 with multiplicity three. We can assume P1 = P2 = P3
in this special case as shown in Figure 1. Then we have 3D1 = P̄4 + P̄5−2(∞)∼
div(y−(ax2+bx+c)

(x−x4)(x−x5)
).

7



Note that

f ′(x1) = 5x4
1 +3 f3x2

1 +2 f2x1 + f1, f ′′(x1) = 20x3
1 +6 f3x1 +2 f2,

y′ = 2ax1 +b =
f ′(x1)

2y1
,y′′ = 2a =

f ′′(x1)−2(y′)2

2y1
,

thus

a =
2y2

1 f ′′(x1)− f ′(x1)
2

8y3
1

,b =
f ′(x1)

2y1
−2ax1,c = y1−ax2

1−bx1.

Hence we obtain 3D1 = [q3,r3,s3, t3], where

q3 = 3x1−a2,r3 = f3−2a ·b+3x1 · (q3− x1),s3 = a ·q3−b, t3 = a · r3− c.

3.3. D1 +D2 or 2D1 is degenerate
In this subsection, we consider the case that the sum of two generate divisors

D1 and D2 is degenerate. We still use Figure 1 as an illustration. Let D1 = P1 +
P2−2∞ and D2 = P3+P4−2∞. The output of D1+D2 equals D3 = P̄5− (∞). We
can still consider the intersection of the parabola y = ax2 +bx+ c (the coefficient
a 6= 0) and the hyperelliptic curve C.

Suppose that the two general divisors are D1 = [q1,r1,s1, t1] and D2 = [q2,r2,s2, t2].
The following intermediate variables are borrowed from [1]. Define

A = (t1− t2) · (q2 · (q1−q2)− r1 + r2)− r2 · (q1−q2) · (s1− s2);
B = (r1− r2) · (q2 · (q1−q2)− r1 + r2)− r2 · (q1−q2)

2;
C = (q1−q2) · (t1− t2)− (r1− r2) · (s1− s2);

if D1 6= D2. Otherwise, we define

A = ((q2
1 + f3−4r1) ·q1− f2 + s2

1) · (q1 · s1− t1)+(3q2
1 + f3−2r1) · r1 · s1;

B = (2(q1 · s1− t1)) · t1−2r1 · s2
1;

C = ((q2
1 + f3−4r1) ·q1− f2 + s2

1) · s1 +(3q2
1 + f3−2r1) · t1;

8



Note that the condition C = 0 induces that the sum D3 = D1 +D2 would be a
degenerate divisor. Suppose D5 = D1 +D2 = [x− x5,y5]. Then

x5 = (q1 +q2)+
A2

B2 ,

y5 = x3(
A
B
(q1− x3)− s1)+(

A
B

r1− t1).

In fact, the above computation can be viewed as the intersection of a degen-
erate parabola y = dx3 +ax2 +bx+ c (d = 0) and the hyperelliptic curve C. Note
that

d = −C/B,
a = −(A+q1 ·C)/B,
b = −(q1 ·A− s1 ·B+ r1 ·C)/B,
c = −(r1 ·A− t1 ·B)/B.

This implies that d = 0 if and only if C = 0. And thus we have

x5 = (q1 +q2)+a2,

y5 = −(a · x2
3 +b · x3 + c).

3.4. deg(u1) = deg(u2) = 1
Suppose D1 = [x− x1,y1] and D2 = [x− x2,y2]. If x1 = x2 and y1 =−y2, then

D1 +D2 = D∞ = [1,0]. If D1 = D2, then

2D1 = [(x− x1)
2,

f ′(x1)(x− x1)

2y1
+ y1].

Otherwise

D1 +D2 = [(x− x1)(x− x2),(
y1− y2

x1− x2
)x+

x1y2− x2y1

x1− x2
].

4. Degenerate Divisors in Jacobian Coordinates

Jacobian coordinates have been extensively studied to work projectively on
elliptic and hyperelliptic curves. In hyperelliptic case, let D be a general divisor
represented in Mumford form as D = [x2 + qx+ r,sx+ t]. Recall that this repre-
sentation is denoted by [q,r,s, t] throughout this paper. Jacobian coordinates can
be stated as [Q : R : S : T : Z : W ] [24], which have the following correspondence
[q,r,s, t] = [ Q

Z2 ,
R
Z4 ,

S
Z3W , T

Z5W ].
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4.1. deg(u1) = 1,deg(u2) = 2
Let D1 be a degenerate divisor generated by point P = (x1,y1) ∈C(F̄p), and

D2 = [Q2 : R2 : S2 : T2 : Z2 : W2] be a general divisor in JacC(Fp) with Jacobian
coordinates. Consider D3 = D1 +D2 = [Q3 : R3 : S3 : T3 : Z3 : W3]. Then

A = y1 ·Z5
2 ·W2− x1 ·Z2

2 ·S2−T2, B = x1 ·Z2
2 · (x1 ·Z2

2 +Q2)+R2,

Z3 = Z2 · (W2 ·B), W3 = 1,
Q3 = x1 ·Z2

3−Q2 · (W2B)2−A2,

R3 = f3 ·Z4
3 +(Q2

2−R2) · (W2B)4−A · (W2B)2 · (A ·Q2 +2B ·S2)+ x1 ·Z2
3 ·Q3,

S3 = A ·Q3− (W2B)2 · (A ·Q2 +B ·S2),

T3 = A ·R3− (W2B)4 · (A ·R2 +B ·T2).

The explicit formulas for such a mixed addition is given in the Appendix in
Magma language. The cost of above operation is 22M+6S+1D+15a (If W2 = 1,
then 2M would be saved). If we extend the Jacobian coordinates as [Q : R : S : T :
Z : W : Z2], then one square can be further reduced. Moreover, note that W3 = 1 in
the output of the above function, thus in the iteration of scalar multiplication we
can usually save 3M when doubling D3 as [1].

4.2. 3D1 with deg(u1) = 1
Let D1 = [x− x1,y1]. We can compute D3 = 3D1 = [Q3,R3,S3,T3,Z3,W3] as

Z3 = 8y3
1,

A = 2y2
1 f ′′(x1)− f ′(x1)

2,B = f ′(x1) ·4y2
1−2 ·A · x1,C = y1 ·Z3−A · x2

1−B · x1,

Q3 = 3x1 ·Z2
3−A2,R3 = [ f3 ·Z2

3−2AB+3x1(Q3− x1 ·Z2
3)] ·Z2

3 ,

S3 = A ·Q3−B ·Z2
3 ,T3 = A ·R3−C · (Z2

3)
2,W3 = 1.

The above cost is 17M+5S+2D. Compared with the procedure D1→ 2D1→
4D1 → 3D1 = 4D1−D1 which roughly costs 45M + 14S+ 3D, we save almost
28M+9S.
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4.3. D1 +D2 or 2D1 is degenerate
In Jacobian coordinates, if D1 = [Q1 : R1 : S1 : T1 : Z1 : W1] and D2 = [Q2 : R2 :

S2 : T2 : Z1 : W1], define

A = (T1−T2) · (Q2 · (Q1−Q2)− (R1−R2))−R2 · (Q1−Q2) · (S1−S2);
B = (R1−R2) · (Q2 · (Q1−Q2)− (R1−R2))−R2 · (Q1−Q2)

2;
C = (Q1−Q2)(T1−T2)− (R1−R2)(S1−S2);

if D1 = D2, then define

A = (Q1 · (Q2
1−4R1)+( f3Q1− f2Z2

1) ·Z4
1 ·W 2

1 +S2
1) · (Q1 ·S1−T1)

+ (3Q2
1−2R1 + f3Z4

1) ·W 2
1 ·R1 ·S1;

B = 2(Q1 ·S1−T1) ·T1−2R1S2
1;

C = (Q1 · (Q2
1−4R1)+( f3Q1− f2Z2

1) ·Z4
1 ·W 2

1 +S2
1) ·S1

+ (3Q2
1−2R1 + f3Z4

1) ·W 2
1 ·T1.

The case C = 0 induces that the sum D3 = D1 +D2 would be a degenerate
divisor. Suppose D3 = (X3,Y3,Z3). Then

X3 = (Q1 +Q2) ·B2W 2 +A2,

Y3 = X3((A ·Q1−S1 ·B) ·B2W 2−A ·X3)+(A ·R1−B ·T1) · (B2W 2)2,

Z3 = B ·W ·Z;

4.4. deg(u1) = deg(u2) = 1
Let D1 and D2 be two degenerate divisors generated respectively by points

P1 = (x1,y1) and P2 = (x2,y2) on C(F̄p). Consider D3 = D1 +D2 = [Q3 : R3 : S3 :
T3 : Z3 : W3].

Q3 =−(x1 + x2), R3 = x1 · x2, S3 = y1− y2,

T3 = x1 · y2− x2 · y1, Z3 = 1, W3 = x1− x2.

The cost of the above operation will be 3M+4a.
If D1 = D2 = [x− x1,y1]. By using the representation of Jacobian coordinates

in [1], we compute D3 = [2]D = [Q2 : R2 : S2 : T2 : Z2 : W2] as

Q2 = −2x1, R2 = x2
1, T = y2

1,

S2 = (5R2 +3 f3) ·R2− f2 ·Q2 + f1,

T2 = 2T −S2 · x1, Z2 = 1, W2 = 2y1.
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The cost of the above operation will be 2M + 2S+ 1D+ 5a. We neglect the cost
of the multiplication by a ”small” constant that is no more than 5.

5. Endomorphisms on Degenerate Divisors

Endomorphisms on elliptic or hyperelliptic curves have been used to acceler-
ate scalar multiplications, which is the main operation in ECC or HECC. Such a
technique is usually known as GLV method [15]. Compared with endomorphisms
on general divisors, an endomorphism on degenerate divisors has much more sim-
ple expressions. For the efficient endomorphism φ defined on Buhler-Koblitz [27]
(BK) or Furukawa-Kawazoe-Takahashi [28] (FKT) curves, if D is a degenerate
divisor on the desired curve, then φ(D) is still a degenerate divisor.

We firstly take the BK Curve as an example. Suppose the hyperelliptic curve
C/Fp is defined by the equation y2 = x5 + b, and take any 1 6= ξ5 ∈ Fp such that
ζ 5

5 = 1. There is an efficient computable endomorphism φ on JacC(Fp) with
minimal polynomial T 4 +T 3 +T 2 +T +1 = 0. If (x,y) ∈C(Fp), then φ(x,y) =
(ξ5x,y), which means it acts on a degenerate divisor with only 1 multiplication in
Fp. φ acts on a general divisor [q,r,s, t] as φ([q,r,s, t]) = [ξ5q,ξ 2

5 r,ξ 4
5 s, t], which

costs 3 multiplications in Fp.
For FKT curves, suppose hyperelliptic curve C/Fp is defined by the equation

y2 = x5 + ax, and take any ±1 6= ξ8 ∈ Fp such that ξ 8
8 = 1. There is an efficient

computable endomorphism φ on JacC(Fp) with minimal polynomial T 4 +1 = 0.
If (x,y) ∈ C(Fp), then φ(x,y) = (ξ 2

8 x,ξ8y), which means it acts on a degenerate
divisor with only 2 multiplication in Fp. φ acts on a general divisor [q,r,s, t] as
φ([q,r,s, t]) = [ξ 2

8 q,ξ 4
8 r,ξ 7

8 s,ξ8t], which costs 4 multiplications in Fp.
If we apply the (2 dimensional) GLV method to accelerate the scalar multipli-

cation on desired curves, we usually need to evaluate the operation k1D1 + k2D2,
where D1,D2 are degenerate divisors, and k1,k2 have the same bitlength. Here we
adopt the novel technique called Joint Regular Form (JRF) [29].

JRF: Let < kn−1, ...,k0 > and ln−1, ..., l0 be signed binary representations of k
and l, respectively, satisfying k+ l ≡ 1 mod 2. < kn−1, ...,k0 > and < ln−1, ..., l0 >
is called Joint Regular Form (JRF) of (k, l), if ki and li satisfy ki+ li =±1, that is,
(ki, li) = (0,±1) or (±1,0) for any i.

We summarize such a procedure as the following algorithm.

12



Algorithm 1 Simultaneous scalar multiplication
Input: JRF of (k, l) as < kn−1, ...,k0 > and < ln−1, ..., l0 >, two degenerate divisors
D1,D2.
Output: kD1 + lD2.
1. R← 0;
2. for i from n−1 downto 0 do
2.1 R← 2R;
2.2 R← R+ kiD1 + liD2;
3. return R.

The above method can also be generalized into higher dimensional cases.
When implementing the GLV method, we usually adopt the multiple-base mul-
tiplication algorithm, and thus require a lookup table with divisors ∑ki jDi, where
ki j ∈ {0,1}. A 2m dimensional multiple-base multiplication algorithm usually re-
quires to store 22m divisors, while accomplished with JRF it only needs to store
2m divisors.

6. Efficiency Analysis

Let G denote a general divisor, and D denote a degenerate divisor. We sum-
marize the above algorithms and previously related work in the following, and list
the basic cost of divisor operations as Table 1.

Table 1: Divisor Arithmetic Cost
Doubling Addition

Operation Costs Operation Costs
2G = G [1] 26M+8S+2D+25a G +G = G [1] 41M+ 7S + 22a
2D = G 2M+2S+1D+2a G +D = G 22M+6S+1D+15a
3D = G 17M+5S+2D D +D = G 3M+4a

We also consider the scalar multiplication based on a general/degenerate di-
visor. Previous work [23, 26, 1] concentrated on the general generator case. In
this work, we find that scalar multiplication based on degenerate divisor could be
performed efficiently as well. Note that in the iteration of scalar multiplication, it
basically requires two operations: the DBL and the mDBLADD (DBL-and-ADD
mode like [23, 26] or ADD-and-ADD mode like [1]). If the base divisor is chosen
to be degenerate, the first doubling operation and the double-and-add operation
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would involve degenerate divisors. We conclude the cost of these operations and
previous work in table 1, where we only count the costs of “plain” formulae.

Table 2: Operation count

Work DBL mADD mDBLADD

Lange [23] 32M+7S+2D 36M+5S 68M+12S+2D
Costello and Lauter [26] 30M+9S+2D 36M+5S 66M+14S+2D
Costello and Hisil [1] 26M+8S+2D 32M+5S 57M+8S
This work( Degenerate case) 26M+8S+2D 22M+6S+1D 45M+13S+3D

We should mention that katagi et al. in [12] also presented formulae for de-
generate divisors, which were given in affine coordinates and tackle the cases in
characteristic two. Thus we do not list their results to the above tables, since we
mainly consider the arithmetic of the reduced divisors over finite fields with odd
characteristics here.

Let |k|2 = n, |k1|2 = |k2|2 = n/2. Let D be a general divisor, and D1,D2 be
two degenerate divisors. We consider the scalar multiplication for three kinds of
base divisors, the general base, the degenerate base and the double degenerate
bases. For general base scalar multiplications, we follow the method of Costello
and Hisil [1], and adopt the non-adjacent form (NAF) to represent the scalar such
that the average density of nonzero digits is approximately 1

3 . For degenerate
base scalar multiplications, we use the same DBL function as [1], while the mD-
BLADD function is described in the above section. We should point out that the
mDBLADD operation in this work involves the degenerate divisor. We can not
say that our formulae are faster than the previous results since they are used in
different scenarios.

The GLV technique [15] or the verification of an ECDSA signature requires
one to perform a double-base scalar multiplication. Suppose the two base divisors
D1,D2 are degenerate, we consider how to efficiently perform k1D1+k2D2. If we
use the JRF of scalar (k1,k2) and apply the simultaneous algorithm (a.k.a Shamir
trick), the addition operation in mDBLADD only involves two cases: +D1 or
+D2, and thus the iteration routine is regular.
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Table 3: Random base Scalar multiplication

Operation Scalar rep. Regular Cost

kD[1] NAF No n
3(109M+24S+4D)

kD1(this work) NAF No n
3(97M+29S+7D)

k1D1 + k2D2(this work) JRF Yes n
2(45M+13S+3D)

7. Conclusion

In this work, we showed that the addition formulae involved with the degen-
erate divisor can be speeded up efficiently by using Jacobian coordinates. Also,
these formulae may be applied into the computations of pairings on hyperelliptic
curves. We hope that these results can encourage more significant efforts on this
line.

Appendix

We now give the explicit formulae for the addition of one degenerate divisor
and one generate divisor in Magma language as follows .

Mix Add := f unction(x1,y1,Q2,R2,S2,T 2,Z2,W2, f 3)

Z22 := Z22;Z24 := Z222;x1Z22 := x1∗Z22;Z25 := Z24∗Z2;M1 := y1∗Z24;
M2 := Z2∗W2;M3 := M1∗M2;M4 := x1Z22∗S2;A := M3−M4−T 2;
W2B :=W2∗B;B := x1Z22∗ (x1Z22+Q2)+R2;Z3 := Z2∗W2B;W3 := 1;

W2B2 :=W2B2;A2 := A2;Q3 := (x1Z22−Q2)∗W2B2−A2;Q22 := Q22;
M5 := f 3∗Z24;M6 := (M5+Q22−R2)∗W2B2;AQ2 := A∗Q2;
BS2 := B∗S2;M7 := A∗ (AQ2+2∗BS2);M8 := x1Z22∗Q3;
R3 := (M6−M7+M8)∗W2B2;AQ3 := A∗Q3;S3 := AQ3−W2B2∗ (AQ2+BS2);

AR3 := A∗R3;AR2 := A∗R2;BT 2 := B∗T 2;W2B22 :=W2B22;
T 3 := AR3−W2B22∗ (AR2+BT 2);
return [Q3,R3,S3,T 3,Z3,W3];

end f unction;
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