
Making Groth’s zk-SNARK Simulation
Extractable in the Random Oracle Model

Sean Bowe
sean@z.cash

Ariel Gabizon
ariel@z.cash

February 15, 2018

1 Introduction

The purpose of this note is to provide a variant of Groth’s zk-SNARK [5]
that satisfies simulation extractability, which is a strong form of adaptive
non-malleability. Let us call such a construction a zk-SE-SNARK for brevity.
A straightforward alteration of the construction gives a succinct Signature of
Knowledge (SoK). Our construction of both primitives uses a bilinear group
(G1,G2,GT) and a proof/signature requires three G1 elements and two G2

elements.
Groth and Maller [6] recently gave a construction of zk-SE-SNARKs and

SoKs. Their zk-SE-SNARK has the advantage of requiring only 2 G1 ele-
ments and 1 G2 element as in [5]. Their SoK requires an additonal string
to be output. Furthermore, they rely on concrete assumptions holding in
the Generic Group Model, together with a collision-resistant hash function
only for the SoK; whereas our analysis for both primitives requires the full
generic group model as in [5] together with the random oracle model.1

On the other hand, our work has the practical advantage of the prover/signer
requiring only one group operation more than the prover of [5]; whereas [6], as
a result of relying on Square Arithmetic Programs [3] rather than Quadratic
Arithmetic Programs [4], require twice as much G2 operations as [5]. As

1As discussed with Jens Groth and Mary Maller, it is possible to phrase a concrete
assumption holding in the Generic Group Model under which our construction and [5] are
secure; however this assumption would be quite strong and have an ad-hoc flavor, and
in particular would still be stronger than the assumptions in [6] with one exception: [6]
require an assumption following from an “asymmetric” group model where there is no
efficient isomorphism from G1 to G2 or from G2 to G1. Our work, as [5], does not require
assuming this, and the analysis works in particular when G1 = G2.

1

G2 operations are typically much more expensive than G1 operations, this
significantly increases the total running time of the prover [1].

2 Definitions

For a relation R we denote

LR := {x| ∃ω s.t. (x, ω) ∈ R} .

Random oracles We assume all parties have access to a random oracle
mapping arbitrary strings to uniform elements of a certain domain D. When
discussing NILPs it will be convenient to assume D = F∗p and when discussing
SNARKs we’ll assume D = G∗1. To clarify we refer to parties as F∗p-oracle
machines in the first case, and G∗1-oracle machines in the second.

For a string s we’ll denote by ys the output of the random oracle on s.
And we’ll denote Y := {ys} the set of all such outputs.

We will at times below discuss circuits/algorithms running in time poly(λ)
doing linear operations on the (infinite) vector Y . What we mean by this is
that when the party chooses the matrix Π describing the linear operation, he
also chooses a poly(λ)-length sequence X of strings s all of length poly(λ).
And in fact, only applies Π on the vector (Ys)s∈X .

Asymptotics Implicitly, all algorithms/circuits and parameters described
below depend on an integer security parameter λ. For example, when we
discuss a relation R we mean an infinite sequence of relations indexed by λ.
When we refer in Section 2.1 to a prime field Fp, we also refer to an infinite
sequence of prime fields indexed by λ.

Notation For a domain D we denote by (D) the set of vectors over D.

2.1 NILPs

What we define here as a NILP is what [5] in fact calls a split-NILP, with
the addition of participants having access to a random oracle over F∗p.

Definition 2.1 (NILPs with a random oracle). A Non-Interactive Linear
Proof system N in the Random-Oracle model over prime field Fp (RO-NILP)
for R consists of four (possibly randomized) algorithms (Gen,P,V,Psim) that
are F∗p-oracle machines running in time poly(λ).

2

1. Gen outputting a trapdoor τ and common reference string σ = (σ1, σ2) ∈
(Fp).

2. P that takes as input σ and (x, ω) ∈ R. P first computes Π1,Π2 where
Πi is a matrix over Fp as a function of x, ω only. Then P outputs
π = (π1, π2) = (Π1 · (σ1, Y),Π2 · σ2). (See explanation about Y in
Section 2, “Random Oracles”.)

3. V(σ,x, π) computes matrices T1, . . . , Td depending only on x. It then
outputs acc iff for each i ∈ [d]

(σ1, Y, π1) · Ti(σ2, π2) = 0.

4. Psim taking as input x, τ and outputting π.

We assume for any x ∈ LR the first coordinate of x is one (to enable P to
always take affine functions of σ).

We say N as above is a Simulation-Extractable Non-Interactive Linear
Proof system in the Random Oracle model (RO-SE-NILP) over Fp for R if

1. Completeness: for any (x, ω) ∈ R, if π = P(x, ω) then V(π) = acc
with probability one.

2. Zero-Knowledge: For any output (τ, σ) of Gen and (x, ω) ∈ R, the
distribution Psim(τ,x) is identical to P(σ,x, ω).

3. Simulation-Extractability: For any efficient A there exists an effi-
cient χ such that the following holds: Fix any output (τ, σ) of Gen. Sup-
pose that A make a non-adaptive sequence of queries Q = {x1, . . . ,x`}
to Psim(τ, ·). that returns answers A = {(x1, π1), . . . , (x`, π`)}. Fi-
nally A computes matrices T1, T2 depending only on x and outputs
π = (π1, π2) with πi := (A, σi) · Ti. χ given x, T1, T2 outputs ω. The
probability that

• A “wins”: (x, π) /∈ A and also V(x, π) = acc, while
• χ “loses”: (x, ω) /∈ R

is negl(λ).

We say a NILP over Fp has degree d if Gen and Psim consist of sampling a
random vector z over Fp and outputting {Pi(z)}i∈[s] where Pi is a polynomial
over Fp of degree at most d.

The set of polynomial {Pi}i∈[s] possibly depends on x in the case of Psim,
but must not depend on the value of τ in both cases.

3

2.2 Adaptive NILP adversaries

In the regular soundness and simulation extractability definitions of a NILP,
the adversary must choose his matrices and the resultant output as a function
only of the public input x. We give a definition of a more adaptive adversary
that may check if a certain bilinear relation holds amongst the CRS elements,
and take into account the result of these checks when constructing his proof.
This exactly captures the power of an adversary in the generic group model
when we compile the NILP into a SNARK as in [5] using a bilinear group.
We will encorporate into our definition the interaction of the adversary with
a party like Psim and his access to a random oracle with F∗p output.

Definition 2.2 (Adaptive bilinear adversary). An adaptive bilinear adver-
sary A over Fp is a F∗p-oracle machine operating as follows. It begins with an
explicit input x, and auxiliary inputs σ1, σ2 ∈ (Fp). It initializes an empty
vector U that will hold boolean values. At each step A does the following.

1. Depending only on x and the value of the vector U , it chooses matrices
Π1,Π2, T over Fp and possibly also a message m.

2. If A is in interaction with a party P it may send P the message m, and
if P replies with a vector v1 of G1 elements and v2 of G2 elements, A
appends v1 to σ1 and v2 to σ2.

3. It then checks if (σ1, Y) · (T · σ2) = 0 and adds the value 0 to U if so,
and adds the value 1 to U otherwise.

After each step A decides whether to continue or terminate, in which case
it outputs matrices Π1,Π2 and the values (σ1, Y) · Π1, σ2 · Π2. All decisions
(on whether to terminate and what values to output), depend only on x and
the values in U at that point.

We say that an RO-SE-NILP N is an Adaptively-Bilinear Simulation-
Extractable NILP (AB-SE-NILP) if the simulation extractability property
holds also with respect to adpatively bilinear adversaries making at most
poly(λ) steps, adaptively making queries {xi} to Psim(τ, ·).

Theorem 2.3. If N is a degree d RO-SE-NILP over Fp for a relation R,
where d/|Fp| = negl(λ), then it is also an AB-SE-NILP over Fp for R.

Proof. The proof is based on Lemma 1 and Theorem 2 of [5]. Let A be an
adaptive bilinear adversary. We assume for simplicity A is deterministic (if
there exists a randomized circuit A breaking simulation extractability there

4

exists a fixing of its randomness where it breaks simulation extractability).
We construct a non-adaptive adversary A’ such that for any x, the proba-
bility over the randomness of Gen when outputting σ and the randomness of
Psim in its replies that A(x, σ) 6= A′(x, σ) is negl(λ). This means that the
extractor χ for A’ guaranteed to exist by the properties of an RO-SE-NILP
is also good for A. A’ works as follows. He begins running A on (σ,x). In
the first step he is able to choose the matrices Π1,Π2, T and message m to
Psim (consisting of the desired inputs x1, . . . ,x` on which A wishes to see
simulated proofs), as A would have chosen them, as in the first step these
depend only on x and the empty vector U .

The main question is what to do when A wishes to do the bilinear check:

(σ1, Y) · (T · σ2)
?
= 0.

and insert its result into U .
If we denote by z the variables used by Gen and Psim, the main point is

that this equation corresponds to an equation of degree at most 2d between
polynomials in z, Y . It follows from the Schwartz-Zippel Lemma that if the
equation is not a polynomial identity, equality will hold with probability at
most 2d/|Fp| = negl(λ). Motivated by this, A’ returns 0 to A if the equation
is a polynomial identity and 1 otherwise. He proceeds to run A until the next
bilinear check, where again the check will be a polynomial equation (fully
determined by the matrices chosen by A up to this point), and he responds
to A using the same strategy.

Finally, A’ outputs (A)’s output in the end of this process. The proba-
bility that their outputs differ is at most the probability that one of (A’)’s
responses to the bilinear checks was different from the correct response given
the values of σ and Psim’s replies. This probability is union bounded by
poly(λ) · negl(λ) = negl(λ).

3 The construction

We describe our NILP construction. It is based on the variant of [5] described
in [2] where the CRS is slightly extended (this extension was important to [2]
for their multi-party computation protocol, and is not crucial here). We use
the same notation regarding QAPs as in [2, 5].

Let Q =
{
{ui}i∈[0..m] , {vi}i∈[0..m] , {wi}i∈[0..m] , t

}
be a QAP over Fp of

degree n and size m. Let 0 < ` < m be an integer. We define the relation R

5

to consist of all pairs (x = (a0 = 1, a1, . . . , a`), ω = (a`+1, . . . , am)) such that
(a0, . . . , am) satisfies Q (see [5] for a definition of QAPs in this notation).

We use the shorthand ic :=
∑`

i=0 ai(βui(x)+αvi(x)+wi(x)) below. This
is the element relating to the primary QAP input x = (a0 = 1, a1, . . . , a`).

We present a NILP for the relation R.
The idea is to have the prover randomize the δ element of the CRS with

a secret scalar, and require her to prove knowledge of this secret scalar.
This creates a situation where the adversary A must use his own different
randomization of δ, making it hard for him to use elements from Psim’s
simulated proofs.

Generator Gen: Choose uniform elements α, β, δ, x ∈ F∗p.
Output:

σ1 :=

{
α, β, δ,

{
xi
}
i∈[0..2n−2] ,

{
αxi
}
i∈[1..n−1] ,

{
βxi
}
i∈[1..n−1] ,

{
βui(x) + αvi(x) + wi(x)

δ

}
i∈[`+1..m]

,

{
xi · t(x)

δ

}
i∈[0..n−2]

}

σ2 :=
{
β, δ,

{
xi
}
i∈[0..n−1]

}
Prover P: Fix public input a1, . . . , a`. P, given witness ω = (a`+1, . . . , am)
does the following.

1. She chooses a random element d ∈ F∗p, and computes δ′ := d · δ.

2. She chooses random r, s ∈ Fp.

3. She computes

A := α+

m∑
i=0

aiui(x) + rδ′, B := β +

m∑
i=0

bivi(x) + sδ′

4. She computes

C :=

∑m
i=`+1 ai(βui(x) + αvi(x) + wi(x)) + h(x)t(x)

δ′
+As+Br−rsδ′.

5. Define s := (A,B,C, δ′), and z := ys · δ.

6. She outputs π1 = (A,C, z), π2 = (B, δ′).

6

Verifier V: Given A,B,C, δ′, z, check that:

1. A ·B = α · β + ic + C · δ.

2. ys · δ′ = z · δ; for s := (A,B,C, δ′).

Simulator Psim: Given α, β, δ, x,

1. Choose random δ′ ∈ F∗p.

2. Choose random A,B ∈ Fp and let

C :=
A ·B − ic− αβ

δ′

3. Let s := (A,B,C, δ′), and z := ys · (δ′/δ).

4. Output (A,B,C, δ′, z).

4 Security proof

Theorem 4.1. The above construction is an RO-SE-NILP for R over Fp.

An immediate corollary from Theorem 2.3 is

Corollary 4.2. If we are starting from a QAP of degree d over Fp, and
d/|Fp| = negl(λ); then the above construction is an AB-SE-NILP.

Proof. (of Theorem 4.1) Completeness and Zero-Knowledge are straightfor-
ward and almost identical to [5]. We concentrate on simulation extractability.
Suppose A has made a sequence of queries x1, . . . ,xv to Psim(τ, ·), and re-
ceived answers {πj = (Aj , Bj , Cj , δj , zj)}j∈[v]. Denote sj := (Aj , Bj , Cj , δj).
Let Q‘ be the union of elements in the CRS (σ1, σ2) together with those from
the random oracle and Psim’s replies; so

Q′ :=

{
δ,
{
xi
}
i∈[0..2n−2] ,

{
αxi, βxi

}
i∈[0..n−1] ,

{
βui(x) + αvi(x) + wi(x)

δ

}
i∈[`+1..m]

,

{
xi · t(x)

δ

}
i∈[0..n−2]

}
∪

∪{Ys}string s ∪
{
Aj , Bj , Cj =

AjBj − αβ − icj
δj

, δj ,
δjYsj
δ

}
j∈[v]

.

7

We emphasize that we think of x, α, β, δ, {Aj , Bj , δj} , {Ys} as formal vari-
ables in this proof. Thus, the elements of Q′, and all other elements discussed
here, belong to the ring of Laurent polynomials in these variables, i.e.

K := Fp
[
x, x−1, α, α−1, β, β−1, δ, δ−1,

{
Aj , Bj , δj , A

−1
j , B−1j , δ−1j

}
,
{
Ys, Y

−1
s

}]
Motivated by this, when we use the term monomial henceforth, we

mean a Laurent monomial, i.e. a ratio of two monomials, in the variables
{x, α, β, δ, {Aj , Bj , δj} , {Ys}} with no common factors between numerator
and denumerator, e.g. αA3

δ2
.

Observe that the elements of Q′ are linearly independent over Fp, thus
any element in span(Q′) has a unique representation as an Fp-linear combi-
nation of elements of Q′.

Suppose A has produced elements A,B,C, δ′, z ∈ span(Q′) such that

A ·B ≡ C · δ′ + ic + αβ

and, for s := (A,B,C, δ′),
δ′ · Ys ≡ δ · z.

For M ∈ Q′ and P ∈ {A,B,C, δ′, z}, we denote by P (M) the coefficient
of M when writing P as a linear combination of elements of Q′.

Denote V :=
{
{δj , Aj , Bj}j∈[v] , {Ys}string s

}
These are the new variables not appearing in (σ1, σ2) - which is exactly

the CRS of [2].
We show that A,B,C do not use elements of Q′ involving the variables

V and thus A only uses the elements in the CRS of [2] to generate A,B,C.
From this point the proofs in [2,5] will imply that a witness ω with (x, ω) ∈ R
can be extracted from A,B,C except with probability negl(λ). We first
introduce some terminology.

For a monic monomial M , and P ∈ K we write M ∈ P to mean M
appears with non-zero coefficient when writing P as a linear combination of
monic monomials. For P ∈ K,P 6= A,B,C, δ′, z, we denote by P (M) the
coefficient ofM when writing P as a linear combination of monic monomials.

For two monomials M,M ′ we use the notation M ∼ M ′ to mean M =
c ·M ′ for some c ∈ F∗p.

At times below, it will be convenient to work with the following set Q of
monic monomials such that span(Q′) ⊆ span(Q):

Q := {δ} ∪
{
xi, αxi, βxi, xi/δ, αxi/δ, βxi/δ

}
i∈[0..2n−2] ∪ {Ys}string s ∪

8

{
Aj , Bj ,

AjBj
δj

,
αβ

δj
,
{
xi/δj , αx

i/δj , βx
i/δj

}
i∈[0..2n−2] , δj ,

δjYsj
δ

}
j∈[v]

.

The second equation implies

z ≡ δ′

δ
· Ys.

This means that if M ∈ z, we have M ∈ Q and Mδ/Ys ∈ Q, because
z, δ′ ∈ span(Q). Inspection shows the possibilities for such monic M are Ys,
and in the case s = sj for some j ∈ [v], also

δjYsj
δ . We wish to rule out

the second: Note that for a verifying proof π, the value of z is determined
by A,B,C, δ′. Hence if two verifying proofs agree on the first four elements
A,B,C, δ′, they are identical. Conversely, if π 6= πj , ∀j ∈ [v] we also have
s 6= sj , ∀j ∈ [v].

So we must have z ∼ Ys. This implies δ′ ∼ δ.
We introduce some more notation before proceeding. Denote C∗ :=

C · δ′, C0 := ic + αβ. Thus, we have

AB ≡ C∗ + C0

Denote
Q0 :=

{
xi, αxi, βxi

}
i∈[0..2n−2] ∪ {αβ}

Note that C0 ∈ span(Q0). We often use the argument below that ifM ∈ AB
butM /∈ span(Q0) we must haveM ∈ C∗ and thereforeM/δ′ ∈ C; and since
we showed δ′ ∼ δ this means that M/δ ∈ C.

We now show that α ∈ A, β ∈ B or α ∈ B, β ∈ A:
For this we first claim that αβ ∈ AB: We have αβ ∈ C0. It suffices to

show αβ /∈ C · δ′. αβ ∈ C · δ′ implies αβ/δ′ ∈ C; and thus αβ/δ ∈ C. But
αβ/δ /∈ Q.

We can thus assume αβ ∈ AB.
Looking at Q′ we have

AB(αβ) = A(α)B(β) +A(β)B(α) +A(Cj)B(δj) +A(δj)B(Cj)

Assume for contradiction that the first two terms are zero.
Then we have

A(Cj)B(δj) +A(δj)B(Cj) 6= 0

We look at two cases

1. A(Aj)B(Bj) + A(Bj)B(Aj) = 0. In this case we have C∗(AjBj) =
A(Cj)B(δj)+A(δj)B(Cj) = AB(αβ) 6= 0. which means either AjBj ∈
C0 which is false, or AjBj/δ ∈ C, but AjBj/δ /∈ span(Q‘).

9

2. We have A(Aj)B(Bj)+A(Bj)B(Aj) 6= 0. We claim that we can’t have
A(Aj), B(Aj) 6= 0: AB(A2

j) = C∗(A2
j) = A(Aj)B(Aj). But A2

j/δ /∈ Q,
so either Aj /∈ A or Aj /∈ B. Now assume Aj ∈ A,Aj /∈ B. Look at
two cases:

(a) δj ∈ B: Then AB(Ajδj) = C∗(Ajδj) = A(Aj)B(δj) 6= 0. But
Ajδj/δ /∈ Q.

(b) Cj ∈ B: Then AB(A2
jBj/δj) = C∗(A2

jBj/δj) = A(Aj)B(Cj) 6= 0.
But A2

jBj/(δjδ) /∈ Q.

The case Aj /∈ A,Bj ∈ A is refuted similarly.

Assume w.l.g. from now on that A(α), B(β) 6= 0 (otherwise flip A and B,
this doesn’t change the verification equation holding).

We show that β /∈ A,α /∈ B:
Assume for contradiction β ∈ A. We have

AB(β2) = A(β)B(β) 6= 0

Since β2 /∈ C0, we have β2/δ ∈ C. But β2/δ /∈ Q which is a contradiction.
An analogous argument shows α /∈ B.
Now suppose Cj ∈ A. Then,

AB(AjBjβ/δj) = A(Cj)B(β) 6= 0.

Hence AjBjβ/(δjδ) ∈ C - a contradiction as this monomial is not in Q. An
analogous argument shows Cj /∈ B.

Suppose Aj ∈ A.Then,

AB(Ajβ) = A(Aj)B(β) 6= 0.

Then Ajβ/δ ∈ C a contradiction as this monomial is not in Q. Analgous
arguments show Bj /∈ A,Aj /∈ B,Bj /∈ B.

Suppose Ys ∈ A for some string s. Then

AB(Ysβ) = A(Ys)B(β) 6= 0.

Hence Ysβ/δ ∈ C - a contradiction. An analogous argument shows Ys /∈
B.

Suppose
δjYsj
δ ∈ A for some j ∈ [v]. Then

AB

(
δjYsjβ

δ

)
= A

(
δjYsj
δ

)
B(β) 6= 0.

10

Hence
δjYsjβ

δ2
∈ C - a contradiction. An analogous argument shows

δjYsj
δ /∈ B.
Suppose δj ∈ A for some j ∈ [v].

AB(δjβ) = A(δj)B(β) 6= 0.

Hence δjβ/δ ∈ C - a contradiction. An analogous argument shows δj /∈
B. We have shown that no monomials involving the variables in V appear
in A or B. It is left to show they do not appear in C either.

But if such a monomial M appeared in C, the monomial Mδ (that also
involves variables of V) appears in AB which means a monomial involving
variables from V appears in A or B - a contradiction.

5 NILPs to SNARKs

We proceed to translate our NILP into a SNARK using bilinear groups. The
translation is the same as in [5] and straightforward given previous works.

Group generators and generic oracle adversaries Let F = {Fp(λ)}λ∈N
be a sequence of prime fields. A group generator G for F is an algorithm that
given integer parameter λ runs in time poly(λ); and outputs groups G1, G2

written additively and GT written multiplicatively all of order p, uniformly
chosen generators g1 ∈ G1, g2 ∈ G2 and circuits of size poly(λ) for computing
group operations in the three groups and a non-degenerate bilinear pairing
e : G1 ×G2 → GT .

For a ∈ Fp, we denote below [a]1 := a · g1, [a]2 := a · g2. Before defining
SNARKs we define a generic oracle adversary.

Definition 5.1 (Generic oracle adversary). A generic G-oracle adversary A
is a G∗1-oracle machine operating as follows. It begins with an explicit input
x, and encoded inputs [σ1]1 ∈ (G1), [σ2]2 ∈ (G2) where σi is a vector over
Fp. It initializes an empty vector U . At each step A does the following.

1. Depending only on x and the value of the vector U , it chooses matrices
Π1,Π2, T over Fp and possibly also a message m.

2. It computes y1 := Π1 ·v1 where v1 is the set of G1 elements it computed
so far, and add the elements of y1 to v1. It does the analogous thing in
G2.

11

3. If A is in interaction with a party P it may send P the message m, and
if P replies with a set of G1 and G2 elements A may add them to v1
and v2.

4. It then checks if v1 · (T · v2) = 0 and adds the value 0 to U if so, and
adds the value 1 to U otherwise.

At a certain point it decides to terminate outputting matrices Π1,Π2.

Definition 5.2. Let G be a group generator for a prime field Fp, and R ⊂
(Fp) a relation. An RO-SE-SNARK S (zero-knowledge Simulation Ex-
tractable Succint Non-interactive Argument of Knowledge in the Random
Oracle model) against G for R consists of the following four possibly random-
ized algorithms.

1. Gen outputting a trapdoor τ and common reference string σ.

2. P that takes as input σ and (x, ω) ∈ R and outputs π.

3. V that takes as input a common reference string σ, an input x, and a
proof π, and outputs a value in {acc, rej}.

4. Psim taking as input x, and trapdoor τ and outputting π. (It will be
convenient to think of Psim as returning (x, π).)

All algorithms are G∗1-oracle machines running in time poly(λ).
The quadruple of algorithms S = (Gen,P,V,Psim) is satisfies

1. Completeness: For any common reference string σ output by Gen,
and any (x, ω) ∈ R, if π = P(σ,x, ω) then V(σ,x, π) = acc with prob-
ability one.

2. Perfect Zero-Knowledge: For any output (τ, σ) of Gen and (x, ω) ∈
R, the distribution of Psim(τ,x) is identical to that of P(σ,x, ω).

3. Simulation-Extractability:

Fix any output (τ, σ) of Gen. For any G-generic oracle adversary A
making poly(λ) steps, there exists a circuit χ of size poly(λ) such that
the following holds: Suppose that A adaptively makes queries Q =
{x1, . . . ,x`} to Psim(τ, ·), that returns answers A = {(x1, π1), . . . , (x`, π`)}.
Finally A outputs a pair (x, π) and χ seeing the sequences Q,A and
randA, outputs ω. The probability that

• A “wins”: (x, π) /∈ A and also V(x, π) = acc, while

12

• χ “loses”: (x, ω) /∈ R

is negl(λ).

5.1 SE-NILPs to SE-SNARKs

Given a group generator G and a NILP N = (Gen,P,V,Psim) for the same
prime field Fp, we define the SNARK NG = (GenG ,PG ,VG ,P

sim
G) as follows.

• GenG : Run Gen to obtain output (τ, σ1, σ2). Output τ, σ′ = (σ′1 =
[σ1]1 , σ

′
2 = [σ2]2).

• PG : Run the first phase of P on input (x, ω) to obtain matrices Π1,Π2.
Output π1 = Π1 · (σ′1, Y), π2 = Π2 · σ′2.

• VG : Run the first phase of V(σ,x, π) to obtain matrices T1, . . . , Td.
Output accept iff for each i ∈ [d]

(σ1, Y, π1) · Ti(σ2, π2) = 0

• Psim
G(τ,x): Run Psim(τ,x) to obtain (π1, π2). Output [π1]1 , [π2]2.

The following is clear.

Theorem 5.3. Suppose that G is a group generator for Fp and N is a
degree d = o(2λ) AB-SE-NILP for R over Fp. Then NG as defined above is
a RO-SE-SNARK against G for R.

Corollary 5.4. Let Fp be a prime finite field. Suppose we are given a QAP
relation R of degree d over Fp, and a group generator G for Fp, such that
d/|Fp| = negl(λ). Then we can construct an RO-SE-SNARK against G for
R.

Signatures of Knowledge We do not give full details and definitions.
Suppose m is the message we wish to sign. Then the construction of section
3 is modified in the descriptions of P,V and Psim simply by concatenating m
to what is called s there.

Acknowledgements

We think Matthew D. Green for helpful conversations. We thank Jens Groth
and Mary Maller for discussions on their construction.

13

References

[1] https://github.com/scipr-lab/libsnark/tree/master/libsnark/
zk_proof_systems/ppzksnark.

[2] S. Bowe, A. Gabizon, and I. Miers. Scalable multi-party computation for
zk-snark parameters in the random beacon model. Cryptology ePrint
Archive, Report 2017/1050, 2017. https://eprint.iacr.org/2017/
1050.

[3] G. Danezis, C. Fournet, J. Groth, and M. Kohlweiss. Square span pro-
grams with applications to succinct NIZK arguments. In Advances in
Cryptology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshi-
ung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, pages
532–550, 2014.

[4] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span
programs and succinct nizks without pcps. In Advances in Cryptology -
EUROCRYPT 2013, 32nd Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Athens, Greece, May
26-30, 2013. Proceedings, pages 626–645, 2013.

[5] J. Groth. On the size of pairing-based non-interactive arguments. In Ad-
vances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part II, pages 305–326,
2016.

[6] J. Groth and M. Maller. Snarky signatures: Minimal signatures of
knowledge from simulation-extractable snarks. In Advances in Cryp-
tology - CRYPTO 2017 - 37th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part
II, pages 581–612, 2017.

14

