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Abstract. Since the development of cryptanalysis of AES and AES-like constructions
in the late 1990s, the set of inputs (or a subset of it) which differ only in one diagonal
has special importance. It appears in various (truncated) differential, integral, and
impossible differential attacks, among others.
In this paper we present new techniques to analyze this special set of inputs, and report
on new properties. In cryptanalysis, statements about the probability distribution of
output differences are of interest. Until recently such statements were only possible
for up to 4 rounds of AES (many results since two decades), and the only property
described for 5 rounds is the multiple-of-8 property (Eurocrypt 2017). On the other
hand, our understanding of this property is far from complete: e.g. does this property
influence the average number of output pairs that lie in a particular subspace (i.e.
the mean) and/or other probabilistic parameters?
Here we answer these questions by considering more generally the probability distri-
bution of the number of different pairs of corresponding ciphertexts that lie in certain
subspaces after 5 rounds. The variance of such a distribution is shown to be higher
than for a random permutation, which immediately follows from the Eurocrypt 2017
result. Surprisingly, also the mean of the distribution is significantly different from
random, something which cannot be explained by the multiple-of-8 property. To show
this, a new approach is developed. For a rigorous proof of it, we need an APN-like
assumption on the S-Box which closely resembles the AES-Sbox.
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1 Introduction
Since its conception by Biham and Shamir [BS91] in their effort to break the Data
Encryption Standard (DES), differential cryptanalysis has been successfully applied in
many cases such that any modern cipher is expected to have strong security arguments
against this attack. Differential attacks exploit the fact that pairs of plaintexts with certain
differences yield other differences in the corresponding ciphertexts with a non-uniform
probability distribution. The methodology of differential cryptanalysis has been extended
several times with a number of attack vectors, most importantly truncated differentials
[Lai94, Knu95] – where only part of the difference between pairs of texts is considered,
impossible differentials [BBS99] – where differences with zero-probability are exploited,
and higher-order differentials [Lai94, Knu95].

AES (Advanced Encryption Standard) [DR02] is probably the most used and studied
block cipher. Any cryptanalytic improvement on this cipher should thus be a good indicator
of the novelty and quality of a new cryptanalytic technique. AES with its wide-trail strategy
was designed to withstand differential and linear cryptanalysis, so pure versions of these
techniques have limited applications in attacks. As is state of the art, truncated differential
distinguishers which are independent of the secret key – that exploit differences which
hold with probability different from 0 – can be set up for at most 3-round AES, while
impossible differential ones which are independent of the secret key can be set up for at
most 4-round AES.

Rigorous Analysis of the Probability Distribution of 5-round AES
Recently at Eurocrypt 2017, a new property which is independent of the secret key has
been found for 5-round AES [GRR17a]. By appropriate choices of a number of input pairs,
it is possible to make sure that the number of times that the difference of the resulting
output pairs lie in a particular subspace1 ID is always a multiple of 8. Such a distinguisher
– re-called in detail in Sect. 3 – has then been exploited in e.g. [Gra18] and [BDK+18] to
set up new competitive distinguishers and key-recovery attacks on round-reduced AES.
Meanwhile, at Asiacrypt 2017, Rønjom, Bardeh and Helleseth [RBH17] presented new
secret-key distinguishers for 3- to 6-round AES, which are based on the “yoyo-game”,
which means they require adaptively chosen ciphertexts in addition to chosen plaintexts.

Several open questions arise from the result provided in [GRR17a]: does this property
influence e.g. the average number of output pairs that lie in a particular subspace (i.e.
the mean)? Are other parameters (e.g. the variance, the skewness, ...) affected by the
multiple-of-8 property?

Systematization of Knowledge: Diagonal Set of Plaintexts & Probability Distribution
after 5-round AES. In this paper, given a diagonal set of plaintexts (that is, a set
of plaintexts with one active diagonal), we consider the probability distribution of the
corresponding number of pairs of ciphertexts that are equal in one fixed anti-diagonal after
5-round AES (without the final MixColumns operation) – equivalently, that belong to
the same coset of a particular subspace ID – denoted in the following as the “number of
collisions”.

While a lot is known about the properties of a diagonal set of plaintexts for up to
4-round AES, a complete analysis for 5 or more rounds AES is still missing. E.g. given
a diagonal set of plaintexts and the corresponding ciphertexts after 4 rounds, it is well
known that the XOR-sum of the ciphertexts is equal to zero – see integral cryptanalysis
[DKR97], or that each pair of ciphertexts cannot be equal in any of the four anti-diagonals

1A pair of texts has a certain difference if and only if the texts belong to the same coset of a particular
subspace X .
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Table 1: Expected properties of a diagonal set after 5-round encryption. Given a set of
232 chosen plaintexts all equal in three diagonals (that is, a diagonal set), we consider
the distribution of the number of different pairs of ciphertexts that are equal in one
anti-diagonal (equivalently, that lie in a particular subspace IDI for I ⊆ {0, 1, 2, 3} fixed
with |I| = 3 – as defined in Def. 5). Theoretical expected values for mean and variance of
these distributions are given in this table for 5-round AES and for a random permutation.
Practical results on AES are close and are discussed in Sect. 8.

Random Permutation 5-round AES
Mean (Theorem 2) 2 147 483 647.5 ≈ 231 2 147 484 685.6 ≈ 231 + 210

Variance (Theorem 2) 2 147 483 647 ≈ 231 76 842 293 834.905 ≈ 236.161

Multiple-of-8 [GRR17a] 3

(as shown by Biham and Keller in [BK01]). For the first time, here we perform and propose
a precise theoretical differential analysis of such distribution after 5-round AES (with an
APN-like assumption on the S-Box which closely resembles the AES-Sbox), supported by
practical implementations and verification. A numerical summary is given in Table 1.

Our Contribution: Probability Distribution for 5-round AES
Given 232 chosen plaintexts with an active diagonal, we present a complete – and practical
verified – analysis about the theoretical probability distribution of the number of pairs
of corresponding ciphertexts that are equal in one fixed anti-diagonal after 5-round AES
(without the final MixColumns operation). Compared to the case in which the ciphertexts
are generated by permutation drawn at random (or for simplicity, a pseudo-random
permutation), our results can be summarized as following:

Mean of 5-round AES. Firstly, by appropriate choice of 232 plaintexts in a diagonal
space D, we prove for the first time that the number of times that the resulting output pairs
are equal in one fixed anti-diagonal (equivalently, the number of times that the difference
of the resulting output pairs lie in a particular subspace ID) is (a little) bigger for 5-round
AES than for a random permutation, independently of the secret key. A complete proof of
this result – under an “APN-like” assumption on the S-Box which closely resembles the
AES S-Box – can be found in Sect. 5.

An important technical contribution of this result is the new and original way in which
such numbers are derived. To the best of our knowledge, such an approach to compute
the probabilities exploited by our distinguisher is new in the literature and it is general
enough to be applied to any AES like-cipher, providing new possible future results about
truncated differential distinguishers.

Variance of 5-round AES. As a second contribution, we theoretically compute the variance
of the probability distribution just defined, and we show that it is higher (by a factor of
approximately 36) for 5-round AES than for a random permutation. As showed in Sect.
6.1, such property – whose proof is based on the “multiple-of-8” result [GRR17a] proposed
at Eurocrypt 2017 – is independent of the secret key.

Probability Distribution of 5-round AES. By combining the multiple-of-8 property
presented in [GRR17a], mixture differential cryptanalysis [Gra18] and the results just
mentioned about the mean and the variance, in Sect. 4 we are able – for the first time –
to precisely formulate the probability distribution for 5-round AES. In particular, we show
that – given 232 plaintexts with one active diagonal – the probability distribution of the
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number of different pairs of ciphertexts which are equal in one fixed anti-diagonal after
5-round AES (without the final MixColumns operation) is well described by a sum of
independent binomial distributions B(n, p), that is

5-AES = 23 × B(n3, p3) + 210 × B(n10, p10) + 217 × B(n17, p17)

where the exact values of n3, n10, n17 and p3, p10, p17 are provided in the following.

Relations between Multiple-of-8, Mean and Variance Properties

What is the relation between the multiple-of-8 property and the results just given about
the mean and the variance of the probability distribution of 5-round AES? As explained
in details in Sect. 7, there is no “obvious relation” between the multiple-of-8 property and
the result on the average number of collisions, while the multiple-of-8 property and the
variance result are strictly related.

In particular, the multiple-of-8 property and the result on the average number of
collisions are derived from (completely) different considerations and argumentation. As we
are going to show:

• the fact that the number of collisions is always a multiple of 8 for AES does not
imply that such number is on average higher/equal/lower for AES;

• the fact that the number of collisions is on average higher for AES does not imply
that it is a multiple-of-8.

New Truncated Differential Distinguishers for 5-round AES

As a concrete example of possible (practical) application of these results, in Sect. 9 we
formulate

• the first truncated diff. distinguisher for 5-round AES based on the mean

• the first truncated diff. distinguisher for 5-round AES based on the variance

which are both independent of the secret-key. To the best of our knowledge, this is the first
time that a differential distinguisher exploits the variance parameter – instead of the mean
value (usually used in the literature) – to distinguish a cipher from a random permutation.
More details about their data and computational costs can be found in the following.

Before going on, it is important to remark a crucial difference between our distinguishers
and the others currently present in the literature for up to 4-round AES. Truncated
differential distinguishers in the literature consider the probability that, given random
pairs of plaintexts, the corresponding pairs of ciphertexts are equal or not in certain
anti-diagonal(s). In order to set up our results up to 5-round AES, the price that has to
be paid is less freedom in the input set. That is, in our case one must consider a particular
set of input plaintexts – that is, an entire coset of a particular diagonal subspace rather
than random pairs of texts – to appreciate a difference in the probability of the previous
event. More details are given in the following.

Open Problems as Future Work

As already mentioned, the result regarding the average number of pairs of ciphertexts
that are equal in one fixed anti-diagonal is theoretically computed under an “APN-like”
assumption on the S-Box, which closely resembles the AES S-Box. Even if this assumption
is restrictive, it resembles criteria used to design an S-Box which is strong against differential
cryptanalysis. Hence, many ciphers in the literature are built using S-Boxes which (are
close to) satisfy it. Nevertheless, in Sect. 10 we start an analysis regarding the influence
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of the S-Box on the average number of pairs of ciphertexts that satisfy the previous
requirement. Due to the results of our practical tests on small-scale AES-like ciphers, we
conjecture a possible link between the average number of collisions and some particular
properties of the S-Box (described in the following). The problem to better understand
and (if possible) formally prove such a link is open for future investigation.

Besides the question just mentioned, other open problems that arise from our work
are listed in Sect. 11, and they mainly regard (1st) the possibility to set up secret-key
distinguishers based on the skewness and (2nd) the possibility to set up a truncated
diff. distinguisher on 6-round AES by extending the strategy presented in this paper for
5-round.

2 Preliminary

2.1 Brief Description of AES
The Advanced Encryption Standard [DR02] is a Substitution-Permutation network that
supports key size of 128, 192 and 256 bits. The 128-bit plaintext initializes the internal
state as a 4×4 matrix of bytes as values in the finite field F256, defined using the irreducible
polynomial X8 + X4 + X3 + X + 1. Depending on the version of AES, Nr rounds are
applied to the state: Nr = 10 for AES-128, Nr = 12 for AES-192 and Nr = 14 for AES-256.
An AES round applies four operations to the state matrix:

• SubBytes (S-Box) - applying the same 8-bit to 8-bit invertible S-Box 16 times in
parallel on each byte of the state (provides non-linearity in the cipher);

• ShiftRows (SR) - cyclic shift of each row to the left;

• MixColumns (MC) - multiplication of each column by a constant 4× 4 invertible
matrix (MC and SR provide diffusion in the cipher);

• AddRoundKey (ARK) - XORing the state with a 128-bit subkey.

One round of AES can be described as R(x) = K ⊕MC ◦ SR ◦ S-Box(x). In the first
round an additional AddRoundKey operation (using a whitening key) is applied, and in
the last round the MixColumns operation is omitted.

The Notation Used in the Paper. Let x denote a plaintext, a ciphertext, an intermediate
state or a key. Then xi,j with i, j ∈ {0, ..., 3} denotes the byte in the row i and in the
column j. We denote by R one round2 of AES, while we denote r rounds of AES by Rr
(where we use the notation Rrf in the case in which the last MixColumns operation is
omitted).

We also define the diagonal and the anti-diagonal of a text as following. The i-th
diagonal of a 4 × 4 matrix A is defined as the elements that lie on row r and column c
such that r − c = i mod 4. The i-th anti-diagonal of a 4× 4 matrix A is defined as the
elements that lie on row r and column c such that r + c = i mod 4.

Finally, in the paper we often use the term “partial collision” (or “collision”) when
two texts are equal in certain bytes. We recall that this is equivalent to the fact that they
belong to the same coset of a given subspace X . For this reason, we sometimes use the
subspace notation defined in [GRR17b] (briefly recalled in App. A) in order to present
our results.

2Sometimes we use the notation RK instead of R to highlight the round key K.
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2.2 Properties of an S-Box
Given a bijective S-Box function on F2n , let ∆I ,∆O ∈ F2n . As we are going to show, some
results of this paper depend on the probability distribution of the number of solutions of
the following equation

S-Box(x⊕∆I)⊕ S-Box(x) = ∆O. (1)
For this reason, we first recall some properties of the S-Box function.

In the following, we limit ourselves to consider the cases ∆I 6= 0 and ∆O 6= 0 – if
∆O = 0, the equation admits solution if and only if ∆I = 0 (the S-Box is bijective).
Moreover, we denote by n∆I ,∆O

the number of solutions x of the previous equation.

Mean Value. Independently of the details of the S-Box, the mean value3 (or the
average value) of n∆I ,∆O

is equal to

E[n∆I ,∆O
] = 2n

2n − 1 ' 1 + 2−n + 2−2n + ... (2)

(where E[n∆I ,∆O
] ' 1 + 2−7.995 for the case n = 8). Indeed, observe that for each x and

for each ∆I 6= 0 there exists ∆O 6= 0 (since S-Box is bijective) that satisfies eq. (1). Since
there are 2n different x and 2n − 1 different values of ∆I and ∆O, the average number of
solutions is 2n·(2n−1)

(2n−1)2 = 2n
(2n−1) independently of the details of the (bijective) S-Box.

Variance. In the following, we denote by V ar(n∆I ,∆O
) the variance4 of n∆I ,∆O

. This
quantity depends on the details of the S-Box, in particular on the distribution of n∆I ,∆O

with respect to ∆I and ∆O. For the AES S-Box case, for each ∆I 6= 0 there are 128 values
of ∆O 6= 0 for which equation (1) has no solution, 126 values of ∆O 6= 0 for which equation
(1) has 2 solutions (x̂ is a solution iff x̂⊕∆I is a solution) and finally 1 value of ∆O 6= 0
for which equation (1) has 4 solutions. The variance for the AES S-Box is so equal to
V arAES(n∆I ,∆O

) = 22 · 126
255 + 42 · 1

255 −
( 256

255
)2 = 67 064

65 025 .

Maximum Differential Probability. The Maximum Differential Probability DPmax
of an S-Box is defined as

DPmax = max
∆I 6=0,∆O

n∆I ,∆O

2n . (3)

Since all entries of the differential distribution table are even, DPmax is always bigger than
or equal to 2−n+1 (i.e. DPmax ≥ 2−n+1). Permutations with DPmax = 2−n+1 are called
Almost Perfect Nonlinear (APN).

“Homogeneous” S-Box. Finally, given ∆I 6= 0 (resp. ∆O 6= 0), consider the
probability distribution of n∆I ,∆O

w.r.t. ∆O 6= 0 (resp. ∆I 6= 0). In the follow-up, we say
that the S-Box is (differential) “homogeneous” if such distribution is independent of ∆I

(resp. ∆O).
Just to give some concrete examples and w.r.t. this definition5, the AES S-Box is

differential “homogeneous” since for each ∆I 6= 0 (fixed), Prob(n∆I ,∆O
= 2) = 126

255 and
Prob(n∆I ,∆O

= 4) = 1
255 . The PRINCE S-Box (recalled in App. G) is instead not differ-

ential “homogeneous”, since Prob(n∆I ,∆O
= 4) depends on ∆I 6= 0: e.g. Prob(n∆I ,∆O

=
4) = 0 if ∆I = 0xF (i.e. n0xF,∆O

6= 4 for all ∆O) while Prob(n∆I ,∆O
= 4) = 2

15 if
∆I = 0xA (two values of ∆O satisfy n0xA,∆O

= 4).
3In the case of a discrete probability distribution of a random variable X, the mean E[X] ≡ µ is defined

as µ =
∑

x ·P (x), i.e. the sum over every possible value x weighted by the probability of that value P (x).
4In the case of a discrete probability distribution of a random variable X, the variance V ar(X) ≡ σ2 is

defined as σ2 = E[(X − E[X])2 = E[X2]− E[X]2.
5We remark that this property is different from the “uniform” one introduced e.g. in [Nyb93]. In

particular, an S-Box is differentially δ-uniform if the number of solutions n∆I ,∆O of (1) satisfies n∆I ,∆O ≤ δ
for each ∆I 6= 0 and ∆O 6= 0.
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3 “Multiple-of-8” Property for 5-round AES
As already recalled in the introduction, the first secret-key distinguisher independent of
the secret-key for 5-round AES – called “multiple-of-8” property [GRR17a] – has been
presented at Eurocrypt 2017. In there, authors show that given a set of plaintexts with
1 ≤ d ≤ 3 active diagonal(s), the corresponding ciphertexts after 5-round AES satisfy
a particular property: the number of different pairs of ciphertexts which are equal in
1 ≤ a ≤ 3 fixed anti-diagonal(s) (assuming the final MixColumns operation has been
omitted) is always a multiple of 8 independently of the secret key.

Definition 1. Given two different texts t1, t2 ∈ F4×4
2b , we say that t1 ≤ t2 if t1 = t2 or if

there exists i, j ∈ {0, 1, 2, 3} s.t. (1st) t1k,l = t2k,l for all k, l ∈ {0, 1, 2, 3} with k+4·l < i+4·j
and (2nd) t1i,j < t2i,j . Moreover, we say that t1 < t2 if t1 ≤ t2 (w.r.t. the previous definition)
and t1 6= t2.

Theorem 1 ([GRR17a]). Given 232·d plaintexts with 1 ≤ d ≤ 3 active diagonals (equiva-
lently, in the same coset of a diagonal subspace DI for a certain I ⊆ {0, 1, 2, 3} with |I| = d),
consider corresponding ciphertexts after 5 rounds, that is (pi, ci) for i = 0, ..., 232·|I| − 1
where ci = R5(pi). Assuming the final MixColumns operation is omitted, the number n of
different pairs of ciphertexts (ci, cj) for ci < cj that are equal in 1 ≤ a ≤ 3 anti-diagonals
(equivalently, that belong to the same coset of a subspace IDJ for a certain J ⊆ {0, 1, 2, 3}
with |J | = 4− a)

n := |{(pi, ci), (pj , cj) | ∀pi, pj ∈ DI ⊕ a, pi < pj and ci ⊕ cj ∈ IDJ}|. (4)

is always a multiple of 8, independently of the secret key, of the details of the S-Box and
of the MixColumns matrix.

We refer to [GRR17a, Gra18] for a detailed proof (see also [GRR17b] and App. A for a
formal definition of the subspaces DI , CI , IDI ,MI ⊆ F4×4

28 ), and we limit ourselves here to
recall and highlight the main concepts that are useful for the follow-up. For completeness,
we mention that a re-visitation of such proof has been recently proposed in [BCC19], where
authors show that the above property is an immediate consequences of an equivalence
relation on the input pairs, under which the difference at the output of the round function
is invariant. In there, authors also prove that the branch number of the linear layer does
not influence the validity of the multiple-of-8 property.

Idea of the Proof. First of all, a set of plaintexts with d active diagonals (i.e. a coset of
DI) is always mapped into a set of texts with d active columns (i.e. a coset of CI) after
one round, and in a coset of a mixed spaceMI after two rounds, e.g.:

A C C C
C A C C
C C A C
C C C A


︸ ︷︷ ︸

≡DI⊕δ (diagonal subspace)

R(·)−−−−→
prob. 1


A C C C
A C C C
A C C C
A C C C


︸ ︷︷ ︸

≡CI⊕γ (column subspace)

R(·)−−−−→
prob. 1

MC ×


A C C C
C C C A
C C A C
C A C C


︸ ︷︷ ︸

≡MC(IDI)⊕ω≡MI⊕ω (mixed subspace)

where A and C denote respectively an active byte and a constant one. In a more compact
way (see [GRR17b] and App. A for details):

R2(DI ⊕ δ) = R(CI ⊕ γ) = MC(IDI)⊕ ω ≡MI ⊕ ω,

which implies

DI ⊕ δ
R(·)−−−−→

prob. 1
CI ⊕ γ

R2(·)−−−→ DJ ⊕ δ′
R2
f (·)

−−−−→
prob. 1

IDJ ⊕ ω′.
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Due to the 1-/2-round truncated diff. with prob. 1, one can focus only on the two central
rounds CI ⊕γ → DJ ⊕ δ′ and prove a result equivalent to Theorem 1: given 232·d plaintexts
with 1 ≤ d ≤ 3 active column(s), the idea is to prove that the number of different pairs of
texts which are equal in 1 ≤ a ≤ 3 diagonal(s) after 2 rounds (equivalently, that are in the
same coset of a diagonal subspace DJ with |J | = 4− a) is always a multiple of 8.

To do this, the idea is to show that, given p1 and p2 in CI ⊕ γ as before, they are equal
in 1 ≤ a ≤ 3 diagonal(s) after 2 rounds if and only if there exist other related6 pair of
plaintexts s1 and s2 in CI ⊕ γ that are equal in (the same) a diagonal(s) after 2 rounds,
that is:

R2(p1)⊕R2(p2) ∈ DJ iff R2(s1)⊕R2(s2) ∈ DJ . (5)
Using the “super-Sbox” notation

super-Sbox(·) = S-Box ◦ARK ◦MC ◦ S-Box(·)

and since 2-round AES can be rewritten as

R2(·) = ARK ◦MC ◦ SR ◦ super-Sbox ◦ SR(·),

note that the result (5) is immediately verified if one proves that R2(p1) ⊕ R2(p2) =
R2(s1)⊕R2(s2), or equivalently

super-Sbox(p̃1)⊕ super-Sbox(p̃2) = super-Sbox(s1)⊕ super-Sbox(s2).

For simplicity, we limit ourselves to give all the details for the case d = |I| = 1 – the
proof for the other cases is analogous. Consider two elements p̃1 = SR(p1) and p̃2 = SR(p2)
that differ in one anti-diagonal (equivalently, p1 and p2 differ in one column), i.e. that are
in the same coset of SR(CI)⊕ a ≡ IDI ⊕ a for a ∈ ID⊥I . Since p̃1 and p̃2 differ in only
one anti-diagonal, there exist xj0, x

j
1, x

j
2, x

j
3 ∈ F28 for j = 1, 2 such that:

p̃1 = a⊕


x1

0 0 0 0
0 0 0 x1

1
0 0 x1

2 0
0 x1

3 0 0

 , p̃2 = a⊕


x2

0 0 0 0
0 0 0 x2

1
0 0 x2

2 0
0 x2

3 0 0

 .
For the follow-up, we say that p̃j is “generated” by the variables (xj0, x

j
1, x

j
2, x

j
3), that is

p̃j ≡ (xj0, x
j
1, x

j
2, x

j
3) = a⊕

3⊕
i=0

xji · ei,−i mod 4.

Let Sp̃1,p̃2 be the set of pairs of texts in IDI ⊕ a obtained by swapping the generating
variables of p̃1 and p̃2. More formally, let Φ ⊆ {0, 1, 2, 3} s.t.

∀i ∈ Φ : x1
i = x2

i and ∀i /∈ Φ : x1
i 6= x2

i .

Given p̃1 and p̃2 as before, the set Sp̃1,p̃2 contains all 28·|Φ|+(3−|Φ|) = 23+7·|Φ| pairs of texts
(s1, s2) for all Ψ ⊆ {0, 1, 2, 3} and for all α0, ..., α|Φ| ∈ F28 s.t.

s1 = a⊕
⊕

i∈{0,1,2,3}\Φ

{[
x1
i · δi(Ψ)⊕ x2

i · (1− δi(Ψ))
]
·ei,−i mod 4

}
⊕
⊕
j∈Φ

αj · ej,−j mod 4

s2 = a⊕
⊕

i∈{0,1,2,3}\Φ

{[
x2
i · δi(Ψ)⊕ x1

i · (1− δi(Ψ))
]
·ei,−i mod 4

}
⊕
⊕
j∈Φ

αj · ej,−j mod 4

(6)
6As shown in [Gra18], the pairs of texts (p1, p2) and (s1, s2) are not independent, in the sense that

they share the same generating variables.
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where δx(A) is the Dirac measure defined as

δx(A) =
{

1 if x ∈ A
0 if x /∈ A

As shown in details in [GRR17a, Gra18], since each column of p̃1 and p̃2 depends on
different and independent variables, since the super-Sbox works independently on each
column and since the XOR-sum is commutative, it follows that

∀s1, s2 ∈ Sp̃1,p̃2 : super-Sbox(p̃1)⊕super-Sbox(p̃2) = super-Sbox(s1)⊕super-Sbox(s2).

Finally, since the cardinality of each set Sp̃1,p̃2 is always a multiple of 8, it follows that the
number of collisions must be a multiple of 8.

Open Problems: Starting Point of Our Work

As already mentioned in the introduction, several open questions arise from the result
provided in [GRR17a]. In particular, given a set of 232·d plaintexts with 1 ≤ d ≤ 3 active
diagonal(s) (eq., in the same coset of DI for I ⊆ {0, 1, 2, 3} with d = |I|), consider the
probability distribution of the number of pairs of ciphertexts which are equal in 1 ≤ a ≤ 3
fixed anti-diagonal(s) (assuming the final MixColumns operation has been omitted):

• is it possible to say something about the mean, the variance and the skewness of
this distribution?

• does the multiple-of-8 property influence e.g. the average number of output pairs that
lie in a particular subspace (i.e. the mean)? Are other parameters (e.g. the variance,
the skewness, ...) affected by the multiple-of-8 property?

In the following, we (partially) answer these questions.

4 Probability Distribution for 5-round AES
Given a set of 232 plaintexts with one active diagonal, the probability distribution of
the number of pairs of ciphertexts which are equal in one fixed anti-diagonal (assuming
the final MixColumns operation is omitted) after 5-round AES is given in the following
Theorem.

Theorem 2. Consider an AES-like cipher that works with texts in F4×4
28 , such that the

MixColumns matrix is an MDS matrix7 and s.t. the solutions of eq. (1) are uniformly
distributed for each input/output difference ∆I 6= 0 and ∆O 6= 0.

Consider 232 plaintexts pi for i = 0, 1, ..., 232 − 1 with one active diagonal (equivalently,
in a coset of a diagonal subspace Di for i ∈ {0, 1, 2, 3}), and the corresponding ciphertexts
after 5 rounds without the final MixColumns operation, that is ci = R5(pi). The probability
distribution of the number of different pairs of ciphertexts (ci, cj) with ci < cj that are equal
in 1 anti-diagonal (equivalently, that belong to the same coset of IDJ for J ⊆ {0, 1, 2, 3}
fixed with |J | = 3) – denoted in the following by 5-AES – is described by

5-AES = 23 ×X3 + 210 ×X10 + 217 ×X17 (7)

where
∀i = 3, 10, 17 : Xi ∼ B(ni, pi) (8)

7A matrix M ∈ Fn×n2b is called Maximum Distance Separable (MDS) matrix iff it has branch number
B(M) equal to B(M) = n+ 1. The branch number is defined as B(M) = min0 6=x∈Fn

2b
{wt(x) +wt(M(x))}

where wt is the hamming weight. Similarly, a n× n matrix is “almost MDS” if its branch number is n.
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are binomial distributions s.t.

n3 = 228 · (28 − 1)4 p3 = 2−32 + 2−53.983;
n10 = 223 · (28 − 1)3 p10 = 2−32 − 2−45.989;
n17 = 3 · 215 · (28 − 1)2 p17 = 2−32 + 2−37.986.

In particular, the probability distribution of the number of different pairs of ciphertexts
that are equal in one fixed anti-diagonal has mean value µ = 2 147 484 685.6 and standard
deviation σ = 277 204.426.

For completeness, we mention that the same result holds also in the decryption direction
(that is, using chosen ciphertexts instead of chosen plaintexts).

Lemma 1. Consider an AES-like cipher that works with texts in F4×4
28 and for which the

assumptions of Theorem 2 hold.
Consider 232 plaintexts pi for i = 0, 1, ..., 232 − 1 with one active diagonal (equivalently,

in a coset of a diagonal space Di for i ∈ {0, 1, 2, 3}), and the corresponding ciphertexts
after 5 rounds without the final MixColumns operation, that is ci = R5(pi). The probability
to have n ∈ N different pairs of ciphertexts (ci, cj) with ci < cj that are equal in one fixed
anti-diagonal (equivalently, that belong to the same coset of IDJ for J ⊆ {0, 1, 2, 3} fixed
with |J | = 3) is given by:

Prob(n) =



0 if n mod 8 6= 0

∑
(k3,k10,k17)∈Kn

∏i∈{3,10,17}

(
ni
ki

)
· (pi)ki · (1− pi)ni−ki︸ ︷︷ ︸
∼B(ni,pi)

 otherwise

where

Kn =
{

(k3, k10, k17) ∈ N× N× N
∣∣ 0 ≤ ki ≤ ni and 23 · k3 + 210 · k10 + 217 · k17 = n

}
and where ni and pi for i = 3, 10, 17 are given in Theorem 2.

Note that Prob(n >
[
23 · n3 + 210 · n10 + 217 · n17]

)
= 0.

4.1 Initial Considerations
In order to prove the results of Theorem 2 and Lemma 1, we start by formally computing
the values ni for i = 3, 10, 17 and by proving the result given in (7) - (8). In the next
sections, we formally compute the probabilities pi for i = 3, 10, 17, the value of the mean
and the variance, and the probability given in Lemma 1.

Multiple-of-8 Property & Mixture Differential Cryptanalysis. First of all, given 232

plaintexts with one active diagonal, the corresponding pairs of ciphertexts are not indepen-
dent/unrelated. Due to the multiple-of-8 property [GRR17a] and of mixture differential
cryptanalysis [Gra18], these pairs of texts can be divided in sets S defined as in (6) s.t.

• 23 × n3 sets have cardinality 8 – each one of these sets contains pair of plaintexts for
which the generating variables are all different after 1-round encryption;

• 210× n10 sets have cardinality 210 – each one of these sets contains pair of plaintexts
for which one out of the four generating variables is equal (and three are different)
after 1-round encryption;
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• 217× n17 sets have cardinality 217 – each one of these sets contains pair of plaintexts
for which two out of the four generating variables are equal (and two are different)
after 1-round encryption;

• 224× n24 sets have cardinality 224 – each one of these sets contains pair of plaintexts
for which three out of the four generating variables are equal (and one is different)
after 1-round encryption.

The values of n3, n10, n17, n24 are computed in details in the next paragraph. All these
sets S just given have particular properties, namely:

1. the two ciphertexts of pairs in the same set are either all equal or all different in
1 ≤ a ≤ 3 anti-diagonals (equivalently, either belong or not belong to the same coset
of IDJ where J ⊆ {0, 1, 2, 3} where a = 4− |J |);

2. pairs of texts of different sets are independent (in the sense that pair of texts of
different sets do not satisfy the property just given for the case of pairs of texts that
belong to the same set S ).

In other words, given a set of pairs just defined, it is not possible that some pairs of
ciphertexts in such a set are equal in 1 ≤ a ≤ 3 anti-diagonals (i.e. belong to the same
coset of IDJ ) after 5 rounds, while other pairs of ciphertexts in the same set are different
in those a anti-diagonals. We refer to [Gra18] for more details about this fact (exploited
to set up the Mixture Differential distinguisher).

About the Values of n3, n10, n17. Given a set of 232 chosen texts with one active
column8, let’s first compute the number of different pairs of texts with v equal generating
variables for 0 ≤ v ≤ 3. Note that given such a set of chosen texts, it is possible to
construct

(232

2
)

= 231 · (232 − 1) ' 263 different pairs. Among them, the number of pairs of
texts with 0 ≤ v ≤ 3 equal generating variables (and 4− v different generating variables)
after one round is given by (

4
v

)
· 231 · (28 − 1)4−v. (9)

Indeed, note that if v variables are equal for the two texts of the given pair, then these
variables can take (28)v different values. For each one of the remaining 4− v variables, the
variables must be different for the two texts. Thus, these 4− v variables can take exactly[
28 · (28 − 1)

]4−v
/2 different values. The result follows immediately since there are

(4
v

)
different combinations of v variables.

Consider now separately the sets of pairs of texts with “no equal generating variables”
(namely, v = 0), the set of of pairs of texts with “one equal (and three different) generating
variable(s)” (namely, v = 1) and finally the set of of pairs of texts with “two equal (and two
different) generating variable” (namely, v = 2). It follows that the number 27·v+3 × n7·v+3
of sets S of pairs of texts with v equal generating variables for v = 0, 1, 2, 3 satisfies

27·v+3 × n7·v+3 =
(

4
v

)
· 231 · (28 − 1)4−v︸ ︷︷ ︸

≡(9)

which implies

n7·v+3 = 1
27·v+3 ×

(
4
v

)
· 231 · (28 − 1)4−v. (10)

The values of n3, n10, n17 – which correspond respectively to v = 0, 1 and 2 – are simple
obtained exploiting the previous formula.

8Remember that one active diagonal is mapped to one active column after 1-round AES encryption.
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About Binomial Distributions Xi ∼ B(ni, pi) for i = 3, 10, 17. Before going on, we
remark that if three out of the four generating variables of the plaintexts are equal after 1-
round encryption, then the corresponding ciphertexts cannot be equal in any anti-diagonal
(due to e.g. the impossible diff. trail on 4-round AES given in Theorem 5 – App. A).

Due to the previous facts, it follows that the probability of the event “n = 8 · n′ pairs
of ciphertexts equal in one fixed anti-diagonal” for n′ ∈ N – equivalently, “n = 8 · n′
collisions” in a coset of IDJ for J ⊆ {0, 1, 2, 3} with |J | = 3 – corresponds to the sum
of the probabilities to have “23 · k3 collisions in the first set and 210 · k10 collisions in
the second set and 217 · k17 collisions in the third set” for each k3, k10, k17 such that
23 · k3 + 210 · k10 + 217 · k17 = n.

Moreover, note that each one of these (independent) events is well characterized by a
binomial distribution9. By definition, a binomial distribution with parameters n and p is the
discrete probability distribution of the number of successes in a sequence of n independent
yes/no experiments, each of which yields success with probability p. In our case, given n
pairs of texts, each one of them satisfies or not the above property/requirement with the
same probability p.

Due to all these initial considerations, it follows that the distribution 5-AES of the
number of collisions for the AES case is given by

5-AES = 23 ×X3 + 210 ×X10 + 217 ×X17

where Xi ∼ B(ni, pi) for i = 3, 10, 17 are binomial distributions.

4.2 About the “Uniform Distribution of Solutions of eq. (1)”
Before going on, we discuss the assumptions of the Theorem, focusing on the one related to
the properties/details of the S-Box. The fact that “the solutions of eq. (1) are uniformly
distributed for each ∆I 6= 0 and ∆O 6= 0” basically corresponds of an S-Box that satisfies
the following properties: (1st) it is “homogeneous” (see Sect. 2.2 for a detailed definition)
and (2nd) its V ar(n∆I ,∆O

) is as “low” as possible. This is close to being true if the S-Box
is APN, or if the SBox is “close" to be APN. Note that even if the variance V ar(n∆I ,∆O

)
is related “in some sense” to DPmax, S-Boxes with equal DPmax can have very different
variance. Moreover, the variance of an S-Box S1 can be bigger than the corresponding
variance of an S-Box S2 even if DPmax of S1 is lower than DPmax of S2 (see Table 3 in
Sect. 10 for concrete examples).

Although much is known for (bijective) APN permutations in odd dimension, currently
only little is known for the case of even dimension and what is known relies heavily on
computer checking. In particular, there is no APN permutation of dimension 4 [LP07],
while there is at least one APN permutation, up to equivalence, of dimension 6 – called the
Dillon’s permutation [BDMW10]. The question of finding an APN bijective (n, n)-function
for even n ≥ 8 is still open.

As a result, in the case of dimensions equal to a power of 2 (e.g. F24 or F28), the only
(known) S-Box that (approximately) matches the assumptions of the Theorem in dimensions
4 or 8 is the one generated by the multiplicative-inverse permutation unless affine equivalence
relations10, as for example the AES S-Box, which is not APN but differentially 4-uniform
[Nyb91] (e.g. note that the variance of the AES S-Box is 67 064/65 025 vs 64 004/65 025 of
an APN S-Box). As we are going to show, our practical results on small-scale AES (for

9We remember that the mean µ and the variance σ2 of a binomial distribution B(n, p) are respectively
given by µ = n · p and σ2 = n · p · (1− p).

10Variance, homogeneous differential property and DPmax of an S-Box S remain unchanged if affine
transformations are applied in the domain or co-domain of S. Thus, consider two S-Boxes S,S′ : Fn2 → Fn2 .
Let A,B ∈ Fn×n2 be two invertible n × n matrices and a, b ∈ Fn2 . S and S′ are affine equivalent iff
S′(x) = B · [S(A · x+ a)] + b ∀x ∈ Fn2 .
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Figure 1: Comparison between the theoretical probability distribution of the number of
collisions between 5-round AES (approximated – only here – by a normal distribution) and
a random permutation.

which the S-Box has the same property as the full-size AES one) are very close to the one
predicted by the previous Theorem.

We remark that even if the assumptions on the S-Box of Theorem 2 are restrictive, they
match criteria used to design an S-Box which is strong against differential cryptanalysis.
As a result, many ciphers in the literature are built using S-Boxes which (are close to)
satisfy the assumptions of Theorem 2.

Finally, we emphasize that if the S-Box does not satisfy the required properties related
to the assumption of the Theorem, then the number of collisions can be different from
the one previously given. To be more concrete, in Sect. 10 we provide several practical
examples of the dependency of the number of collisions for small-scale AES-like ciphers
w.r.t. the properties of the S-Box, and we provide theoretical argumentation to explain
the influence of the S-Box. In the case in which the assumption about the S-Box is not
fulfilled, it turns out that also the details of the MixColumns matrix can influence the
average number of collisions.

4.3 Comparison between the Prob. Distribution of 5-round AES and
of a Random Permutation

The previous results regarding the probability distribution for 5-round AES are not only
of theoretically interest. As we are going to show, they can also be exploited in order to
set up new truncated differential distinguishers for 5-round AES, which are independent
of the secret-key. Thus, consider 232 plaintexts in the same coset of a diagonal subspace
Di, and the corresponding (cipher)texts generated by a random permutation Π(·) (or by
an ideal cipher). What is the probability distribution of the number of different pairs of
(cipher)texts generated by a random permutation (or by an ideal cipher) Π(·) which are
equal in one fixed anti-diagonal (assuming the final MixColumns operation is omitted)?

Proposition 1. Consider 232 plaintexts pi for i = 0, 1, ..., 232− 1 with one active diagonal
(equivalently, a coset of a diagonal space Di for i ∈ {0, 1, 2, 3}), and the corresponding
(cipher)texts generated by a random permutation Π, that is ci = Π(pi). The probability
distribution of the number of different pairs of ciphertexts (ci, cj) with ci < cj that are equal
in one anti-diagonal (equivalently, belong to the same coset of IDJ for J ⊆ {0, 1, 2, 3}
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fixed with |J | = 3) is well approximated by a binomial distribution B(n, p), where

n =
(

232

2

)
= 231 · (232 − 1) and p = 2−32.

The average number of collisions of such distribution is equal to 231− 0.5 = 2 147 483 647.5,
while its variance is equal to 2 147 483 647 ' 231.

The main differences between the two distributions are the following:

• independently of the secret key, the average number of pairs of ciphertexts which are
equal in one fixed anti-diagonal (equivalently, the number of collisions in IDJ for
|J | = 3 fixed) is a (little) bigger for 5-round AES than for a random permutation
(approximately 1 038.1 more collisions);

• independently of the secret key, the variance of the probability distribution of
the number of collisions is a (much) bigger for 5-round AES than for a random
permutation (approximately of a factor 36).

To highlight this difference, Fig. 1 proposes a comparison between the probability distri-
bution of the number of collisions for the AES case – approximated here for simplicity by
a normal distribution – in red (where the probability to have n 6= 8 · n′ collisions – i.e.,
where n is not a multiple of 8 – is zero) and of the random case in blue.

5 Proof of Theorem 2 – Average Number of Collisions for
5-round AES

In this section, we formally compute the probabilities p3, p10, p17 given in Theorem 2, and
the average number of collisions for 5-round AES.

5.1 Reduction to the Middle Round
In order to prove the probability p3, p10 and p17 given in Theorem 2, the idea is to prove
an equivalent result on a single round. Using the truncated differential for 2-round AES
recalled in Sect. 3, note that

Di ⊕ δ
R2(·)−−−−→

prob. 1
Mi ⊕ ω

R(·)−−→ DJ ⊕ δ′
R2
f (·)

−−−−→
prob. 1

IDJ ⊕ ω′ (11)

where Di is a set of texts with 1 active diagonal, and where IDJ = SR(CJ) is a set of
texts with |J | active anti-diagonals.

Working on the middle round, we are going to prove an equivalent result by (1st)
considering 232 plaintexts pj for j = 0, 1, ..., 232− 1 in a coset of a mixed spaceMi, that is
Mi ⊕ ω for i ∈ {0, 1, 2, 3} and ω ∈M⊥i and the corresponding ciphertexts after 1 round,
that is cj = R(pj), and by (2nd) considering the probability distribution of different pairs
of ciphertexts (cl, cj) with cl < cj that are equal in one fixed diagonal (that is, that belong
to the same coset of DJ for J ⊆ {0, 1, 2, 3} fixed with |J | = 3).

5.1.1 Idea of the Proof

For simplicity, we limit ourselves to consider plaintexts in the same coset ofM0 and to
count the number of texts which are equal in the first diagonal after one round (the other
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cases are analogous). By definition of M0 (see [GRR17b] and App. A for details), if
p1, p2 ∈M0 ⊕ ω there exist xi, yi, zi, wi ∈ F28 for i = 1, 2 such that:

pi = ω ⊕


2 · xi yi zi 3 · wi
xi yi 3 · zi 2 · wi
xi 3 · yi 2 · zi wi

3 · xi 2 · yi zi wi


where 2 ≡ 0x02 and 3 ≡ 0x03. In the following, we say that p1 is “generated” by the
generating variables (x1, y1, z1, w1) and that p2 is “generated” by the generating variables
(x2, y2, z2, w2) – as before, we denote it by pi ≡ (xi, yi, zi, wi) for i = 1, 2.

In the following, we consider separately the following cases

• 3 variables are equal, e.g. x1 6= x2 and y1 = y2, z1 = z2, w1 = w2;

• 2 variables are equal, e.g. x1 6= x2,y1 6= y2 and z1 = z2, w1 = w2;

• 1 variable is equal, e.g. x1 6= x2, y1 6= y2, z1 6= z2 and w1 = w2;

• all variables are different, e.g. x1 6= x2, y1 6= y2, z1 6= z2, w1 6= w2.

As already mentioned before, if 3 variables are equal (e.g. y1 = y2, z1 = z2 and w1 = w2),
then p1⊕ p2 ∈ (M0 ∩ Cj) ⊆ Cj for a certain j ∈ {0, 1, 2, 3}, and R(p1)⊕R(p2) ∈Mj . Due
to e.g. the impossible differential trail given in Theorem 5 (see App. A), it follows that
R(p1) and R(p2) can not be equal in any diagonal (equivalently, R(p1)⊕R(p2) /∈ DJ for
each J with |J | ≤ 3). Thus, in the following we limit ourselves to consider the case in
which at least 2 generating variables are different.

Remark. In the following, we start by considering a subset of 216 texts with only 2
active bytes. This case is much simpler to analyze than the generic one, and it allows
ourselves to highlight the crucial points of the proof. The same approach (opportunely
modified) is then used to study the case of 232 texts in the same coset ofM0.

5.2 A “Simpler” Case: 216 Texts with Two Equal Generating Variables
As a first case, we consider 216 texts in which (at least) two generating variables are equal,
e.g. z1 = z2 and w1 = w2. Given two texts p1 generated by (x1, y1, 0, 0) and p2 generated
by (x2, y2, 0, 0), they are equal in the first diagonal after one round if and only if the
following four equations are satisfied

(R(p1)⊕R(p2))0,0 = 2 · (S-Box(2 · x1 ⊕ a0,0)⊕ S-Box(2 · x2 ⊕ a0,0))⊕
⊕ 3 · (S-Box(y1 ⊕ a1,1)⊕ S-Box(y2 ⊕ a1,1)) = 0,

(R(p1)⊕R(p2))1,1 = S-Box(3 · x1 ⊕ a3,0)⊕ S-Box(3 · x2 ⊕ a3,0)⊕
⊕ S-Box(y1 ⊕ a0,1)⊕ S-Box(y2 ⊕ a0,1) = 0,

(R(p1)⊕R(p2))2,2 = 2 · (S-Box(x1 ⊕ a2,0)⊕ S-Box(x2 ⊕ a2,0))⊕
⊕ 3 · (S-Box(2 · y1 ⊕ a3,1)⊕ S-Box(2 · y2 ⊕ a3,1)) = 0,

(R(p1)⊕R(p2))3,3 = S-Box(x1 ⊕ a1,0)⊕ S-Box(x2 ⊕ a1,0)⊕
⊕ S-Box(3 · y1 ⊕ a2,1)⊕ S-Box(3 · y2 ⊕ a2,1) = 0.

where a·,· depends on the initial key and on the constant ω that defines the coset. Equiva-
lently, four equations of the form

A ·
[
S-Box(B · x1 ⊕ a)⊕ S-Box(B · x2 ⊕ a)

]
⊕

⊕C ·
[
S-Box(D · y1 ⊕ c)⊕ S-Box(D · y2 ⊕ c)

]
= 0

(12)
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must be satisfied, where A,B,C,D depend only on the MixColumns matrix, while a, c
depend on the secret key and on the initial constant that defines the coset.

Number of Solutions of Each Equation. Consider one of these four equations. By simple
observation, equation (12) is satisfied if and only if11 the following system of equations is
satisfied

S-Box(x̂⊕∆I)⊕ S-Box(x̂) = ∆O

S-Box(ŷ ⊕∆′I)⊕ S-Box(ŷ) = ∆′O
∆′O = C−1 ·A ·∆O

(13)

for each value of ∆O, where x̂ = B · x1 ⊕ a, ∆I = B · (x1 ⊕ x2), ŷ = D · y1 ⊕ c and
∆′I = D · (y1 ⊕ y2).

What is the number of different (not null) solutions [(x1, y1), (x2, y2)] of eq. (12)?
Given ∆O 6= 0, each one of the first two equations of (13) admits 256 different solutions
(x̂,∆I) (resp. (ŷ,∆′I)) – note that for each value of x̂ ∈ F28 , there exists ∆I 6= 0 that
satisfies the first equation (similar for ŷ and ∆′I). It follows that the number of different
(not null) solutions [(x1, y1), (x2, y2)] of eq. (12) - considering all the 255 possible values
of ∆O - is exactly equal to

1
2 · 255 ·

(
256
255 · 255

)2
= 255 · 215

independently of the details of the S-Box. The factor 1/2 is due to the fact that we consider
only different solutions, that is two solutions of the form (p1 ≡ (x1, y1), p2 ≡ (x2, y2))
and (p2 ≡ (x1, y1), p1 ≡ (x2, y2)) are considered equivalent. In other words, a solution
[(x1, y1), (x2, y2)] is considered to be valid if x2 6= x1 and y1 < y2.

Probability of Common Solutions. Knowing the number of solutions of one eq. (12),
what is the number of common - different (not null) - solutions [(x1, y1), (x2, y2)] of 4
equations of the form (12)? We have just seen that each equation of the form (12) has
exactly 255 · 215 different (not null) solutions [(x1, y1), (x2, y2)]. The probability that two
equations admit the same solution (i.e. that [(x1, y1), (x2, y2)] – solution of one equation –
is equal to [(x̂1, ŷ1), (x̂2, ŷ2)] – solution of another equation) is

(256 · 255)−1 · (255 · 128)−1 = 255−2 · 2−15. (14)

To explain this probability, the first term (256 · 255)−1 is due to the fact that x1 = x̂1 with
probability 256−1 while x2 = x̂2 with probability 255−1, since by assumption x2 (resp. x̂2)
cannot be equal to x1 (resp. x̂1). The second term (128 · 255)−1 is due to the assumption
on the second variable, that is y1 < y2. To explain it12, note that the possible number of
pairs (y1, y2) with y1 < y2 is

∑255
i=0 i = 255·(255+1)

2 = 255 · 128. It follows that y1 and y2

are equal to ŷ1 and ŷ2 with prob. (128 · 255)−1.

Total Number of Different – not null – Common Solutions. In conclusion, the average
number of common - different (not null) - solutions [(x1, y1), (x2, y2)] of 4 equations of the
form (12) is given by

(255 · 215)4 · (255−2 · 2−15)3 = 215

2552 ' 0.503929258 ' 2−1 + 2−7.992

11Observe that the equality ∆′O = C−1 ·A ·∆O is well defined, since no coefficient of an MDS matrix
M ∈ F4×4

2b is equal to zero. Indeed, by definition, a matrix M is MDS if and only if all square sub-matrices
of M are of full rank.

12As examples, if y1 = 0x0 then y2 can take 255 different values (all values except 0), if y1 = 0x1 then
y2 can take 254 different values (all values except 0x0, 0x1) and so on - if y1 = d with 0 ≤ d ≤ 255 then
y2 can take 255− d different values.
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For comparison, given plaintexts in the same coset ofM0 ∩ C0,1 and the corresponding
ciphertexts generated by a random permutation, the average number of pairs of ciphertexts
that belong to the same coset of DJ is approximately given by(

216

2

)
· (2−8)4 = 216 − 1

217 ' 0.499992371 ' 2−1 − 2−17

Remark on Prob. (14). We highlight that probability (14) (strongly) depends on the
assumptions that

• the solutions of eq. (1) – so the numbers n∆I ,∆O
– are uniformly distributed for each

∆I 6= 0 and ∆O 6= 0;

• there is “no (obvious/non-trivial) relations” between the solutions of the studied
system of four equations of the form (12); in other words, the four equations (12)
must be independent/unrelated, in the sense that the solution of one equation must
not be a solution of another one with probability different (bigger/smaller) than (14).

Let’s focus here on this second requirement. A relation among solutions of different
equations can arise if some relations hold between the coefficients A,B,C,D of different
equations of the form (12). Since these are exactly the coefficients of the MixColumns
matrix and since such matrix is MDS, no linear relation among the rows/columns of any
submatrix exists. More details about this are given in the following – see also App. C.

5.3 Generic Case: 232 Texts
Using the same strategy just presented, we now consider the case of 232 texts in the same
coset ofM0. As before, two texts p1, p2 are equal in one diagonal after one round if and
only if the following four equations

A · [S-Box(B · x⊕ b)⊕ S-Box(B · x′ ⊕ b)]⊕
⊕C · [S-Box(D · y ⊕ d)⊕ S-Box(D · y′ ⊕ d)]⊕
⊕E · [S-Box(F · z ⊕ f)⊕ S-Box(F · z′ ⊕ f)]⊕
⊕G · [S-Box(H · w ⊕ h)⊕ S-Box(H · w′ ⊕ h)] = 0

(15)

are satisfied, where A,B,C,D,E, F,G,H depend only on the MixColumns matrix, while
b, d, f, h depend on the secret key and on the constant that defined the initial coset. As
before, each one of these equations is equivalent to a system of equations like (13), that is:

S-Box(x⊕∆I)⊕ S-Box(x) = ∆O S-Box(y ⊕∆′I)⊕ S-Box(y) = ∆′O
S-Box(z ⊕∆

′′

I )⊕ S-Box(z) = ∆
′′

O S-Box(w ⊕∆
′′′

I )⊕ S-Box(w) = ∆
′′′

O

together with one of the following conditions

1. ∆′′′O = ∆′′O = 0 and ∆′O = C−1 ·A ·∆O 6= 0 or analogous (6 possibilities);

2. ∆′′′O = 0 and ∆O,∆
′

O,∆
′′

O 6= 0 and ∆′′O = E−1 · (A ·∆O ⊕C ·∆′O) or analogous, for a
total of 4 possibilities;

3. ∆O,∆
′

O,∆
′′

O,∆
′′′

O 6= 0 and ∆′′′O = G−1 · (A ·∆O ⊕ C ·∆′O ⊕ E ·∆
′′

O).
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5.3.1 First Case

Note that the first case (∆′′′O = ∆′′O = 0) is analogous to the case in which two generating
variables are equal. In order to compute the number of collisions for this case is sufficient
to re-use the previous computation.

In the case ∆′′′O = ∆′′O = 0 and ∆′O = C−1 · A ·∆O 6= 0, the only possible solutions
of the third and fourth equations are of the form (z,∆′′I = 0) and (w,∆′′′I = 0) for each
possible value of z and w. Using the same computation as before, the average number of
(not null) common solutions for this case is(

4
2

)
· 2562 · 215

2552 = 232

21 675 ' 198 153.047. (16)

About Probability p17. This number can be used in order to compute the probability p17
– given in Theorem 2 – that pairs of texts with two equal (and two different) generating
variables are equal in one diagonal after one round. Indeed, by definition of probability:

p17 = 1
217 × n17

· 232

21 675 = 2−32 + 2−37.98588, (17)

where 217 × n17 is the total number of pairs of texts with two equal (and two different)
generating variables.

5.3.2 Second Case

Consider now the case ∆′′′O = 0 and ∆O,∆′O,∆
′′

O 6= 0 (i.e. ∆I ,∆′I ,∆
′′

I 6= 0). First of all,
note that ∆O 6= 0 can take 255 different values, while ∆′O 6= 0 can take only 254 different
values. Indeed, it must be different from 0 and from C−1 ·A ·∆O (if ∆′O = C−1 ·A ·∆O,
then ∆′′O = 0 which is excluded by assumption).

Using the same argumentation given before, for each equation (15) the number of
different solutions [(x1, y1, z1, w1), (x2, y2, z2, w2)] – where z1 < z2 and where w1 = w2 –
is given by (

4
1

)
· 256 ·

[
1
2 · 255 · 254 ·

(
255 · 256

255

)3
]

= 32 385 · 234,

where the initial factor
(4

1
)
· 256 is due to the condition w1 = w2 and on the fact that

there are 4 analogous cases (namely, x1 = x2 or y1 = y2 or z1 = z2). Similar to before,
the probability that two equations of the form (15) – where w1 = w2 – have a common
solution is given by

(256 · 255)−2 · (128 · 255)−1 = 2−23 · 255−3

under the assumption (1st) of uniform distribution of the solutions n∆I ,∆O
of eq. (1) and

(2nd) that there is “no (obvious/non-trivial) relation” between the solutions of the studied
system of four equations of the form (15). It follows that for this second case we expect on
average

(32 385 · 234)4 · (2−23 · 255−3)3 = 1274 · 237

2555 ' 33 160 710.047 (18)

different - not null - common solutions for the 4 equations of the form (15).

About Probability p10. This number can be used in order to compute the probability p10
– given in Theorem 2 – that pairs of texts with one equal (and three different) generating
variable(s) are equal in one diagonal after one round. Indeed, by definition of probability:

p10 = 1
210 × n10

· 1274 · 237

2555 = 2−32 − 2−45.98874, (19)
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where 210 × n10 is the total number of pairs of texts with one equal (and three different)
generating variables.

5.3.3 Third Case

We finally consider the case ∆O,∆′O,∆
′′

O,∆
′′′

O 6= 0. By simple computation, the number of
different values that satisfy

∆
′′′

O = G−1 · (A ·∆O ⊕ C ·∆′O ⊕ E ·∆
′′

O).

is given by 2553 − (255 · 254) = 16 516 605. Indeed, the total number of ∆O,∆′O,∆
′′

O 6= 0
is 2553, while 255 · 254 is the total number of values ∆O,∆′O,∆

′′

O 6= 0 for which ∆′′′O is
equal to zero (which is not possible since ∆′′′O 6= 0 by assumption). In more detail, firstly
observe that for each value of ∆O there is a value of ∆′O that satisfies A ·∆O = C ·∆′O.
For this pair of values (∆O,∆′O = C−1 ·A ·∆O), the previous equation – which reduces to
∆′′′O = G−1 · E ·∆′′O is always different from zero, since ∆′′O 6= 0. Secondly, for each one of
the 255 · 254 values of the pair (∆O,∆′O 6= C−1 ·A ·∆O), there is only one value of ∆′′O
such that the previous equation is equal to zero.

As a result, the total number of different solutions [(x1, y1, z1, w1), (x2, y2, z2, w2)] with
w1 < w2 of each equation corresponding to (15) is

1
2 · 16 516 605 ·

(
255 · 256

255

)4
= 16 516 605 · 231.

Since the probability that two solutions [(x1, y1, z1, w1), (x2, y2, z2, w2)] and [(x̂1, ŷ1,
ẑ1, ŵ1), (x̂2, ŷ2, ẑ2, ŵ2)] are equal is (255 · 256)−3 · (255 · 128)−1 = 255−4 · 2−31 - un-
der the assumptions (1st) of uniform distribution of the solutions of eq. (1) and (2nd) that
there is “no (obvious/non-trivial) relation” between the solutions of the studied system of
four equations of the form (15), the average number of (non null) common solutions (with
no equal generating variables) is(

16 516 605 · 231)4·(255−4 · 2−31)3 = 64 7714 · 231

2558 ' 2 114 125 822.5 (20)

About Probability p3. This number can be used in order to compute the probability p3
– given in Theorem 2 – that pair of texts with no equal generating variable are equal in
one diagonal after one round. Indeed, by definition of probability:

p3 = 1
23 × n3

· 64 7714 · 231

2558 = 2−32 + 2−53.98306, (21)

where 217 × n17 is the total number of pairs of texts with no equal generating variable.

5.3.4 Total Number of Different - not null - Common Solutions

By simple computation, given plaintexts in the same coset ofM0, the number of different
pairs of ciphertexts that are equal in one fixed diagonal after 1-round (equivalently, the
number of collisions in DJ for |J | = 3) is

2 114 125 822.5 + 33 160 710.047 + 198 153.047 ' 2 147 484 685.594 ' 231 + 210.02

For comparison, if the ciphertexts are randomly generated, the number of different pairs
of ciphertexts that are equal in one fixed diagonal (equivalently, the number of collisions
in DJ for |J | = 3) is (

232

2

)
· 2−32 ' 2 147 483 647.5 = 231 − 2−1
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In other words, on average there are

2 147 484 685.594− 2 147 483 647.5 ' 1 038.094

more collisions for 5-round AES than for a random permutation.
Finally, since the number of possible pairs of texts is 231 · (232 − 1), the probability for

the AES case that a couple of ciphertexts (c1, c2) satisfies c1 ⊕ c2 ∈ DJ for |J | = 3 fixed is
equal to

pAES '
2 147 484 685.594

231 · (232 − 1) ' 2−32 + 2−52.9803

versus 2−32 for the random case.

5.4 Remarks
On the MDS Requirement for the MixColumns Matrix. As already mentioned, the
assumption that the MixColumns matrix is MDS is crucial when computing the number
of solutions of a system of 4 equations of the form (12) or (15) – remember that the
coefficients A,B,C, ... are the coefficients of the MixColumns matrix.

To give more evidence, assume by contradiction that the matrix is not MDS, and focus
on a system of equations e.g. of the form (12). First of all, if some coefficients of the
MixColumns matrix are equal to zero, then some of such equations become trivial. E.g. if
C = 0 then an equation of the form (12) is satisfied by x1 = x2 and by y1 6= y2. In such
a case, a problem arises since the arguments given for the case (12) hold only under the
assumption x1 6= x2 and y1 6= y2. If the case x1 = x2 is admitted, the previous proof must
be modified accordingly: e.g. the number of solutions of an equation of the form (12) for
C = 0 becomes 255 · 216, which differs from 2552 · 28 given in the text, and the previous
result is in general not true anymore.

What happens if the MixColumns matrix is not MDS and if all its coefficients are not
null? Consider a system of four equations of the form (12) or (15). Since the matrix is
not MDS, then there exists a r × r submatrix (for 2 ≤ r ≤ 3) whose determinant is equal
to zero (this means that there exists a linear relation between the rows/columns of this
matrix). This fact can have effects on the probability that the studied system of four
equations of the form (15) has a common solution(s). In particular, it can happen that the
solutions of different equations of this system are not unrelated/independent, which is a
crucial assumption exploited in the previous proof in order to compute the probability that
different equations admit the same solution(s). To better understand this fact, we show a
concrete example in App. C.

Random Permutation and Probability 2−32. Given 232 texts generated by a random
permutation, one can construct 263 different pairs which are not independent. For example,
consider a pair of texts (t1, t2). Given another text t3, if t1 ⊕ t3 ∈ IDJ – equivalently, if t1
and t2 are equal in 4− |J | anti-diagonal(s) – and t2 ⊕ t3 ∈ IDJ for a particular subspace
IDJ , then (t1, t2) belong to the same coset of IDJ with prob. 1 (by definition of subspace).
Thus, one may think that the probability that (t1, t2) are in the same coset of IDJ is
different than 2−32·(4−|J|). In App. B, we prove that even if the pairs are not independent,
the probability that each pair (t1, t2) satisfies the property to belong to the same coset of
IDJ is exactly 2−32·(4−|J|) (that is, 2−32 if |J | = 3 for J fixed).

6 Proof of Theorem 2 – Variance – and of Lemma 1
Using the result just given, we finally compute the variance of the probability distribution
for 5-round AES given in Theorem 2, and the probability given in Lemma 1. To do this,
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we exploit the fact that the probability distribution of 5-round AES is well described by

5-AES = 23 ·X3 + 210 ·X10 + 217 ·X17

where Xi are binomial distributions. We recall that the pairs of texts with no equal
generating variable are represented by 23 ·X3, the pairs of texts with 1 equal generating
variable (and 3 different) are represented by 210 ·X10 and finally the pairs of texts with 2
equal generating variables (and 2 different) are represented by 217 ·X17.

6.1 Variance of the Prob. Distribution for 5-round AES
Properties of the Variance. First of all, remember that the cases X3, X10 and X17 are
independent. In other words, the behavior of a pair of texts with v equal generating
variables is independent of another pair with v̂ equal generating variables where v̂ 6= v.
One property of the variance is that, given x independent variables X1, ..., Xx, the variance
of Y = X1 + ...+Xx is given by V ar(Y ) = V ar(X1) + ...+ V ar(Xx). It follows that the
total variance of the probability distribution for 5-round AES case is given by

V ar(5-AES) = V ar(23 ·X3) + V ar(210 ·X10) + V ar(217 ·X17) =
= 26 · V ar(X3) + 220 · V ar(X10) + 234 · V ar(X17),

where V ar(α ·X) = α2 · V ar(X) for each constant α.

About V ar(X3), V ar(X10) and V ar(X17). As seen before, X3, X10 and X17 are
well described by binomial distribution B(n7·v+3, p7·v+3) for v = 0, 1, 2, where the values
of n7·v+3 and p7·v+3 are given before. Since the variance of a binomial distribution
X7·v+3 ∼ B(n7·v+3, p7·v+3) is given by V ar(X7·v+3) = n7·v+3 × p7·v+3 × (1 − p7·v+3), it
follows that

V ar(X3) = n3 · p3 · (1− p3) ≈ 264 265 727.751
V ar(X10) = n10 · p10 · (1− p10) ≈ 32 383.506
V ar(X17) = n17 · p17 · (1− p17) ≈ 1.51179

We remark one more time that:

• 27·v+3 × X7·v+3 represents the probability distribution of the number of pairs of
ciphertexts that are equal in one anti-diagonal given all the pairs of plaintexts with
“v equal (and 4− v different) generating variable(s)”;

• X7·v+3 represents the probability distribution of the number of pairs of ciphertexts
that are equal in one anti-diagonal given only the pairs of plaintexts with “v equal
(and 4− v different) generating variable(s)” that are independent.

Final Result. By combining all previous results, it follows that

V ar(5-AES) = 26 × 264 265 727.751︸ ︷︷ ︸
'V ar(X3)

+220 × 32 383.506︸ ︷︷ ︸
'V ar(X10)

+234 × 1.51179︸ ︷︷ ︸
'V ar(X17)

' 236.16118.

6.2 Proof of Lemma 1
Consider 232 plaintexts pi for i = 0, 1, ..., 232−1 with one active diagonal (equivalently, in a
coset of a diagonal space Di), and the corresponding ciphertexts after 5 rounds without the
final MixColumns operation, that is ci = R5(pi). As last thing, we formally compute the
probability to have n ∈ N different pairs of ciphertexts (ci, cj) with ci < cj that are equal
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in one fixed anti-diagonal (i.e. that belong to the same coset of IDJ for J ⊆ {0, 1, 2, 3}
fixed with |J | = 3), namely n collisions.

Given n ∈ N, note that Prob(5-AES = n) = 0 if n 6= 8 · n′ is not a multiple of 8 (due
to the multiple-of-8 property). Thus, assume n = 8 · n′ for n′ ∈ N:

Prob (5-AES = n) := Prob
(
[23 ·X3 + 210 ·X10 + 217 ·X17] = n

)
=

=
∑

n3,n10,n17

Prob([23 ·X3] = n3)× Prob([210 ·X10] = n10)× Prob([217 ·X17] = n17)×

× Prob
(

[23 ·X3 + 210 ·X10 + 217 ·X17] = n

∣∣∣∣23 ·X3 = n3, 210 ·X10 = n10, 217 ·X17 = n17

)
where remember that the distributions X3, X10 and X17 are independent.

Since Prob([2i ·Xi] = ni) = 0 if there is no ki ∈ N s.t. ni 6= 2i · ki for i ∈ {3, 10, 17},
and since

Prob

(
[23 ·X3 + 210 ·X10 + 217 ·X17] = n assuming that

23 ·X3 = n3, 210 ·X10 = n10, 217 ·X17 = n17

)
=
{

1 if n3 + n10 + n17 = n

0 otherwise

it follows that Prob (5-AES = n) is equal to∑
k3,k10,k17∈Kn

Prob(X3 = k3)× Prob(X10 = k10)× Prob(X17 = k17)

where

Kn =
{

(k3, k10, k17) ∈ N× N× N
∣∣ 0 ≤ ki ≤ ni and 23 · k3 + 210 · k10 + 217 · k17 = n

}
.

The probability given in Lemma 1 is finally obtained by the fact that Xi are binomial
distributions:

Prob(Xi = x) =
(
ni
x

)
· (pi)x · (1− pi)ni−x,

where ni and pi for i = 3, 10, 17 are given in Theorem 2.

7 Relation among Multiple-of-8, Mean and Variance
Here we briefly discuss the relations among the multiple-of-8 property, the fact that the
average number of collisions – the mean in the following – is bigger for AES than for a
random permutation and the fact that the variance of the number of collisions is (much)
higher for AES than for a random permutation. As briefly mentioned at the beginning,
there is no “obvious relation” between the multiple-of-8 property and the result on the mean,
while the multiple-of-8 property and the result on the variance are strictly related.

Relation between Multiple-of-8 Property and the Mean

As we just said, the multiple-of-8 property and the result on the mean are unrelated:

• the fact that the number of collisions is always a multiple of 8 for AES does not
imply that such number is on average bigger/equal/smaller for AES;

• the fact that the number of collisions is on average higher for AES does not imply
that it is a multiple-of-8.
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To give concrete examples, we practically computed the average number of collisions for
4-bit AES when the AES S-Box is replaced by the S-Box of other ciphers – see Table 3 in
Sect. 10. In all cases, the number of collisions always satisfies the multiple of 8 property.
Instead, depending on the S-Box details, it’s possible that the number of collisions is bigger
or smaller (or potentially equal) for AES than for a random permutation – more details in
the following. This supports the arguments that these two properties are independent.

Moreover, we emphasize that:

Multiple-of-8: as proved in [GRR17a] and recalled in Sect. 3, the multiple-of-8 property
holds since given two texts in p1, p2 in a coset of a column space (namely, Ci ⊕ γ
for i ∈ {0, 1, 2, 3}), there exist other pairs of texts s1, s2 ∈ Ci ⊕ γ defined by different
combinations of the generating variables of p1 and p2 satisfy the following equivalence

R2(p1)⊕R2(p2) = R2(s1)⊕R2(s2).

This result is independent of the details of the S-Box and of the details of the Mix-
Columns matrix (as shown in [BCC19]), and it is completely deterministic (everything
is deterministic, i.e. probability plays no role).

Mean: in this case, given 232 texts in the same coset of a mixed subspace Mi for i ∈
{0, 1, 2, 3}, one considers the average number of pairs of texts that are equal in one
diagonal (equivalently, that belong to the same coset of a diagonal subspace DJ
for J ⊆ {0, 1, 2, 3} with |J | = 3) after 1-round AES encryption. By contrast to the
multiple-of-8 property, the result regarding the average number of collisions is due to
(precise) probabilistic considerations, under particular assumptions on the S-Box. To
the best of our knowledge, this is the first time that a similar approach is used in the
literature.

Relation between Multiple-of-8 Property and the Variance

Conversely, as we have just seen, the multiple-of-8 property and the variance are strictly
related. Roughly speaking, due to the multiple-of-8 property (i.e. due the fact that the
pairs of texts are not independent), the probability distribution of the number of collisions
Y can be rewritten as Y = α × X for a constant α > 1, where X is the probability
distribution of the number of collisions for the independent/unrelated pairs of texts (see
Theorem 2 for details). Since

V ar(Y ) = V ar(α×X) = α2 × V ar(X),

it turns out that the variance for 5-round AES is higher than the corresponding variance
of a random permutation (note instead that the mean value does not have this property,
since E[Y ] = α× E[X]).

8 Practical Results on AES
We have practically verified the mean and the variance for 5-round AES given above –
see Theorem 2 – using a C/C++ implementation13. In particular, we have verified the
mean value on a small-scale AES as proposed in [CMR05], and the variance value both on
full-size and on the small-scale AES. We limit ourselves to recall that the AES small-scale
S-Box is defined in the same way as the full-size one and that it has the same properties as
the full-size one, with the only exception that each word is composed of 8 bits for full-size
AES and of 4 bits for the small-scale one. We emphasize that our verification on the

13The source codes of the distinguishers are available at https://github.com/Krypto-iaik/
TruncatedDiff5roundAES

https://github.com/Krypto-iaik/TruncatedDiff5roundAES
https://github.com/Krypto-iaik/TruncatedDiff5roundAES
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small-scale variant of AES is strong evidence for it to hold for the full-size AES, since the
strategy used to theoretically compute such probabilities is independent of the fact that
each word of AES is of 4 or 8 bits.

8.1 5-round AES defined over (F2n)4×4

First of all, we propose a generic result about the average number of collisions for 5-round
AES defined over F4×4

2n .

Theorem 3. Consider an AES-like cipher that works with texts in F4×4
2n , such that the

MixColumns matrix is an MDS matrix and s.t. the solutions of eq. (1) are uniformly
distributed for each input/output difference ∆I 6= 0 and ∆O 6= 0.

Consider 24n plaintexts pi for i = 0, 1, ..., 24n− 1 with one active diagonal (equivalently,
in a coset of a diagonal space Di for i ∈ {0, 1, 2, 3}), and the corresponding ciphertexts
after 5 rounds without the final MixColumns operation, that is ci = R5(pi). The probability
distribution 5-AES of the number of different pairs of ciphertexts (ci, cj) with ci < cj that
are equal in one anti-diagonal (equivalently, that belong to the same coset of IDJ for
J ⊆ {0, 1, 2, 3} fixed with |J | = 3) is described by

5-AES = 23 ×X3 + 2n+2 ×Xn+2 + 22n+1 ×X2n+1

where
∀i = 3, n+ 2, 3n+ 1 : Xi ∼ B(ni, pi)

are binomial distributions s.t.

n3 = 24n−4 · (2n − 1)4 p3 = (22n − 3 · 2n + 3)4

(2n − 1)12 ;

nn+2 = 23n−1 · (2n − 1)3 pn+2 = (2n−1 − 1)4 · 24

(2n − 1)8 ;

n2n+1 = 3 · 22n−1 · (2n − 1)2 p2n+1 = 1
(2n − 1)4 .

The average number of different pairs of ciphertexts (ci, cj) with ci ≤ cj for i 6= j that
belong to the same coset of IDJ for J ⊆ {0, 1, 2, 3} fixed with |J | = 3 is equal to

24n−1 · (22n − 3 · 2n + 3)4

(2n − 1)8 + (2n−1 − 1)4 · 24n+5

(2n − 1)5 + 3 · 24n

(2n − 1)2 , (22)

while the variance of such distribution is given by

24n+2 · (22n − 3 · 2n + 3)4

(2n − 1)8 + (2n−1 − 1)4 · 25n+7

(2n − 1)5 + 3 · 26n+1

(2n − 1)2 (23)

The proof of this result is similar to the one just given for the case F4×4
28 , and it can be

found in App. E.
Before going on, we emphasize that the ratio between the variance of 5-round AES and

the one of a random permutation is (almost) constant and equal to 36 for each size n s.t.
n ≥ 8, independently of the secret-key, of the details of the S-Box and of the MixColumns
matrix. A formal proof of this fact can be found in App. E.3 (see also Fig. 5).

8.2 Practical Results on 4-bit AES
Theoretical Results. To compare the practical values with the theoretical ones, we first
re-propose the main results of Theorem 2 for the case of small-scale AES.
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Lemma 2. Consider an AES-like cipher that works with texts in F4×4
24 and for which the

assumptions of Theorem 2 hold.
Consider 216 plaintexts pi for i = 0, 1, ..., 216 − 1 with one active diagonal (equivalently,

in a coset of a diagonal space Di for i ∈ {0, 1, 2, 3}), and the corresponding ciphertexts
after 5 rounds without the final MixColumns operation, that is ci = R5(pi). The probability
distribution of the number of different pairs of ciphertexts (ci, cj) with ci ≤ cj for i 6= j
that are equal in one anti-diagonal (equivalently, that belong to the same coset of IDJ
for J ⊆ {0, 1, 2, 3} fixed with |J | = 3) has mean value µ = 32 847.124 and variance
σ2 = 982 466.615 (equivalently, standard deviation σ = 991.195).

For comparison, if the ciphertexts are generated by a random permutation, the proba-
bility distribution of the number of collisions is well approximated by a normal distribution
with mean value µ = 32 767.5 and variance σ2 = 32 767 (equivalently, standard deviation
σ = 181.017).

Practical Results. In order to test our results, we took the variance over 320 initial cosets
for full-size AES, while we took the average number of collisions and the variance over
respectively 125 000 ' 217 and over 100 initial cosets for the small-scale one. The variance
results for full-size AES14 are given in the following

σ2
T = 76 842 293 834.905 ' 236.161 σ2

P = 73 288 132 411.36 ' 236.093

where the subscript ·T denotes the theoretical value and the subscript ·P the practical one.
Our practical results for small-scale AES regarding the mean - denoted by µ - are

µTAES = 32 847.124 µTrand = 32 767.5
µPAES = 32 848.57 µPrand = 32 768.2

while our practical results for small-scale AES regarding the variance - denoted by σ2 - are

σTAES = 1036.58 σTrand = 181.02
σPAES = 1027.93 σPrand = 182.42

where – as before – the superscript ·T and ·P denote resp. the theoretical and the practical
values.

Fig. 2 highlights the difference between the practical probability distribution of the
number of collisions for small-scale AES and for a random permutation.

Remark – Mean and Mode. About Fig. 2, it is important not to confuse the mean and
the mode. In particular, consider a random variable X with a finite number of outcomes
x0, x1, ..., xn occurring with probabilities p0, p1, ..., pn respectively (where

∑
i pi = 1):

mean: the mean – or expected value – of such a random variable X is defined as µ =
E[X] =

∑n
i=0 pi × xi;

mode: the mode of a set of data values is the outcome xi ∈ X (if exists) for 0 ≤ i ≤ n
that appears most often, that is for which the corresponding probability pi satisfies
pi > pj for all j ∈ {0, ..., n} \ {i}.

In our case, consider the probability distribution for 5-round AES: the mean of such
distribution is approximately equal to µPAES = 32 848.57, while the mode is approximately
equal to 32 560. For the random case, the mean and the mode are approximately equal
(the distribution is approximately symmetric).

14We remark that one would need more than one year of computation on our cluster to test the
distinguisher based on the mean with its ≈ 216 initial cosets.
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Figure 2: Comparison between the practical probabilistic distributions of the number of
collisions of small-scale 5-round AES and of a random permutation.

A Distinguisher based on the Skewness? It is important to have in mind that for skewed
(i.e. asymmetric) distributions, the mean is not necessarily the same as the most likely
value, i.e. the mode. In particular, the mean and the mode coincide only in the case in
which the skewness is equal to zero, which is the case of e.g. a normal distribution (which
is always symmetric).

The skewness is a parameter that measures the asymmetry of the probability distribution
of a real-valued random variable about its mean. The skewness value can be positive or
negative, or undefined. In particular, referring to Figure15 3, the skew is negative if the
left tail is longer (i.e. the mass of the distribution is concentrated on the right of the
figure), while it is positive if the right tail is longer (i.e. the mass of the distribution is
concentrated on the left of the figure).

Figure 3: Examples of negative and positive skew.

The skewness of a random variable X is the third standardized moment γ, defined as:

γ = E

[(
X − µ
σ

)3
]

where E[·] is the mean value operator, µ ≡ E[X] the mean value and σ2 ≡ V ar(X) the
variance16. For the particular case of a binomial distribution B(n, p), the skewness is given
by

γ = 1− 2 · p√
n · p · (1− p)

, (24)

which is close to zero if p ≈ 1/2 or if n · p� 1.

15Figure re-printed from Wikipedia https://en.wikipedia.org/wiki/Skewness
16For a sample of n values, an estimator z for the skewness is given by z ={
1
n

∑n

i=1(xi − X̄)3
}
/
{

1
n

∑n

i=1[(xi − X̄)2])3/2
}

where X̄ = 1
n

∑n

i=1 xi.

https://en.wikipedia.org/wiki/Skewness
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Table 2: Secret-Key Distinguishers for 5-round AES. The complexity is measured in minimum
number of chosen plaintexts/ciphertexts (CP/CC) or/and adaptive chosen plaintexts/ciphertexts
(ACP/ACC) which are needed to distinguish 5-round AES from a random permutation with
prob. bigger than 95%. Time complexity is measured in equivalent encryptions (E) or memory
accesses (M) or XOR operations (XOR) - using the common approximation 20 M ≈ 1-round E.
Our distinguishers are in bold.

Property Data (CP/CC) Cost Ref.
Yoyo 212 CP + 225.8 ACC 224.8 XOR [RBH17]

Multiple-of-8 232 CP 235.6 M ≈ 229 E [GRR17a]
Variance Diff. 234 CP 237.6 M ≈ 231 E Sect. 9.1
Truncated Diff. 248.96 CP 252.6 M ≈ 246 E Sect. 9.3
Prob. Mixture Diff. 252 271.5 M ≈ 264.9 E [Gra17]

The probability distribution for 5-round AES is not Symmetric. Interestingly, it is
possible to observe an asymmetry in the (small-scale) 5-round AES distribution.

By Fig. 2 and Fig. 4, it is possible to observe that small-scale 5-round AES distribution
has positive skew, while the skew of the random distribution is approximately equal to
zero. We practically computed these values both for full-size AES and for small-scale one
using 29 initial cosets, and we got the following results:

γAES ' 0.43786 γAESsmall-scale ' 0.4687

while – as expected – we got that the skew of a random permutation is close to 0 (hence,
the probability distribution of a random permutation is well described by a normal one).

It follows that also the skewness can be used to set up a distinguisher. We leave
the open problem to theoretically compute these numbers, both for small-scale AES and
full-size AES, and to set up a corresponding distinguisher.

9 Truncated Differential Distinguishers for 5-round AES
In this section, we present new truncated differential distinguishers for 5-round AES.

As already recalled in the introduction, differential attacks [BS91] exploit the fact that
pairs of plaintexts with certain differences yield other differences in the corresponding cipher-
texts with a non-uniform probability distribution. A variant of this attack/distinguisher is
the truncated differential one [Knu95], in which the attacker can predict only part of the
difference between pairs of texts. Using the subspace terminology, given pairs of plaintexts
that belong to the same coset of a subspace X , one consider the probability that the
corresponding ciphertexts belong to the same coset of a subspace Y to set up an attack
– see [BLN17] for details. Another type of differential trail is the impossible differential
one, where one exploits the fact that pairs of plaintexts that belong to the same coset of a
subspace X cannot belong to the same coset of Y after a certain number of rounds. For
the AES case, truncated differential distinguisher and impossible differential one – which
are independent of the key – can be set up for up to 3 and for up to 4 rounds respectively
of AES. In both cases, the subspaces X and Y correspond respectively to DI and IDJ , as
shown in detail in [GRR17b].

The truncated differential distinguishers that we are going to present work in a similar
way. The main difference with other differential distinguishers in the literature is the fact
that our distinguishers work if and only if one considers entire cosets of a particular space
X and not random pairs of texts. Moreover, for the first time in the literature we are able
to present a truncated differential distinguisher based on the variance.
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9.1 Truncated Differential Distinguisher based on the Variance
Since the variance of the AES case is different from the one of the random case independently
of the secret-key, we can exploit this fact e.g. to set up a new secret-key distinguisher for
5-round AES.

The idea is very simple. Given n different cosets of a diagonal space Di (that is, sets of
texts with one active diagonal), one counts the number of different pairs of ciphertexts
that are equal in one fixed anti-diagonal (equivalently, that belong to the same coset of
IDJ for J ⊆ {0, 1, 2, 3} with |J | = 3). Then, one computes the variance: by previous
result, the highest one corresponds to the AES case.

We practically tested this distinguisher on a small-scale AES. Since the ratio between
the variances for full-size 5-round AES and for a random permutation Π is similar to the
same ratio for the case of small-scale AES, that is

V ar(AES8-bit)
V ar(Π8-bit) ' 236.161

231 ≈ 35.8 versus V ar(AES4-bit)
V ar(Π4-bit) ' 220.035

215 ≈ 32.8,

we conjecture that the results obtained for the small-scale AES are applicable as well to
full-size AES.

By practical tests17 (the following probability of success have been computed over 2 500
tests) on small-scale AES:

• a single initial coset of Di allows to distinguish small-scale AES from a random
permutation with prob. 98%

• two initial cosets of Di allows to distinguish small-scale AES from a random permu-
tation with prob. 99.9%

where note that for each initial coset of Di, it is possible to compute the number of collisions
with respect to four different anti-diagonals, or equivalently four different subspacesMJ .
Moreover, we emphasize that the goal of this distinguisher is not to compute the exact
value of the variance for the two cases, but just to distinguish them. In other words, the
distinguisher works if the variance for AES is bigger than the one of a random permutation,
even if it does not return the exact value of the two variances. Thus, due to the big gap
between the two cases, 2 initial cosets of Di are sufficient for this goal (even if they are
not sufficient – in general – to compute the exact value of the two variances).

As a result, one can distinguish the two cases using n ≥ 2 initial cosets. Due to the
relation between small-scale AES and full-size AES previously discussed, we conjecture
that the same number of initial cosets is sufficient to distinguish (full-size) AES from a
random permutation (using this distinguisher based on the variance). However, just to
have more confidence, we choose an arbitrary value of 4 initial cosets in order to set up
the distinguisher, for a data cost of 4 · 232 = 234 chosen plaintexts distributed in 4 initial
cosets of Di. The computational cost is well approximated by the cost to compute the
number of collisions. Using Algorithm 1 - described in details in App. D, the cost is well
approximated by 4 (initial cosets) ×4 (anti-diagonals) ×3 · 232 (table look-ups) ' 237.6

table look-ups, that is approximately 231 five-round encryptions.

9.2 Useful Approximation for the Prob. Distribution of 5-round AES
In order to propose a truncated differential distinguisher based on the mean, we first need
an approximation of the probability distribution for 5-round AES given in Theorem 2
– Lemma 1. The approximation given in the following turns out to be (very) useful in

17Given a set of n � 1 equally likely values, an unbiased estimator for the variance is given by
V ar(X) = 1

n−1
∑n

i=1(xi − X̄)2 where X̄ = 1
n

∑n

i=1 xi.
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Data: 232 (plaintext, ciphertext) pairs (pi, ci) for i = 0, ..., 232 − 1 with one active
diagonal (equivalently, in a coset of a diagonal subspace DI with |I| = 1).

Result: Number n of pairs of ciphertexts which are equal in the j-th anti-diagonal
(equivalently, that belong in the same coset of IDJ where
J ≡ {0, 1, 2, 3} \ j)

Let A[0, ..., 232 − 1] an array initialized to zero;
for i from 0 to 232 − 1 do

x←
∑3
k=0 c

i
k,j−k · 256k; // cik,j−k denotes the byte of ci in row k and

column j − k mod 4
A[x]← A[x] + 1; // A[x] denotes the value stored in the x-th address
of the array A

end
n←

∑232−1
i=0 A[i] · (A[i]− 1)/2; // n ≡ Number of Collisions

return n.
Algorithm 1: Secret-Key Distinguisher for 5 Rounds of AES. It count the number of
pairs of ciphertexts which are equal in the j-th anti-diagonal (equivalently, the number
of collisions in the same coset of IDJ (where J ≡ {0, 1, 2, 3} \ j).

applications where the skewness does not play a crucial role, that is in applications which
are (almost) independent of the bias in the skew.

As given in Theorem 2, the probability distribution for 5-round AES is well described
by

5-AES = 23 × B(n3, p3) + 210 × B(n10, p10) + 217 × B(n17, p17)

where B(n, p) are binomial distributions. Since n3, n10, n17 � 1 and p3, p10, p17 � 1, a
first possibility would be to approximate each binomial distribution by a Poisson one, i.e.
B(n, p) ≈ P(λ) where λ = n · p. On the other hand, given the probability distribution
23 · P(n3 · p3) + 210 × P(n10 · p10) + 217 × P(n17 · p17), it seems hard to derive a closed
“simple” formula18 which describes the probability to have n collisions in the ciphertexts.
The same occurs using e.g. a Gamma distribution.

Another possibility would be to approximate the binomial distributions using the
corresponding normal ones. The De Moivre-Laplace Theorem claims that the normal
distribution is a good approximation of the binomial one if the skewness of the binomial
distribution – given in (24) – is close to zero. In our case, B(n3, p3) and B(n10, p10) can
be well approximated by a normal distribution, since their skewness are close to zero19.
Unfortunately, this is not the case of X17:

skew(X3) ≈ 2−14 skew(X10) ≈ 2−7.5 skew(X17) ≈ 0.813 ≈ 2−0.3.

On the other hand, the number of pairs represented by X17 (that is, the pairs of texts
with two equal generating variables) is very small compared to the number of all possible
pairs of texts, precisely 3·215·(28−1)2

231·(232−1) ≈ 2−30.4 ≈ (7.1 · 10−8) %. For this reason – and with
the only goal to set up the truncated diff. distinguisher in the following, we make use of
this approximation.

Finally, we exploit the fact that the sum of normally distributed random variables
is also normally distributed, that is if X ∼ N(µX , σ2

X) and Y ∼ N(µY , σ2
Y ), then Z =

X + Y ∼ N(µX + µY , σ
2
X + σ2

Y ), in order to get an approximation for the probability
distribution of 5-round AES.

18While it is well known that P(λ1) + P(λ2) = P(λ1 + λ2), to the best of our knowledge there is no
closed formula for the case a1 · P(λ1) + a2 · P(λ2) for a1 6= a2.

19Note that skew(α ·X) = sign(α) · skew(X) where sign(α) = −1 if α < 0, and 1 otherwise.
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Figure 4: Comparison between the probability distribution of the number of collisions
between theoretical small-scale 5-round AES (approximated by a normal distribution) and
a practical one.

Corollary 1. Consider an AES-like cipher that works with texts in F4×4
28 and for which

the assumptions of Theorem 2 hold.
Consider 232 plaintexts pi for i = 0, 1, ..., 232 − 1 with one active diagonal (equivalently,

in a coset of a diagonal space Di for i ∈ {0, 1, 2, 3}), the corresponding ciphertexts after
5 rounds without the final MixColumns operation, that is ci = R5(pi). The probability
distribution of the number of different pairs of ciphertexts (ci, cj) with ci < cj that are equal
in one anti-diagonal (equivalently, that belong to the same coset of IDJ for J ⊆ {0, 1, 2, 3}
fixed with |J | = 3) is approximated by a normal distribution N (µ, σ2), where the mean
value is equal to µ = 2 147 484 685.6 = 232 + 1 037.6 and standard deviation is equal to
σ = 277 204.426.

Roughly speaking, the distribution of the number of collisions for the AES case is
approximated by 8×X, where X is a normal distribution with mean value and variance
as given in Corollary 1. In more details, the (discrete) probability to have n ∈ N collisions
is given by:

Prob(n | µ, σ2) =


0 if n mod 8 6= 0

8√
2 · π · σ2

· e−
(n−µ)2

2·σ2︸ ︷︷ ︸
∼8×N(µ,σ2)

otherwise

A comparison between the real probability distribution for small-scale 5-round AES
and the (theoretical) one approximated by a normal distribution is proposed in Fig. 4.
As expected, while e.g. the variance of the two distributions are equal, while the main
difference is the skewness, since the skewness of a normal distribution is zero, while the one
of the probability distribution for 5-round AES is approximately 0.4 (as already pointed
out before, do not to confuse the mean with the mode – see Sect. 8 for details).

Finally, a brief explanation about the factor 8 in the probability Prob(n | µ, σ2). Let
Prob(n) be the probability - just defined - to have n collisions for 5-round AES. Since
Prob(n 6= 8 · n′) = 0 (i.e. the probability to have n collisions is zero if n is not a multiple
of 8), we highlight that the factor 8 guarantees that the total probability is equal to 1:

∑
n

Prob(n) =
∑

n=8·n′

8√
2 · π · σ2

· e−
(n−µ)2

2·σ2 =
∑
n′

1√
2 · π · (σ/8)2

· e−
(n′−(µ/8))2

2·(σ/8)2 = 1.
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9.3 Truncated Differential Distinguisher based on the Mean
Using previous results, we are now able to present and set up a new distinguisher based
on truncated differential trail for 5-round AES, which exploits the fact that the average
number of pairs of ciphertexts which are equal in one anti-diagonal (equivalently, that
belong in the same coset of IDJ for |J | = 3) is a little bigger for AES than for a random
permutation.

As discussed in Sect. 6.1, the number of collisions for 5-round AES and for the
random permutation can be described by normal distributions. Moreover, to derive
concrete numbers for our distinguisher, we can simply consider the difference of the two
distributions, which is again a normal distribution. That is, given X ∼ N (µ1, σ

2
1) and

Y ∼ N (µ2, σ
2
2), then X − Y ∼ N (µ, σ2) = N (µ1 − µ2, σ

2
1 + σ2

2). Indeed, note that to
distinguish the two cases, it is sufficient to guarantee that the average number of pairs
that satisfy the required property for the random case is smaller than for AES. As a
result, the mean µ and the variance σ2 of the difference between the AES and the random
distributions are

µ = |µAES − µrand| = n · |pAES − prand|
σ2 = σ2

rand + σ2
AES = n ·

[
prand · (1− prand) + 35.593 · pAES · (1− pAES)

]
Since the probability density of the normal distribution is f(x | µ, σ2) = 1

σ
√

2π e
− (x−µ)2

2σ2 ,
it follows that

prob =
0∫

−∞

1
σ
√

2π
e
− (x−µ)2

2σ2 dx =

−µ/σ∫
−∞

1√
2π

e−
x2
2 dx = 1

2

[
1 + erf

(
−µ
σ
√

2

)]
,

where erf(x) is the error function, defined as the probability of a random variable with
normal distribution of mean 0 and variance 1/2 falling in the range [−x, x]. We emphasize
that the integral is computed in the range (−∞, 0] since we are interested only in the case
in which the average number of pairs with the required property in the random case is
smaller than in the AES case.

In order to have a probability of success bigger than prob, n has to satisfy

n >
2 · [prand · (1− prand) + 35.593 · pAES · (1− pAES)]

(prand − pAES)2 ·
[
erfinv

(
2 · prob− 1

)]2
,

where erfinv(x) is the inverse error function. For the case prand, pAES � 1, a good
approximation of n is given by20

n >
73.186 ·max(prand, pAES)

(prand − pAES)2 ·
[
erfinv

(
2 · prob− 1

)]2
. (25)

It follows that in order to have a probability of success bigger than 95%, the number of
pairs must satisfy n ≥ 278.374 and since prand ≈ pAES ≈ 2−30 and |prand−pAES | ≈ 2−50.98.
Given 232 chosen plaintexts with one active diagonal (equivalently, a coset of a diagonal
space Di), it is possible to construct approximately 263 different pairs of texts, which
means that the distinguisher requires 215.374 different cosets for a data cost of 247.374

chosen plaintexts.

20Observe: prand · (1 − prand) + 35.593 · pAES · (1 − pAES) < prand + 35.593 · pAES < 36.593 ·
max(prand, pAES).
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Practical Results on small-scale AES. Since the previous result has been obtained under
the assumption that the distribution of AES is well approximated by a normal distribution,
we practically tested the probability of success of such distinguisher on a small-scale AES.
Using the same computation as before, it turns out that for small-scale AES – where
µAES4-bit = n · pAES4-bit and σ2

AES4-bit = 29.983 · n · pAES4-bit · (1− pAES4-bit) – one needs

n >
59.965 ·max(prand4-bit , pAES4-bit)

(prand4-bit − pAES4-bit)2 ·
[
erfinv

(
2 · prob− 1

)]2
.

different pairs of texts to set up the distinguisher with probability prob. In order to
have a probability of success higher than 95% and since prand4-bit ≈ pAES4-bit ≈ 2−14

and |prand4-bit − pAES4-bit | ≈ 2−22.68485, it follows that the number of pairs must satisfy
n ≥ 237.48. Since each coset of Di contains 216 different texts and approximately 231

different pairs, this means that the distinguisher requires 26.48 ' 90 cosets for a data cost
of 222.48 chosen plaintexts.

By practical tests on small-scale AES:

• 90 initial cosets of Di allows to distinguish small-scale AES from a random permuta-
tion with prob. 92% (close to 95% used before);

• 180 initial cosets of Di allows to distinguish small-scale AES from a random permu-
tation with prob. 98.5%;

• 270 initial cosets of Di allows to distinguish small-scale AES from a random permu-
tation with prob. 99.9%;

where the previous probability of success have been computed over 2 500 tests. The fact
that the probability of success is a little smaller than expected is well justified by the
approximation of the probability distribution for the AES case. Due to these results, due
to the similarity between small-scale AES and AES (e.g. the value of the skewness is
similar for these two cases – see Sect. 8) and just to have more confidence, we choose an
arbitrary value of 3 · 215.375 = 216.96 initial cosets in order to set up the distinguisher for
AES, for a data cost of 216.96 · 232 = 248.96 chosen plaintexts distributed in 216.96 initial
cosets of Dj .

The Computational Cost. We have just seen that 248.96 chosen plaintexts (i.e. 216.96

cosets of a diagonal subspace Di for i ∈ {0, 1, 2, 3}) are sufficient to distinguish a random
permutation from 5 rounds of AES, simply counting the number of pairs of ciphertexts that
belong to the same coset of IDJ for |J | = 3 and using the fact that this number is bigger
for AES. Here we give an estimation of the computational cost of the distinguisher, which is
(approximately) given by the cost to count the number of collisions. Using Algorithm 1, the
total computational cost can be well approximated by 252.6 table look-ups, or equivalently
246 five-round encryptions of AES (using the approximation21 20 table look-ups ≈ 1 round
of AES). All details can be found in App. D.1.

10 Property of the S-Box and 5-round Truncated Distin-
guisher based on the Mean

In this paper, we have presented a new truncated property for 5-round AES-like ciphers
in the case in which “the solutions of equation (1) are uniformly distributed for each

21Even if this approximation (largely used in the literature) is not formally correct – the size of the
table of an S-Box look-up is smaller than the size of the table used for our proposed distinguisher, it allows
to give a comparison between our distinguishers and the others currently present in the literature.
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input/output difference ∆I 6= 0 and ∆O 6= 0”, which is close to being true if the S-Box is
APN, or if the SBox is “close” to be APN. Even if no S-Box (completely) satisfies this
assumption in F24 or F28 , the theoretically results of Theorem 2 are matched by the practical
results obtained for the AES S-Box, which approximately satisfies the assumptions of such
Theorem (as discussed in Sect. 4.2). Thus, natural questions arise: What happens when
the AES S-Box is changed with an S-Box that does not satisfy (at all) the assumptions of
Theorem 2? Is it possible to naturally extend our results to any general case?

We have studied this problem working on small-scale AES, and by practical results the
answer to the second question seems to be negative. In other words, our theory does not
extend naturally to generic S-Box, but it should be modified depending on the particular
properties/details of the S-Box function.

10.1 Preliminary Considerations and Practical Results
Roughly speaking, the results/proof provided in Sect. 5 work under the assumption that –
for each non-null ∆I and ∆O – the variance of the probability distribution of the number
of solutions x of the equation S-Box(x⊕∆I)⊕ S-Box(x) = ∆O is close to zero. Obviously,
this cannot be the case. Since the variance of such distribution depends on the details of
the S-Box, we expect that our theoretical results match the practical ones when one works
with an S-Box that minimizes such variance. As already explained in Sect. 4.2, even if this
(almost) happens for an APN S-Box, note that the variance of such distribution for the
AES S-Box is very close to the variance of such distribution for an APN S-Box (“Variance
APN = 64004/65025” versus “Variance AES = 67064/65025”).

So, what happens in the case of an S-Box that do not satisfy the previous assumption?
Here we start an analysis in order to better understand which properties of the S-Box
play a crucial role when computing the average number of collisions for 5-round AES. In
more details, we did several practical tests by counting the average number of collisions
in the case in which the AES S-Box is replaced with other S-Box permutations present
in the literature - PRINCE [BCG+12], MIDORI [BBI+15], KLEIN [GNL12], PRESENT
[BKL+07], RECTANGLE [ZBL+15], NOEKEON [DPAR00] and PRIDE [ADK+14] - and
with some “toy” S-Boxes. For our tests, given 216 plaintexts with one active diagonal
(equivalently, in the same coset of Di for i ∈ {0, 1, 2, 3}), we counted the average number
of pairs of ciphertexts that are equal in one fixed anti-diagonal (equivalently, that belong
in the same coset of IDJ for J fixed with |J | = 3), and we computed the mean. The
obtained results are listed in Table 3, where we also highlight some properties of the
used S-Box (definitions and differential spectrum of the used S-Boxes are given in App.
G) and the difference between the number of collisions found by experiments and the
theoretical number 32 847.124 under the assumptions of Theorem 2 (while the average
number of collisions for a random permutation is 32 767.5). For each AES-like cipher, we
used 125 000 ' 217 different initial cosets (values given in the table are the average ones),
where new (random) keys are generated for each test.

We emphasize that, while all these AES-like ciphers satisfy the multiple-of-8 property,
for some of them the average number of collisions is bigger than for the case of a random
permutation (e.g. AES S-Box), while for others it is smaller (e.g. Toy-12 S-Box). This
supports again the independence of the multiple-of-8 property from the fact that the
average number of collisions is bigger for 5-round AES.

10.2 Observations and (possible) Explanation
As expected, the (absolute) difference between the found number of collisions and the
theoretical one seems to increase when the variance (of the S-Box) increases, while it seems
to be independent of the maximum differential probability DPmax. Moreover, the difference
between the theoretical number of collisions (given under the assumptions of Theorem 2,



34 Rigorous Analysis of Truncated Differentials for 5-round AES

Table 3: In the following table, we provide the results of our practical tests about the number
of different pairs of ciphertexts that belong to the same coset of MJ for J fixed with |J | = 3
when the AES S-Box is replaced by the S-Box of other ciphers. Together with the number of
collisions, we provide the most relevant properties of the S-Box (“Var” denotes the variance of
the probability distribution that describes the number of solutions of the eq. S-Box(x⊕∆I)⊕
S-Box(x) = ∆O – see also App. G for details) and the “Diff.” (= Difference) between the practical
and the theoretical number (= 32 847.124) of collisions - under the assumptions of Theorem 2.

AES-like Cipher Numb. Collisions Diff. 24 ×DPmax Var Homogeneous
AES S-Box 32 848.6 +1.5 4 344/225 3

KLEIN S-Box 32 849.8 +2.7 4 344/225
MIDORI SB1 S-Box 32 843.0 −4.10 4 344/225

PRINCE S-Box 32 852.7 +5.5 4 344/225
Toy-6 S-Box 32 840.1 −7.1 6 392/225

RECTANGLE S-Box 32 861.2 +14.0 4 416/225
NOEKEON S-Box 32 878.7 +31.6 4 416/225
MIDORI SB0 S-Box 32 882.8 +35.7 4 416/225
PRESENT S-Box 32 886.3 +39.2 4 416/225
PRIDE S-Box 32 806.6 −40.5 4 416/225
Toy-8 S-Box 32 815.7 −31.5 8 464/225
Toy-10 S-Box 32 919.0 +71.9 10 864/225
Toy-12 S-Box 32 684.1 −163.0 12 896/225

i.e. that the number of solutions n∆I ,∆O
of equation (1) are uniform distributed) and the

practical one is minimum when the S-Box almost satisfies the assumption of Theorem 2
(e.g. the AES S-Box).

To explain these results, we must refer to the proof of Theorem 2 given in Sect. 5.
The idea is to consider a system of 4 equations of the generic form (15), and to look
for common solutions. In the case in which the solutions (in particular, the number of
solutions n∆I ,∆O

) of equation (1) are uniformly distributed, the probability that a possible
solution satisfies all the 4 equations of the system is well approximated by (255−4 · 2−31)3,
as explained in the proof of Sect. 5. This allows to (theoretical) predict the average number
of common solutions, and so of collisions. Instead, in the case in which the solutions (in
particular, the number of solutions n∆I ,∆O

) of equation (1) are not uniform distributed
(e.g. if the variance of the S-Box is not “small”), the probability to have a common solution
is in general different from the one just given. As a result, the number of solutions of a
system of equations like (15) can be bigger or smaller w.r.t. the one given in Theorem 2
(and the difference can be also non-negligible). It follows that the number of collisions is
influenced by the details of the S-Box (as expected). As future work, an open problem is to
theoretically prove this conjecture about the link between the average number of collisions
and the variance of the S-Box, and to theoretically derive the numbers given in Table 3.

What about the distinguisher based on the variance (Sect. 6.1)? To compute the value
of the variance, we have exploited the “multiple-of-8” property [GRR17a], the properties
of the Variance (if X is a random variable and a a scalar, then V ar(α ·X) = α2 · V ar(X))
and the probability pAES that – given a pair of plaintexts in a coset of Di – two ciphertexts
are equal in one fixed anti-diagonal (eq. belong to the same coset of IDJ ) after 5 rounds.
This probability pAES proposed in Sect. 4.2 depends on the details of the S-Box, as we
have just seen. It follows that also the value of the variance depends on it. On the other
hand, we found by practical tests that the value of the variance changes much less than
the corresponding value of the mean when the S-Box changes. In general, the value of the
variance is “almost” independent of the details of the S-Box. Moreover, since the variance
for an AES-like cipher is much bigger than the one of a random permutation, the proposed
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distinguisher works even if the value of the variance is (a little) different than the one
given in Theorem 2.

10.3 MixColumns Dependence
Until now, we have focused only on the details of the S-Box. How does the average number
of collisions depend on the details of the MixColumns matrix?

MDS Matrix: “Good” vs “Bad” S-Box. We start by focusing on the case in which the
MixColumns matrix is MDS, and then we briefly discuss the other cases. If the S-Box
satisfies the assumptions of Theorem 2, then the average number of collisions is (almost)
independent of the MixColumns matrix details. Instead, if the S-Box does not satisfy the
previous requirement, this number depends also on the details of the MixColumns matrix.
In particular, in this last case the solutions (and the corresponding number n∆I ,∆O

) of
equation (1) are not uniform distributed with respect to ∆I 6= 0 and ∆O 6= 0, and so
the number of solutions of a system of 4 equations of the generic form (15) depends both
on the details of the S-Box and of the linear layer. Indeed, remember that a system of
equations of the generic form (15) depends on the coefficients of the MixColumns matrix,
and so also the fact that a common solution exists.

To give a practical example, consider the (circulant) MixColumns matrix defined as
MC = circ(0x01, 0x03, 0x02, 0x02), that is the AES MixColumns matrix where 0x01 is
replaced by 0x02 and vice-versa. We got that the number of collisions in the case of AES
S-Box is 32 850.32, while in the case of PRESENT S-Box is 32 872.95. Thus, a difference in
the MixColumns matrix implies almost no difference for the AES S-Box case (on average,
there are +1.75 collisions for this new MDS matrix), while a higher difference occurs for
the PRESENT S-Box case (on average, there are −13.37 collisions for this new MDS
matrix). Again, this is due to the fact that the probability that a system of 4 equations of
the generic form (15) admits a common solution depends both on the details of the S-Box
and of the linear layer, in the case in which the S-Box is not “good” (w.r.t. assumptions of
Theorem 2). Similar results can be obtained using different MDS MixColumns matrices.

Non-MDS Matrix. Finally, if the AES MixColumns matrix is replaced by an “al-
most MDS” one (which does not satisfy the assumptions of Theorem 2), then the
number of collisions can be different with respect to the one predicted by Theorem
2 also in the case of “good” S-Box. As example, using the Midori matrix MCMidori =
circ(0x00, 0x01, 0x01, 0x01) and the AES S-Box, the number of collisions after 5 rounds is
on average 31 883.27 (instead of a theoretical number of 32 847.124). The same occurs also
using a MixColumns matrix which is not MDS and for which all coefficients are different
than zero. E.g. using the matrix circ(0x02, 0x01, 0x01, 0x01) and the AES S-Box, the
number of collisions after 5 rounds is on average 33 377.93 (instead of a theoretical number
of 32 847.124).

11 Open Problems
To conclude, we collect and list the main open problems that arise from this paper.

Distinguisher based on the Mean: “APN-like” Assumption and Other Problems

• In order to theoretically describe the 5-round AES truncated diff. distinguisher based
on the mean, we need particular assumptions on the S-Box, which are related to the
fact that the number of solutions x of the equation S-Box(x⊕∆I)⊕ S-Box(x) = ∆O

are uniformly distributed for each non-null input/output difference ∆I ,∆O. Given
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the probability distribution of the number of solutions of such equation, a relation
exists between the fact that its variance is “small” and that the solutions are uniform
distributed.
On the other hand, consider the practical results on small-scale AES proposed in
Sect. 10. The just given property on the variance of such distribution seems not
to be sufficient to describe such results. E.g. focusing on the average number of
collisions for different “S-Boxes with the same variance” – Table 3, it turns out that
the average number of collisions is not (approximately) equal for all the “S-Boxes
with the same variance”, as we should expect.
An open problem is to understand which parameters/properties of the S-Box really
influence the average number of collisions for 5-round AES (equivalently, play a
crucial role on the fact that the solutions of the equation (1) are uniformly distributed
for each non-zero input/output difference). Is it possible to theoretically compute a
confidence interval [M−m,M+m] – which depends on the these parameters/properties
of the S-Box – such that all average numbers of collisions given in Table 3 fall into
such interval with high probability?

• The 5-round AES truncated differential distinguisher based on the mean seems to
depend also on the details of the MixColumns matrix. It could be interesting to
better understand this fact: which details of the MixColumns matrix influence –
especially in the case of “bad” S-Boxes – the average number of collisions for 5-round
AES? Is it possible to better estimate the average number of collisions taking into
account these details? Is it possible to theoretically compute the average number of
collisions – equivalently, to reformulate the proof given in Sect. 5 – using a “weaker”
assumption than the MDS one? Is it possible to theoretically predict the average
number of collisions when working with a matrix22 which is not MDS?

• Let’s focus again on the 5-round AES truncated differential distinguisher based on
the mean, in particular on its proof. In order to theoretically compute the average
number of collisions, we focus and work only on the middle round of

DI ⊕ δ
R2(·)−−−−→

prob. 1
MI ⊕ ω

R(·)−−→ DJ ⊕ δ′
R2
f (·)

−−−−→
prob. 1

IDJ ⊕ ω′.

In particular, given two plaintexts p1, p2 ∈MI ⊕ ω, the fact that they belong to the
same coset of DJ after one round – that is, R(p1)⊕R(p2) ∈ DJ – can be re-written
as a system of equations that involves the S-Box operation of the form⊕

{i,j}∈I

Ai,j ×
[
S-Box(Bi,j · p1

i,j ⊕ Ci,j)⊕ S-Box(Bi,j · p2
i,j ⊕ Ci,j)

]
= 0

for a set of index I and for some constants A,B,C (which depend only on the
MixColumns matrix and on the secret key). A similar analysis can be performed
for 6-round AES, by replacing the S-Box operation with the “super-Sbox” notation,
where

super-Sbox(·) = S-Box ◦ARK ◦MC ◦ S-Box(·).
Indeed, note that (1st) 6-round AES can be re-written as

DI ⊕ δ
R2(·)−−−−→

prob. 1
MI ⊕ ω

R2(·)−−−→ DJ ⊕ δ′
R2
f (·)

−−−−→
prob. 1

IDJ ⊕ ω′,

and (2nd) given two plaintexts p1, p2 ∈ MI ⊕ ω, the fact that they belong to the
same coset of DJ after two rounds - that is, R2(p1)⊕R2(p2) ∈ DJ - can be re-written

22Note that the MixColumns matrix of many AES-like lightweight ciphers in the literature is not MDS.
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as a system of equations (similar to the one just given) that involves the super-Sbox.
An open problem is to modify the proof given in Sect. 5 in order to get a similar
result about the average number of collisions for 6-round AES. Is it possible to set
up a truncated differential distinguisher for 6-round AES which is independent of the
secret key?

Distinguisher based on the Variance and on the Skew

• In Sect. 9.1, we propose the first truncated differential distinguisher based on the
variance which is (much) more competitive - both for the computational and data
costs - than the corresponding one based on the mean. However, an open problem is
to formally study the probability of success of such distinguisher. Is it possible to set
up similar distinguishers for other ciphers?

• As highlighted in Sect. 8, the skewness of the probability distribution of 5-round
AES is different from the one of a random permutation. In particular, the bias in
the skewness seems to be stronger than the bias in the mean. As a result, also this
parameter could be potentially used to set up distinguishers and/or key-recovery
attacks. The problem to theoretically compute the value of the skewness of such
probabilistic distributions is open for future research: does it depend on the details
of the S-Box?
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A Subspace Trails Cryptanalysis for AES
In this section, we recall few details about the subspace trails of AES presented in [GRR17b].
Let F denote a round function in an iterative block cipher and let V ⊕ a denote a coset
of a vector space V . Then if F (V ⊕ a) = V ⊕ a we say that V ⊕ a is an invariant coset
[LAAZ11] of the subspace V for the function F . As shown in [GRR17b], this concept can
be generalized to trails of subspaces.

Definition 2. Let F denote a round function in an iterative block cipher and let
(V1, V2, ..., Vr+1) denote a set of r + 1 subspaces with dim(Vi) ≤ dim(Vi+1). If for
each i = 1, ..., r and for each ai, there exists ai+1 s.t. F (Vi ⊕ ai) ⊆ Vi+1 ⊕ ai+1, then
(V1, V2, ..., Vr+1) is subspace trail of length r for the function F .

This means that if F t denotes the application of t rounds with fixed keys, then
F t(V1 ⊕ a1) ⊆ Vt+1 ⊕ at+1.

Subspace Trails for AES. In the following, we only work with vectors and vector spaces
over F4×4

28 , and we denote by {e0,0, ..., e3,3} the unit vectors of F4×4
28 (e.g. ei,j has a single

1 in row i and column j).

Definition 3. The column spaces Ci are defined as Ci = 〈e0,i, e1,i, e2,i, e3,i〉.

For instance, C0 corresponds to the symbolic matrix

C0 =
{

x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 ∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
≡


x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 .
Definition 4. The diagonal spaces Di are defined as Di = SR−1(Ci). Similarly, the
inverse-diagonal spaces IDi are defined as IDi = SR(Ci).

For instance, D0 and ID0 correspond to symbolic matrix

D0 ≡


x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

 , ID0 ≡


x1 0 0 0
0 0 0 x2
0 0 x3 0
0 x4 0 0


for all x1, x2, x3, x4 ∈ F28 .

Definition 5. The i-th mixed spaces Mi are defined asMi = MC(IDi).

For instance,M0 corresponds to symbolic matrix

M0 ≡


0x02 · x1 x4 x3 0x03 · x2

x1 x4 0x03 · x3 0x02 · x2
x1 0x03 · x4 0x02 · x3 x2

0x03 · x1 0x02 · x4 x3 x2


for all x1, x2, x3, x4 ∈ F28 .

Definition 6. For I ⊆ {0, 1, 2, 3}, let CI , DI , IDI andMI be defined as

CI =
⊕
i∈I
Ci, DI =

⊕
i∈I
Di, IDI =

⊕
i∈I
IDi, MI =

⊕
i∈I
Mi.
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As shown in detail in [GRR17b], for any coset DI ⊕ a there exists unique b ∈ C⊥I such
that R(DI ⊕ a) = CI ⊕ b. Similarly, for any coset CI ⊕ a there exists unique b ∈M⊥I such
that R(CI ⊕ a) =MI ⊕ b.

Theorem 4 ([GRR17b]). For each I ⊆ {0, 1, 2, 3} and for each a ∈ D⊥I , there exists one
and only one b ∈M⊥I s.t. R2(DI ⊕ a) =MI ⊕ b.

We refer to [GRR17b] for a complete proof of this theorem, and we limit ourselves to
emphasize that b depends on the initial coset of DI defined by a and on the secret key k.

Observe that if X is a subspace, X ⊕ a is a coset of X and x and y are two elements of
the (same) coset X ⊕ a, then x⊕ y ∈ X. It follows that:

Lemma 3. For all x, y and for all I ⊆ {0, 1, 2, 3}:

Prob(R2(x)⊕R2(y) ∈MI |x⊕ y ∈ DI) = 1.

We finally recall that for each I, J ⊆ {0, 1, 2, 3} then MI ∩ DJ = {0} if and only if
|I|+ |J | ≤ 4, as demonstrated in [GRR17b]. It follows that:

Theorem 5 ([GRR17b]). Let I, J ⊆ {0, 1, 2, 3} such that |I|+ |J | ≤ 4. For all x, y:

Prob(R4(x)⊕R4(y) ∈MI |x⊕ y ∈ DJ , x 6= y) = 0.

B Number of Collisions – Random Permutation
Consider 232 plaintexts in the same coset of a diagonal space Di. In Sect. 5, we ap-
proximately compute the number of different pairs of ciphertexts generated by a random
permutation that belong to the same coset ofMJ after 5-round for |J | = 3 (or in the same
coset of IDJ if the MixColumns matrix is omitted). This number is approximately given
by (

232

2

)
· 2−32 ' 2 147 483 647.5 = 231 − 2−1.

Here we show that this is a good approximation.
In the previous computation, we assume that all the pairs are independent. However,

this is not the case. Indeed, consider three texts, that is t1, t2 and t3, and the corresponding
three couples, that is (t1, t2), (t1, t3) and (t2, t3). Three possible events can happen:

• if t1 ⊕ t2 ∈MJ and t1 ⊕ t3 ∈MJ , then t2 ⊕ t3 ∈MJ with probability 1 (sinceMJ

is a subspace);

• if t1⊕ t2 ∈MJ and t1⊕ t3 /∈MJ (or vice-versa), then t2⊕ t3 /∈MJ with probability
1 (sinceMJ is a subspace);

• if t1⊕t2 /∈MJ and t1⊕t3 /∈MJ , then both the events t2⊕t3 ∈MJ and t2⊕t3 /∈MJ

are possible; in particular, t2 ⊕ t3 ∈MJ with approximately prob. 2−32·(4−|J|).

On the other hand, what is the probability that a pair of texts (p, q) satisfy p⊕ q ∈MJ?
In the following, we prove that such probability is equal to 2−32·(|J|−4).

To answer the previous question, first of all, it is important to focus on the previous
last event and to theoretically compute a better approximation of this probability. For
our goal, we focus on the case |J | = 3 with J fixed. We are going to show that the last
probability is well approximated by 2−32 · (1 − 2−32)−1. Since t1 ⊕ t2 /∈ MJ , it follows
that the difference on the J-th anti-diagonal is different from (0,0,0,0), i.e. they can take
only one of 232 − 1 possible values different from (0,0,0,0). Similar consideration holds
for t1 ⊕ t3 /∈MJ . Since t2 ⊕ t3 = (t1 ⊕ t2)⊕ (t1 ⊕ t3), it follows that the difference of the
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J-th anti-diagonal of t2 ⊕ t3 is equal to zero if the difference of the J-th anti-diagonal of
t1 ⊕ t2 is equal to the difference of the J-th anti-diagonal of t1 ⊕ t3. Since this happens
with probability (232 − 1)−1, it follows that the probability that t1 ⊕ t3 ∈MJ is

(232 − 1)−1 = 2−32 · (1− 2−32)−1 ≈ 2−32 + 2−64 − 2−96 + ...

To have more confidence about this fact, note that:

• t1 ⊕ t2 ∈MJ , t1 ⊕ t3 ∈MJ and t2 ⊕ t3 ∈MJ occurs with probability (2−32)2;

• t1⊕t2 ∈MJ , t1⊕t3 /∈MJ and t2⊕t3 /∈MJ occurs with probability 2−32 ·(1−2−32)
(similar for the other 3 cases);

• t1 ⊕ t2 /∈MJ , t1 ⊕ t3 /∈MJ and t2 ⊕ t3 /∈MJ occurs with probability (1− 2−32)2 ·
(1− 2−32 · (1− 2−32)−1).

All the other cases have probability 0 (sinceMJ is a subspace). By simple computation,
the probability of all the possible events is equal to

(2−32)2 + 3 · 2−32 · (1− 2−32) + (1− 2−32)2 · (1− 2−32 · (1− 2−32)−1) = 1,

as expected. In other words, if one uses the probability (1− 2−32)3 for the last case, it
follows that the probability of all the possible events is equal to 1−2−96, which is obviously
wrong.

Thus, what is the probability that t2 ⊕ t3 ∈ MJ? Remember that given the events
A1, ..., An in a probability space (Ω,F ,P)

Prob

( n⋃
i=1

Ai

)
=

n∑
k=1

(
(−1)k−1

∑
J⊂{1,...,n}, |J|=k

Prob
(⋂
j∈J

Aj
))
,

where the last sum runs over all subsets J of the indexes 1, ..., n which contain exactly k
elements. Thus:

Prob(t2 ⊕ t3 ∈MJ) = 2−32 · 2−32 · 1︸ ︷︷ ︸
1st Case

+ 2 · 2−32 · (1− 2−32) · 0︸ ︷︷ ︸
2nd Case

+

+ (1− 2−32)2 · 2−32 · (1− 2−32)−1︸ ︷︷ ︸
3rd Case

= 2−32.

It follows that even if the pairs are not independent, the number of collisions is well
approximated by (

232

2

)
· 2−32 ' 2 147 483 647.5 = 231 − 2−1.

Our practical experiments made for the small-scale AES also confirm this fact.

C Truncated Differential on 5-round AES: MDSMixColumns
Matrix

In Sect. 5, we briefly explained why we require the MixColumns matrix to be MDS in
order to compute the average number of collisions over 5-round AES. Here we focus on
the case in which the MixColumns matrix is not MDS and it has no null coefficients.

As we have already said, consider a system of four equations of the form (12) or (15).
If there exists a r × r submatrix (for 2 ≤ r ≤ 3) whose determinant is equal to zero, this
fact can have effects on the probability that the studied system of four equations has a
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common solutions. In particular, it can happen that the solutions of different equations of
this system are not unrelated/independent, as instead assumed in the previous proof in
order to compute the probability that different equations admit the same solutions.

To better understand this fact, we show a concrete example. Consider the MixColumns
matrix MC = circ(1, 1, 1, 2) ∈ (F2n)4×4 for n ≥ 4, which is not-MDS, it is invertible and
all coefficients are (obviously) different from zero. Moreover, let’s focus for simplicity
on 22n texts in (M0 ∩ C0,1) ⊕ a (similar arguments hold also for the case of 24n texts
in M0). As shown in Sect. 5, p1 ≡ 〈x1, y1〉, p2 ≡ 〈x2, y2〉 ∈ (M0 ∩ C0,1) ⊕ a satisfy
R3(p1)⊕R3(p2) ∈ IDJ for a certain J with |J | = 3 if and only if

(R(p1)⊕R(p2))0,0 = S-Box(x1 ⊕ a0,0)⊕ S-Box(x2 ⊕ a0,0)⊕
⊕ S-Box(y1 ⊕ a1,1)⊕ S-Box(y2 ⊕ a1,1) = 0,

(R(p1)⊕R(p2))1,1 = S-Box(2 · x1 ⊕ a3,0)⊕ S-Box(2 · x2 ⊕ a3,0)⊕
⊕ S-Box(2 · y1 ⊕ a0,1)⊕ S-Box(2 · y2 ⊕ a0,1) = 0,

(R(p1)⊕R(p2))2,2 = S-Box(x1 ⊕ a2,0)⊕ S-Box(x2 ⊕ a2,0)⊕
⊕ S-Box(y1 ⊕ a3,1)⊕ S-Box(y2 ⊕ a3,1) = 0,

(R(p1)⊕R(p2))3,3 = S-Box(x1 ⊕ a1,0)⊕ S-Box(x2 ⊕ a1,0)⊕
⊕ S-Box(y1 ⊕ a2,1)⊕ S-Box(y2 ⊕ a2,1) = 0.

Focusing e.g. on the last two equations, it’s very simple to observe that they can be
re-written as

S-Box(X2 ⊕∆X)⊕ S-Box(X2)⊕ S-Box(Y 2 ⊕∆Y )⊕ S-Box(Y 2) = 0
S-Box(X3 ⊕∆X)⊕ S-Box(X3)⊕ S-Box(Y 3 ⊕∆Y )⊕ S-Box(Y 3) = 0

where

X2 = x1⊕a2,0, X
3 = x1⊕a1,0,∆X = x1⊕x2, Y 2 = y1⊕a3,1, Y

3 = y1⊕a2,1,∆Y = y1⊕y2.

The crucial point here is that ∆X (and ∆Y ) is equal for the two equations (which does not
occur for a non-MDS matrix).

Now, assume that a solution of the first/second equation is given by

X2 = X ′, X
′′
; ∆X = ∆̂X ; Y 2 = Y ′, Y

′′
; ∆Y = ∆̂Y ,

where note that for each non-null ∆I
X ,∆O

X there exist an even number of solutions X of
S-Box(X ⊕∆I

X)⊕ S-Box(X) = ∆O
X . Focusing on the x-variables (similar for y), it follows

that

• solutions of (R(p1)⊕R(p2))2,2 = 0:

(x1 = X ′⊕ a2,0, x2 = X ′⊕ ∆̂X ⊕ a2,0) or (x1 = X
′′
⊕ a2,0, x2 = X

′′
⊕ ∆̂X ⊕ a2,0)

• solutions of (R(p1)⊕R(p2))3,3 = 0:

(x1 = X ′⊕ a3,1, x2 = X ′⊕ ∆̂X ⊕ a3,1) or (x1 = X
′′
⊕ a3,1, x2 = X

′′
⊕ ∆̂X ⊕ a3,1)

It follows that

X ′ ⊕ a2,0 = X ′ ⊕ a3,1 if and only if X ′ ⊕ ∆̂X ⊕ a2,0 = X ′ ⊕ ∆̂X ⊕ a3,1

and

X ′ ⊕ a2,0 = X
′′
⊕ a3,1 if and only if X ′ ⊕ ∆̂X ⊕ a2,0 = X

′′
⊕ ∆̂X ⊕ a3,1
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and so on. Assuming x1 6= x2 (we are working inM0 ∩ C0,1), the consequence of this fact
is that the probability that a solution (x1, x2) of (R(p1)⊕R(p2))2,2 = 0 is also a solution
of (R(p1)⊕R(p2))3,3 = 0 is (a little) higher than 2−n · (2n − 1)−1 as given in the proof of
Sect. 5. The same happens for the y variable.

To summarize, in the case in which the MixColumns matrix is not MDS, the solutions of
one equation (R(p1)⊕R(p2))·,· = 0 can be related to the solutions of the other equations. In
more details, if there is a submatrix whose determinant is zero, a particular relation among
the equations can occur, which implies that particular relations between the solutions of
different equations (R(p1)⊕R(p2))·,· = 0 can occur. As a result, the probability that a
solution of (R(p1) ⊕ R(p2))·,· = 0 is also a solution of another equation of the studied
system of equations can be smaller/bigger than the probability given and exploited in
the proof of Sect. 5. This is not the case of an MDS MixColumns matrix, where one can
assume that the solutions of different equations of the studied system of equations are
unrelated/independent.

Practical Example. To provide a practical example of the previous argument, we tested
the average number of collisions for small-scale AES, as described in [CMR05]. In particular,
we tested it using both AES MixColumns matrix and using the MixColumns matrix
MC = circ(1, 1, 1, 2), as given in the previous case.

Working with texts in a coset ofM0 ∩ C0,1, we found that

• for AES MixColumns matrix, the practical average number of collisions after 1 round
is 0.577 (the theoretical number of collisions for this case is 0.569 – see App. E)

• for the MixColumns matrix MC = circ(1, 1, 1, 2), the practical average number of
collisions after 1 round is 0.684

(the average has been computed over 217 initial cosets). This gap is justified by the
arguments given in this section.

D Computational Cost of Algorithm 1
Here we explain the details of Algorithm 1 used in Sect. 9.1 and Sect. 9.3 to count the
different number of pairs of ciphertexts that belong to the same coset of IDJ for |J | = 3.

Assume the final MixColumns operation is not omitted. For each initial coset of DI
the two steps of the distinguisher are (1st) construct all the possible pairs of ciphertexts
and (2nd) count the number of collisions. First of all, note that the major cost of this
distinguisher regards the construction of all the possible different pairs, which corresponds
to the first step.

The basic idea is to implement the distinguisher using a data structure. Assume
J ⊆ {0, 1, 2, 3} is fixed. The goal is to count the number of pairs of ciphertexts (c1, c2)
such that c1 ⊕ c2 ∈ IDJ , or equivalently

c1i,j−i = c2i,j−i ∀i = 0, 1, 2, 3 (26)

where j = {0, 1, 2, 3} \ J , and the index is computed modulo 4. To do this, consider an
array A of 232 elements completely initialized to zero. The element of A in position x for
0 ≤ x ≤ 232 − 1 - denoted by A[x] - represents the number of ciphertexts c that satisfy the
following equivalence (in the integer field N):

x = c0,0−j + 256 · c1,1−j + c2,2−j · 2562 + c3,3−j · 2563.

It’s simple to observe that if two ciphertexts c1 and c2 satisfy (26), then they increment
the same element x of the array A. It follows that given r ≥ 0 texts that increment the
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same element x of the array A, then it is possible to construct
(
r
2
)

= r·(r−1)
2 different pairs

of texts that satisfy (26). The complete pseudo-code is given in Algorithm 1.
What is the total computational cost of this procedure? Given a set of 232 (plaintexts,

ciphertexts) pairs, one has first to fill the array A using the strategy just described, and
then to compute the number of total of pairs of ciphertexts that satisfy the property, for
a cost of 3 · 232 = 233.6 table look-ups - each one of these three operations require 232

table look-ups. Since one has to repeat this algorithm 4 times - i.e. one time for each
IDJ , or equivalently one time for each one of the four anti-diagonal, the total cost is of
4 · 233.6 = 235.6 table look-ups, or equivalently 229 five-round encryptions of AES (using
the approximation23 20 table look-ups ≈ 1 round of AES).

Finally, if one has to repeat this procedure for 2n different cosets, the total cost is given
by 2n · 235.6 ' 235.6+n table look-ups.

D.1 Details of the Secret-Key Distinguisher of Sect. 9.3
The same algorithm is used to implement the “mean value” secret-key distinguisher
proposed in Sect. 9.3. We refer to that section for all the details, and we focus here on
the details about the computational cost. As shown in Sect. 9.3, 247.374 chosen plaintexts
(i.e. 215.374 cosets of DI with |I| = 1) are sufficient to distinguish a random permutation
from 5 rounds of AES, simply counting the number of pairs of ciphertexts that belong
to the same coset of IDJ for |J | = 3 and using the fact that this number is bigger for
AES. Here we give an estimation of the computational cost of the distinguisher, which is
approximately given by the cost to count the number of collisions. Using Algorithm 1, the
total computational cost can be well approximated by 251 table look-ups, or equivalently
244.34 five-round encryptions of AES.

In more detail, given a set of 232 (plaintexts, ciphertexts) pairs, one has first to fill the
array A using the strategy just described, and then to compute the number of total of
pairs of ciphertexts that satisfy the property, for a cost of 3 · 232 = 233.6 table look-ups -
each one of these three operations require 232 table look-ups. Since one has to repeat this
algorithm 4 times - i.e. one time for each one of the four anti-diagonal, the total cost is of
4 · 233.6 = 235.6 table look-ups, or equivalently 229 five-round encryptions of AES (using
the approximation 20 table look-ups ≈ 1 round of AES). Finally, since one has to repeat
this procedure for 215.374 different cosets, the total cost is given by 215.374 · 235.6 ' 251

table look-ups, or equivalently 244.34 five-round encryptions of AES.

E Probability distribution for 5-round AES over (F2n)4×4

Preliminary Considerations. First of all, given a coset of Ci of 24n chosen texts with one
active column, we compute the number of different pairs of texts with v equal generating
variables for 0 ≤ v ≤ 3. Note that given a coset of Ci of 24n chosen plaintexts, one can
construct 24n−1 · (24n − 1) ' 28n−1 different pairs. Among them, the number of pairs of
texts with 0 ≤ v ≤ 3 equal generating variables (and 4− v different generating variables)
after one round is given by (

4
v

)
· 24n−1 · (2n − 1)4−v.

Indeed, if v variables are equal for the two texts of the couple, then they can take (2n)v
different values. For each one of the remaining 4 − v variables, the variables must be
different for the two texts of each couple. Thus, these 4 − v variables can take exactly

23We highlight that even if this approximation is not formally correct - the size of the table of an
S-Box look-up is smaller than the size of the table used for our proposed distinguisher, it allows to give a
comparison between our proposed distinguisher and the others currently present in the literature. At the
same time, we note that the same approximation is largely used in the literature.
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[
2n · (2n − 1)

]4−v
/2 different values. The result follows immediately since there are

(4
v

)
different combinations of v variables.

For the follow-up:

n3 =
(

4
0

)
·24n−1·(2n−1)4, nn+2 =

(
4
1

)
·24n−1·(2n−1)3, n2n+1 =

(
4
2

)
·24n−1·(2n−1)2.

E.1 Average Number of Collisions
In this section we compute the average number of collisions for 5-round AES defined over
(F2n)4×4. Since the idea of the proof is the same of the one given in Sect. 5, we limit
ourselves to adapt it to the case of AES defined over (F2n)4×4. Since

DI ⊕ a′
R2(·)−−−−→

prob. 1
MI ⊕ b′

R(·)−−→ DJ ⊕ a′′
R2
f (·)

−−−−→
prob. 1

IDJ ⊕ b′′.

the idea is to work only on the middle round. That is, in the following we consider 232

plaintexts in the same coset ofMi for i ∈ {0, 1, 2, 3} and we compute the average number
of collisions after one round in the same coset of DJ for |J | = 3 fixed.

For simplicity, we limit ourselves to consider plaintexts in the same coset of M0
and the diagonal space D1,2,3 (the other cases are analogous). By definition of M0 if
p1, p2 ∈M0 ⊕ b′, there exist xi, yi, zi, wi ∈ F28 for i = 1, 2 such that:

pi = b′ ⊕


2 · xi yi zi 3 · wi
xi yi 3 · zi 2 · wi
xi 3 · yi 2 · zi wi

3 · xi 2 · yi zi wi


where 2 ≡ 0x02 and 3 ≡ 0x03. In the following we say that p1 is “generated” by the
variables (x1, y1, z1, w1) and that p2 is “generated” by the variables (x2, y2, z2, w2) - we
denote it by pi ≡ (xi, yi, zi, wi) for i = 1, 2.

The idea is to consider separately the following cases

• 3 variables are equal, e.g. x1 6= x2 and y1 = y2, z1 = z2, w1 = w2;

• 2 variables are equal, e.g. x1 6= x2,y1 6= y2 and z1 = z2, w1 = w2;

• 1 variable is equal, e.g. x1 6= x2, y1 6= y2, z1 6= z2 and w1 = w2;

• all variables are different, e.g. x1 6= x2, y1 6= y2, z1 6= z2, w1 6= w2.

As we have already seen, if y1 = y2, z1 = z2 and w1 = w2, then p1 ⊕ p2 ∈ C0, that is
R(p1)⊕R(p2) ∈ M0. By Theorem 5, it follows that R(p1)⊕R(p2) /∈ DJ for each J . In
the following we limit ourselves to consider the case in which at least 2 generating variables
are different.

Case: 22·n Texts with Two Equal Generating Variables

As first case, we consider the case of 22n plaintexts in the same coset of C0,1 ∩M0 (the
other cases are equivalent). This is equivalent to consider texts with (at least) 2 equal
generating variables, e.g. x1 6= x2, y1 6= y2, z1 = z2 and w1 = w2.

Thus, consider two plaintexts p1 generated by (x1, y1, 0, 0) and p2 generated by
(x2, y2, 0, 0) in (C0,1 ∩M0) ⊕ b′. By simple computation, R(p1) ⊕ R(p2) ∈ D1,2,3 if four
equations of the form

A · (S-Box(B · x1 ⊕ a)⊕ S-Box(B · x2 ⊕ a))⊕
⊕C · (S-Box(D · y1 ⊕ c)⊕ S-Box(D · y2 ⊕ c)) = 0

(27)
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are satisfied, where A,B,C,D depend only on the MixColumns matrix definition, while a, c
depend on the secret key and on the initial constant that defines the coset. Equivalently,
four systems of two equations as follows must be satisfied

S-Box(x⊕∆I)⊕ S-Box(x) = ∆O

S-Box(y ⊕∆′I)⊕ S-Box(y) = ∆′O (28)

∆O = C−1 ·A·∆
′′

O

Due to the same argumentation given in Sect. 5, the number of different (not null)
solutions [(x1, y1), (x2, y2)] of eq. (28) is approximately given by

1
2 · (2

n − 1) ·
(

2n

2n − 1 · (2
n − 1)

)2
= (2n − 1) · 22n−1

independently of the details of the S-Box. Indeed, observe that given ∆O 6= 0, each one of
the two equations (28) for small-scale AES admit 2n

2n−1 · (2
n − 1) = 2n different solutions

(x̂,∆I) - resp. (ŷ,∆′I) - where ∆I ,∆′I 6= 0 and 2n/(2n − 1) is the average number of
solutions. Moreover, note that there are (2n − 1) values of ∆O 6= 0 and that the condition
y1 < y2 holds.

Given the number of solutions of eq. (28), what is the number of common - different
(not null) - solutions [(x1, y1), (x2, y2)] of 4 equations of the form (27)? Due to the same
argumentation given in Sect. 5, this probability is equal to [2n · (2n − 1)]−1 · [(2n − 1) ·
2n−1]−1 = (2n − 1)−2 · 2−2n+1.

In conclusion, the number of common - different (not null) - solutions [(x1, y1), (x2, y2)]
of 4 equations of the form (27) is approximately given by

[(2n − 1) · 22n−1]4 · [(2n − 1)−2 · 2−2n+1]3 = 22n−1

(2n − 1)2

Case: 23·n Texts with One Equal Generating Variable

As second case, we consider the case of 23n plaintexts in the same coset of C0,1,2 ∩M0
(the other cases are equivalent). This is equivalent to consider texts with (at least) one
equal generating variable, e.g. x1 6= x2, y1 6= y2, z1 6= z2 and w1 = w2.

As before, given two plaintexts p1, p2 ∈ (C0,1,2 ∩M0) ⊕ b′, they belong to the same
coset of the diagonal space D1,2,3 if 4 equations of the form

A · (S-Box(B · x⊕ b)⊕ S-Box(B · x′ ⊕ b))⊕
⊕C · (S-Box(D · y ⊕ d)⊕ S-Box(D · y′ ⊕ d))⊕ (29)
⊕E · (S-Box(F · z ⊕ f)⊕ S-Box(F · z′ ⊕ f)) = 0

are satisfied, where A,B,C,D,E, F depend only on the MixColumns matrix definition,
while b, d, f depend on the secret key and on the initial constant that defines the coset.
Each one of these equations is equivalent to

S-Box(x⊕∆I)⊕ S-Box(x) = ∆O

S-Box(y ⊕∆′I)⊕ S-Box(y) = ∆′O
S-Box(z ⊕∆

′′

I )⊕ S-Box(z) = ∆
′′

O

together with one of the two following conditions:

1. ∆′′O = 0 and ∆′O = C−1 ·A ·∆O, or analogous (3 possibilities);
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2. ∆O,∆′O,∆
′′

O 6= 0, and ∆′′O = E−1 · (A ·∆O ⊕ C ·∆′O).

First Case. The first case is analogous to the case in which two generating variables
are equal. For this reason, we can re-use the same calculation as before. It follows that
the average number of not null - common solutions of this case is(

3
1

)
· 2n · 22n−1

(2n − 1)2 = 3 · 23n−1

(2n − 1)2

Second Case. For the second case, the idea is to work as for the cases of 1 equal generat-
ing variables. For each eq. (29) the number of different solutions [(x1, y1, z1), (x2, y2, z2)] -
where z1 < z2 - is given by (2n−1)·(2n−2)· 12 ·

(
(2n − 1) · 2n

2n−1

)3
= 23n ·(2n−1)·(2n−1−1).

Moreover, using the same argumentation as before, the probability to have a common
solution for two equations of the form (29) is given by [2n · (2n−1)]−2 · [2n−1 · (2n−1)]−1 =
(2n − 1)−3 · 2−3n+1 under the given assumptions of the S-Box. It follows that we expect
on average[

23n · (2n − 1) · (2n−1 − 1)
]4 · [(2n − 1)−3 · 2−3n+1]3 = 23n+3 · (2n−1 − 1)4

(2n − 1)5

different - not null - common solutions for the 4 equations of the form (29).

Total Number of Different (not null) Common Solutions – 23n Texts in a
Coset of C0,1,2 ∩ M0 By simple computation, given plaintexts in the same coset of
C0,1,2 ∩M0, the number of different pairs of ciphertexts that belong to the same coset of
D1,2,3 is approximately

23n+3 · (2n−1 − 1)4

(2n − 1)5 + 3 · 23n−1

(2n − 1)2 = 23n+3 · (2n−1 − 1)4 + 3 · 23n−1 · (2n − 1)3

(2n − 1)5

Generic Case: 24·n Texts

Finally, we consider the case of 24n texts in a coset ofM0. This is equivalent to consider
texts with (at most) all different generating variables, e.g. x1 6= x2, y1 6= y2, z1 6= z2 and
w1 6=2.

As before, given two plaintexts p1, p2 ∈ M0 ⊕ b′, they belong to the same coset of
D1,2,3 if four equations of the form

A · (S-Box(B · x⊕ b)⊕ S-Box(B · x′ ⊕ b))⊕
⊕C · (S-Box(D · y ⊕ d)⊕ S-Box(D · y′ ⊕ d))⊕
⊕E · (S-Box(F · z ⊕ f)⊕ S-Box(F · z′ ⊕ f))⊕
⊕G · (S-Box(H · w ⊕ h)⊕ S-Box(H · w′ ⊕ h)) = 0

are satisfied, where A,B,C,D,E, F,G,H depend only on the MixColumns matrix defini-
tion, while b, d, f, h depend on the secret key and on the constant that defined the initial
coset. Each one of these equations is equivalent to:

S-Box(x⊕∆I)⊕ S-Box(x) = ∆O

S-Box(y ⊕∆′I)⊕ S-Box(y) = ∆′O
S-Box(z ⊕∆

′′

I )⊕ S-Box(z) = ∆
′′

O

S-Box(w ⊕∆
′′′

I )⊕ S-Box(w) = ∆
′′′

O

together with one of the following conditions
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1. ∆′′′O = ∆′′O = 0 and ∆′O = C−1 ·A ·∆O 6= 0 or analogous (6 possibilities);

2. ∆′′′O = 0, ∆O,∆
′

O,∆
′′

O 6= 0 and ∆′′O = E−1 · (A · ∆O ⊕ C · ∆′O) or analogous (4
possibilities);

3. ∆O,∆
′

O,∆
′′

O,∆
′′′

O 6= 0 and ∆′′′O = G−1 · (A ·∆O ⊕ C ·∆′O ⊕ E ·∆
′′

O).

Since the first two cases are analogous to the previous two cases already studied, we can
re-use the same calculation.

First Case. In the first case, ∆′′O = 0 implies ∆′′I = 0 and z can take each possible value
(similar for w).

Using the same computations as before, it follows that the average number of not null -
common solutions of this case is(

4
2

)
· (2n)2 · 22n−1

(2n − 1)2 = 3 · 24n

(2n − 1)2

Probability p2n+1. Before going on, we compute the probability p2n+1:

p2n+1 = 1
n2n+1

· 3 · 24n

(2n − 1)2 = 1
(2n − 1)4 .

Second Case. In the second case, using the same computations as before, it follows that
the average number of not null - common solutions of this case is(

4
1

)
· 2n · (2n−1 − 1)4 · 23n+3

(2n − 1)5 = (2n−1 − 1)4 · 24n+5

(2n − 1)5

Probability pn+2. Before going on, we compute the probability pn+2:

pn+2 = 1
nn+2

· (2n−1 − 1)4 · 24n+5

(2n − 1)5 = (2n−1 − 1)4 · 24

(2n − 1)8 .

Third Case. We finally consider the case ∆O,∆
′

O,∆
′′

O,∆
′′′

O 6= 0. As explained in the main
text, the idea is to consider the total number of values of (∆O,∆′O,∆

′′

O) that satisfy the
equation C ·∆′O ⊕A ·∆O ⊕E ·∆

′′

O 6= 0 and such that ∆O 6= 0,∆′O 6= 0,∆′′O 6= 0. By simple
computation, this number is equal to (2n−1)3−(2n−1)·(2n−2) = (2n−1)·(22n−3·2n+3),
since (2n − 1)3 is the total number of values and (2n − 1) · (2n − 2) is the number of values
for which the previous equation is equal to 0 (note that if C ·∆′O ⊕A ·∆O = 0, then the
previous equation cannot be equal zero since ∆′′O 6= 0). As a result, the total number of
solutions for this case is

1
2 · (2

n − 1) · (22n − 3 · 2n + 3) ·
[
(2n − 1) · 2n

2n − 1

]4
= 24n−1 · (2n − 1) · (22n − 3 · 2n + 3)

Since the probability that [(x1, y1, z1, w1), (x2, y2, z2, w2)] and [(x̂1, ŷ1, ẑ1, ŵ1), (x̂2, ŷ2, ẑ2, ŵ2)]
is equal to [(2n − 1) · 2n]−3 · [(2n − 1) · 2n−1)−1 = (2n − 1)−4 · 2−4n+1, the average number
of (non null) common solutions with no equal generating variables is

[24n−1 · (2n − 1) · (22n − 3 · 2n + 3)]4 · [(2n − 1)−4 · 2−4n+1]3 = 24n−1 · (22n − 3 · 2n + 3)4

(2n − 1)8

Probability p3. Before going on, we compute the probability p3:

p3 = 1
n3
· 24n−1 · (22n − 3 · 2n + 3)4

(2n − 1)8 = (22n − 3 · 2n + 3)4

(2n − 1)12 .
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Total Number of Different (not null) Common Solutions – 24n Texts in a Coset of
M0

By simple computation, given plaintexts in the same coset ofM0, the number of different
pairs of ciphertexts that belong to the same coset of D1,2,3 is approximately

24n−1 · (22n − 3 · 2n + 3)4

(2n − 1)8 + (2n−1 − 1)4 · 24n+5

(2n − 1)5 + 3 · 24n

(2n − 1)2

E.2 Variance
As already proved, the probabilistic of 5-round AES in (F2n)4×4 is well described by

5-AES = 23 ·X3 + 2n+2 ·Xn+2 + 22n+1 ·X2n+1

where Xi are binomial distributions. The pairs of texts with no equal generating variables
are represented by 23 ·X3, the pairs of texts with 1 equal generating variable are represented
by 2n+2 ·Xn+2 and finally the pairs of texts with 2 equal generating variables are represented
by 22n+1 ·X2n+1. We recall that given two plaintexts with three equal generating variables,
then they cannot belong to the same coset of DJ for |J | ≤ 3 after one round.

Note that all the previous cases (namely, X3, Xn+2 and X2n+1) are independent. In
other words, the behavior of a pair of texts with v equal generating variables is independent
of another pair with v̂ equal generating variables where v̂ 6= v. It follows that the total
variance of the probability distribution for 5-round AES case is given by

V ar(5-AES) = V ar(23 ·X3) + V ar(2n+2 ·Xn+2) + V ar(22n+1 ·X2n+1) =
= 26 · V ar(X3) + 22n+4 · V ar(Xn+2) + 24n+2 · V ar(X2n+1),

where V ar(α ·X) = α2 · V ar(X).
Since Xi are binomial distribution and working in the same way proposed in Sect. 6, it

follows that

• V ar(X3) is equal to

V ar(X3) = n3

23 · p3 · (1− p3) = 24n−4 · (2n − 1)4 · (22n − 3 · 2n + 3)4

(2n − 1)12 ·

·
(

1− (22n − 3 · 2n + 3)4

(2n − 1)12

)
' 24n−4 · (22n − 3 · 2n + 3)4

(2n − 1)8

• V ar(Xn+2) is equal to

V ar(Xn+2) = nn+2

2n+2 · pn+2 · (1− pn+2) = 23n−1 · (2n − 1)3 · (2n−1 − 1)4 · 24

(2n − 1)8 ·

·
(

1− (2n−1 − 1)4 · 24

(2n − 1)8

)
' (2n−1 − 1)4 · 23n+3

(2n − 1)5

• V ar(X2n+1) is equal to

V ar(X2n+1) = n2n+1

22n+1 · p2n+1 · (1− p2n+1) = 3 · 22n−1 · (2n − 1)2 · 1
(2n − 1)4 ·

·
(

1− 1
(2n − 1)4

)
' 3 · 22n−1

(2n − 1)2
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Figure 5: Ratio between the variance for 5-round AES and for the case of a random
permutation given texts in F4×4

2n for n ≥ 3.

By combining all previous results, it follows that V ar(5-AES) is (approximately) equal
to

26 · 24n−4 · (22n − 3 · 2n + 3)4

(2n − 1)8︸ ︷︷ ︸
'V ar(X3)

+22n+4 · (2n−1 − 1)4 · 23n+3

(2n − 1)5︸ ︷︷ ︸
'V ar(Xn+2)

+24n+2 · 3 · 22n−1

(2n − 1)2︸ ︷︷ ︸
'V ar(X2n+1)

=

= 24n+2 · (22n − 3 · 2n + 3)4

(2n − 1)8 + (2n−1 − 1)4 · 25n+7

(2n − 1)5 + 3 · 26n+1

(2n − 1)2 .

E.3 Observation on the Variance – Comparison with a Random Per-
mutation

Finally, we emphasize that the ratio between the variance of 5-round AES and the one of
a random permutation is (almost) constant for each size n s.t. n ≥ 8, independently of
the secret-key, of the details of the S-Box and of the MixColumns matrix – see Fig. 5.

Proposition 2. Consider 24n plaintexts in F4×4
2n with one active diagonal (equivalently,

a coset of a diagonal space Di for i ∈ {0, 1, 2, 3}), and the corresponding (cipher)texts
generated by a random permutation Π, that is ci = Π(pi). The probability distribution
of the number of different pairs of ciphertexts (ci, cj) with ci < cj that are equal in one
anti-diagonal (equivalently, belong to the same coset of IDJ for J ⊆ {0, 1, 2, 3} fixed with
|J | = 3) is well approximated by a binomial distribution with mean value µ and variance
σ2 given respectively by

µ =
(

24n

2

)
×2−4n = 24n − 1

2 and σ2 =
(

24n

2

)
×2−4n×(1−2−4n) = 24n−1−1+2−4n−1

Lemma 4. Consider 24n plaintexts in F4×4
2n for n ≥ 8 with one active diagonal (equivalently,

a coset of a diagonal space Di for i ∈ {0, 1, 2, 3}). The ratio between (1st) the variance
σ2

5-AES of the probability distribution of the number of different pairs of ciphertexts (ci, cj)
with ci < cj that are equal in one anti-diagonal generated by 5-round AES and (2nd) the
variance σ2

Π of the probability distribution of the number of different pairs of ciphertexts
(ci, cj) with ci < cj that are equal in one anti-diagonal generated by a pseudo-random
permutation Π(·) is (almost) constant and equal to

σ2
5-AES ≈ 36× σ2

Π,

independently of the secret-key, of the details of the S-Box and of the MixColumns matrix.
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Proof. Since σ2
Π = 24n−1 − 1 + 2−4n−1 and since σ2

5-AES is given by (23), it follows that

σ2
5-AES
σ2

Π
= 8× 1

24n − 2 + 2−4n ×
24n · (22n − 3 · 2n + 3)4

(2n − 1)8︸ ︷︷ ︸
≈1−4×2−n+O(2−2n)

+

+16× 1
24n − 2 + 2−4n ×

(2n − 2)4 · 25n

(2n − 1)5︸ ︷︷ ︸
≈1−3×2−n+O(2−2n)

+12× 1
24n − 2 + 2−4n ×

26n

(2n − 1)2︸ ︷︷ ︸
≈1+2×2−n+O(2−2n)

≈

≈ 36− 56× 2−n +O(2−2n)

where O(·) denotes the big O notation. As a result, the approximation σ2
5-AES ≈ 36× σ2

Π
holds for each n ≥ 8.

F Key-Recovery Attacks on 5-round AES
In this section, we propose several (new) attacks on 5-round AES that exploit the secret-key
distinguishers proposed in this paper revisited on 4-round AES.

Why Not an Attack on 6-round AES? To give an overview, consider the following
aspect. To construct the proposed distinguishers, one consider a full coset of a subspace
Di for i ∈ {0, 1, 2, 3} - that is, a set of 232 plaintexts with one active diagonal, and exploits
properties that are related to the number of ciphertexts that belong to a subspaceMJ .
In order to exploit directly these distinguishers, one can guess the final key, decrypt the
ciphertexts, counts the number of collisions in the same coset of MJ and exploits one
of the proposed properties. However, since a coset ofMJ is mapped into the full space,
it seems hard to check this property one round before without guessing the entire key.
Similar considerations can be done if the guessed key is the initial one. It follows that it is
rather hard to set up an attack different than a brute force one that exploits directly the
proposed 5-round distinguishers - this open problem is left for future work. For comparison,
note that such a problem does not arise for the other distinguishers up to 4-round AES
(e.g. the impossible differential or the integral ones), for which it is sufficient to guess only
part of the secret key in order to verify if the required property is satisfied or not.

Thus, we consider round-reduced distinguishers on 4-round to propose new key-recovery
attacks.

Idea of the Attack. Instead of working with 232 plaintexts with one active diagonal, we
consider 224 texts with three active bytes in the same column, e.g. a coset of D0,2,3 ∩ C0.
As we are going to show, the properties presented in this paper hold after 4-round in the
same way. To set up the attacks, the idea is to extend the distinguishers at the beginning
and to partially guess the initial key. In more details, consider 232 plaintexts in D0 ⊕ a.
After one round, they are mapped into a coset of C0 with prob. 1. However, the way in
which they are divided in cosets of D0,2,3 ∩ C0 depends on the guessed key

232 plaintexts in D0 ⊕ b
R(·)−−−−−−−−−−−−−→

(partially) key guess
224 texts in D0,2,3 ∩ C0 ⊕ a

R4(·)−−−→ ...

...
R(·)−−→ 224 texts in D0,2,3 ∩ C0 ⊕ a

R4(·)−−−→ distinguisher property.

We exploit this fact to set up new key-recovery attacks on 5-round AES.
In more details, the attacks that we are going to present are based on the following

properties:
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Table 4: Comparison of attacks on 5-round AES-128. Data complexity is measured in
number of required chosen plaintexts/ciphertexts (CP/CC). Time complexity is measured
in round-reduced AES encryption equivalents (E) - the number in the brackets denotes
the precomputation cost (if not negligible). Memory complexity is measured in texts (16
bytes). Attacks presented in this paper are in bold.

Attack Rounds Data Computation Memory Ref.
MitM 5 8 264 256 [Der13, Sec. 7.5.1]

Imp. Polytopic 5 15 270 241 [Tie16]
Partial Sum 5 28 238 small [Tun12]
Integral (EE) 5 211 245.7 small [DR02]
Mixture Diff. 5 222.25 222.5 220 [BDK+18]

Imp. Differential 5 231.5 233 (+ 238) 238 [BK01]
Integral (EB) 5 233 237.7 232 [DR02]
Variance 5 233 264.2 232 App. F.4

Mixture Diff. 5 233.6 233.3 234 [Gra18]
Multiple-of-n 5 233.6 248 232 App. F.2
Trunc. Diff. 5 235 269.2 232 App. F.3

MitM: Meet-in-the-Middle, EE: Extension at End, EB: Extension at Beginning

• the number of collisions is a multiple of 2/4/8;

• the average number of collisions is (a little) bigger for AES than for a random
permutation;

• the variance of the number of collisions is higher for AES than for a random
permutation.

In the following, we first present the generic strategy to set up these attacks (which is
common for all the previous cases), and then we give all the details. The results are
summarized in Table 4.

F.1 Generic Strategy
In order to exploit one of the previous properties, the idea is the following. Consider 224

texts in the same coset of DI ∩ Cj for |j| = 1 and |I| = 2 or |I| = 3, e.g.

D0,2,3 ∩ C0 ⊕ a ≡


A C C C
A C C C
A C C C
C C C C

 ,
and the corresponding ciphertexts after 4-round. The idea of the attack is to guess 4 bytes
of the key (i.e. the j-th diagonal), to partially compute 1-round decryption of DI ∩ Cj ⊕ a
and to ask for the corresponding ciphertexts after 5-round. Exploiting one of the previous
properties that hold on the ciphertexts only if the guessed key is the right one, it is possible
to filter wrong keys and to find the right one. In particular, this is due to the fact that if
the guessed key is not the right one, the behavior is the same of a random permutation -
Wrong-Key Randomization Hypothesis.

In more details, consider 224·n texts in n cosets of DI ∩ Cj . The idea is to compute
1-round decryption with respect to a guessed key and ask for the corresponding ciphertexts.
The following properties holds
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• the number of collisions is always a multiple of 2 if |I| = 2 and of 4 if |I| = 3 for the
right key, while it can assume any value for a wrong guessed key;

• the average number of collisions in the same coset of MJ for J fixed with |J | = 3
is approximately equal to 32 770.524 for the right key, while it is approximately
32 767.998 for a wrong guessed key;

• the variance of the number of collisions is approximately equal to 217.8 for the right
key, while it is approximately 215 for a wrong guessed key.

Note that if n ≤ 28 initial cosets are sufficient to set up the attack, then the data
cost of this step is at most of 232 chosen plaintexts in the same coset of Di, since
DI ∩ Cj ⊕ b ⊆ Cj ⊕ b = R(Di ⊕ a). When one diagonal of the key is found, the other ones
can be found using the same strategy or by brute force.

F.1.1 Wrong-Key Randomization Hypothesis

One assumption of the attack is the wrong-key randomization hypothesis. This hypothesis
states that decrypting one or several rounds with a wrong key guess creates a func-
tion that behaves like a random one. This assumption is very common and used for
classical/truncated/impossible differentials key-recovery attacks.

For this reason, we limit ourselves to show that it holds also in our case. Consider 224

texts ti in a coset of D0,2,3 ∩ C0 for i = 0, ..., 224 − 1, and let k the secret subkey and k̂ the
guessed key. The decryption under the guessed key k̂ is simply given by:

R−1
k̂

(ti) = k̂ ⊕ S-Box−1 ◦ SR−1 ◦MC−1(ti).

To implement the attack, one asks the corresponding ciphertexts after 5-round (with
respect to the right key k). By simple computation, after one round

Rk ◦R−1
k̂

(ti) = MC ◦ SR ◦ S-Box
[
k̂ ⊕ k ⊕ S-Box−1 ◦ SR−1 ◦MC−1 (ti)] .

Thus, if k̂ = k, then Rk ◦R−1
k̂

(ti) = ti for each i, and the distinguisher property holds. On
the other hand, if k̂ 6= k, then Rk ◦R−1

k̂
(ti) 6= ti for each i since the S-Box is a non-linear

operation. It follows that {Rk ◦R−1
k̂

(ti)}i do not belong to the same coset of D0,2,3 ∩ C0,
and the distinguisher property does not work. In this case, the behavior is the same of a
random permutation, and the attacker can filter wrong keys.

F.1.2 Implementation Strategy

In the following we give the details of the attack. We highlight that in all cases the attacker
has to count the number of collisions in the same coset ofMJ in order to filter wrong keys.
Even if it is possible to use the strategy proposed in Algorithm 1, another strategy is more
competitive in this case.

The basic idea is to re-order the texts with respect to a partial order � and to work only
on consecutive ordered texts. In particular, since our goal is to check if two texts belong
to the same coset ofMJ for |J | = 3, the idea is to re-order the texts using a particular
numerical order which depends by J . Then, given a set of ordered texts, the idea is to
work only on two consecutive elements in order to count the total number of collisions. In
other words, given ordered ciphertexts, one can work only on approximately 232 different
pairs (composed of consecutive elements with respect to the used order) instead of 263 for
each coset of DI . For this reason, we define the following partial order �:
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Definition 7. Let I ⊂ {0, 1, 2, 3} with |I| = 3 and let l ∈ {0, 1, 2, 3} \ I. Let t1, t2 ∈ F4×4
28

with t1 6= t2. The text t1 is less or equal than the text t2 with respect to the partial order
� (i.e. t1 � t2) if and only if one of the two following conditions is satisfied (the indexes
are taken modulo 4):

• there exists j ∈ {0, 1, 2, 3} such that for all i < j:

MC−1(t1)i,l−i = MC−1(t2)i,l−i and MC−1(t1)j,l−j < MC−1(t2)j,l−j ;

• for all i = 0, ...., 3:

MC−1(t1)i,l−i = MC−1(t2)i,l−i and MC−1(t1) ≤MC−1(t2),

where ≤ defined as in Def. 1.

Thus, as first step, one must re-order the 232 ciphertexts of each coset with respect to
the partial order relationship � defined before.

After the re-ordering process, in order to count the number of pairs of texts that belong
to the same coset of MJ , one can work only on consecutive ordered elements. Indeed,
consider r consecutive elements cl, cl+1, ..., cl+r−1, with r ≥ 2. Suppose that for each k
with l ≤ k ≤ l+r−2: ck⊕ck+1 ∈MJ . SinceMJ is a subspace, it follows immediately that
for each s, t with l ≤ s, t ≤ l+ r− 2 cs ⊕ ct ∈MJ . Thus, given r ≥ 2 consecutive elements
that belong to the same coset ofMJ , it follows that

(
r
2
)

= r·(r−1)
2 different pairs belong to

the same coset ofMJ . In the same way, consider r consecutive elements cl, cl+1, ..., cl+r−1

with r ≥ 2, such that ck ⊕ ck+1 /∈ MJ for eachk with l ≤ k ≤ l + r − 2. SinceMJ is a
subspace, it follows immediately that cs ⊕ ct /∈MJ for each s, t with l ≤ s, t ≤ l + r − 2.

In other words, thanks to the ordering algorithm, it is possible to work only on 232 − 1
pairs (i.e. the pairs composed of two consecutive elements), but at the same time to
have information on all the 231 · (232 − 1) ' 263 different pairs. The pseudo-code of such
algorithm is given in Algorithm 2.

What is the total computational cost of this procedure? Given a set of n ordered
elements, the computational cost to count the number of pairs that belong to the same
coset ofMJ is well approximated by n look-ups table, since one works only on consecutive
elements. Using the merge sort algorithm to order this set (which has a computational cost
of O(n logn) memory access), the total computational cost for the verifier is approximately
of n · (1 + logn) table look-ups. In our case, since the verifier has to consider a single
coset of DI of 232 elements and to repeat this procedure four times (i.e. one for eachMJ

with |J | = 3), the cost is well approximated by 4 · 232 · (1 + log 232) = 239 table look-ups,
or equivalently 232.4 five-round encryptions of AES (using the approximation 20 table
look-ups ≈ 1 round of AES).

F.1.3 Practical Tests on small-scale AES

All the attacks that we are going to present have been practically tested on small-scale
AES. The practical results are in accordance with the theoretical ones.

F.2 Multiple-of-n Key-Recovery Attack
Consider 216 plaintexts in the same coset of DI ∩ Cj for |j| = 1 and |I| = 2 - e.g. D0,1 ∩ C0,
and the corresponding ciphertexts after 4-round. As proved in [GRR17a], the number
of different pairs of ciphertexts that belong to the same coset of MK for |K| = 3 is
always a multiple of 2 (or 4 if |I| = 3), while it can take any possible value for a random
permutation.

The idea of the attack is to guess 4 bytes of the key (i.e. the j-th column), to partially
decrypt DI ∩ Cj and to ask for the corresponding ciphertexts. Since for a wrong key, the
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Data: 232 (plaintext, ciphertext) pairs (pi, ci) for i = 0, ..., 232 − 1 in a single coset
of DI with |I| = 1.

Result: Number of collisions n
for all J with |J | = 3 do

Re-order the 232 (plaintexts, ciphertexts) pairs using the partial order
relationship � defined in Def. 7; // � depends on J
Let (p̃i, c̃i) for i = 0, ..., 232 − 1 the order (plaintext, ciphertext) pairs;
n← 0; // n denotes the number of collisions in MJ

i← 0;
while i < 232 do

r ← 1;
j ← i;
while c̃j ⊕ c̃j+1 ∈MJ do

r ← r + 1;
j ← j + 1;

end
i← j + 1;
n← n+ r · (r − 1)/2;

end
end
return n.

Algorithm 2: Goal of the Algorithm is to count the number of collisions.

behavior is similar to the one of a random permutation - the number of collisions is not a
multiple of 2 with prob. 1, it is possible to filter wrong keys and to find the right one.

What is the data complexity?

Data Cost. Given a single coset of DI ∩ Cj , the probability that the number of collisions
is a multiple of 2 is 1/2 for a wrong key. Thus, the probability that a wrong key survives
n tests is 2−n. Since there are 232 different keys to test, n ≥ 32 tests are sufficient to filter
all the wrong keys with high probability. Since a coset of Cj contains 216 different cosets
of DI ∩ Cj , it follows that 232 chosen plaintexts in the same coset of Dj are sufficient to
find one diagonal (remember that a diagonal subspace Dj is mapped into a column one Cj
after one round). Using this strategy to find three diagonals of the key (one diagonal is
found by brute force), the data complexity is of 233.6 chosen plaintexts.

Computational Cost. Using Algorithm 2, the computational cost of the attack is well
approximated by the cost of the re-ordering step for each possible key. In particular,
in order to find one diagonal of the key, the cost can be approximated by 232 · 216 ·
(2 + log 216) · (1 + 1/2 + 1/4 + 1/8 + ...) ' 253.1 table look-ups. Thus, the total cost is
3 · 253.1 · (5 · 20)−1 + 232 ' 248 five-round encryption to find the entire key (by assuming
20 table look-ups ≈ 1 encryption). The term 1 + 1/2 + 1/4 + 1/8 + ... is due to the fact
that after the 1st test only 1/2 of the possible keys survived, after the 2nd test only 1/4
of the possible keys survived and so on. Indeed, note that the number of collisions is a
multiple of 2 only with probability 1/2. In other words, after the 1st test one repeats the
process for 232/2 ' 231 keys, after the 2nd test one repeats the process for 232/4 ' 230

keys and so on. This result has been checked also by practical tests.

F.3 Truncated Diff. Attack based on the Mean
Here we exploit the fact the average number of collisions is (a little) bigger for the right
key than for a wrong guessed key, i.e. we propose the first truncated differential attack on
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5-round AES (that exploits a differential trail with probability different from zero).
Consider 224 plaintexts in the same coset of DI ∩ Cj for |j| = 1 and |I| = 3 - e.g.

D0,1,2 ∩ C0, and the corresponding ciphertexts after 4-round. As we have just seen in Sect.
5, the average number of different pairs of ciphertexts that belong to the same coset of
MK for |K| = 3 is approximately 32 770.524 versus 32 767.998 in the random case. In
other words, the probability that a pair of ciphertexts belongs to the same coset ofMK for
|K| = 3 is 2−32 + 2−45.6625 for AES versus 2−32 for the random case/wrong guessed key.

The idea of the attack is to guess 4 bytes of the key (i.e. the j-th diagonal), to partially
decrypt DI ∩ Cj and to ask for the corresponding ciphertexts. Exploiting the previous
property that holds on the ciphertexts, it is possible to filter wrong keys and to find the
right one. We expect that the number of collisions is bigger for the right key of AES than
for a wrong one. Indeed, if the key is wrong, then the texts are distributed in several cosets
of DI ∩ Cj after one round (not in only one), and one gets the same behavior that occurs
for a random permutation. In particular, we emphasize that our truncated differential
distinguisher proposed in this paper works if and only if one consider an entire initial coset
of DI ∩ Cj .

What is the data complexity? To compute the data cost of the attack, we use the same
strategy proposed for the 5-round secret-key distinguisher.

Data Cost. Assume that the goal is to find the right key with probability bigger than
95%24, and assume that the behavior for a wrong guessed key is the same of a random
permutation. Since one works on 4 bytes of the key, one has to use the secret-key
distinguisher 4 · 232 = 234 different times. In other words, the data cost is approximately
given by formula (25) where prob = 0.951/234 . It follows that for prand ' 2−30−3 ·2−63 and
pAES ' 2−30 + 2−43.6625, the number of different pairs that one needs to use in order to set
up the attack is n ≥ 3 · 259.43 (where the factor 3 is due to the observations given in Sect.
9.3). Since there are 4 different subspace DI ∩ Cj and since each coset of DI ∩ Cj contains
approximately

(224

2
)
' 247 different pairs after one round, one needs approximately 212.02

different initial cosets or approximately 234.02 chosen plaintexts in the same coset of Dj in
order to find one diagonal of the key. If two diagonals are found by brute force, the cost of
finding the entire key is of 2 · 234.02 = 235 chosen plaintexts.

Computational Cost. Using Algorithm 2, the computational cost of the attack is well
approximated by the cost of the re-ordering step for each possible key. In particular, in order
to find one diagonal, the cost can be approximated by 4 ·212.02 ·232 ·224 ·(2+log 224) ' 274.7

table look-ups. Thus the total cost is 2 · 274.7 · (5 · 20)−1 + 264 ' 269.2 five-round encryption
to find the entire key (by assuming 20 table look-ups ≈ 1 encryption).

F.4 Truncated Diff. Attack based on the Variance
In this subsection, we exploit the fact the variance is higher for the right key than for a
wrong guessed key.

Consider 224 plaintexts in the same coset of DI ∩ Cj for |j| = 1 and |I| = 3 - e.g.
D0,1,2 ∩ C0, and the corresponding ciphertexts after 4-round. What is the variance of the
number of collisions in the same coset ofMK for |K| = 3 after 4 rounds? To compute a
good approximation of the variance, we re-use the same calculation proposed in Sect. 6.
For this reason, we refer to that section for all the details and we give here only the final
result.

Assume K fixed. For a wrong guessed key, the variance is well approximated by

V arwrongKey = 223 · (224 − 1) · 2−32 · (1− 2−32) ' 215,

24In other words, we assume that the maximum number of collisions occurs for the right key with
probability 95%.
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that is the standard deviation is equal to δwrongKey = 27.5. What about right key guessed?
Given 224 plaintexts, there are 3 · 223 · (28 − 1)2 = 240.58 different pairs with one equal
generating variable and 223 · (28 − 1)3 = 246.99 different pairs with different generating
variables. The variance is given by

V arrightKey = 42 · 244.99 · (2−32 − 2−45.6625) · (1− 2−32 + 2−45.6625)+
+ (29)2 · 230.58 · (2−32 − 2−45.6625) · (1− 2−32 + 2−45.6625) ' 217.8,

that is the standard deviation is equal to δrightKey = 28.9. This difference can be exploited
to find the right key. In order to derive concrete number for data and computational
complexity, as for the secrete-key distinguisher, we consider the results on small-scale AES.

For small-scale AES - denoted in the following by symbol ?, consider as before 212

plaintexts in the same coset of DI ∩ Cj for |j| = 1 and |I| = 3 and assume K fixed. For a
wrong guessed key, the variance is well approximated by

V ar?wrongKey = 211 · (212 − 1) · 2−16 · (1− 2−16) ' 27,

that is the standard deviation is equal to δ?wrongKey = 23.5. What about right key guessed?
Given 212 plaintexts, there are 3 · 211 · (24 − 1)2 = 220.4 different pairs with one equal
generating variable and 211 · (24 − 1)3 = 222.7 different pairs with different generating
variables. The variance is given by

V ar?rightKey = 42 · 220.7 · (2−16 − 2−24.67) · (1− 2−16 + 2−24.67)+
+ (25)2 · 215.4 · (2−16 − 2−24.67) · (1− 2−16 + 2−24.67) ' 210.1,

that is the standard deviation is equal to δ?rightKey = 25.05.

Data and Computational Costs. As for the secret-key distinguisher of Sect. 9.1, the
ratio between the standard deviation is similar for the small scale AES and full-size AES

28.9

27.5 ≈ 2.75 ≈ 25.05

23.5 .

Thus, we use our results on small-scale AES to derive concrete numbers for the full-size
AES case. By practical tests, we have found that ≥ 26 initial cosets are sufficient to have
a good estimation of the variance/standard deviation. Since for each initial coset it is
possible to compute the number of collisions inMJ for each J with |J | = 3, at least 26

initial cosets are largely sufficient to set up the distinguisher. Due to the relation between
small-scale AES and full-size AES previously discussed, we claim that the data cost to
distinguish to find one diagonal of the key is of 232 chosen plaintexts in the same coset
of Dj (observe that after one round, it contains 4 · 28 different cosets of DI ∩ Cj). If two
diagonals are found by brute force, the total data cost is well approximated by 233 chosen
plaintexts.

The computational cost is well approximated by the cost to compute the number of
collisions for each possible key. Using Algorithm 2, the cost of finding one diagonal is well
approximated by 232 · 26 · 224 · (2 + log 224) ' 266.7 table look-ups, that is the total cost
is well approximated by 2 · 266.7 · (100)−1 + 264 ' 264.2 five-round encryption to find the
entire key by assuming 20 table look-ups ≈ 1 encryption.
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G Details of used S-Box
In this section, we recall the main information of the S-Box used in Sect. 10 to test our
theory.

Table 5: S-Box definitions. All the values in the table are exadecimal.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
AES 6 B 5 4 2 E 7 A 9 D F C 3 1 0 8

PRINCE B F 3 2 A C 9 1 6 7 8 0 E 5 D 4
KLEIN 7 4 A 9 1 F B 0 C 3 2 6 8 E D 5
Midori C A D 3 E B F 7 8 9 1 5 0 2 4 6
Midori 1 0 5 3 E 2 F 7 D A 9 B C 8 4 6

PRESENT C 5 6 B 9 0 A D 3 E F 8 4 7 1 2
RECTANGLE 6 5 C A 1 E 7 9 B 0 3 D 8 F 4 2
NOEKEON 7 A 2 C 4 8 F 0 5 9 1 e 3 D B 6
PRIDE 0 4 8 F 1 5 E 9 2 7 A C B D 6 3

Toy-6 S-Box 1 3 6 4 2 5 9 A 0 F 7 E C B D 8
Toy-8 S-Box 1 3 6 4 2 5 A C 0 F 7 8 E B D 9
Toy-10 S-Box 6 4 C 5 0 7 2 E 1 F 3 D 8 A 9 B
Toy-12 S-Box 1 3 6 4 A F D 8 2 9 5 E 0 7 B C

In the following we recall the differential spectrum of the S-Box, that is probability
that given an arbitrary ∆I 6= 0 and ∆O 6= 0, the equation

S-Box(x⊕∆IN )⊕ S-Box(x) = ∆OUT

has n different solutions x (remember n is even).

S-Box 0 sol. 2 sol. 4 sol. 6 sol. 8 sol. 10 sol. 12 sol.
AES 8/15 6/15 1/15 0 0 0 0

PRINCE 8/15 6/15 1/15 0 0 0 0
KLEIN 8/15 6/15 1/15 0 0 0 0

MIDORI SB1 8/15 6/15 1/15 0 0 0 0
MIDORI SB0 43/75 24/75 8/75 0 0 0 0
PRESENT 43/75 24/75 8/75 0 0 0 0

RECTANGLE 43/75 24/75 8/75 0 0 0 0
NOEKEON 43/75 24/75 8/75 0 0 0 0
PRIDE 43/75 24/75 8/75 0 0 0 0

Toy-6 S-Box 125/225 81/225 18/225 1/225 0 0 0
Toy-8 S-Box 130/225 74/225 18/225 2/225 1/225 0 0
Toy-10 S-Box 140/225 60/225 17/225 7/225 0 1/225 0
Toy-12 S-Box 162/225 24/225 27/225 8/225 3/225 0 1/225


	Introduction
	Preliminary
	Brief Description of AES
	Properties of an S-Box

	``Multiple-of-8'' Property for 5-round AES
	Probability Distribution for 5-round AES
	Initial Considerations
	About the ``Uniform Distribution of Solutions of eq. (1)''
	Comparison between the Prob. Distribution of 5-round AES and of a Random Permutation

	Proof of Theorem 2 – Average Number of Collisions for 5-round AES
	Reduction to the Middle Round
	Idea of the Proof

	A ``Simpler'' Case: 216 Texts with Two Equal Generating Variables
	Generic Case: 232 Texts
	First Case
	Second Case
	Third Case
	Total Number of Different - not null - Common Solutions

	Remarks

	Proof of Theorem 2 – Variance – and of Lemma 1
	Variance of the Prob. Distribution for 5-round AES
	Proof of Lemma 1

	Relation among Multiple-of-8, Mean and Variance
	Practical Results on AES
	5-round AES defined over (F2n)44
	Practical Results on 4-bit AES

	Truncated Differential Distinguishers for 5-round AES
	Truncated Differential Distinguisher based on the Variance
	Useful Approximation for the Prob. Distribution of 5-round AES
	Truncated Differential Distinguisher based on the Mean

	Property of the S-Box and 5-round Truncated Distinguisher based on the Mean
	Preliminary Considerations and Practical Results
	Observations and (possible) Explanation
	MixColumns Dependence

	Open Problems
	Subspace Trails Cryptanalysis for AES
	Number of Collisions – Random Permutation
	Truncated Differential on 5-round AES: MDS MixColumns Matrix
	Computational Cost of Algorithm 1
	Details of the Secret-Key Distinguisher of Sect. 9.3

	Probability distribution for 5-round AES over (F2n)44
	Average Number of Collisions
	Variance
	Observation on the Variance – Comparison with a Random Permutation

	Key-Recovery Attacks on 5-round AES
	Generic Strategy
	Wrong-Key Randomization Hypothesis
	Implementation Strategy
	Practical Tests on small-scale AES

	Multiple-of-n Key-Recovery Attack
	Truncated Diff. Attack based on the Mean
	Truncated Diff. Attack based on the Variance

	Details of used S-Box

