
Can you find the one for me?
Privacy-Preserving Matchmaking via Threshold PSI

Yongjun Zhao and Sherman S.M. Chow

Department of Information Engineering
The Chinese University of Hong Kong, Hong Kong

{zy113, sherman}@ie.cuhk.edu.hk

Abstract. Private set-intersection (PSI) allows a client to only learn the intersection bet-
ween his/her set C and the set S of another party, while this latter party learns nothing.
We aim to enhance PSI in different dimensions, motivated by the use cases of increasingly
popular online matchmaking — Meeting “the one” who possesses all desired qualities and
free from any undesirable attributes may be a bit idealistic. Meanwhile, the criteria should
be expressed in a succinct form. In this paper, we realize over- (resp. below-) threshold
PSI, such that the client learns the intersection (or other auxiliary private data) only when
|C ∩ S| > t (resp. ≤ t). The threshold corresponds to tunable criteria for (mis-)matching,
without marking all possible attributes as desired or not. To the best of our knowledge, our
constructions are the very first solution for these two open problems posed by Bradley et al.
(SCN ’16) and Zhao and Chow (PoPETS ’17), without resorting to the asymptotically less
efficient generic approach from garbled circuits.
Moreover, we consider an “outsourced” setting with a service provider coordinating the PSI
execution, instead of having two strangers to be online simultaneously for executing a highly-
interactive PSI directly with each other. Outsourcing our two protocols are arguably optimal,
namely, the two users perform O(|C|) and O(1) decryptions, for unlocking the private set C
and the outcome whether a match has been found.

1 Introduction

In this big-data era, information is an asset. Sharing of information often leads to a win-win
situation. The key issue is how to share selectively and strategically. People nowadays tend to share
their information over the online social network (OSN). Usually, the sharing decision is based on
whether the “subscribing user” has been admitted into a certain “circle” or not. The admission
decision can be easy to make if we can rely on real-world friendship. Yet, people often reach out
and expand their networks to enjoy the real benefits brought by OSN. That will be desirable if this
decision can be made in a more systematic and intelligent way, e.g., if a user possesses a sufficient
number of common interests/attributes.

Private set intersection (PSI) is a handy cryptographic primitive which allows two parties P1

and P2, traditionally referred to as a client and a server, to compute the intersection of their
respective private sets. For example, two companies can learn who are their common customers
without sharing their databases. Yet, apart from hiding elements which are absent from the set
of the counter-party, PSI offers no more control. For example, if two companies do not share a
high number of common customers, they may not bother to discuss any joint campaign, not to say
revealing any common customers to each other.

Recently, Zhao and Chow [44] initiated the study of PSI with access structure, i.e., the client
gets to know the intersection set only if its private set satisfies some policy specified by the server.
As a special case, they consider threshold PSI which only reveals the intersection if its size is greater
than a threshold agreed by both parties. While the vision of incorporating a sharing strategy to
a vanilla PSI is great, the actual protocols realized by Zhao and Chow are a bit unsatisfactory.
Without resorting to indistinguishability obfuscation or anonymous ABE, their design always leak

2 Yongjun Zhao and Sherman S.M. Chow

how many elements “contribute” to the satisfaction of the policy. Specifically, for threshold policy,
they only achieved a weaker variant under the name of threshold private set-intersection cardinality
(t-PSI-CA), which realizes the following functionality: if the number of common elements from the
two sets is less than an agreed threshold t, the size of the intersection will be revealed; otherwise,
the intersection will be revealed. They argue that this level of privacy protection is enough for
applications such as online dating, which the matching criteria are sensitive, and revealing the
degree of overlapping even in a mis-match is a nice feature. Nevertheless, threshold PSI protocol
based on standard cryptographic assumptions remains open [44].

From the perspective of finding common interests, the “over threshold” policy discussed above
appears to be a natural choice. Yet, considering matchmaking or access control in general, it is
equally interesting to realize the complementary notion of below-threshold private set-intersection.
To unify the notion, we rename the two functionalities above as t≥-PSI [44] and t≤-PSI [9] respecti-
vely.

The benefits of supporting both kinds of policy are apparent. For the application of online
dating, using t≥-PSI alone only allows the search for desired quality. Users probably also want to
match with others who do not possess a certain set of undesired attributes (e.g., smoking, over-
gregarious). With t≤-PSI, users can simply make sure that their number of occurrence is below an
acceptable threshold instead of specifying every possible negated attributes (e.g., non-smoking).
Unfortunately, t≤-PSI is also posed as an open question [9].

1.1 Technical Overview

Despite the conceptual similarity, it is fair to say that t≤-PSI and t≥-PSI are two different problems.
We have a weakened version of t≥-PSI (namely t-PSI-CA) [44], but the corresponding weakened
form for t≤-PSI does not exist in the literature [9]. To the best of our knowledge, no one has been
able to give any solution for these two problems so far (perhaps except the generic approach of
using garbled circuit [30, 42]). The fundamental issue is that, t≥-PSI (resp. t≤-PSI) fall within the
framework of private set-intersection with monotone (resp. non-monotone) access structure [44]. It
is not clear how to construct non-monotone access structure from monotone one (and vice versa).

In this work, we unify the design of both protocols. We take an innovative approach to realize
both kinds of threshold PSI protocol, without the deficiency of leaking the intersection size. To
better understand the difficulty of hiding the intersection size, we briefly go over the design of the
protocol of Zhao and Chow [44]. Roughly, it works by generating “secret shares” to the participant.
With enough shares, the intersection set can be “unlocked”. The difficulty faced by Zhao and Chow
in hiding the size of the intersection appears to be the following. On one hand, there should be a
way to quickly identify what shares can be used to reconstruct the unlocking key; for otherwise
one needs to exhaust an exponential number of possible combinations among the shares. On the
other hand, revealing whether an individual share is potentially useful or not is related to and
hence reveals the size of the intersection.

Interestingly, we got inspiration from an apparently even more restrictive variant of PSI pro-
posed by Carpent et al. [11], which is known as existential PSI (or PSI-X in short). PSI-X only
outputs a single bit instead of a set. The output denotes whether the two private sets have any
overlapping. As minimal as it may seem, we “upgrade” our own design of PSI-X protocol (ΠX ,
another contribution discussed in Appendix G) to encode more information. Specifically, we build
a protocol ΠePSI-CA which we call encrypted private set-intersection cardinality (ePSI-CA). In this
design, cardinality is no longer an unintended leakage, but intentionally encrypted for realizing
the threshold functionality.

With ePSI-CA, we obtain a t≥-PSI protocol by a simple modification of our t≤-PSI protocol
Πt≤-PSI. Underlying both designs is a technique for computation over encrypted data realized
by oblivious polynomial evaluation (OPE) [24].

A summary of known relations between the above PSI variants can be found in Appendix H.

Can you find the one for me? 3

1.2 Merits of Our Constructions

Our proposed protocols are of both practical and theoretical interest. From the efficiency per-
spective, the complexities of our constructions are linear in the set size n. This beats the classical
garbled circuit approach that uses sort-compare-shuffle network with O(n log n) complexity [30],
as well as recent advancement that achieves almost linear (namely ω(n)) complexity [42].

From the design perspective, we demonstrate how to use old techniques in the PSI literature in
a novel way to realize PSI functionalities which no efficient solutions are known. Specifically, many
PSI protocols are built by using OPE to encode the private set [13,24,27,28,37,44]. Another idea
which uses Bloom filter related technique to realize PSI was first brought by Dong et al. [20] only
recently, and has a shorter history [16, 17, 44]. To the best of our knowledge, for the first time we
combine these two techniques in a non-trivial way. It also suggests a new avenue for addressing
other open problems inside or even outside the field of PSI. (See Appendix G for more details.)

Lastly, our protocols remain conceptually simple and modular. Both desideratum greatly sim-
plify the security analysis. Any more efficient FePSI-CA instantiation will immediately result in more
efficient Πt≤-PSI, Πt≥-PSI protocols.

1.3 Outsourced Threshold PSI Protocols

Although our protocols are asymptotically efficient, they still rely on public-key techniques to
ensure security, which are difficult to avoid and are not as efficient as symmetric-key primiti-
ves (say, hash functions or blockciphers) which often fail to provide algebraic structure for fancy
functionalities. PSI protocols are also often highly interactive. For our motivating applications of
matchmaking, the interactive nature and the heavy use of public key cryptography hinder the
practical usage of PSI.

Our final contribution lies in outsourcing the heavy computations in our protocols to an obli-
vious cloud. Beyond simply following the increasingly popular trend of leveraging cloud service,
we believe that most of the popular mobile applications nowadays, no matter privacy-preserving
or not, are often executed with the help of some central servers operated by the service provider.
As such, outsourcing PSI not only leads to better efficiency, but also better matches the business
model and the usage habits of mobile applications (where the user who is a potential match may
respond to notification of the smartphone from time to time but not permanently staying online).

While there is a server which mediates requests between clients, the privacy guarantees of PSI
still carry over. In other words, with our outsourced extensions, not only we can enjoy the richer
functionalities on top of the privacy provided by our PSI protocols, but also a more deployable
protocol which is closer to the real-world model from the perspective of both users and the service
provider.

1.4 Related Work

Freedman et al. [24] first proposed a PSI protocol based on oblivious polynomial evaluation.
Dong et al. [20] initiated the pursue of PSI protocol using oblivious transfer extension. Subse-
quently, more efficient PSI protocols using similar technique are proposed [38,39,41,43].

A branch of work aims to restrict the output or the leakage of PSI. PSI-CA/PSU-CA reveals
only the (approximate) cardinality of the intersection/union but not the set itself [3, 6, 15, 16, 18,
21–24, 29, 37]. Some of them also uses Bloom filter technique [3, 15, 18, 22], but none of them can
be directly adapted to ΠePSI-CA (see discussion in Sec. 3). Ateniese et al. [4] and D’Arco et al. [14]
proposed (input-)size-hiding PSI. Bradley et al. [9] further enables imposing an upper bound on
the input set size.

Recently researchers also consider PSI in the outsourced setting [1,33–35]. They do not support
the advanced threshold set operations considered here.

4 Yongjun Zhao and Sherman S.M. Chow

Concurrent Work.1 Recently, Hallgren et al. [26] also study over-threshold private set-
intersection with application in ride sharing. They also consider security in the semi-honest model,
but the complexity of their protocol is of order O(n2), which is worse than garbled circuit approach.
A very recent manuscript by Ciampi and Orlandi [12] studies how to perform secure post-processing
of the output of PSI protocol in the semi-honest model. Combining their solution with two party
computation techniques allows computation of f(C ∩ S) for arbitrary function f . Our protocols
are specific protocols which are more efficient (O(n) vs. O(n2)). Also, our design naturally al-
lows revelation of some auxiliary data (e.g., a session key K encrypting the contact information
for matchmaking) when the threshold policy is satisfied. Extending their two party computation
approach [12] in a straightforward way to also support this feature requires a more complicated
function f .

Pinkas et al. [42] introduce new variants of Cuckoo hashing technique to reduce the number
of gates from O(n log n) to ω(n) in garbled-circuit based PSI protocol. It is possible to adapt
their solution to compute threshold PSI by adding additional circuit. The overall complexity will
therefore be at least ω(n).

2 PSI with Threshold Policy

2.1 Definitions

We begin with the formal definitions of two private set-intersection with threshold policy functio-
nalities in the literature.

Definition 1 (Below-Threshold Private Set-Intersection (t≤-PSI) [9]). Let S and C be
subsets of a predetermined domain, the functionality Ft≤-PSI is:

((C, |S|), (S, |C|)) 7→

{
(C ∩ S,⊥) if |C ∩ S| ≤ t

(⊥,⊥) otherwise

Definition 2 (Over-Threshold Private Set-Intersection (t≥-PSI) [26,44]). Let S and C be
subsets of a predetermined domain, the functionality Ft≥-PSI is:

((C, |S|), (S, |C|)) 7→

{
(C ∩ S,⊥) if |C ∩ S| ≥ t

(⊥,⊥) otherwise

To realize both Ft≤-PSI and Ft≥-PSI, our key insight is to leverage a primitive call encrypted
private set-intersection cardinality (ePSI-CA) functionality in a novel way. This new functionality
is formally defined below.

Definition 3 (Encrypted Private Set-Intersection Cardinality (ePSI-CA)). Let S and C
be subsets of a predetermined domain. Let (pk1, sk1) be a public / secret key pair of a homomorphic
encryption scheme. The functionality FePSI-CA is:

((C, |S|, pk1, sk1), (S, |C|, pk1)) 7→ (⊥,Enc(pk1, |C ∩ S|))

We choose to single out FePSI-CA not only for a more compact presentation of Πt≤-PSI and
Πt≥-PSI, but also because we believe that FePSI-CA itself is an interesting primitive. In Appendix G,
we use it to construct the most efficient existential private set-intersection protocol (PSI-X) and pri-
vate projection [11] to date. Motivations and applications of these two protocols can be found in
Appendix G.
1 The first public presentation of this work was delivered on December 5, 2017 in the rump session of

AsiaCrypt 2017. We have submitted this work to some conference before our first upload to IACR
Cryptology ePrint Archive, which is made on February 14, 2018.

Can you find the one for me? 5

2.2 Intuition

We will describe our Πt≤-PSI and Πt≥-PSI constructions in the (FePSI-CA,FPSI)-hybrid model, while
the concrete instantiation for FePSI-CA is deferred to Sec. 3. In what follows, we use t≤-PSI as an
example to show case how it is readily achievable with FePSI-CA as a building block. The crux of
our novel combination of ePSI-CA and oblivious polynomial evaluation (OPE) technique is that it
transforms Enc(pk1, |C ∩ S|) (namely, the output of FePSI-CA) to an encryption of a session key K
if and only if |C ∩ S| ∈ [0, t]. If |C ∩ S| /∈ [0, t], the evaluation result will be random and contains
no information about K.

In more details, P2 re-randomizes the encrypted cardinality obtained from FePSI-CA by a random
number r as Enc(pk1, |C ∩ S| + r) such that P1 knows nothing about |C ∩ S| but can put the
randomized cardinality to the OPE. For OPE, P2 first prepares a polynomial p′(·) whose roots are
r, r+1, . . . , r+ t, and chooses a random symmetric key K. P2 then sends encrypted coefficients of
polynomial p′′(·) = r′ · p′(·) + K under its own public key pk2. In this way, when P1 obliviously
evaluates p′′(·), the result will be an encryption of K if and only if |C ∩ S| ≤ t; otherwise it will
be encrypting a random number that reveals no information about K (because r′ · p′(·) serves as
a one-time pad encrypting K).

To retrieve the evaluation of p′′(·) in plaintext, P1 randomizes it in the same way as P2 re-
randomizes |C ∩ S|, and asks P2 for decryption. What P1 eventually obtains is a value K ′ which
equals to K if and only if |C ∩S| ≤ t. This K ′ serves as a token showing if the intersection |C ∩S|
is below the threshold. The final step is to have P1 and P2 engage in a normal ΠPSI, in which P1

and P2 uses CK′
= {ci||K ′} and SK = {si||K} as input respectively. Hence P1 can recover the

intersection if it possesses the same key K ′ = K.

2.3 t≤-PSI Protocol: Πt≤-PSI

We describe our t≤-PSI protocol ΠePSI-CA in the (FePSI-CA,FPSI)-hybrid model in Fig. 1, following
to the intuition above. Some points to note are in order.
In Step (2), P2 blinds the encrypted cardinality Enc(pk1, |C ∩ S|) obtained from FePSI-CA by a
uniformly random number r as Enc(pk1, |C ∩ S|+ r), which can be viewed as the result of double
encryption: firstly encrypt |C ∩ S| using a one-time pad r, and then further encrypt under pk1.
In Step (3), the polynomial p′′(·) and p′(·) are both degree (t+1), so the number of coefficients to
be encrypt and transmit is (t+1) ∈ O(|C|+ |S|). Also note that these coefficients are independent
of the set S. Looking ahead, such independence allows outsourcing computation to a cloud server.

In Step (4), P1 needs to blind the evaluation of polynomial by a one-time pad r′′ similar to what
P2 does in Step (2). This is because if P2 sees K ′ in plaintext, it can check if K ?

= K ′ and learn
|C ∩ S|

?
> t, violating the requirement of Ft≤-PSI.

2.4 Analysis

By the correctness of FePSI-CA functionality, P2 obtains Enc(pk1, |C ∩ S|) in Step 1. If the size of
intersection |C ∩ S| ≤ t, then in Step 3 the polynomial p′(·) will be evaluated to 0, and hence the
evaluation of p′′(·) will be K ′ = K. On the other hand, if |C ∩ S| > t, the evaluation of p′′(·) will
be K ′ ̸= K. Then by the correctness of FPSI, P1 obtains C ∩ S if and only if |C ∩ S| ≤ t.

For efficiency, since public-key operations are much slower than symmetric-key ones, we only
count the total number of public-key operations, including encryption, decryption, and homo-
morphic operations (addition and multiplication by a constant). We assume using ΠePSI-CA to
instantiate FePSI-CA in Step 1. The number of public-key operations of ΠePSI-CA will be presented
in Table 5. We also assume an efficient ΠPSI construction. Note that the state-of-the-art ΠPSI

protocols [38,41,43] under the semi-honest model requires linear computation and communication

6 Yongjun Zhao and Sherman S.M. Chow

Protocol: Below-Threshold Private Set-Intersection (Πt≤-PSI)
Input: P1’s input is an element C, |S|, and t. P2’s input is S, |C|, and t.

1. [invoke FePSI-CA] P1 sends his AHE public key pk1 to P2. Next the parties invoke an ideal execution
of FePSI-CA where the input of P1 is (C, |S|, (pk1, sk1)) and the input of P2 is (pk1, S, |C|).

2. [P2 masks encrypted |C ∩ S|] P2 randomly chooses r and homomorphically computes
Enc(pk1, |C ∩ S|+ r).

3. [P2 prepares encrypted polynomials] P2 prepares an encrypted polynomial p′(·) whose roots
are r, r + 1, . . . , r + t under P2’s AHE public-key pk2. P2 also chooses a random number r′ and
a random symmetric key K. Finally, P2 sends encrypted polynomial p′′(·) = r′ · p′(·) +K under
pk2, as well as Enc(pk1, |C ∩ S|+ r).

4. [P1 evaluates polynomial] P1 obliviously evaluates p′′(·) at point |C ∩S|+ r. Denote the result
by Enc(pk2,K

′). P1 blinds it with randomness r′′ into Enc(pk2,K
′+r′′) and asks P2 for decryption.

5. [P2 decrypts] P2 decrypts Enc(pk2,K
′ + r′′) and returns K′ + r′′ to P1, who recovers K′.

6. [invoke FPSI] P1 and P2 invoke an ideal execution of FPSI where the input of P1 is (CK′
, |S|) and

the input of P2 is (SK , |C|), where CK′
= {ci||K′} and SK = {si||K}.

7. [output] P1 outputs whatever it receives in the previous step (stripping away the trailing key K′

if the output is non-empty).

Fig. 1: Below-Threshold Private Set-Intersection (Πt≤-PSI)

complexities. Table 1 summarizes the overall result, showing that the Πt≤-PSI protocol features
linear computational complexity.

Table 1: Computational Efficiency of Πt≤-PSI
(FePSI-CA is instantiated by ΠePSI-CA with complexity in Table 5)

Enc Dec addition multiplication ΠPSI

Step 1 (P1) O(ω(log λ)(|C|+ |S|) 0 O(ω(log λ)(|C|+ |S|)) 0 0
(P2) O(ω(log λ)(|C|+ |S|) O(|C|) O(ω(log λ)(|C|+ |S|)) O(ω(log λ)|C|) 0

Step 2 (P2) 1 0 1 0 0

Step 3 (P2) t+ 3 0 0 0 0

Step 4 (P1) 1 1 t+ 2 t+ 1 0

Step 5 (P2) 0 1 0 0 0

Step 6 (P1) 0 0 0 0 O(|C|+ |S|)
(P2) 0 0 0 0 O(|C|+ |S|)

Total O(ω(log λ)(|C|+ |S|) O(|C|) O(ω(log λ)(|C|+ |S|)) O(ω(log λ)|C|) O(|C|+ |S|)

Theorem 1. Assuming the existence of CPA-secure additive homomorphic encryption scheme
(KeyGen,Enc,Dec), whose plaintext space is super polynomial in the security parameter; then the
protocol Πt≤-PSI in Fig. 1 securely implements the functionality Ft≤-PSI in Def. 1 in the presence
of semi-honest adversaries under the (FePSI-CA,FPSI)-hybrid model.

Proof. Simulating the view of P1 using Simt≤-PSI
1 . The view of P1 contains Enc(pk1, |C∩S|+r),

pk2, encryptions of coefficients of the polynomial p′′(·) (denoted by Enc(pk2, p
′′(·))), K ′+ r′′ which

are messages sent by P2, and ⊥ from FePSI-CA, the output of FPSI.
Let A be a probabilistic polynomial time (PPT) adversary corrupting party P1. We design a

PPT simulator Simt≤-PSI
1 that invokes A by playing the role of the honest party P2 and it emulates

Can you find the one for me? 7

the ideal functionalities FePSI-CA, FPSI. The simulator will generate a view indistinguishable from
a hybrid one. Simt≤-PSI

1 has different simulation strategies for different outputs of P1. We consider
two disjoint cases.
(1) the output is ⊥:

1. Given input ((C, |S|, t),⊥), Simt≤-PSI
1 invokes A on input (C, |S|, t), and receives A’s first mes-

sage pk1.
2. Simt≤-PSI

1 plays as the trusted party and emulates the ideal calls to FePSI-CA.
3. Simt≤-PSI

1 generates a random public/private key pair (pk2, sk2), a random symmetric key K,
just as what P2 will do, and continues the protocol emulation by sending encryptions of 0
under pk2 (representing an all-zero polynomial) instead of encryption of coefficients of the
polynomial p′(·). It also encrypts a random number R1 under pk1 to emulate the intended
message Enc(pk1, |C ∩ S|+ r).

4. When A obliviously evaluates the zero-polynomial at point R in Step 4, the result will be an
encryption of 0 under pk2. A randomizes this encryption of 0 into an encryption of r′′ and asks
Simt≤-PSI

1 for decryption. Simt≤-PSI
1 returns yet another random value R2.

5. Finally A will compute K ′ = R2 − r′′ (̸= K with overwhelming probability). Then A uses
(C ′ = {ci||K ′}, |S|) as input to the FPSI functionality emulated by Simt≤-PSI

1 , who will return
⊥ as intended.

We argue that this simulated view is indistinguishable from the real one. First, notice that the
simulated messages Enc(pk1, R1) and R2, are identically distributed as the real ones Enc(pk1, |C ∩
S|+ r) and K ′+ r′′. It is because in the real protocol, r is selected by P2 uniformly at random and
K ′ is distributed uniformly at random when |C ∩ S| > t. Second, notice that the other simulated
messages are encryptions under pk2. Any distinguisher of these two views can be transformed to
an adversary breaking CPA security of the encryption scheme.
(2) the output is a subset Ĉ ⊆ C whose size |Ĉ| is less than t:
Simt≤-PSI

1 works as the previous case, except in Step (4) it decrypts the ciphertext to get r′′. In
Step (5) it computes K ′ = R2 − r′′, converts the set Ĉ into ĈK′ by appending K ′ to each element
in Ĉ. Finally it uses ĈK′ to emulate the output of FPSI for A.

This simulated view is indistinguishable from the real view, because everything is the same as
the other case with the only exception being the output of FPSI.
Simulating the view of P2 using Simt≤-PSI

2 .
This part is easy because P2’s view contains only Enc(pk1, |C ∩S|) from FePSI-CA, ⊥ from FPSI and
Enc(pk2,K

′+r′′). The third element is an encryption of a truly random value (because r′′ is chosen
by P1 uniformly at random), which can be perfectly simulated using Enc(pk2, R) where R is also
chosen uniformly at random. The first element can be simulated by Enc(pk1, 0). A straightforward
reduction shows that any distinguisher who can distinguish Enc(pk1, |C ∩ S|) from Enc(pk1, 0) can
be used to break the CPA-security of the encryption scheme.

⊓⊔

2.5 t≥-PSI Construction and Generalizations

To construct Πt≥-PSI, we modify Πt≤-PSI given in Fig. 1. The modification is simple and straight-
forward: in Step 3, P2 prepares a polynomial whose roots are r+ t, r+(t+1), . . . , r+min(|S|, |C|),
where the function min(x, y) returns the smaller value of x and y. The rest of the protocol remains
exactly the same. Note that the degree of this polynomial is min(|S|, |C|) − t + 1, which remains
to be O(|S|+ |C|), and hence the efficiency analysis in Table 1 also holds for Πt≥-PSI.

In general, P2 can specify the roots of the polynomial at will. For example, the roots could
be integers within a certain interval {r + a, r + (a + 1), . . . , r + b}. It means P1 only learns the

8 Yongjun Zhao and Sherman S.M. Chow

intersection if |C ∩ S| falls within the range [a, b]. Further generalizing, we can change the criteria
to be |C ∩ S| ∈ {m1,m2, . . . ,mq}, i.e., an arbitrary set of numbers (the set of even numbers, the
set of prime numbers, etc.) instead of consecutive numbers.

Proving the security of Πt≥-PSI (and its generalizations) just takes a very straightforward adap-
tion of Theorem 1 and thus we omit the repetitive details.

3 Encrypted PSI-Cardinality

Both our Πt≤-PSI and Πt≥-PSI protocol heavily rely on FePSI-CA, which is a novel variant of PSI and
PSI-CA protocol in the literature. In this section, we describe how to instantiate FePSI-CA efficiently
by combining the use of oblivious polynomial evaluation in the previous section with Bloom filter
techniques.

Before detailing our construction, it should be noted that FePSI-CA is not a trivial extension of
FPSI-CA or FPSI. It is tempting to instantiate FePSI-CA from FPSI-CA generically as follows: P1 and
P2 executes FPSI-CA, and P1 encrypts the output |C ∩ S| under its public key pk1, forwards the
ciphertext to P2. Unfortunately this approach does not satisfy the security requirement of FePSI-CA,
namely P1 should output ⊥ instead of learning |C ∩ S|. Moreover, all ΠPSI-CA protocols that we
are aware of proceed by transforming elements in the two parties’ respective set via some one-way
transformation, and let P1 count the number of common elements in the transformed domain. If
one follows this paradigm, it seems impossible to hide the size of intersection |C∩S| from P1. After
all, in FPSI-CA and FPSI, it is P1 who has non-trivial output while in FePSI-CA, it is P2 instead. Such
inherent inconsistency suggests that new techniques are required to design ePSI-CA.

3.1 ePSI-CA Protocol: ΠePSI-CA

Our construction is inspired by the existential private set-intersection (denoted by FX) protocol
by Carpent et al. The core component of their protocol implements an encrypted private mem-
bership test protocol, a special case of FePSI-CA where P1’s input set consists of a single element.
Unfortunately their construction is too inefficient, making it unsuitable for our application. We
significantly improve their construction by a novel combination of oblivious polynomial evaluation
and Bloom filter. Interested readers are referred to Appendix G for a detailed discussion of FX .
Here we only highlight our design principle.

Recall that a Bloom filter BFS encoding a set S supports efficient membership test by hashing
the test element x into k locations using k hash functions. If the value of BFS at those locations
are all “1”, we conclude that x ∈ S. Namely, the predicate “x ∈ S or not” is transformed to
determining the number of “1”s.

P (x,BFS) =

{
1 x ∈ S

0 x /∈ S
=

{
1 exactly k “1”s in {BFS [h1(x)], . . . , BFS [hk(x)]}
0 less than k “1”s in {BFS [h1(x)], . . . , BFS [hk(x)]}

Suppose that P2’s Bloom filter BFS is encrypted under its public-key pk2, then P1 can oblivi-
ously compute an encryption of the number of “1”s under pk2 by adding the ciphertexts of those
k locations for element x. Denote such number of “1”s as nX , and its encryption under pk2 as
enX

. Our task becomes how to transform enX
to an encryption of 0 if nX ∈ [0, k − 1]; or to an

encryption of 1 if nX = k. This task is quite similar to what we have seen in Sec. 2, in which we
transform an encryption of |C ∩ S| to an encryption of 0 if |C ∩ S| ∈ [0, t]; or to an encryption of
a non-zero number otherwise.

Fig. 2 gives the full details of ΠePSI-CA protocol. Some notes are in order.
In Step (1), k = ω(log λ) and N = ω(log λ)|S| log2 e, which are optimal values for a false positive
rate of ϵ that is negligible in the security parameter λ (see Sec. B.2).
In Step (3), the resulting ciphertext is encrypting an integer n̂i ∈ {ri, . . . , ri + k} because the sum

Can you find the one for me? 9

consists of a random ri and k encrypted numbers in {0, 1}.
In Step (4), the coefficients of the polynomials pi(·) are independent of the private set |C|, so P1

can outsource this step to a cloud server.
In Step (5), each evaluation of polynomial pi(˜̂ni) equals 0 if ci /∈ S; or equals to a constant
k × (k − 1)× · · · × 1 = k! if n̂i ∈ S. Hence we multiply by a factor (k!)−1 outside the summation
to normalize the number.

Protocol: Encrypted Private Set-Intersection Cardinality ΠePSI-CA
Input: P1’s input is C, |S|, and an AHE key pair (pk1, sk1).
P2’s input is S, |C|, and an AHE key pair (pk2, sk2).

1. [setup] The parties perform a secure coin-tossing sub-protocol to choose seeds for random Bloom
filter hash functions h1, . . . , hk : {0, 1}∗ → [N].

2. [P2 encrypts its Bloom filter] P2 builds an N -bit Bloom filter with k hash functions on his
set S. P2 sends encrypted bits of the Bloom filter e1, e2, . . . , eN under pk2.

3. [P1 masks the query results] For each element ci ∈ C, P1 hashes ci using those k hash functions
to obtain k indices h1(ci), h2(ci), . . . , hk(ci). P1 creates a ciphertext en̂i by homomorphically
summing up all ciphertexts at those indices (eh1(ci), . . . , ehk(ci)) and another ciphertext of a
randomly chosen number ri.

4. [P1 prepares encrypted polynomials] For all i, P1 prepares encrypted coefficients of a degree-k
polynomial pi(x) = (x− ri)(x− ri−1) · · · (x− ri−k+1) under pk1. P1 sends the set of encrypted
coefficients of pi(·) and en̂i to P2.

5. [output] P2 decrypts en̂i to get n̂i. P2 blindly evaluates (k!)−1 · (
∑

i pi(n̂i)). Outputs this en-
crypted result.

Fig. 2: Encrypted Private Set-Intersection Cardinality ΠePSI-CA

3.2 Analysis

We first argue for the correctness. For any element ci /∈ S, P1 can only collect less than k encryptions
of “1” in Step 3 (otherwise a false positive of Bloom filter has occurred). Therefore, the polynomials
pi(n̂i) will be evaluated to 0 in the ciphertext domain in Step 5. On the other hand, for cj ∈ S,
then the polynomial evaluation pj(n̂j) = k × (k − 1)× · · · × 1 = k!. After normalizing by a factor
of (k!)−1, the output of the protocol will be an encryption of |C ∩ S| as intended.

Next we analyze the efficiency by counting the total number of public-key operations from
Step (2) to Step (5). We assume that the false positive rate of Bloom filter is set to be ϵ = 2−ω(log λ),
so k = ω(log λ). The other parameters of Bloom filter are set to the optimal values accordingly.
Moreover, we assume that Horner’s rule is applied in evaluation of pi(·) in Step 5, which requires
k additions and k multiplications for a degree-k polynomial. Table 5 summarizes the result, which
shows that the complexity of our construction is only linear in the set size.

In terms of security, we have the following theorem:

Theorem 2. Assuming the existence of a CPA-secure additive homomorphic encryption scheme
(KeyGen,Enc,Dec), whose plaintext space is super-polynomial in the security parameter; then the
protocol ΠePSI-CA in Fig. 2 securely implements the functionality FePSI-CA under the semi-honest
model.

Due to space constraint, the proof of Theorem 1 is deferred to appendix.

10 Yongjun Zhao and Sherman S.M. Chow

3.3 Reducing Communication Cost

We note that it is possible to reduce the communication cost of Step 2 (sending N encryptions) and
Step 4 (sending k|C| encryptions) via private information retrieval (PIR) and oblivious transfer
(OT) respectively as follows.

In Step 2, instead of transferring the whole encrypted Bloom filter e1, e2, . . . , eN from P2 to
P1, it suffices to obliviously transfer only a subset of those ciphertexts which will be used by P1 in
Step 3. The exact number of such ciphertexts depends on P1’s set size |C| and the number hash
functions k, and can be upper-bounded by k|C|. In more details, Steps 2 and 3 are replaced by
the following steps: Firstly, P1 constructs a Bloom filter for its private set C according to the hash
functions specified in Step 1. Then P1 records the indices of non-zero bits of the Bloom filter, and
uses these indices as input to k|C| instances of single server PIR protocol, in which P2 plays the
role of server holding a database (e1, e2, . . . , eN) of size N . Let PIR(N) denote the communication
cost of a single server PIR scheme whose database size is N . The overall communication cost
of the above approach can be bounded by k|C| × PIR(N). Since the state-of-the-art scheme [19]
gives PIR(N) ∈ O(log log(N)), the above approach incurs O(k|C| log log(N)) communication cost
instead of O(N). The improvement is significant when |C| ∈ o(|S|

log log(|S|)), namely P2’s set size is
much larger than P1’s. Such unbalanced set size setting is considered in the literature [36] recently.

Conceptually, Steps 4 and 5 are executing |C| instances of the following variant of 1-out-of-
(k + 1) OT. Namely, P2 is holding an index n̂i and P1 is holding a number ri an array of k + 1
ciphertexts, the first k ciphertexts being Enc(pk1, 0) and the last one being Enc(pk1, 1). At the
end of the protocol, P2 obtains the (n̂i − ri)-th ciphertext. A concrete instantiation of the above
protocol using log(k+1) instances of 1-out-of-2 OT was suggested by Jarrous and Pinkas [31] as a
part of their binHDOT protocol (Fig. 1 in [31]). After applying this technique, the communication
cost of Step 4 is reduced from sending (k+1)|C| additively homomorphic encryption to executing
|C| × log(k + 1) 1-out-of-2 OT.

The benefits of reduced bandwidth using these two techniques come with a price. On one hand,
the use of PIR significantly increases P2’s computational cost. On the other hand, we will discuss
how to outsource heavy computations of ΠePSI-CA to an untrusted cloud in the next section. Unfor-
tunately, these two optimizations do not seem to be compatible with our outsourcing techniques.
We therefore choose to present ΠePSI-CA as in Fig. 2. The complexity analysis of ΠePSI-CA is com-
puted according to the protocol in Fig. 2, without taking the above techniques into consideration.

4 Outsourcing to an Untrusted Server

In this section, we elaborate how to outsource some of the heavy computations in our protocols to
an oblivious cloud. As to be discussed in Sec. 1.4, there are quite a few outsourced PSI protocols
in the literature [1, 2, 33–35]. However, they only implement the basic PSI protocol with different
degrees of outsourceability. None of them supports flexible control as our t≤-PSI and t≥-PSI do.
We extend the PSI model by introducing an additional cloud server, denoted by CSP . This party
serves as an oblivious helper in our ePSI-CA, t≤-PSI, and t≥-PSI protocols: it helps P1 and P2

to perform some heavy computations but remains oblivious to both P1 and P2’s inputs, and the
outcome of the protocol. The CSP is not trusted in the sense that it does not share any secret
information with P1 or P2, but we assume that it will follow the protocol specification faithfully.
Such a semi-honest cloud server is widely accepted in the literature [1, 33–35].

4.1 Outsourcing ΠePSI-CA

As the major building block of the bigger protocols Πt≤-PSI and Πt≥-PSI, we first discuss the
outsourceability of each step of ΠePSI-CA.

Can you find the one for me? 11

Step 1 P1 and P2 run a coin-tossing protocol per execution to obtain the random seed for hash
functions. The seed should remain hidden from CSP .

Step 2 P2 bitwise-encrypts its Bloom filter. Notice that a Bloom filter is always a binary string,
regardless of the set that it is encoding. As a result, P2 can prepare a set of ciphertext
encrypting “0”s and “1”s under pk2 offline before any protocol execution.
Recall that P2 uses an N -bit Bloom filter to represent its set. Hence it suffices to let CSP
prepare N0 = 1+δ

2 × N encryptions of “0”s and the same number N1 = N0 for “1”s. (δ
is a small constant and N is the same as that in Sec. 3.1). P2 permutes the order of the
ciphertexts according to a pseudorandom permutation generated from a secret random
seed, and uploads the (N0 +N1) ciphertexts to the CSP .
These ciphertexts can be reused for different protocol executions as follows: after obtaining
the random seeds for the hash functions in Step 1, P2 locally generates its plaintext Bloom
filter. For each bit BF [i], P2 randomly selects one of the N0 (or N1) ciphertexts stored in
CSP . P2 informs CSP its choice by sending N indices in total, so that CSP can prepare
an encrypted Bloom filter for P2. Note that only P2 knows whether these ciphertexts are
“0”s or “1”s. Hence CSP remain totally oblivious to the content of the Bloom filter.

Step 3 P1 hashes its elements according to the hash functions agreed in Step 1, and obtains k indi-
ces for each elements. P1 sends these locations to CSP so that CSP can homomorphically
calculate the sum of these ciphertexts for P1. Since CSP does not know the random seeds
for the hash functions generated in Step 1, these indices are complete random numbers from
CSP ’s point of view. Moreover, the random number ri is independent of its corresponding
element ci, so CSP can choose ri on behalf of P1.

Step 4 The coefficients of the polynomial pi(x) = (x − ri) · · · (x − ri − k + 1) are completely
determined by ri, which are now selected by CSP in Step 3. Hence CSP can perform the
whole Step 4.

Step 5 The polynomial evaluation step homomorphically computes encryption of ak · n̂i
k + · · · +

a1 · n̂i
1+a0 in the ciphertext domain using n̂i from decryption. Note that we cannot reveal

n̂i = ni + ri to CSP because CSP knows ri. The knowledge of ni leaks whether the i-th
element is in the intersection or not. Still, P2 can locally compute ciphertexts of aj · n̂i

j for
all j ∈ [0, k], and then ask CSP to add them together (which saves some computation). In
this way, P2 can still outsource (k + 1)|C| − 1 homomorphic additions to CSP .

Putting these together, Fig. 3 presents the outsourced ΠePSI-CA protocol. Table 6 shows its
online computational complexity, with the saving highlighted in red. In short, P1 can outsource
all public key operations to the CSP while P2 can outsource some. Sec. 5 will show that such
improvement is significant.

4.2 Outsourcing Πt≤-PSI

We use Πt≤-PSI as an example to showcase outsourceability. It is very straightforward to apply
the same technique to Πt≥-PSI and its generalizations. Basically most of the public key operations
(except decryption) can be outsourced.
Step 1 Invoking of FePSI-CA. This can be (partially) outsourced as in Sec. 4.1.
Step 2 The blinding factor r is independent of P2’s private input. Hence the computation of

Enc(pk1, |C ∩ S|+ r) can be delegated to the cloud.
Step 3 The coefficients of the polynomial p′′(·), like those in Step 4 of Fig. 2, are again independent

of P2’s private input. Therefore the encryption of coefficients can be outsourced to CSP ,
who will choose r′,K on behalf of P2.

Step 4 Since only P1 knows sk1, the decryption of Enc(pk1, |C ∩ S|+ r) cannot be done by CSP .
Moreover, the decryption result |C ∩S|+r cannot be revealed to CSP because CSP knows
r in Step 2. As a result, the evaluation of p′′(·) cannot be fully outsourced to CSP , but still
P1 can locally compute encryptions of aj ·(|C∩S|+r)j for j ∈ [0, t], as well as Enc(pk2, r′′),
and then ask CSP to homomorhpically add them together.

12 Yongjun Zhao and Sherman S.M. Chow

Protocol: Outsourcing ΠePSI-CA
Input: P1’s input is C, |S|, and an AHE key pair (pk1, sk1).
P2’s input is S, |C|, and an AHE key pair (pk2, sk2). CSP has no input.
Offline Phase:

– P2 encrypts N0 zeros and N1 ones under pk2. P2 randomly permutes these ciphertexts according to
some pseudorandom permutation π before uploading these N0 +N1 ciphertexts (ẽ1, . . . , ẽN0+N1)
to CSP .

Online Phase:

1. [setup] P1 and P2 perform a secure coin-tossing sub-protocol to choose seeds for random Bloom
filter hash functions h1, . . . , hk : {0, 1}∗ → [N].

2. [P2 builds encrypted Bloom filter at CSP] P2 builds an N -bit Bloom filter BFS with k hash
functions on its set S. P2 sends an ordered list of N indices (idx1, . . . , idxN) to CSP such that
Dec(sk2, ẽidxi) = BFS [i]. These N ciphertexts are denoted by e1, . . . , eN .

3. [P1 sends the query to CSP] For each element ci ∈ C, P1 hashes ci using those k hash functions
to obtain k indices h1(ci), h2(ci), . . . , hk(ci). P1 sends these indices to CSP .

4. [CSP forms encrypted queries] For each i, CSP creates a ciphertext en̂i by homomorphically
summing up all ciphertexts at those indices (eh1(ci), . . . , ehk(ci)) and another ciphertext of a
random number ri.

5. [CSP prepares encrypted polynomials] For all i, CSP prepares encrypted coefficients of a
degree-k polynomial pi(x) = (x− ri)(x− ri−1) · · · (x− ri−k+1) under pk1. For all i, CSP sends
the set of encrypted coefficients of pi(·) (e.g., ak,i, . . . , a0,i) and en̂i to P2.

6. [P2 partially evaluates pi(·)] For each i, P2 decrypts en̂i to get n̂i, and computes ciphertexts
of aj,i · n̂i

j for all j ∈ [0, k]. P2 sends these ciphertexts to CSP .
7. [output] CSP homomorphically adds these ciphertexts into eΣ . CSP homomorphically multiplies

eΣ with the constant (k!)−1.CSP sends this encrypted result to P2, who outputs it directly.

Fig. 3: Outsourced Encrypted Private Set-Intersection Cardinality ΠePSI-CA

Step 5 Decryption cannot be outsourced.
Step 6 Intuitively outsourcing ΠPSI requires outsourceable PSI. There are quite a few potential

solutions with different level of outsourceability in the literature [1, 2, 33–35]. We refer
readers to these papers for more details.

Putting these pieces together, Fig. 4 presents the outsourced below-threshold private set-
intersection protocol. Table 2 gives the online computational complexity of outsourced Πt≤-PSI.

5 Evaluation

We now examine the performance of our proposed protocols ΠePSI-CA and Πt≤-PSI. The experiment is
conducted on a desktop machine running Windows 8.1, with 2 Intel(R) Core(TM) i5-4590 3.30GHz
CPUs, and 8GB RAM. We fix the size of the sets to be 100 and the threshold t is set to be half of
set size, namely 50. as they should be sufficient for private-matching application in reality. Note
that a dating site eHarmony recently only uses a couple questions that can be finished within 10
minutes to build up a model called “29 dimensions” to build up a user profile. The Bloom filter uses
30 hash functions instantiated by SHA-256, implemented by the OpenSSL library2. This number
of hash functions reflects a false negative rate ϵ = 2−30 and Bloom filter size 4500 bits. We note
2 https://www.openssl.org/

https://www.openssl.org/

Can you find the one for me? 13

Protocol: Outsourced Πt≤-PSI
Input: P1’s input is an element C, |S|, and t. P2’s input is S, |C|, and t.
(CSP has no input.)
Offline Phase:

– Execute the offline phase of outsourced ΠePSI-CA and outsourced ΠPSI.

Online Phase:

1. [execute outsourced ΠePSI-CA] P1 generates an AHE public/private key pair (pk1, sk1), sends
pk1 to P2. Next P1, P2, and CSP engage in an execution of outsourced ΠePSI-CA where the input
of P1 is (C, |S|, (pk1, sk1)) and the input of P2 is (pk1, S, |C|).

2. [CSP masks encrypted |C ∩ S|] P2 sends the encrypted cardinality Enc(pk1, |C ∩ S|) to CSP ,
who blinds it by a random number r as Enc(pk1, |C ∩ S|+ r).

3. [CSP prepares encrypted polynomials] CSP prepares an encrypted polynomial p′(·) whose
roots are r, r+1, . . . , r+ t under P2’s AHE public-key pk2. CSP also chooses a random number r′

and a random symmetric key K. Finally, CSP sends encrypted polynomial p′′(·) = r′ · p′(·) +K
under pk2, as well as Enc(pk1, |C ∩ S|+ r) to P1.

4. [P1 partially evaluates polynomial] Let the decryption of Enc(pk1, |C ∩ S| + r) be x. P1

homomorphically computes encryption of aj · xj under pk2 for each polynomial coefficient aj . P1

sends these ciphertexts to CSP .
5. [CSP completes polynomial evaluation] CSP homomorphically adds all received ciphertexts

from P1. Denote the result by Enc(pk2,K
′). CSP blinds it with randomness r′′ into Enc(pk2,K

′+
r′′) and asks P2 for decryption. CSP sends r′′ to P1 in plaintext.

6. [P2 decrypts] P2 decrypts Enc(pk2,K
′ + r′′) and returns K′ + r′′ to P1, who recovers K′.

7. [execute outsourced ΠPSI] P1, P2, and CSP engage in an execution of outsourced ΠPSI where
the input of P1 is (CK′

= {ci||K′}, |S|) and the input of P2 is (SK = {si||K}, |C|).
8. [output] P1 outputs whatever it receives in the previous step (stripping away the trailing key K′

if the output is non-empty).

Fig. 4: Outsourced Below-Threshold Private Set-Intersection (Πt≤-PSI)

Table 2: Online Computational Complexity of Πt≤-PSI
(using outsourced ΠePSI-CA (cf. Table 6) to instantiate of FePSI-CA)

Enc Dec addition multiplication ΠPSI

Step 1 (P1) 0 0 0 0 0
(P2) 0 O(|C|) 0 O(ω(log λ)|C|) 0

Step 2 (P2) 0 0 0 0 0

Step 3 (P2) 0 0 0 0 0

Step 4 (P1) 1 1 0 t+ 1 0

Step 5 (P2) 0 1 0 0 0

Step 6 (P1) 0 0 0 0 O(|C|+ |S|)
(P2) 0 0 0 0 O(|C|+ |S|)

P1 Total O(1) O(1) 0 O(t) O(|C|+ |S|)
P2 Total 0 O(|C|) 0 O(ω(log λ)|C|) O(|C|+ |S|)
CSP Total O(ω(log λ)(|C|+ |S|) 0 O(ω(log λ)(|C|+ |S|)) 0 O(|C|+ |S|)

that one can achieve better performance at the cost of a larger false negative rate by reducing
the number of hash functions, which will lead to a smaller Bloom filter. We use existing Paillier

14 Yongjun Zhao and Sherman S.M. Chow

encryption implementation3, and set the key length to be 2048. Experiments were measured in
seconds via wall clock runtime, and the reported runtimes are the average of 100 trials.

We report the computation time of each step of ΠePSI-CA and Πt≤-PSI in Table 3 and 4 respecti-
vely. The last column represents the online computation time for P1 and P2 in the outsourced
setting. We do not include the running time of the last step of Πt≤-PSI, because it relies on existing
efficient ΠPSI protocol (and its outsourced version), which is not part of the contribution of this
paper.

From the tables, we see that the outsourced version achieves a significant reduction in compu-
tation time for both P1 and P2. There are several ways to further reduce it for P2. First note that
our protocols are easily parallelizable, which means significant improvement can be achieved via
multi-threading. Second, recently Jost et al. [32] reported optimizations on Paillier cryptosystem
that improves naïve implementation by a factor of over 150. Taking these into consideration, our
constructions can finish within 1s.

Table 3: Execution time of ΠePSI-CA (without the optimization of [32])
time (s) online (s)

Step 2 (P2) create Bloom filter 0.001 0
encrypt Bloom filter 60.404 0

Step 3 (P1) query Bloom filter 2.685 0.001
Step 4 (P1) encrypt polynomial 81.268 0

Step 5 (P2) decryptions 1.322 1.322
evaluate polynomials 76.627 76.562

P1 Total 83.953 0.001
P2 Total 138.353 77.884

Table 4: Execution time of Πt≤-PSI, t = 50 (without the optimization of [32])
time (s) online (s)

Step 1 (ΠePSI-CA) P1 83.953 0.001
P2 138.353 77.884

Step 2 (P2) 0.026 0
Step 3 (P2) 1.363 0
Step 4 (P1) 1.325 1.324
Step 5 (P2) 0.013 0.013

P1 Total 85.278 1.325
P2 Total 139.755 77.897

6 Conclusion

We propose efficient protocols for three important extensions of PSI, namely, existential private
set-intersection, over threshold private set-intersection, and below threshold private set-intersection.
The last two provide affirmative answers to two open problems posed very recently in the literature.
3 https://github.com/herumi/mie

https://github.com/herumi/mie

Can you find the one for me? 15

All of our constructions achieve linear computational complexity by utilizing and extending existing
building blocks in a novel way. We prove that our constructions are secure against semi-honest
adversaries. Our constructions provide useful building blocks to realize privacy-preserving online
matchmaking.

Acknowledgement

We thank anonymous reviewers for suggesting the use of the technique in [31] to reduce commu-
nication cost.

References

1. Aydin Abadi, Sotirios Terzis, and Changyu Dong. O-PSI: delegated private set intersection on out-
sourced datasets. In SEC, pages 3–17, 2015.

2. Aydin Abadi, Sotirios Terzis, and Changyu Dong. VD-PSI: verifiable delegated private set intersection
on outsourced private datasets. In FC, 2016.

3. Vikas G. Ashok and Ravi Mukkamala. A scalable and efficient privacy preserving global itemset
support approximation using bloom filters. In DBSec, 2014.

4. Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (If) size matters: Size-hiding private
set intersection. In PKC, 2011.

5. Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM,
13(7):422–426, 1970.

6. Carlo Blundo, Emiliano De Cristofaro, and Paolo Gasti. Espresso: Efficient privacy-preserving evalu-
ation of sample set similarity. Journal of Computer Security, 22(3):355–381, 2014.

7. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In TCC, 2005.
8. Prosenjit Bose, Hua Guo, Evangelos Kranakis, Anil Maheshwari, Pat Morin, Jason Morrison, Michiel

H. M. Smid, and Yihui Tang. On the false-positive rate of Bloom filters. Inf. Process. Lett., 108(4):210–
213, 2008.

9. Tatiana Bradley, Sky Faber, and Gene Tsudik. Bounded size-hiding private set intersection. In SCN,
2016.

10. Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology,
13(1):143–202, 2000.

11. Xavier Carpent, Sky Faber, Tomas Sander, and Gene Tsudik. Private set projections & variants. In
WPES, 2017.

12. Michele Ciampi and Claudio Orlandi. Combining private set-intersection with secure two-party com-
putation. Cryptology ePrint Archive, Report 2018/105, 2018.

13. Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Efficient robust private set
intersection. In ACNS, 2009.

14. Paolo D’Arco, Maria Isabel Gonzalez Vasco, Angel L. Pérez del Pozo, and Claudio Soriente. Size-hiding
in private set intersection: Existential results and constructions. In AFRICACRYPT, 2012.

15. Alex Davidson and Carlos Cid. An efficient toolkit for computing private set operations. In ACISP
Part II, 2017.

16. Sumit Kumar Debnath and Ratna Dutta. Secure and efficient private set intersection cardinality using
bloom filter. In ISC, 2015.

17. Sumit Kumar Debnath and Ratna Dutta. How to meet big data when private set intersection realizes
constant communication complexity. In ICICS, 2016.

18. Sumit Kumar Debnath and Ratna Dutta. Provably secure fair mutual private set intersection cardi-
nality utilizing bloom filter. In Inscrypt, 2016.

19. Changyu Dong and Liqun Chen. A fast single server private information retrieval protocol with low
communication cost. In ESORICS, 2014.

20. Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big data: an efficient
and scalable protocol. In CCS, 2013.

21. Changyu Dong and Grigorios Loukides. Approximating private set union/intersection cardinality with
logarithmic complexity. IEEE Trans. Information Forensics and Security, 12(11):2792–2806, 2017.

16 Yongjun Zhao and Sherman S.M. Chow

22. Rolf Egert, Marc Fischlin, David Gens, Sven Jacob, Matthias Senker, and Jörn Tillmanns. Privately
computing set-union and set-intersection cardinality via bloom filters. In ACISP, 2015.

23. Ellis Fenske, Akshaya Mani, Aaron Johnson, and Micah Sherr. Distributed measurement with private
set-union cardinality. In CCS, 2017.

24. Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and set intersection.
In EUROCRYPT, 2004.

25. Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge Uni-
versity Press, 2004.

26. Per A. Hallgren, Claudio Orlandi, and Andrei Sabelfeld. Privatepool: Privacy-preserving ridesharing.
In CSF, 2017.

27. Carmit Hazay. Oblivious polynomial evaluation and secure set-intersection from algebraic PRFs. In
TCC Part-II, 2015.

28. Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of malicious adversaries. In
PKC, 2010.

29. Susan Hohenberger and Stephen A. Weis. Honest-verifier private disjointness testing without random
oracles. In PET, 2006.

30. Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled circuits better
than custom protocols? In NDSS, 2012.

31. Ayman Jarrous and Benny Pinkas. Secure hamming distance based computation and its applications.
In ACNS, 2009.

32. Christine Jost, Ha Lam, Alexander Maximov, and Ben J. M. Smeets. Encryption performance impro-
vements of the paillier cryptosystem. Cryptology ePrint Archive, Report 2015/864, 2015.

33. Seny Kamara, Payman Mohassel, Mariana Raykova, and Seyed Saeed Sadeghian. Scaling private set
intersection to billion-element sets. In FC, 2014.

34. Florian Kerschbaum. Collusion-resistant outsourcing of private set intersection. In SAC, 2012.
35. Florian Kerschbaum. Outsourced private set intersection using homomorphic encryption. In ASIACCS,

2012.
36. Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and Benny Pinkas. Private set intersection for

unequal set sizes with mobile applications. PoPETs, 2017(4):177–197, 2017.
37. Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In CRYPTO, 2005.
38. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched oblivious PRF

with applications to private set intersection. In CCS, 2016.
39. Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu. Practical multi-party

private set intersection from symmetric-key techniques. In CCS, 2017.
40. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EURO-

CRYPT, 1999.
41. Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private set intersection

using permutation-based hashing. In USENIX Security, 2015.
42. Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient circuit-based PSI via

cuckoo hashing. In EUROCRYPT, 2018. To appear. Full version: http://ia.cr/2018/120.
43. Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection based on OT

extension. In USENIX Security, 2014.
44. Yongjun Zhao and Sherman S. M. Chow. Are you the one to share? Secret transfer with access

structure. PoPETs, 2017(1):149–169, 2017.

A Private Matchmaking

We discuss how to utilize our (outsourceable) protocols in our motivating application. The match-
making application is set up as follows. The service provider acts as CSP . When each user joins
the system, apart from generating a public key pair for AHE, they randomly pick a symmetric key
K and use it to encrypt their profile such as photos and contact information. The system suggests
a set of attributes (e.g., highly-educated, smoking). The user can mark a subset of attributes as
desired, and mark another disjoint subset as undesired. The unmarked ones will be considered as
“don’t care”, and they will not be part of the protocol input. The user also picks two thresholds:

http://ia.cr/2018/120

Can you find the one for me? 17

to which is for the least number of desired attributes, another one is tb which is for the maximum
number of undesired attributes.

A user Alice is considered to be matched with another user Bob if and only if she possess of more
than to desired attributes specified by Bob, and possess less than tb undesired ones. If matched,
Alice should obtain the symmetric key K that can decrypt Bob’s profile. We use t≤-PSI and t≥-PSI
simultaneously to implement the above functionality as follows: Bob splits the symmetric key K
into two parts by a simple (2, 2) secret sharing based on XOR. Specifically, Bob picks a key Ko

which is as long as K, and outputs both Ko and Kb = K ⊕Ko. Bob puts all the undesired (resp.
desired) attributes as the private set input of t≤-PSI (resp. t≥-PSI).

Users who joined the service can either be passively matched by others or actively request for
matching. Here we discuss a typical protocol run from the perspective of an active user Alice. The
service provider will pick a potential user, called a passive user Bob, and execute the PSI protocols
on behalf. In other words, that is where the outsourced feature of our protocols come into the play.
Suppose the number of undesired attributes of this passive user Bob is below the threshold tb after
running t≤-PSI, and the number of desired attributes is over the threshold to after running t≥-PSI.

If our protocols are used directly, the active user Alice will get the intersection of either kinds
of attributes. This may not be the most privacy-preserving way for doing matchmaking since Bob
has no way to control about whether revealing any secret information (such as the profile) or not.
Luckily, the intersection result can be easily removed from our protocols by removing the last step
of performing the (keyed-)PSI. As a result, even the Bob passed the matching criteria, Alice only
obtains a secret key generated by Bob (from the second last step of the protocol).

Here, we utilize the idea of secret transfer with access structure from Zhao and Chow [44]. This
key will serve as a proof of criteria satisfaction. Upon the presentation of the aforementioned secret
key, the user can decide to reveal Kb (resp. Ko) or not. Such decision can be done after the service
provider execute the PSI protocols on behalf of this passive user. If the interest is mutual, i.e., the
requesting user also satisfies the search criteria of the “passive” user, the passive user can finally
reveal the encrypted profile.

Two remarks are in order. First, note that even with the help of the service provider who medi-
ates the requests between two users, the outsourced PSI protocols are not entirely non-interactive.
For this, the service provider still needs to relay message between the users. However, it matches
with the workflow used by non-private matchmaking apps nowadays which the user cannot connect
to another user until there are mutual interests. Second, some user may expect to assign different
weighting to different attributes. A trivial approach is to replicate the attribute multiple times.
Devising cleverer solutions which maintain a similar level of efficiency requires further twisting of
our PSI protocols (perhaps by borrowing techniques from Zhao and Chow [44]) We left it as future
work.

B Preliminary

For a finite set S, |S| denotes its size and s
$←− S denotes picking an element uniformly at

random from S. We denote [i] = {1, . . . , i}. We write {si}n as a shorthand for the set S =
{s1, . . . , sn} of n elements. We drop the subscript n if it is clear from context. We use Fρ to denote
an ideal functionality that implements the protocol ρ, and use Πρ to denote a concrete construction
of the protocol ρ.

B.1 Homomorphic Encryption and Oblivious Polynomial Evaluation

We will use CPA-secure additive homomorphic encryption (AHE) (KeyGen, Enc, Dec) such as
Paillier encryption [40]. Given two ciphertexts Enc(pk,m0) and Enc(pk,m1), one can efficiently
compute their addition Enc(pk,m0 +m1) without using private key sk. As a corollary, given one
ciphertext Enc(pk,m) and a constant c, one can perform repeated addition and obtain Enc(pk, c·m).

18 Yongjun Zhao and Sherman S.M. Chow

With addition and constant-multiplication, we can build an OPE protocol. A polynomial p(x)
can be hidden by encrypting its coefficients a0, . . . , ak. With these encrypted polynomial, anyone
holding a plaintext s can then compute an encryption of p(s).

B.2 Bloom Filters
A Bloom filter [5] is a compact array of m bits that represents a set S of n elements for efficient
set membership testing. It consists of a set of k independent hash functions H = (h1, . . . , hk), hi

uniformly maps elements to index in [m].
All bits in the array are initialized to 0. To insert an element x ∈ S, x is hashed by the k hash

functions to get k index numbers. All the bits at these indexes in the array are set to 1, regardless
of its original value. To check if an item y is in S, y is hashed by the k hash functions to get
k indexes. If any of the bits at these indexes is 0, we conclude that y is certainly not in S (no
false negative). Otherwise, y is probably in S. So there is only a small fraction of false positives.

The upper bound of the false positive probability [8] is: ϵ = pk
(
1 +O

(
k
p

√
lnm−k ln p

m

))
where

p = 1− (1− 1
m)kn.

If we set the false positive rate to be less than a threshold ϵ0, it can be shown that the length
of the bit array size m should be at least m ≥ n log2 e · log2 1/ϵ0, where e is the base of the natural
logarithm. Equality is achieved when k = (m/n) · ln 2 = log2 1/ϵ0. We will stick with these optimal
values as follows: the false positive probability is ϵ = 2−ω(log λ) so that ϵ is negligible in the security
parameter λ. As a result, k = ω(log λ) and m = k · n log2 e.

C Secure Two-Party Computation
We use the simulation-based security definition for two-party computation (2PC). More details
can be referred to [25]. A 2PC protocol π computes a function that maps a pair of inputs to a pair
of outputs f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). For every pair of inputs
x, y ∈ {0, 1}∗, the output-pair is a random variable (f1(x, y), f2(x, y)). The first party obtains
f1(x, y) and the second party obtains f2(x, y).

We first consider static semi-honest adversaries, which can control one of the two parties and
assumed to follow the protocol specification exactly. However, it may try to learn more information
about the other party’s input.

In the semi-honest model, a protocol π is secure if whatever can be computed by a party in
the protocol can be obtained from its input and output only. This is formalized by the simulation
paradigm. We require a party’s view in a protocol execution to be simulatable given only its
input and output. The view of the party i during an execution of π on input (x, y) is denoted by
Viewπ

i (x, y) = (w, ri,mi
1, . . . ,m

i
t), where w ∈ (x, y) is the input of i, ri is i’s internal random coin

tosses, and mi
j denotes the j-th message that it received.

Definition 4 (Semi-honest Model). Protocol π is said to securely compute a deterministic
function f = (f1, f2) in the presence of static semi-honest adversaries if there exists PPT algorithms
Sim1,Sim2 such that

{Sim1(x, f1(x, y))}x,y
c≡ {Viewπ

1 (x, y)}x,y, {Sim2(y, f2(x, y))}x,y
c≡ {Viewπ

2 (x, y)}x,y.

The F-hybrid model. We will use some secure two-party protocols as sub-protocols in our
constructions. We will describe our protocols in a “hybrid model” where the two parties both
interact with each other and use trusted help. When constructing a protocol π that uses a sub-
protocol that securely computes some functionality F , we consider the case that the parties run
π and use “ideal calls” to a trusted party for computing F . Upon receiving the inputs from the
parties, the trusted party computes F and sends all parties the corresponding output. Then after
receiving these outputs back from the trusted party, the protocol π continues. By the composition
theorem [10], any protocol that securely implements F can replace the ideal calls to F .

Can you find the one for me? 19

D Private Projection

Recently, Carpent et al. [11] started the study of private projection (PSI-P). Different from tra-
ditional PSI, the server in PSI-P has a database DB = {d1, . . . , dn} (which may contain dupli-
cations) and a column of attributes A = {a1, . . . , an}, while the client has a set of attributes
B = {b1, . . . , bm}. After a PSI-P invocation, the server learns nothing while the client only learns
{di|∃(i, j) s.t. bj = ai}. In particular, the client should not know which matching bj corresponding
to which di, nor how many matching bj that di corresponds to.

PSI-P finds application in matching indicators of compromise (IOC), where attribute column
A represents IOC while the database DB represents patches of known vulnerabilities and attacks.
In such scenarios, the correspondence between IOC and patches can be sensitive. Attackers may
slightly adapt their attack strategy to avoid being detected by the same IOC. Using PSI-P as a
solution, the server (as a security expert) can protect the valuable information (IOC and DB of
patches), yet provides a just-enough list of patches to the client, without letting the server know
private set B (e.g., network traffic).

E Missing Proof

E.1 Proof of Theorem 2

Proof. We consider two corruption cases.
Simulating the view of P1 using SimePSI-CA

1 . The view of P1 only contains its view in the
coin-tossing protocol Viewcoin

1 , pk2, and (e1, . . . , eN) (encryptions of binary numbers under pk2).
SimePSI-CA

1 can generate the first two using the Simcoin
1 , KeyGen algorithm, while the third one can

be simulated by encryptions of zero due to the CPA-security of the encryption scheme. Assume for
contradiction that there exists a distinguisher D for the simulated view and the real view. One can
build a distinguisher D′ breaking the CPA-security of the encryption scheme. In the CPA-security
game, D′ is given a public-key pk. D′ submits two vectors of plaintexts m0,m1 where m0 is an
all-zero bit vector as constructed in the simulated view, and m1 is the Bloom filter as in the real
execution. D′ receives a vector of ciphertext c corresponding to an encryption of either m0 or m1,
and directly forwards (pk, c) to D. Finally, D′ outputs what D outputs. It is easy to see that the
advantages of D and D′ are the same.

Simulating the view of P2 using SimePSI-CA
2 . P2’s view can also be simulated in an analogous

way. In particular, P2’s view contains Viewcoin
2 , P1’s public-key pk1, encryptions of random numbers

n̂i = ri + ni under pk2, where ni is a number in [0, k], encryptions of coefficients of a polynomials
pi(·) whose roots are ri, ri + 1, . . . , ri + k − 1 under pk1. The first two elements can be simulated
using Simcoin

2 and KeyGen. Encryptions under pk2 can be generated by encrypting random numbers,
while encryptions under pk1 can be emulated by encryptions of 0. By a similar argument as above,
the simulation will be indistinguishable from the real view.

⊓⊔

F Complexity of (Outsourced) ΠePSI-CA

G Existential PSI (PSI-X)

Carpent et al. recognize that none of the existing PSI protocols (or their variants) satisfies the
security requirements of PSI-P. While outside their radar, oblivious transfer for a sparse array [44]
can approximate PSI-P since it leaks the number of distinct data elements. They thus propose
a series of protocols with different leakages, and finally construct a full-fledged PSI-P from any
PSI-X. Unfortunately, their PSI-X is inefficient. For client and server set sizes being m and n, the

20 Yongjun Zhao and Sherman S.M. Chow

Table 5: Computational Complexity of ΠePSI-CA
(false positive rate ϵ = 2−ω(log λ), # of hash k = ω(log λ))

Enc Dec addition multiplication
Step 2 (P2) (log2 e)k|S| 0 0 0

Step 3 (P1) |C| 0 k|C| 0

Step 4 (P1) (k + 1)|C| 0 0 0

Step 5 (P2) 0 |C| (k + 1)|C| − 1 k|C|+ 1

P1 Total O(ω(log λ)(|C|+ |S|) 0 O(ω(log λ)(|C|+ |S|)) 0

P2 Total O(ω(log λ)(|C|+ |S|) O(|C|) O(ω(log λ)(|C|+ |S|)) O(ω(log λ)|C|)

Table 6: Online Computational Complexity of Outsourced ΠePSI-CA
(false positive rate ϵ = 2−ω(log λ), # of hash k = ω(log λ))

Enc Dec addition constant-multiplication
Step 2 (P2) 0 0 0 0

Step 3 (P1) 0 0 0 0

Step 4 (P1) 0 0 0 0

Step 5 (P2) 0 |C| 0 k|C|+ 1

P1 Total 0 0 0 0

P2 Total 0 O(|C|) 0 O(ω(log λ)|C|)
CSP Total O(ω(log λ)(|C|+ |S|) 0 O(ω(log λ)(|C|+ |S|)) 0

Protocol: Efficient PSI-X Protocol ΠX

Input: P1’s input is a set C and |S|. P2’s input is S and |C|.

1. [invoke FePSI-CA] P1 sends his AHE public key pk1 to P2. Next the parties invoke an ideal execution
of FePSI-CA where the input of P1 is (C, |S|, (pk1, sk1)) and the input of P2 is (pk1, S, |C|).

2. [P2 randomizes the encrypted cardinality] P2 homomorphically multiplies Enc(pk1, |C ∩ S|)
obtained from FePSI-CA by a random number r as Enc(pk1, r|C ∩ S|) before sending it to P1.

3. [output] P1 decrypts the ciphertext and returns 1 iff. the result is non-zero.

Fig. 5: Efficient PSI-X Protocol ΠX

computational complexity is of order O(mn). Any improvement for PSI-X immediately leads to a
better private projection protocol. ΠX can be easily realized by slightly modifying Step 5 of our
ΠePSI-CA. Recall that in Step 5 of ΠePSI-CA P2 obtains the set-intersection cardinality encrypted
under pk1. P2 can rerandomize this ciphertext before sending it to P1.

Definition 5 (Existential Private Set-Intersection (PSI-X)). Let S and C be subsets of a
predetermined domain, the functionality FX is:

((C, |S|), (S, |C|)) 7→

{
(1,⊥) if C ∩ S ̸= ϕ

(0,⊥) otherwise

We begin with a high-level description of the first (but inefficient) PSI-X construction by Car-
pent et al. Suppose party P1 has a set C of m elements and party P2 has a set S of size n. In
the existing PSI-X [11], they first jointly choose a single 2-universal hash function h(·) mapping
set elements to [N] where N ∈ O(mn). P1 transforms set C into a bit string vC of length N such
that the vC [i] = 1 if and only if ∃x ∈ C : h(x) = i. P2 also performs similar operations on S to

Can you find the one for me? 21

derive vS . P1 generates a BGN [7] public/private key pair (pk, sk), publishes pk and Enc(pk, vC [i])
for all i ∈ [N]. P2 also encrypts vS under pk and evaluates the 2-DNF ϕ =

∨
∀i(vC [i] ∧ vS [i])

via the homomorphism of BGN. P2 sends encryption of r · ϕ to P1 for a random r. If P1 gets 0
after decryption, P1 concludes that the intersection is definitely empty; otherwise it is probably
non-empty. The uncertainty stems from the possible collision due to the hash function. One can
reduce the error rate by increasing N , or repeating R independent instances of this protocol. Both
increase the overall computational complexity in terms of the number of ciphertext multiplications.
Carpent et al. [11] show that the optimal choice is N = mn

log 2 for any error rate, resulting in O(mn)
complexity. PSI-X with linear computational complexity was an open problem before our paper.

The detailed protocol ΠX is in Fig. 5, which is very simple in the FePSI-CA model. Basically we
only add one last step: P2 blinds the encrypted cardinality using a random r before sending it to
P1.

Corollary 1. Assuming the existence of a CPA-secure additive homomorphic encryption scheme
(KeyGen,Enc,Dec), whose plaintext space is super polynomial in the security parameter; then the
protocol ΠX in Fig. 5 securely implements the functionality FX in Def. 5 under the semi-honest
model.

H A Zoo of Private set-intersection and its Variants

A summary of the known relations between private set-intersection and its variants. An arrow from
A to B means B can be constructed (solely) from A. Protocols in red are proposed in this work.
We do not consider protocols that assume or imply general two party computation such as [12].

(1) setting t = 0 in t≥-PSI or t = min(|C|, |S|) in t≤-PSI;
(2) setting t = 0;
(3) setting the data items to be the same as set elements;
(4) setting t = min(|C|, |S|)
(5) sending the output of ePSI-CA to the other party;
(6) homomorphically multiplying the output of ePSI-CA with a random number, and sending the

result to the other party;

ePSI-CA

PSI-CA PSI-X [11]

t-PSI-CA [44]

PSI

t≥-PSI/t≤-PSI

PSI-DT

(6)(5)(4)(2)(1)

(3)

Fig. 6: PSI Zoo

	Can you find the one for me?

