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Abstract. There have been recent advances in solving the finite ex-
tension field discrete logarithm problem as it arises in the context of
pairing-friendly elliptic curves. This has lead to the abandonment of ap-
proaches based on super-singular curves of small characteristic, and to
the reconsideration of the field sizes required for implementation based
on non-supersingular curves of large characteristic. This has resulted in a
revision of recommendations for suitable curves, particularly at a higher
level of security. Indeed for AES-256 levels of security the BLS48 curves
have been suggested, and demonstrated to be superior to other candi-
dates. These curves have an embedding degree of 48. The well known
taxonomy of Freeman, Scott and Teske only considered curves with em-
bedding degrees up to 50. Given some uncertainty around the constants
that apply to the best discrete logarithm algorithm, it would seem to be
prudent to push a little beyond 50. In this note we announce the discov-
ery of a new family of pairing friendly elliptic curves with an embedding
degree of 54.

1 Introduction

One of great break-throughs in pairing-based cryptography was the discovery
of the BN curves [3]. A group size of 256-bits (to match the AES-128 bit level
of security) can be supported by an elliptic curves over a field also of 256-bits,
and since the embedding degree is 12, the size of the discrete logarithm (DL)
problem over the extension field is 3072 bits. Which was a serendipitous direct
hit on the size of DL problem believed to correspond to AES-128. The fit was
perfect.

Recall that protocols based on bilinear pairings typically consist of operations
on 3 groups, denoted as G1, G2 and G, and the calculation of the pairing itself,
usually denoted as w = e(P, Q)), where the pairing takes two elliptic curve point
parameters P € G and @ € G5 respectively, and evaluates to an element in the
finite extension field w € Gy. Here Gy is contained in the elliptic curve E(F,),
Gy is contained in E'(F /), and Gr is contained in the finite extension field
F,x, where k is the embedding degree associated with the pairing-friendly curve,
and d is a divisor of k corresponding to a supported twisted curve E’. Note that
Go points can be manipulated on the smaller twisted curve, and transformed to
a point on E(F,«) only when needed.



The pairing calculation consists of two parts, a Miller loop followed by a final
exponentiation. In real-world protocols much of the action takes place in the
smallest group Gq, although implementors have tended to concentrate more on
the pairing itself. In more complex protocols products of pairings are required,
and here a single final exponentiation can be applied to an amalgamation of
Miller loops [11].

A BN curve is an example of a parameterised pairing-friendly curve, that is
fixed polynomial formulae exist for the prime modulus p and the group order
r in terms of an integer parameter u, which is chosen such that both p and
r are prime. Such parameterised curves have become very popular for many
reasons. First the ratio between the group and field size can be as low as one,
and secondly multiple optimizations become possible. The most significant of
these would be the development of the optimal Ate pairing [13], for which the
number of iterations of the Miller loop is reduced from the number of bits in
r (as required for the original Tate pairing) to the number of bits in u. Rather
paradoxically this implies that the number of iterations required in the Miller
loop actually tends to decrease as the security level increases. Also a simpler
form of final exponentiation applies [12].

However almost immediately after BN curves were introduced, Schirokauer
[10] in a paper introducing the Number Field Sieve (NFS), warned us that:
“Without discussing the evident difficulty of implementing the NF'S for degree 12
fields, we observe that the special form of p may reduce the difficulty of comput-
ing logarithms in Fp12”. In the absence of any concrete evidence to support this
concern, the BN curve was nonetheless widely adopted. However Schirokauer’s
warning has proven to be prescient and the field of pairing-based cryptography
has been disrupted by the recent, but not entirely surprising, discovery of a faster
algorithm for solving the discrete logarithm problem in the finite extension field
that arises when using these types of pairings. See [1], [6].

A pairing-friendly curve can be characterised by the defining triplet {p, k, d},
where p is the ratio between the number of bits in p and the number of bits in
r. Given a group size of g bits, the field size of G1 is f1 = pg, the extension field
size of Gp is fr = pkg, and the field size of G2 is fo = fr/d, where d is from
the set of possible twists {1, 2,3, 4,6}, and is usually the maximum from this set
that divides k.

When choosing a suitable curve, the starting point is the security level in
AES-equivalent bits, typically 128, 192 or 256. The group size should ideally be
exactly twice this, and the other field sizes are then immediately fixed as shown
above by the defining triplet.

For example for AES-128 security for the BN curve, the defining triplet is
1,12,6, and given g = 256, then f; = 256, fr = 3072, and fo = 512. For a
BLS12 curve (by which we mean a BLS curve with embedding degree of 12, see
below), the triplet is 3/2,12,6, and given g = 256, then f; = 384, fr = 4608,
and fo = 768.

The main problem is to satisfy the security requirement for G, so that it
matches that for G;. See Table 1. Note that these numbers are rather imprecise



as exact analysis is difficult. We have mainly followed the analysis of Barbulescu
and Duquesne [1], extrapolating in places, rather than the less conservation
estimates of Menezes, Sarkar and Singh [8]. However the estimates they provide
depend on certain constants, in which one can have diminishing confidence as
the security level increases.

DL Algorithm | AES-128| AES-192| AES-256
NFS 3072 7680 15360
exTNFS 3618 9241 18480
SexTNFS 5004 12871 27410

Table 1. Recommended extension field sizes

Basically, according to current knowledge, the NFS estimates now apply only
to prime order fields of prime extension. The extNFS estimates apply to com-
posite order extensions, and the SexNF'S estimates to parameterised prime, com-
posite order extensions, like the BN curves. It is now clear that BN curves are
not quite as perfect as originally thought. As Barbulescu and Duquense put it:
“Variants of NFS where p is parametrized are considered to be the dream sit-
uation for an attacker”, although they do go on to offer some reassurance that
they do not expect any further improvements in the SexTNFS algorithm.

We should say a word about Gs. Since this is of a size an integer multiple of
G1, we can be confident that if G is secure then so is G5. However in the optimal
Ate pairing [13], each iteration of the Miller loop typically involves at least a
point doubling in Gs. Therefore we would like G2 to be as small as possible, and
therefore the twist d to be as large as possible. The maximum possible on an
elliptic curve is d = 6, and therefore we would like to attain this if possible. A
necessary condition for this to be possible is that 6|k. Note however that as the
embedding degree k increases, so must Go. Ideally we do not want G, growing
too large, as elliptic curve cryptography over large extension fields will be very
slow (and probably best implemented using affine coordinates).

From an implementation point of view the ideal solution is one that keeps f;
as small as possible, while meeting all of the security constraints. This assumes
that the value of p is small, that the embedding degree is such that we serendip-
itously hit the appropriate target in Table 1, and that a sextic twist applies and
so the embedding degree is a multiple of 6.

An alternative response might be to revert to the Cocks-Pinch construction
[9], avoiding parameterized curves, while continuing to use composite order ex-
tensions. It is not difficult to generate such curves for £ = 0 mod 6 such that
sextic twists can be supported, although only for p > 2. The idea would be
to revert to the original Tate pairing and accept the lower ext TNFS estimates.
However this is unlikely to prove competitive in practise.



2 BLS and KSS curves

BLS curves are the original small discriminant parameterised family of families
of pairing-friendly elliptic curves [2]. For any positive embedding degree k =
0 mod 6 (except if 18|k), they provide a simple formulae from which can be
derived pairing friendly curves which support the maximal twist of d = 6, and
have a relatively small p value given by p = (2+k/3)/p(k) [4]. Observe that the
value of p decreases with increasing values of k. Having a range of embedding
degrees to choose from makes it easier to hit the optimal values for any security
level.

For example Barbulescu and Duquesne [1] have demonstrated that the BLS12
curve is a good fit for the AES-128 level of security, and the BL.S24 curve is the
best choice for AES-192. In another recent paper Kiyomura et al. [7], reacting
to the new understanding, demonstrated that a BLS48 curve is also the best
choice of pairing-friendly curve to meet the new estimates for the 256-bit level
of security. In this case the security requirement could be met with a group size
of 512-bits, a modulus of 576 bits (as p = 9/8), and a finite field extension size
of 48.576 = 27648.

However the BLS curves do not exist for 18|k, as in these cases the polyno-
mial formula for p is not irreducible, and therefore cannot generate primes [4].
Serendipitously for the cases of k = 18 and k = 36 there do exist the alternative
KSS curves [5], which, as luck would have it, provide curves with the same p
values as determined by the above formula for the missing BLS curves. How-
ever since the taxonomy of Freeman, Scott and Teske does not explore beyond
k = 50, the situation for k = 54 is currently unknown. But if a BLS curve did
exist for k = 54, then from the formula given above, it would have a p value of
10/9.

3 The Method

We used the KSS method as described in [5]. However the new curve found with
embedding degree 54 is not of the form of a typical KSS curve, where integer
solutions exist only in a restricted set of residue classes. Recall that the KSS
method also rediscovers the BN curves [3]. It would appear possible that the
new family of curves is, like the BN curves, a “sporadic”’, and not related to any
existing family. On the other hand it has a certain symmetry, which is suggestive
that it might be a member of an as-yet undiscovered family of families.

4 The new curve family

We find —(54 — (2 as a suitable element € Q((s4), and following the KSS method
[5] from there we obtain the solution
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(1)

where p is the prime modulus, 7 is the prime order of the pairing-friendly
group, t is the trace of the Frobenius, and c is a cofactor. It can be verified that
the Complex Multiplication (CM) discriminant is D = 3 because 4p — t2 = 3f2,
for some polynomial f. This implies that the curve has twists of degree 6 which,
as with the BN and BLS curves, facilitates an important optimization. Observe
that the prime p can be any of 1, 3, 5 or 7 mod 8 depending on the choice of u.
The total number of points on the curve will be #FE = cr.

Recall that the embedding degree is the smallest value of k such that
r|(p¥ — 1) [9]. In this case it is easily confirmed that k = 54. The value of
p = deg(p)/ deg(r) = 10/9, which is close to the ideal value of 1.

5 An example construction

An actual curve can be generated using the seed value u = C404042,4, which
has a low Hamming weight of 6. Then the curve

y? =234+ 12

is a pairing-friendly elliptic curve with a group order r of 512-bits, and a
modulus p of 569-bits. Given the embedding degree of 54, the finite extension
field is of size 30726 bits, comfortably above the size recommended for an overall
security equivalent to AES-256. The embedding degree k = 54 is obviously of
the desireable form k = 2137, which simplifies implementation [7].

6 Conclusion

We present a new family of pairing friendly curves with an embedding degree
of k = 54, which fills a gap that might be useful in the event of a deeper
understanding emerging of the true difficulty of the discrete logarithm problem
as it applies to high-security pairing-based cryptography. We also strived to find
a solution for the next “missing” case of k = 72, but failed despite an extensive
computer search. In the Appendix we provide our SAGE script for finding such
curves
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SAGE script for finding KSS curves

#
# Sage Code to search for twist friendly KSS curves
# M. Scott February 2018

#
# set K value here, MUST be a multiple of 4 or 6

K=54
nb=eculer_phi (K)

# Set search parameters. We will be searching through polynomials of degree nb
# ... with nz non—zero coefficients of absolute size less than or equal to lim

nz=2 # must be > 1
lim=1 # must be positive

# Observe search progress
progress=True

# some successful searches
# K=8, nz=2, lim=1
# K=12, nz=3, lim=1
# K=16, nz=2, lim=2
# K=18, nz=2, lim=2
# K=32, nz=2, lim=3
# K=36, nz=2, lim=2
# K=40, nz=2, lim=2
# K=54, nz=2, lim=1

def iged(x,y)
# integer GCD, returns GCD of x and y
if y==0 :
return x
while True
r=x%y
if r==0
break
=y
y=r
return y

def mylem(a,b) :
return (axb)/gcd(a,b)

def flat (p)

lem=1
c=p.coefficients ()
#print c

#print p.degree()

for i in range(len(c))
d=c[i].denom()
lcm=mylcm (lcm ,d)

return lcm

def content(p)

con=1

c=p.coefficients ()

con=c [0][0]

#print c

for i in range(1l,len(c))
d=c[i][0]
con=gcd (con ,d)

return Integer (con)



def common(p,d) :
c=p.coefficients ()
#print c

for i in range(len(c)) :
de=pow(d,c[i][1])
if Integer(c[i][0])%de!=0
return False

return True

def iter_bits(x,n)
gotone=False
for i in range(0,n—1) :
if x[i]==1 and x[i+1]==0
gotone=True

x[i+l]:1
x[i]=0
if x[0]==1
break
k=1
while True :
if x[k] !'= 0
break
k=k+1
for j in range(0,i—k)
x[j]=x[]j+k]
x[j+k]=0
break
return gotone
def iter_nums (v ,m,lim)
for k in range (0,m)
if vik]==-1 :
v[k]=1
break
if v[k]<lim :
v[k]=v[k]+1
break
v[k]=—1lim
for k in range(0,m) :
if v[k]!=1lim
return True
return False
u=[]
a=|]
s =[]
v=[]
rhobestn=3
rhobestd=2
D=0
if K% = 0
D=1
if K% == 0
D=3
if D==0
sys.exit (0) # only looking for twist—friendly curves

C.<z> = CyclotomicField (K)

for i in range(0,nb)
q.append (0)
u.append (0)

for i in range(0,nz)
s.append (0)
v.append (0)



more_bits=True

k=0
while True
if k==
for j in range(nz)
alj]=1
else
more_bits=iter_bits (u,nb)
j=0
for i in range(nb) :
if uli]!=0 :
s[j]=i
j=i+1
more_nums=True
n=0
while True
if n==0
for j in range(nz)
v[j]l=—1lim
else:

more_nums=iter_nums (v,nz,lim)

for j in range(nb)
alj]=0

for j in range(nz) :
als[jll=vli]

if s[0]!=1 : # 77
n=n-+1
if not more_nums
break

continue

# all above here manages the search loop

pb=0 # create next polyomial in QQ
for j in range(nb)
pb=pb+q[j]*z"j

if progress
print q # q or pb

r=pb.minpoly ()

M. <w> = NumberField(r)
rz=M.roots_of_unity ()
nrz=len (rz)

# get CM discriminant D as a polynomial

sd=0
if K% =— 0 :
if nrz < K/4:
n=n-+1
if not more_nums
break
continue;
sd=rz [K/4—1]
if K% =— 0 :
if nrz < K/3:
n=n-+1
if not more_nums
break
continue;
sd=(2+rz [K/3—-1]4+1)/3

for i in range(nrz)



# search though K—th roots of unity

if iged(i+1,K) !=1
continue;

pru=rz[i]

ft=pru+1

fy=sd*(pru—1)

t=ft .polynomial ()

y=fy .polynomial ()
p=(t*t+Dxyxy)/4

rhon=p. degree ()
rhod=r.degree ()
ig=igcd (rhon,rhod)
rhon/=ig

rhod/=ig

if rhon<rhod
continue

if rhobestdsrhon>rhobestnx*rhod
continue # rho is not interesting

if not p.is_irreducible ()
continue

# solution looks interesting ...
# convert polynomials over QQ to ZZ (with one common integer divisor m)

plem=flat (p)
tlem=flat (t)

m=mylem (plem , tlem)

p:p*m
t=t*m

b=0
tries1=0
tries2=0
fail=False;

while True

# try to find any residue class that works

triesl=triesl+1

if triesl >200000 : # give up..
fail=True
break

if p(b)%m != 0
b=b-+1

continue
if t(b)%m !=0
b=b-+1

continue

triesl1=0
sp=p (x=mxx+b ). expand () /m

# try 100 times to find p that doesn’t have an integer factor

if content(sp)!=1 :
tries2=tries2+1
if tries2 >100
fail=True
break
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b=b+1
continue
tries2=0
if not sp.polynomial(ZZ).is_irreducible ()
b=b+1
continue

if fail
break
st=t (x=m*x+b ). expand ()/m

sr=r (x=m*x+b ). expand ()
c=content (sr)

sr=sr/c

if not sr.polynomial(ZZ).is_irreducible ()
b=b+1
continue;

break

if fail
continue

# try simplifying formulae

for j in range(2,23)
while common(sp,Integer(j)) and common(st,Integer(j))
and common(sr,Integer(j))
sp=sp (x=x/] ) . expand ()
st=st (x=x/j).expand ()
sr=sr (x=x/j).expand ()

ct=gcd (content (t) ,m)
mt=m/ ct
t=t/ct

sp=sp.polynomial (ZZ)
st=st.polynomial (ZZ)
sr=sr.polynomial (ZZ)

np=sp-+1l—st
if np%sr == 0
cf=np/sr
print ” Solution found, rho= ”,rhon,”/” ,rhod

”»

print "p= (7,p,”)/” ,m
print "t= (”,t,”)/” ,mt

; o M
print r= , T

print ”For sample residue class 7 ,m,”*xx +”.,b
print ”p= " ,sp
print 7t= 7 st
; » »
print r= ST
H ” —_ 7’7
print 7c= ", cf
print

rhobestn=rhon
rhobestd=rhod

# all below here manages the search loop

if not more_nums
break
n=n-+1
if not more_bits
break
k=k+1
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