
Signatures with Flexible Public Key: A Unified
Approach to Privacy-Preserving Signatures

(Full Version)

Michael Backes1,3, Lucjan Hanzlik2,3, Kamil Kluczniak4, and Jonas
Schneider2,3

1 CISPA Helmholtz Center i.G.,
backes@cispa.saarland

2 CISPA, Saarland University,
{hanzlik, jonas.schneider}@cispa.saarland

3 Saarland Informatics Campus,
4 The Hong Kong Polytechnic University, Department of Computing,

kkklucz@polyu.edu.hk

Abstract. We introduce a new cryptographic primitive called signa-
tures with flexible public key. We divide the key space into equivalence
classes induced by a relation R. A signer can efficiently change his key
pair to a different representative of the same class, but without a trap-
door it is hard to distinguish if two public keys are related.
This primitive offers a unified approach to the modular construction of
signature schemes with privacy-preserving components. Namely, we show
how to build the first ring signature scheme in the plain model without
trusted setup, where signature size depends only sub-linearly on the num-
ber of ring members. Moreover, we show how to combine our primitive
with structure-preserving signatures on equivalence classes (SPS-EQ) to
construct static group signatures and self-blindable certificates. When
properly instantiated, the result is a group signature scheme that has a
shorter signature size than the current state-of-the-art scheme by Libert,
Peters, and Yung from Crypto’15.
In its own right, our primitive has stand-alone applications in the cryp-
tocurrency domain. In particular it enables the straightforward imple-
mentation of so-called stealth addresses.

Keywords: flexible public key, equivalence classes, stealth addresses,
ring signatures, group signatures

1 Introduction

Digital signatures aim to achieve two security goals: Integrity of the signed mes-
sage and authenticity of the signature. A great number of proposals relax these
goals or introduce new ones to accommodate the requirements of specialized ap-
plication scenarios. As one example, consider sanitizable signatures [1] where the
goal of preserving the integrity of the message is relaxed to allow for authorized

modification and redaction of the signed message. This paper introduces a novel
characterization of authenticity. The goal is not a complete relaxation, such that
any impostor can sign messages on behalf of a legitimate signer, but rather that
authenticity holds with respect to some established legitimate signer, but who it
is exactly remains hidden. Achieving the latter without enabling the former is
one of the main challenges we tackle in this paper.

Our new primitive, which we call signatures with flexible public key (SFPK)
formalizes a signature scheme, where verification and signing keys live in a sys-
tem of equivalence classes induced by a relationR. Given a signing or verification
key it is possible to transform the key into a different representative of the same
equivalence class, i.e., the pair of old key and new key is contained in relation
R. Thus, we extend the requirement of unforgeability of signatures to the whole
equivalence class of the given key under attack. However, an additional require-
ment we make is that it should be infeasible, without a trapdoor, to even check
whether two keys are in the same class. This property, which we call computa-
tional class-hiding, ensures that given an old verification key, a signature under a
fresh representative is indistinguishable from a signature under a different newly
generated key, which lives in a different class altogether with overwhelming prob-
ability. Intuitively this means that signers can produce signatures for their whole
class of keys, but they cannot sign for a different class (because of unforgeability)
and they are able to hide which class the signature belongs to, i.e., to hide their
own identity in the signature (because of class-hiding).

The property of class-hiding is especially useful in cases where there is a
(possibly pre-defined) set of known verification keys and a verifier only needs
to know that the originator of a given signature was part of that set. Indeed,
upon reading the first description of the scheme’s properties, what should come
to mind immediately is the setting of group signatures [13] and to some extent
ring signatures [29] where the group is chosen at signing time and considered a
part of the signature. Our primitive yields highly efficient, cleanly constructed
group and ring signature schemes, but it should be noted, that SFPK on its own
is neither of the two.

The basic idea to build a group signature scheme from signatures with flexible
public key is to combine them with an equally re-randomizable certificate on
the signing key. Such a certificate is easily created through structure-preserving
signatures on equivalence classes [23] by the group manager on the members’
verification key. A group signature is then produced by signing the message under
a fresh representative of the flexible public key and tying that signature to the
group by also providing a blinded certificate corresponding to the fresh flexible
key. This fresh certificate can be generated from the one provided by the group
manager. Opening of group signatures is done using the trapdoor that can be
used to distinguish if public keys belong to the same equivalence class. In the case
of ring signatures, the certification of keys becomes slightly more complex, since
we cannot make any assumption on the presence of a trusted group manager.
Therefore, the membership certificate is realized through a perfectly sound proof

2

of membership. The basic principle, however, remains the same, pointing to an
elegant, unified approach to both group and ring signatures.

Our contributions. This paper develops a new cryptographic building block from
the ground up, presenting security definitions, concrete instantiations and appli-
cations. The main contributions are as follows:

Signatures with flexible public key. Our new primitive is a natural abstrac-
tion and formalization of design principles that are already at the heart of
many ring and group signature constructions found in the literature. Thus
it offers a unified perspective on these two primitives and aids in modular
design of efficient constructions by making explicit properties which have to
be achieved by the identity-hiding component as outlined above.

Generic constructions & tailored instantiations. We demonstrate how
SFPK can be used to build group and ring signatures in a modularized
fashion. For each construction, we give an efficient standard model SFPK
instantiation which takes into account the differences in setting between
group and ring signature. The resulting group and ring signature schemes
have smaller (asymptotic and concrete) signature sizes than the previous
state of the art schemes, including schemes with non-standard assumptions
as long as one requires the strongest level of security.
For instance, the static group signature scheme due to Libert, Peters, and
Yung achieves fully anonymous signatures secure under standard non-interactive
assumptions at a size of 8448 bits per signature. Our scheme based on compa-
rable assumptions achieves the same security using 7680 bits per signature.
Another variant of our scheme under an interactive assumption achieves sig-
nature sizes of only 3072 bits per signature, thus more than halving the size
achieved in [25] and not exceeding by more than factor 3 the size of signa-
tures in the scheme due to Bichsel et al. [6] which produces signatures of
size 1280 bits but only offers a weaker form of anonymity under an interac-
tive assumption in the random oracle model. A comprehensive comparison
between our scheme and known group signature constructions can be found
in Section 5.4. Our ring signature construction is the first to achieve sig-
nature sizes in O(

√
N) without trusted setup and security under standard

assumptions in the strongest security model by Bender, Katz and Morselli
[5]. Thereby, we settle an issue that was stated as an open problem in the
ASIACRYPT’2017 presentation of [27].

Applications of independent interest. Constructions of signatures with flex-
ible public key that allow for a straightforward key recovery property lend
themselves to numerous stand-alone applications in the field of cryptocurren-
cies. We exemplify this by showing how to implement stealth addresses for
Bitcoin [30, 28], which allow a party to transfer currency to an anonymous
address that the sender has generated from the receivers long-term public
key. No interaction with the receiver is necessary for this transaction and
the receiver can recover and subsequently spend the funds without linking
them to their long-term identity.

3

1.1 Further Related Work

At first glance, signatures with flexible public keys are syntactically reminiscent
of structure-preserving signatures on equivalence classes[23]. While both prim-
itives are similar in spirit, the former considers equivalence classes of key pairs
while the latter only considers equivalence classes on messages.

Another related primitive are signatures with re-randomizable keys[16]. The
crucial difference to our new primitive is that re-randomization is akin to and
indeed indistinguishable from sampling a fresh key from the whole key space.
This means a signature scheme with re-randomizable keys cannot achieve class
hiding and unforgeability under flexible public keys simultaneously.

The ring signature built from signatures with flexible public keys is the first
ring signature scheme to achieve signature size O(

√
N) where N is the size of the

ring without any trusted setup. With a trusted setup, constant size constructions
are known, the most recent one being [27] which is based on signatures with re-
randomizable keys and SNARKs.

2 Preliminaries

We denote by y ← A(x, ω) the execution of algorithm A outputting y, on input x
with randomness ω, writing just y ←$ A(x) if the specific randomness used is not
important. We will sometimes omit the usage of random coin in the description of
algorithms if it is obvious from the context (e.g. sampling group elements). The
superscript O in AO means that algorithm A has access to oracle O. Moreover,
we say that A is probabilistic polynomial-time (PPT) if A uses internal random
coins and the computation for any input x ∈ {0, 1}∗ terminates in polynomial
time. By r ←$ S we mean that r is chosen uniformly at random over the set
S. We will use 1G to denote the identity element in group G, [n] to denote the
set {1, . . . , n}, u to denote a vector and

(
x0 . . . x|x|

)
bin

to denote the binary
representation of x.

Definition 1 (Bilinear map). Let us consider cyclic groups G1, G2, GT of
prime order p. Let g1, g2 be generators of respectively G1 and G2. We call e :
G1 × G2 → GT a bilinear map (pairing) if it is efficiently computable and the
following holds:

Bilinearity: ∀(S, T) ∈ G1 ×G2, ∀a, b ∈ Zp, we have e(Sa, T b) = e(S, T)a·b,
Non-degeneracy: e(g1, g2) 6= 1 is a generator of group GT ,

Definition 2 (Bilinear-group generator). A bilinear-group generator is a
deterministic polynomial-time algorithm BGGen that on input a security parame-
ter λ returns a bilinear group BG = (p,G1,G2,GT , e, g1, g2) such that G1 = 〈g1〉,
G2 = 〈g2〉 and GT are groups of order p and e : G1 × G2 → GT is a bilinear
map.

Bilinear map groups with an efficient bilinear-group generator are known to
be instantiable with ordinary elliptic curves introduced by Barreto and Naehrig [3]
(in short BN-curves).

4

Invertible Sampling. We use a technique due to Damg̊ard and Nielsen [15]:

– A standard sampler returns a group element X on input coins ω.
– A “trapdoor” sampler returns coins ω′ on input a group element X.

Invertible sampling requires that (X,ω) and (X,ω′) are indistinguishably dis-
tributed.

This technique was also used by Bender, Katz and Morselli [5] to prove full
anonymity (where the adversary receives the random coins used by honest users
to generate their keys) of their ring signature scheme.

2.1 Number Theoretical Assumptions

In this section we recall assumptions relevant to our schemes. They are stated rel-
ative to bilinear group parameters BG := (p,G1,G2,GT , e, g1, g2)←$BGGen(λ).

Definition 3 (Decisional Diffie-Hellman Assumption in Gi). Given BG
and elements gai , g

b
i , g

z
i ∈ Gi it is hard for all PPT adversaries A to decide

whether z = a · b mod p or z←$Z∗p. We will use Advddh
A (λ) to denote the ad-

vantage of the adversary in solving this problem.

Definition 4 (Square Decisional Diffie-Hellman Assumption in Gi [2]).
Given BG and elements gai , g

z
i ∈ Gi it is hard for all PPT adversaries A to

decide whether z = a2 mod p or z←$Z∗p. We will use Advsddh
A (λ) to denote the

advantage of the adversary in solving this problem.

We now state the bilateral variant of the well known decisional linear assump-
tion, where the problem instance is given in both G1 and G2. This definition was
also used by Ghadafi, Smart and Warinschi [20].

Definition 5 (Symmetric Decisional Linear Assumption). Given BG, ele-

ments f1 = gf1 , h1 = gh1 , f
a
1 , h

b
1, g

z
1 ∈ G1 and elements f2 = gf2 , h2 = gh2 , f

a
2 , h

b
2, g

z
2 ∈

G2 for uniformly random f, h, a, b ∈ Z∗p it is hard for all PPT adversaries A to

decide whether z = a+ b mod p or z←$Z∗p. We will use Advlinear
A (λ) to denote

the advantage of the adversary in solving this problem.

In this paper we use a variant of the 1-Flexible Diffie-Hellman assump-
tion [26]. We show that this new assumption, which we call the co-Flexible Diffie-
Hellman (co-Flex) assumption, holds if the decisional linear assumption holds.
We also introduce a similar assumption called square-Flexible Diffie-Hellman
(sq-Flex).

Definition 6 (co-Flexible Diffie-Hellman Assumption). Given BG, ele-
ments ga1 , g

b
1, g

c
1, g

d
1 ∈ G1 and ga2 , g

b
2, g

c
2, g

d
2 ∈ G2 for uniformly random a, b, c, d ∈

Z∗p, it is hard for all PPT adversaries A to output (gc1)r, (gd1)r, gr·a·b1 . We will use

Advco-flexdh
A (λ) to denote the advantage of the adversary in solving this problem.

Lemma 1. The co-Flexible Diffie-Hellman assumption holds for BG if the de-
cisional linear assumption holds for BG.

5

Definition 7 (sq-Flexible Diffie-Hellman Assumption). Given BG, ele-
ments ga1 , g

b
1, g

c
1, g

d
1 ∈ G1 and ga2 , g

b
2, g

c
2, g

d
2 ∈ G2 it is hard for all PPT adver-

saries A to output (gc1)r, (gd1)r, gr
2·a·b

1 . We will use Advsq-flexdh
A (λ) to denote the

advantage of the adversary in solving this problem.

Unfortunately, it is unknown whether for this assumption we can state a
lemma similar to 1. However, under the Knowledge-of-Exponent (KEA) assump-
tion [14], the sq-FlexDH and co-FlexDH assumptions are equivalent. This implies
that the sq-FlexDH holds in the generic group model.

2.2 Non-Interactive Proof Systems

In this paper we make use of non-interactive proof systems. Although we define
the proof system for arbitrarily languages, in our schemes we use the efficient
Groth-Sahai (GS) proof system for pairing product equations [22]. Let R be an
efficiently computable binary relation, where for (x,w) ∈ R we call x a statement
and w a witness. Moreover, we will denote by LR the language consisting of
statements in R, i.e. LR = {x|∃w : (x,w) ∈ R}.

Definition 8 (Non-Interactive Proof System). A non-interactive proof sys-
tem Π consists of the following three algorithms (Setup,Prove,Verify):

Setup(λ): on input security parameter λ, this algorithm outputs a common ref-
erence string ρ.

Prove(ρ, x, w): on input common reference string ρ, statement x and witness w,
this algorithm outputs a proof π.

Verify(ρ, x, π): on input common reference string ρ, statement x and proof π,
this algorithm outputs either accept(1) or reject(0).

Some proof systems do not need a common reference string. In such a case, we
omit the first argument to Prove and Verify.

Definition 9 (Soundness). A proof system Π is called sound, if for all PPT
algorithms A the following probability, denoted by AdvsoundΠ,A (λ), is negligible in
the security parameter λ:

Pr[ρ← Setup(λ); (x, π)← A(ρ) : Verify(ρ, x, π) = accept ∧ x 6∈ LR].

We say that the proof system is perfectly sound if AdvsoundΠ,A (λ) = 0.

Definition 10 (Witness Indistinguishability (WI)). A proof system Π is
witness indistinguishable, if for all PPT algorithms A we have that the advantage
AdvwiΠ,A(λ) computed as:

|Pr[ρ← Setup(λ); (x,w0, w1)← A(λ, ρ);π ← Prove(ρ, x, w0) : A(π) = 1]−
Pr[ρ← Setup(λ); (x,w0, w1)← A(λ, ρ);π ← Prove(ρ, x, w1) : A(π) = 1]|,

where (x,w0), (x,w1) ∈ R, is at most negligible in λ. We say that the proof
system if perfectly witness indistinguishable if AdvwiΠ,A(λ) = 0.

6

Prove(x,w)

1 : ρ1 := (f1, f2, h1, h2, . . .)←$ SetupPPE(λ); r, s←$ Z∗p
2 : ρ2 := (f1, f2, h1, h2, f

r
1 , f

r
2 , h

s
1, h

s
2, g

r+s
1 , g

r+s
2)

3 : πLinear ←$ ProveLinear((ρ1, ρ2), (r, s))

4 : π1 ←$ ProvePPE(ρ1, x, w); π2 ←$ ProvePPE(ρ2, x, w)

5 : return π := (ρ1, ρ2, πLinear, π1, π2)

Verify(x, π)

1 : parse π = (ρ1, ρ2, πLinear, π1, π2)

2 : return VerifyPPE(ρ1, x, π1) = 1 ∧
3 : VerifyPPE(ρ2, x, π2) = 1 ∧
4 : VerifyLinear((ρ1, ρ2), πLinear) = 1

Scheme 1: Perfectly Sound Proof System for Pairing Product Equations

Perfectly Sound Proof System for Pairing Product Equations We
briefly recall the framework of pairing product equations that is used for the
languages of the Groth-Sahai proof system [22]. For constants Ai ∈ G1, Bi ∈ G2,
tT ∈ GT , γij ∈ Zp which are either publicly known or part of the statement, and
witnesses Xi ∈ G1, Yi ∈ G2 given as commitments, we can prove that:

n∏
i=1

e(Ai, Yi) ·
m∏
i=1

e(Xi, Bi) ·
m∏
j=1

n∏
i=1

e(Xi, Yi)
γij = tT .

The system (SetupPPE,ProvePPE,VerifyPPE) has several instantiations based on
different assumptions. In this paper we only consider the instantiation based on
the symmetric linear assumption given by Ghadafi, Smart and Warinschi [20].

For soundness it must be ensured, that SetupPPE outputs a valid DLIN tuple.
This can be enforced by requiring a trusted party performs the setup. However,
in our schemes we require a proof system which is perfectly sound, even if a
malicious prover executes the SetupPPE algorithm.

To achieve this we use the ideas by Groth, Ostrovsky and Sahai [21]. The
authors propose a perfectly sound and perfectly witness indistinguishable proof
system (ProveLinear,VerifyLinear) which does not require a trusted setup. Using it
one can show that given tuples T1, T2 as a statement, at least one of T1 and T2

is a DLIN tuple. The results were proposed for type 1 pairing but the proof itself
is only given as elements in G2. Moreover, our variant of the DLIN assumption
gives the elements in both groups. Thus, we can apply the same steps as in [21].
The cost of such a proof is 6 elements in G2.

Next is the observation that the tuples T1 and T2 can each be used as common
reference strings for the pairing product equation proof system. Since at least
one of the tuples is a valid DLIN tuple, at least one of the resulting proofs will be
perfectly sound. Witness-indistinguishability will be only computational, since
we have to provide T1 and T2 to the verifier but that is sufficient in our case.
The full scheme is presented in Scheme 1. The size of the proofs produced this
way is 2 · (3 · e+ 3 ·w1 + 5) elements in G1 and 2 · (3 · e+ 3 ·w2 + 5) + 6 elements
in G2, where e is the number of equations proven, w1 is the number of witnesses
in G1 and w2 is the number of witnesses in G2.

7

Theorem 1. Scheme 1 is a perfectly sound proof system for pairing product
equations if the system (SetupPPE,ProvePPE,VerifyPPE) is perfectly sound in the
common reference string model.

Proof (Sketch). BecauseΠLinear is perfectly sound VerifyLinear((ρ1, ρ2), πLinear) =
1 means that at least one of ρ1 and ρ2 is a DLIN tuple. It follows that at least
one of π1 and π2 is a perfectly sound proof for the statement x. Thus, statement
x must be true.

Theorem 2. Scheme 1 is a computational witness indistinguishable proof sys-
tem if the system (SetupPPE,ProvePPE,VerifyPPE) is perfectly witness indistin-
guishable in the common reference string model.

Proof (Sketch). Because the proof system for the pairing product equations is
witness indistinguishable, we change the witness we use in proof π1. Note that
this change may include the change of ρ1 to a non-DLIN tuple but the proof
πLinear is still valid because ρ2 is a DLIN tuple. Next we replace ρ1 with ρ2 and
use SetupPPE to compute ρ2. Finally, we change the witness used to compute π2.

2.3 Structure-Preserving Signatures on Equivalence Classes

Hanser and Slamanig introduced a cryptographic primitive called
structure-preserving signatures on equivalence classes [23]. Their work was fur-
ther extended by Fuchsbauer, Hanser and Slamanig in [18] and [19]. The idea
is simple but provides a powerful functionality. The signing SignSPS(M, skSPS)
algorithm defines an equivalence relation R that induces a partition on the
message space. By signing one representative of a partition, the signer in fact
provides a signature for all elements in it. Moreover, there exists a procedure
ChgRepSPS(M,σSPS, r, pkSPS) that can be used to change the signature to a dif-
ferent representative without knowledge of the secret key. Existing instantiations
allow to sign messages from the space (G∗i)`, for ` > 1, and for the following
relation Rexp: given two messages M = (M1, . . . ,M`) and M ′ = (M ′1, . . . ,M

′
`),

we say that M and M ′ are from the same equivalence class (denoted by [M]R)
if there exists a scalar r ∈ Z∗p, such that ∀i∈[`](Mi)

r = M ′i .

Security Definition. We formally define structure-preserving signatures on
equivalence classes as follows:

Definition 11 (Structure-preserving signatures for equivalence rela-
tion R). A SPS-EQ scheme on (G∗i)` (for i ∈ {1, 2}) consists of the following
algorithms:

BGGenSPS(λ): a deterministic algorithm that on input a security parameters λ,
outputs bilinear-group parameters BG.

KGenSPS(BG, `): on input a parameter BG and a vector length ` > 1, this prob-
abilistic algorithm outputs a key pair (skSPS, pkSPS).

8

SignSPS(M, skSPS): on input a message M ∈ (G∗i)` and secret key skSPS, this
probabilistic algorithm outputs a signature σSPS on the equivalence class
[M]R.

ChgRepSPS(M,σSPS, r, pkSPS): on input a representative M of an equivalence
class [M]R, signature σSPS for M , scalar r and a public key pkSPS, this
probabilistic algorithm returns an updated message-signature pair (M ′, σ′SPS),
where M ′ = (M)r (component-wise exponentiation) is the new representative
and σ′SPS its updated signature.

VerifySPS(M,σSPS, pkSPS): on input a representative M , signature σSPS and a
public key pkSPS, this deterministic algorithm outputs 1 if σSPS is a valid
signature for M under public key pkSPS and 0 otherwise.

VKeySPS(skSPS, pkSPS): on input a secret key skSPS and public key pkSPS, this
deterministic algorithm outputs 1 if both keys are consistent and 0 otherwise.

The original paper defines two properties of SPS-EQ namely unforgeability
under chosen-message attacks and class-hiding. Fuchsbauer and Gay [17] re-
cently introduced a weaker version of unforgeability called unforgeability under
chosen-open-message attacks, which restricts the adversaries’ signing queries to
messages where it knows all exponents.

Definition 12 (Signing Oracles). A signing oracle is an OSPS(skSPS, ·) (resp.
Oop(skSPS, ·)) oracle, which accepts messages (M1, . . . ,M`) ∈ (G∗i)` (resp. vectors
(e1, . . . , e`) ∈ (Z∗p)`) and returns signature under skSPS on those messages (resp.

on messages (ge11 , . . . , g
e`
1) ∈ (G∗i)`).

Definition 13 (EUF-CMA (resp. EUF-CoMA)). A SPS-EQ scheme
(BGGenSPS,KGenSPS,SignSPS,ChgRepSPS,VerifySPS,VKeySPS) on (G∗i)` is called
existentially unforgeable under chosen message attacks (resp. adaptive chosen-
open-message attacks), if for all PPT algorithms A having access to an open
signing oracle OSPS(skSPS, ·) (resp. Oop(skSPS, ·)) the following adversary’s ad-
vantage (with templates T1, T2 defined below) is negligible in the security param-
eter λ:

Adv`,T1

SPS-EQ,A(λ) = Pr

[
BG←BGGenSPS(λ);

(skSPS,pkSPS)←
$ KGenSPS(BG,`);

(M∗,σ∗SPS)←
$ AOT2 (skSPS,·)(pkSPS)

: ∀M∈Q. [M∗]R 6=[M]R ∧
VerifySPS(M

∗,σ∗SPS,pkSPS)=1

]
,

where Q is the set of messages signed by the signing oracle OT2
and for T1 =

euf-cma we have T2 = SPS, and for T1 = euf-coma we have T2 = op.

A stronger notion of class hiding, called perfect adaptation of signatures,
was proposed by Fuchsbauer et al. in [19]. Informally, this definition states that
signatures received by changing the representative of the class and new signatures
for the representative are identically distributed. In our schemes we will only use
this stronger notion.

Definition 14 (Perfect Adaption of Signatures). A SPS-EQ scheme on
(G∗i)` perfectly adapts signatures if for all (skSPS, pkSPS,M, σ, r), where

9

VKeySPS(skSPS, pkSPS) = 1, M ∈ (G∗1)`, r ∈ Z∗p and VerifySPS(M,σ, pkSPS) = 1,
the distribution of

((M)r,SignSPS(Mr, skSPS)) and ChgRepSPS(M,σ, r, pkSPS)

are identical.

3 Signatures with Flexible Public Key

We begin by introducing the idea behind our primitive. In the notion of existen-
tial unforgeability of digital signatures, the adversary must return a signature
valid under the public key given to him by the challenger. Imagine now that
we allow a more flexible forgery. The adversary can return a signature that is
valid under a public key that is in some relation R to the public key chosen by
the challenger. Similar to the message space of SPS-EQ signatures, this relation
induces a system of equivalence classes on the set of possible public keys. A given
public key, along with the corresponding secret key can be transformed to a dif-
ferent representative in the same class using an efficient, randomized algorithm.
The adversary has access to this functionality by providing random coins which
the challenger uses to change the representative before signing. Since there might
be other ways of obtaining a new representative, the forgery on the challenge
equivalence class is valid as long as the relation holds, even without knowledge
of the explicit randomness that leads to the given transformation.

Note, that the challenger thus needs a way to ascertain whether the forgery
is valid, which cannot be verification through the transformation algorithm. In-
deed, for the full definition of our schemes’ security we will require that it should
not be feasible, in absence of the concrete transformation randomness, to deter-
mine whether a given public key belongs to one class or another. This property
—called class-hiding in the style of a similar property for SPS-EQ signatures—
should hold even for an adversary who has access to the randomness used to
create the key pairs in question.

The apparent conflict is resolved by introducing a trapdoor key generation
algorithm TKeyGen which outputs a key pair (sk, pk) and a class trapdoor τ for
the class the key pair is in. The trapdoor allows the challenger to reveal whether
a given key is in the same class as pk, even if doing so efficiently is otherwise
assumed difficult. Since we require that the keys generated using the trapdoor
key generation and the regular key generation are distributed identically, un-
forgeability results with respect to one also hold with respect to the other.

Definition 15 (Signature with Flexible Public Key). A signature scheme
with flexible public key (SFPK) is a tuple of PPT algorithms (KeyGen,TKeyGen,
Sign,ChkRep,ChgPK,ChgSK,Verify) such that:

KeyGen(λ, ω): takes as input a security parameter λ, random coins ω ∈ coin and
outputs a pair (sk, pk) of secret and public keys,

10

TKeyGen(λ, ω): a trapdoor key generation that takes as input a security parame-
ter λ, random coins ω ∈ coin and outputs a pair (sk, pk) of secret and public
keys, and a trapdoor τ .

Sign(sk,m): takes as input a message m ∈ {0, 1}∗ and a signing key sk, and
outputs a signature σ,

ChkRep(τ, pk): takes as input a trapdoor τ for some equivalence class [pk′]R and
public key pk, the algorithm outputs 1 if pk ∈ [pk′]R and 0 otherwise,

ChgPK(pk, r): on input a representative public key pk of an equivalence class
[pk]R and random coins r, this algorithm returns a different representative
pk′, where pk′ ∈ [pk]R.

ChgSK(sk, r): on input a secret key sk and random coins r, this algorithm returns
an updated secret key sk′.

Verify(pk,m, σ): takes as input a message m, signature σ, public verification key
pk and outputs 1 if the signature is valid and 0 otherwise.

A signature scheme with flexible public key is correct if for all λ ∈ N, all
random coins ω, r ∈ coin the following conditions hold:

1. The distribution of key pairs produced by KeyGen and TKeyGen is identical.
2. For all key pairs (sk, pk) ←$ KeyGen(λ, ω) and all messages m we have

Verify(pk,m,Sign(sk,m)) = 1 and Verify(pk′,m,Sign(sk′,m)) = 1, where
ChgPK(pk, r) = pk′ and ChgSK(sk, r) = sk′.

3. For all (sk, pk, τ) ←$ TKeyGen(λ, ω) and all pk′ we have ChkRep(τ, pk′) = 1
if and only if pk′ ∈ [pk]R.

Definition 16 (Class-hiding). For scheme SFPK with relation R and adver-
sary A we define the following experiment:

C-HASFPK,R(λ)

ω0, ω1 ←$ coin

(ski, pki)←
$ KeyGen(λ, ωi) for i ∈ {0, 1}

m←$ A(ω0, ω1)

b←$ {0, 1}; r ←$ coin

sk′ ←$ ChgSK(skb, r); pk
′ ←$ ChgPK(pkb, r)

σ ←$ Sign(sk′,m)

b̂←$ A(ω0, ω1,m, σ, pk
′)

return b = b̂

A SFPK is class-hiding if for all PPT adversaries A, its advantage in the
above experiment is negligible:

Advc-hA,SFPK(λ) =

∣∣∣∣Pr
[
C-HASFPK,R(λ) = 1

]
− 1

2

∣∣∣∣ = negl(λ) .

Definition 17 (Existential Unforgeability under Flexible Public Key).
For scheme SFPK with relation R and adversary A we define the following ex-
periment:

11

EUF-CMAASFPK,R(λ)

ω ←$ coin

(sk, pk, τ)←$ TKeyGen(λ, ω);Q := ∅

(pk′,m∗, σ∗)←$ AO
1(sk,·),O2(sk,·,·)(pk, τ)

return (m∗, ·) 6∈ Q ∧
ChkRep(τ, pk′) = 1 ∧
Verify(pk′,m∗, σ∗) = 1

O1(sk,m)

σ ←$ Sign(sk,m)

Q := Q ∪{(m,σ)}
return σ

O2(sk,m, r)

sk′ ←$ ChgSK(sk, r)

σ ←$ Sign(sk′,m)

Q := Q ∪{(m,σ)}
return σ

A SFPK is existentially unforgeable with flexible public key under chosen mes-
sage attacks if for all PPT adversaries A the advantage in the above experiment
is negligible:

Adveuf−cma
A,SFPK (λ) = Pr

[
EUF− CMAASFPK(λ) = 1

]
= negl(λ) .

Definition 18 (Strong Existential Unforgeability under Flexible Pub-
lic Key). A SFPK is strong existentially unforgeable with flexible public key un-
der chosen message attacks if for all PPT adversaries A the advantage
Advseuf−cma

A,SFPK (λ) in the above experiment, where we replace the line (m∗, ·) 6∈ Q
with (m∗, σ∗) 6∈ Q, is negligible.

Finally, we define an optional property of SFPK signature schemes called key
recovery. In a standard application, the public key and secret key are randomized
by the signer. Obviously, the ChgPK algorithm can be executed by any third
party using random coins r, which can be later shared with the signer. This way
the signer can compute the corresponding secret key. For some application we
would like to work without any interaction. It is easy to see that allowing the
user to extract the new secret key only using his old secret key would break
class-hiding. Fortunately, we can use the additional trapdoor returned by the
TKeyGen algorithm. More formally, we define this optional property as follows.

Definition 19 (Key Recovery Property). A SFPK has recoverable signing
keys if there exists an efficient algorithm Recover such that for all security pa-
rameters λ ∈ N, random coins ω, r and all (sk, pk, τ) ←$ TKeyGen(λ, ω) and
pk′ ←$ ChgPK(pk, r) we have ChgSK(sk, r) = Recover(sk, τ, pk′).

3.1 Flexible Public Key in the Multi-user Setting

In this subsection, we address applications where a part of the public key of the
user is generated by some trusted third party and is common among several users,
e.g. the definition of the hash function used in Waters signatures. We therefore
define an additional algorithm CRSGen that, given a security parameter, outputs
a common reference string ρ. We assume that this string is an implicit input to

12

all algorithms. If the KeyGen is independent from ρ, we say that such a scheme
supports key generation without setup.

We will now discuss the implication of this new algorithm on the security
definitions. Usually, we require that the common reference string is generated
by an honest and trusted party (i.e. by the challenger in definitions 16 and 17).
We additionally define those notions under maliciously generated ρ. We call a
scheme class-hiding under malicious reference string if the class-hiding definition
holds even if in definition 16 the adversary is allowed to generate the string ρ.
Similarly, we call a SFPK scheme unforgeable under malicious reference string if
the unforgeability definition 17 holds if ρ is generated by the adversary.

3.2 On Signatures with Re-Randomizable Keys

Fleischhacker et al. [16] introduced signatures with re-randomizable keys, which
allow a re-randomization of signing and verification keys such that re-randomized
keys share the same distribution as freshly generated keys and a signature signed
under a randomized key can be verified using an analogously randomized verifi-
cation key.

They also define a notion of unforgeability under re-randomized keys, which
allows an adversary to learn signatures under the adversaries choice of random-
ization of the signing key under attack. The goal of the adversary is to output a
forge under the original key or under one of its randomizations. Regular existen-
tial unforgeability for signature schemes is a special case of this notion, where
the attacker does not make use of the re-randomization oracle.

The difference to signatures with flexible public keys is that re-randomization
in [16] is akin to sampling a fresh key from the space of all public keys, while
changing the representative in our case is restricted to the particular key’s equiv-
alence class. Note that one might intuitively think that signatures under re-
randomizable keys are just signatures with flexible keys where there is only one
class of keys and because re-randomizing is indistinguishable from fresh sam-
pling. In this case class hiding would be perfect. However, such a scheme cannot
achieve unforgeability under flexible keys, since it would be enough for an at-
tacker to sample a fresh keypair and use a signature under that key as the
forgery.

Another way of mapping signatures with re-randomizable keys to the flexible
public key world would be to make the set of equivalence classes the singleton sets
of all public keys, i.e. each key is the unique representative of its own equivalence
class. This collapses unforgeability under flexible public keys to the standard
unforgeability notion of digital signatures. In this case, however, class hiding
would be impossible to achieve, since there is just one unique representative for
each class. Note, that in the class-hiding definition, the challenge key pairs are
not required to be in the same or separate classes. Therefore, even if both keys
are from different classes, the property guaranties indistinguishability of those
keys and corresponding signatures. It is easy to see, that in the above-mentioned
situation, if keys would be from different classes, the adversary would always be
able to distinguish between them.

13

Since we require a secure signature scheme with flexible public keys to achieve
both class hiding and unforgeability under flexible public keys and any signature
scheme with re-randomizable keys can achieve at most one of these properties
the primitives are clearly seperable.

4 Applications

In this section we present natural applications of signatures with flexible public
key. First we show how to implement cryptocurrency stealth addresses from sig-
natures with flexible public key which have the additional key recovery property.

Then follow generic constructions of group and ring signature schemes. As
we will see in Section 5, each of the schemes presented in this section can be
instantiated with a signature scheme with flexible public key such that the re-
sult improves on the respective state-of-the-art in terms of concrete efficiency,
necessary assumptions or both.

4.1 Cryptocurrency Stealth Addresses

A direct application of signatures with flexible public keys in the cryptocurrency
domain is the implementation of stealth addresses [30]. In cryptocurrency sys-
tems such as Bitcoin, transactions are digitally signed, such that the original
owner of the funds signs the transaction to transfer funds to another party. In
this transaction, the receiving party is also identified by its public key. Using
stealth addresses, it is possible for the sender to create a fresh public key for the
receiving party from their known public key such that these two keys cannot be
linked. The receiving party can recognize the fresh key as its own and generate a
corresponding private key, which subsequently enables it to spend any fund send
to the fresh unlinkable key. Crucially, there is no interaction necessary between
sender and receiver to establish the fresh key and only the legitimate receiver
can recover the right secret key corresponding to the fresh key.

This can be implemented via a straightforward augmentation of signatures
with flexible public keys by a signing key recovery algorithm which allows the
holder of the signing key to recover an equivalent signing key from the trapdoor
and the fresh public key alone. Scheme 4 is an instances of signatures with flexible
public key which achieve this property. We also show how to extend schemes 5
and 6 to support it.

4.2 Group Signatures/Self-blindable Certificates

We now present an efficient generic construction of static group signatures that
uses SFPK as a building block and which is secure in the model by Bellare, Mic-
ciancio and Warinschi [4]. The idea is to generate a SFPK secret/public key pair
and “certify” the public part with a SPS-EQ signature. To sign a message, the
signer changes the representation of its SFPK key, and changes the representa-
tion of the SPS-EQ certificate. The resulting signature is the SFPK signature,
the randomized public key and the SPS-EQ certificate.

14

KeyGenGS(1λ, n)

1 : BG←$ BGGenSPS(1
λ

); (pkSPS, skSPS)←
$ KGenSPS(BG, `)

2 : ρ←$ CRSGen(1
λ

)// optional

3 : foreach user i ∈ [n] :

4 : (pki, ski, τ i)←$ TKeyGen(1
λ
, ω)

5 : σ
i
SPS ←

$ SignSPS(pk
i
, skSPS)

6 : return (gpk := (BG, pkSPS, ρ), gmsk := ([(τ
i
, pki)]ni=1),

7 : gski := (pki, ski, σiSPS))

SignGS(gski,m)

1 : parse gski = (pk, sk, σSPS)

2 : r ←$ Z∗p; pk′ ← ChgPK(pk, r); sk′ ← ChgSK(sk, r)

3 : (pk′, σ′SPS)← ChgRepSPS(pk, σSPS, r, pkSPS)

4 : M := m||σ′SPS||pk
′

5 : σ ←$ Sign(sk′,M)

6 : return σGS := (pk′, σ, σ′SPS)

Scheme 2: Generic Group Signature Scheme

Opening of signatures work as follows. The group manager generates the
SFPK keys with a trapdoor (using TKeyGen) and keeps it along in a list. Note
that this means that the group manager’s secret key depends linearly on the size
of the group. In order to open a signature the manager uses the stored trapdoor
to run the ChkRep algorithm thereby determining the equivalence class of the
group signature’s public key. The group manager can also generate the common
reference string ρ ←$ CRSGen for the SFPK signatures and use it as part of the
group public key. This allows us to use schemes which are secure in the multi-user
setting, e.g. Scheme 5.

Due to space limitations, we only present the setup and signing algorithm for
Scheme 2. Verification and opening procedures should be clear from the context.

Remark 1 (Self-blindable Certificates). If we use the KeyGen algorithm instead
of TKeyGen to compute the SFPK key pair, then there exists no efficient opening
procedure and the combination of SFPK and SPS-EQ signature scheme yields a
self-blindable certificate scheme [31].

Theorem 3. Scheme 2 is a correct static group signature scheme.

Proof. Let λ, n ∈ N and let the output of KeyGenGS(1λ, n) be

(gpk = (BG, pkSPS, ρ),

gmsk = ([(τ i, pki)]ni=1),

gski = (pki, ski, σiSPS))

Let i ∈ [n] and m a message, then SignGS(gski,m) will output (pk′, σ, σ′SPS)
where pk′ ← ChgPK(pk, r), (pk′, σ′SPS) ← ChgRepSPS(pk, σSPS, r, pkSPS) and σ ←$

Sign(sk′,M). Since the relation RFlex is the same for SFPK and the SPS-EQ
scheme, ChgRepSPS and ChgPK will output the same pk′ and because of the cor-
rectness of SPS-EQ, VerifySPS(pk′, σ′SPS, pkSPS) will succeed. Similarly Verify(pk′,m, σ)
will succeed because of the correctness of the SFPK scheme. Hence verification
will succeed. Since the signature was honestly generated, we have pk′ ∈ [pki]R,
which will be detected by the group manager in the opening procedure by trying
all possible trapdoors in the group manager secret key.

15

Theorem 4. Scheme 2 is fully traceable if the SPS-EQ signature scheme is ex-
istential unforgeable under chosen-message attacks and the SFPK scheme is ex-
istential unforgeable.

Proof (Theorem 4). We will use the game base approach. Let us denote by Si
the event that the adversary wins the full traceability experiment in GAMEi.
Let (m∗, σ∗GS = (pk∗, σ∗, σ∗SPS)) be the forgery outputted by the adversary.

GAME0: The original experiment.

GAME1: We abort in case OpenGS(gmsk,m∗, σ∗GS) = ⊥ but VerifyGS(gpk,m∗,
σ∗GS) = 1. Informally, we exclude the case that the adversary creates a new user
from outside the group, i.e. a new SPS-EQ signature.

We will show that this only decreases the adversary’s advantage by a negligi-
ble fraction. In particular, we will show that any adversary A returns a forgery
for which we abort, can be used to break the existential unforgeability of the
SPS-EQ signature scheme. The reduction algorithm uses the signing oracle to
compute all signature σiSPS of honest users. Finally, if the adversary returns
(m∗, σ∗GS = (pk∗, σ∗, σ∗SPS)), the reduction algorithm returns (pk∗, σ∗SPS) as a valid
forgery. We note that by correctness of the SFPK scheme, if pk∗ is in a relation
to a public key of an honest user, then we can always open this signature. It
follows that pk∗ is from a different equivalence class and the values returned by
the reduction algorithm are a valid forgery against the SPS-EQ signature scheme.

It follows that |Pr[S1]− Pr[S0]| ≤ Adv`,euf-cma
SPS-EQ,A(λ).

GAME2: We choose a random user identifier j ←$ [n] and abort in case
OpenGS(gmsk,m∗, σ∗GS) 6= j

It is easy to see that Pr[S1] = n · Pr[S2].

We now show that any adversary A that has non-negligible advantage in
winning full-traceability experiment in GAME2 can be used by a reduction
algorithm R to break the existential unforgeability of the SFPK scheme.
R computes all the public keys of group members according to protocol,

except for user j. For this user, the algorithm sets pkj to the public key given
to R by the challenger in the unforgeability experiment of the SFPK scheme.
It is worth noting, that the adversary A is given the group manager’s secret
key gmsk = ([(τ i, pki)]ni=1). Fortunately, the reduction R is also given τ j by the
challenger and can compute a valid secret key gmsk that it gives as input to A.
To simulate signing queries for the j-th user, R uses its own signing oracle. By
the change made in GAME2, A will never ask for the secret key of the j-th
user, for which R is unable to answer (unlike for the other users).

Finally, A outputs a valid group signature (m∗, σ∗GS = (pk∗, σ∗, σ∗SPS)) and
the reduction algorithm outputs (m∗||σ∗SPS||pk

∗, σ∗) as a valid SFPK forgery. By

16

the changes made in the previous games we know that pk∗ and pkj must be in a
relation. Moreover, the message m∗ could not be used by A in any signing query
made to R. Thus we know that (m∗||σ∗SPS||pk

∗) was never queried by R to its
signing oracle, which show that R returns a valid forgery against the unforge-
ability of the SFPK scheme.

Finally, we have

Pr[S0] ≤ n · Adveuf−cma
A,SFPK (λ) + Adv`,euf-cma

SPS-EQ,A(λ).

Theorem 5. Scheme 2 is fully anonymous if the SPS-EQ signature scheme per-
fectly adapts signatures and is existential unforgeable under chosen-message at-
tacks, the SFPK scheme is class-hiding and strongly existential unforgeable.

Proof (Theorem 5). We will use the game-based approach. Let us denote by Si
the event that the adversary wins the full anonymity experiment in GAMEi.

GAME0: The original experiment.

GAME1: In this game we change the way we compute the challenge signature
σ∗GS ←$ SignGS(gsk[ib],m

∗). Let σ∗GS = (pk′, σ, σ′SPS). We compute (pk′, σ) as in
the original experiment but instead of randomizing the SPS-EQ signature σSPS,
we compute σSPS ← SignSPS(pk′, skSPS).

Because the SPS-EQ signature scheme perfectly adapts signatures, we have
Pr[S1] = Pr[S0].

GAME2: We pick a random user identifier j ←$ [n] and abort in case j 6= ib.

It is easy to see that Pr[S1] = n · Pr[S2].

GAME3: We now abort in case the adversary queries a valid signature (m,σGS =
(pk′, σ, σ′SPS)) to the OpenGS oracle and it fails to open, i.e. the opening algorithm
returns ⊥.

By perfect correctness of the SFPK scheme, it follows that the only way an
adversary can make the experiment abort if he is able to create a new user, i.e.
create a valid SPS-EQ signature under a public key pk∗ that is not in relation
with any of the honest public keys. It follows that we can use such an adversary
to break the existential unforgeability of the SPS-EQ signature scheme, i.e. we
just use the signing oracle to generate all σiSPS and return (pk′, σ′SPS) as a valid
SPS-EQ forgery.

It follows that |Pr[S3]− Pr[S2]| ≤ Adv`,euf-cma
A,SPS-EQ(λ).

17

GAME4: We now change the way, we compute the secret key for user j. Instead
of using (pkj , skj , τ j)← TKeyGenFW(λ, ω), we use (pkj , skj)← KeyGen(λ, ω).

Obviously, in such a case we cannot answer the OpenGS queries for user j, as
the value τ j is unknown. However, we note that if the adversary’s query (m,σGS)
is a valid group signature, then the OpenGS must return a valid user identifier
(because of the change in GAME3, we do not return ⊥ in such a case). There-
fore, if there exists no identifier i ∈ [n]/{j} for which ChkRep(τ i, pki, pk′) = 1,
we return j.

It is easy to note that this is just a conceptual change (because of the change
in GAME3) and we have Pr[S4] = Pr[S3].

GAME5: We now compute a random SFPK key pair (pk, sk) ← KeyGen(λ, ω),
choose a random blinding factor r, compute public key pk′ ← ChgPK(pk, r),
secret key sk′ ← ChgSK(sk, r) and change the way we compute the challenged
signature σGS = (pk′, σ, σSPS) under message m. We set M = m||σSPS||pk′ and
run σ ← Sign(sk′,M). In other words, instead of using the secret of user ib to
generate the signature σ, we use a fresh key pair for this (i.e. a user from outside
the system).

We note that any adversary that is able to distinguish between GAME4 and
GAME5, can be used to break the class-hiding property of the SFPK signature
scheme. The reduction algorithm can just set one of the public keys from the
class-hiding challenge to be part of the public key of the j-th user. In case, the
signature given by the challenger in the class-hiding game was created by this
user, we are in GAME4. If it was created by the second user, then we are in
GAME5. Of course, it might happen that the one of the users in the other group
member (other than the j-th user) has a public key from the same relation as
the second user in the class-hiding experiment. However, this event occurs with
negligible probability and we omit it.

Lastly, we notice that the challenger in the class-hiding experiment is given
the random coins used to generate the secret key to the adversary. Thus, our
reduction can reuse those coins and compute the secret key, which he can give
to the distinguishing algorithm, as required to fully simulate the anonymity ex-
periment.

It follows that |Pr[S5]− Pr[S4]| ≤ Advc-hA,SFPK(λ).

The above changes ensure that the challenged signature is independent from
the user ib, i.e. we use a random SFPK public key and a freshly generated SPS-EQ
signature on it. However, an adversary A can still use the way we implemented
the OpenGS in GAME4. Note that in case, he is somehow able to randomize the
signature σGS = (pk, σ, σSPS) and ask the OpenGS oracle, then we will return ib
as the answer.

18

We will now show that the adversary cannot create a valid and distinct
signature from σGS = (pk, σ, σSPS). Let (m∗, σ∗GS = (pk∗, σ∗, σ∗SPS)) be the query
made by the adversary and σ∗GS is a randomized version of σGS.

The first observation is that by the change made in GAME5, we must have
that pk and pk∗ are in a relation, otherwise the above attack does not work.
Thus, we can use such an adversary to break the strong existential unforgeabil-
ity of the SFPK signature scheme. Note that by the change made in GAME5,
pk is a fresh public key and the reduction algorithm can use the one from the
strong existential uforgeability game. Moreover, in order to generate σ, the re-
duction algorithm uses its signing oracle. Finally, the reduction algorithm returns
((m∗||σ∗SPS||pk

∗), σ∗) as a valid forgery.
It is easy to see that in case pk 6= pk∗ or σSPS 6= σ∗SPS, the reduction algo-

rithm wins the strong existential unforgeability game. Thus, the only part of
the group signature that the adversary could potentially change is σ. This is the
SFPK signature and would mean that the adversary was able to create a new
signature under the message asked by the reduction algorithm to the signing al-
gorithm. However, the case that σ 6= σ∗ also means that the reduction algorithm
breaks the strong existential unforgeability of the SFPK scheme. We conclude,
Pr[S5] = Advseuf−cma

A,SFPK (λ).

Finally, we have

Pr[S0] ≤ n ·
(
Adv`,euf-cma

A,SPS-EQ(λ) + Advc-hA,SFPK(λ) + Advseuf−cma
A,SFPK (λ)

)
.

4.3 Ring Signatures

In ring signatures there is no trusted entity such as a group manager and groups
are chosen ad hoc by the signers themselves. Thus, we cannot use SPS-EQ to
prove that a given ring signature was created by a valid member. Instead we
give a membership proof, which is perfectly sound even if the common reference
string is generated by the signer. In other words, the actual ring signature is a
SFPK signature (pk′, σ) and a proof Π that there exists a public key pk ∈ Ring

that is in relation to the public key pk′, i.e. the signer proves knowledge of the
random coins used to get pk′. The signature’s anonymity relies on the class-
hiding property of SFPK. Unfortunately, in the proof, the reduction does not
know a valid witness for proof Π, since it does not choose the random coins for
the challenged signature. Thus, we introduce a trapdoor witness. We extend the
signer’s public keys by a tuple of three group elements (A,B,C) and prove an
OR statement which allows the reduction to compute a valid proof Π if (A,B,C)
is a non-DDH tuple. More details are given in Scheme 3.

We can instantiate this scheme with a membership proof based on the O(
√
n)

size ring signatures by Chandran, Groth, Sahai [11] and the perfectly sound
proof system for NP languages by Groth, Ostrovsky, Sahai [21]. The resulting
membership proof is perfectly sound and of sub-linear size in the size of the
set. It follows, that our ring signature construction yields the first sub-linear

19

RKeyGen(1λ)

1 : (sk, pk)←$ KeyGen(λ, ω)

2 : I := (A,B,C)←$ G3
1

3 : return (pkRS := (pk, I), skRS := sk)

RVerify(m,Σ, Ring)

1 : parse Σ = (pk′, σ,Π, ρΠ)

2 : return Verify(x,Π) ∧

3 : Verify(pk′,m, σ)

RSign(m, skRS, Ring)

1 : r ←$ Z∗p; sk′ ←$ ChgSK(sk, r); pk′ ←$ ChgPK(pk, r)

2 : σ ←$ Sign(sk′,m||Ring)

3 : Π ←$ Prove(x, (pk, r)) where x is statement

∃pk,r
(
(i, pk, ·) ∈ Ring ∧ ChgPK(pk, r) = pk′

)
∨

∃I ((i, ·, I) ∈ Ring ∧ I is not a DDH tuple)

4 : return Σ := (pk′, σ,Π)

Scheme 3: Generic Ring Signature Scheme

ring signature from standard assumptions without a trusted setup. The usage
of a generic proof system makes the scheme inefficient in practice. Therefore, we
instantiate our signature with flexible public key in a way such that we can use
the same idea as in [11] but with the perfectly sound proof system for pairing
product equations presented in Subsection 2.2. This SFPK instantiation is given
in Scheme 7.

Theorem 6. Scheme 3 is a correct ring signature scheme.

Proof. Let λ ∈ N, n = poly(λ), and{
(sk

(i)
RS = sk(i), pk

(i)
RS = (pk(i), A(i), B(i), C(i)))

}n
i=1

a set of key pairs generated by RKeyGen(1λ), and s ∈ {1, . . . , n} as well as m a
message.

The signature of (s) on m will be of the form (pk′, σ,Π) where pk′ ←$

ChgPK(pk, r) and σ ←$ ChgSK(sk, r) for some random r and σ ←$ Sign(sk′,m||Ring)
and Pi a proof of the given statement with witness pk, r. Because of the complete-
ness of the proof system verification of Π will succeed and because of the correct-
ness of the SFPK scheme, signature σ will also be valid. Thus RVerify(m,Σ, Ring) =
accept.

Theorem 7. The generic construction of ring signatures presented in scheme 3
is unforgeable w.r.t. insider corruption assuming the SFPK scheme is existential
unforgeable, the proof system used is perfectly sound and the decisional Diffie-
Hellman assumption holds.

Proof (Theorem 7). We will use the game based approach to prove this theorem.
The first change we do is to fix the instance I to be a DDH tuple. This way our

20

reduction algorithm (as well as the adversary) must use a witness that fulfils the
first part of the statement proven by Π. The next step is simple. The reduction
algorithm translates this game to the existential unforgeability experiment of the
SFPK scheme. Note that the reduction algorithm will choose one of the users at
random and use the challenged public key as the user’s public key. For the other
users, the reduction algorithm will use a randomly choose key pair. This allows
the reduction to answer all corruption queries. More formally. Let us denote by
Si the event that the adversary wins the unforgeability w.r.t insider corruption
experiment in GAMEi.

GAME0: The experiment.

GAME1: We make a small change in the way we generate the instance I for the
public keys of users. Instead of generating A,B,C as random elements of G1,
we first chose a, b←$Z∗p and then set A = ga1 , B = gb1 and C = ga·b.

It is obvious that this change only decreases the adversary’s advantage by
a negligible fraction. In particular any distinguishing adversary can be used to
break the decisional Diffie-Hellman assumption. Moreover, note that since any
DDH instance can be randomized (i.e. (Ar, Br, Cr) is a DDH tuple if and only if
(A,B,C) is a DDH tuple) we can apply this change to all honest users at once.
Thus, we get |Pr[S1]− Pr[S0]| ≤ AdvddhA (λ).

We now show how to use any adversary A that has non-negligible advantage
in winning the unforgeability w.r.t insider corruption experiment in GAME1 to
create a reduction algorithm R that has non-negligible advantage in winning the
existential unforgeability experiment of the SFPK scheme. Let us by l denote the
total number of users in the unforgeability w.r.t insider corruption experiment.
The reduction algorithm works as follows.

In the first step R chooses a random j ←$ [l] and generates (SKi,PKi) ←
RKeyGen(ρ, ωi) for all i ∈ [l]/{j}. For the j-th user it uses the public key
PKj = pkj given to him by the challenger in the existential unforgeability exper-
iment for the SFPK scheme for relation Rexp. R is able to answer all corruption
queries of A, beside for the j-th user. However, we hope that the adversary
chooses this user to be part of the ring Ring∗ for which he has to output a
forgery. In such a case the adversary cannot ask the corruption query for the
secret key of this user. We will later calculate the corresponding probability of
the adversary asking for the j-th user’s key but now we assume that in such a
case the reduction R aborts. The reduction algorithm is also able to answer all
signing queries. Note that for the j-th user instead of using the RSign algorithm,
we choose a random r ←$ Z∗p and query the signing oracle O2 with input (m, r).

Finally, the adversary A outputs a ring signature Σ∗ = (pk∗, σ∗, Π∗, ρ∗Π)
under message m∗ for ring Ring∗. The reduction returns (m∗, Σ∗) as its forgery
for the SFPK scheme. We will now calculate the success probability of R. We
first notice that by the change made in GAME1 and since the proof Π∗ is

21

perfectly sound, it follows that there exists a public key pk ∈ Ring∗ for which
(pk, pk∗) ∈ Rexp. Finally we have that the probability that pk = pkj is 1/l, i.e.
from the j-th user’s public key. Note that in such a case the adversary will not
ask for the j-th user public key.

It follows that

Pr[S1] ≤l · EUF-CMAASFPK,RFlex(λ), and

Pr[S0] ≤l · EUF-CMAASFPK,RFlex(λ) + AdvddhA (λ).

Theorem 8. The generic construction of ring signatures presented in Scheme 3
is anonymous against full key exposure assuming the SFPK scheme is class-hiding
and the used proof system is computationally witness-indistinguishable.

Proof (Theorem 8). Let us denote by Si the event that the adversary wins the
anonymity experiment in GAMEi.

GAME0: The original experiment.

GAME1: We make a small change we compute the instance I = (A,B,C) in
all the public keys of users. Instead of choosing A,B,C at random from G1, we
first choose a, b ←$ Z∗p and then compute A = ga1 , B = gb1, C = ga·b−1

1 . In other
words, we make sure that I is not a DDH tuple.

Similar as in the proof for unforgeability, we have |Pr[S1]−Pr[S0]| ≤ AdvddhA (λ).

GAME2: We now change the witness that we use to compute the proof Π in the
challenged signature Σ. Instead of using the public key pkib , we will use a wit-
ness for the second part of the statement. Note that by the change made in the
previous game, all instances I in the public keys of honest users are non-DDH
tuples. Moreover, instead of using the witness for the instance Iib (where b is
the challenged bit b and ib is the identifier of the user for which the experiment
generates the signature), we will choose a random bit b̂ and use the witness for
instance Iib̂ . Note that the proof inside the signature Σ is now valid and inde-
pendent of the bit b.

Because the proof system is computational witness-indistinguishable, it fol-
lows that |Pr[S2]− Pr[S1]| ≤ AdvwiΠ,A(λ).

GAME3: We will now change the way we compute the signatureΣ = (pk′, σ′, Π, ρΠ).
In particular we will change the way we compute pk′ and σ′. Instead of comput-
ing it them using

pk′ ←$ ChgPK(pkib , r),

sk′ ←$ ChgSK(skib , r),

σ ←$ Sign(sk′,m||Ring),

22

we will choose a fresh random bit b̂ and compute it as

pk′ ←$ ChgPK(pkib̂ , r),

sk′ ←$ ChgSK(skib̂ , r),

σ ←$ Sign(sk′,m||Ring).

We now show that any adversary A that has non-negligible advantage in
distinguishing the difference between games 2 and 3, can be used as part of
a reduction algorithm R that breaks the class-hiding property of the SFPK
scheme. Let us by l denote the total number of users in the anonymity ex-
periment. The reduction first chooses j, k ←$ [l] and generates (SKi,PKi) ←
RKeyGen(ρ, ωi) for all i ∈ [l]/{j, k}. Let (ω∗0 , ω

∗
1) be the random coins given to A

by the class-hiding challenger. The reduction R runs (sk0, pk0)←$ KeyGen(λ, ω∗0)
and (sk1, pk1) ←$ KeyGen(λ, ω∗1). Then it computes random (A0, B0, C0) and
(A1, B1, C1) as in GAME1 and the corresponding random coins ωI0 and ωI1 . It

then sets ωi = (ω∗0 , ωI0), ωk = (ω∗1 , ωI1) and gives {ωi}li=1 to A. The adversary
now outputs (m, i0, i1, Ring). The reduction R aborts in case i0, i1 6∈ {j, k}. Note
that since, A advantage is non-negligible, we have that i0 6= i1, i0 ∈ Ring and
i1 ∈ Ring. R then forwards m||Ring to the class-hiding challenger and receives
a SFPK signature σ′ under the randomized public key pk′. The reduction com-
putes the ring signature as Σ = (pk′, σ′, Π, ρΠ), where Π is a proof computed as
in GAME2. Obviously, the success of R depends on the probability of guessing
the correct identifiers i0 and i1. The probability is greater than 2

l2 .

It follows that |Pr[S3]− Pr[S2]| ≤ l2

2 · Adv
c-h
A,SFPK(λ).

We now notice that the only value that depends on the challenged bit b in
the original game is the ring signature Σ = (pk′, σ′, Π, ρΠ). By the changes we
made in GAME2, the values (Π, ρΠ) are independent from b. What is more, by
the changes made in GAME3, the values (pk′, σ′) are also independent from b.
It follows that:

Pr[S3] = 0

Pr[S0] ≤ l2

2
· Advc-hA,SFPK(λ) + AdvwiΠ,A(λ).

5 Efficient Instantiation from Standard Assumptions

In this section we present three efficient instantiations of signatures with flexible
public key. All schemes support the same exponentiation relation Rexp. We say
that public keys pk1 = (pk1,1, . . . , pk1,k) and pk2 = (pk2,1, . . . , pk2,k) are in this
relation, denoted (pk1, pk2) ∈ Rexp, if and only if there exists a value r ∈ Z∗p
such that ∀i∈[k](pk1,i)

r = pk2,i.
We assume that the plain model schemes (i.e. without a common reference

string) the public key contains the implicit security parameter λ and bilinear

23

group parameters BG. However, since the bilinear-group generation algorithm
BGGen(λ) is deterministic, it follows that this does not influence the class-hiding
property or unforgeability property. Therefore, for readability we omit those
parameters.

The first instantiation we present is a warm-up scheme that is simple and
efficient. Its security relies on the decisional linear and decisional Diffie-Hellman
assumptions. It is based on a modified version of Waters signatures [32] for type-
2 and type-3 pairings due to Chatterjee and Menezes [12]. The scheme has the
key recovery property and can hence be used to implement stealth addresses as
described in Section 4.

The second scheme works in the multi-user setting and features small public
key size, independent of the security parameter λ. It is also based on the modified
version of Waters signatures. This scheme is the ideal candidate for instantiating
the group signature scheme presented in section 4. In combination with the
SPS-EQ from [17] it results in the shortest static group signatures under standard
assumptions. Further, using type-2 pairing and the random oracle model allows
to use this scheme without the need for a trusted party.

The last of the presented schemes is introduced to efficiently instantiate our
ring signatures. The scheme requires a proof system to show relation between
public key and signature. We require the proof system to be perfectly sound
even if the common reference string is computed by the signer. Thus, the proven
statement must always be true, which presents a challenge in the security proof.
Therefore, we consider a disjunction of this statement and a statement that is
always false in regular use of the scheme but provides a “trapdoor” witness for
the security reduction in the proof of unforgeability. Because of witness indistin-
guishability these proofs will not leak that the used witness was not for the first
part of the disjunction.

5.1 Warm-up Scheme

Theorem 9. Scheme 4 is a correct signature scheme with flexible public key.

Proof. In the following, let λ ∈ N and ω, r ∈ coin.

1. Identical distribution of the keypairs output by KeyGenFW and TKeyGenFW
holds trivially.

2. Let (skFW = (y,XpkFW), pkFW = (A,B,C,D, t,u)) ←$ KeyGenFW(λ, ω) and
m = (M0 . . .M1)bin be a message. For σ ←$ SignFW(skFW,m) we have for
some random s,

σ =

(
Xy ·

(
λ∏
i=1

uMi
i

)s
, gs1, g

s
2

)

24

Therefore, it holds that e(gs1, g2) = e(g1, g2)s = e(g1, g
s
2) and

t · e(
λ∏
i=1

uMi
i , gs2) = e(Xy, g2) · e(

λ∏
i=1

uMi·s
i , g2)

= e(Xy ·

(
λ∏
i=1

uMi
i

)s
, g2),

so verification before transformation succeeds.
The output ChgSKFW(skFW, r) and ChgPKFW(pkFW, r) will be the key pair
(skFW

′ = (y, (X)r, pkFW
′), pkFW

′ = (Ar, Br, Cr, Dr, tr,ur)). Hence for a ran-
dom s′, a signature under the fresh signing key on m will be

σ′ =

Xyr ·

(
λ∏
i=1

urMi
i

)s′
, gs
′

1 , g
s′

2

=

Xy ·

(
λ∏
i=1

uMi
i

)s′r

, gs
′

1 , g
s′

2

and in the verification equation with pkFW

′, the missing r will be provided
by tr.

3. Let the output of TKeyGen(λ, ω) be

(skFW = (y, gx1 , pkFW),

pkFW = (ga1 , g
b
1, g

c
1, g

x·d
1 , t = e(gx·y1 , g2),u),

τ = (d, gy2 , g
a
2 , g

b
2, g

c
2, g

µ1

2 , . . . , gµλ2), ω′)

and let pkFW
′ = (A,B,C,D, t′,u′) be a different public key. Let r = DLOGt(t

′).
We have e(D1/d, gy2) = t′ = e(gxy1 , g2)r if and only if D = gxrd1 = (gxd1)r. The
remaining checks ensure that ∀i∈[λ+2]pkFW

r
i = pkFW

′
i, i.e. pkFW

′ ∈ [pkFW]R.

Theorem 10. Scheme 4 is existential unforgeable under flexible public key, as-
suming the decisional linear assumption holds.

Proof. We begin the proof with the following remark.

Remark 2. For the simplicity of the proof and a tighter security reduction we
rely on the results by Hofheinz et al. [24]. Applying expander codes on the signed
message before signing it, allows to improve the tightness of the reduction from
O(` · q) to O(

√
` · q), where ` is the bit length of the signed message and q is

the number of signing queries. To improve readability and to maintain simplicity
of the scheme, we do not describe this idea in the above scheme. However, we
notice that in such a case the size of the public key increases (i.e. the size of
vector u), as we expand the message before signing.

25

Let (f1, f2, h1, h2, f
α
1 , f

α
2 , h

β
1 , h

β
2 , g

γ
1 , g

γ
2) be an instance of the decisional lin-

ear problem and let A be an PPT adversary the has non-negligible advantage
Adveuf−cma

A,SFPK (λ). We will show an algorithm R that uses A to break the above
problem instance.

In the first step, the reductionR prepares the public key pkFW = (A,B,C,D, t,u)
as follows. It sets:

X = gγ1 A = fα1 B = hβ1

C = h1 t = e(X, f2) = e(Xφ, g2) ui = (gγ1)aigbi1

and D = Xd, where ai’s are computed as random walks in {−1, 0, 1} of length de-
pending on the chosen expander code (see [24] for more details) and bi’s and d are
chosen uniformly at random from Z∗p. The reduction also prepares the trapdoor

τ = (d, f2, f
α
2 , h

β
2 , h2, (g

γ
2)a1gb11 , . . . , (g

γ
2)aλgbλ1).

To answer signing queries of A, algorithmR proceeds as follows. Let m be the
message and l the random coins queried by A. We now define a(m) =

∑
i∈[m] ai

and b(m) =
∑
i∈[m] bi, where we view [m] as a set, such that j ∈ [m] if the j-th bit

of m is set to 1. Now we can always write H(m) = (gγ1)a(m)g
b(m)
1 and a valid re-

sponse for such a query is: (fγ·l1 H(m)r·l, gr1, g
r
2) = ((g

γ·φ+r·(γ·a(m)+b(m))
1)l, gr1, g

r
2),

where f1 = gφ1 . Now if we set gr1 = (gφ1)xgy1 and gr2 = (gφ2)xgy2 , then a valid sig-

nature is of the form: ((g
γ·φ+(φ·x+y)·(γ·a(m)+b(m))
1)l, (gφ1)xgy1 , (g

φ
2)xgy2). This gives

us

(((gγ·φ1)1+x·a(m)(gφ1)x·b(m)(gγ1)y·a(m)g
y·b(m)
1)l, (gφ1)xgy1 , (g

φ
2)xgy2). (1)

We now distinguish two cases:

– if a(m) 6= 0, then R can simulate a valid signature via equation 1, by setting

x = −a(m)−1 and y ←$ Zq (note that in such a case the term gγ·φ1 vanishes),
– if a(m) = 0, then R cannot simulate a valid signature and fails.

Finally,A will output a valid signature under messagem∗: ˆσFW = (ˆσFW
1, ˆσFW

2,

ˆσFW
3) = ((gγ·φ1 H(m∗)r

∗
)l
∗
, gr
∗

1 , gr
∗

2), for which we hope that a(m∗) = 0, and a

public key ˆpkFW for which (pkFW, ˆpkFW) ∈ R. Thus, we have ˆσFW = ((fγ1 (gr
∗

1)b(m
∗))l

∗
,

gr
∗

1 , gr
∗

2), for some unknown r∗ but known b(m∗). Since (pkFW, ˆpkFW) ∈ R. This

means that ˆpkFW = (Al
∗
, Bl

∗
, Cl

∗
, Dl∗ , tl

∗
,ul

∗
) = ((fα1)l

∗
, (hβ1)l

∗
, (h1)l

∗
, (gγ·d1)l

∗
,

tl
∗
,ul

∗
). We now compute

T1 = e(ˆσFW
1, h2) = e(fγ1 (gr

∗

1)b(m
∗), hl

∗

2) T2 = e(hl
∗

1 , g
r∗

2)b(m
∗) = e(g

r∗·b(m∗)
1 , hl

∗

2)

T3 = e((fα1)l
∗
, h2) = e(fα1 , h

l∗

2) T4 = e((hβ1)l
∗
, f2) = e(fβ1 , h

l∗

2)

Finally, the reduction R returns 1 if T1 ·T−1
2 = T3 ·T4 and 0, otherwise. Note

that T1 · T−1
2 = e(fγ1 , h

l∗

2) and the above equation is correct only if γ = α+ β.

26

The success probability of the reduction R depends on whether it can answer
all signing queries of A and on the returned forgery (i.e. for which we must have
a(m∗) = 0). Reusing the arguments presented in [24], we can argue that the
success probability is non-negligible. Thus, since A advantage is non-negligible,
it follows that R has a non-negligible advantage in solving the decisional linear
problem.

Theorem 11. Scheme 4 is class-hiding, assuming the decisional Diffie-Hellman
assumption in G1 holds.

Proof. In this proof we will use the game based approach. We start with GAME0

which is the original class-hiding experiment and let S0 be an event that the ex-
periment evaluates to 1, i.e. the adversary wins. We then make small changes
and show in the end that the adversary’s advantage is zero. We will use Si to de-
note the event that the adversary wins the class-hiding experiment in GAMEi.
Let σFW = (σ1

FW, σ
2
FW, σ

3
FW) be the signature and pkFW

′ = (A′, B′, C ′, D′, t′,u′)
be the public key given to the adversary as part of the challenge. Moreover,
let pkFW0 = (A0, B0, C0, D0, t0,u0) and pkFW1 = (A1, B1, C1, D1, t1,u1) be the
public keys that are returned by the KeyGen algorithm on input of random coins
ω0 and ω1 given to the adversary and b̂ be the bit chosen by the challenger.

GAME0: The original class-hiding game.

GAME1: In this game we change the way we sample pkFW0 and pkFW1. Instead
of sampling directly from G1, we sample a, b, c, d, x, ν1, . . . , νλ ←$ Z∗p and set

A = ga1 , B = gb1, C = gc1, D = gd1 , X = gx1 and ui = gνi1 for i ∈ [λ]. More-
over, we change the way skFW

′ and pkFW
′ are computed from skFW b̂ pkFW b̂, i.e.

pkFW
′ = (Qa, Qb, Qc, Qd, e(Qx, gy2), (Qν1 , . . . , Qνλ)), and skFW

′ = (y,Qx, pkFW
′).

In other words, instead of using the value r to randomize the public key and
secret key, we use a group element Q to do it.

Because we can use the invertible sampling algorithm to retrieve the ran-
dom coins ω0 and ω1 and since the distribution of the keys does not change, it
follows that Pr[S1] = Pr[S0]. We can still compute the signature σFW using skFW

′.

GAME2: In this game instead of computing pkFW
′ = (Qa, Qb, Qc, Qd, e(Qxb̂ , g

yb̂
2),

(Qν1 , . . . , Qνλ)) as in GAME1, we sample A′ ←$ G1 set pkFW
′ = (A′, Qb, Qc,

Qd, e(Qxb̂ , g
yb̂
2), (Qν1 , . . . , Qνλ)).

We will show that this transition only lowers the adversary’s advantage by
a negligible fraction. In particular, we will show a reduction R that uses an
adversaryA that can distinguish between those two games to break the decisional
Diffie-Hellman assumption in G1. Let (gα1 , g

β
1 , g

γ
1) be a instance of this problem

in G1. R samples r0,A, r1,A ←$ Z∗p and sets A0 = (gα1)r0,A , A1 = (gα1)r1,A .

Additionally, the reduction uses Q = gβ1 and the public key

pkFW
′ = ((gγ1)rb̂,A , Qb, Qc, Qd, e(Qxb̂ , g

yb̂
2), (Qν1 , . . . , Qνλ)).

27

Note that since R knows the secret key skFW
′ it can compute σFW. Finally notice,

that if γ = α · β then (pkFW
′, σFW) have the same distribution as in GAME1

and otherwise as in GAME2. Thus, we have |Pr[S2]− Pr[S1]| ≤ AdvddhA (λ).

GAME3 (series of sub-games): In this game instead of computing
pkFW

′ = (A′, Qb, Qc, Qd, e(Qxb̂ , g
yb̂
2), (Qν1 , . . . , Qνλ)) as in GAME2, we sample

B′, C ′, D′, u′1, . . . , u
′
λ ←$ G1 and set pkFW

′ = (A′, B′, C ′, D′, e(Qxb̂ , g
yb̂
2), (u′1, . . . , u

′
λ)).

This transition is composed of a number of sub-games, in which we change
each element of the public key pkFW

′ separately. Obviously, we can use the same
reduction as above and show that each change lowers the adversary’s advantage
by at most AdvddhA (λ). It is worth noting, that the reduction can always create
a valid signature σFW, since the secret key (yb̂, Q

xb̂ , pkFW
′) can be computed by

R. Thus, we have |Pr[S3]− Pr[S2]| ≤ (3 + λ) · AdvddhA (λ).

Let us now take a look at the randomized public key and signature given to
the adversary. Because of all the changes, we have: pkFW

′ = (A′, B′, C ′e(Qxb̂·yb̂ , g2),
u′) and σFW = (Qxb̂·yb̂(

∏
i∈[m] u

′
i)
r, gr1, g

r
2) for some r ∈ Z∗p and A′, B′, C ′,u′, Q,

which are independent from the bit b̂ and the original public keys. Since the
value Q is random and only appears as part of the term Qxb̂·yb̂ , we can always

restate this term to Q′x1−b̂·y1−b̂ where Q′ = Q(x1−b̂·y1−b̂)·(xb̂·yb̂)
−1

and Q′ is a ran-
dom value. It follows that the adversaries advantage is zero, i.e. Pr[S3] = 0.
Finally, we have Advc-hA,SFPK(λ) = Pr[S0] ≤ (4 + λ) · AdvddhA (λ).

5.2 Flexible Public Key Scheme in the Multi-user Setting

Theorem 12. Scheme 5 is a correct signature scheme with flexible public key.

Proof. Analogous to the correctness of Scheme 4.

Theorem 13. Scheme 5 is existential unforgeable under flexible public key in
the common reference string model, assuming the co-Flexible Diffie-Hellman as-
sumption holds.

Proof (Theorem 13). We will use similar steps to the proof of theorem 10 and
rely on the results received by Hofheinz et al. [24].

Let (gα1 , g
α
2 , g

β
1 , g

β
2 , g

γ
1 , g

γ
2 , g

θ
1 , g

θ
2) be an instance of the co-Flexible Diffie-Hellman

assumption problem and let A be an PPT adversary the has non-negligible ad-
vantage Adveuf−cma

A,SFPK (λ). We will show an algorithm R that uses A to break the
above problem instance.

In the first step, the reduction R prepares the common reference string ρ =
(BG, Y1, Y2,u) and the public key pkFW = (A,B,X) as follows. It sets:

X = gβ1 Y1 = gα1 Y2 = gα2

A = gγ1 B = gθ1 ui =(gβ1)aigbi1 ,

28

where ai’s are computed as random walks in {−1, 0, 1} of length as defined
in [24] and bi’s are chosen uniformly at random from Z∗p. Moreover, R sets

τ = (gγ2 , g
θ
2 , g

β
2).

To answer signing queries of A, algorithmR proceeds as follows. Let m be the
message and l the random coins queried by A. We now define a(m) =

∑
i∈[m] ai

and b(m) =
∑
i∈[m] bi, where we view [m] as a set, such that j ∈ [m] if the j-th

bit of m is set to 1. Now we can always write H(m) = (gβ1)a(m)g
b(m)
1 and a valid

response for such a query is:

(Y β·l1 H(m)r, gr1, g
r
2) = ((gα·β1)l · gr·(β·a(m)+b(m))

1 , gr1, g
r
2).

Now if we set gr1 = ((gα1)xgy1)
l

and gr2 = ((gα2)xgy2)
l
, then a valid signature is of

the form: (
(g
α·β+(α·x+y)·(β·a(m)+b(m))
1)l, ((gα1)xgy1)

l
, ((gα2)xgy2)

l
)
.

This gives us

(((gα·β1)1+x·a(m)(gα1)x·b(m)(gβ1)y·a(m)g
y·b(m)
1)l,

((gα1)xgy1)
l
, ((gα2)xgy2)

l
).

We now distinguish two cases:

– if a(m) 6= 0, then R can simulate a valid signature via the above equation,

by setting x = −a(m)−1 and y ←$ Zq (note that in such a case the term gα·β1

vanishes),
– if a(m) = 0, then R cannot simulate a valid signature and fails.

Finally, A will output a valid signature under message m∗:

ˆσFW = (ˆσFW
1, ˆσFW

2, ˆσFW
3) = ((gα·β1)l

∗
H(m∗)r

∗
, gr
∗

1 , gr
∗

2 ,)

for which we hope that a(m∗) = 0, and a public key ˆpkFW for which (pkFW, ˆpkFW) ∈
R. Thus, we have

ˆσFW = (gα·β·l
∗

1 (gr
∗

1)b(m
∗), gr

∗

1 , gr
∗

2),

for some unknown r∗ but known b(m∗). Thus the reduction R can compute

ˆσFW
1 · (ˆσFW

2)−b(m
∗) = gα·β·l

∗

1 . Moreover, since (pkFW, ˆpkFW) ∈ R. This means

that ˆpkFW = (Al
∗
, Bl

∗
, X l∗) = ((gγ1)l

∗
, (gθ1)l

∗
, gl
∗·β

1).
Finally, the reduction R returns (Al

∗
, Bl

∗
, ˆσFW

1 · (ˆσFW
2)−b(m

∗)), which as

shown above is ((gγ1)l
∗
, (gθ1)l

∗
, gα·β·l

∗

1). Again, the success probability of the re-
duction R depends on whether it can answer all signing queries of A and on the
returned forgery. By the arguments presented in [24], we conclude that R has a
non-negligible advantage in solving the co-Flexible Diffie-Hellman assumption if
A’s advantage is non-negligible.

Corollary 1. Scheme 5 is existential unforgeability under flexible public key in
the CRS model under the DLIN assumption.

29

Theorem 14. Scheme 5 is class-hiding under the DDH assumption in G1.

Proof (Theorem 14). In this proof we will use the game based approach. We
start with GAME0 which is the original class-hiding experiment and let S0 be
an event that the experiment evaluates to 1, i.e. the adversary wins. We then
make small changes and show in the end that the adversary is unable to create
a forged ring signature.We will use Si to denote the event that the adversary
wins the class-hiding experiment in GAMEi.

Let σFW = (σ1
FW, σ

2
FW, σ

3
FW) be the signature and pkFW

′ = (A′, B′, X ′) be
the public key given to the adversary. Moreover, let pkFW0 = (A0, B0, X0) and
pkFW1 = (A1, B1, X1) be the public keys that are returned KeyGen on input of

random coins ω0 and ω1 given to the adversary and b̂ be the bit chosen by the
challenger.

GAME0: The original class-hiding game.

GAME1: In this game we change the way the public keys pkFW0 and pkFW1 are
generated. Instead of sampling A,B,X from G1, we sample a, b, x←$Z∗p and set

A = ga1 , B = gb1, X = gx1 . Moreover, we do not use the ChgSK algorithm to
compute skFW

′ and pkFW
′ but compute them as pkFW

′ = (Qab̂ , Qbb̂ , Qxb̂), and
skFW

′ = (Qxb̂·y, pkFW
′), where Y1 = gy1 is part of the common reference string ρ

generated by the challenger. In other words, instead of using the exponent r to
randomize the public key and secret key, we use a group element Q to do it.

Observe that we can use the invertible sampling algorithm to retrieve the
random coins ω0 and ω1. Moreover, since the distribution of the keys does not
change, it follows that Pr[S1] = Pr[S0]. Note that we can still compute the sig-
nature σFW using skFW

′.

GAME2: In this game instead of computing

pkFW
′ = (Qab̂ , Qbb̂ , Qxb̂)

as in GAME1, we sample A′ ←$ G1 and set

pkFW
′ = (A′, Qbb̂ , Qxb̂).

We will show that this transition only lowers the adversary’s advantage by
a negligible fraction. In particular, we will show a reduction R that uses an
adversaryA that can distinguish between those two games to break the decisional
Diffie-Hellman assumption in G1. Let (gα1 , g

β
1 , g

γ
1) be an instance of this problem

in G1. R samples r0, r1 ←$ Z∗p and sets A0 = (gα1)r0 , A1 = (gα1)r1 .

Additionally, the reduction uses Q = gβ1 and the public key

pkFW
′ = ((gγ1)rb̂ , Qbb̂ , Qxb̂).

30

Note that since A′ is not used in the signing process, it follows that the reduction
can simply generate the signature σFW.

Finally notice, that if γ = α ·β then (pkFW
′, σFW) have the same distribution

as in GAME1 and otherwise as in GAME2.

Thus, it follows that |Pr[S2]− Pr[S1]| ≤ AdvddhA (λ).

GAME3: In this game instead of computing

pkFW
′ = (A′, Qbb̂ , Qxb̂)

as in GAME2, we sample B′ ←$ G1 and set

pkFW
′ = (A′, B′, Qxb̂).

We can use the same argument as above. Thus, it follows that |Pr[S3] −
Pr[S2]| ≤ AdvddhA (λ).

Let us now take a look at the randomized public key and signature given
to the adversary. Because of all the changes, we have: pkFW

′ = (A′, B′, Qxb̂)
and σFW = ((Qxb̂)y(

∏
i∈[m] u

′
i)
r, gr1, g

r
2) for some r ∈ Z∗p and A′, B′, Q, which are

independent from the bit b̂. Since the value Q is random and only appears as
part of the term Qxb̂ , we can always restate this term to Q′x1−b̂ where Q′ =

Qx1−b̂·(xb̂)
−1

and Q′ is also a random value.
It follows that the adversaries advantage is zero, i.e. Pr[S3] = 0. Thus, we

have Advc-hA,SFPK(λ) = Pr[S0] ≤ 2 · AdvddhA (λ).

Remark 3 (Key Recovery). To support key recovery, the public key must be
extended to the form pkFW = (A,B,C,X) for C = Y c1 . The value c is then part
of the trapdoor τ and can be used to restore the value Y r1 , where r is the coin used
to change the public key. Given Y r1 we need to compute Zr = Y xr1 , therefore we
also have to include x as part of the original secret key skFW = (x, Y x1) = (x, Z).

Transformation to Strong Existential Unforgeability. Scheme 5 is only
existential unforgeable under flexible public key and this directly follows from the
fact that given a signature (gx·y·l1 H(m)r, gr1, g

r
2) on message m, we can compute

a randomized signature (σ1
FW, σ

2
FW, σ

3
FW) = (gx·y·l1 H(m)r · H(m)r

′
, gr1g

r′

1 , g
r
2g
r′

2)
for a fresh value r′ ←$ Z∗p.

A generic transformation from existential unforgeable to strongly unforge-
able signatures was proposed by Boneh, Shen and Waters [8]. In particular, they
use Waters signatures as a case study. The transformation works for all signa-
ture scheme for which there exist two algorithms F1 and F2 with the following
properties: 1) the output signature is (σ1, σ2), where σ1 ←$ F1(m, r, sk) and
σ2 ←$ F2(r, sk), 2) given m and σ2 there exists at most one σ1 so that (σ1, σ2) is
a valid signature under pk.

31

It is easy to see that those properties hold for the standard Waters signatures
and for Scheme 5, since we can compute σ2

FW, σ
3
FW in algorithm F2 and σ1

FW in
F1. What is more, once the random value r is set, there exists exactly one value
σ1
FW, for which (σ1

FW, σ
2
FW, σ

3
FW) is valid under a given public key.

The high level idea of the solution is to bind the part computed by F2 using
a hash function, i.e. the output of F2 is hashed together with the actual message
m and sign the output. In a scenario, where we consider a given public key,
this means that the signature cannot be randomized. Any manipulation of the
values (σ2

FW, σ
3
FW) would result in a different signed message, which would lead

to an attack against existential unforgeability of the underlying scheme. Fixing
(σ2

FW, σ
3
FW) fixes σ1

FW, as required by the properties above. Unfortunately, the
second argument does not hold for strong unforgeability under flexible public key.
Note that the adversary can still change σ1

FW by randomizing the public key. We
can overcome this by simply including the public key in the hash computation.

This high level idea prevents the randomization of the signature but breaks
the security proof of the underlying scheme. To allow the security reduction
to bypass this protection Boneh, Shen and Waters propose to sign a Pedersen
commitment to this hash value, instead of the value itself. The reduction can
use a trapdoor to bypass this protection using equivocality of the commitment
scheme. At the same time the binding property still makes it impossible for the
adversary to randomize the signature.

To apply this idea in our case, we first extend the common reference string
ρ by and element h ←$ G1. This element is part of the commitment key for the
Pedersen scheme. More details are given in scheme 6.

Theorem 15. Scheme 6 is strong existential unforgeable under flexible public
key in the CRS model, assuming the co-Flexible Diffie-Hellman assumption holds
and the hash function H is collision-resistant.

Proof (Sketch). The proof follows directly from the proof given in [8].

Theorem 16. Scheme 6 is class-hiding under the DDH assumption in G1.

Proof (Sketch). We can apply the same reasoning as in the proof of Theorem 14.
Note that the additional element s is just a random value that is independent
from the bit b̂ chosen by the challenger.

5.3 Flexible Public Key with Public Key in (G∗1)k

The key element of scheme 7 is the composition of Waters signatures and the
perfectly-sound proof system for pairing product equations presented in sec-
tion 2.2. The proof is used to bind parts of the signature with the public key.
Since the proof is only computational witness-indistinguishable, we use OR com-
position to allow for a trapdoor witness (i.e. a witness that allows to show that
the statement is true without the link between public key and signature). This
trapdoor witness is based on the decisional linear assumption, i.e. the statement

32

is true if part of the user’s public key is a DLIN tuple. More formally, we will
use the proof system for the following relation RFlex:

((BG, X, Y1, t, (D0, D1, D2, D3, D4, D5)); (Y2, d1, d2, d3, d4, X
′)) ∈ RFlex ↔

∃Y2
(e(Y1, g2) = e(g1, Y2) ∧ t = e(X,Y2)) ∨

∃X′,Y2,d1,d2,d3,d4(D1 = Dd1
0 ∧ D2 = Dd2

0 ∧ D3 = Dd1·d3
0 ∧

D4 = Dd2·d4
0 ∧ D5 = Dd3+d4

0 ∧ t = e(X ′, Y2)),

where (Y2, d1, d2, d3, d4, X
′) is the witness and (BG, X, Y1, t, (D0, D1, D2, D3, D4,

D5)) the statement. The above statement can be efficiently expressed by the
following set of pairing product equations:

1GT = e(B1, B2) 1GT = e(B1, g2) · e(g1, B2) · e(g1, g2)−1

1GT = e(Y1, g2 ·B−1
2) · e(B1, Y2) 1GT = e(B1, Y2) · e(B1, Y

′
2)−1

1GT = e(X, g2 ·B−1
2) · e(X ′, g2 ·B−1

2)−1 1GT = e(D1, B2) · e(Dd1
0 , B2)−1

1GT = e(D2, B2) · e(Dd2
0 , B2)−1 1GT = e(D3, B2) · e(Dd1·d3

0 , B2)−1

1GT = e(D4, B2) · e(Dd2·d4
0 , B2)−1 1GT = e(D5, B2) · e(Dd3+d4

0 , B2)−1

and t = e(X ′, Y ′2), where B1, B2, Y2, Y
′
2 , D

d1
0 , Dd2

0 , Dd1·d3
0 , Dd2·d4

0 , Dd3+d4
0 are vari-

ables. Note that the above set of equation could potentially be simplified, but
we opted for this form because of simplicity and readability.

The idea is that the variables B1 and B2 are g1, 1G2 or 1G1 , g2. This is ensured
by the first two equations. Those “bit” like variables are used to simulate the OR
statement. Let us assume that B1 = g1 and B2 = 1G2

, then this set of equations
is true only if Y2 = gy2 and t = e(X, gy2), where Y1 = gy1 . Let us now assume that
B1 = 1G1 and B2 = g2, then this set is true for some Y ′2 (because the equation
1GT = e(1G1 , Y2) · e(1G1 , Y

′
2)−1 is always true, Y ′2 does not have to be Y2) and

some X ′ such that t = e(X ′, Y ′2), and a DLIN tuple (D0, D1, D2, D3, D4, D5).
We note that the statement is always true if (D1, D2, D3, D4, D5) is a DLIN

tuple for the generator D0 (instead the generator g1 in the original assumption).
What is more, the statement is also always true for (Dr

0, D
r
1, D

r
2, D

r
3, D

r
4, D

r
5) if

it was true for the tuple (D0, D1, D2, D3, D4, D5). In other words, the former
tuple is a DLIN tuple if and only if the latter tuple is a DLIN tuple.

Theorem 17. Scheme 7 is a correct signature scheme with flexible public key.

Proof. Analogous to the correctness of Scheme 4.

Theorem 18. Scheme 7 is existential unforgeable under flexible public key un-
der the sq-Flexible Diffie-Hellman assumption and assuming the proof system is
perfectly sound in the plain model.

Proof (Theorem 18). In this proof we will use the game based approach. We start
with GAME0 which is the unforgeability experiment and let S0 be an event that
the experiment evaluates to 1, i.e. the adversary wins. We then make one small

33

change in the experiment i.e. we fix the tuple (D0, D1, D2, D3, D4, D5) in the
user’s public key to be a non-DLIN tuple, which implies that for the forgery
outputted by the adversary it must hold that t = e(X ′, Y2), e(Y1, g2) = e(g1, Y2)
and e(X, g2) = e(X ′, g2). Finally, we show that if there exists an adversary A
that has non-negligible advantage in the changed experiment, then we can build
a reduction algorithm R that has non-negligible advantage in breaking the sq-
Flexible Diffie-Hellman problem.

GAME0: The original unforgeability experiment.

GAME1: Let pkFW = (A,B,C,X, gy1 , (D0, D1, D2, D3, D4, D5),u) be the public
key given to the adversary. We fix (D0, D1, D2, D3, D4, D5) to be a non-DLIN
tuple, i.e. we set D0 = gd01 , D1 = Dd1

0 , D2 = Dd2
0 , D3 = Dd1·d3

0 , D4 = Dd2·d4
0

and D5 = Dd3+d4−1
0 .

It is obvious that we have |Pr[S1]−Pr[S0]| ≤ Advlinear
A (λ). Given a DLIN in-

stance (f1, f2, h1, h2, f
a
1 , f

a
2 , h

b
1, h

b
2, g

z
1 , g

z
2), the reduction algorithm can set D0 =

gr1, D1 = fr1 , D2 = hr1, D3 = (fa1)r, D4 = (hb1)r and D5 = (gz1)rg−r1 = (D0)z−1.

We now show how to solve the sq-Flexible Diffie-Hellman problem, given an
adversaryA which has a non-negligible advantage in GAME1. Let (gα1 , g

α
2 , g

β
1 , g

β
2 ,

gγ1 , g
γ
2 , g

θ
1 , g

θ
2) be an instance of the sq-Flexible Diffie-Hellman assumption prob-

lem and let A have a non-negligible advantage Adveuf−cma
A,SFPK (λ). We will show an

algorithm R that uses A to break the above problem instance.

Setup. In the first step, the reduction R prepares the public key pkFW =
(A,B,C,X, Y1, (D0, D1, D2, D3, D4, D5),u) as follows. It sets:

X = gβ1 Y1 = gα1 A = gγ1

B = gθ1 C = grC1 D0 = gd01

D1 = Dd1
0 D2 = Dd2

0 D3 = Dd1·d3
0

D4 = Dd2·d4
0 D5 = Dd3+d4−1

0 ui = (gβ1)aigbi1

where rC , d0, d1, d2, d3, d4 ←$ Z∗p, ai’s are computed as random walks in {−1, 0, 1}
of length as defined in [24] and bi’s are chosen uniformly at random from Z∗p.
Moreover, R sets

τ = (gγ2 , g
θ
2 , g

rC
2 , gβ2 , g

α
2 , (g

d0
2 , gd0·d12 , gd0·d22 , gd0·d1·d32 , gd0·d2·d42 , g

d0·(d3+d4−1)
2), ((gβ2)aigbi2)λi=1).

Answering signing queries. To answer signing queries ofA, algorithmR proceeds
as follows. Let m be the message and l the random coins queried by A. We
define a(m) =

∑
i∈[m] ai and b(m) =

∑
i∈[m] bi, where we view [m] as a set,

such that j ∈ [m] if the j-th bit of m is set to 1. Now we can always write

34

H(m) =
∏
i∈[m] ui = (gβ1)a(m)g

b(m)
1 and a valid response for such a query is:

((Y l1)β·l(H(m)l)r, gr1, g
r
2) = ((gα·β1)l

2

· gl·r·(β·a(m)+b(m))
1 , gr1, g

r
2, (C

l)r, t, πFlex),

where t = e(X l, Y l2) and

πFlex ←$ Π.Prove((BG, X l, Y l1 , t,{Di}5i=0), (Y l2 , 1G1
, 1G1

, 1G1
, 1G1

, 1G1
)).

Now if we set gr1 = ((gα1)xgy1)
l

and gr2 = ((gα2)xgy2)
l
, then a valid signature is

of the form:(
(g
α·β+(α·x+y)·(β·a(m)+b(m))
1)l

2

, ((gα1)xgy1)
l
, ((gα2)xgy2)

l
, ((gα1)xgy1)

l2·rC , t, πFlex

)
.

This gives

(((gα·β1)1+x·a(m)(gα1)x·b(m)(gβ1)y·a(m)g
y·b(m)
1)l

2

,

((gα1)xgy1)
l
, ((gα2)xgy2)

l
, ((gα1)xgy1)

l·rC , t, πFlex).

Note that t and πFlex can be computed as shown above. We now distinguish two
cases:

– if a(m) 6= 0, then R can simulate a valid signature via the above equation,

by setting x = −a(m)−1 and y ←$ Zq (note that in such a case the term gα·β1

vanishes),
– if a(m) = 0, then R cannot simulate a valid signature and fails.

Final steps. Eventually A outputs a valid signature under message m∗:

ˆσFW = (ˆσFW
1, ˆσFW

2, ˆσFW
3, ˆσFW

4, t, πFlex)

= ((gα·β1)(l∗)2H(m∗)r
∗·l, gr

∗

1 , gr
∗

2 , Cr
∗·l∗ , t, πFlex)

for which we hope that a(m∗) = 0, and a public key ˆpkFW for which (pkFW, ˆpkFW) ∈
R. We now argue that since, we use a perfectly sound proof system and the
proven statement must be true, we know that t = e(gβ·l1 , gα·l2) (note that there
exists no trapdoor witness and the first part of the statement must be true).

Thus, we have

ˆσFW = (gα·β·l
∗·l∗

1 (gr
∗·l∗

1)b(m
∗), gr

∗

1 , gr
∗

2 , (gr
∗·l∗

1)rC , t, πFlex),

for some unknown r∗ but known b(m∗) and gr
∗·l∗

1 (because rC is known). Thus

the reduction R can compute ˆσFW
1 · (ˆσFW

4)−b(m
∗)·r−1

C = g
α·β·(l∗)2
1 . Moreover,

since (pkFW, ˆpkFW) ∈ R. This means that ˆpkFW = (Al
∗
, Bl

∗
, . . .) = (ĝl

∗
, ĥl
∗
, . . .).

Finally, the reduction R returns (Al
∗
, Bl

∗
, ˆσFW

1 · (ˆσFW
4)−b(m

∗)·r−1
C).Again,

the success probability of the reduction R depends on whether it can answer all
signing queries of A and on the returned forgery. By the arguments presented in
[24], we conclude thatR has a non-negligible advantage in solving the sq-Flexible
Diffie-Hellman assumption if A’s advantage is non-negligible.

35

Theorem 19. Scheme 7 is class-hiding, assuming the square decisional Diffie-
Hellman assumption in G1 holds, the decisional linear assumption holds and the
used proof system is computational witness-indistinguishable.

Proof (Theorem 19). In this proof we will use the game based approach. We
start with GAME0 which is the original class-hiding experiment and let S0 be
an event that the experiment evaluates to 1, i.e. the adversary wins. We then
make small changes and show in the end that the adversary is unable to create
a forged ring signature.We will use Si to denote the event that the adversary
wins the class-hiding experiment in GAMEi.

Let σFW = (σ1
FW, σ

2
FW, σ

3
FW, σ

4
FW, t, πFlex) be the signature and pkFW

′ = (A′, B′,
C ′, X ′, Y ′1 , (D

′
0, D

′
1, D

′
2, D

′
3, D

′
4, D

′
5),u′) be the public key given to the adversary

and let l be the random coin used to randomize the original public key. More-
over, let pkFW0 and pkFW1 be the public keys that are returned KeyGen on input

of random coins ω0 and ω1 given to the adversary and b̂ be the bit chosen by
the challenger.

GAME0: The original class-hiding game.

GAME1: In this game we change the way the challenged public keys pkFW0 and
pkFW1 are generated, i.e. instead of sampling ω0, ω1 and running the algorithm
KeyGenFW, we first choose the key pair and then use invertible sampling to com-
pute ω0 and ω1.

Observe that since we use invertible sampling we have Pr[S1] = Pr[S0].

GAME2: In this game we change the way we sample A,B,C,X,D0, D1, D2, D3,
D4, D5 and the vector u, while preparing pkFW0 and pkFW1. We sample a, b, c, x, d0,
d1, d2, d3, d4, d5, ν1, . . . , νλ←$Z∗p and set A = ga1 , B = gb1, C = gc1, D0 = gd01 ,

D1 = gd11 , D2 = gd21 , D3 = gd31 , D4 = gd41 , D5 = gd51 , X = gx1 and ui = gνi1 for
i ∈ [λ].

Since in both cases the distribution of the keys does not change, it follows
that Pr[S2] = Pr[S1].

GAME3: We now make sure that (D′0, D
′
1, D

′
2, D

′
3, D

′
4, D

′
5) is a DLIN tuple for

both public keys pkFW0 and pkFW1 given to the adversary.

It is easy to see that any adversary A that distinguishes this difference can be
used by a reduction R to break the DLIN problem. Note that R can simulate the
class-hiding experiment to A, since it knows the witness (Y2, 1G1

, 1G1
, 1G1

, 1G1
).

Thus, we have |Pr[S3]−Pr[S2]| ≤ Advlinear
A (λ). Note that we can make the change

for both public keys at once.

36

GAME4: We use the witness (Y2, d1, d2, d3, d4, X
′) to compute the proof πFlex.

In other words, we show that the statement proven in πFlex is true because
(D′1, D

′
2, D

′
3, D

′
4, D

′
5) is a DLIN tuple for generator D′0 and we know a X ′, Y2

such that t = e(X ′, Y2). Note that in those computations we use values that we
stored during the generation of the public key pkFW b̂.

The proof system is computationally witness-indistinguishable and the com-
mon reference string is chosen by the signer. Thus, we have |Pr[S4]− Pr[S3]| ≤
AdvwiΠ,A(λ).

GAME5: We now change the way we compute t = e(X ′, Y ′2) = e(X l, Y l2) =

e(gx·l1 , gy·l2), which is part of the challenged signature. In this case we compute
t = e(X,Y r2) for some random r. This basically means that instead of using the
randomization factor l2, we use a fresh random value r.

We will now show that any adversary distinguishing between GAME4 and
GAME5 can be used to break the square decisional Diffie-Hellman problem.
Let (g1, g

α
1 , g

γ
1) be an instance of this problem. The reduction algorithm first

sets the public key pkFW
′, given as part of the challenge, as follows (we assume

that R used l = α as the randomization):

((gα1)a, (gα1)b, (gα1)c, (gα1)x, (gα1)y,

((gα1)d0 , (gα1)d0·d1 , (gα1)d0·d2 , (gα1)d0·d1·d3 , (gα1)d0·d2·d4 , (gα1)d0(d3+d4)),

((gα1)ν1 , . . . , (gα1)νλ))

and t = e(gγ1 , g
x·y
2). Note that we assume that the reduction algorithm also set

the original public key that is randomized:

pkFW b̂ =(ga1 , g
b
1, g

c
1, g

x
1 , g

y
1 ,

(gd01 , gd0·d11 , gd0·d21 , gd0·d1·d31 , gd0·d2·d41 , g
d0(d3+d4)
1),

(gν11 , . . . , gνλ1)).

Then it computes the signature under message m, where Mi denotes the i-th bit
of m, as

σ1
FW =(gγ1)x·y

λ∏
i=1

((gα1)νi)Mi·r σ2
FW =gr1

σ3
FW =gr2 σ4

FW =((gα1)c)r

for a random r ←$ Z∗p, t as computed above and πFlex with a valid witness
(gx·y2 , d1, d2, d3, d4, g

γ
1).

It is easy to see that if γ = α2 mod p, then this is essentially GAME4 and
if γ is a random value then this is GAME5. It follows that |Pr[S5]− Pr[S4]| ≤
AdvsddhA (λ).

37

GAME6: We now make a similar change but now instead of using t = e(Xr, Y2),
we use t = e(g1, g

r
2).

By the changes made in GAME5, this value is blinded by a common factor
r, which is never used again. It follows that this is just a conceptual change, since
there always exist values lb̂ and l1−b̂ for which r = lb̂ ·xb̂ · yb̂ and r = l1−b̂ ·x1−b̂ ·
y1−b̂, where b̂ is the bit chosen by the challenger. It follows that Pr[S6] = Pr[S5].
The signature is now independent of the values xb̂, x1−b̂ and yb̂, y1−b̂. Finally,
we note that that we can still use the witness (gr2, d1, d2, d3, d4, g1) for proof πFlex.

GAME7: We now change the way we compute the public key pkFW
′ given as

part of the challenge. Instead of computing it as:

pkFW
′ =((ga1)l, (gb1)l, (gc1)l, (gx1)l, (gy1)l,

((gd01)l, (gd0·d11)l, (gd0·d21)l, (gd0·d1·d31)l, (gd0·d2·d41)l, (g
d0·(d3+d4)
1)l),

((gν11)l, . . . , (gνλ1)l))

we compute it as

pkFW
′ =(Qa, Qb, Qc, Qx, Qy,

(Qd
′
0 , Qd

′
0·d
′
1 , Qd

′
0·d
′
2 , Qd

′
0·d
′
1·d
′
3 , Qd

′
0·d
′
2·d
′
4 , Qd

′
0·(d
′
3+d′4)),

(Qν
′
1 , . . . , Qν

′
λ)),

where Q←$ G1.

Note that this is a conceptual change, since Q = gl1 for some l. Thus,
Pr[S7] = Pr[S6].

GAME8 (series of sub-games): We now change the way we compute the public
key pkFW

′ given as part of the challenge. Instead of computing it as:

pkFW
′ =(Qa, Qb, Qc, Qx, Qy,

(Qd0 , Qd0·d1 , Qd0·d2 , Qd0·d1·d3 , Qd0·d2·d4 , Qd0·(d3+d4)),

(Qν1 , . . . , Qνλ)),we compute it as

pkFW
′ =(ga

′

1 , g
b′

1 , g
c′

1 , g
x′

1 , Q
y,

(Qd0 , Qd0·d1 , Qd0·d2 , Qd0·d1·d3 , Qd0·d2·d4 , Qd0·(d3+d4)),

(g
ν′1
1 , . . . , g

ν′λ
1))

for fresh random values a′, b′, c′, x′, ν′1, . . . , ν
′
λ ←$ Z∗p. Note that we cannot apply

this change to Qy, since y is known to the adversary. He can compute this value
for both challenged public keys pkFW0 and pkFW1 using random coins ω0 and ω1.

We will now show that any adversary A that distinguishes this difference can
be used to break the decisional Diffie-Hellman problem instance (gα1 , g

β
1 , g

γ
1). In

38

fact, we use a series of sub-games to apply this change to each element of the
public key separately and show that each sub-change is indistinguishable under
the DDH assumption. We will only show the reduction for the first change, i.e.
from Qa to ga

′

1 , since the other changes are similar.
The reduction algorithm R works as follows, it sets the public keys given to

the adversary as

pkFW0 =((gα1)a0 , gb01 , g
c0
1 , g

x0
1 , gy01 ,

(g
d0,0
1 , g

d0,0·d0,1
1 , g

d0,0·d0,2
1 , g

d0,0·d0,1·d0,3
1 , g

d0,0·d0,2·d0,4
1 , g

d0,0·(d0,3+d0,4)
1),

(g
ν0,1
1 , . . . , g

ν0,λ
1))

and

pkFW1 =((gα1)a1 , gb11 , g
c1
1 , g

x1
1 , gy11 ,

(g
d1,0
1 , g

d1,0·d1,1
1 , g

d1,0·d1,2
1 , g

d1,0·d1,1·d1,3
1 , g

d1,0·d1,2·d1,4
1 , g

d1,0·(d1,3+d1,4)
1),

(g
ν1,1
1 , . . . , g

ν1,λ
1))

We first notice that the witness set in GAME4 is still valid
Let b̂ be the bit chosen by the reduction in the class-hiding experiment.

The adversary is given the challenged public key pkFW
′, with the corresponding

signature. The reduction computes this public key as follows:

pkFW
′ =((gγ1)ab̂ , (gβ1)bb̂ , (gβ1)cb̂ , (gβ1)xb̂ , (gβ1)yb̂ ,

((gβ1)db̂,0 , (gβ1)db̂,0·db̂,1 , (gβ1)db̂,0·db̂,2 , (gβ1)db̂,0·db̂,1·db̂,3 , (gβ1)db̂,0·db̂,2·db̂,4 , (gβ1)db̂,0·(db̂,3+db̂,4)),

(gβ1)νb̂,1 , . . . , (gβ1)νb̂,λ))

We can see that if γ = α·β mod p, then the distribution of the experiment is
as in GAME7 and otherwise as in GAME8. Using a hybrid argument (counting
all sub-games) we have |Pr[S8]− Pr[S7]| ≤ (λ+ 4) · AdvddhA (λ).

GAME9: We now again change the way we compute the public key pkFW
′. In-

stead of computing it as:

pkFW
′ =(ga

′

1 , g
b′

1 , g
c′

1 , g
x′

1 , Q
y,

(Qd0 , Qd0·d1 , Qd0·d2 , Qd0·d1·d3 , Qd0·d2·d4 , Qd0·(d3+d4)),

(g
ν′1
1 , . . . , g

ν′λ
1))we compute it as

pkFW
′ =(ga

′

1 , g
b′

1 , g
c′

1 , g
x′

1 , Q
y,

(W d0 ,W d0·d1 ,W d0·d2 ,W d0·d1·d3 ,W d0·d2·d4 ,W d0·(d3+d4)),

(g
ν′1
1 , . . . , g

ν′λ
1))

for a fresh and random W ←$ G1.

39

It is easy to see that this change only lowers the adversary’s advantage by
a negligible fraction. In particular, we can use the same reasoning as above to
show that any algorithm that can distinguish this change, can be used to break
the decisional Diffie-Hellman algorithm. However, this time we must apply the
change directly to all elements. Otherwise, we would be unable to use the witness
(Y2, d1, d2, d3, d4, X

′). It follows that |Pr[S9]− Pr[S8]| ≤ AdvddhA (λ).

GAME10: We now revert the changes made in GAME5 and GAME6. Let

pkFW
′ =(ga

′

1 , g
b′

1 , g
c′

1 , g
x′

1 , ((g1)y)l,

(W d0 ,W d0·d1 ,W d0·d2 ,W d0·d1·d3 ,W d0·d2·d4 ,W d0·(d3+d4)),

(g
ν′1
1 , . . . , g

ν′λ
1))

be the public key given to the adversary as part of the challenge. Instead of
computing t = e(g1, g

r
2), we compute it again as t = e(gx

′

1 , Y2), where Y2 = gy·l2 .

Since this reverts the changes made in games 5 and 6, we have |Pr[S10] −
Pr[S9]| ≤ AdvsddhA (λ).

GAME11: We now switch the witness we use to compute the proof πFlex. In-
stead of using (Y2, d1, d2, d3, d4, X

′), we use again (Y2, 1G1
, 1G1

, 1G1
, 1G1

, 1G1
).

Because of the change made in GAME10, we know that Y2 = gy·l2 is a valid
witness for the statement proven by πFlex. Note that in this case we have X =
gx
′

1 , e(Y1, g2) = e(g1, Y2) and t = e(X,Y2). Thus, we have |Pr[S11] − Pr[S10]| ≤
AdvwiΠ,A(λ).

GAME12: We now change the way we compute the public key pkFW
′ given as

part of the challenge. Instead of computing it as:

pkFW
′ =(ga

′

1 , g
b′

1 , g
c′

1 , g
x′

1 , Q
y,

(W d0 ,W d0·d1 ,W d0·d2 ,W d0·d1·d3 ,W d0·d2·d4 ,W d0·(d3+d4)),

(g
ν′1
1 , . . . , g

ν′λ
1))we compute it as

pkFW
′ =(ga

′

1 , g
b′

1 , g
c′

1 , g
x′

1 , Q
y,

(W d0 ,W d0·d1 ,W d0·d2 ,W d0·d1·d3 ,W d0·d2·d4 ,W d0·d5),

(g
ν′1
1 , . . . , g

ν′λ
1))

for a fresh and random W ←$ G1 and d5 ←$ Z∗p.

Any adversary distinguishing a change can be used to break the DLIN as-
sumption. Note that in the previous game we changed the witness back to the
original one and we can now revert the changes made in GAME1. It follows
that |Pr[S12]− Pr[S11]| ≤ Advlinear

A (λ).

40

GAME13 (series of sub-games): Again we change the way we compute the public
key pkFW

′ given as part of the challenge. Instead of computing it as:

pkFW
′ =(ga

′

1 , g
b′

1 , g
c′

1 , g
x′

1 , Q
y,

(W d0 ,W d0·d1 ,W d0·d2 ,W d0·d1·d3 ,W d0·d2·d4 ,W d0·d5),

(g
ν′1
1 , . . . , g

ν′λ
1))we compute it as

pkFW
′ =(ga

′

1 , g
b′

1 , g
c′

1 , g
x′

1 , Q
y,

(g
d′0
1 , g

d′1
1 , g

d′2
1 , g

d′3
1 , g

d′4
1 , g

d′5
1),

(g
ν′1
1 , . . . , g

ν′λ
1))

for a fresh and random d′1, d
′
2, d
′
3, d
′
4, d
′
5 ←$ Z∗p.

Following a similar approach to GAME8 we show that any distinguishing
adversary can be used to break the decisional Diffie-Hellman (gα1 , g

β
1 , g

γ
1) assump-

tion. The key observation is that the values W and Q are independent and by set-
tingW = gβ1 , the reduction algorithm is still able to compute the proof πFlex. It is
easy to see that we can start by setting gd01 to gα1 and W d0 to gγ1 . We can then ap-
ply the same steps for the other values. We have |Pr[S13]−Pr[S12]| ≤ 5·AdvddhA (λ).

Finally, we conclude that Pr[S13] = 0. This follows from the fact that the

only value that depends on bit b̂ in the challenged public key is Qyb̂ . However,
since Q is random and also only used for this value, we can always rewrite Q as

(Q′)y
−1

b̂
·y1−b̂ . It follows that the signature itself is also independent of the bit b̂

chosen by the challenger, which ends the proof.

Taking all game changes into account, we have:

Pr[S0] ≤ 2 · (Advlinear
A (λ) + ·AdvwiΠ,A(λ) + AdvsddhA (λ)) + (λ+ 10) · AdvddhA (λ).

5.4 Discussion

In this subsection we discuss the implications of the presented results. However,
first we will instantiate the generic group signature scheme 2 and the generic
ring signature scheme 3 with our SFPK instantiations.

We begin with the group signature scheme. We notice in this case we can
use a SFPK scheme in the multi-user setting since the group manager can be
trusted to perform a proper setup of public parameters. However, based on the
security proof, the scheme must be strongly existential unforgeable. Thus, a
natural candidate is our scheme 6. To fully instantiate the construction, we also
require a SPS-EQ signature scheme. We instantiate it using the scheme presented
in [17]. This scheme only support a one-time adaptation of the signature to a
different representative (once adapted, the signature cannot be adapted further
but the original signature can still be adapted). This does not impact our use of

41

Scheme
Public Key

Size
Signature

Size
CRS Assumption

Key
Recovery

[G1] [GT] [G1] [G2] [GT] [Z∗p] [G1] [G2]

4 (λ+ 4) 1 2 1 - - - - DLIN + DDH 3

5 3 - 2 1 - - (λ+ 1) 1 co-Flex (or DLIN) + DDH 7/3†

6 3 - 2 1 - 1 (λ+ 2) 1 co-Flex + DDH + CRHF 7/3†

7 (λ+ 11) - 115 101 1 - - - sq-Flex + SDDH + DLIN 7

† The scheme can be transformed to support key recovery at an expense of a larger public key

(one additional element in G1).

Fig. 1. Comparison of Presented Instantiations

the scheme since in our application the group member performs the adaptation
only once per signing. Further, the scheme is only unforgeable under adaptive
chosen-open-message attacks, but due to Lemma 2 it can still be used.

Lemma 2. Let the public key of the SFPK scheme consist only of elements
sampled directly from G1 or computed as gx1 , where x ←$ Z∗p. Theorems 4 and
5 still hold if the SPS-EQ scheme is only existential unforgeable under adaptive
chosen-open-message attacks.

Proof (Sketch). In the proof of theorem 4, instead of excluding the case the
adversary creates a new user, we can toss a coin and chose the adversary’s
strategy (forging the SPS-EQ or SFPK signature). In case we end up choosing
the SPS-EQ, we can freely choose the SFPK public keys and issue signing oracles
to get all σiSPS. In the proof of theorem 5 we use the unforgeability of SPS-EQ to
exclude the case that the adversary issues an open query for a new user. Because
this is the first change done, we can again freely choose the SFPK public keys
and issue signing oracles to get all σiSPS. Finally, we note that in such proofs we
make a non-black-box use of the SFPK scheme.

For message space (G∗1)` the size of the SPS-EQ signature is (4 · ` + 2) ele-
ments in G1 and 4 elements in G2. The security of the SPS-EQ scheme relies on
the decisional linear assumption and the decisional Diffie-Hellman assumption
in G2, while the security of our SFPK relies on the co-Flexible Diffie-Hellman
assumption. All in all, the proposed instantiation yields a static group signature
scheme that is secure under standard assumptions and has a signature size of 20
elements in G1 (counting elements in Z∗q as G1) and 5 elements in G2. It there-
fore has shorter signatures than the current state-of-the-art scheme by Libert,
Peters and Yung [25].

At the expense of introducing stronger assumptions even shorter signatures
can be achieved by instantiating SPS-EQ with the scheme found in [18], which are
unforgeable in the generic group model and have signatures of size 2 elements in

42

Scheme
Signature size∗

[bits]
Anonymity Assumptions

Random
Oracle

Camenisch-Groth [10] 13 568 full standard

Boneh-Boyen-Shacham [7] 2 304 CPA-full q-type

Bichsel et al. [6]† 1 280 no key exposure interactive

No
Random
Oracle

Boyen-Waters [9] 18 432 CPA-full q-type

Boyen-Waters [9]‡ 6 656 CPA-full q-type

Libert-Peters-Yung [25] 9 216 full standard

Libert-Peters-Yung [25] 8 448 full standard

Ours with [18] 3 072 full interactive

Ours with [17] 7 680 full standard
? At a 256-bit (resp. 512-bit) representation of Zq,G1 (resp. G2) for Type 3 pairings and at a 3072-bit

factoring and DL modulus with 256-bit key
† The scheme defines additionally a join↔issue procedure
‡ Adapted from type 1 to type 3 pairings as in [25]

Fig. 2. Comparison of Static Group Signature Schemes

G1 and 1 element in G2. In this case we can instantiate our construction directly,
without relying on lemma 2. More details are given in Figure 2.

We now focus on instantiating our ring signatures construction. Obviously
we can use all schemes presented in section 5 and a generic perfectly sound
proof system. The resulting ring signature scheme would not be interesting as
there exist more efficient schemes with/without a trusted setup. However, we can
improve the current state-of-the-art by proposing a ring signatures scheme, which
is secure without a trusted party and has an efficient signature size which depends
sub-linear on the number of ring members. As noted recently by Malavolta and
Schröder [27] this is still an open problem.

To do so, we will use the membership proof presented by Chandran, Groth
and Sahai [11]. The authors propose a perfectly sound proof that a public key
pk ∈ G1 (or pk ∈ G2), is in a Ring of size n. The size of the proof is O(

√
n).

The same idea can be applied to arbitrary public keys (i.e. consisting of group
elements in different groups) in combination with a perfectly sound proof system
for NP languages. However, this would yield inefficient ring signatures, but still
of sub-linear size and without trust assumptions.

We achieve better results by using the proof system presented in scheme 1 and
expressing the proven statement by a set of pairing product equations. Thus, we
have to instantiate the SFPK scheme in order to support such system. The only
schemes without a trusted party assumption are scheme 4 and 7. Unfortunately,
the public key in scheme 4 contains an element in GT . Thus, we instantiate the
SFPK scheme with scheme 7. The signature size of the resulting ring signature
scheme is O(λ ·

√
n) and the public keys of signers have a size of λ+ 14 elements

43

in G1. The instantiated ring signature scheme is the first efficient scheme that is
secure under falsifiable assumptions, without a trusted party and with signature
size that does not depend linearly on the number of ring members, which solves
an open problem stated by Malavolta and Schröder.

6 Conclusion

We have presented signatures with flexible public keys, a novel primitive with
applications to the design of primitives such as group and ring signatures.

The constructions we show are modular and cleanly separate identity-hiding
and group membership certification components. Thus they allow for more effi-
cient instantiation of the whole primitive by allowing for independent tuning of
the components. As a result, the instantiations we present are among the most
efficient in terms of signature sizes ever achieved under standard assumptions.

If the equivalence relation at the base of the SFPK instance fulfils additional
properties, such as efficient key recovery, a multitude of additional stand-alone
applications arise. We have demonstrated an example of this in the implemen-
tation of cryptocurrency stealth addresses.

References

[1] Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik.
“Sanitizable Signatures”. In: ESORICS 2005. Ed. by Sabrina De Capitani
di Vimercati, Paul F. Syverson, and Dieter Gollmann. Springer, 2005.

[2] Feng Bao, Robert H. Deng, and Huafei Zhu. “Variations of Diffie-Hellman
Problem”. In: Information and Communications Security ICICS 2003. Ed.
by Sihan Qing, Dieter Gollmann, and Jianying Zhou. Springer, 2003.

[3] Paulo S. L. M. Barreto and Michael Naehrig. “Pairing-Friendly Elliptic
Curves of Prime Order”. In: SAC 2005. Ed. by Bart Preneel and Stafford
Tavares. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006.

[4] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. “Foundations
of Group Signatures: Formal Definitions, Simplified Requirements, and a
Construction Based on General Assumptions”. In: EUROCRYPT 2003.
Ed. by Eli Biham. Springer, 2003.

[5] Adam Bender, Jonathan Katz, and Ruggero Morselli. “Ring Signatures:
Stronger Definitions, and Constructions Without Random Oracles”. In:
TCC 2006. Ed. by Shai Halevi and Tal Rabin. Springer, 2006.

[6] Patrik Bichsel, Jan Camenisch, Gregory Neven, Nigel P. Smart, and Bog-
dan Warinschi. “Get Shorty via Group Signatures without Encryption”.
In: SCN 2010. Ed. by Juan A. Garay and Roberto De Prisco. Springer,
2010.

[7] Dan Boneh, Xavier Boyen, and Hovav Shacham. “Short Group Signa-
tures”. In: CRYPTO 2004. Ed. by Matthew K. Franklin. Springer, 2004.

44

[8] Dan Boneh, Emily Shen, and Brent Waters. “Strongly Unforgeable Sig-
natures Based on Computational Diffie-Hellman”. In: PKC 2006. Ed. by
Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin. Springer,
2006.

[9] Xavier Boyen and Brent Waters. “Full-Domain Subgroup Hiding and Constant-
Size Group Signatures”. In: PKC 2007. Ed. by Tatsuaki Okamoto and
Xiaoyun Wang. Springer, 2007.

[10] Jan Camenisch and Jens Groth. “Group Signatures: Better Efficiency and
New Theoretical Aspects”. In: SCN 2004. Ed. by Carlo Blundo and Stelvio
Cimato. Springer, 2004.

[11] Nishanth Chandran, Jens Groth, and Amit Sahai. “Ring Signatures of Sub-
linear Size Without Random Oracles”. In: ICALP 2007. Ed. by Lars Arge,
Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki. Springer, 2007.

[12] Sanjit Chatterjee and Alfred Menezes. “On cryptographic protocols em-
ploying asymmetric pairings - The role of Ψ revisited”. In: Discrete Applied
Mathematics 13 (2011).

[13] David Chaum and Eugène van Heyst. “Group Signatures”. In: EURO-
CRYPT ’91. Ed. by Donald W. Davies. Springer, 1991.

[14] Ivan Damg̊ard. “Towards Practical Public Key Systems Secure Against
Chosen Ciphertext attacks”. In: CRYPTO ’91. Ed. by Joan Feigenbaum.
Springer, Heidelberg, 1992.

[15] Ivan Damg̊ard and Jesper Buus Nielsen. “Improved Non-committing En-
cryption Schemes Based on a General Complexity Assumption”. In: CRYPTO
2000. Ed. by Mihir Bellare. Springer, 2000.

[16] Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider,
Dominique Schröder, and Mark Simkin. “Efficient Unlinkable Sanitizable
Signatures from Signatures with Re-randomizable Keys.” In: PKC 2016,
Part I. Ed. by Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and
Bo-Yin Yang. Springer, 2016.

[17] Georg Fuchsbauer and Romain Gay. Weakly Secure Equivalence-Class Sig-
natures from Standard Assumptions. Cryptology ePrint Archive, Report
2018/037. https://eprint.iacr.org/2018/037. 2018.

[18] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. EUF-CMA-
Secure Structure-Preserving Signatures on Equivalence Classes. Cryptol-
ogy ePrint Archive, Report 2014/944. 2014.

[19] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. “Practical Round-
Optimal Blind Signatures in the Standard Model”. In: CRYPTO 2015,
Part II. Ed. by Rosario Gennaro and Matthew Robshaw. Springer, Hei-
delberg, 2015.

[20] Essam Ghadafi, Nigel P. Smart, and Bogdan Warinschi. “Groth-Sahai
Proofs Revisited”. In: PKC 2010. Ed. by Phong Q. Nguyen and David
Pointcheval. Springer, 2010.

[21] Jens Groth, Rafail Ostrovsky, and Amit Sahai. “Non-interactive Zaps and
New Techniques for NIZK”. In: CRYPTO 2006. Ed. by Cynthia Dwork.
Springer, 2006.

45

https://eprint.iacr.org/2018/037

[22] Jens Groth and Amit Sahai. “Efficient Non-interactive Proof Systems
for Bilinear Groups”. In: EUROCRYPT 2008. Ed. by Nigel P. Smart.
Springer, 2008.

[23] Christian Hanser and Daniel Slamanig. “Structure-Preserving Signatures
on Equivalence Classes and Their Application to Anonymous Credentials”.
In: ASIACRYPT 2014. Ed. by Palash Sarkar and Tetsu Iwata. Springer,
Heidelberg, 2014.

[24] Dennis Hofheinz, Tibor Jager, and Edward Knapp. “Waters Signatures
with Optimal Security Reduction”. In: PKC 2012. Ed. by Marc Fischlin,
Johannes A. Buchmann, and Mark Manulis. Springer, 2012.

[25] Benôıt Libert, Thomas Peters, and Moti Yung. “Short Group Signatures
via Structure-Preserving Signatures: Standard Model Security from Simple
Assumptions”. In: CRYPTO 2015, Part II. Ed. by Rosario Gennaro and
Matthew Robshaw. Springer, 2015.

[26] Benôıt Libert and Damien Vergnaud. “Multi-use Unidirectional Proxy Re-
signatures”. In: Proceedings of the 15th ACM Conference on Computer and
Communications Security. Alexandria, Virginia, USA: ACM, 2008.

[27] Giulio Malavolta and Dominique Schröder. “Efficient Ring Signatures in
the Standard Model”. In: ASIACRYPT 2017, Part II. Ed. by Tsuyoshi
Takagi and Thomas Peyrin. Springer, 2017.

[28] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http:
//bitcoin.org/bitcoin.pdf.

[29] Ronald L. Rivest, Adi Shamir, and Yael Tauman. “How to Leak a Secret”.
In: ASIACRYPT 2001. Ed. by Colin Boyd. Springer, 2001.

[30] Peter Todd. Stealth Addresses. https://lists.linuxfoundation.org/
pipermail/bitcoin-dev/2014-January/004020.html.

[31] Eric R. Verheul. “Self-Blindable Credential Certificates from the Weil Pair-
ing”. In: ASIACRYPT 2001. 2001.

[32] Brent Waters. “Efficient Identity-Based Encryption Without Random Or-
acles”. In: EUROCRYPT 2005. Ed. by Ronald Cramer. Springer, Heidel-
berg, 2005.

46

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-January/004020.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-January/004020.html

KeyGenFW(λ, ω)

1 : u←$
(
ui | i ∈ [λ], ui ←$ G1

)
2 : A,B,C,D,X ←$ G1 y ←$ Z∗p
3 : t← e(X

y
, g2)

4 : return (pkFW := (A,B,C,D, t,u),

5 : skFW := (y,X, pkFW))

TKeyGenFW(λ, ω)

1 : u←$
(
g
µi
1 | i ∈ [λ], µi ←$ Zp

)
2 : a, b, c, d, x←$ Z∗p y ←

$ Z∗p
3 : t← e(g

x·y
1 , g2)

4 : return (pkFW := (g
a
1 , g

b
1, g

c
1, g

x·d
1 , t,u)

5 : skFW := (y, g
x
1 , pkFW),

6 : τ := (d, g
y
2 , g

a
2 , g

b
2, g

c
2, g

µ1
2 , . . . , g

µλ
2))

SignFW(skFW,m = (M0 . . .Mλ)bin)

1 : parse skFW = (y,X, pkFW)

2 : r ←$ Z∗p
3 : return

4 : σFW :=

(
X
y ·
(

λ∏
i=1

u
Mi
i

)r
, g
r
1 , g

r
2

)

VerifyFW(pkFW,m = (M0 . . .Mλ)bin , σFW)

1 : parse σFW = (σ
1
FW, σ

2
FW, σ

3
FW)

2 : pkFW = (A,B,C,D, t,u)

3 : return e(σ
2
W, g2) = e(g1, σ

3
W) ∧

4 : e(σ
1
FW, g2) = t · e

(
λ∏
i=1

u
Mi
i , σ

3
FW

)

ChgPKFW(pkFW, r)

1 : parse pkFW = (A,B,C,D, t,u)

2 : return pkFW
′

:= (A
r
, B

r
, C

r
, D

r
, t
r
,u
r
)

ChkRepFW(τ, pkFW, pkFW
′)

1 : parse pkFW
′

= (pk1, pk2, pk3, X, t, pk4, . . . , pkλ+3)

2 : τ = (d, Y2, τ1, . . . , τλ+2)

3 : return e(X
d−1

, Y2) = t ∧

4 :

λ+3∧
i=1

λ+3∧
j=1

e(pki, τj) = e(pkj , τi)

Recover(sk, τ, pk′)

1 : parse sk = (y, g
x
1 , pk)

2 : τ = (d, g
y
2 , g

a
2 , g

b
2, g

c
2, g

µ1
2 , . . . g

µλ
2)

3 : pk′ = (A
r
, B

r
, C

r
, D

r
, t
r
,u
r
)

4 : X
′ ← (D

r
)
1/d

5 : return sk′ := (y,X
′
, pk′)

ChgSKFW(skFW, r)

1 : parse skFW = (y,X, pkFW)

2 : pkFW
′ ← ChgPKFW(pkFW, r)

3 : return skFW
′

:= (y, (X
r
), pkFW

′
)

Scheme 4: Warm-up Scheme for Waters Signatures

47

CRSGen(λ, ω)

1 : BG←$ BGGen(λ)

2 : u←$
(
ui | i ∈ [λ], ui ←$ G1

)
3 : y ←$ Z∗p;Y1 ← g

y
1 ;Y2 ← g

y
2

4 : return ρ := (BG, Y1, Y2,u)

KeyGenFW(λ, ω)

1 : A,B ←$ G1; x←$ Z∗p
2 : return (pkFW := (A,B, g

x
1)

3 : skFW := (Y
x
1 , pkFW))

TKeyGenFW(λ, ω)

1 : a, b, x←$ Z∗p
2 : return (pkFW := (g

a
1 , g

b
1, g

x
1),

3 : skFW := (Y
x
1 , pkFW),

4 : τ := (g
a
2 , g

b
2, g

x
2))

SignFW(skFW,m = (M0 . . .Mλ)bin)

1 : parse skFW = (Z, pkFW)

2 : r ←$ Z∗p
3 : return

4 : σFW := (Z · (
λ∏
i=1

u
Mi
i)

r
, g
r
1 , g

r
2)

VerifyFW(pkFW,m = (M0 . . .Mλ)bin , σFW)

1 : parse pkFW = (A,B,X)

2 : σFW = (σ
1
FW, σ

2
FW, σ

3
FW)

3 : return e(σ
2
W, ĝ2) = e(ĝ1, σ

3
W) ∧

4 : e(σ
1
FW, ĝ2) = e(X,Y2) · e(

λ∏
i=1

u
Mi
i , σ

3
FW)

ChgSKFW(skFW, r)

1 : parse skFW = (Z, pkFW)

2 : pkFW
′ ← ChgPKFW(pkFW, r)

3 : return

4 : skFW
′

:= ((Z)
r
, pkFW

′
)

ChgPKFW(pkFW, r)

1 : parse pkFW = (A,B,X)

2 : return pkFW
′

:= (A
r
, B

r
, X

r
)

ChkRepFW(τ, pkFW
′)

1 : parse τ = (τ1, τ2, τ3)

2 : pkFW
′

= (pk1, pk2, pk3)

3 : return

4 :
∧
i∈[3]

∧
j∈[3]

e(pki, τj) = e(pkj , τi)

Scheme 5: Multi-user Flexible Public Key

SignFW(skFW,m)

1 : parse skFW = (Z, pkFW)

2 : r ←$ Z∗p; s←$ Z∗p
3 : v ← H(m, g

r
1 , g

r
2 , pkFW) ∈ Z∗p

4 : (M0 . . .Mλ)bin ← g
v
1h
s

5 : return σFW := (Z · (
λ∏
i=1

u
Mi
i)

r
, g
r
1 , g

r
2 , s)

VerifyFW(pkFW,m, σFW)

1 : parse pkFW = (A,B,X)

2 : σFW = (σ
1
FW, σ

2
FW, σ

3
FW, s)

3 : v ← H(m, g
r
1 , g

r
2 , pkFW)

4 : (M0 . . .Mλ)bin ← g
v
1h
s

5 : return e(σ
2
W, ĝ2) = e(ĝ1, σ

3
W) ∧

6 : e(σ
1
FW, ĝ2) = e(X,Y2) · e(

λ∏
i=1

u
Mi
i , σ

3
FW)

Scheme 6: Strong Existential Unforgeable Variant of Scheme 5

48

KeyGenFW(λ, ω)

1 : BG←$ BGGen(λ)

2 : u←$
(
ui | i ∈ [λ], ui ←$ G1

)
3 : A,B,C,X,{Di}5i=0 ←

$ G1, y ←$ Z∗p
4 : return (pkFW := (A,B,C,X, g

y
1 ,{Di}

5
i=0 ,u),

5 : skFW := (X
y
, g
y
2 , pkFW))

TKeyGenFW(λ, ω)

1 : BG←$ BGGen(λ)

2 : u1,u2 ←$
(
g
µi
1 , g

µi
2 | i ∈ [λ], µi ←$ Zp

)
3 : a, b, c, x,{di}5i=0 , y ←

$ Z∗p

4 : return (pkFW := (g
a
1 , g

b
1, g

c
1, g

x
1 , g

y
1 ,
{
g
di
1

}5

i=0
,u1),

5 : skFW := (g
x·y
1 , g

y
2 , pkFW),

6 : τ := (g
a
2 , g

b
2, g

c
2, g

x
2 , g

y
2 ,
{
g
di
2

}5

i=0
,u2))

SignFW(skFW,m = (M0 . . .Mλ)bin)

1 : parse skFW = (Z, Y2, pkFW)

2 : pkFW = (A,B,C,X, Y1,{Di}5i=0 ,u)

3 : r ←$ Z∗p; t← e(X,Y2)

4 : πFlex ←$
Π.Prove((BG, X, Y1, t,{Di}5i=0),

5 : (Y2, 1G1
, 1G1

, 1G1
, 1G1

, 1G1
))

6 : return σFW := (Z · (
λ∏
i=1

u
Mi
i)

r
, g
r
1 , g

r
2 , C

r
, t, πFlex)

VerifyFW(pkFW,m = (M0 . . .Mλ)bin , σFW)

1 : parse pkFW = (A,B,C,X, g
y
1 ,{Di}

5
i=0 ,u)

2 : σFW = (σ
1
FW, σ

2
FW, σ

3
FW, σ

4
FW, t, πFlex)

3 : return

4 : Π.Verify((BG, X, Y1, t,{Di}5i=0), πFlex) = 1 ∧

5 : e(σ
2
W, g2) = e(g1, σ

3
W) ∧ e(C, σ

3
FW) = e(σ

4
FW, g2) ∧

6 : e(σ
1
FW, g2) = t · e(

λ∏
i=1

u
Mi
i , σ

3
FW)

ChgSKFW(skFW, r)

1 : parse skFW = (X
y
, pkFW)

2 : pkFW
′ ← ChgPKFW(pkFW, r)

3 : return skFW
′

:= ((X
y
)
r2
, (g

y
2)
r
, pkFW

′
)

ChkRepFW(τ, pkFW)

1 : parse τ = (τ1, . . . , τλ+11)

2 : pkFW = (pk1, . . . , pkλ+11)

3 : return

λ+11∧
i=1

λ+11∧
j=1

e(pki, τj) = e(pkj , τi)

ChgPKFW(pkFW, r)

1 : parse pkFW = (A,B,C,X, Y1,{Di}5i=0),u)

2 : return pkFW
′

:= (A
r
, B

r
, C

r
, X

r
, Y

r
,
{
D
r
i

}5

i=0
),u

r
)

Scheme 7: Flexible Public Key Scheme with Public Key in G1

49

A Group Signature Definitions

Let us recall the popular BMW model for static group signatures [4].

Definition 20 (Group Signatures). A group signature scheme GS = (KeyGenGS,
SignGS,VerifyGS,OpenGS) consists of the following polynomial-time algorithms:

KeyGenGS(1λ, n): on input a security parameter 1λ and the group size n ∈ N
this randomized algorithm returns a tuple (gpk, gmsk, gsk), where gpk is the
group public key, gmsk is the group manager’s secret key and gsk is a vector
of size n (with gsk[i] being a secret key of the i-th group member).

SignGS(gski,m): on input the secret key of i-th group member gski and a message
m ∈ M this randomized algorithm returns a signature σGS on message m
under gski.

VerifyGS(gpk,m, σGS): on input the group public key gpk, a message m and a
signature σGS this algorithm returns either 1 or 0.

OpenGS(gmsk,m, σGS): on input the group manager’s secret key gmsk, message
m and a signature σGS on m this algorithm returns an identity i or the
symbol ⊥ in case of failure.

For simplicity group members are assigned consecutive integer identities from
the set [n].

We say that a group signature scheme is correct if: for all λ, n ∈ N, all
(gpk, gmsk, gsk) ∈ [KeyGenGS(1λ, n)], all i ∈ [n], all m ∈ M and all σGS ∈
[SignGS(gsk[i],m)]

VerifyGS(gpk,m, σGS) = 1 and OpenGS(gmsk,m, σGS) = i.

Compactness. We say that a group signature scheme is compact if there exist
polynomials p1(·, ·) and p2(·, ·, ·) such that

|gpk|, |gmsk|, |gski| ≤ p1(λ, log n) ∧ |σGS| ≤ p2(λ, log n, |m|)

for all λ, n ∈ N, all (gpk, gmsk, gsk) ∈ [KeyGenGS(λ, n)], all i ∈ [n], all m ∈ M
and all σGS ∈ [SignGS(gsk[i],m)].

Full-Anonymity. Informally, anonymity means that it should be hard for an
adversary to recover the identity of the signer from a signature without the
knowledge of the group manager’s secret key. To properly model collusion with
group members the adversary is given the secret keys of all group members.
Moreover, the adversary can use an opening oracle OpenGS(gmsk, ·, ·), which
models the possibility of the adversary seeing previous openings.

Definition 21. For group signature scheme GS and adversary A we define the
following experiment:

50

ExpanonGS,A−b(λ, n)

(gpk, gmsk, gsk)←$ KeyGenGS(1λ, n); Q := ∅

(st, i0, i1,m
∗)←$ AO(gmsk,·,·)(gpk, gsk)

σ∗GS ←$ SignGS(gsk[ib],m
∗)

b̂←$ AO(gmsk,·,·)(st, σGS)

if (m∗, σ∗GS) ∈ Q return 0

else return b̂ = b

O(gmsk,m, σGS)

Q := Q ∪ (m,σGS)

return OpenGS(gmsk,m, σGS)

We say that a group signature scheme GS = (KeyGenGS,SignGS,VerifyGS,OpenGS)
is fully-anonymous if for any efficient PPT algorithm A, the advantage of ad-
versary A in breaking the full-anonymity of GS, Advanon

GS,A(·, ·) is negligible

AdvanonGS,A(λ)(λ, n) = |Pr[ExpanonGS,A−1(λ, n) = 1]− Pr[ExpanonGS,A−0(λ, n) = 1]|

Full-Traceability. The next required property is called full-traceability. In case of
misuse, we would like the group manager to always be able to identity the signer.
In particular, this means that is should not be possible to create a signature that
cannot be opened. Moreover, a colluding set S of group members should not be
able to frame an honest member, i.e. create a signature that opens to a member
that is not in S.

Definition 22. For group signature scheme GS and adversary A we define the
following experiment:

ExptraceGS,A(λ, n)

(gpk, gmsk, gsk)←$ KeyGenGS(1λ, n)

st := (gmsk, gpk);Q = ∅
C = ∅;K = ε;Cont = true

while (Cont == true) do

(Cont, st, j)←$ AO(gsk[·],·)(st,K)

if Cont == true then C = C ∪ {j}
K = gsk[j]

(m∗, σ∗GS)←$ AO(gsk[·],·)(guess, st)

if VerifyGS(gpk,m∗, σ∗GS) = 0 then return 0

if OpenGS(gmsk,m∗, σ∗GS) = ⊥ then return 1

if ∃i ∈ [n]. OpenGS(gmsk,m∗, σ∗GS) = i ∧ i 6∈ C ∧ (i,m) 6∈ Q
then return 1 else return 0

O(gsk[i],m)

Q := Q ∪ (i,m)

return SignGS(gsk[i],m)

We say that a group signature scheme GS = (KeyGenGS,SignGS,VerifyGS,OpenGS)
is fully-traceable if for any PPT algorithm A, the advantage of A in breaking
the full-traceability of GS, Advtrace

GS,A(·, ·) is negligible:

AdvtraceGS,A(λ)(λ, n) = Pr[ExptraceGS,A(λ, n) = 1].

51

B Ring Signature Definitions

In applications such as cryptocurrencies or electronic voting it is desirable for
privacy reasons, that the identity of the signer of a given message is hidden from
the party interested in a valid signature. In these cases it is often enough to
establish that the signer is part of a certain group of eligible signers. To this end,
a ring signature scheme allows a signer to specify a set of additional potential
signers and create signatures which do not reveal which signing key among this
group was used to create the signature. Note, that this does not allow a signer
to sign for another party, since the signature still has to be created using the
signers own signing key. The intriguing property of ring signature schemes is
merely that to a verifier, this information is obscured even though the signer
only has access to her own signing key and just the public verification keys of
the other parties in the chosen group.

Formally, we define the following scheme:

Definition 23 (Ring Signatures). A ring signature scheme is a tuple of PPT
algorithms (RCRSGen,RKeyGen,RSign,RVerify) such that:

RCRSGen(1λ): takes as input the security parameter λ and outputs a common
reference string ρ,

RKeyGen(ρ, 1λ): takes as input the common reference string ρ and outputs a pair
(SK,PK) of secret and public keys,

RSign(ρ,m, sk
(s)
RS , Ring): takes as input a message m ∈ {0, 1}∗, a signing key

sk
(s)
RS and an ordered set (a ring) of public keys Ring =

(
pk

(1)
RS , . . . , pk

(n)
RS

)
with pk

(s)
RS ∈ Ring, and outputs a signature Σ,

RVerify(ρ,m,Σ, Ring): takes as input a message m, signature Σ, and a ring of
public keys Ring and outputs either accept(1) or reject(0).

A ring signature scheme is correct if for all λ ∈ N, n = poly(λ), all com-

mon reference strings ρ ←$ RCRSGen(λ), any
{

(sk
(i)
RS, pk

(i)
RS)
}n
i=1

generated with

RKeyGen(ρ, 1λ), any s ∈ {1, . . . , n} and any message m, we have RVerify(ρ,m,

RSign(ρ,m, sk
(s)
RS , Ring), Ring) = accept, where Ring =

(
pk

(1)
RS , . . . , pk

(n)
RS

)
.

In case the scheme does not require a common reference string, we omit the
first argument ρ to RKeyGen,RSign and RVerify.

Ring signatures should be unforgeable with respect to the specific message that
was signed and the ring of public keys that it was signed to, i.e. besides being
unable to forge signatures on new messages, an adversary should also be unable
to create a new signature for a known message but with a modified ring.

Definition 24 (Unforgeability w.r.t. insider corruption). For ring signa-
ture scheme RS and adversary A we define the following experiment:

52

UnforgeabilityARS(λ)

ρ←$ RCRSGen(λ);Q := ∅, C := ∅
for i = 1 . . . l = poly(λ) do

(sk
(i)
RS , pk

(i)
RS)←$ RKeyGen(ρ, 1λ)

(m∗, Σ∗, Ring∗)←$ ASign,Corrupt

(
S :=

{
pk

(i)
RS

}l
i=1

)
return RVerify(ρ,m∗, Σ∗, Ring∗) = 1 ∧

(m∗, Ring∗) 6∈ Q ∧
Ring

∗ ⊆ S \ C

Sign(m, s, Ring)

Q := Q ∪{(m, Ring)}
if PKs ∈ Ring then

Σ ←$ RSign(ρ,m, sk
(s)
RS , Ring)

return Σ

else return ⊥

Corrupt(i)

C := C ∪
{
pk

(i)
RS

}
return sk

(i)
RS

A signature scheme RS is unforgeable with respect to insider corruption if
for all PPT adversaries A, their advantage in the above experiment is negligible:

AdvunforgeabilityA,RS (λ) = Pr
[
UnforgeabilityARS(λ) = 1

]
= negl(λ) .

A ring signature scheme should also be anonymous, i.e. it should be infeasi-
ble for an attacker, given a signature, to establish which ring member actually
created this signature. In its strongest form, this property should hold true, even
if the adversary has access to all key material (including the secret keys) of the
members of the ring.

Definition 25 (Anonymity against full key exposure). For ring signature
scheme RS and adversary A = (A0,A1) we define the following experiment:

AnonymityARS(λ)

ρ←$ RCRSGen(λ)

for i = 1 . . . l := poly(λ) do

(sk
(i)
RS , pk

(i)
RS)←$ RKeyGen(ρ, 1λ;ωi)

(st,m, i0, i1, Ring)←$ ASign
0

(
{ωi}li=1

)
if pk

(i0)
RS 6∈ Ring or pk

(i1)
RS 6∈ Ring then

Σ := ⊥
else b←$ {0, 1};

Σ ←$ RSign(ρ,m, sk
(ib)
RS , Ring)

b′ ←$ ASign
1 (st, Σ)

return b = b′

A signature scheme RS provides anonymity against full key exposure if for
all PPT adversaries A, their advantage in the above experiment is negligible:

Advanonymity
A,RS (λ) =

∣∣∣∣Pr
[
AnonymityARS(λ) = 1

]
− 1

2

∣∣∣∣ = negl(λ) .

53

	Signatures with Flexible Public Key: A Unified Approach to Privacy-Preserving Signatures(Full Version)

