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Abstract. Since the development of cryptanalysis of AES and AES-
like constructions in the late 1990s, the set of inputs (or a subset of
it) which differ only in one diagonal has special importance. It appears
in various (truncated) differential, integral, and impossible differential
attacks, among others.
In this paper we present new techniques to analyze this special set of
inputs, and report on new properties. In differential cryptanalysis, state-
ments about the probability distribution of output differences, like mean
or variance, are of interest. So far such statements were only possible
for up to 4 rounds of AES. In this paper we consider the probabilistic
distribution of the number of different pairs of corresponding ciphertexts
that lie in certain subspaces after 5 rounds. We show that the following
two properties (independent of any key or constant additions) hold for 5
rounds of the AES permutation:

– the mean value is bigger for AES than for a random permutation;
– the variance is approximately by a factor 36 higher for AES than for

a random permutation.
For a large class of AES-like constructions, with an APN-like assumption
on the S-Box which closely resembles the AES-Sbox, we can even give
rigorous proofs of these properties. The technique we developed for that
may be of independent interest.
While the distinguisher based on the variance is (almost) independent of
the details of the S-Box and of the MixColumns matrix, the mean value
distinguisher does depend on the details of the S-Box and may give rise
to a new design criterion for S-Boxes.
To the best of our knowledge this seems to be the first time that such
a precise differential analysis was performed. Practical implementations
and verification confirm our analysis.
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1 Introduction

AES (Advanced Encryption Standard) [16] is probably the most used and studied
block cipher. Any cryptanalytic improvement on this cipher should thus be a
good indicator of the novelty and quality of a new cryptanalytic technique. AES
with its wide-trail strategy was designed to withstand differential and linear
cryptanalysis [16], so pure versions of these techniques have limited applications
in attacks.

Since its conception by Biham and Shamir [8] in their effort to break the
Data Encryption Standard (DES), differential cryptanalysis has been success-
fully applied in many cases such that any modern cipher is expected to have
strong security arguments against this attack. Differential attacks exploit the
fact that pairs of plaintexts with certain differences yield other differences in
the corresponding ciphertexts with a non-uniform probability distribution. The
methodology of differential cryptanalysis has been extended several times with a
number of attack vectors, most importantly truncated differentials [23] - where
only part of the difference between pairs of texts is considered, impossible dif-
ferentials [6] - where differences with zero-probability are exploited, and higher-
order differentials [23]. Differential cryptanalysis can be used to set up secret-key
distinguishers and key-recovery attacks. In a secret-key distinguisher, there are
two oracles: one that simulates the cipher for which the key has been chosen at
random and one that simulates a truly random permutation. The adversary can
query both oracles and her task is to decide which oracle is the cipher. Secret-
key distinguishers which are independent of the secret-key are usually starting
points for key-recovery attacks.

As is state of the art, truncated differential distinguishers which are indepen-
dent of the secret key - that exploits difference with probability different from
0 - can be set up for at most 3-round AES, while impossible differential ones
which are independent of the secret key can be set up for at most 4-round AES.

1.1 New (Truncated) Differential Distinguishers for 5-round AES

Recently at Eurocrypt 2017, a new property which is independent of the secret
key has been found for 5-round AES [21]. By appropriate choices of a number
of input pairs, it is possible to make sure that the number of times that the
difference of the resulting output pairs lie in a particular subspace1 M is always
a multiple of 8. Such a distinguisher has then been exploited in e.g. [20] to set up
new key-recovery attacks on 6-round AES. Later, at Asiacrypt 2017, Rønjom,
Bardeh and Helleseth [26] presented new secret-key distinguishers for 3- to 6-
round AES, which are based on the “yoyo-game”, i.e. they require adaptively
chosen ciphertexts in addition to chosen plaintexts.

Several open questions arise from the result provided in [21]: does this prop-
erty influence e.g. the average number of output pairs that lie in a particular

1 A pair of texts has a certain difference if and only if the texts belong to the same
coset of a particular subspace X .
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Table 1. (Theoretical) Properties of a diagonal set after 5-round encryption. Given a
set of 232 chosen plaintexts all equal in three diagonals (that is, a diagonal set), we
consider the distribution of the number of different pairs of ciphertexts that lie in a
particular subspace MI for I ⊆ {0, 1, 2, 3} fixed with |I| = 3 - as defined in Def. 4.
Accurate theoretical expected values mean and variance of this distribution is given in
this table for 5-round AES and for a random permutation. Practical results on AES
are close and are discussed in Sect. 8.

Random Permutation 5-round AES

Mean (Sect. 4-5) 2 147 483 647.5 ≈ 231 2 147 484 685.6 ≈ 231 + 210

Variance (Sect. 6) 2 147 483 647 ≈ 231 76 435 327 505.945 ≈ 236.155

Multiple-of-8 [21] 3

subspace (i.e. the mean)? Are other parameters (e.g. the variance, the skewness,
...) affected by the multiple-of-8 property?

Diagonal Set of Plaintexts. In this paper, given a diagonal set of plaintexts
- i.e. a set of plaintexts with one active diagonal, we consider the probabilistic
distribution of the corresponding number of pairs of ciphertexts after 5-round
AES that belong to the same coset of a particular subspace M.

While a lot is known about the properties of a diagonal set of plaintexts for
up to 4-round AES, a complete analysis for 5 or more rounds AES is still miss-
ing. E.g. given a diagonal set of plaintexts and the corresponding ciphertexts
after 4 rounds, it is well known that the XOR-sum of the ciphertexts is equal to
zero - see integral cryptanalysis [14], or that each pair of ciphertexts can not be
equal in any of the four anti-diagonal (as showed by Biham and Keller in [7]).
For the first time, here we perform and propose a precise theoretical differential
analysis of such distribution after 5-round AES (with an APN-like assumption
on the S-Box which closely resembles the AES-Sbox), supported by practical
implementations and verification. A numerical summary is given in Table 1.

5-round AES - Truncated Differential Distinguisher based on the
Mean. As a first result, we present in Sect. 4 an analysis of the mean and for-
mulate it as a new truncated differential distinguisher based on the mean which
is independent of the secret-key. In more detail, by appropriate choice of sets of
texts, we prove for the first time that the number of times that the difference
of the resulting output pairs lie in a particular subspace is (a little) bigger for
5-round AES than for a random permutation, independently of the secret key.
An important technical contribution of this result is the new and original way in
which such numbers are derived. To the best of our knowledge, such an approach
to compute the probabilities exploited by our distinguisher is new in the liter-
ature and it is general enough to be applied to any AES like-cipher, providing
new possible future results about truncated differential distinguishers.
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5-round AES - (First) Truncated Differential Distinguisher based
on the Variance. As a second contribution, we theoretically compute the vari-
ance of the probabilistic distribution just defined, and we show that it is higher
(by a factor of approximately 36) for 5-round AES than for a random permu-
tation. Such property - whose proof is based on the “multiple-of-8” result [21]
proposed at Eurocrypt 2017 - is independent of the secret key. As a result, we
propose for the first time in Sect. 6 a differential distinguisher that exploits the
variance parameter - and not the mean value (usually used in the literature) -
in order to distinguish an AES-like cipher from a random permutation.

Main Difference with Other Truncated Diff. Distinguishers in the
Literature. Before going on, it is important to remark a crucial difference be-
tween our distinguishers and the other currently present in the literature up to
4-round AES. Truncated differential distinguishers in the literature consider the
probability that, given random pairs of plaintexts, the corresponding pairs of
ciphertexts belong or not to a given subspace. In order to set up our result up
to 5-round AES, the price that has to be paid is less freedom in the input set.
That is, in our case one must consider a particular set of input plaintexts - i.e. a
full coset of a particular subspace - to appreciate a difference in the probability
of the previous event. More details are given in the following.

1.2 Potential Impact of Our Results

Since there is no known attack which can break the full AES significantly faster
than via exhaustive search, attacks on round-reduced AES are important for sev-
eral reasons. First of all, they enable us to assess the remaining security margin
of AES, defined by the ratio between the number of rounds which can be suc-
cessful attacked and the number of rounds of full AES. In addition, they enable
us to develop new attack techniques which may become increasingly potent with
additional improvements. As example, the “multiple-of-8” distinguisher [21] has
been used as starting point to set up new secret-key distinguishers [20] and - as
follow-up of this - new competitive key recovery attacks [4].

Truncated Differential Distinguisher based on the Variance. Until now,
truncated-differential-style attacks (and many others) rely only on the mean
value to distinguish a cipher from a random permutation. To the best of our
knowledge, our variance (differential) distinguisher is the first case in which the
variance value is used to distinguish a random permutation from a cipher, giving
in substantially better results compared to using the mean value. As a future
work, it would be interesting to see if this more direct use of the variance can
find applications and give improvements elsewhere in cryptanalysis.

Round-Reduced AES as part of New Designs. Since reduced versions of
AES have nice and well-studied properties, many constructions employ round-
reduced AES as part of their design. Only to cite some examples, several can-
didates in the on-going “Competition for Authenticated Encryption: Security,
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Applicability, and Robustness” (CAESAR) [1] are designed based on an AES-
like SPN structure. Focusing only on the finalists candidates, AEGIS [29] uses
five AES round-functions in the state update functions, while ELmD v1.0 [17]
recommends to use round-reduced AES including 5-round AES to partially en-
crypt the data2.

Although the security of these constructions does not directly (or only) de-
pend on the underlying round-reduced AES primitives, a better understanding
of the security of round-reduced AES can help to get insights to both the de-
sign and cryptanalysis of such algorithms. As a concrete example, in [5] authors
exploit - in a new way - known properties of round-reduced AES to set up a
new attack on ELmD. Our (theoretical) analysis proposed in this paper can
be applied to any AES-like cipher, allowing to improve/extend (almost) all the
truncated differential distinguishers for AES-like ciphers - which are independent
of the key - currently present in the literature.

New Key-Recovery Attacks for 5-round AES. As another example of
applications of our distinguishers, in App. H we propose new (practically verified)
attacks on 5-round AES based on the properties analyzed in this paper when
adapted to 4-round AES, that is (1st) the first 5-round AES truncated differential
attack based on the mean and (2nd) the first 5-round AES truncated differential
attack based on the variance.

2 Preliminary - Brief Description of AES

The Advanced Encryption Standard [16] is a Substitution-Permutation network
that supports key size of 128, 192 and 256 bits. The 128-bit plaintext initializes
the internal state as a 4 × 4 matrix of bytes as values in the finite field F256,
defined using the irreducible polynomial x8 + x4 + x3 + x + 1. Depending on
the version of AES, Nr rounds are applied to the state: Nr = 10 for AES-128,
Nr = 12 for AES-192 and Nr = 14 for AES-256. An AES round applies four
operations to the state matrix:

– SubBytes (S-Box) - applying the same 8-bit to 8-bit invertible S-Box 16 times
in parallel on each byte of the state (provides non-linearity in the cipher);

– ShiftRows (SR) - cyclic shift of each row to the left;

– MixColumns (MC) - multiplication of each column by a constant 4 × 4
invertible matrix (MC and SR provide diffusion in the cipher);

– AddRoundKey (ARK) - XORing the state with a 128-bit subkey.

One round of AES can be described as R(x) = K ⊕MC ◦ SR ◦ S-Box(x). In
the first round an additional AddRoundKey operation (using a whitening key)
is applied, and in the last round the MixColumns operation is omitted.

2 We mention that 5-round AES has been replaced by 6-round AES in ELmD v2.0.
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The Notation Used in the Paper. Let x denote a plaintext, a ciphertext,
an intermediate state or a key. Then xi,j with i, j ∈ {0, ..., 3} denotes the byte
in the row i and in the column j. We denote by R one round3 of AES, while
we denote r rounds of AES by Rr. Finally, in the paper we often use the term
“partial collision” (or “collision”) when two texts belong to the same coset of a
given subspace X . We recall that given a subspace X, the cosets X⊕a and X⊕b
(where a 6= b) are equivalent (that is X ⊕ a ∼ X ⊕ b) if and only if a⊕ b ∈ X.

3 Subspace Trail Cryptanalysis

Let F denote a round function in an iterative block cipher and let V ⊕ a denote
a coset of a vector space V . Then if F (V ⊕ a) = V ⊕ a we say that V ⊕ a is
an invariant coset of the subspace V for the function F . As shown in [22], this
concept can be generalized to trails of subspaces.

Definition 1. Let (V1, V2, ..., Vr+1) denote a set of r+1 subspaces with dim(Vi) ≤
dim(Vi+1). If for each i = 1, ..., r and for each ai, there exists (unique) ai+1 s.t.
F (Vi ⊕ ai) ⊆ Vi+1 ⊕ ai+1, then (V1, V2, ..., Vr+1) is subspace trail of length r for
the function F .

This means that if F t denotes the application of t rounds with fixed keys, then
F t(V1 ⊕ a1) = Vt+1 ⊕ at+1. We refer to [22] for more details about the concept
of subspace trails. Our treatment here is however meant to be self-contained.

Subspace Trails of AES. Here we briefly recall the subspace trails of AES
presented in [22] - we refer to App. A for more details. For the following, we only
work with vectors and vector spaces over F4×4

28 , and we denote by {e0,0, ..., e3,3}
the unit vectors of F4×4

28 (e.g. ei,j has a single 1 in row i and column j).

Definition 2. For each i ∈ {0, 1, 2, 3}:

– the column spaces Ci are defined as Ci = 〈e0,i, e1,i, e2,i, e3,i〉;
– the diagonal spaces Di are defined as Di = SR−1(Ci); similarly, the inverse-

diagonal spaces IDi are defined as IDi = SR(Ci);
– the i-th mixed spaces Mi are defined as Mi = MC(IDi).

Definition 3. For I ⊆ {0, 1, 2, 3}, let CI , DI , IDI and MI be defined as

CI =
⊕
i∈I
Ci, DI =

⊕
i∈I
Di, IDI =

⊕
i∈I
IDi, MI =

⊕
i∈I
Mi.

As shown in detail in [22]:

– for any coset DI⊕a there exists unique b ∈ C⊥I such that R(DI⊕a) = CI⊕b;
– for any coset CI⊕a there exists unique b ∈M⊥I such that R(CI⊕a) =MI⊕b.

3 Sometimes we use the notation Rk instead of R to highlight the round key k.
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Theorem 1 ([22]). For each I ⊆ {0, 1, 2, 3} and for each a ∈ D⊥I , there exists
one and only one b ∈M⊥I s.t. R2(DI ⊕ a) =MI ⊕ b.

Observe that if X is a subspace, X ⊕ a is a coset of X and x and y are two
elements of the (same) coset X ⊕ a, then x⊕ y ∈ X. It follows that:

Lemma 1. For all x, y and for all I ⊆ {0, 1, 2, 3}:

Prob(R2(x)⊕R2(y) ∈MI |x⊕ y ∈ DI) = 1. (1)

We finally recall that for each I, J ⊆ {0, 1, 2, 3} then MI ∩ DJ = {0} if and
only if |I|+ |J | ≤ 4, as demonstrated in [22]. It follows that:

Theorem 2 ([22]). Let I, J ⊆ {0, 1, 2, 3} such that |I|+ |J | ≤ 4. For all x, y:

Prob(R4(x)⊕R4(y) ∈MI |x⊕ y ∈ DJ , x 6= y) = 0. (2)

We remark that all these results can be re-described using a more “classical”
truncated differential notation, as formally pointed out in [9]. For example, if
two texts t1 and t2 are equal except for the bytes in the i-th diagonal4 for each
i ∈ I, then they belong to the same coset of DI . A coset of DI corresponds
to a set of 232·|I| texts with |I| active diagonals. Again, two texts t1 and t2

belong to the same coset of IDI if the difference of the bytes that lie in the i-th
anti-diagonal for each i /∈ I is equal to zero. Similar considerations hold for the
column space CI and the mixed space MI .

4 A New Truncated-Differential for 5-round AES

In this section, we describe a new truncated differential property for up to 5-
round AES which is independent of the secret-key.

As already recalled in the introduction, differential attacks [8] exploit the
fact that pairs of plaintexts with certain differences yield other differences in the
corresponding ciphertexts with a non-uniform probability distribution. A variant
of this attack/distinguisher is the truncated differential one [23], in which the
attacker can predict only part of the difference between pairs of texts. Using the
subspace terminology, given pairs of plaintexts that belong to the same coset of
a subspace X , one consider the probability that the corresponding ciphertexts
belong to the same coset of a subspace Y to set up an attack - see [9] for details.
Another type of differential trail is the impossible differential one, where one
exploits the fact that pairs of plaintexts that belong to the same coset of a
subspace X can not belong to the same coset of Y after a certain number of
rounds. For the AES case, truncated differential distinguisher and impossible
differential one - which are independent of the key - can be set up for up to 3

4 The i-th diagonal of a 4 × 4 matrix A is defined as the elements that lie on row r
and column c such that r− c = i mod 4. The i-th anti-diagonal of a 4× 4 matrix A
is defined as the elements that lie on row r and column c such that r+ c = i mod 4.
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and for up to 4 rounds respectively of AES. In both cases, the subspaces X and
Y correspond respectively to DI and MJ , as showed in detail in [22].

The truncated differential property - and the corresponding distinguisher -
that we are going to present works in a similar way. The main difference with
other differential distinguishers in literature is the fact that our distinguisher
works if and only if one considers entire cosets of a particular space X and not
random pairs of texts. Our result can be summarized as follows.

Consider 232 plaintexts pi for i = 0, 1, ..., 232 − 1 in a coset of a diagonal
space Dk, that is Dk ⊕ a for k ∈ {0, 1, 2, 3} and a ∈ D⊥k , and the corresponding
ciphertexts after 5 rounds, that is ci = R5(pi). The average number of different
pairs5 of ciphertexts (ci, cj) for i 6= j that belong to the same coset of MK for
K ⊆ {0, 1, 2, 3} fixed with |K| = 3 is approximately equal to 2 147 484 685.6 '
231+210, in contrast to an average number of 2 147 483 647.5 ' 231 for a random
permutation (approximately 1 038.1 more collisions for the AES case). In other
words, given a set of 232 plaintexts as before, the probability that two cipher-
texts belong to the same coset of MK is approximately 2−32 + 2−52.9 versus a
probability 2−32 for a random permutation.

If the final MixColumns is omitted, it is sufficient to replace the mixed space
MK with an inverse-diagonal space IDK . For completeness, the same result
holds also in the decryption direction - that is, using chosen ciphertexts instead
of chosen plaintexts - and also in the case in which K is not fixed.

Even if the difference between the numbers of collisions for the two cases is
very small, it is possible to set up a secret-key distinguisher which is independent
of the secret key for 5-round AES that exploits such property. In particular, such
distinguisher on 5-round AES requires 247.4 chosen plaintexts (or ciphertexts)
and it has a computational cost of 251 table look-ups, as showed in detail in
Sect. 9. In the following, we first theoretically prove the result just given, and
we present our practical results on small-scale AES.

A Formal Statement. As we are going to show, the previous result about
the number of collisions depends on the details of the S-Box. For this reason, we
first recall some properties of the S-Box function.

Given a bijective S-Box function, let ∆I , ∆O ∈ F28 . We denote by n∆I ,∆O
the number of solutions x of the following equation

S-Box(x⊕∆I)⊕ S-Box(x) = ∆O. (3)

For the following, we limit to consider the cases ∆I 6= 0 and ∆O 6= 0 - if ∆O = 0,
the equation admits solution if and only if ∆I = 0 (the S-Box is bijective).

5 The pairs (s, t) and (t, s) are considered to be equivalent. We use the partial order
≤ to formalize this concept.
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Independently of the details of the S-Box, the mean value6 of n∆I ,∆O is equal
to

E[n∆I ,∆O ] =
256

255
' 1.00392... ' 1 + 2−7.9944, (4)

Indeed, observe that for each x and for each ∆I 6= 0 there exists ∆O 6= 0 (since
S-Box is bijective) that satisfies eq. (3). Since there are 256 different x and 255
different values of ∆I and ∆O, the average number of solutions is 256·255

2552 = 256
255

independently of the details of the (bijective) S-Box. We highlight that our result
on the average number of collisions for 5-round AES depends - among other
things - on the fact that E[n∆I ,∆O ] is a (little) higher than 1 (we refer to Sect.
5 for details). To the best of our knowledge, no previous result in the literature
uses this fact to compute the probability of a truncated differential.

For the following, we denote by V ar(n∆I ,∆O ) the variance7 of n∆I ,∆O . This
quantity depends on the details of the S-Box, in particular on the distribution of
n∆I ,∆O with respect to ∆I and ∆O. For the AES S-Box case, for each ∆I 6= 0
there are 127 values of ∆O 6= 0 for which equation (3) has no solution, 126
values of ∆O 6= 0 for which equation (3) has 2 solutions (x̂ is a solution iff
x̂ ⊕∆I is a solution) and finally 1 value of ∆O 6= 0 for which equation (3) has
4 solutions. The variance of the AES S-Box is so equal to V arAES(n∆I ,∆O ) =

22 · 126255 + 42 · 1
255 −

(
256
255

)2
= 67 064

65 025 .
We also recall the definitions of Maximum Differential Probability and of

Uniform Differential S-Box. The Maximum Differential Probability DPmax of
an S-Box is defined as

DPmax = max
∆I 6=0,∆O

n∆I ,∆O
2n

. (5)

Since all entries of the differential distribution table are even, DPmax is al-
ways bigger than or equal to 2−n+1 (i.e. DPmax ≥ 2−n+1). Permutations with
DPmax = 2−n+1 are called Almost Perfect Nonlinear (APN).

Finally, given ∆I 6= 0 (resp. ∆O 6= 0), consider the probabilistic distribution
of n∆I ,∆O w.r.t. ∆O 6= 0 (resp. ∆I 6= 0). The S-Box is Uniform Differential if
such distribution is independent of ∆I (resp. ∆O). As examples, the AES S-
Box is uniform differential since for each ∆I 6= 0 (fixed), Prob(n∆I ,∆O = 2) =
126
255 and Prob(n∆I ,∆O = 4) = 1

255 . The PRINCE S-Box (recalled in App. I)
is instead not uniform differential, since Prob(n∆I ,∆O = 4) depends on ∆I 6=
0, e.g. Prob(n∆I ,∆O = 4) = 0 if ∆I = 0xF (i.e. n0xF,∆O 6= 4 ∀∆O) while
Prob(n∆I ,∆O = 4) = 2

15 if ∆I = 0xA (two values of ∆O satisfy n0xA,∆O = 4).

Definition 4. Given two different texts t1, t2 ∈ F4×4
2b

, we say that t1 ≤ t2 if t1 =
t2 or if there exists i, j ∈ {0, 1, 2, 3} s.t. (1st) t1k,l = t2k,l for all k, l ∈ {0, 1, 2, 3}

6 In the case of a discrete probability distribution of a random variable X, the mean
E[X] ≡ µ is defined as µ =

∑
x · P (x), that is the sum over every possible value x

weighted by the probability of that value P (x).
7 In the case of a discrete probability distribution of a random variable X, the variance
V ar(X) ≡ σ2 is defined as σ2 = E[(X − E[X])2 = E[X2]− E[X]2.
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with k + 4 · l < i + 4 · j and (2nd) t1i,j < t2i,j. Moreover, we say that t1 < t2 if

t1 ≤ t2 (w.r.t. the previous definition) and t1 6= t2.

Theorem 3. Consider an AES-like cipher that works with texts in F4×4
28 , s.t.

the MixColumns matrix is an MDS matrix8 and s.t. the solutions of eq. (3) are
uniformly distributed for each input/output difference (∆I , ∆O) 6= (0, 0).

Consider 232 plaintexts pi for i = 0, 1, ..., 232 − 1 in a coset of a diagonal
space Dk, that is Dk ⊕ a for k ∈ {0, 1, 2, 3} and a ∈ D⊥k , and the corresponding
ciphertexts after 5 rounds, that is ci = R5(pi). The average number of different
pairs of ciphertexts (ci, cj) with ci ≤ cj for i 6= j that belong to the same coset
of MK for K ⊆ {0, 1, 2, 3} fixed with |K| = 3 is equal to 2 147 484 685.6 '
231 + 1 038.1, approximately 210 more collisions than for a random permutation.

The proof of this Theorem is given in the next section.

About the “Uniform Distribution of Solutions of eq. (3)”. Before
presenting the proof, we discuss the assumptions of the Theorem, focusing on
the assumption related to the properties/details of the S-Box. The fact that
“the solutions of eq. (3) are uniform distributed for each (∆I , ∆O) 6= (0, 0)” is
basically equivalent to ask that the S-Box satisfies the following properties: (1st)
it is uniform differential and (2nd) its V ar(n∆I ,∆O ) is as “low” as possible9. This
is close to being true if the S-Box is APN, or if the SBox is “close” to be APN.
We stress that even if the assumptions on the S-Box are restrictive, we stress
that they are widespread as they match criteria used to design an S-Box which
is strong against differential cryptanalysis.

Although much is known for (bijective) APN permutations in odd dimension,
currently only little is known for the case of even dimension and what is known
relies heavily on computer checking. In particular, there is no (invertible) APN
permutation of dimension 4 [24], while there is at least one APN permutation,
up to equivalence, of dimension 6 - called the Dillon’s permutation [12]. The
question of finding an APN bijective (n, n)-function for even n ≥ 8 is still open.

As a result, in the case of dimensions equal to a power of 2 (e.g. F24 or F28),
the only (known) S-Box that (approximately) matches the assumptions of the
Theorem in dimensions 4 or 8 is the one generated by the multiplicative-inverse
permutation unless affine equivalence relations10, as for example the AES S-Box,

8 A matrix M ∈ Fn×n
2b

is called Maximum Distance Separable (MDS) matrix iff it has
branch number B(M) equal to B(M) = n+1. The branch number of M is defined as
B(M) = min0 6=x∈Fn

2b
{wt(x)+wt(M(x))} where wt is the hamming weight. Similarly,

a n× n matrix is “almost MDS” if its branch number is n.
9 Note that even if the variance V ar(n∆I ,∆O ) is related “in some sense” to DPmax,

S-Boxes with equal DPmax can have very different variances. Moreover, the variance
of an S-Box S1 can be bigger than the corresponding variance of an S-Box S2 even
if DPmax of S1 is lower than DPmax of S2. E.g. see Table 3 in Sect. 10 for examples.

10 Uniform differential property and DPmax of an S-Box S remain unchanged if affine
transformations are applied in the domain or co-domain of S. Thus, consider two
S-Boxes S,S ′ : Fn2 → Fn2 . Let A,B ∈ Fn×n2 be two invertible n × n matrices and
a, b ∈ Fn2 . S and S ′ are affine equivalent iff S ′(x) = B · [S(A · x+ a)] + b ∀x ∈ Fn2 .
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which is not APN but differentially 4-uniform [25] (e.g. note that the variance
of the AES S-Box is 67 064/65 025 vs 64 004/65 025 of an APN S-Box). Our
practical results on small-scale AES (for which the S-Box has the same property
as the full-size AES one) confirm that the practical number of collisions for this
case is very close to the one predicted by the previous Theorem.

Finally, we emphasize that if the S-Box doesn’t satisfy the required properties
related to the assumption of the Theorem, then the number of collisions can be
different to the one previously given. To be more concrete, in Sect. 10 we provide
several practical examples of the dependency of the number of collisions for
small-scale AES-like ciphers w.r.t. the properties of the S-Box, and we provide
theoretical argumentations to explain the influence of the S-Box. In the case in
which the assumption about the S-Box is not fulfilled, it turns out that also the
details of the MixColumns matrix can influence the average number of collisions.

5 Proof of Theorem 3

5.1 Reduction to the Middle Round

In order to prove Theorem 3, the idea is to prove an equivalent result on a single
round. Since each coset of a diagonal space is mapped into a mixed space after 2
rounds - see Theorem 1 - and since Prob(t1⊕t2 ∈ DJ |R2(t1)⊕R(t2) ∈MJ) = 1,
observe that for any I, J ⊆ {0, 1, 2, 3}:

DI ⊕ a′
R2(·)−−−−→
prob. 1

MI ⊕ b′
R(·)−−→ DJ ⊕ a′′

R2(·)−−−−→
prob. 1

MJ ⊕ b′′.

Working on the middle round, the idea is to prove the following equivalent result.

Lemma 2. Consider an AES-like cipher that works with texts in F4×4
28 and for

which the assumptions of Theorem 3 hold.
Consider 232 plaintexts pi for i = 0, 1, ..., 232 − 1 in a coset of a mixed space

Mk, that is Mk ⊕ a for k ∈ {0, 1, 2, 3} and a ∈ M⊥k , and the corresponding
ciphertexts after 1 round, that is ci = R(pi). The average number of different
pairs of ciphertexts (ci, cj) with ci < cj that belong to the same coset of DK for
K ⊆ {0, 1, 2, 3} fixed with |K| = 3 is equal to 2 147 484 685.6 ' 231 + 210, w.r.t.
approximately 2 147 483 647.5 ' 231 collisions for a random permutation.

Idea of the Proof. For simplicity, we limit to consider plaintexts in the same
coset of M0 and to count the collisions in the same coset of a diagonal space
D1,2,3 (the other cases are analogous). By definition of M0, if p1, p2 ∈ M0 ⊕ b′
there exist xi, yi, zi, wi ∈ F28 for i = 1, 2 such that:

pi = b′ ⊕


2 · xi yi zi 3 · wi
xi yi 3 · zi 2 · wi
xi 3 · yi 2 · zi wi

3 · xi 2 · yi zi wi
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where 2 ≡ 0x02 and 3 ≡ 0x03. For the following, we say that p1 is “generated”
by the generating variables (x1, y1, z1, w1) and that p2 is “generated” by the
generating variables (x2, y2, z2, w2) - we denote it by pi ≡ (xi, yi, zi, wi) for
i = 1, 2. The idea is to consider separately the following cases

– 3 variables are equal, e.g. x1 6= x2 and y1 = y2, z1 = z2, w1 = w2;

– 2 variables are equal, e.g. x1 6= x2,y1 6= y2 and z1 = z2, w1 = w2;

– 1 variable is equal, e.g. x1 6= x2, y1 6= y2, z1 6= z2 and w1 = w2;

– all variables are different, e.g. x1 6= x2, y1 6= y2, z1 6= z2, w1 6= w2.

In the first case - if 3 variables are equal (e.g. y1 = y2, z1 = z2 and w1 = w2),
then p1 ⊕ p2 ∈ Ck and R(p1) ⊕ R(p2) ∈ Mk for a certain k ∈ {0, 1, 2, 3}. By
Theorem 2, it follows that R(p1)⊕R(p2) /∈ DJ for each J . Thus, for the following
we limit to consider the case in which at least 2 generating variables are different.

5.2 Case: Two Equal Generating Variables

As first case, we consider the case in which 2 generating variables are different,
e.g. x1 6= x2, y1 6= y2, z1 = z2 and w1 = w2. This is equivalent to consider 216

plaintexts in the same coset of C0,1 ∩M0 (the other cases are equivalent).

Thus, consider two plaintexts p1 generated by (x1, y1, 0, 0) and p2 generated
by (x2, y2, 0, 0) in (C0,1 ∩M0)⊕ b′. By simple computation and by definition of
the diagonal space D1,2,3, R(p1)⊕R(p2) ∈ D1,2,3 if and only if the following four
equations are satisfied

(R(p1)⊕R(p2))0,0 = 2 · (S-Box(2 · x1 ⊕ a0,0)⊕ S-Box(2 · x2 ⊕ a0,0))⊕
⊕ 3 · (S-Box(y1 ⊕ a1,1)⊕ S-Box(y2 ⊕ a1,1)) = 0,

(R(p1)⊕R(p2))1,1 = S-Box(3 · x1 ⊕ a3,0)⊕ S-Box(3 · x2 ⊕ a3,0)⊕
⊕ S-Box(y1 ⊕ a0,1)⊕ S-Box(y2 ⊕ a0,1) = 0,

(R(p1)⊕R(p2))2,2 = 2 · (S-Box(x1 ⊕ a2,0)⊕ S-Box(x2 ⊕ a2,0))⊕
⊕ 3 · (S-Box(2 · y1 ⊕ a3,1)⊕ S-Box(2 · y2 ⊕ a3,1)) = 0,

(R(p1)⊕R(p2))3,3 = S-Box(x1 ⊕ a1,0)⊕ S-Box(x2 ⊕ a1,0)⊕
⊕ S-Box(3 · y1 ⊕ a2,1)⊕ S-Box(3 · y2 ⊕ a2,1) = 0.

Equivalently, four equations of the form

A ·
[
S-Box(B · x1 ⊕ a)⊕ S-Box(B · x2 ⊕ a)

]
⊕

⊕C ·
[
S-Box(D · y1 ⊕ c)⊕ S-Box(D · y2 ⊕ c)

]
= 0

(6)

must be satisfied, where A,B,C,D depend only on the MixColumns matrix,
while a, c depend on the secret key and on the initial constant that defines the
coset. Consider one of these four equations. By simple observation, equation (6)

12



is satisfied if and only if11 the following system of equations is satisfied

S-Box(x̂⊕∆I)⊕ S-Box(x̂) = ∆O

S-Box(ŷ ⊕∆′I)⊕ S-Box(ŷ) = ∆′O

∆′O = C−1 ·A ·∆O

(7)

for each value of ∆O, where x̂ = B · x1 ⊕ a, ∆I = B · (x1 ⊕ x2), ŷ = D · y1 ⊕ c
and ∆′I = D · (y1 ⊕ y2).

What is the number of different (not null) solutions [(x1, y1), (x2, y2)] of eq.
(6)? Given ∆O, each one of the first two equations of (7) admits 256

255 · 255 = 256
different solutions (x̂,∆I) (resp. (ŷ, ∆′I)) - note that there are 255 different values
of ∆I , ∆

′
I 6= 0 and that the average number of solutions is 256/255. It follows

that the number of different (not null) solutions [(x1, y1), (x2, y2)] of eq. (6) -
considering all the 255 possible values of ∆O - is exactly equal to

1

2
· 255 ·

(
256

255
· 255

)2

= 255 · 215

independently of the details of the S-Box. The factor 1/2 is due to the fact
that we consider only different solutions, that is two solutions of the form
(p1 ≡ (x1, y1), p2 ≡ (x2, y2)) and (p2 ≡ (x1, y1), p1 ≡ (x2, y2)) are considered
equivalent. In other words, a solution [(x1, y1), (x2, y2)] is considered to be valid
if x2 6= x1 and y1 < y2.

Knowing the number of solutions of one eq. (6), what is the number of com-
mon - different (not null) - solutions [(x1, y1), (x2, y2)] of 4 equations of the
form (6)? We have just seen that each equation of the form (6) has exactly
255 · 215 different (not null) solutions [(x1, y1), (x2, y2)]. The probability that
two equations admit the same solution (i.e. that [(x1, y1), (x2, y2)] - solution of
one equation - is equal to [(x̂1, ŷ1), (x̂2, ŷ2)] - solution of another equation) is

(256 · 255)−1 · (255 · 128)−1 = 255−2 · 2−15. (8)

To explain this probability, the first term (256 · 255)−1 is due to the fact that
x1 = x̂1 with probability 256−1 while x2 = x̂2 with probability 255−1, since by
assumption x2 (resp. x̂2) can not be equal to x1 (resp. x̂1). The second term
(128 · 255)−1 is due to the assumption on the second variable, that is y1 < y2.
To explain it12, note that the possible number of pairs (y1, y2) with y1 < y2 is∑255
i=0 i = 255·(255+1)

2 = 255 · 128. It follows that y1 and y2 are equal to ŷ1 and
ŷ2 with prob. (128 · 255)−1. We highlight that probability (8) (strongly) depends
on the assumption that the solutions of eq. (3) - so the numbers n∆I ,∆O - are
uniform distributed for each (∆I , ∆O) 6= (0, 0).

11 Observe that the equality ∆′O = C−1 · A ⊕ ∆O is well defined, since no coefficient
of an MDS matrix M ∈ F4×4

2b
is equal to zero. Indeed, by definition, a matrix M is

MDS if and only if all square sub-matrices of M are of full rank.
12 As examples, if y1 = 0x0 then y2 can take 255 different values (all values except 0),

if y1 = 0x1 then y2 can take 254 different values (all values except 0x0, 0x1) and so
on - if y1 = d with 0 ≤ d ≤ 255 then y2 can take 255− d different values.
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In conclusion, the average number of common - different (not null) - solutions
[(x1, y1), (x2, y2)] of 4 equations of the form (6) is given by

(255 · 215)4 · (255−2 · 2−15)3 =
215

2552
' 0.503929258 ' 2−1 + 2−7.992

For comparison, given plaintexts in the same coset of D0 and the corresponding
ciphertexts generated by a random permutation, the average number of pairs of
ciphertexts that belong to the same coset of MJ is approximately given by(

216

2

)
· (2−8)4 =

216 − 1

217
' 0.499992371 ' 2−1 − 2−17

5.3 Case: One Equal Generating Variable

As second case, we consider the case in which only 1 generating variable is equal,
e.g. x1 6= x2, y1 6= y2, z1 6= z2 and w1 = w2. This is equivalent to consider 224

plaintexts in the same coset of C0,1,2 ∩M0 (the other cases are equivalent).
As before, given two plaintexts p1, p2 ∈ (C0,1,2 ∩M0)⊕b′, they belong to the

same coset of the diagonal space D1,2,3 if 4 equations of the form

A · [S-Box(B · x⊕ b)⊕ S-Box(B · x′ ⊕ b)]⊕
⊕C · [S-Box(D · y ⊕ d)⊕ S-Box(D · y′ ⊕ d)]⊕ (9)

⊕E · [S-Box(F · z ⊕ f)⊕ S-Box(F · z′ ⊕ f)] = 0

are satisfied, where A,B,C,D,E, F depend only on the MixColumns matrix,
while b, d, f depend on the secret key and on the initial constant that defines
the coset. As before, each one of these equations is equivalent to a system of
equations like (7), that is

S-Box(x⊕∆I)⊕ S-Box(x) = ∆O

S-Box(y ⊕∆′I)⊕ S-Box(y) = ∆′O

S-Box(z ⊕∆
′′

I )⊕ S-Box(z) = ∆
′′

O

together with one of the two following conditions13:

1. ∆
′′

O = 0 and ∆′O = C−1 ·A ·∆O, or analogous (3 possibilities);
2. ∆O, ∆

′
O, ∆

′′

O 6= 0 and ∆
′′

O = E−1 · (A ·∆O ⊕ C ·∆′O).

First Case. Since this first case is analogous to the case in which two generating
variables are equal, we simply re-use the previous computation.

First of all note that if ∆
′′

O = 0, then the third equation admits solutions if

and only if ∆
′′

I = 0. In other words, if ∆
′′

O = 0, the only possible solutions of

the third equation are (z,∆
′′

I = 0) for each z. Using the same computation as
before, the average number of (not null) common solutions for this first case is(

3

1

)
· 256 · 215

2552
=

223

21 675
' 387.018.

13 A solution of the first case can not be equal to a solution of the second case. Indeed,
∆
′′
O = 0 implies ∆

′′
I = 0 in the first case, while in the second one ∆I ,∆

′
I ,∆

′′
I 6= 0.
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Second Case. Consider now the case ∆O, ∆
′
O, ∆

′′

O 6= 0 (i.e. ∆I , ∆
′
I , ∆

′′

I 6= 0).
First of all, note that ∆O 6= 0 can take 255 different values, while ∆′O 6= 0
can take only 254 different values. Indeed, it must be different from 0 and from
C−1·A·∆O (if ∆′O = C−1·A·∆O, then ∆

′′

O = 0 which is excluded by assumption).

Finally, the value of ∆
′′

O depends on ∆O and ∆′O.

Using the same argumentation as before, for each equation (9) the number
of different solutions [(x1, y1, z1), (x2, y2, z2)] - where z1 < z2 - is given by 1

2 ·
255 · 254 ·

(
255 · 256255

)3
= 32 385 · 224, while the probability that two equations of

the form (9) have a common solution is given by (256 · 255)−2 · (128 · 255)−1 =
2−23·255−3 under the assumption of uniform distribution of the solutions n∆I ,∆O
of eq. (3). It follows that for this second case we expect on average

(32 385 · 224)4 · (2−23 · 255−3)3 =
1274 · 227

2555
' 32 383.506

different - not null - common solutions for the 4 equations of the form (9).

Total Number of Different - not null - Common Solutions. By simple
calculation, given plaintexts in the same coset of C0,1,2∩M0, the average number
of different pairs of ciphertexts that belong to the same coset of D1,2,3 is

32 383.506 + 387.018 ' 32 770.524 ' 215 + 21.336

For comparison, if the ciphertexts are generated by a random permutation, the
average number of different pairs of ciphertexts that belong to the same coset of
MJ is approximately given by(

224

2

)
· 2−32 ' 32 767.998 ' 215 − 2−9

5.4 Case: No Equal Generating Variables

Finally, we consider the case in which all the generating variables are different,
that is x1 6= x2, y1 6= y2, z1 6= z2 and w1 6= w2.

As before, given two plaintexts p1, p2 ∈ M0 ⊕ b′, they belong to the same
coset of D1,2,3 if four equations of the form

A · [S-Box(B · x⊕ b)⊕ S-Box(B · x′ ⊕ b)]⊕
⊕C · [S-Box(D · y ⊕ d)⊕ S-Box(D · y′ ⊕ d)]⊕
⊕E · [S-Box(F · z ⊕ f)⊕ S-Box(F · z′ ⊕ f)]⊕
⊕G · [S-Box(H · w ⊕ h)⊕ S-Box(H · w′ ⊕ h)] = 0

(10)

are satisfied, where A,B,C,D,E, F,G,H depend only on the MixColumns ma-
trix, while b, d, f, h depend on the secret key and on the constant that defined
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the initial coset. As before, each one of these equations is equivalent to a system
of equations like (7), that is:

S-Box(x⊕∆I)⊕ S-Box(x) = ∆O S-Box(y ⊕∆′I)⊕ S-Box(y) = ∆′O

S-Box(z ⊕∆
′′

I )⊕ S-Box(z) = ∆
′′

O S-Box(w ⊕∆
′′′

I )⊕ S-Box(w) = ∆
′′′

O

together with one of the following conditions

1. ∆
′′′

O = ∆
′′

O = 0 and ∆′O = C−1 ·A ·∆O 6= 0 or analogous (6 possibilities);

2. ∆
′′′

O = 0, ∆O, ∆
′

O, ∆
′′

O 6= 0 and ∆
′′

O = E−1 · (A ·∆O ⊕C ·∆′O) or analogous,
for a total of 4 possibilities;

3. ∆O, ∆
′

O, ∆
′′

O, ∆
′′′

O 6= 0 and ∆
′′′

O = G−1 · (A ·∆O ⊕ C ·∆′O ⊕ E ·∆
′′

O).

Since the first two conditions are analogous to the previous two cases already
studied, we simply re-use the previous calculation.

First Case. In the case ∆
′′′

O = ∆
′′

O = 0 and ∆′O = C−1 · A ·∆O 6= 0, the only

possible solutions of the third and fourth equations are of the form (z,∆
′′

I = 0)

and (w,∆
′′′

I = 0) for each possible value of z and w. Using the same computation
as before, the average number of (not null) common solutions for this case is(

4

2

)
· 2562 · 215

2552
=

232

21 675
' 198 153.047.

Second Case. Similarly, in the second case ∆
′′′

O = 0, ∆O, ∆
′

O, ∆
′′

O 6= 0 and
using the same computations as before, it follows that the average number of
(not null) common solutions of this case is(

4

1

)
· 256 · 1274 · 227

2555
=

1274 · 237

2554
' 33 160 710.047.

Third Case. We finally consider the case ∆O, ∆
′

O, ∆
′′

O, ∆
′′′

O 6= 0. By simple
computation, the number of different values that satisfy

∆
′′′

O = G−1 · (A ·∆O ⊕ C ·∆′O ⊕ E ·∆
′′

O).

is given by 2553−(255·254) = 16 516 605. Indeed, the total number of∆O, ∆
′

O, ∆
′′

O 6=
0 is 2553, while 255 ·254 is the total number of values ∆O, ∆

′

O, ∆
′′

O 6= 0 for which

the previous equation - and so ∆
′′′

O - is equal to zero (which is not possible

since ∆
′′′

O 6= 0 by assumption). In more detail, firstly observe that for each value

of ∆O there is a value of ∆
′

O that satisfies A · ∆O = C · ∆′O. For this pair
of values (∆O, ∆

′
O = C−1 · A · ∆O), the previous equation - which reduces to

∆
′′′

O = G−1 · E · ∆′′O is always different from zero, since ∆
′′

O 6= 0. Secondly, for
each one of the 255 · 254 values of the pair (∆O, ∆

′
O 6= C−1 · A · ∆O), there is

only one value of ∆
′′

O such that the previous equation is equal to zero.
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As a result, the total number of different solutions [(x1, y1, z1, w1), (x2, y2, z2, w2)]
with w1 < w2 of each equation corresponding to (10) is

1

2
· 16 516 605 ·

(
255 · 256

255

)4

= 16 516 605 · 231.

Since the probability that two solutions [(x1, y1, z1, w1), (x2, y2, z2, w2)] and [(x̂1, ŷ1,
ẑ1, ŵ1), (x̂2, ŷ2, ẑ2, ŵ2)] are equal is (255 · 256)−3 · (255 · 128)−1 = 255−4 · 2−31 -
under the assumption of uniform distribution of the solutions of eq. (3), the aver-
age number of (non null) common solutions (with no equal generating variables)
is (

16 516 605 · 231
)4·(255−4 · 2−31)3 =

64 7714 · 231

2558
' 2 114 125 822.5

Total Number of Different - not null - Common Solutions. By simple
computation, given plaintexts in the same coset of M0, the number of different
pairs of ciphertexts that belong to the same coset of D1,2,3 is

2 114 125 822.5 + 33 160 710.047 + 198 153.047 ' 2 147 484 685.594 ' 231 + 210.02

For comparison, if the ciphertexts are randomly generated, the number of dif-
ferent pairs of ciphertexts that belong to the same coset of MJ is(

232

2

)
· 2−32 ' 2 147 483 647.5 = 231 − 2−1

In other words, on average there are

2 147 484 685.594− 2 147 483 647.5 ' 1 038.094

more collisions for 5-round AES than for a random permutation.
Finally, since the number of possible pairs of texts is 231 · (232 − 1), the

probability for the AES case that a couple of ciphertexts (c1, c2) satisfies c1⊕c2 ∈
DJ for |J | = 3 fixed is equal to

pAES '
2 147 484 685.594

231 · (232 − 1)
' 2−32 + 2−52.9803

versus 2−32 for the random case.

Remark - Random Permutation and Probability 2−32. Given 232 texts
generated by a random permutation, one can construct 263 different pairs which
are not independent. For example, consider a pair of texts (t1, t2). Given another
text t3, if t1⊕ t3 ∈MJ and t2⊕ t3 ∈MJ , then (t1, t2) belong to the same coset
of MJ with prob. 1 (by definition of subspace). Thus, one may think that the
probability that (t1, t2) are in the same coset ofMJ is different than 2−32·(4−|J|).
In App. C, we prove that even if the pairs are not independent, the probability
that each pair (t1, t2) satisfies the property to belong to the same coset of MJ is
exactly 2−32·(4−|J|) (that is 2−32 if |J | = 3 for J fixed).
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5.5 Generic Case

For completeness, we briefly discuss the case in which one considers the number
of different pairs of ciphertexts that belong to the same coset of a mixed space
MK for an arbitrary K ⊂ {0, 1, 2, 3} with |K| = 3. Since there are 4 different
values of K with |K| = 3, the number of collisions is (approximately) obtained
by multiplying by a factor 4 the number obtained in the previous case.

Proposition 1. Consider an AES-like cipher that works with texts in F4×4
28 and

for which the assumptions of Theorem 3 hold.
Consider 232 plaintexts pi for i = 0, 1, ..., 232 − 1 in a coset of a diagonal

space Dk, that is Dk ⊕ a for i ∈ {0, 1, 2, 3} and a ∈ D⊥k , and the corresponding
ciphertexts after 5 rounds, that is ci = R5(pi). The probability that a pair of
ciphertexts (ci, cj) with ci < cj belong to the same coset of MK for any K ⊆
{0, 1, 2, 3} with |K| = 3 is equal to 2−30 + 2−50.9803 − 261.415 + ....

A proof of this proposition can be found in App. D. For comparison, the same
event has probability 2−30− 261.415 + 2−94 in the case of a random permutation.

6 5-round Secret-Key Distinguisher based on Variance

The previous result on 5-round AES can be used to set up a secret-key distin-
guisher which is independent of the secret key. Given 232·n plaintexts distributed
in n cosets of Dk and the corresponding ciphertexts, for each coset one simply
counts the number of pairs of ciphertexts that belong to the same coset of MK

for a fixed K with |K| = 3. Due to the fact that this number is on average bigger
for AES than for a random permutation, one can distinguish the two cases.

Since the difference between the average number of collisions for the random
permutation and the AES one is very small, what is the minimum number of
initial cosets Dk ⊕ a necessary to guarantee that the distinguisher works with
high probability? To solve this problem, we study the probabilistic distributions
of the number of collisions in the AES and in the random case.

In the random case, note that given n cosets Dk⊕a of approximately 263 pairs
of plaintexts and the corresponding ciphertexts generated by random oracle, the
probabilistic distribution of the number of collisions is simply described by a
binomial distribution. By definition, a binomial distribution with parameters
n and p is the discrete probability distribution of the number of successes in a
sequence of n independent yes/no experiments, each of which yields success with
probability p. In our case, given n pairs of texts, each one of them satisfies or not
the above property/requirement with the same probability p. Thus, this model
is well described by a binomial distribution. We remember that for a random
variable Z that follows the binomial distribution, that is Z ∼ B(n, p), the mean
µ and the variance σ2 are respectively given by µ = n · p and σ2 = n · p · (1− p).

To derive concrete numbers for our distinguisher and based on De Moivre-
Laplace theorem, we can approximate the binomial distribution with a normal
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Fig. 1. Comparison between the theoretical probabilistic distribution of the number of
collisions between 5-round AES and a random permutation.

one. In particular, the distribution probability of the random case is well de-
scribed by a normal distribution X ∼ N (µ ≡ n · p, σ2 ≡ n · p · (1 − p)), where
the mean value is µ = n · p = 231 · (232 − 1) · 2−32 = 231 − 2−1 = 2 147 483 647.5
and the variance σ2 = n · p · (1− p) = 2 147 483 647, or equivalently the standard
deviation is σ = 46 340.95.

For 5-round AES, we are going to prove the following result.

Theorem 4. Consider an AES-like cipher that works with texts in F4×4
28 and

for which the assumptions of Theorem 3 hold.
Consider 232 plaintexts pi for i = 0, 1, ..., 232 − 1 in a coset of a diagonal

space Di, that is Di ⊕ a for i ∈ {0, 1, 2, 3} and a ∈ D⊥i , and the corresponding
ciphertexts after 5 rounds, that is ci = R5(pi). The distribution probability of
the number of different pairs of ciphertexts (ci, cj) with ci < cj that belong to
the same coset of MJ for J ⊆ {0, 1, 2, 3} fixed with |J | = 3 has mean value
µ = 2 147 484 685.6 and standard deviation σ = 276 469.4.

The probability to have n collisions where n ∈ N is well approximated by:

Prob(n | µ, σ2) =

{
0 if n mod 8 6= 0

8√
2·π·σ2

· e−
(n−µ)2

2·σ2 otherwise

Roughly speaking, the distribution Y of the number of collisions for the AES case
is approximated by Y = 8×X where X is a normal distribution with mean value
and variance as given in Theorem 4. In particular, let Prob(n) be the probability
- just defined - to have n collisions for 5-round AES. Since Prob(n 6= 8 · n′) = 0
(i.e. the probability to have n collisions is zero if n is not a multiple of 8), we
highlight that the factor 8 guarantees that the total probability is equal to 1:∑
n

Prob(n) =
∑

n=8·n′

8√
2 · π · σ2

·e−
(n−µ)2

2·σ2 =
∑
n′

1√
2 · π · (σ/8)2

·e−
(n′−(µ/8))2

2·(σ/8)2 = 1.

Fig. 1 proposes a comparison between the probabilistic distribution of the
number of collisions for the AES case in red - the probability to have n 6= 8 · n′
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collisions (i.e. where n is not a multiple of 8) is zero - and of the random case in
blue. The theoretical computation of the variance is largely based on the result
presented in [21], which is recalled in the following.

6.1 “Multiple-of-8” Secret-Key Distinguisher for 5-round AES

Consider a set of plaintexts in the same coset of the diagonal space DI and the
corresponding ciphertexts after 5 rounds, that is a set of plaintexts/ciphertexts
(pi, ci) for i = 0, ..., 232·|I| − 1 where all plaintexts are equal in 4− |I| diagonals.
The 5-round AES distinguisher proposed in [21] exploits the fact that the num-
ber of different pairs of ciphertexts (ci, cj) that belong to the same coset ofMJ

for a fixed J (i.e. ci⊕cj ∈MJ) is always a multiple of 8 with probability 1 inde-
pendently of the secret key, of the details of the S-Box and of the MixColumns
matrix (assuming branch number equal to 5).

Since each coset of DI is mapped into a coset of MI after 2 rounds with
prob. 1 (by Theorem 1) and viceversa, in order to prove the result given in [21]
it is sufficient to show that given plaintexts in the same coset of MI , then the
number of collisions after one round in the same coset of DJ is a multiple of 8.

Theorem 5. LetMI and DJ be the subspaces defined as before for certain fixed
I and J with 1 ≤ |I| ≤ 3 . Given an arbitrary coset ofMI - that isMI⊕a for a
fixed a ∈M⊥I , consider all the 232·|I| plaintexts and the corresponding ciphertexts
after 1 round, that is (pi, ci) for i = 0, ..., 232·|I| − 1 where pi ∈ MI ⊕ a and
ci = R(pi). The number n of different pairs of ciphertexts (ci, cj) for i 6= j such
that ci ⊕ cj ∈ DJ (i.e. that belong to the same coset of DJ) is a multiple of 8.

We refer to [21] for a detailed proof, and we limit ourselves here to recall and
highlight the main concepts that are useful for the following.

Without loss of generality (w.l.o.g.), we focus on the case |I| = 1 and we
assume I = {0}. Given two texts p1 and p2 in M0 ⊕ a, by definition there exist
x1, y1, z1, w1 ∈ F28 and x2, y2, z2, w2 ∈ F28 s.t. pi ≡ (xi, yi, zi, wi) for i = 1, 2.
As first thing, we recall that if 1 ≤ r ≤ 3 generating variables are equal, then
the two texts can not belong to the same coset of DJ for |J | ≤ r after one round
- this is due to the branch number of the MixColumns matrix (which is 5).

Case: Different Generating Variables. If the two elements p1 and p2 defined
as before have different generating variables (e.g. x1 6= x2, y1 6= y2, ...), then they
can belong to the same coset of DJ (for a certain J with |J | ≥ 1) after one round.
It is possible to prove that p1 ≡ (x1, y1, z1, w1) and p2 ≡ (x2, y2, z2, w2) satisfy
R(p1)⊕R(p2) ∈ DJ for |J | ≥ 1 if and only if p̂1 and p̂2 satisfy R(p̂1)⊕R(p̂2) ∈ DJ ,
where p̂1 and p̂2 are generated by

1. (x1, y1, z1, w1) and (x2, y2, z2, w2); 2. (x2, y1, z1, w1) and (x1, y2, z2, w2);

3. (x1, y2, z1, w1) and (x2, y1, z2, w2); 4. (x1, y1, z2, w1) and (x2, y2, z1, w2);

5. (x1, y1, z1, w2) and (x2, y2, z2, w1); 6. (x2, y2, z1, w1) and (x1, y1, z2, w2);

7. (x2, y1, z2, w1) and (x1, y2, z1, w2); 8. (x2, y1, z1, w2) and (x1, y2, z2, w1).
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Case: Equal Generating Variables. Similar results can obtained in the case
in which one or two generating variables are equal. In the case in which 2 gen-
erating variables are equal, it is possible to prove that p1 ≡ (x1, y1, z, w) and
p2 ≡ (x2, y2, z, w) satisfy R(p1) ⊕ R(p2) ∈ DJ for |J | ≥ 1 if and only if p̂1 and
p̂2 satisfy R(p̂1)⊕R(p̂2) ∈ DJ where p̂1 and p̂2 are generated by

1. (x1, y1, z, w) and (x2, y2, z, w); 2. (x2, y1, z, w) and (x1, y2, z, w)

where z and w can take any possible value in F28 .

Similarly, it is possible to prove that p1 ≡ (x1, y1, z1, w) and p2 ≡ (x2, y2, z2, w)
satisfy R(p1) ⊕ R(p2) ∈ DJ for |J | ≥ 1 if and only if p̂1 and p̂2 have the same
property - that is R(p̂1)⊕R(p̂2) ∈ DJ - where p̂1 and p̂2 are generated by

1. (x1, y1, z1, w) and (x2, y2, z2, w); 2. (x2, y1, z1, w) and (x1, y2, z2, w);

3. (x1, y2, z1, w) and (x2, y1, z2, w); 4. (x1, y1, z2, w) and (x2, y2, z1, w)

where w can take any possible value in F28 .

6.2 Proof of Theorem 4

Exploiting the result given in [21] just recalled, here we prove Theorem 4. Since

DI ⊕ a′
R2(·)−−−−→
prob. 1

MI ⊕ b′
R(·)−−→ DJ ⊕ a′′

R2(·)−−−−→
prob. 1

MJ ⊕ b′′

as we have just seen, we focus only on the middle round, that is we consider
plaintexts in the same coset of Mi for i ∈ {0, 1, 2, 3} and the corresponding
ciphertexts after one round. We recall that given two plaintexts with three equal
generating variables, then they can not belong to the same coset of DJ for |J | ≤ 3
after one round.

To prove the result, the idea is to consider separately the pairs of texts with
n different generating variables for 0 ≤ n ≤ 3. First of all, note that given a coset
of Mi of 232 chosen plaintexts, it is possible to construct 231 · (232 − 1) ' 263

different pairs. Among them, the number of pairs of texts with 0 ≤ n ≤ 3 equal
generating variables is given by(

4

n

)
· 231 · (28 − 1)4−n.

Indeed, if n variables are equal for the two texts of the couple, then they can
take (28)n different values. For each one of the remaining 4 − n variables, the
variables must be different for the two texts of each couple. Thus, these 4 − n
variables can take exactly

[
28 · (28−1)

]4−n
/2 different values. The result follows

immediately since there are
(
4
n

)
different combinations of n variables.
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Different Generating Variables. As first case, we consider the case in which
all the generating variables are different, i.e. n = 0. The number of pairs with
this property is 231 · (28 − 1)4.

As we have just seen, these pairs are not independent. By [21], it is possible
to divide them in 231 · (28 − 1)4/8 = 228 · (28 − 1)4 sets of 8 pairs such that for
each set only two events can happen: (1) all the pairs belong to the same coset of
DJ after one round or (2) no one of them satisfies this property. Thus, the idea
is to consider only independent pairs, i.e. one pair for each one of these sets, for
a total of 228 ·(28−1)4 pairs. Since these pairs are independent, the probabilistic
distribution of the number of pairs that belong to the same coset of DJ after one
round is given by a binomial distribution X with mean value µ = n · pAES =
228 · (28 − 1)4 · (2−32 + 2−52.9803) and variance σ2 = n · pAES · (1 − pAES) =
228 · (28 − 1)4 · (2−32 + 2−52.9803) · (1− 2−32 − 2−52.9803) ≈ 264 265 791.745, that
is σ ≈ 16 256.254. It follows that the probabilistic distribution Y of the number
of collisions for the pairs with no equal generating variables is simple given by
Y = 8×X. Since V ar(Y ) = 82×V ar(X), it follows that the standard deviation
σ for this case is given by 8 · 16 256.254 ≈ 130 050.031.

One Equal Generating Variable. As second case, we consider the case in
which all except one of the generating variables are different, i.e. n = 1. The
number of pairs with this property is 4 · 231 · (28 − 1)3.

By [21], these pairs are not independent. Thus, it is possible to divide them
in 233 · (28−1)3/210 = 223 · (28−1)3 sets of 210 pairs such that for each set either
(1) all the pairs belong to the same coset of DJ after one round or (2) no one of
them satisfies this property. Considering only one pair for each one of these sets
(for a total of 223 · (28 − 1)3 pairs) and since these pairs are independent, the
probabilistic distribution of the number of pairs that belong to the same coset
of DJ after one round is given by a binomial distribution X with mean value
µ = n ·pAES = 223 · (28−1)3 · (2−32 +2−52.9803) and variance σ2 = n ·pAES · (1−
pAES) = 223 · (28 − 1)3 · (2−32 + 2−52.9803) · (1− 2−32 − 2−52.9803) ≈ 32 385.513,
that is σ ≈ 179.96. It follows that the probabilistic distribution Y of the number
of collisions for the pairs with no equal generating variables is simple given by
Y = 210 × X. Since V ar(Y ) = (210)2 × V ar(X), it follows that the standard
deviation σ for this case is given by 210 · 179.96 ≈ 184 278.788.

Two Equal Generating Variables. As third case, we consider the case in
which all except two of the generating variables are different, i.e. n = 2. The
number of pairs with this property is 6 · 231 · (28 − 1)2.

Working exactly as before, it is possible to divide them in 3 · 232 · (28 −
1)2/217 = 3 · 215 · (28 − 1)2 sets of 217 pairs. Considering only one pair for
each one of these sets and since these pairs are independent, the probabilistic
distribution of the number of pairs that belong to the same coset of DJ after one
round is given by a binomial distribution X with mean value µ = n · pAES =
3 · 215 · (28 − 1)2 · (2−32 + 2−52.9803) and variance σ2 = n · pAES · (1− pAES) =
3 · 215 · (28 − 1)2 · (2−32 + 2−52.9803) · (1 − 2−32 − 2−52.9803) ≈ 1.488, that is
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σ ≈ 1.21984. It follows that the probabilistic distribution Y of the number of
collisions for the pairs with no equal generating variables is simple given by
Y = 217 × X. Since V ar(Y ) = (217)2 × V ar(X), it follows that the standard
deviation σ for this case is given by 217 · 1.21984 ≈ 159 886.351.

Final Result. Note that all the previous cases are independent. In other words,
the behavior of a pair of texts with n equal generating variables is independent of
another pair with n̂ equal generating variables where n̂ 6= n. Moreover, we recall
that given n independent variables X1, ..., Xn, the variance of Y = X1 + ...+Xn

is given by V ar(Y ) = V ar(X1)+ ...+V ar(Xn). It follows that the total variance
of the probabilistic distribution for the AES case is given by σ2 ' 130 050.0312+
184 278.7882 + 159 886.3512 ' 76 435 327 505.945 ' 236.155, or equivalently the
standard deviation is equal to σ ' 276 469.397.

7 Relation among Multiple-of-8, Mean and Variance

Before going on, we focus on the (possible) relation among the multiple-of-8
property, the fact that the average number of collisions - the mean for the fol-
lowing - is higher for AES than for a random permutation and the fact that the
variance of the number of collisions is (much) higher for AES than for a random
permutation. As we briefly mention at the beginning, the multiple-of-8 property
and the result on the mean are unrelated/independent, while the multiple-of-8
property and the result on the variance are strictly related.

Relation between Multiple-of-8 and the Mean. As we just said, the multiple-
of-8 property and the result on the mean are unrelated/independent:

– the fact that the number of collisions is always a multiple of 8 for AES does
not imply anything about the fact that it is on average higher/lower for AES
(or even equal);

– the fact that the number of collisions is on average higher for AES does not
imply that it is a multiple-of-8.

This independence of these two results is also emphasized by the difference
of the corresponding proofs14. Even if both proofs focus on the middle round

MI ⊕ a
R(·)−−→ DJ ⊕ b,

their goals are very different:

Multiple-of-8: given two texts in t1, t2 ∈MI⊕a, the goal is to show that other
pairs of texts s1, s2 ∈MI⊕a defined by considering all possible combinations
of the generating variables of t1 and t2 satisfy the following equivalence

R(t1)⊕R(t2) = R(s1)⊕R(s2).

14 The fact that both the two proofs are divided in cases is a choice made in order to
simplify their understanding.
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Note that each byte of this sum can be written as

(R(t1)⊕R(t2))k,l =A0 · (S-Box(B0 · x1 ⊕ C0)⊕ S-Box(B0 · x2 ⊕ C0))⊕
⊕A1 · (S-Box(B1 · y1 ⊕ C1)⊕ S-Box(B1 · y2 ⊕ C1))⊕
⊕A2 · (S-Box(B2 · z1 ⊕ C2)⊕ S-Box(B2 · z2 ⊕ C2))⊕
⊕A3 · (S-Box(B3 · w1 ⊕ C3)⊕ S-Box(B3 · w2 ⊕ C3))

where (xi, yi, zi, wi) are the generating variables of ti for i = 1, 2, and the
constants Aj , Bj , Cj for 0 ≤ j ≤ 3 depends on the secret key and on the
MixColumns matrix. The multiple-of-8 property is due to the fact that (1st)
the XOR-sum is commutative and (2nd) the S-Box works independently on
each generating variable.

Mean: in this case, the goal is to count the average number of pairs of texts t1

and t2 that satisfy R(t1)⊕R(t2) ∈ DJ , that is

∀k, j s.t. (k − j) mod 4 /∈ J : (R(t1)⊕R(t2))k,l = 0.

As we have seen in Sect. 5, this corresponds to count the average number of
common solutions of systems of equations of the form

S-Box(x2 ≡ x1 ⊕∆x
I )⊕ S-Box(x1) = ∆x

O

S-Box(y2 ≡ y1 ⊕∆y
I )⊕ S-Box(y1) = ∆y

O

S-Box(z2 ≡ z1 ⊕∆z
I)⊕ S-Box(z1) = ∆z

O

S-Box(w2 ≡ w1 ⊕∆w
I )⊕ S-Box(w1) = ∆w

O

A ·∆x
O ⊕B ·∆

y
O ⊕ C ·∆

z
O ⊕D ·∆w

O = 0

where as before (xi, yi, zi, wi) are the generating variables of ti for i = 1, 2,
and the constants A,B,C,D depends on the MixColumns matrix. To the
best of our knowledge, this is the first time that a similar approach is used
in the literature.

In particular, the first proof is independent of the details of the S-Box, while the
second one depends on them, since the average number of solutions of S-Box(x⊕
∆I)⊕S-Box(x) = ∆O - which is always equal to 1+2−n (that is, bigger than 1),
where n is the size of each word - depends on them. Moreover, note that while
the first proof is deterministic (everything is deterministic - no probability plays
any role, that is the multiple-of-8 property holds with prob. 1), the second one
is probabilistic.

Relation between Multiple-of-8 and the Variance. Vice-versa, the multiple-
of-8 property and the variance are strictly related. The crucial point of this link
is given by the following observation. The number of collisions is described by a
statical variable Y that (roughly speaking) can be re-written as Y = C ×X for
a constant C > 1 that is due to the multiple-of-8 property. This is highlighted
e.g. by Theorem 4. Since

V ar(Y ) = V ar(C ×X) = C2 × V ar(X),
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it turns out that the variance for 5-round AES is higher than the corresponding
variance of a random permutation.

8 Practical Results on AES

In order to have a practical verification, we have practically verified the mean and
the variance for 5-round AES given above using a C/C++ implementation15. In
particular, we have verified the mean value on a small-scale AES as proposed
in [13], and the variance value both on full-size and on the small-scale AES. We
limit to recall the small-scale S-Box is defined in the same way as the full-size
one and it has the same properties as the full-size one, with the only exception
that each word is composed of 8 bits for full-size AES and of 4 bits for the
small-scale one - we refer to [13] for a complete description of this small-scale
AES. We emphasize that our verification on the small-scale variant of AES is
strong evidence for it to hold for the full-size AES, since the strategy used to
theoretically compute such probabilities is independent of the fact that each
word of AES is of 4 or 8 bits.

Theoretical Results. To compare the practical values with the theoretical
ones, we first re-propose Theorem 4 for the case of small-scale AES.

Proposition 2. Consider an AES-like cipher that works with texts in F4×4
24 and

for which the assumptions of Theorem 3 hold.

Consider 216 plaintexts pi for i = 0, 1, ..., 216 − 1 in a coset of a diagonal
space Dk, that is Dk ⊕ a for i ∈ {0, 1, 2, 3} and a ∈ D⊥k , and the corresponding
ciphertexts after 5 rounds, that is ci = R5(pi). The distribution probability of
the number of different pairs of ciphertexts (ci, cj) with ci ≤ cj for i 6= j that
belong to the same coset of MK for K ⊆ {0, 1, 2, 3} fixed with |K| = 3 is well
approximated by a Normal Distribution with mean value µ = 32 847.124 and
variance σ2 = 982 466.615 (or equivalently, standard deviation σ = 991.195).

A complete proof of this result can be found in App. F and App. G. For compari-
son, in the case in which the ciphertexts are generated by a random permutation,
the distribution probability of the number of collisions is well approximated by
a normal distribution with mean value µ = 32 767.5 and variance σ2 = 32 767
(or equivalently, standard deviation σ = 181.017).

Practical Results. In order to test our results, we used 320 initial cosets for
full-size AES and 100 initial cosets for the small-scale one16. The variance results

15 The source codes of the distinguishers are available at https://github.com/

Krypto-iaik/TruncatedDiff5roundAES
16 This number of tests was chosen in accordance to Eq. (11) - Sect. 9 - adapted to the

case of small-scale AES.
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Fig. 2. Comparison between the theoretical probabilistic distribution of the number of
collisions between small-scale AES and a random permutation.

Fig. 3. Comparison between the theoretical and the practical probabilistic distributions
of the number of collisions for small-scale 5-round AES.

for full-size AES17 are given in the following

σ2
T = 76 435 327 505.945 ' 236.155 σ2

P = 73 288 132 411.36 ' 236.093

where the subscript ·T denotes the theoretical value and the subscript ·P the
practical one.
The results for small-scale AES are given in the following

µTAES = 32 847.124 µTrand = 32 767.5 σTAES = 991.195 σTrand = 181.02

µPAES = 32 848.57 µPrand = 32 768.2 σPAES = 1023.06 σPrand = 182.42

where µ denotes the mean value, σ2 the variance, the superscript ·T the theoret-
ical values and the superscript ·P the practical ones. In Fig. 3, we also propose a

17 One would need more than one year of computation on our cluster to test the
distinguisher based on the mean with its ≈ 216 initial cosets.
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Data: 232 (plaintext, ciphertext) pairs (pi, ci) for i = 0, ..., 232 − 1 in a coset of
DI with |I| = 1.

Result: Number of Collisions n
for all j ∈ {0, 1, 2, 3} do

Let A[0, ..., 232 − 1] an array initialized to zero;
for i from 0 to 232 − 1 do

x←
∑3
k=0MC−1(ci)k,j−k · 256k; // MC−1(ci)k,j−k denotes the byte

of MC−1(ci) in row k and column j − k mod 4
A[x]← A[x] + 1; // A[x] denotes the value stored in the x-th
address of the array A

end
n← 0; // n ≡ Number of Collisions

for i from 0 to 232 − 1 do
n← n+A[i] · (A[i]− 1)/2;

end

end
return n.

Algorithm 1: Secret-Key Distinguisher for 5 Rounds of AES - Count the
number of collisions in the same coset of MJ

comparison between the theoretical and the practical distributions of the num-
ber of collisions for small-scale 5-round AES. Similarly, in Fig. 7 (see App. B)
we propose a comparison between the theoretical and the practical distributions
of the number of collisions for a random permutation. From both figures, it is
possible to observe that the practical distributions - obtained by experiments -
are (very) close to the theoretical ones.

8.1 New 5-round Secret-Key Distinguisher based on the Variance

The fact that the variance of the AES case is different from the one of the
random case independently of the secret-key allows to set up a new secret-key
distinguisher for 5-round AES.

The idea is very simple. Given n different cosets of a diagonal space Di, one
counts the number of different pairs of ciphertexts that belong to the same coset
of MJ for each J with |J | = 3. Then, one computes the variance: by previous
result, the highest one corresponds to the AES case.

We practically tested this distinguisher on a small-scale AES. Since the ratio
between the variances for full-size AES permutation and for a random permu-
tation is similar to the same ratio in the case of small-scale AES, that is

276 469.4

46 340.95
≈ 6 ≈ 991.195

181.02
,

we conjecture that the results obtained for the small-scale AES are applicable
as well to full-size AES. In particular, by practical tests on small-scale AES, it is
possible to distinguish the two cases using n ≥ 28 initial cosets, or in other words
28 initial cosets are largely sufficient to “accurately” compute the variance for
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the AES case and the random one18. Since it is possible to compute the number
of collisions in MJ for each J with |J | = 3 (4 cases in total), 26 initial cosets
are largely sufficient to set up the distinguisher.

Due to the relation between small-scale AES and full-size AES previously
discussed, we claim that the same number of initial cosets is sufficient to distin-
guish (full-size) AES from a random permutation (using this distinguisher based
on the variance), for a data cost of 26 ·232 = 238 chosen plaintexts distributed in
26 initial cosets of Dj . The computational cost is well approximated by the cost
to compute the number of collisions. Using Algorithm 1 - described in details in
App. E, the cost is well approximated by 4 · 26 · 3 · 232 ' 241.6 table look-ups,
that is approximately 235 five-round encryptions.

9 Truncated Differential Distinguisher for 5-round AES

Using all previous results, we are now able to present and set up a new distin-
guisher based on truncated differential trail for 5-round AES, which exploits the
fact that the average number of collisions in MJ for each J with |J | = 3 is a
little bigger for AES than for a random permutation.

As discussed in Sect. 6, the number of collisions for 5-round AES and for
the random permutation are well described by normal distributions. Moreover,
to derive concrete numbers for our distinguisher, we can simply consider the
difference of the two distributions, which is again a normal distribution. That
is, given X ∼ N (µ1, σ

2
1) and Y ∼ N (µ2, σ

2
2), then X − Y ∼ N (µ, σ2) = N (µ1 −

µ2, σ
2
1 + σ2

2). Indeed, note that to distinguish the two cases, it is sufficient to
guarantee that the average number of pairs that satisfy the required property
for the random case is smaller than for AES. As a result, the mean µ and the
variance σ2 of the difference between the AES and the random distributions are

µ = |µAES − µrand| = n · |pAES − prand|
σ2 = σ2

rand + σ2
AES = n ·

[
prand · (1− prand) + 35.593 · pAES · (1− pAES)

]
Since the probability density of the normal distribution is f(x | µ, σ2) =

1
σ
√
2π
e−

(x−µ)2

2σ2 , it follows that

prob =

0∫
−∞

1

σ
√

2π
e−

(x−µ)2

2σ2 dx =

−µ/σ∫
−∞

1√
2π

e−
x2

2 dx =
1

2

[
1 + erf

(
−µ
σ
√

2

)]
,

where erf(x) is the error function, defined as the probability of a random variable
with normal distribution of mean 0 and variance 1/2 falling in the range [−x, x].
We emphasize that the integral is computed in the range (−∞, 0] since we are
interested only in the case in which the average number of pairs with the required
property in the random case is smaller than in the AES case.

18 Given a set of n� 1 equally likely values, an unbiased estimator for the variance is
given by V ar(X) = 1

n−1

∑n
i=1(xi − X̄)2 where X̄ = 1

n

∑n
i=1 xi.
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Table 2. Secret-Key Distinguishers for AES. The complexity is measured in minimum
number of chosen plaintexts/ciphertexts CP/CC which are needed to distinguish the
AES permutation from a random one with prob. bigger than 95%. Time complexity is
measured in equivalent encryptions (E) or memory accesses (M) - using the common
approximation 20 M ≈ 1-round E. The distinguishers of this paper are in bold.

Property Rounds Data (CP/CC) Cost Ref.

Multiple-of-8 5 232 235.6 M ≈ 229 E [21]

Variance Diff. 5 238 241.6 M ≈ 235 E Sect. 8.1

Truncated Diff. 5 247.38 251 M ≈ 244.34 E Sect. 9

Prob. Mixture Diff. 5 252 271.5 M ≈ 264.9 E [20]

In order to have a probability of success bigger than prob, n has to satisfy

n >
2 · [prand · (1− prand) + 35.593 · pAES · (1− pAES)]

(prand − pAES)2
·
[
erfinv

(
2 · prob− 1

)]2
.

where erfinv(x) is the inverse error function. For the case prand, pAES � 1, a
good approximation of n is given by19

n >
73.186 ·max(prand, pAES)

(prand − pAES)2
·
[
erfinv

(
2 · prob− 1

)]2
. (11)

It follows that in order to have a probability of success bigger than 95%, the
number of pairs must satisfy n ≥ 278.374, since prand ≈ pAES ≈ 2−30 and
|prand − pAES | ≈ 2−50.98. Since each coset of Dk contains 232 different texts
and approximately 263 different pairs, this means that the distinguisher requires
215.374 different cosets for a data cost of 247.374 chosen plaintexts.

The Computational Cost. We have just seen that 247.374 chosen plaintexts
(i.e. 215.374 cosets of DI with |I| = 1) are sufficient to distinguish a random
permutation from 5 rounds of AES, simply counting the number of pairs of ci-
phertexts that belong to the same coset of MJ for |J | = 3 and using the fact
that this number is bigger for AES. Here we give an estimation of the compu-
tational cost of the distinguisher, which is (approximately) given by the cost to
count the number of collisions. Using Algorithm 1, the total computational cost
can be well approximated by 251 table look-ups, or equivalently 244.34 five-round
encryptions of AES (using the approximation20 20 table look-ups ≈ 1 round of
AES). All details can be found in App. E.1.

19 Observe: prand · (1− prand) + 35.593 · pAES · (1− pAES) < prand + 35.593 · pAES <
36.593 ·max(prand, pAES).

20 Even if this approximation is not formally correct - the size of the table of an S-Box
look-up is smaller than the size of the table used for our proposed distinguisher,
it allows to give a comparison between our distinguishers and the others currently
present in the literature. This approximation is largely used in literature.

29



10 Open Problems - 5-round Truncated Distinguisher

In this paper, we have presented a new truncated property for 5-round AES-
like ciphers in the case in which “the solutions of equation (3) are uniformly
distributed for each input/output difference (∆I , ∆O) 6= (0, 0)”, which is close
to being true if the S-Box is APN, or if the SBox is “close” to be APN. Even if
no S-Box (completely) satisfies this assumption in F24 or F28 , the theoretically
result of Theorem 3 matches the practical result obtained for the AES S-Box,
which approximately satisfies the assumptions of such Theorem (as discussed in
Sect. 4). Thus, natural questions arise: What happens when the AES S-Box is
changed with an S-Box that doesn’t satisfy (at all) the assumptions of Theorem
3? Is it possible to naturally extend our results to any general case?

We have studied this problem working on small-scale AES, and by practical
results the answer to the second question seems to be negative. In other words,
our theory doesn’t extend naturally to generic S-Box, but it should be modified
depending on the particular properties/details of the S-Box function.

In more details, we did several practical tests by counting the average number
of collisions in the case in which the AES S-Box is replaced with other S-Box
permutations present in the literature - PRINCE [11], MIDORI [3], KLEIN [19],
PRESENT [10], RECTANGLE [30], NOEKEON [15] and PRIDE [2] - and with
some “toy” S-Boxes. For our tests, given 216 plaintexts in the same coset of
Di, we counted the average number of collision in the same coset of MJ for
J fixed with |J | = 3 and we computed the mean. The obtained results are
listed in Table 3, where we also highlight some properties of the used S-Box
(definitions and differential spectrum of the used S-Boxes are given in App. I)
and the difference between the number of collisions found by experiments and
the theoretical number 32 847.124 under the assumptions of Theorem 3. For each
AES-like cipher, we used 125 000 ' 217 different initial cosets (values given in
the table are the average ones) - new keys are generated at random for each test.

Observations and (possible) Explanation. As expected, the (absolute) dif-
ference between the found number of collisions and the theoretical one seems to
increase when the variance (of the S-Box) increases, while it seems to be inde-
pendent of the maximum differential probability DPmax. Moreover, the differ-
ence between the theoretical number of collisions (given under the assumptions
of Theorem 3 - the number of solutions n∆I ,∆O of equation (3) are uniform dis-
tributed) and the practical one is minimum when the S-Box almost satisfies the
assumption of Theorem 3 - e.g. the AES S-Box.

To explain these results, we must refer to the proof of Theorem 3 given in Sect.
5. The idea is to consider a system of 4 equations of the generic form (10), and
to look for common solutions. In the case in which the solutions (in particular,
the number of solutions n∆I ,∆O ) of equation (3) are uniformly distributed, the
probability that a possible solution satisfies all the 4 equations of the system
is well approximated by (255−4 · 2−31)3, as explained in the proof of Sect. 5.
This allows to (theoretical) predict the average number of common solutions,
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Table 3. In the following table, we provide the results of our practical tests about the
number of different pairs of ciphertexts that belong to the same coset ofMJ for J fixed
with |J | = 3 when the AES S-Box is replaced by the S-Box of other ciphers. Together
with the number of collisions, we provide the most relevant properties of the S-Box
(see App. I for details) and the “Difference” between the practical and the theoretical
number (= 32 847.124) of collisions - under the assumptions of Theorem 3.

AES-like Cipher Number Collisions Difference DPmax Var Unif. Diff.

AES S-Box 32 848.57 +1.45 4 344/225 3

KLEIN S-Box 32 849.77 +2.65 4 344/225
MIDORI SB1 S-Box 32 843.03 −4.10 4 344/225

PRINCE S-Box 32 852.66 +5.54 4 344/225

Toy-6 S-Box 32 840.08 −7.05 6 392/225

RECTANGLE S-Box 32 861.15 +14.03 4 416/225
NOEKEON S-Box 32 878.7 +31.58 4 416/225

MIDORI SB0 S-Box 32 882.83 +35.71 4 416/225
PRESENT S-Box 32 886.32 +39.20 4 416/225

PRIDE S-Box 32 806.63 −40.50 4 416/225

Toy-8 S-Box 32 815.68 −31.45 8 464/225

Toy-10 S-Box 32 919.0 +71.88 10 864/225

and so of collisions. Instead, in the case in which the solutions (in particular, the
number of solutions n∆I ,∆O ) of equation (3) are not uniform distributed (e.g. if
the variance of the S-Box is not “low”), then the probability to have a common
solution is in general different from the one just given. As a result, the number of
solutions of a system of equations like (10) can be bigger or smaller w.r.t. the one
given in Theorem 3 (and the difference can be also non-negligible). It follows that
the number of collisions is influenced by the details of the S-Box (as expected).
As future work, an open problem is to theoretically prove this conjecture about
the link between the average number of collisions and the variance of the S-Box,
and to theoretically derive the numbers given in Table 3.

What about the distinguisher based on the variance (Sect. 6)? To compute
the value of the variance, we have exploited the “multiple-of-8” distinguisher
[21], the properties of the Variance (if X is a random variable and a a scalar,
then V ar(a ·X) = a2 · V ar(X)) and the probability pAES that - given a pair of
plaintexts in Di - two ciphertexts belong to the same coset ofMJ after 5-round.
This probability pAES proposed in Sect. 4 depends on the details of the S-Box, as
we have just seen. It follows that also the value of the variance depends on it. On
the other hand, we found by practical tests that the value of the variance changes
much less than the corresponding value of the mean when the S-Box changes. In
general, the value of the variance is “almost” independent of the details of the
S-Box. Moreover, since the variance for an AES-like cipher is much bigger than
the one of a random permutation, the proposed distinguisher works even if the
value of the variance is (a little) different than the one given in Theorem 3.
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MixColumns Dependence. Until now, we have focused only on the details
of the S-Box. How does the average number of collisions depend on the details
of the MixColumns matrix?

We start by focusing on the case in which the MixColumns matrix is MDS,
and then we briefly discuss the other cases. If the S-Box satisfies the assumptions
of Theorem 3, then the average number of collisions is (almost) independent of
the MixColumns matrix details. Instead, if the S-Box doesn’t satisfy the previous
requirement, this number depends also on the details of the MixColumns matrix.
In particular, in this last case the solutions (and the corresponding number
n∆I ,∆O ) of equation (3) are not uniform distributed with respect to ∆I 6= 0
and ∆O 6= 0, and so the number of solutions of a system of 4 equations of the
generic form (10) depends both on the details of the S-Box and of the linear
layer. Indeed, remember that a system of equations of the generic form (10)
depends on the coefficients of the MixColumns matrix, and so also the fact that
a common solution exists.

To give a practical example, consider the (circulant) MixColumns matrix de-
fined as MC = circ(0x01, 0x03, 0x02, 0x02), that is the AES MixColumns matrix
where 0x01 is replaced by 0x02 and vice-versa. We obtain that the number of
collisions in the case of AES S-Box is 32 850.32, while in the case of PRESENT
S-Box is 32 872.95. Thus, a difference in the MixColumns matrix implies almost
no difference for the AES S-Box case (on average, there are +1.75 collisions
for this new MDS matrix), while an higher difference occurs for the PRESENT
S-Box case (on average, there are −13.37 collisions for this new MDS matrix).
As we have just said, this is due to the fact that the probability that a system
of 4 equations of the generic form (10) admits a common solution both on the
details of the S-Box and of the linear layer, in the case in which the S-Box is
not “good” (w.r.t. assumptions of Theorem 3). Similar results can be obtained
using different MDS MixColumns matrices.

Finally, if the AES MixColumns matrix is replaced by an “almost MDS”
one (which doesn’t satisfy the assumptions of Theorem 3), then the number of
collisions can be different with respect to the one predicted by Theorem 3 also
in the case of “good” S-Box. As example, using the Midori matrix MCMidori =
circ(0x00, 0x01, 0x01, 0x01) and the AES S-Box, the number of collisions after
5-round is on average 31 883.27 (instead of a theoretical number of 32 847.124).

Future Open Problems. In conclusion, while we provide a theoretical ex-
planation (besides practical verifications) of our results, an open problem is to
adapt our theoretical argumentations to the cases in which the S-Box doesn’t
satisfy the assumptions of Theorem 3. As first step, we conjecture an explana-
tion of our results in this last case, but more research in that sense must be done.
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11. J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R. Knudsen,
G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts, S. S. Thomsen, and
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A Subspace Trails Cryptanalysis for AES

In this section, we give all the details about the subspace trails of AES presented
in [22], and briefly recalled in Sect. 3.

We recall that for the following, we only work with vectors and vector spaces
over F4×4

28 , and we denote by {e0,0, ..., e3,3} the unit vectors of F4×4
28 (e.g. ei,j has

a single 1 in row i and column j).

Definition 2. The column spaces Ci are defined as Ci = 〈e0,i, e1,i, e2,i, e3,i〉.

For instance, C0 corresponds to the symbolic matrix

C0 =

{
x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 ∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
≡


x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 .
Definition 3. The diagonal spaces Di are defined as Di = SR−1(Ci). Similarly,
the inverse-diagonal spaces IDi are defined as IDi = SR(Ci).

For instance, D0 and ID0 correspond to symbolic matrix

D0 ≡


x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

 , ID0 ≡


x1 0 0 0
0 0 0 x2
0 0 x3 0
0 x4 0 0


for all x1, x2, x3, x4 ∈ F28 .

Definition 4. The i-th mixed spaces Mi are defined as Mi = MC(IDi).

For instance, M0 corresponds to symbolic matrix

M0 ≡


0x02 · x1 x4 x3 0x03 · x2

x1 x4 0x03 · x3 0x02 · x2
x1 0x03 · x4 0x02 · x3 x2

0x03 · x1 0x02 · x4 x3 x2


for all x1, x2, x3, x4 ∈ F28 .

Definition 5. For I ⊆ {0, 1, 2, 3}, let CI , DI , IDI and MI be defined as

CI =
⊕
i∈I
Ci, DI =

⊕
i∈I
Di, IDI =

⊕
i∈I
IDi, MI =

⊕
i∈I
Mi.

As shown in detail in [22], for any coset DI ⊕ a there exists unique b ∈ C⊥I
such that R(DI ⊕ a) = CI ⊕ b. Similarly, for any coset CI ⊕ a there exists unique
b ∈M⊥I such that R(CI ⊕ a) =MI ⊕ b.

Theorem 1 ([22]). For each I ⊆ {0, 1, 2, 3} and for each a ∈ D⊥I , there exists
one and only one b ∈M⊥I s.t. R2(DI ⊕ a) =MI ⊕ b.
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We refer to [22] for a complete proof of this theorem, and we limit to emphasize
that b depends on the initial coset of DI defined by a and on the secret key k.

Observe that if X is a subspace, X ⊕ a is a coset of X and x and y are two
elements of the (same) coset X ⊕ a, then x⊕ y ∈ X. It follows that:

Lemma 1. For all x, y and for all I ⊆ {0, 1, 2, 3}:

Prob(R2(x)⊕R2(y) ∈MI |x⊕ y ∈ DI) = 1.

We finally recall that for each I, J ⊆ {0, 1, 2, 3} then MI ∩ DJ = {0} if and
only if |I|+ |J | ≤ 4, as demonstrated in [22]. It follows that:

Theorem 2 ([22]). Let I, J ⊆ {0, 1, 2, 3} such that |I|+ |J | ≤ 4. For all x, y:

Prob(R4(x)⊕R4(y) ∈MI |x⊕ y ∈ DJ , x 6= y) = 0.

B Experimental Results on Small-Scale AES

In Sect. 8, we reported our practical tests on small-scale AES. We remember
that the idea is the following: given 216 plaintexts in the same coset of Di for
i ∈ {0, 1, 2, 3}, one counts the number of different pairs of ciphertexts that belong
to the same coset of MJ for |J | = 3 after 5-round.

In this section, we propose a comparison between the theoretical and the
practical distributions of the number of collisions for small-scale 5-round AES,
and a comparison between the theoretical and the practical distributions of the
number of collisions for a random permutation.

B.1 A (possible) Distinguisher based on the Skew

Interestingly, it is possible to observe an asymmetry in the (small-scale) 5-round
AES distribution. A parameter that measures the asymmetry of the probabilistic
distribution of a real-valued random variable about its mean is the skewness. The
skewness value can be positive or negative, or undefined.

Fig. 4. Examples of negative and positive skew.
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Fig. 5. Comparison between the theoretical probabilistic distribution of the number of
collisions between small-scale AES and a random permutation.

Fig. 6. Comparison between the theoretical and the practical probabilistic distributions
of the number of collisions for small-scale 5-round AES.

Fig. 7. Comparison between the theoretical and the practical probabilistic distributions
of the number of collisions for a random permutation.
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To understand the meaning of the skewness parameter, consider the two
distributions in Figure 421. Within each graph, the values on the right side of
the distribution taper differently from the values on the left side. These tapering
sides are called tails, and they provide a visual means to determine which of the
two kinds of skewness a distribution has:

– negative skew : the left tail is longer; the mass of the distribution is concen-
trated on the right of the figure. The distribution is said to be left-skewed,
left-tailed, or skewed to the left, despite the fact that the curve itself appears
to be skewed or leaning to the right;

– positive skew : the right tail is longer; the mass of the distribution is concen-
trated on the left of the figure. The distribution is said to be right-skewed,
right-tailed, or skewed to the right, despite the fact that the curve itself
appears to be skewed or leaning to the left.

The skewness of a random variable X is the third standardized moment γ,
defined as:

γ = E

[(
X − µ
σ

)3
]

where E[·] is the mean value operator, µ ≡ E[X] the mean value and σ2 ≡
V ar(X) the variance. For a sample of n values, an estimator z for the skewness
is given by

z =
1
n

∑n
i=1[(xi − X̄)3]

( 1
n

∑n
i=1[(xi − X̄)2])3/2

.

where X̄ = 1
n

∑n
i=1 xi. By Fig. 6, it is possible to observe that small-scale 5-round

AES distribution has positive skew, while the skew of the random distribution
is approximately equal to zero.

We practically computed these values both for full-size AES and for small-
scale one using 29 initial cosets, and we got the following results:

γAES ' 0.43786 γAESsmall-scale ' 0.4687

while we got that the skew of a random permutation is close to 0.

It follows that also the skew can be used to set up a distinguisher. We leave
the open problem to theoretically compute these numbers, both for small-scale
AES and full-size AES, and to set up a corresponding distinguisher.

C Number of Collisions - Random Permutation

Consider 232 plaintexts in the same coset of a diagonal space Di. In Sect. 5, we
approximately compute the number of different pairs of ciphertexts generated by

21 Figure re-printed from Wikipedia https://en.wikipedia.org/wiki/Skewness
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a random permutation that belong to the same coset of MJ after 5-round for
|J | = 3. This number is approximately given by(

232

2

)
· 2−32 ' 2 147 483 647.5 = 231 − 2−1.

Here we show that this is a good approximation.
In the previous computation, we assume that all the pairs are independent.

However, this is not the case. Indeed, consider three texts, that is t1, t2 and t3,
and the corresponding three couples, that is (t1, t2), (t1, t3) and (t2, t3). Three
possible events can happen:

– if t1 ⊕ t2 ∈ MJ and t1 ⊕ t3 ∈ MJ , then t2 ⊕ t3 ∈ MJ with probability 1
(since MJ is a subspace);

– if t1 ⊕ t2 ∈ MJ and t1 ⊕ t3 /∈ MJ (or vice-versa), then t2 ⊕ t3 /∈ MJ with
probability 1 (since MJ is a subspace);

– if t1 ⊕ t2 /∈ MJ and t1 ⊕ t3 /∈ MJ , then both the events t2 ⊕ t3 ∈ MJ and
t2 ⊕ t3 /∈ MJ are possible; in particular, t2 ⊕ t3 ∈ MJ with approximately
prob. 2−32·(4−|J|).

On the other hand, what is the probability that a pair of texts (p, q) satisfy p⊕q ∈
MJ? In the following, we prove that such probability is equal to 2−32·(|J|−4).

To answer the previous question, first of all, it is important to focus on the
previous last event and to theoretically compute a better approximation of this
probability. For our goal, we focus on the case |J | = 3 with J fixed. We are going
to show that the last probability is well approximated by 2−32 · (1 − 2−32)−1.
Since t1 ⊕ t2 /∈ MJ , it follows that the difference on the J-th anti-diagonal is
different from (0,0,0,0), i.e. they can take only one of 232 − 1 possible values
different from (0,0,0,0). Similar consideration holds for t1 ⊕ t3 /∈ MJ . Since
t2 ⊕ t3 = (t1 ⊕ t2) ⊕ (t1 ⊕ t3), it follows that the difference of the J-th anti-
diagonal of t2 ⊕ t3 is equal to zero if the difference of the J-th anti-diagonal
of t1 ⊕ t2 is equal to the difference of the J-th anti-diagonal of t1 ⊕ t3. Since
this happens with probability (232 − 1)−1, it follows that the probability that
t1 ⊕ t3 ∈MJ is

(232 − 1)−1 = 2−32 · (1− 2−32)−1 ≈ 2−32 + 2−64 − 2−96 + ...

To have more confidence about this fact, note that:

– t1 ⊕ t2 ∈ MJ , t1 ⊕ t3 ∈ MJ and t2 ⊕ t3 ∈ MJ occurs with probability
(2−32)2;

– t1 ⊕ t2 ∈ MJ , t1 ⊕ t3 /∈ MJ and t2 ⊕ t3 /∈ MJ occurs with probability
2−32 · (1− 2−32) (similar for the other 3 cases);

– t1 ⊕ t2 /∈ MJ , t1 ⊕ t3 /∈ MJ and t2 ⊕ t3 /∈ MJ occurs with probability
(1− 2−32)2 · (1− 2−32 · (1− 2−32)−1).

All the other cases have probability 0 (since MJ is a subspace). By simple
computation, the probability of all the possible events is equal to

(2−32)2 + 3 · 2−32 · (1− 2−32) + (1− 2−32)2 · (1− 2−32 · (1− 2−32)−1) = 1,
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as expected. In other words, if one uses the probability (1 − 2−32)3 for the last
case, it follows that the probability of all the possible events is equal to 1−2−96,
which is obviously wrong.

Thus, what is the probability that t2 ⊕ t3 ∈ MJ? Remember that given the
events A1, ..., An in a probability space (Ω,F ,P)

Prob

( n⋃
i=1

Ai

)
=

n∑
k=1

(
(−1)k−1

∑
J⊂{1,...,n}, |J|=k

Prob
(⋃
j∈J

Aj
))
,

where the last sum runs over all subsets J of the indexes 1, ..., n which contain
exactly k elements. Thus:

Prob(t2 ⊕ t3 ∈MJ) = 2−32 · 2−32 · 1︸ ︷︷ ︸
1st Case

+ 2 · 2−32 · (1− 2−32) · 0︸ ︷︷ ︸
2nd Case

+

+ (1− 2−32)2 · 2−32 · (1− 2−32)−1︸ ︷︷ ︸
3rd Case

= 2−32.

It follows that even if the pairs are not independent, the number of collisions is
well approximated by(

232

2

)
· 2−32 ' 2 147 483 647.5 = 231 − 2−1.

Our practical experiments made for the small-scale AES also confirm this fact.

D Proof of Proposition 3

Proposition 1. Consider an AES-like cipher that works with texts in F4×4
28 for

which the assumptions of Theorem 3 hold.
Consider 232 plaintexts pi for i = 0, 1, ..., 232 − 1 in a coset of a diagonal

space Di, that is Di ⊕ a for i ∈ {0, 1, 2, 3} and a ∈ D⊥i , and the corresponding
ciphertexts after 5-round, that is ci = R5(pi). The probability that a pair of
ciphertexts (ci, cj) with ci ≤ cj for i 6= j belong to the same coset of MJ for any
J ⊆ {0, 1, 2, 3} with |J | = 3 is equal to 2−30 + 2−50.9803 − 261.415 + ....

The proof is based on Theorem 3 and by the fact that given the events
A1, ..., An in a probability space (Ω,F ,P)

Prob

( n⋃
i=1

Ai

)
=

n∑
k=1

(
(−1)k−1

∑
J⊂{1,...,n}, |J|=k

Prob
(⋃
j∈J

Aj
))
,

where the last sum runs over all subsets J of the indexes 1, ..., n which contain
exactly k elements.

Proof. As showed in Theorem 3, the probability that two ciphertexts belong to
the same coset of a mixed space MJ for a fixed J with |J | = 3 is pAES '
2−32 + 2−52.9803.
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By definition, given the events A1, ..., An in a probability space (Ω,F ,P)

Prob

( n⋃
i=1

Ai

)
=

n∑
k=1

(
(−1)k−1

∑
J⊂{1,...,n}, |J|=k

Prob
(⋃
j∈J

Aj
))
,

where the last sum runs over all subsets J of the indexes 1, ..., n which contain
exactly k elements22 and AI :=

⋂
i∈I Ai denotes the intersection of all those Ai

with index in I.
Moreover, observe that MI ∩ MJ = MI∩J for each I, J ⊆ {0, 1, 2, 3} by

definition, where MI ∩MJ = ∅ if I ∩ J = ∅. It follows that for |J | = 3:

Prob(∃J ⊆ {0, 1, 2, 3} |J | = 3 s.t. x ∈MJ) =

=
∑

J⊆{0,1,2,3}, |J|=3

Prob(x ∈MJ)−
∑

I⊆{0,1,2,3}, |J|=2

Prob(x ∈MJ)+

+
∑

J⊆{0,1,2,3}, |J|=1

Prob(x ∈MJ) = 4 · pAES − 6 · p2AES + 4 · p3AES '

'2−30 + 2−50.9803 − 261.415 + ...

ut

For comparison, in the case of a random permutation, the same event has prob-
ability 2−30 − 261.415 + 2−94.

E The Computational Cost of Algorithm 1

In this section, we explain the details of Algorithm 1 used in Sect. 8.1 and Sect.
9 to count the different number of pairs of ciphertexts that belong to the same
coset of MJ for |J | = 3.

Assume the final MixColumns operation is not omitted. For each initial coset
of DI the two steps of the distinguisher are (1) construct all the possible pairs
of ciphertexts and (2) count the number of collisions. First of all, note that the
cost to check that a given pair of ciphertexts belong to the same coset ofMJ is
equal to the cost of a XOR operation and an inverse MixColumns operation23.

As we are going to show, the major cost of this distinguisher regards the
construction of all the possible different pairs, which corresponds to step (1).
Since it is possible to construct approximately 263 pairs for each coset, the sim-
plest way to do it requires 263 table look-ups for each coset. In the following,
we present a way to reduce the total cost to approximately 241.6 table look-ups,
where the used tables are of size 232 texts (or 232 · 16 = 236 byte).

22 For example for n = 2, it follows that Prob(A1∪A2) = Prob(A1)+Prob(A2)−P(A1∩
A2), while for n = 3 it follows that Prob(A1 ∪ A2 ∪ A3) = Prob(A1) + Prob(A2) +
Prob(A3)−Prob(A1 ∩A2)−Prob(A1 ∩A3)−Prob(A2 ∩A3) +Prob(A1 ∩A2 ∩A3).

23 As example, given a pair (c1, c2) and for the subspace M{1,2,3}, this operation can
be reduced to check that MC−1(c1 ⊕ c2)i,i = MC−1(c1)i,i ⊕MC−1(c2)i,i = 0 for
each i = 0, ..., 3 - note that c1 ⊕ c2 ∈MJ if and only if MC−1(c1 ⊕ c2) ∈ IDJ .
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The basic idea is to implement the distinguisher using a data structure. As-
sume J ⊆ {0, 1, 2, 3} is fixed. The goal is to count the number of pairs of cipher-
texts (c1, c2) such that c1 ⊕ c2 ∈MJ , or equivalently

MC−1(c1)i,j−i = MC−1(c2)i,j−i ∀i = 0, 1, 2, 3 (12)

where j = {0, 1, 2, 3} \ J , and the index is computed modulo 4. To do this,
consider an array A of 232 elements completely initialized to zero. The element
of A in position x for 0 ≤ x ≤ 232− 1 - denoted by A[x] - represents the number
of ciphertexts c that satisfy the following equivalence (in the integer field N):

x = c0,0−j + 256 ·MC−1(c)1,1−j +MC−1(c)2,2−j · 2562 +MC−1(c)3,3−j · 2563.

It’s simple to observe that if two ciphertexts c1 and c2 satisfy (12), then they
increment the same element x of the array A. It follows that given r ≥ 0 texts
that increment the same element x of the array A, then it is possible to construct(
r
2

)
= r·(r−1)

2 different pairs of texts that satisfy (12). The complete pseudo-code
of such an algorithm is given in Algorithm 1.

What is the total computational cost of this procedure? Given a set of 232

(plaintexts, ciphertexts) pairs, one has first to fill the array A using the strategy
just described, and then to compute the number of total of pairs of ciphertexts
that satisfy the property, for a cost of 3 · 232 = 233.6 table look-ups - each one
of these three operations require 232 table look-ups. Since one has to repeat this
algorithm 4 times - i.e. one time for eachMJ , or equivalently one time for each
one of the four anti-diagonal, the total cost is of 4 · 233.6 = 235.6 table look-ups,
or equivalently 229 five-round encryptions of AES (using the approximation24 20
table look-ups ≈ 1 round of AES).

Finally, if one has to repeat this procedure for 2n different cosets, the total
cost is given by 2n · 235.6 ' 235.6+n table look-ups.

E.1 Details - Mean Value Distinguishers

The same algorithm is used to implement the “mean value” secret-key distin-
guisher proposed in Sect. 9. We refer to that section for all the details, and we
focus here on the details about the computational cost. As showed in Sect. 9,
247.374 chosen plaintexts (i.e. 215.374 cosets of DI with |I| = 1) are sufficient to
distinguish a random permutation from 5 rounds of AES, simply counting the
number of pairs of ciphertexts that belong to the same coset of MJ for |J | = 3
and using the fact that this number is bigger for AES. Here we give an estima-
tion of the computational cost of the distinguisher, which is approximately given

24 We highlight that even if this approximation is not formally correct - the size of the
table of an S-Box look-up is smaller than the size of the table used for our proposed
distinguisher, it allows to give a comparison between our proposed distinguisher and
the others currently present in the literature. At the same time, we note that the
same approximation is largely used in literature.
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by the cost to count the number of collisions. Using Algorithm 1, the total com-
putational cost can be well approximated by 251 table look-ups, or equivalently
244.34 five-round encryptions of AES.

In more detail, given a set of 232 (plaintexts, ciphertexts) pairs, one has first
to fill the array A using the strategy just described, and then to compute the
number of total of pairs of ciphertexts that satisfy the property, for a cost of
3 ·232 = 233.6 table look-ups - each one of these three operations require 232 table
look-ups. Since one has to repeat this algorithm 4 times - i.e. one time for each
one of the four anti-diagonal, the total cost is of 4 · 233.6 = 235.6 table look-ups,
or equivalently 229 five-round encryptions of AES (using the approximation 20
table look-ups ≈ 1 round of AES). Finally, since one has to repeat this procedure
for 215.374 different cosets, the total cost is given by 215.374 · 235.6 ' 251 table
look-ups, or equivalently 244.34 five-round encryptions of AES.

F Proof of Proposition 2 - Average Number of Collisions
for small-scale AES case

In this section we provide the proof of Proposition 2 for the case of small-scale
AES. Since the idea of the proof is the same of the one given in Sect. 5, we limit
to adapt it to the case of small-scale AES. Since

DI ⊕ a′
R2(·)−−−−→
prob. 1

MI ⊕ b′
R(·)−−→ DJ ⊕ a′′

R2(·)−−−−→
prob. 1

MJ ⊕ b′′.

the idea is to work only on the middle round. That is, for the following we
consider 232 plaintexts in the same coset ofMi for i ∈ {0, 1, 2, 3} and we compute
the average number of collisions after one round in the same coset of DJ for
|J | = 3 fixed.

For simplicity, we limit to consider plaintexts in the same coset of M0 and
the diagonal space D1,2,3 (the other cases are analogous). By definition ofM0 if
p1, p2 ∈M0 ⊕ b′, there exist xi, yi, zi, wi ∈ F28 for i = 1, 2 such that:

pi = b′ ⊕


2 · xi yi zi 3 · wi
xi yi 3 · zi 2 · wi
xi 3 · yi 2 · zi wi

3 · xi 2 · yi zi wi


where 2 ≡ 0x02 and 3 ≡ 0x03. For the following we say that p1 is “gener-
ated” by the variables (x1, y1, z1, w1) and that p2 is “generated” by the variables
(x2, y2, z2, w2) - we denote it by pi ≡ (xi, yi, zi, wi) for i = 1, 2.

The idea is to consider separately the following cases

– 3 variables are equal, e.g. x1 6= x2 and y1 = y2, z1 = z2, w1 = w2;
– 2 variables are equal, e.g. x1 6= x2,y1 6= y2 and z1 = z2, w1 = w2;
– 1 variable is equal, e.g. x1 6= x2, y1 6= y2, z1 6= z2 and w1 = w2;
– all variables are different, e.g. x1 6= x2, y1 6= y2, z1 6= z2, w1 6= w2.
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As we have already seen, if y1 = y2, z1 = z2 and w1 = w2, then p1 ⊕ p2 ∈ C0,
that is R(p1)⊕R(p2) ∈M0. By Theorem 2, it follows that R(p1)⊕R(p2) /∈ DJ
for each J . For the following we limit to consider the case in which at least 2
generating variables are different.

F.1 Case: Two Equal Generating Variables. As first case, we consider
the case in which 2 generating variables are equal, e.g. x1 6= x2, y1 6= y2, z1 = z2

and w1 = w2. This is equivalent to consider 28 plaintexts in the same coset of
C0,1 ∩M0 (the other cases are equivalent).

Thus, consider two plaintexts p1 generated by (x1, y1, 0, 0) and p2 generated
by (x2, y2, 0, 0) in (C0,1 ∩M0) ⊕ b′. By simple computation, R(p1) ⊕ R(p2) ∈
D1,2,3 if four equations of the form

A · (S-Box(B · x1 ⊕ a)⊕ S-Box(B · x2 ⊕ a))⊕
⊕C · (S-Box(D · y1 ⊕ c)⊕ S-Box(D · y2 ⊕ c)) = 0

(13)

are satisfied, whereA,B,C,D depend only on the MixColumns matrix definition,
while a, c depend on the secret key and on the initial constant that defines the
coset. Equivalently, four systems of two equations as follows must be satisfied

S-Box(x⊕∆I)⊕ S-Box(x) = ∆O

S-Box(y ⊕∆′I)⊕ S-Box(y) = ∆′O (14)

∆O = C−1 ·A·∆
′′

O

Due to the same argumentations given in Sect. 5, the number of different
(not null) solutions [(x1, y1), (x2, y2)] of eq. (14) is approximately given by

1

2
· 15 ·

(
16

15
· 15

)2

= 15 · 27

independently of the details of the S-Box. Indeed, observe that given ∆O 6= 0,
each one of the two equations (14) for small-scale AES admit 16

15 ·15 = 16 different
solutions (x̂,∆I) - resp. (ŷ, ∆′I) - where ∆I , ∆

′
I 6= 0 and 16/15 is the average

number of solutions. Moreover, note that there are 15 values of ∆O 6= 0 and that
the condition y1 < y2 holds.

Given the number of solutions of eq. (14), what is the number of common
- different (not null) - solutions [(x1, y1), (x2, y2)] of 4 equations of the form
(13)? Due to the same argumentation given in Sect. 5, this probability is equal
to (16 · 15)−1 · (15 · 8)−1 = 15−2 · 2−7.

In conclusion, the number of common - different (not null) - solutions [(x1, y1),
(x2, y2)] of 4 equations of the form (13) is approximately given by

(15 · 27)4 · (15−2 · 2−7)3 =
27

152
' 0.568888889

For comparison, if the ciphertexts are generated by a random permutation, the
number of different pairs of ciphertexts that belong to the same coset of MJ is
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given by (
28

2

)
· (2−4)4 =

28 − 1

29
' 0.498046875

F.2 Case: One Equal Generating Variable. As second case, we consider
the case in which 1 generating variable is equal, e.g. x1 6= x2, y1 6= y2, z1 6= z2

and w1 = w2. This is equivalent to consider 212 plaintexts in the same coset of
C0,1,2 ∩M0 (the other cases are equivalent).

As before, given two plaintexts p1, p2 ∈ (C0,1,2 ∩M0)⊕b′, they belong to the
same coset of the diagonal space D1,2,3 if 4 equations of the form

A · (S-Box(B · x⊕ b)⊕ S-Box(B · x′ ⊕ b))⊕
⊕C · (S-Box(D · y ⊕ d)⊕ S-Box(D · y′ ⊕ d))⊕ (15)

⊕E · (S-Box(F · z ⊕ f)⊕ S-Box(F · z′ ⊕ f)) = 0

are satisfied, where A,B,C,D,E, F depend only on the MixColumns matrix
definition, while b, d, f depend on the secret key and on the initial constant that
defines the coset. Each one of these equations is equivalent to

S-Box(x⊕∆I)⊕ S-Box(x) = ∆O

S-Box(y ⊕∆′I)⊕ S-Box(y) = ∆′O

S-Box(z ⊕∆
′′

I )⊕ S-Box(z) = ∆
′′

O

together with one of the two following conditions:

1. ∆
′′

O = 0 and ∆′O = C−1 ·A ·∆O, or analogous (3 possibilities);

2. ∆O, ∆
′
O, ∆

′′

O 6= 0, and ∆
′′

O = E−1 · (A ·∆O ⊕ C ·∆′O).

First Case. The first case is analogous to the case in which two generating
variables are equal. For this reason, we can re-use the same calculation as before.
It follows that the average number of not null - common solutions of this case is(

3

1

)
· 24 · 27

152
=

2048

75
' 27.306667

Second Case. For the second case, the idea is to work as for the cases of 1
equal generating variables. For each eq. (15) the number of different solutions

[(x1, y1, z1), (x2, y2, z2)] - where z1 < z2 - is given by 15 · 14 · 12 ·
(
15 · 1615

)3
=

105 · 212. Moreover, using the same argumentation as before, the probability to
have a common solution for two equations of the form (15) is given by (16·15)−2 ·
(8 ·15)−1 = 15−3 ·2−11 under the given assumptions of the S-Box. It follows that
we expect on average

(105 · 212)4 · (15−3 · 2−11)3 =
74 · 215

155
' 103.60621

45



different - not null - common solutions for the 4 equations of the form (15).

Total Number of Different - not null - Common Solutions in the
Case of One Equal Generating Variable. By simple computation, given
plaintexts in the same coset of C0,1,2 ∩ M0, the number of different pairs of
ciphertexts that belong to the same coset of D1,2,3 is approximately

103.60621 + 27.306667 ' 130.912877

For comparison, if the ciphertexts are generate by a random permutation, the
number of different pairs of ciphertexts that belong to the same coset of MJ is
approximately given by (

212

2

)
· 2−16 ' 127.96875

F.3 Case: No Equal Generating Variables. Finally, we consider the
case in which all the generating variables are different, that is x1 6= x2, y1 6= y2,
z1 6= z2 and w1 6=2. As before, given two plaintexts p1, p2 ∈M0⊕b′, they belong
to the same coset of D1,2,3 if four equations of the form

A · (S-Box(B · x⊕ b)⊕ S-Box(B · x′ ⊕ b))⊕
⊕C · (S-Box(D · y ⊕ d)⊕ S-Box(D · y′ ⊕ d))⊕
⊕E · (S-Box(F · z ⊕ f)⊕ S-Box(F · z′ ⊕ f))⊕
⊕G · (S-Box(H · w ⊕ h)⊕ S-Box(H · w′ ⊕ h)) = 0

are satisfied, where A,B,C,D,E, F,G,H depend only on the MixColumns ma-
trix definition, while b, d, f, h depend on the secret key and on the constant that
defined the initial coset. Each one of these equations is equivalent to:

S-Box(x⊕∆I)⊕ S-Box(x) = ∆O

S-Box(y ⊕∆′I)⊕ S-Box(y) = ∆′O

S-Box(z ⊕∆
′′

I )⊕ S-Box(z) = ∆
′′

O

S-Box(w ⊕∆
′′′

I )⊕ S-Box(w) = ∆
′′′

O

together with one of the following conditions

1. ∆
′′′

O = ∆
′′

O = 0 and ∆′O = C−1 ·A ·∆O 6= 0 or analogous (6 possibilities);

2. ∆
′′′

O = 0, ∆O, ∆
′

O, ∆
′′

O 6= 0 and ∆
′′

O = E−1 · (A ·∆O ⊕ C ·∆′O) or analogous
(4 possibilities);

3. ∆O, ∆
′

O, ∆
′′

O, ∆
′′′

O 6= 0 and ∆
′′′

O = G−1 · (A ·∆O ⊕ C ·∆′O ⊕ E ·∆
′′

O).

Since the first two cases are analogous to the previous two cases already studied,
we can re-use the same calculation.
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First Case. In the first case, ∆
′′

O = 0 implies ∆
′′

I = 0 and z can take each
possible value (similar for w).

Using the same computations as before, it follows that the average number
of not null - common solutions of this case is(

4

2

)
· 162 · 27

152
=

65 536

75
' 873.813

Second Case. In the second case, using the same computations as before, it
follows that the average number of not null - common solutions of this case is(

4

1

)
· 16 · 74 · 215

155
=

74 · 221

155
' 6 630.798

Third Case. We finally consider the case ∆O, ∆
′

O, ∆
′′

O, ∆
′′′

O 6= 0. As ex-
plained in the main text, the idea is to consider the total number of values
of (∆O, ∆

′
O, ∆

′′

O) that satisfy the equation C ·∆′O ⊕ A ·∆O ⊕ E ·∆
′′

O 6= 0 and

such that ∆O 6= 0, ∆′O 6= 0, ∆
′′

O 6= 0. By simple computation, this number is
equal to 153 − 15 · 14 = 3 165, since 153 is the total number of values and 15 · 14
is the number of values for which the previous equation is equal to 0 (note that
if C ·∆′O ⊕ A ·∆O = 0, then the previous equation can not be equal zero since

∆
′′

O 6= 0). As a result, the total number of solutions for this case is

1

2
· 3 165 ·

(
15 · 16

15

)4

= 3 165 · 215.

Since the probability that [(x1, y1, z1, w1), (x2, y2, z2, w2)] and [(x̂1, ŷ1, ẑ1, ŵ1),
(x̂2, ŷ2, ẑ2, ŵ2)] is equal to (15·16)−3 ·(15·8)−1 = 15−4 ·2−15, the average number
of (non null) common solutions with no equal generating variables is

(3 165 · 215)4 · (15−4 · 2−15)3 =
2114 · 215

158
' 25 342.513

Total Number of Different - not null - Common Solutions in the Case
of No Equal Generating Variables. By simple computation, given plaintexts
in the same coset ofM0, the number of different pairs of ciphertexts that belong
to the same coset of D1,2,3 is approximately

25 342.513 + 6 630.798 + 873.813 ' 32 847.124

For comparison, if the ciphertexts are generated by a random permutation,
the number of different pairs of ciphertexts that belong to the same coset ofMJ

is approximately given by (
216

2

)
· 2−16 ' 32 767.5
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In other words, on average there are

32 847.124− 32 767.5 ' 79.624

more collisions for 5-round AES than for a random permutation.
Finally, since the number of possible couples of texts is 215 · (216 − 1), the

probability in the AES case that a couple of ciphertexts (c1, c2) satisfies c1⊕c2 ∈
DJ for |J | = 3 fixed is

pAES '
32 874.124

215 · (216 − 1)
' 2−16 + 2−24.68485,

versus 2−16 of the random case.

G Proof of Proposition 2 - Variance of the Number of
Collisions for small-scale AES

In this section we provide the proof of Proposition 2 for the case of small-scale
AES. Since the proof is similar to the one given in Sect. 6.2, we limit to adapt
it to the case of small-scale AES. As before, since

DI ⊕ a′
R2(·)−−−−→
prob. 1

MI ⊕ b′
R(·)−−→ DJ ⊕ a′′

R2(·)−−−−→
prob. 1

MJ ⊕ b′′,

the idea is to work only on the middle round. That is, for the following we
consider 216 plaintexts in the same coset of Mi for i ∈ {0, 1, 2, 3} and we study
the average number of collisions after one round in the same coset of DJ for
|J | = 3 fixed.

First of all, note that given a coset of Mi of 216 chosen plaintexts, it is
possible to construct 215 · (216 − 1) pairs. Among them, the number of pairs of
texts with 0 ≤ n ≤ 3 equal generating variables are(

4

n

)
· 215 · (24 − 1)4−n.

To prove the result, the idea is to consider separately the pairs of texts with
0 ≤ n ≤ 3 different generating variables (see proof in Sect. 6.2).

Different Generating Variables. As first case, we consider the case in which
all the generating variables are different, i.e. n = 0. The number of pairs with
this property is 215 · (24 − 1)4.

As we have just seen, these pairs are not independent. Indeed, by [21], it is
possible to divide them in 215 ·(24−1)4/8 = 212 ·(24−1)4 sets of 8 pairs such that
for each set only two events can happen: (1) all the pairs belong to the same coset
of DJ after one round or (2) no one of them has this property. Thus, the idea is to
consider only one pair for each one of these sets, for a total of 212 ·(24−1)4 pairs.
Since these pairs are independent, the probabilistic distribution of the number of
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pairs that belong to the same coset of DJ after one round is given by a binomial
distribution X with mean value µ = n ·pAES = 212 · (24−1)4 · (2−16 +2−24.68485)
and variance σ2 = n ·pAES · (1−pAES) = 212 · (24−1)4 · (2−16 +2−24.68485) · (1−
2−16−2−24.68485) ≈ 3 171.702, that is σ ≈ 56.318. It follows that the probabilistic
distribution Y of the number of collisions for the pairs with no equal generating
variables is simple given by Y = 8×X. Since V ar(Y ) = 82×V ar(X), it follows
that the standard deviation σ for this case is given by 8 · 56.318 ≈ 450.543.

One Equal Generating Variable. As second case, we consider the case in
which all the generating variables are different, i.e. n = 1. The number of pairs
with this property is 4 · 215 · (24 − 1)3.

As we have just seen, these pairs are not independent. Indeed, by [21], it is
possible to divide them in 217·(24−1)3/26 = 211·(24−1)3 sets of 26 pairs such that
for each set only two events can happen: (1) all the pairs belong to the same coset
of DJ after one round or (2) no one of them has this property. Thus, the idea is to
consider only one pair for each one of these sets, for a total of 211 ·(24−1)3 pairs.
Since these pairs are independent, the probabilistic distribution of the number of
pairs that belong to the same coset of DJ after one round is given by a binomial
distribution X with mean value µ = n ·pAES = 211 · (24−1)3 · (2−16 +2−24.68485)
and variance σ2 = n ·pAES · (1−pAES) = 211 · (24−1)3 · (2−16 +2−24.68485) · (1−
2−16−2−24.68485) ≈ 105.723, that is σ ≈ 10.282. It follows that the probabilistic
distribution Y of the number of collisions for the pairs with no equal generating
variables is simple given by Y = 26 × X. Since V ar(Y ) = (26)2 × V ar(X), it
follows that the standard deviation σ for this case is given by 26 ·10.282 ≈ 658.06.

Two Equal Generating Variables. As third case, we consider the case in
which all the generating variables are different, i.e. n = 2. The number of pairs
with this property is 6 · 215 · (24 − 1)2.

As we have just seen, these pairs are not independent. Indeed, by [21], it
is possible to divide them in 3 · 216 · (24 − 1)2/29 = 3 · 27 · (24 − 1)2 sets of
29 pairs such that for each set only two events can happen: (1) all the pairs
belong to the same coset of DJ after one round or (2) no one of them has
this property. Thus, the idea is to consider only one pair for each one of these
sets, for a total of 3 · 27 · (24 − 1)2 pairs. Since these pairs are independent, the
probabilistic distribution of the number of pairs that belong to the same coset
of DJ after one round is given by a binomial distribution X with mean value
µ = n · pAES = 3 · 27 · (24 − 1)2 · (2−16 + 2−24.68485) and variance σ2 = n · pAES ·
(1−pAES) = 3 ·27 · (24−1)2 · (2−16 +2−24.68485) · (1−2−16−2−24.68485) ≈ 1.322,
that is σ ≈ 1.15. It follows that the probabilistic distribution Y of the number
of collisions for the pairs with no equal generating variables is simple given by
Y = 29 × X. Since V ar(Y ) = (29)2 × V ar(X), it follows that the standard
deviation σ for this case is given by 29 · 1.15 ≈ 588.587.

Final Result. Finally, remember that given two plaintexts with three equal
generating variables, then they can not belong to the same coset of DJ after
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one round. Moreover, note that all the previous cases are independent. In other
words, consider one pairs of texts with n equal generating variables and another
one with n̂ equal generating variables where n̂ 6= n. The fact that the first pair
belong (or not) to the same coset of DJ after one round is independent by the
fact that the second pair belong (or not) to the same coset of DJ after one round.

Remember that given n independent variables X1, ..., Xn, the variance of
Y = X1+ ...+Xn is given by V ar(Y ) = V ar(X1)+ ...+V ar(Xn). It follows that
the total variance of the probabilistic distribution for the AES case is given by
σ2 ' 588.5872 + 658.062 + 450.5432 ' 982 466.615, or equivalently the standard
deviation is given by σ ' 991.195.

H Key-Recovery Attacks on 5-round AES

In this section, we propose several (new) attacks on 5-round AES that exploit
the secret-key distinguishers proposed in this paper revisited on 4-round AES.

To give an overview, consider the following aspect. To construct the proposed
distinguishers, one consider a full coset of a subspace DI - that is, a set of 232

plaintexts with one active diagonal, and exploits properties that are related to
the number of ciphertexts that belong to a subspace MJ . In order to exploit
directly these distinguishers, one can guess the final key, decrypt the ciphertexts,
counts the number of collisions in the same coset ofMJ and exploits one of the
proposed properties. However, since a coset ofMJ is mapped into the full space,
it seems hard to check this property one round before without guessing the entire
key. Similar considerations can be done if the guessed key is the initial one. It
follows that it is rather hard to set up an attack different than a brute force one
that exploits directly the proposed 5-round distinguishers - this open problem is
left for future work. For comparison, note that such a problem doesn’t arise for
the other distinguishers up to 4-round AES (e.g. the impossible differential or
the integral ones), for which it is sufficient to guess only part of the secret key
in order to verify if the required property is satisfied or not.

Thus, we consider round-reduced distinguishers on 4-round to propose new
key-recovery attacks. Instead to have 232 plaintexts with one active diagonal,
we consider 224 texts with three active bytes in the same column, e.g. a coset
of D0,2,3 ∩ C0. As we are going to show, the properties presented in this paper
hold after 4-round in the same way. To set up the attacks, the idea is to extend
the distinguishers at the beginning and to partially guess the initial key. In more
details, consider 232 plaintexts in D0⊕a. After one round, they are mapped into
a coset of C0 with prob. 1. However, the way in which they are divided in cosets
of D0,2,3 ∩ C0 depends on the guess key

232 plaintexts in D0 ⊕ b
R(·)−−−−−−−−−−−−−→

(partially) key guess
224 texts in D0,2,3 ∩ C0 ⊕ a

R4(·)−−−→ ...

...
R(·)−−→ 224 texts in D0,2,3 ∩ C0 ⊕ a

R4(·)−−−→ distinguisher property.

We exploit this fact to set up new key-recovery attacks on 5-round AES.
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Table 4. Comparison of attacks on 5-round AES-128. Data complexity is measured in
number of required chosen plaintexts/ciphertexts (CP/CC). Time complexity is mea-
sured in round-reduced AES encryption equivalents (E) - the number in the brackets
denotes the precomputation cost (if not negligible). Memory complexity is measured
in texts (16 bytes). Attacks presented in this paper are in bold.

Attack Rounds Data Computation Memory Ref.

MitM 5 8 264 256 [18, Sec. 7.5.1]

Imp. Polytopic 5 15 270 241 [27]

Partial Sum 5 28 238 small [28]

Integral (EE) 5 211 245.7 small [16]

Imp. Differential 5 231.5 233 (+ 238) 238 [7]

Integral (EB) 5 233 237.7 232 [16]

Variance 5 233 264.6 232 App. H.4

Mixture Diff. 5 233.6 233.3 234 [20]

Multiple-of-n 5 233.6 248 232 App. H.2

Trunc. Diff. 5 236 267.6 232 App. H.3

MitM: Meet-in-the-Middle, EE: Extension at End, EB: Extension at Beginning

In more details, the attacks that we are going to present are based on the
following properties:

– the number of collisions is a multiple of 2/4/8;
– the average number of collisions is (a little) bigger for AES than for a random

permutation;
– the variance of the number of collisions is higher for AES than for a random

permutation.

In the following, we first present the generic strategy to set up these attacks
(which is common for all the previous cases), and then we give all the details.
The results are summarized in Table 4.

H.1 Generic Strategy

In order to exploit one of the previous properties, the idea is the following.
Consider 224 texts in the same coset of DI ∩Cj for |j| = 1 and |I| = 2 or |I| = 3,
e.g.

D0,2,3 ∩ C0 ⊕ a ≡


A C C C
A C C C
A C C C
C C C C

 ,
and the corresponding ciphertexts after 4-round. The idea of the attack is to
guess 4 bytes of the key (i.e. the j-th diagonal), to partially compute 1-round
decryption of DI ∩ Cj ⊕ a and to ask for the corresponding ciphertexts after
5-round. Exploiting one of the previous properties that hold on the ciphertexts
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only if the guessed key is the right one, it is possible to filter wrong keys and
to find the right one. In particular, this is due to the fact that if the guessed
key is not the right one, the behavior is the same of a random permutation -
Wrong-Key Randomization Hypothesis.

In more details, consider 224·n texts in n cosets of DI ∩ Cj . The idea is
to compute 1-round decryption with respect to a guessed key and ask for the
corresponding ciphertexts. The following properties holds

– the number of collisions is always a multiple of 2 if |I| = 2 and of 4 if |I| = 3
for the right key, while it can assume any value for a wrong guessed key;

– the average number of collisions in the same coset of MJ for J fixed with
|J | = 3 is approximately equal to 32 770.524 for the right key, while it is
approximately 32 767.998 for a wrong guessed key;

– the variance of the number of collisions is approximately equal to 217.8 for
the right key, while it is approximately 215 for a wrong guessed key.

Note that if n ≤ 28 initial cosets are sufficient to set up the attack, then the
data cost of this step is less or equal of 232 chosen plaintexts in the same coset
of Di, since DI ∩ Cj ⊕ b ⊆ Cj ⊕ b = R(Di ⊕ a). When one diagonal of the key is
found, the other ones can be found using the same strategy or by brute force.

Wrong-Key Randomization Hypothesis. One assumption of the attack
is the wrong-key randomization hypothesis. This hypothesis states that when
decrypting one or several rounds with a wrong key guess creates a function that
behaves like a random function. This assumption is very common and used for
classical/truncated/impossible differentials key-recovery attacks.

For this reason, we limit to show that it holds also in our case. Consider 224

texts ti in a coset of D0,2,3 ∩ C0 for i = 0, ..., 224 − 1, and let k the secret subkey

and k̂ the guessed key. The decryption under the guessed key k̂ is simply given
by:

R−1
k̂

(ti) = k̂ ⊕ S-Box−1 ◦ SR−1 ◦MC−1(ti).

To implement the attack, one asks the corresponding ciphertexts after 5-round
(with respect to the right key k). By simple computation, after one round

Rk ◦R−1k̂ (ti) = MC ◦ SR ◦ S-Box
[
k̂ ⊕ k ⊕ S-Box−1 ◦ SR−1 ◦MC−1

(
ti
)]
.

Thus, if k̂ = k, then Rk ◦R−1k̂ (ti) = ti for each i, and the distinguisher property

holds. On the other hand, if k̂ 6= k, then Rk ◦ R−1k̂ (ti) 6= ti for each i since the

S-Box is a non-linear operation. It follows that {Rk ◦R−1k̂ (ti)}i don’t belong to
the same coset of D0,2,3 ∩ C0, and the distinguisher property doesn’t work. In
this case, the behavior is the same of a random permutation, and the attacker
can filter wrong keys.

52



Implementation Strategy. In the following we give the details of the attack.
We highlight that in all cases the attacker has to count the number of collisions
in the same coset of MJ in order to filter wrong keys. Even if it is possible to
use the strategy proposed in Algorithm 1, another strategy is more competitive
in this case.

The basic idea is to re-order the texts with respect to a partial order � and
to work only on consecutive ordered texts. In particular, since our goal is to
check if two texts belong to the same coset of MJ for |J | = 3, the idea is to
re-order the texts using a particular numerical order which depends by J . Then,
given a set of ordered texts, the idea is to work only on two consecutive elements
in order to count the total number of collisions. In other words, given ordered
ciphertexts, one can work only on approximately 232 different pairs (composed
of consecutive elements with respect to the used order) instead of 263 for each
coset of DI . For this reason, we define the following partial order �:

Definition 6. Let I ⊂ {0, 1, 2, 3} with |I| = 3 and let l ∈ {0, 1, 2, 3} \ I. Let
t1, t2 ∈ F4×4

28 with t1 6= t2. The text t1 is less or equal than the text t2 with
respect to the partial order � (i.e. t1 � t2) if and only if one of the two following
conditions is satisfied (the indexes are taken modulo 4):

– there exists j ∈ {0, 1, 2, 3} such that for all i < j:

MC−1(t1)i,l−i = MC−1(t2)i,l−i and MC−1(t1)j,l−j < MC−1(t2)j,l−j ;

– for all i = 0, ...., 3:

MC−1(t1)i,l−i = MC−1(t2)i,l−i and MC−1(t1) ≤MC−1(t2),

where ≤ defined as in Def. 4.

Thus, as first step, one must re-order the 232 ciphertexts of each coset with
respect to the partial order relationship � defined before.

After the re-ordering process, in order to count the number of pairs of texts
that belong to the same coset ofMJ , one can work only on consecutive ordered
elements. Indeed, consider r consecutive elements cl, cl+1, ..., cl+r−1, with r ≥ 2.
Suppose that for each k with l ≤ k ≤ l + r − 2: ck ⊕ ck+1 ∈ MJ . Since MJ

is a subspace, it follows immediately that for each s, t with l ≤ s, t ≤ l + r − 2
cs ⊕ ct ∈ MJ . Thus, given r ≥ 2 consecutive elements that belong to the same

coset of MJ , it follows that
(
r
2

)
= r·(r−1)

2 different pairs belong to the same
coset ofMJ . In the same way, consider r consecutive elements cl, cl+1, ..., cl+r−1

with r ≥ 2, such that ck ⊕ ck+1 /∈ MJ for eachk with l ≤ k ≤ l + r − 2. Since
MJ is a subspace, it follows immediately that cs ⊕ ct /∈ MJ for each s, t with
l ≤ s, t ≤ l + r − 2.

In other words, thanks to the ordering algorithm, it is possible to work only
on 232 − 1 pairs (i.e. the pairs composed of two consecutive elements), but at
the same time to have information on all the 231 · (232− 1) ' 263 different pairs.
The pseudo-code of such algorithm is given in Algorithm 2.
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Data: 232 (plaintext, ciphertext) pairs (pi, ci) for i = 0, ..., 232 − 1 in a single
coset of DI with |I| = 1.

Result: Number of collisions n
for all J with |J | = 3 do

Re-order the 232 (plaintexts, ciphertexts) pairs using the partial order
relationship � defined in Def. 6; // � depends on J

Let (p̃i, c̃i) for i = 0, ..., 232 − 1 the order (plaintext, ciphertext) pairs;
n← 0; // n denotes the number of collisions in MJ

i← 0;
while i < 232 do

r ← 1;
j ← i;
while c̃j ⊕ c̃j+1 ∈MJ do

r ← r + 1;
j ← j + 1;

end
i← j + 1;
n← n+ r · (r − 1)/2;

end

end
return n.

Algorithm 2: Goal of the Algorithm is to count the number of collisions.

What is the total computational cost of this procedure? Given a set of n
ordered elements, the computational cost to count the number of pairs that
belong to the same coset ofMJ is well approximated by n look-ups table, since
one works only on consecutive elements. Using the merge sort algorithm to order
this set (which has a computational cost of O(n log n) memory access), the total
computational cost for the verifier is approximately of n·(1+log n) table look-ups.
In our case, since the verifier has to consider a single coset of DI of 232 elements
and to repeat this procedure four times (i.e. one for each MJ with |J | = 3),
the cost is well approximated by 4 · 232 · (1 + log 232) = 239 table look-ups, or
equivalently 232.4 five-round encryptions of AES (using the approximation 20
table look-ups ≈ 1 round of AES).

Practical Tests on small-scale AES. All the attacks that we are going to
present have been practically tested on small-scale AES. The practical results
are in accordance with the theoretical ones.

H.2 Multiple-of-n Key-Recovery Attack

Consider 216 plaintexts in the same coset of DI ∩Cj for |j| = 1 and |I| = 2 - e.g.
D0,1∩C0, and the corresponding ciphertexts after 4-round. As proved in [21], the
number of different pairs of ciphertexts that belong to the same coset ofMK for
|K| = 3 is always a multiple of 2 (or 4 if |I| = 3), while it can take any possible
value for a random permutation.
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The idea of the attack is to guess 4 bytes of the key (i.e. the j-th column),
to partially decrypt DI ∩ Cj and to ask for the corresponding ciphertexts. Since
for a wrong key, the behavior is similar to the one of a random permutation -
the number of collisions is not a multiple of 2 with prob. 1, it is possible to filter
wrong keys and to find the right one.

What is the data complexity? Given a single coset of DI ∩Cj , the probability
that the number of collisions is a multiple of 2 is 1/2 for a wrong key. Thus, the
probability that a wrong key survives n tests is 2−n. Since there are 232 different
keys to test, using n ≥ 32 it is possible to filter all the wrong keys. Since a coset
of Dj contains 216 different cosets of DI ∩ Cj after one round, it follows that
232 chosen plaintexts in the same coset of Dj are sufficient to find one diagonal.
Using this strategy to find three diagonals of the key (one diagonal is found by
brute force), the data complexity is 233.6 chosen plaintexts.

Using Algorithm 2, the computational cost of the attack is well approximated
by the cost of the re-ordering step for each possible key. In particular, in order
to find one diagonal of the key, the cost can be approximated by 232 · 216 · (2 +
log 216) · (1 + 1/2 + 1/4 + 1/8 + ...) ' 253.1 table look-ups. Thus, the total cost
is 3 · 253.1 · (5 · 20)−1 + 232 ' 248 five-round encryption to find the entire key (by
assuming 20 table look-ups ≈ 1 encryption). The term 1+1/2+1/4+1/8+ ... is
due to the fact that after the 1st test only 1/2 of the possible keys survived, after
the 2nd test only 1/4 of the possible keys survived and so on. Indeed, note that
the number of collisions is a multiple of 2 only with probability 1/2. In other
words, after the 1st test one repeats the process for 232/2 ' 231 keys, after the
2nd test one repeats the process for 232/4 ' 230 keys and so on. This result has
been checked also by practical tests.

H.3 Truncated Diff. Attack based on the Mean

In this subsection, we exploit the fact the average number of collisions is (a little)
bigger for the right key than for a wrong guessed key, i.e. we propose the first
truncated differential attack on 5-round AES (that exploits a differential trail
with probability different from zero).

Consider 224 plaintexts in the same coset of DI ∩ Cj for |j| = 1 and |I| = 3
- e.g. D0,1,2 ∩ C0, and the corresponding ciphertexts after 4-round. As we have
just seen in Sect. 5, the average number of different pairs of ciphertexts that
belong to the same coset of MK for |K| = 3 is approximately 32 770.524 versus
32 767.998 in the random case. In other words, the probability that a pair of
ciphertexts belongs to the same coset of MK for |K| = 3 is 2−32 + 2−45.6625 for
AES versus 2−32 for the random case/wrong guessed key.

The idea of the attack is to guess 4 bytes of the key (i.e. the j-th diagonal), to
partially decrypt DI∩Cj and to ask for the corresponding ciphertexts. Exploiting
the previous property that holds on the ciphertexts, it is possible to filter wrong
keys and to find the right one. We expect that the number of collisions is bigger
for the right key of AES than for a wrong one. Indeed, if the key is wrong, then
the texts are distributed in several cosets of DI ∩Cj after one round (not in only
one), and one gets the same behavior that occurs for a random permutation. In

55



particular, we emphasize that our truncated differential distinguisher proposed
in this paper works if and only if one consider an entire initial coset of DI ∩ Cj .

What is the data complexity? To compute the data cost of the attack, we use
the same strategy proposed for the 5-round secret-key distinguisher. Assume that
the goal is to find the right key with probability bigger than 95%25, and assume
that the behavior for a wrong guessed key is the same of a random permutation.
Since one works on 4 bytes of the key, one has to use the secret-key distinguisher
4 · 232 = 234 different times. In other words, the data cost is given by formula
(11) where prob = 0.951/2

34

. It follows that for prand ' 2−30 − 3 · 2−63 and
pAES ' 2−30 + 2−43.6625, the number of different pairs that one needs to use in
order to set up the attack is n ≥ 259.43. Since each coset of DI ∩ Cj contains
approximately 247 different pairs after one round, one needs approximately 212.43

different initial cosets or approximately 234.43 chosen plaintexts in the same coset
of Dj in order to find one diagonal of the key. If two diagonals are found by brute
force, the cost to find the entire key is of 2 · 234.43 = 235.5 chosen plaintexts.

Using Algorithm 2, the computational cost of the attack is well approximated
by the cost of the re-ordering step for each possible key. In particular, in order to
find one diagonal, the cost can be approximated by 212.43 ·232 ·224 ·(2+log 224) '
273.1 table look-ups. Thus the total cost is 2 · 273.1 · (5 · 20)−1 + 264 ' 267.6 five-
round encryption to find the entire key (by assuming 20 table look-ups ≈ 1
encryption).

H.4 Truncated Diff. Attack based on the Variance

In this subsection, we exploit the fact the variance is higher for the right key
than for a wrong guessed key.

Consider 224 plaintexts in the same coset of DI ∩ Cj for |j| = 1 and |I| = 3
- e.g. D0,1,2 ∩ C0, and the corresponding ciphertexts after 4-round. What is the
variance of the number of collisions in the same coset ofMK for |K| = 3 after 4
rounds? To compute a good approximation of the variance, we re-use the same
calculation proposed in Sect. 6.2. For this reason, we refer to that section for all
the details and we give here only the final result.

Assume K fixed. For a wrong guessed key, the variance is well approximated
by

V arwrongKey = 223 · (224 − 1) · 2−32 · (1− 2−32) ' 215,

that is the standard deviation is equal to δwrongKey = 27.5. What about right
key guessed? Given 224 plaintexts, there are 3 · 223 · (28 − 1)2 = 240.58 different
pairs with one equal generating variable and 223 · (28 − 1)3 = 246.99 different
pairs with different generating variables. The variance is given by

V arrightKey = 42 · 244.99 · (2−32 − 2−45.6625) · (1− 2−32 + 2−45.6625)+

+ (29)2 · 230.58 · (2−32 − 2−45.6625) · (1− 2−32 + 2−45.6625) ' 217.8,

25 In other words, we assume that the maximum number of collisions occurs for the
right key with probability 95%.
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that is the standard deviation is equal to δrightKey = 28.9. This difference can
be exploited to find the right key. In order to derive concrete number for data
and computational complexity, as for the secrete-key distinguisher, we consider
the results on small-scale AES.

For small-scale AES - denoted in the following by symbol ?, consider as
before 212 plaintexts in the same coset of DI ∩ Cj for |j| = 1 and |I| = 3 and
assume K fixed. For a wrong guessed key, the variance is well approximated by

V ar?wrongKey = 211 · (212 − 1) · 2−16 · (1− 2−16) ' 27,

that is the standard deviation is equal to δ?wrongKey = 23.5. What about right

key guessed? Given 212 plaintexts, there are 3 · 211 · (24 − 1)2 = 220.4 different
pairs with one equal generating variable and 211 · (24−1)3 = 222.7 different pairs
with different generating variables. The variance is given by

V ar?rightKey = 42 · 220.7 · (2−16 − 2−24.67) · (1− 2−16 + 2−24.67)+

+ (25)2 · 215.4 · (2−16 − 2−24.67) · (1− 2−16 + 2−24.67) ' 210.1,

that is the standard deviation is equal to δ?rightKey = 25.05.
As for the secret-key distinguisher of Sect. 8.1, the ratio between the standard

deviation is similar for the small scale AES and full-size AES

28.9

27.5
≈ 2.75 ≈ 25.05

23.5
.

Thus, we use our results on small-scale AES to derive concrete numbers for the
full-size AES case. By practical tests, we have found that ≥ 28 initial cosets are
sufficient to have a good estimation of the variance/standard deviation. Since
for each initial coset it is possible to compute the number of collisions in MJ

for each J with |J | = 3, at least 26 initial cosets are largely sufficient to set
up the distinguisher. Due to the relation between small-scale AES and full-size
AES previously discussed, we claim that the data cost to distinguish to find one
diagonal of the key 232 chosen plaintexts in the same coset of Dj (observe that
after one round, it contains 4 · 28 different cosets of DI ∩ Cj). If two diagonals
are found by brute force, the total data cost is well approximated by 233 chosen
plaintexts.

The computational cost is well approximated by the cost to compute the
number of collisions for each possible key. Using Algorithm 2, the cost to find
one diagonal is well approximated by 232 ·4·26 ·224 ·(2+log 224) ' 268.7 table look-
ups, that is the total cost is well approximated by 2 · 268.7 · (100)−1 + 264 ' 264.6

five-round encryption to find the entire key by assuming 20 table look-ups ≈ 1
encryption.
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I Details of used S-Box

In this section, we recall the main information of the S-Box used in Sect. 10 to
test our theory.

Table 5. S-Box definitions. All the values in the table are exadecimal.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

AES S-Box (x) 6 B 5 4 2 E 7 A 9 D F C 3 1 0 8
PRINCE S-Box (x) B F 3 2 A C 9 1 6 7 8 0 E 5 D 4
KLEIN S-Box (x) 7 4 A 9 1 F B 0 C 3 2 6 8 E D 5

Midori SB0 S-Box(x) C A D 3 E B F 7 8 9 1 5 0 2 4 6
Midori SB1 S-Box(x) 1 0 5 3 E 2 F 7 D A 9 B C 8 4 6
PRESENT S-Box (x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

RECTANGLE S-Box (x) 6 5 C A 1 E 7 9 B 0 3 D 8 F 4 2
NOEKEON S-Box (x) 7 A 2 C 4 8 F 0 5 9 1 e 3 D B 6

PRIDE S-Box (x) 0 4 8 F 1 5 E 9 2 7 A C B D 6 3
Toy-6 S-Box(x) 1 3 6 4 2 5 9 A 0 F 7 E C B D 8
Toy-8 S-Box(x) 1 3 6 4 2 5 A C 0 F 7 8 E B D 9
Toy-10 S-Box(x) 6 4 C 5 0 7 2 E 1 F 3 D 8 A 9 B

In the following we recall the differential spectrum of the S-Box, that is
probability that given an arbitrary ∆I 6= 0 and ∆O 6= 0, the equation

S-Box(x⊕∆IN )⊕ S-Box(x) = ∆OUT

has n different solutions x (remember n is even).

AES-like cipher + S-Box 0 sol. 2 sol. 4 sol. 6 sol. 8 sol. 10 sol.
AES S-Box 8/15 6/15 1/15 0 0 0

PRINCE S-Box 8/15 6/15 1/15 0 0 0
KLEIN S-Box 8/15 6/15 1/15 0 0 0

MIDORI SB1 S-Box 8/15 6/15 1/15 0 0 0
MIDORI SB0 S-Box 43/75 24/75 8/75 0 0 0

PRESENT S-Box 43/75 24/75 8/75 0 0 0
RECTANGLE S-Box 43/75 24/75 8/75 0 0 0

NOEKEON S-Box 43/75 24/75 8/75 0 0 0
PRIDE S-Box 43/75 24/75 8/75 0 0 0
Toy-6 S-Box 125/225 81/225 18/225 1/225 0 0
Toy-8 S-Box 130/225 74/225 18/225 2/225 1/225 0
Toy-10 S-Box 140/225 60/225 17/225 7/225 0 1/225
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