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Abstract. Forward secrecy is considered an essential design goal of modern key
establishment (KE) protocols, such as TLS 1.3, for example. Furthermore, ef-
ficiency considerations such as zero round-trip time (0-RTT), where a client is
able to send cryptographically protected payload data along with the very first
KE message, are motivated by the practical demand for secure low-latency com-
munication.
For a long time, it was unclear whether protocols that simultaneously achieve
0-RTT and full forward secrecy exist. Only recently, the first forward-secret 0-
RTT protocol was described by Günther et al. (EUROCRYPT 2017). It is based
on Puncturable Encryption. Forward secrecy is achieved by “puncturing” the se-
cret key after each decryption operation, such that a given ciphertext can only
be decrypted once (cf. also Green and Miers, S&P 2015). Unfortunately, their
scheme is completely impractical, since one puncturing operation takes between
30 seconds and several minutes for reasonable security and deployment parame-
ters, such that this solution is only a first feasibility result, but not efficient enough
to be deployed in practice.
In this paper, we introduce a new primitive that we term Bloom Filter Encryption
(BFE), which is derived from the probabilistic Bloom filter data structure. We
describe different constructions of BFE schemes, and show how these yield new
puncturable encryption mechanisms with extremely efficient puncturing. Most
importantly, a puncturing operation only involves a small number of very effi-
cient computations, plus the deletion of certain parts of the secret key, which
outperforms previous constructions by orders of magnitude. This gives rise to the
first forward-secret 0-RTT protocols that are efficient enough to be deployed in
practice. We believe that BFE will find applications beyond forward-secret 0-RTT
protocols.
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1 Introduction

One central ingredient to secure today’s Internet are key exchange (KE) protocols with
the most prominent and widely deployed instantiations thereof in the Transport Layer
Security (TLS) protocol [Die08]. Using a KE protocol, two parties (e.g., a server and a
client) are able to establish a shared secret (session key) which afterwards can be used
to cryptographically protect data to be exchanged between those parties. The process
of arriving at a shared secret requires the exchange of messages between client and
server, which adds latency overhead to the protocol. The time required to establish a
key is usually measured in round-trip times (RTTs). A novel design goal, which was
introduced by Google’s QUIC protocol and also adopted in the upcoming version of
TLS 1.3, aims at developing zero round-trip time (0-RTT) protocols with strong se-
curity guarantees. So far, quite some effort was made in the cryptographic literature,
e.g. [WTSB16,HJLS17], and, indeed, 0-RTT protocols are probably going to be used
heavily in the future Internet as TLS version 1.3 [Res17] is approaching fast. Already
today, Google’s QUIC protocol [TI17] is used on Google webservers and within the
Chrome and Opera browsers to support 0-RTT. Unfortunately, none of the above men-
tioned protocols are enjoying 0-RTT and full forward secrecy at the same time. Only
recently, Günther, Hale, Jager, and Lauer (GHJL henceforth) [GHJL17] made progress
and proposed the first 0-RTT key exchange protocol with full forward secrecy for all
transmitted payload messages. However, although their 0-RTT protocol offers the de-
sired features, their construction is not yet practical.

In more detail, GHJL’s forward-secure 0-RTT key-exchange solution is based on
puncturable encryption (PE), which they showed can be constructed in a black-box
way from any selectively secure hierarchical identity-based encryption (HIBE) scheme.
Loosely speaking, PE is a public-key encryption primitive which provides a Puncture
algorithm that, given a secret key and a ciphertext, produces an updated secret key that
is able to decrypt all ciphertexts except the one it has been punctured on. PE has been
introduced by Green and Miers [GM15] (GM henceforth) who provide an instantia-
tion relying on a binary-tree encryption (BTE) scheme—or selectively secure HIBE—
together with a key-policy attribute-based encryption (KP-ABE) [GPSW06] scheme
for non-monotonic (NM) formulas with specific properties. In particular, the KP-ABE
needs to provide a non-standard property to enhance existing secret keys with additional
NOT gates, which is satisfied by the NM KP-ABE in [OSW07]. Since then, PE has
proved to be a valuable tool to construct public-key watermarking schemes [CHN+16],
forward-secret proxy re-encryption [DKL+18]4, or to achieve chosen-ciphertext secu-
rity for fully-homomorphic encryption [CRRV17]. However, the mentioned PE instan-
tiations from [CRRV17,CHN+16] are based on indistinguishability obfuscation and,
thus, do not yield practical schemes at all.

When looking at the two most efficient PE schemes available, i.e., GM and GHJL,
they still come with severe drawbacks. In particular, puncturing in GHJL is highly in-
efficient and takes several seconds to minutes on decent hardware for reasonable de-
ployment parameters. In the GM scheme, puncturing is more efficient, but the cost of
decryption is very significant and increases with the number of puncturings. More pre-

4 We note that [DKL+18] uses the same techniques as in GHJL.
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cisely, cost of decryption requires a number of pairing evaluations that depends on the
number of puncturings, and can be in the order of 210 to 220 for realistic deployment
parameters. These issues make both of them especially unsuitable for the application in
forward-secret 0-RTT key exchange in a practical setting.

Contributions. In this paper, we introduce Bloom filter encryption (BFE), which can
be considered as a variant of PE [GM15,CHN+16,CRRV17,GHJL17]. The main dif-
ference to other existing PE constructions is that in case of BFE, we tolerate a non-
negligible correctness error.5 This allows us to construct PE and in particular punc-
turable key encapsulation (PKEM) schemes with highly efficient puncturing and in par-
ticular where puncturing only requires a few very efficient operations, i.e., to delete
parts of the secret key, but no further expensive cryptographic operations. Altogether,
this makes BFE a very suitable building block to construct practical forward-secret 0-
RTT key exchange. In more detail, our contributions are as follows:

– We formalize the notion of BFE by presenting a suitable security model. The in-
tuition behind BFE is to provide a highly efficient decryption and puncturing. In-
terestingly, puncturing mainly consists of deleting parts of the secret key. This ap-
proach is in contrast to existing puncturable encryption schemes, where puncturing
and/or decryption is a very expensive operation.

– We propose efficient constructions of BFE. First, we present a direct construc-
tion which uses ideas from the Boneh-Franklin identity-based encryption (IBE)
scheme [BF01]. This construction allows us to achieve constant size public keys.
Second, we present a black-box construction from a ciphertext-policy attribute-
based encryption (CP-ABE) scheme that only needs to be small-universe (i.e.,
bounded) and to support threshold policies, which allows us to achieve constant size
ciphertexts. Third, we describe a generic construction from identity-based broad-
cast encryption (IBBE), which is efficiently instantiable with the IBBE scheme by
Delerablée [Del07]. This construction allows us to simultaneously achieve compact
public keys and constant size ciphertexts. Finally, to improve efficiency, we provide
a time-based BFE (TB-BFE) from selectively-secure HIBEs.

– For CCA security, we adopt the Fujisaki-Okamoto (FO) transformation [FO99]
to the BFE setting. This is technically non-trivial, and therefore we consider it as
another interesting aspect of this work. In particular, the original FO transforma-
tion [FO99] works only for schemes with perfect correctness. Recently, Hofheinz
et al. [HHK17] described a variant which works also for schemes with negligible
correctness error. We adopt the FO transformation to BFE and PKEMs with non-
negligible correctness error respectively. To this end, we formalize additional prop-
erties of the PKEM that are required to apply the FO transform to BFE schemes,
and show that our CPA-secure constructions satisfy them. This serves as a template
that allows an easy application of the FO transform in a black-box manner to BFE
schemes.

– We provide a construction of a forward-secret 0-RTT key exchange protocol (in
the sense of GHJL) from TB-BFE. Furthermore, we give a detailed comparison

5 We discuss below why this is not only tolerable, but actually a very reasonable approach for
applications like 0-RTT key exchange.
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of (TB-)BFE with other PE schemes and discuss the efficiency in the context of
the proposed application to forward-secret 0-RTT key exchange. In particular, our
construction of forward-secret 0-RTT key-exchange from TB-BFE has none of the
drawbacks mentioned in the introduction (at the cost of a somewhat larger secret
key, that, however, shrinks with the number of puncturings). Consequently, our
forward-secret 0-RTT key exchange can be seen as a significant step forward to
construct very practical forward-secret 0-RTT key exchange protocols.

On tolerating a non-negligible correctness error for 0-RTT. The huge efficiency
gain of our construction stems partially from the relaxation of allowing a non-negligible
correctness error, which, in turn, stems from the potentially non-negligible false-positive
probability of a Bloom filter. While this is unusual for classical public-key encryption
schemes, we consider it as a reasonable approach to accept a small, but non-negligible
correctness error for the 0-RTT mode of a key exchange protocol, in exchange for the
huge efficiency gain.

For example, a 1/10000 chance that the key establishment fails allows to use 0-RTT in
9999 out of 10000 cases on average, which is a significant practical efficiency improve-
ment. Furthermore, the communicating parties can implement a fallback mechanism
which immediately continues with running a standard 1-RTT key exchange protocol
with perfect correctness, if the 0-RTT exchange fails. Thus, the resulting protocol can
have the same worst-case efficiency as a 1-RTT protocol, while most of the time 0-RTT
is already sufficient to establish a key and full forward secrecy is always achieved.

Compared to other practical 0-RTT solutions, note that both TLS 1.3 [Res17] and
QUIC [TI17] have similar fallback mechanisms. Furthermore, in order to achieve at
least a very weak form of forward secrecy, they define so called tickets [Res17] or
server configuration (SCFG) messages [TI17], which expire after a certain time. For-
ward secrecy is only achieved after the ticket/SCFG message has expired and the asso-
ciated secrets have been erased. Therefore the lifetime should be kept short. If a client
connects to a server after the ticket/SCFG message has expired, then the fallback mech-
anism is invoked and a full 1-RTT handshake is performed. In particular, for settings
where a client connects only occasionally to a server, and for reasonably chosen param-
eters and a moderate life time of the ticket/SCFG message, which at least guarantees
some weak form of forward secrecy, this requires a full handshake more often than with
our approach.

Finally, note that puncturable encryption with perfect (or negligible) correctness
error inherently seems to require secret keys whose size at least grows linearly with the
number of puncturings. This is because any such scheme inherently must (implicitly or
explicitly) encode information about the list of punctured ciphertexts into the secret key,
which lower-bounds the size of the secret key. By tolerating a non-negligible correctness
error, we are also able to restrict the growth of the secret key to a limit which seems
tolerable in practice.

2 Bloom Filter Encryption

The key idea behind Bloom Filter Encryption (BFE) is that the key pair of such a scheme
is associated to a Bloom filter (BF) [Blo70], a probabilistic data structure for the ap-
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proximate set membership problem with a non-negligible false-positive probability in
answering membership queries. The initial secret key sk output by the key generation
algorithm of a BFE scheme corresponds to an empty BF where all bits are set to 0. En-
cryption takes a message M and the public key pk, samples a random element s (acting
as a tag for the ciphertext) corresponding to the universe U of the BF and encrypts a
message using pk with respect to the k positions set in the BF by s. A ciphertext is then
basically identified by s and decryption works as long as at least one index pointed to
by s in the BF is still set to 0. Puncturing the secret key with respect to a ciphertext
(i.e., the tag s of the ciphertext) corresponds to inserting s in the BF (i.e., updating the
corresponding indices to 1 and deleting the corresponding parts of the secret key). This
basically means updating sk such that it no longer can decrypt any position indexed by
s.

2.1 Formal Definition of Bloom Filters

A Bloom filter (BF) [Blo70] is a probabilistic data structure for the approximate set
membership problem. It allows a succinct representation T of a set S of elements from
a large universe U . For elements s ∈ S a query to the BF always answers 1 (“yes”).
Ideally, a BF would always return 0 (“no”) for elements s 6∈ S, but the succinctness of
the BF comes at the cost that for any query to s 6∈ S the answer can be 1, too, but only
with small probability (called the false-positive probability).

We will only be interested in the original construction of Bloom filters [Blo70], and
omit a general abstract definition. Instead we describe the construction from [Blo70]
directly. For a general definition refer to [NY15].

Definition 1 (Bloom Filter). A Bloom filter B for set U consists of algorithms B =
(BFGen,BFUpdate,BFCheck), which are defined as follows.

BFGen(m, k): This algorithm takes as input two integers m, k ∈ N. It first samples
k universal hash functions H1, . . . ,Hk, where Hj : U → [m], defines H :=
(Hj)j∈[k] and T := 0m (that is, T is an m-bit array with all bits set to 0), and
outputs (H,T ).

BFUpdate(H,T, u): Given H = (Hj)j∈[k], T ∈ {0, 1}m, and u ∈ U , this algorithm
defines the updated state T ′ by first assigning T ′ := T . Then, writing T ′[i] to
denote the i-th bit of T ′, it sets T ′[Hj(u)] := 1 for all j ∈ [k], and finally returns
T ′.

BFCheck(H,T, u): GivenH = (Hj)j∈[k], T ∈ {0, 1}m where we write T [i] to denote
the i-th bit of T , and u ∈ U , this algorithm returns a bit b :=

∧
j∈[k] T [Hj(u)].

Relevant properties of Bloom filters. Let us summarize the properties of Bloom filters
relevant to our work.

Perfect completeness. A Bloom filter always “recognizes” elements that have been
added with probability 1. More precisely, let S = (s1, . . . , sn) ∈ Un be any vector
of n elements of U . Let (H,T0)←$ BFGen(m, k) and define

Ti = BFUpdate(H,Ti−1, si) for i ∈ [n].
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Then for all s∗ ∈ S and all (H,T0)←$ BFGen(m, k) with m, k ∈ N, it holds that

Pr [BFCheck(H,Tn, s
∗) = 1] = 1.

Compact representation of S. Independent of the size of the set S ⊂ U and the rep-
resentation of individual elements of U , the size of representation T is a constant
number of m bits. A larger size of S increases only the false-positive probability,
as discussed below, but not the size of the representation.

Bounded false-positive probability. The probability that an element which has not yet
been added to the Bloom filter is erroneously “recognized” as being contained in
the filter can be made arbitrarily small, by choosing m and k adequately, given (an
upper bound on) the size of S.
More precisely, let S = (s1, . . . , sn) ∈ Un be any vector of n elements of U . Then
for any s∗ ∈ U \ S , we have

Pr [BFCheck(H,Tn, s
∗) = 1] ≈ (1− e−kn/m)k,

where (H,T0)←$ BFGen(m, k), Ti = BFUpdate(H,Ti−1, si) for i ∈ [n], and the
probability is taken over the random coins of BFGen.

Discussion on the choice of parameters. In order to provide a first intuition on the
choice of parameters n,m and k for the use of BFs within BFE, we subsequently discuss
some reasonable choices. Let us assume that we want to have n = 220, which amounts
to adding for a full year every day about 212 elements to the BF. Then, assuming the
optimal number of hash functions k, and tolerating a false-positive probability of p =
10−3, we obtain a size of the BF given by m = −n ln p/(ln 2)2, as m ≈ 15 Mb ≈
2 MB. The optimal number of hash functions k is given by k = m/n ln 2, and we will
instantiate Bloom filters with

k := dm/n ln 2e .

This yields a correctness error p ≈ (1 − e−kn/m)k = (1 − e−n/m·d
m
n e ln 2)k ≤ 2−k.

For above parameters n,m and p we obtain k = 10.
Looking ahead to the BFE construction in Section 2.5, at a 120-bit security level

(using the pairing-friendly BLS12-381 curve), this choice of parameters would yield
ciphertexts of size < 720 B and public as well as secret keys of size < 100 B and
≈ 700 MB respectively. Thereby, we need to emphasize that initially the secret key
(representing the empty BF) has its maximum size, but every puncturing (i.e., addition
of an element to the BF), reduces the size of the secret key. Moreover, we stress that
the false-positive probability represents an upper bound as it assumes that all n = 220

elements are already added to the BF, i.e., the secret key has already been punctured
with respect to 220 ciphertexts. Finally, when we use our time-based BFE approach (TB-
BFE) from Section 3, we can even reduce the secret key size by reducing the maximum
number of puncturings at the cost of switching the time intervals more frequently.

2.2 Formal Model of BFE

Subsequently, we introduce the formal model for BFE which essentially is a variant of
puncturable encryption (PE) [GM15,CHN+16,CRRV17,GHJL17] with the only differ-
ence that with BFE we tolerate a non-negligible correctness error. Thus, although we
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are speaking of BFE, we choose to introduce a formal model for PE with a relaxed
correctness definition6 and treat BFE as an instantiation of PE. Consequently, our Def-
inition 2 below is a variant of the one in [GHJL17], with the only difference that we
allow the key generation to take the additional parameters m and k (of the BF) as input,
which specify the correctness error.

For 0-RTT key establishment, our prime application in this paper, we do not need
a full-blown encryption scheme, but only a key-encapsulation mechanisms (KEM) to
transport a symmetric encryption key. Consequently, we chose to present our definitions
by means of a puncturable KEM (PKEM). We stress that defining PKEM instead of PE
does not represent any limitation, as any KEM can generically be converted into a se-
cure full-blown encryption scheme [FO99]. Conversely, any secure encryption scheme
trivially yields a secure KEM. Nonetheless, for completeness, we give stand-alone def-
initions of PE tolerating a non-negligible correctness error in Appendix A.

Definition 2 (PKEM). A puncturable key encapsulation (PKEM) scheme with key space
K is a tuple (KGen,Enc,Punc,Dec) of PPT algorithms:

KGen(1λ,m, k) : Takes as input a security parameter λ, parameters m and k and out-
puts a secret and public key (sk, pk) (we assume that K is implicit in pk).

Enc(pk) : Takes as input a public key pk and outputs a ciphertext C and a symmetric
key K.

Punc(sk, C) : Takes as input a secret key sk, a ciphertext C and outputs an updated
secret key sk′.

Dec(sk, C) : Takes as input a secret key sk, a ciphertext C and outputs a symmetric key
K or ⊥ if decapsulation fails.

Correctness. We start by defining correctness of a PKEM scheme. Basically, here one
requires that a ciphertext can always be decapsulated with unpunctured secret keys.
However, we allow that if punctured secret keys are used for decapsulation then the
probability that the decapsulation fails is bounded by some non-negligible function in
the scheme’s parameters m, k.

Definition 3 (Correctness). For all λ,m, k,∈ N, any (sk, pk)←$ KGen(1λ,m, k) and
(C,K)←$ Enc(pk), we have that Dec(sk, C) = K. Moreover, for any (arbitrary in-
terleaved) sequence i = 1, . . . , ` (where ` is determined by m, k) of invocations of
sk′←$ Punc(sk, C ′) for any C ′ 6= C it holds that Pr

[
Dec(sk′, C) = ⊥

]
≤ µ(m, k),

where µ(·) is some (possibly non-negligible) bound.

2.3 Additional Properties of a PKEM

In this section, we will define additional properties of a PKEM. One will be necessary
for the application to 0-RTT key exchange from [GHJL17]. The others are required
to construct a CCA-secure PKEM via the Fujisaki-Okamoto (FO) transformation, as
described in Section 2.6. We will show below that our constructions of CPA-secure
PKEMs satisfy these additional properties, and thus are suitable for our variant of the
FO transformation, and to construct 0-RTT key exchange.

6 This moreover allows to compactly present our construction of forward-secret 0-RTT key ex-
change as this then essentially follows the argumentation in [GHJL17].
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Extended correctness. Intuitively, we first require an extended variant of correct-
ness which demands that (1) decapsulation yields a failure when attempting to decap-
sulate under a secret key previously punctured for that ciphertext. This is analogous
to [GHJL17]. Second, we additionally demand that (2) decapsulating an honest cipher-
text with the unpuctured key does always succeed and (3) if decryption does not fail,
then the decapsulated value must match the key returned by the Enc algorithm, for any
key sk′ obtained from applying any sequence of puncturing operations to the initial
secret key sk.

Definition 4 (Extended Correctness). For all λ,m, k, ` ∈ N, any (sk, pk)←$ KGen(
1λ,m, k) and (C,K)←$ Enc(pk) and any (arbitrary interleaved and possibly empty)
sequence C1, . . . , C` of invocations of sk′←$ Punc(sk, Ci) it holds that:

1. Impossibility of false-negatives:
Dec(sk′, Ci) = ⊥ for all i ∈ [`].

2. Perfect correctness of the initial, non-punctured secret key:
If (C,K)←$ Enc(pk) then Dec(sk, C) = K, where sk is the initial, non-punctured
secret key.

3. Semi-correctness of punctured secret keys:
If Dec(sk′, C) 6= ⊥ then Dec(sk′, C) = Dec(sk, C).

Separable randomness. We require that the encapsulation algorithm Enc essentially
reads the key K in (C,K)←$ Enc(pk) directly from its random input tape. Intuitively,
this will later enable us to make the randomness r used by the encapsulation algorithm
Enc dependent on the key K computed by Enc.

Definition 5 (Separable Randomness). Let PKEM = (KGen,Enc,Punc,Dec) be a
PKEM. We say that PKEM has separable randomness, if one can equivalently write the
encapsulation algorithm Enc as

(C,K)←$ Enc(pk) = Enc(pk; (r,K)),

for uniformly random (r,K) ∈ {0, 1}ρ+λ, where Enc(·; ·) is a deterministic algorithm
whose output is uniquely determined by pk and the randomness (r,K) ∈ {0, 1}ρ+λ.

Remark. We note that one can generically construct a separable PKEM from any non-
separable PKEM. Given a non-separable PKEM with encapsulation algorithm Enc, a
separable PKEM with encryption algorithm Enc′ can be obtained as follows:

Enc′(pk; (r,K′)) : Run (C,K)←$ Enc(pk; r), set C ′ := (C,K⊕ K′) return (C ′,K′).

We need separability in order to apply our variant of the FO transformation, which is the
reason why we have to make it explicit. Alternatively, we could have started from a non-
separable PKEM and applied the above construction. However, this adds an additional
component to the ciphertext, while the construction given in Section 2.5 will already be
separable, such that we can avoid this overhead.
Publicly-checkable puncturing. Finally, we need that it is efficiently checkable whe-
ther the decapsulation algorithm outputs ⊥ = Dec(sk, C), given not the secret key
sk, but only the public key pk, the ciphertext C to be decrypted, and the sequence
C1, . . . , Cw at which the secret key sk has been punctured.
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Definition 6 (Publicly-Checkable Puncturing). Let Q = (C1, . . . , Cw) be any list of
ciphertexts. We say that PKEM allows publicly-checkable puncturing, if there exists an
efficient algorithm CheckPunct with the following correctness property.

1. Run (sk, pk)←$ KGen(1λ,m, k).
2. Compute Ci←$ Enc(pk) and sk = Punc(sk, Ci) for i ∈ [w].
3. Let C be any string. We require that

⊥ = Dec(sk, C) ⇐⇒ ⊥ = CheckPunct(pk,Q, C).

From a high-level perspective, this additional property will be necessary to simulate the
decryption oracle properly in the CCA security experiment when our variant of the FO
transformation is applied. Together with the second and third property of Definition 4,
it replaces the perfect correctness property required in the original FO transformation.

Min-entropy of ciphertexts. Following [HHK17], we require that ciphertexts of a
randomness-separable PKEM have sufficient min-entropy, even if K is fixed:

Definition 7 (γ-Spreadness). Let PKEM = (KGen,Enc,Punc,Dec) be a randomness-
separable PKEM with ciphertext space C. We say that PKEM is γ-spread, if for any
honestly generated pk, any key K and any C ∈ C

Pr
r←$ {0,1}ρ [C = Enc(pk; (r,K))] ≤ 2−γ .

2.4 Security Definitions

We define three security notions for PKEMs. The two “standard” security notions are in-
distinguishability under chosen-plaintext (IND-CPA) and chosen-ciphertext (IND-CCA)
attacks. We also consider one-wayness under chosen-plaintext attacks (OW-CPA). The
latter is the weakest notion among the ones considered in this paper, and implied by both
IND-CPA and IND-CCA, but sufficient for our generic construction of IND-CCA-secure
PKEMs.

Indistinguishability-based security. Figure 1 defines the IND-CPA and IND-CCA
experiments for PKEMs. The experiments are similar to the security notions for con-
ventional KEMs, but the adversary can arbitrarily puncture the secret key via the Punc
oracle and retrieve the punctured secret key via the Corr oracle, once it has been punc-
tured on the challenge ciphertext C∗.

Definition 8 (Indistinguishability-Based Security of PKEM). For T ∈ {IND-CPA,
IND-CCA}, we define the advantage of an adversaryA in the T experiment ExpT

A,PKEM
(λ,m, k) as

AdvT
A,PKEM(λ,m, k) :=

∣∣∣∣Pr [ExpT
A,PKEM(λ,m, k) = 1

]
− 1

2

∣∣∣∣ .
A puncturable key-encapsulation scheme PKEM is T ∈ {IND-CPA, IND-CCA} secure,
if AdvT

A,PKEM(λ,m, k) is a negligible function in λ for all m, k > 0 and all PPT
adversaries A.
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ExpT
A,PKEM(λ,m, k):

(sk, pk)←$ KGen(1λ,m, k), (C∗,K0)←$ Enc(pk),Q ← ∅
K1←$ K, b←$ {0, 1}
b∗←$ AO,Punc(sk,·),Corr(pk, C∗,Kb)

where O ← {Dec′(sk, ·)} if T = IND-CCA and O ← ∅ otherwise.
Dec′(sk, C) behaves as Dec but returns ⊥ if C = C∗

Punc(sk, C) runs sk←$ Punc(sk, C) andQ ← Q∪ {C}
Corr returns sk if C∗ ∈ Q and ⊥ otherwise

If b∗ = b then return 1
return 0

Fig. 1. Indistinguishability-based security for PKEMs.

ExpOW-CPA
A,PKEM(λ,m, k):

(sk, pk)←$ KGen(1λ,m, k), (C∗,K0)←$ Enc(pk),Q ← ∅
K∗0←$ APunc(sk,·),Corr(pk, C∗)

where Punc(sk, C) runs sk←$ Punc(sk, C) andQ ← Q∪ {C}
Corr returns sk if C∗ ∈ Q and ⊥ otherwise

If K∗0 = K0 then return 1
return 0

Fig. 2. OW-CPA security for PKEMs.

One-wayness under chosen-plaintext attack. Figure 2 defines the OW-CPA experi-
ment. The experiment is similar to the IND-CPA experiment, except that the goal of the
adversary is to recover the encapsulated key, given a random challenge ciphertext.

Definition 9 (One-Wayness Under Chosen-Plaintext Attack). We define the advan-
tage of an adversary A in experiment ExpOW-CPA

A,PKEM(λ,m, k) as

AdvOW-CPA
A,PKEM(λ,m, k) := Pr

[
ExpOW-CPA

A,PKEM(λ,m, k) = 1
]
.

A PKEM is OW-CPA secure, if AdvOW-CPA
A,PKEM(λ,m, k) is a negligible function in λ for

all m, k > 0 and all PPT adversaries A.

2.5 Basic Bloom Filter Encryption

Bilinear maps and notation. In the sequel, let BilGen be an algorithm that, on input a
security parameter 1λ, outputs (p, e,G1,G2,GT , g1, g2)←$ BilGen(1λ), where G1, G2,
GT are groups of prime order p with bilinear map e : G1 × G2 → GT and generators
gi ∈ Gi for i ∈ {1, 2}.
Construction. In the sequel, let Params := (p, e,G1,G2,GT , g1, g2)←$ BilGen(1λ),
and gT = e(g1, g2). We will always assume that all algorithms described below im-
plicitly receive these parameters as additional input. Let B = (BFGen,BFUpdate,
BFCheck) be a Bloom filter for set G1. Furthermore, let G : N → G2 and G′ :
GT → {0, 1}λ be cryptographic hash functions (which will be modelled as random
oracles [BR93] in the security proof).
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Let PKEM = (KGen,Enc,Punc,Dec) be defined as follows.

KGen(1λ,m, k) : This algorithm first generates a Bloom filter instance by running
(H,T )←$ BFGen(m, k). Then it chooses α←$ Zp, and computes and returns

sk := (T, (G(i)α)i∈[m]) and pk := (gα1 , H).

Remark. The reader familiar with the Boneh-Franklin IBE scheme [BF01] may
note that the secret key contains m elements of G2, each essentially being a secret
key of the Boneh-Franklin scheme for “identity” i, i ∈ [m], with respect to “master
public-key” gα1 .

Enc(pk) : This algorithm takes as input a public key pk of the above form. It samples
a uniformly random key K←$ {0, 1}λ and exponent r←$ Zp. Then it computes
ij := Hj(g

r
1) for (Hj)j∈[k] := H , then yj = e(gα1 , G(ij))

r for j ∈ [k], and finally

C :=
(
gr1, (G

′(yj)⊕ K)j∈[k]
)
.

It outputs (C,K) ∈ (G1 × {0, 1}kλ)× {0, 1}λ.
Remark. Note that for each j ∈ [k], the tuple (gr1, G

′(yj) ⊕ K) is essentially a
“hashed Boneh-Franklin IBE” ciphertext, encrypting K for “identity” ij = Hj(g

r
1)

and with respect to master public key gα1 , where the identity is derived determin-
istically from a “unique” (with overwhelming probability) ciphertext component
gr1 . Thus, the ciphertext C essentially consists of k Boneh-Franklin ciphertexts that
share the same randomness r, each encrypting the same key K for an “identity”
derived deterministically from gr1 .
Note also that this construction of Enc satisfies the requirement of separable ran-
domness from Definition 5. Furthermore, ciphertexts are γ-spread according to
Definition 7 with γ = log2 p, because gr1 is uniformly distributed over G1.

Punc(sk, C) : Given a ciphertext C :=
(
gr1, (G

′(yj)⊕ K)j∈[k]
)

and secret key sk =

(T, (sk[i])i∈[m]), the puncturing algorithm first computes T ′ = BFUpdate(H,
T, gr1). Then, for each i ∈ [m] it defines

sk′[i] :=

{
sk[i] if T ′[i] = 0, and
⊥ if T ′[i] = 1,

where T ′[i] denotes the i-th bit of T ′. Finally, this algorithm returns

sk′ := (T ′, (sk′[i])i∈[m]).

Remark. Note that the above procedure is correct even if the procedure is ap-
plied repeatedly with different ciphertexts C, since the BFUpdate algorithm only
changes bits of T from 0 to 1, but never from 1 to 0. So we can delete a secret key
element sk[i] once T ′[i] has been set to 1. Furthermore, we have sk′[i] = ⊥ ⇐⇒
T ′[i] = 1. Intuitively, this will ensure that we can use this key to decrypt a ci-
phertext C :=

(
gr1, (G

′(yj)⊕ K)j∈[k]
)

if and only if BFCheck(H,T, gr1) = 0,
where (H,T ) is the Bloom filter instance contained in the public key. Note also
that the puncturing algorithm essentially only evaluates k universal hash functions
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H = (Hj)j∈[k] and then deletes a few secret keys, which makes this procedure
extremely efficient. Finally, observe that the filter state T can be efficiently re-
computed given only public information, namely the list of hash functions H con-
tained in pk and the sequence of ciphertexts C1, . . . , Cw on which a secret key has
been punctured. This yields the existence of an efficient CheckPunct according to
Definition 6.

Dec(sk, C) : Given a secret key sk = (T, (sk[i])i∈[m]) and a ciphertext C := (C[0],
C[i1], . . . , C[ik]) it first checks whether BFCheck(H,T,C[0]) = 1, and outputs
⊥ in this case. Otherwise, note that BFCheck(H,T,C[0]) = 0 implies that there
exists at least one index i∗ with sk[i∗] 6= ⊥. It picks the smallest index i∗ ∈
{i1, . . . , ik} such that sk[i∗] = G(i∗)α 6= ⊥, computes

yi∗ := e(gr1, G(i
∗)α),

and returns K := C[i∗]⊕G′(yi∗).
Remark. If BFCheck(H,Tn, C[0]) = 0, then the decryption algorithm performs
a “hashed Boneh-Franklin” decryption with a secret key for one of the identities.
Note that Dec(skn, C) 6= ⊥ ⇐⇒ BFCheck(H,T,C[0]) = 0, which guarantees
the first extended correctness property required by Definition 4. It is straightforward
to verify that the other two extended correctness properties of Definition 4 hold as
well.

Design choices. We note that we have chosen to base our Bloom filter encryption
scheme on hashed Boneh-Franklin IBE instead of standard Boneh-Franklin for two
reasons. First, it allows us to keep ciphertexts short and independent of the size of
the binary representation of elements of GT . This is useful, because the recent ad-
vances for computing discrete logarithms in finite extension fields [KB16] apply to
the target group of state-of-the-art pairing-friendly elliptic curve groups. Recent assess-
ments of the impact of these advances by Menezes et al. [MSS16] as well as Barbulescu
and Duquesne [BD17] suggest that for currently used efficient curve families such as
BN [BN06] or BLS [BLS03] curves a conservative choice of parameters for the 128
bit security level yields sizes of GT elements of ≈ 4600 − 5500 bits. The hash func-
tion allows us to “compress” these group elements in the ciphertext to 128 bits. Even
if future research enables the construction of bilinear maps where elements of GT can
be represented by 2λ bits for λ-bit security (which is optimal), it is still preferable to
hash group elements to λ bits to reduce the ciphertext by a factor of about 2. Second,
by modelling G′ as a random oracle, we can reduce security to a weaker complexity
assumption.
Correctness error of this scheme. We will now explain that the correctness error
of this scheme is essentially identical to the false-positive probability of the Bloom
filter, up to a statistically small distance which corresponds to the probability that two
independent ciphertexts share the same randomness r.

For m, k ∈ N, let (sk0, pk)←$ KGen(1λ,m, k), let U := {C : (C,K)←$ Enc(pk)}
denote the set of all valid ciphertext with respect to pk. Let S = (C1, . . . , Cn) be a
list of n ciphertexts, where (Ci,Ki)←$ Enc(pk), and run ski = Punc(ski−1, Ci) for
i ∈ [n] to determine the secret key skn obtained from puncturing sk0 iteratively on all
ciphertexts Ci ∈ S.
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Now let us consider the probability

Pr [Dec(skn, C
∗) 6= K∗ : (C∗,K∗)←$ Enc(pk), C∗ 6∈ S]

that a newly generated ciphertext C∗ 6∈ S is not correctly decrypted by skn. To this
end, let C∗[0] = gr

∗

1 denote the first component of ciphertext C∗ = (gr
∗

1 , C
∗
1 , . . . , C

∗
k),

and likewise let Ci[0] denote the first component of ciphertext Ci for all Ci ∈ S . Writ-
ing skn = (Tn, (skn[i])i∈[m]) and pk = (gα1 , H), one can now verify that we have
Dec(skn, C

∗) 6= K∗ ⇐⇒ BFCheck(H,Tn, C
∗[0]) = 1, because BFCheck(H,Tn,

C∗[0]) = 0 guarantees that there exists at least one index j such that skn[Hj(C
∗[0])] 6=

⊥, so correctness of decryption follows essentially from correctness of the Boneh-
Franklin scheme. Thus, we have to consider the probability that BFCheck(H,Tn, C∗[0])
= 1. We distinguish between two cases:

1. There exists an index i ∈ [n] such that C∗[0] = Ci[0]. Note that this implies
immediately that BFCheck(H,Tn, C∗[0]) = 1. However, recall that C∗[0] = gr

∗

1

is a uniformly random element of G1. Therefore the probability that this happens
is upper bounded by n/p, which is negligibly small.

2. C∗[0] 6= Ci[0] for all i ∈ [n]. In this case, as explained in Section 2.1, the soundness
of the Bloom filter guarantees that Pr[BFCheck(H,Tn, C∗[0]) = 1] ≈ 2−k.

In summary, the correctness error of this scheme is approximately 2−k+n/p. Since n/p
is negligibly small, this essentially amounts to the correctness error of the Bloom filter,
which in turn depends on the number of ciphertexts n, and the choice of parameters
m, k.
Flexible instantiability of this scheme. Our scheme is highly parameterizable in the
sense that we can adjust the size of keys and ciphertexts by adjusting the correctness
error (determined by the choice of parameters m, k that in turn determine the false-
positive probability of the Bloom filter) of our scheme.
Additional properties. As already explained in the remarks after the description of the
individual algorithms of PKEM, the scheme satisfies the requirements of Definitions 4,
5, 6, and 7.
IND-CPA-security. We base IND-CPA-security on a bilinear computational Diffie-
Hellman variant in the bilinear groups generated by BilGen.

Definition 10 (BCDH). We define the advantage of adversary A in solving the BCDH
problem with respect to BilGen as

AdvBCDH
A,BilGen(λ) := Pr [e(g1, h2)

rα←$ A(Params, gr1, g
α
1 , g

α
2 , h2)] ,

where Params = (p, e,G1,G2,GT , g1, g2)←$ BilGen(1λ), and (gr1, g
α
1 , g

α
2 , h2)←$ G2

1×
G2.

Theorem 1. From each efficient adversary B that issues q queries to random oracleG′

we can construct an efficient adversary A with

AdvBCDH
A,BilGen(λ) ≥

AdvIND-CPA
B,PKEM(λ,m, k)

kq
.
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Proof. Algorithm A receives as input a BCDH-challenge tuple (gr1, g
α
1 , g

α
2 , h2). It runs

adversary B as a subroutine by simulating the ExpIND-CPA
B,PKEM(λ,m, k) experiment, includ-

ing random oracles G and G′, as follows.
First, it definesQ := ∅, runs (H,T )←$ BFGen(m, k), and defines the public key as

pk := (gα1 , H). Note that this public key is identically distributed to a public key output
by KGen(1λ,m, k). In order to simulate the challenge ciphertext, the adversary chooses
a random key K←$ {0, 1}λ and k uniformly random values Yj ←$ {0, 1}λ, j ∈ [k], and
defines the challenge ciphertext as C∗ := (gr1, (Yj)j∈[k]). Finally, it outputs (pk, C∗,K)
to B.

Whenever B queries Punc(sk, ·) on input C = (C[0], . . .), then A updates T by
running T = BFUpdate(H,T,C[0]), and Q ← Q∪ {C}.

Whenever a random oracle query to G : N → G2 is made (either by A or B), with
input ` ∈ N, then A responds with G(`), if G(`) has already been defined. If not, then
A chooses a random integer r`←$ Zp, and returns G(`), where

G(`) :=

{
h2 · gr`2 if ` ∈ {Hj(g

r
1) : j ∈ [k]}, and

gr`2 otherwise.

This definition of G allows A to simulate the Corr oracle as follows. When B queries
Corr, then it first checks whether C∗ ∈ Q, and returns ⊥ if this does not hold. Other-
wise, note that we must have ∀j ∈ [k] : T [Hj(g

r
1)] = 0, where H = (Hj)j∈[k] and

T [`] denotes the `-th bit of T . Thus, by the simulation of G described above, A is able
to compute and return G(`)α = (gr`2 )α = (gα2 )

r` for all ` with ` 6∈ {Hj(g
r
1) : j ∈ [k]},

and therefore in particular for all ` with T [`] = 1. This enables the perfect simulation
of Corr.

Finally, whenever B queries random oracle G′ : GT → {0, 1}λ on input y, then
A responds with G′(y), if G′(y) has already been defined. If not, then A chooses a
random string Y ←$ {0, 1}λ, assigns G′(y) := Y , and returns G′(y). Now we have to
distinguish between two types of adversaries.

1. A Type-1 adversary B never queries G′ on input of a value y, such that there ex-
ists j ∈ [k] such that y = e(gα1 , G(Hj(g

r
1)))

r. Note that in this case the value
Y ′j := G′(e(gα1 , G(Hj(g

r
1)))) remains undefined for all j ∈ [k] throughout the

entire experiment. Thus, information-theoretically, a Type-1 adversary receives no
information about the key encrypted in the challenge ciphertext C∗, and thus can
only have advantage AdvIND-CPA

B,PKEM(λ,m, k) = 0, in which case the theorem holds
trivially.

2. A Type-2 adversary queries G′(y) such that there exists j ∈ [k] with y = e(gα1 , G(
Hj(g

r
1)))

r. A uses a Type-2 adversary to solve the BCDH challenge as follows.
At the beginning of the game, it picks two indices (q∗, j∗)←$ [q] × [k] uniformly
random. When B outputs y in its q∗-th query to G′, then A computes and outputs
W := y · e(gα1 , gr2)−r` . Since B is a Type-2 adversary, we know that at some point
it will query G′(y) with y = e(gα1 , G(Hj(g

r
1)))

r for some j ∈ [k]. If this is the
q∗-th query and we have j = j∗, which happens with probability 1/(qk), then we
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have

W = y · e(gα1 , gr2)−r` = e(gα1 , G(Hj(g
r
1)))

r · e(gα1 , gr2)−r`

= e(gα1 , h2 · g
r`
2 )r · e(gα1 , gr2)−r` = e(gα1 , h2)

r · e(gα1 , g
r`
2 )r · e(gα1 , gr2)−r`

and thus W is a solution to the given BCDH instance. ut

OW-CPA-Security. The following theorem can either be proven analogous to Theo-
rem 1, or based on the fact that IND-CPA-security implies OW-CPA-security. Therefore
we give it without proof.

Theorem 2. From each efficient adversary B that issues q queries to random oracleG′

we can construct an efficient adversary A with

AdvBCDH
A,BilGen(λ) ≥

AdvOW-CPA
B,PKEM(λ,m, k)

kq
.

Remark 1. The construction presented above allows to switch the roles of G1 and G2,
i.e., to switch all elements in G1 to G2 and vice versa. This might be beneficial regarding
the size of the secret key when instantiating our construction using a bilinear group
where the representation of elements in G2 requires more space than the representation
of elements in G1.

2.6 CCA-Security via Fujisaki-Okamoto

We obtain a CCA-secure PKEM by adopting the Fujisaki-Okamoto (FO) transforma-
tion [FO99] to the PKEM setting. Since the FO transformation does not work gener-
ically for any KEM, we have to use the additional requirements on the underlying
PKEM that have been defined in Section 2.3. These additional properties enable us to
overcome the difficulty that the original Fujisaki-Okamoto transformation from [FO99]
requires perfect correctness, what no puncturable KEM can provide. We remark that
Hofheinz et al. [HHK17] give a new, modular analysis of the FO transformation, which
also works for public key encryption schemes with negligible correctness error, how-
ever, it is not applicable to PKEMs with non-negligible correctness error because the
bounds given in [HHK17] provide insufficient security in this case.

Construction. Let PKEM = (KGen,Enc,Punc,Dec) be a PKEM with separable ran-
domness according to Definition 5. This means that we can write Enc equivalently
as (C,K)←$ Enc(pk) = Enc(pk; (r,K)) for uniformly random (r,K)←$ {0, 1}ρ+λ.
In the sequel, let R be a hash function (modeled as a random oracle in the security
proof), mapping R : {0, 1}∗ → {0, 1}ρ+λ. We construct a new scheme PKEM′ =
(KGen′,Enc′,Punc′,Dec′) as follows.

KGen′(1λ,m, k) : This algorithm is identical to KGen.
Enc′(pk) : Algorithm Enc′ samples K←$ {0, 1}λ. Then it computes (r,K′) := R(K) ∈
{0, 1}ρ+λ, runs (C,K)←$ Enc(pk; (r,K)), and returns (C,K′).

Punc′(sk, C) : This algorithm is identical to Punc.
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Dec′(sk, C) : This algorithm first runs K←$ Dec(sk, C), and returns ⊥ if K = ⊥. Oth-
erwise, it computes (r,K′) = R(K), and checks consistency of the ciphertext by
verifying that (C,K) = Enc(pk; (r,K)). If this does not hold, then it outputs ⊥.
Otherwise it outputs K′.

Correctness error and extended correctness. Both the correctness error and the ex-
tended correctness according to Definition 4 are not affected by the Fujisaki-Okamoto
transform. Therefore these properties are inherited from the underlying scheme. The
fact that the first property of Definition 4 is satisfied makes the scheme suitable for the
application to 0-RTT key establishment.
IND-CCA-security. The security proof reduces security of our modified scheme to the
OW-CPA-security of the scheme from Section 2.5.

Theorem 3. Let PKEM = (KGen,Enc,Punc,Dec) be a BFKEM scheme that satisfies
the additional properties of Definitions 4 and 6, and which is γ-spread according to
Definition 7. Let PKEM′ = (KGen′,Enc′,Punc′,Dec′) be the scheme described in
Section 2.6. From each efficient adversaryA that issues at most qO queries to oracleO
and qR queries to random oracle R, we can construct an efficient adversary B with

AdvOW-CPA
B,PKEM(λ,m, k) ≥

AdvIND-CCA
A,PKEM′(λ,m, k)− qO/2γ

qR
.

Proof. We proceed in a sequence of games. In the sequel, Oi is the implementation of
the decryption oracle in Game i.
Game 0. This is the original IND-CCA security experiment from Definition 8, played
with the scheme described above. In particular, the decryption oracleO0 is implemented
as follows:

O0(C)

K←$ Dec(sk, C)
If K = ⊥ then return ⊥
(r,K′) = R(K)
If (C,K) 6= Enc(pk; (r,K)) then return ⊥
Return K′

Recall that K0 denotes the encapsulated key computed by the IND-CCA experiment.
K0 is uniquely defined by the challenge ciphertext C∗ via K0 := Dec(sk0, C

∗), where
sk0 is the initial (non-punctured) secret key, since the scheme satisfies extended cor-
rectness (Definition 4, second property). Let Q0 denote the event that A ever queries
K0 to random oracle R. Note that A has zero advantage in distinguishing K′ from
random, until Q0 occurs, because R is a random function. Thus, we have Pr[Q0] ≥
AdvIND-CCA

A,PKEM′(λ,m, k). In the sequel, we denote with Qi the event that A ever queries
K0 to random oracle R in Game i.
Game 1. This game is identical to Game 0, except that after computing K←$ Dec(sk, C)
and checking whether K 6= ⊥, the experiment additionally checks whether the adver-
sary has ever queried random oracle R on input K, and returns⊥ if not. More precisely,
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the experiment maintains a list

LR = {(K, (r,K′)) : A queried R(K) = (r,K′)}

to record all queries K made by the adversary to random oracle R, along with the cor-
responding response (r,K′) = R(K). The decryption oracleO1 uses this list as follows
(boxed statements highlight changes to O0):

O1(C)

K←$ Dec(sk, C)

If @(r,K′) : (K, (r,K′)) ∈ LR then return ⊥
(r,K′) = R(K)
If (C,K) 6= Enc(pk; (r,K)) then return ⊥
Return K′

Note that Games 0 and 1 are perfectly indistinguishable, unless A ever outputs a ci-
phertext C with O1(C) = ⊥, but O0(C) 6= ⊥. Note that this happens if and only if
A outputs C such that C = Enc(pk; (r,K)), where r is the randomness defined by
(r,K′) = R(K), but without prior query of R(K).

The random oracle R assigns a uniformly random value r ∈ {0, 1}ρ to each query,
so, by the γ-spreadness of PKEM, the probability that the ciphertext C output by the
adversary “matches” the ciphertext produced by Enc(pk; (r,K)) is 2−γ . Since A issues
at most qO queries to O1, this yields Pr[Q1] ≥ Pr[Q0]− qO/2γ .

Game 2. We make a minor conceptual modification. Instead of computing (r,K′) =
R(K) by evaluating R, O2 reads (r,K′) from list LR. More precisely:

O2(C)

K←$ Dec(sk, C)
If @(r,K′) : (K, (r,K′)) ∈ LR then return ⊥
Define (r,K′) to be the unique tuple such that (K, (r,K′)) ∈ LR.

If (C,K) 6= Enc(pk; (r,K)) then return ⊥
Return K′

By definition of LR it always holds that (r,K′) = R(K) for all (K, (r,K′)) ∈ LR.
Indeed (r,K′), is uniquely determined by K, because (r,K′) = R(K) is a function.
Since R is only evaluated by O1 if there exists a corresponding tuple (K, (r,K′)) ∈ LR
anyway, due to the changes introduced in Game 1, oracle O2 is equivalent to O1 and
we have Pr[Q2] = Pr[Q1].

Game 3. This game is identical to Game 2, except that wheneverA queries a ciphertext
C to oracle O3, then O3 first runs the CheckPunct algorithm associated to PKEM (cf.
Definition 6). If CheckPunct(pk,Q, C) = ⊥, then it immediately returns⊥. Otherwise,
it proceeds exactly like O2. More precisely:
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O3(C)

If CheckPunct(pk,Q, C) = ⊥ then return ⊥
K←$ Dec(sk, C)
If @(r,K′) : (K, (r,K′)) ∈ LR then return ⊥
Define (r,K′) to be the unique tuple such that (K, (r,K′)) ∈ LR.
If (C,K) 6= Enc(pk; (r,K)) then return ⊥
Return K′

Recall that by public checkability (Definition 6) we have ⊥ = Dec(sk, C) ⇐⇒
⊥ = CheckPunct(pk,Q, C). Therefore the introduced changes are conceptual, and
Pr[Q3] = Pr[Q2].

Game 4. We modify the secret key used to decrypt the ciphertext. Let sk0 denote the
initial secret key generated by the experiment (that is, before any puncturing operation
was performed).O4 uses sk0 to compute K←$ Dec(sk0, C) instead of K←$ Dec(sk, C),
where sk is a possibly punctured secret key. More precisely:

O4(C)

If CheckPunct(pk,Q, C) = ⊥ then return ⊥
K←$ Dec(sk0, C)

If @(r,K′) : (K, (r,K′)) ∈ LR then return ⊥
Define (r,K′) to be the unique tuple such that (K, (r,K′)) ∈ LR.
If (C,K) 6= Enc(pk; (r,K)) then return ⊥
Return K′

For indistinguishability from Game 3, we show that O4(C) = O3(C) for all cipher-
texts C. Let us first consider the case Dec(sk, C) = ⊥. Then public checkability
guarantees that O4(C) = O3(C) = ⊥, due to the fact that Dec(sk, C) = ⊥ ⇐⇒
CheckPunct(pk,Q, C) = ⊥.

Now let us consider the case Dec(sk, C) 6= ⊥. In this case, the semi-correctness
of punctured keys (3rd requirement of Definition 4) guarantees that Dec(sk, C) =
Dec(sk0, C) = K 6= ⊥.

After computing Dec(sk0, C),O4 performs exactly the same operations asO3 after
computing Dec(sk, C). Thus, in this case both oracles are perfectly indistinguishable,
too. This yields that the changes introduced in Game 4 are purely conceptual, and we
have Pr[Q4] = Pr[Q3].

Remark. Due to the fact that we are now using the initial secret key to decrypt C, we
have reached a setting where, due to the perfect correctness of the initial secret key sk0,
essentially a perfectly-correct encryption scheme is used – except that the decryption
oracle implements a few additional abort conditions. Thus, we can now basically apply
the standard Fujisaki-Okamoto transformation, but we must show that we are also able
to simulate the additional abort imposed by the additional consistency checks properly.
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To this end, we first replace these checks with equivalent checks before applying the
FO transformation.
Game 5. We replace the consistency checks performed by O4 with an equivalent
check. More precisely, O5 works as follows:

O5(C)

If CheckPunct(pk,Q, C) = ⊥ then return ⊥
K←$ Dec(sk0, C)

If @(r,K′) : ((K, (r,K′)) ∈ LR ∧ (C,K) = Enc(pk; (r,K))) then return ⊥

Return K′ such that (K, (r,K′)) ∈ LR ∧ (C,K) = Enc(pk; (r,K))

This is equivalent, so that we have Pr[Q5] = Pr[Q4].
Game 6. Observe that in Game 5 we check whether there exists a tuple (r,K′) with
(K, (r,K′)) ∈ LR and (C,K) = Enc(pk; (r,K), where K must match the secret key
computed by K←$ Dec(sk0, C).

In Game 6, we relax this check. We test only whether there exists any tuple (K̃, (r̃,
K̃′)) ∈ LR such that (C, K̃) = Enc(pk; (r̃, K̃) holds. Thus, it is not explicitly checked
whether K̃ matches the value K←$ Dec(sk0, C). Furthermore, the corresponding value
K̃′ is returned. More precisely:

O6(C)

If CheckPunct(pk,Q, C) = ⊥ then return ⊥
K←$ Dec(sk0, C)

If @(r̃, K̃′) : ((K̃, (r̃, K̃′)) ∈ LR ∧ (C, K̃) = Enc(pk; (r̃, K̃))) then return ⊥

Return K̃′ such that (K̃, (r̃, K̃′)) ∈ LR ∧ (C, K̃) = Enc(pk; (r̃, K̃))

By the perfect correctness of the initial secret key sk0, we have

(C, K̃) = Enc(pk; (r̃, K̃)) =⇒ Dec(sk0, C) = K̃,

so that we must have K = K̃. O6 is equivalent to O5, and Pr[Q6] = Pr[Q5].
Game 7. This game is identical to Game 6, except that we change the decryption
oracle again. Observe that the value K computed by K←$ Dec(sk0, C) is never used by
O6. Therefore the computation of K←$ Dec(sk0, C) is obsolete, and we can remove it.
More precisely, O7 works as follows.

O7(C)

If CheckPunct(pk,Q, C) = ⊥ then return ⊥
If @(r̃, K̃′) : ((K̃, (r̃, K̃′)) ∈ LR ∧ (C, K̃) = Enc(pk; (r̃, K̃))) then return ⊥
Return K̃′ such that (K̃, (r̃, K̃′)) ∈ LR ∧ (C, K̃) = Enc(pk; (r̃, K̃))
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We have only removed an obsolete instruction, which does not change the output dis-
tribution of the decryption oracle. Therefore O7 simulates O6 perfectly, and we have
Pr[Q7] = Pr[Q6].

Reduction to OW-CPA-security. Now we are ready to describe the OW-CPA-adv-
ersary B. B receives (pk, C∗). It samples a uniformly random key K′←$ {0, 1}λ and
runs the IND-CCA-adversary A as a subroutine on input (pk, C∗,K′). Whenever A
issues a Punc- or Corr-query, then B forwards this query to the OW-CPA-experiment
and returns the response. In order to simulate the decryption oracle O, adversary B
implements the simulated oracleO7 from Game 7 described above. WhenA terminates,
then B picks a uniformly random entry (K̂, (r̂, K̂′))←$ LR, and outputs K̂.

Analysis of the reduction. Let Q̂ denote the event that A ever queries K0 to random
oracleR. Note thatB simulates Game 7 perfectly untilQ7 occurs, thus we have Pr[Q̂] ≥
Pr[Q7]. Summing up, the probability that the value K̂ output by B matches the key
encapsulated in C∗ is therefore at least

Pr[Q̂]

qR
≥

AdvIND-CCA
A,PKEM′(λ,m, k)− qO/2γ

qR
.

ut

Remark on the tightness. Alternatively, we could have based the security of our
IND-CCA-secure scheme on the IND-CPA (rather than OW-CPA) security of PKEM′.
In this case, we would have achieved a tighter reduction, as we would have been able to
avoid guessing the index (K̂, (r̂, K̂′))←$ LR, at the cost of requiring stronger security
of the underlying scheme.

From IND-CCA-secure KEMs to IND-CCA-secure encryption. It is well-known that
IND-CCA-secure KEMs can be generically transformed into IND-CCA-secure encryp-
tion schemes, by combining it with a CCA-secure symmetric encryption scheme [FO99].
This construction applies to PKEMs as well.

2.7 Bloom Filter Encryption from CP-ABE

We now present an alternative, generic construction of a BFKEM from ciphertext-
policy attribute-based encryption (CP-ABE) [BSW07]. In particular the construction
can be instantiated with any small-universe (i.e., bounded) CP-ABE scheme that is
adaptively secure, supports at least OR-policies, and allows to encrypt messages from
an exponentially large space.

In contrast to the basic BFKEM construction in Section 2.5, we are able to gener-
ically obtain constant-size ciphertexts (independent of the parameters m and k) if the
underlying CP-ABE scheme beyond possessing the aforementioned properties, is also
compact, i.e., provides constant-size ciphertexts, (as e.g. [CCL+13,AHY15]). Compact-
size ciphertexts come at the cost of increased secret key size in existing schemes (at
least quadratic in the number of attributes). However, for forward-secret 0-RTT key-
exchange storage cost at the server is less expensive than communication bandwidth
and thus can be considered a viable trade-off.
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CP-ABE. Before we describe our construction let us briefly recall CP-ABE. Therefore,
let U be the universe of attributes and we require only small-universe constructions, i.e.,
U is fixed at setup and |U| is polynomially bounded in the security parameter λ (in our
BFKEM construction we will have |U| = m). Intuitively, in a CP-ABE scheme secret
keys are issued with respect to attribute sets U′ ⊆ U and messages are encrypted with
respect to access structures (policies) defined over U. Decryption works iff the attributes
in the secret key satisfy the policy used to produce the ciphertext. Let us discuss this a
bit more formally.

Definition 11 (Access Structure [BSW07]). Let U be the attribute universe. A collec-
tion A ∈ 2U of non-empty sets is an access structure on U. The sets in A are called
the authorized sets, and the sets not in A are called the unauthorized sets. A collection
A ∈ 2U is called monotone if ∀ B,C ∈ A : if B ∈ A and B ⊆ C, then C ∈ A.

Subsequently, we do not require arbitrary monotone access structures, but only OR-
policies (i.e., threshold policies with threshold 1). In particular, for some attribute set
U′ := (u1, . . . , un) ⊆ U we consider policies of the form u1 OR . . . OR un, repre-
senting an access structure A := 2U

′ \ ∅.
Definition 12 (CP-ABE). A ciphertext-policy attribute-based encryption scheme is a
tuple CP-ABE = (Setup,KGen,Enc,Dec) of PPT algorithms:

Setup(1λ,U) : Takes as input a security parameter λ and an attribute universe de-
scription U and outputs a master secret and public key (msk,mpk). We assume
that all subsequent algorithms will implicitly receive the master public key mpk
(public parameters) as input which implicitly fixes a message spaceM.

KGen(msk,U′) : Takes as input the master secret key msk and a set of attributes U′ ⊆
U and outputs a secret key skU′ .

Enc(M,A) : Takes as input a message M ∈M and an access structure A and outputs
a ciphertext C.

Dec(skU′ , C) : Takes as input a secret key skU′ and a ciphertext C and outputs a mes-
sage M or ⊥ in case of decryption does not work.

Correctness of CP-ABE requires that for all λ, all attribute sets U, all (msk,mpk)
←$ Setup(1λ,U), all M ∈ M, all A ∈ 2U \ ∅, all U′ ∈ A, all skU′ ←$ KGen(msk,U′)
we have that Pr[Dec(skU′ ,Enc(M,A)) =M ] = 1.
Security of CP-ABE. Figure 3 defines adaptive IND-T with T ∈ {CPA,CCA} security
for CP-ABE. We stress that we only consider small-universe schemes where the size of
U is polynomially bounded in the security parameter λ. We denote this value by n and
consider the attribute set to be U = {1, . . . , n}.

Definition 13 (IND-T Security of CP-ABE). We define the advantage of an adversary
A in the IND-T experiment ExpIND-T

A,CP-ABE(λ, n) as

AdvIND-T
A,CP-ABE(λ, n) :=

∣∣∣∣Pr [ExpIND-T
A,CP-ABE(λ, n) = 1

]
− 1

2

∣∣∣∣ .
A ciphertext-policy attribute-based encryption scheme CP-ABE is IND-T, T ∈ {CPA,
CCA}, secure, if AdvIND-T

A,CP-ABE(λ, n) is a negligible function in λ for all n > 0 and all
PPT adversaries A.
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ExpIND-T
A,CP-ABE(λ, n):

(msk,mpk)←$ Setup(1λ,U)
b←$ {0, 1},Q ← ∅
(M0,M1,A∗, stateA)←$ AO,KGen(msk,·)(mpk)

where O ← Dec(·, ·) if T = CCA2 and O ← ∅ otherwise.
KGen(msk,U′) returns skU′ and setsQ ← Q∪ U′

if if M0,M1 /∈M ∨ |M0| 6= |M1| ∨ A∗ ∩Q 6= ∅, let C∗ ← ⊥
else, let C∗←$ Enc(Mb,A∗)
b∗←$ AO,KGen(msk,·)(C∗, stateA)

where O ← Dec′(·, ·) if T = CCA2 and O ← ∅ otherwise.
Dec′(U′, C) returns Dec(KGen(msk,U′), C) if C 6= C∗

and ⊥ otherwise.
KGen(msk,U′) returns skU′ if U′ /∈ A∗ and ⊥ otherwise

return 1, if b∗ = b
return 0

Fig. 3. IND-T security for small-universe CP-ABE: T ∈ {CPA,CCA}.

Intuition of the BFKEM construction. The intuition of constructing CPA-secure
BFKEM from CP-ABE is very simple. Basically, we map the indicesm in T ∈ {0, 1}m
of a Bloom filter (H,T ) to the attribute universe U. Then we generate for every at-
tribute i ∈ [m] (we consider U = {1, . . . ,m}) a secret key sk{i}, set our secret key
of the BFKEM scheme to be sk := (T, (sk{1}, . . . , sk{m})) and delete msk. Encryp-
tion is with respect to the attributes given by the indices I obtained from sending a
randomly sampled tag r through the hash functions Hj , j ∈ [k] of the Bloom filter.
Decryption works by using one secret key sk{i} indexed by I. Puncturing a ciphertext
simply amounts to discarding all the secret keys sk{i} indexed by I.

Construction. Subsequently, we describe the generic CPA-secure BFKEM construc-
tion from a CP-ABE scheme ABE. We, thereby, require a CP-ABE with exponentially
large message space M, and assume that the key space K of the BFKEM scheme is
equivalent toM.

KGen(1λ,m, k) : Runs ((Hj)j∈[k], T )←$ BFGen(m, k). Then it runs (msk,mpk)←$

ABE.Setup(1λ, [m]), and for all i ∈ [m] : sk{i}←$ ABE.KGen(msk, {i}). Finally
it sets and outputs

sk := (T, (sk{i})i∈[m]) and pk := (mpk, (Hj)j∈[k]).

Enc(pk) : Takes as input a public key pk. It samples uniformly at random a key K←$ M,
as well as a value r←$ {0, 1}λ, computes ∀j ∈ [k] : ij = Hj(r), sets U′ =
{i1, . . . , ik} and A = 2U

′ \ ∅. Finally, it computes C ′←$ ABE.Enc(K,A) and out-
puts (C,K) where ciphertext C := (r, C ′).

Remark. We remark that if a CP-ABE is used where K andM are different, one
can use standard randomness extraction techniques to extract a key k ∈ K from a
uniformly random message m ∈M.
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Punc(sk, C) : Takes as input a secret key sk := (T, (sk{i})i∈[m]) and ciphertext C :=

(r, C ′). It computes T ′←$ BFUpdate((Hj)j∈[k], T, r) and for each i ∈ [m] it de-
fines

sk′{i} :=

{
sk{i} if T ′[i] = 0, and
⊥ if T ′[i] = 1,

where T ′[i] denotes the i-th bit of T ′. Finally, it returns an updated secret key
sk′ = (T ′, (sk′{i})i∈[m]).

Dec(sk, C) : Takes as input a secret key sk and a ciphertext C := (r, C ′). It computes
∀j ∈ [k] : ij = Hj(r) and takes the first element sk{ij} from (sk{i})i∈[m] with
sk{ij} 6= ⊥. If such an sk{ij} exists it outputs K←$ ABE.Dec(sk{ij}, C

′) and ⊥
otherwise.

Correctness error of this scheme. Under the same argumentation as in the correctness
proof in Section 2.5, we obtain that the correctness error is approximately 2−k · n/p.
CPA security. We directly relate the CPA-security of our construction to the hardness
of breaking CPA-security for the underlying CP-ABE.

Theorem 4. From each efficient adversary B against CPA-security of our PKEM, we
can construct an efficient adversary A which breaks CPA-security of the underlying
CP-ABE, with

AdvIND-CPA
A,CP-ABE(λ, n) ≥ AdvIND-CPA

B,PKEM(λ,m, k).

Proof. We present a reduction which uses an adversary B against CPA-security of the
BFKEMCCAconstruction to break CPA-security of the CP-ABE. First, we engage with
a CPA challenger for a CP-ABE with respect to universe [m] to obtain mpk. Then we
complete the setup by running the following KeyGen′ algorithm and obtain pk:

KeyGen′(mpk,m, k) : Runs ((Hj)j∈[k], T )←$ BFGen(m, k), sets

pk := (mpk, (Hj)j∈[k]),

and outputs pk.

Then, we choose (K0,K1)←$ M×M, r←$ {0, 1}λ, and compute ∀j ∈ [k] : ij =

Hj(r), set U′ = {i1, . . . , ik}, let A = 2U
′ \ ∅. We output (K0,K1,A, state) to the chal-

lenger to obtain (C ′∗, state). We start B on (pk, (r, C ′∗),K0) and simulate the oracles
as follows:

Punc(sk, C) : Set P← P ∪ {C}, and T ← BFUpdate((Hj)i∈[k], T, r).
Corr : If C∗ /∈ P return ⊥. Otherwise, ∀j ∈ [k] : ij = T [j], and, for all ij = 0 obtain

skj ← KGen(j) using the key generation oracle provided by the challenger and
return sk← (T, {skj}j∈[k],ij=0).

If B eventually outputs a bit b∗ we output b∗ to break CPA-security of the CP-ABE
scheme with the same probability as B breaks the CPA-security of the BFKEM. Note
that the Corr oracle can only be called after the challenge ciphertext C∗, and, therefore
r, is determined. This ensures that we only request ”allowed” keys via the KGen oracle
provided by the challenger.
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Obtaining CCA-security. The construction satisfies the additional properties of Defi-
nitions 4, 5, and 6 with the same arguments as in Section 2.5. Additionally, γ-spreadness
(Def. 7) is given by construction: The randomness r is chosen uniformly at random from
{0, 1}λ. Thus, we can apply the Fujisaki-Okamoto [FO99] transform the same way as
done in Section 2.6 to achieve CCA security.

2.8 Bloom Filter Encryption from IBBE

In this section, we present our generic construction of a BFKEM from any identity-
based broadcast encryption (IBBE) scheme. We note that taking the path via IBBE
allows us to simultaneously obtain small ciphertexts and small public keys.
Identity-Based Broadcast Encryption. We recall the basic definition of IBBE and its
security.

Definition 14 (IBBE). An identity-based broadcast encryption (IBBE) scheme is a tu-
ple IBBE = (Setup,Extract,Enc,Dec) consisting of four probabilistic polynomial-
time algorithms with the following properties:

Setup(1λ, k) : Takes as input the security parameter λ and the maximal number of
receivers k and outputs a master public key pk and a master secret key msk. We
assume that pk implicitly defines the identity space ID.

Extract(msk, IDi) : Takes as input the master secret key msk and an user identity IDi
and outputs and user private key skIDi .

Enc(pk,S) : Takes as input the master public key pk and a set of user identities S and
outputs a ciphertext C and a key K.

Dec(skIDi ,S, C) : Takes as input a user secret key skIDi , a set of user identities S and
a ciphertext C and outputs the key K.

Correctness for IBBE requires that for all λ, for all polynomially bounded k in λ, for
all (pk,msk)←$ Setup(1λ, k), for all S = {ID1, . . . , IDi} ∈ IDi with i ≤ k, for all
(C,K)←$ Enc(pk,S), it holds for all IDS ∈ S that

Pr [Dec(Extract(msk, IDS),S, C) = K] = 1.

ExpIND-sID-CPA
A,IBBE (λ, k)

S∗ = {ID∗1, . . . , ID∗s}←$ A(1λ)
(pk, sk)←$ Setup(1λ, k)
(C∗,K0)←$ Enc(pk)
K1←$ K, b∗←$ {0, 1}
b∗←$ AExtract(sk,·)(pk, C∗,Kb)
Extract(sk, j) returns skIDj ←

$ Extract(sk, j) if j /∈ S∗ and ⊥ otherwise.
return 1, if b∗ = b
return 0

Fig. 4. IND-sID-CPA security for IBBE.
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Definition 15 (IND-sID-CPA-security of IBBE). We define the advantage of an adver-
sary A in the IND-sID-CPA experiment ExpIND-sID-CPA

A,IBBE (λ, k) as

AdvIND-sID-CPA
A,IBBE (λ, k) :=

∣∣∣∣Pr [ExpIND-sID-CPA
A,IBBE (λ, k) = 1

]
− 1

2

∣∣∣∣ .
We say that an identity-based broadcast encryption scheme IBBE is IND-sID-CPA-
secure, if the advantage AdvIND-sID-CPA

A,PKEM (λ, k) is a negligible function in λ for all k > 0
and all PPT adversaries A.

Construction. Let B = (BFGen,BFUpdate,BFCheck) be a Bloom filter and let IBBE
= (Setup, Extract, Enc, Dec) be an identity-based broadcast encryption scheme. We
construct a Bloom Filter Key Encapsulation Mechanism PKEM = (KGen,Enc,Punc,
Dec) as follows:
KGen(λ,m, k) : The key generation algorithm generates a Bloom filter instance by
running (H,T )←$ BFGen(m, k) and generates an IBBE instance by invoking (pkIBBE,
msk)←$ IBBE.Setup(λ, k). For each i ∈ [m] it calls

ski←$ IBBE.Extract(msk, i).

Finally, it sets

pk := (H, pkIBBE) and sk :=
(
T, (ski)i∈[m]

)
.

Remark. Observe that the maximum number of recipients is set to the Bloom filter’s
optimal number of universal hash functions k and the user identity space is bound to
the Bloom filter’s entries m.
Enc(pk) : Given a public key pk = (H, pkIBBE), it samples a random value r←$ {0, 1}λ
and generates indices ij := Hj(r) for (Hj)j∈[k] := H . Then it invokes (K, C ′)←$ IBBE.
Enc(pkIBBE,S), where S := {ij}j∈[k]. Finally, it outputs (C,K), where ciphertext
C := (C ′, r).
Punc(sk, C) : Given a secret key sk = (T, (ski)i∈[m]) and a ciphertext C = (C ′, r), it
invokes T ′ = BFUpdate(H,T, r) and defines

sk′i :=

{
ski, if T ′[i] = 0

⊥, if T ′[i] = 1.

Finally, the algorithm returns sk′ = (T ′, (sk′i)i∈[m]).

Remark. From an IBBE’s point of view, the puncturing procedure removes participants
from the broadcast network by deleting their respective user private keys.
Dec(sk, C) : The input is a secret key sk = (T, (ski)i∈[m]) and ciphertext C = (C ′, r).
Again, let S := {ij}j∈[k]. If BFCheck(H,T, r) = 0, then the algorithm returns ⊥.
Else, there exists at least one index n ∈ S such that skn 6= ⊥. The algorithm picks the
smallest index n that meets the previous requirements, computes

K := IBBE.Dec(skn,S, C ′)

and returns K.
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Remark. This algorithm essentially checks, if an user secret key of the user identities
in set S still exists. If so, the ciphertext can be decrypted.
Correctness error. With exactly the same arguments as for the scheme from Sec-
tion 2.5, one can verify that the correctness error of this scheme is essentially identical to
the false positive probability of the Bloom filter, unless a given ciphertext C = (C ′, r)
has a value of r which is identical to the value of r of any previous ciphertext. Since r
is uniformly random in {0, 1}λ, this probability is approximately 2−k + n · 2−λ.
IND-CPA-security. We prove the IND-CPA security of our construction, if the IBBE
is IND-sID-CPA-secure.

Theorem 5. From each efficient adversary B against IND-CPA-security of our PKEM,
we can construct an efficient algorithm A against the IND-sID-CPA-security of the
underlying IBBE scheme with advantage

AdvIND-sID-CPA
A,IBBE (λ, k) ≥ AdvIND-CPA

B,PKEM(λ,m, k).

Proof. We proceed by presenting a reduction which uses an adversary B against the
IND-CPA-security of the BFKEM to break the IND-sID-CPA-security of the IBBE.
The reduction together with B then forms A. In order to engage with the IND-CPA
Challenger (C henceforth), we need to commit to a set of recipients S∗ we will attack.

We generate a new Bloom filter instance by invoking (H,T )←$ BFGen(m, k) and
sample an additional random value r∗←$ {0, 1}λ. Next, we compute indices ij :=
Hj(r

∗) where (Hj)j∈[k] := H are the k universal hash functions of the Bloom fil-
ter. We define S∗ := {ij}j∈[k] and forward the set to C. Note that |S| = k.

The challenger C generates a master public key pk and a master secret key msk
by invoking IBBE.Setup(λ, k) and sends us the master public key pk. Additionally, C
prepares a challenge by running (C ′,K0)←$ IBBE.Enc(pk,S∗) and sampling K1←$ K,
where K is the symmetric key space. The challenger sends us the challenge (C ′,Kb),
where b is a bit drawn uniformly at random.

We will initialize the adversary B with input (pk, C∗ = (C ′, r∗),Kb). In the sequel
B has access to several oracles, which we simulate as follows:

– Punct(C = (C ′, r)): We invoke T := BFUpdate(H,T, r) and setQ := Q∪ {C}.
– Corr : If C∗ /∈ Q, return ⊥. Else query skj := Extract(j) for all j ∈ [k] such that
T [j] = 0. Note, that we are allowed to call Extract on all user identities, since punc-
turing at C∗ removes all troublesome secret keys. We return (T, {skj}j∈[k]∧T [j]=0)
to A.

Eventually, B will output a bit b∗ which we will forward to the challenger C. Since all
queries are perfectly simulated, we get

AdvIND-sID-CPA
A,IBBE (λ, k) ≥ AdvIND-CPA

B,PKEM(λ,m, k).

This concludes the proof. ut
CCA Security. The construction satisfies the additional properties of Definitions 4, 5,
and 6 with the same arguments as in Section 2.5. Additionally, γ-spreadness (Def. 7) is
given by construction: The randomness r is chosen uniformly at random from {0, 1}λ.
Thus, we can apply the Fujisaki-Okamoto [FO99] transform the same way as done in
Section 2.6 to achieve CCA security.
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3 Time-Based Bloom Filter Encryption

For a standard BFE scheme we have to update the public key after the secret key has
been punctured n-times, because otherwise the false-positive probability would exceed
an acceptable bound. In this section, we describe a construction of a scheme where
the lifetime of the public key is split into time slots. Ciphertexts are associated with
time slots, which assumes loosely synchronized clocks between sender and receiver of
a ciphertext. The main advantage is that for a given bound on the correctness error,
we are able to handle about the same number of puncturings per time slot as the basic
scheme during the entire life time of the public key. We call this approach time-based
Bloom filter encryption. It is inspired by the time-based approach used to construct
puncturable encryption in [GM15,GHJL17], which in turn is inspired by the construc-
tion of forward-secret public-key encryption by Canetti, Halevi, and Katz [CHK03].

Note that a time-based BFE (TB-BFE) scheme can trivially be obtained from any
BFE scheme, by assigning an individual public/secret key pair for each time slot. How-
ever, if we want to split the life time of the public key into, say, 2t time slots, then this
would of course increase the size of keys by a factor 2t. Since we want to enable a
fine-grained use of time slots, to enable a very large number of puncturings over the
entire lifetime of the public key without increasing the false positive probability beyond
an unacceptable bound, we want to have 2t as large as possible, but without increasing
the size of the public key beyond an acceptable bound. To this end, we give a direct
construction which increases the size of secret keys only by an additive amount of ad-
ditional group elements, which is only logarithmic in the number of time slots. Thus,
for 2t time slots we have to add merely about t elements to the secret key, while the size
of public keys remains even constant.

3.1 Formal Model of TB-BFE

Likewise to considering our Bloom filter KEMs as an instantiation of a puncturable
KEM with non-negligible correctness error, we can view the time-based approach anal-
ogously as an instantiation of a puncturable forward-secret KEM (PFSKEM) [GHJL17]
with non-negligible correctness error. Consequently, we also chose to stick with the ex-
isting formal framework for PFSKEM, which we present subsequently. It is essentially
our BFKEM Definition 2, augmented by time slots and an additional algorithm PuncInt
that allows to puncture a secret key not with respect to a given ciphertext in a given time
slot, but with respect to an entire time slot.

Definition 16 (PFSKEM [GHJL17]). A puncturable forward-secret key encapsula-
tion (PFSKEM) scheme is a tuple of the following PPT algorithms:

KGen(1λ,m, k, t) : Takes as input a security parameter λ, parameters m and k for the
Bloom filter, and a parameter t specifying the number of time slots. It outputs a
secret and public key (sk, pk), where we assume that the key-space K is implicit in
pk.

Enc(pk, τ) : Takes as input a public key pk and a time slot τ and outputs a ciphertext
C and a symmetric key K.

27



PuncCtx(sk, τ, C) : Takes as input a secret key sk, a time slot τ , a ciphertext C and
outputs an updated secret key sk′.

Dec(sk, τ, C) : Takes as input a secret key sk, a time slot τ , a ciphertext C and outputs
a symmetric key K or ⊥ if decapsulation fails.

PuncInt(sk, τ) : Takes as input a secret key sk, a time slot τ and outputs an updated
secret key sk′ for the next slot τ + 1.

Correctness. Essentially, the correctness definition is based on that of a PKEM, but
additionally considers time slots (see also [GHJL17]).

Definition 17 (Correctness). For all λ,m, k, t ∈ N, any (sk, pk)←$ KGen(1λ,m, k, t),
any time slot τ∗, any (C∗,K)←$ Enc(pk, τ∗), and any (arbitrary interleaved) sequence
i = 1, . . . , ` (where ` is determined bym, k) of invocations of sk′←$ PuncCtx(sk, τ, C ′)
for any (C ′, τ) 6= (C∗, τ∗) or sk′←$ PuncInt(sk, τ) for any τ 6= τ∗ it holds that

Pr
[
Dec(sk′, τ∗, C∗) = ⊥

]
≤ µ(m, k),

where µ(·) is some (possibly non-negligible) bound.

3.2 Additional Properties of a PFSKEM

We now present the additional properties from Section 2.3 for the PFSKEM setting.

Definition 18 (Extended Correctness). For all λ,m, k, t, ` ∈ N, any (sk, pk)←$ KG-
en(1λ,m, k, t), any τ1, any (Cτ1,1,K)←$ Enc(pk, τ1), and any (arbitrary interleaved)
sequence {(Cτj ,1, . . . , Cτj ,i)}i∈[`],j∈[k] corresponding to invocations of

skτj ,i+1←$ PuncCtx(skτj ,i, τj , Cτj ,i) and skτj+1,i←$ PuncInt(skτj ,i, τj),

where we let skτ1,1 = sk it holds that:

1. Impossibility of false-negatives:
Dec(skτj ,i, τj , Cτj ,i) = ⊥ for all i ∈ [`], j ∈ [k].

2. Perfect correctness of the initial, non-punctured secret key:
If (C,K)←$ Enc(pk, τj) then Dec(skτ1,1, τj , C) = K, where skτ1,1 is the initial,
non-punctured secret key.

3. Semi-correctness of punctured secret keys:
If Dec(skτj ,i, τj , C) 6= ⊥ then Dec(skτj ,i, τj , C) = Dec(skτ1,1, τj , C).

Definition 19 (Separable Randomness). Let PFSKEM = (KGen,Enc,PuncCtx,Dec,
PuncInt) be a PFSKEM. We say that PFSKEM has separable randomness, if one can
equivalently write the encapsulation algorithm Enc as

(C,K)←$ Enc(pk, τ) = Enc(pk, τ ; (r,K)),

for uniformly random (r,K) ∈ {0, 1}ρ+λ, where Enc(·, ·; ·) is a deterministic algorithm
whose output is uniquely determined by pk, τ and the randomness (r,K) ∈ {0, 1}ρ+λ.
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Definition 20 (Publicly-Checkable Puncturing). Let {Qτj}kj=1 be any list of lists of
ciphertexts {(Cτj ,1, . . . , Cτj ,wj )}kj=1. We say that PFSKEM allows publicly-checkable
puncturing, if there exists an efficient algorithm CheckPunct with the following correct-
ness property.

1. Run (sk, pk)←$ KGen(1λ,m, k, t).
2. For j ∈ [k] do

– Compute Ci←$ Enc(pk, τj) and sk = PuncCtx(sk, τj , Ci) for i ∈ [wj ].
– Compute sk←$ PuncInt(sk, τj)

3. Let C and τ be any string. We require that

⊥ = Dec(sk, τ, C) ⇐⇒ ⊥ = CheckPunct(pk, τ, {Qτj}kj=1, C).

Definition 21 (γ-Spreadness). Let PFSKEM = (KGen,Enc,PuncCtx,Dec,PuncInt)
be a randomness-separable PFSKEM with ciphertext space C. We say that PFSKEM is
γ-spread, if for any honestly generated pk, any key K, any τ and any C ∈ C

Pr
r←$ {0,1}ρ [C = Enc(pk, τ ; (r,K))] ≤ 2−γ .

3.3 Security Definitions

The security of a PFSKEM scheme is defined in a selective-time experiment, where the
adversary has to commit to a time slot τ∗ to attack before seeing the parameters of the
scheme. We present the IND-CPA and IND-CCA experiments in Figure 5.

Exps-T
A,PFSKEM(λ,m, k, t):

τ∗←$ A(1λ)
(sk, pk)←$ KGen(1λ,m, k, t), (C∗,K0)←$ Enc(pk, τ∗)
K1←$ K, b←$ {0, 1},QC ← ∅,Qτ ← ∅
b∗←$ AO,PuncCtx(sk,·,·),PuncInt(sk,·),Corr(pk, C∗,Kb)

where O ← {Dec′(sk, ·)} if T = IND-CCA and O ← ∅ otherwise.
Dec′(sk, τ, C) behaves as Dec but returns ⊥ if C = C∗ and τ = τ∗

PuncCtx(sk, τ, C) runs sk←$ PuncCtx(sk, τ, C) andQC ← QC ∪ {(C, τ)}
PuncInt(sk, τ) runs sk←$ PuncInt(sk, τ) andQτ ← Qτ ∪ {τ}
Corr returns sk if (C∗, τ∗) ∈ Q or τ∗ ∈ Qτ and ⊥ otherwise

return 1, if b∗ = b
return 0

Fig. 5. Security for PFSKEM: T ∈ {IND-CPA, IND-CCA}.

Definition 22 (s-T-Security of PFSKEM). We define the advantage of an adversary
A in the s-T experiment Exps-T

A,PFSKEM(λ,m, k, t) as

Advs-T
A,PFSKEM(λ,m, k, t) :=

∣∣∣∣Pr [Exps-T
A,PFSKEM(λ,m, k, t) = 1

]
− 1

2

∣∣∣∣ .
A puncturable forward-secret key-encapsulation scheme PFSKEM is s-T, T ∈ {CPA,
CCA}, secure, if Advs-T

A,PFSKEM(λ,m, k, t) is a negligible function in λ for all m, k,
t > 0 and all PPT adversaries A.
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3.4 Constructing Time-Based BFE

Before we can present our construction, we recall hierarchical identity-based key en-
capsulation schemes (HIB-KEMs). HIB-KEMs represent a building block of our con-
struction.
HIB-KEMs. Below we present the basic definition and the security properties of HIB-
KEMs.

Definition 23. A (t + 1)-level hierarchical identity-based key encapsulation scheme
(HIB-KEM) with identity space D = D1 × · · · × Dt+1, ciphertext space C, and key
space K consists of the following four algorithms:

HIBGen(1λ) : Takes as input a security parameter and outputs a key pair (mpk, sk0).
We say that mpk is the master public key, and sk0 is the level-0 secret key.

HIBDel(ski−1, d) : Takes as input a level-i − 1 secret key ski−1 with i ∈ [t] and an
element d ∈ Di and outputs a level-i secret key ski.

HIBEnc(mpk,d) : Takes as input the master public key mpk and an identity d ∈ D
and outputs a ciphertext C ∈ C and a key K ∈ K.

HIBDec(sk`, C) : Takes as input a level-t secret key skt and a ciphertextC, and outputs
a value K ∈ K ∪ {⊥}, where ⊥ is a distinguished error symbol.

Security definition. We will require only the very weak notion of one-wayness under
selective-ID and chosen-plaintext attacks (OW-sID-CPA).

ExpOW-sID-CPA
A,HIB-KEM (λ)

(d∗, stateA)←$ A(1λ)
if d∗ /∈ D return 0
(mpk, sk0)←$ HIBGen(1λ), (C,K)←$ HIBEnc(mpk,d∗)
K∗←$ A(mpk, C, stateA)
return 1, if K∗ = K
return 0

Fig. 6. OW-sID-CPA security.

Definition 24 (OW-sID-CPA Security of HIB-KEM). We define the advantage of an
adversary A in the OW-sID-CPA experiment ExpOW-sID-CPA

A,HIB-KEM (λ) as

AdvOW-sID-CPA
A,HIB-KEM (λ) := Pr

[
ExpOW-sID-CPA

A,HIB-KEM (λ) = 1
]
.

We call a HIB-KEM OW-sID-CPA secure, if AdvOW-sID-CPA
A,HIB-KEM (λ) is a negligible function

in λ for all PPT adversaries A.

Time slots. We will construct a Bloom filter encryption scheme that allows to use 2t

time slots. We associate the i-th time slot with the string in {0, 1}t that corresponds to
the canonical t-bit binary representation of integer i.
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Following [CHK03,GM15,GHJL17], each time slot forms a leaf of an ordered bi-
nary tree of depth t. The root of the tree is associated with the empty string ε. We
associate the left-hand descendants of the root with bit string 0, and the right-hand de-
scendant with 1. Continuing this way, we associate the left descendant of node 0 with 00
and the right descendant with 01, and so on. We continue this procedure for all nodes,
until we have constructed a complete binary tree of depth t. Note that two nodes at level
t′ of the tree are siblings if and only if their first t′ − 1 bits are equal, and that each bit
string in {0, 1}t is associated with a leaf of the tree. Note also that the tree is ordered,
in the sense that the leftmost leaf is associated with 0t, its right neighbour with 0t−11,
and so on.

Intuition of the construction. The basic idea behind the construction combines the
binary tree approach of [CHK03,GM15,GHJL17] with the Bloom filter encryption con-
struction described in Section 2.5. We use a HIB-KEM with identity space

D = D1 × · · · × Dt+1 = {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
t times

×[m].

Each bit vector τ ∈ D1 × · · · × Dt = {0, 1}t corresponds to one time slot, and we set
Dt+1 = [m], where m is the size of the Bloom filter. The hierarchical key delegation
property of the HIB-KEM enables the following features:

First, given a HIB-KEM key skτ for some “identity” (= time slot) τ ∈ {0, 1}t, we
can derive keys for all Bloom filter bits from skτ by computing

skτ |d←$ HIBDel(skτ , d) for all d ∈ [m].

Second, in order to advance from time slot τ − 1 to τ , we first compute

skτ |d←$ HIBDel(skτ , d) for all d ∈ [m].

As soon as we have computed all Bloom filter keys for time slot τ , we “puncture” the
tree “from left to right”, such that we are able to compute all skτ ′ with τ ′ > τ , but
not any skτ ′ with τ ′ ≤ τ . Here, we proceed exactly as in [CHK03,GM15,GHJL17].
That is, in order to puncture at time slot τ , we first compute the HIB-KEM secret keys
associated to all right-hand siblings of nodes that lie on the path from node τ to the
root, and then we delete all secret keys associated to nodes that lie on the path from
node τ to the root, including skτ itself. This yields a new secret key, which contains m
level-(t+1) HIB-KEM secret keys plus at most t HIB-KEM secret keys for levels ≤ t,
even though we allow for 2t time slots.

Construction. Let (HIBGen,HIBDel,HIBEnc,HIBDec) be a HIB-KEM with key space
K and identity space D = D1 × · · · × Dt+1, where D1 = · · · = Dt = {0, 1},
Dt+1 = [m], and m is the size of the Bloom filter. Since we will only need selec-
tive security, one can instantiate such a HIB-KEM very efficiently, for example in
bilinear groups based on the Boneh-Boyen-Goh [BBG05] scheme, or based on lat-
tices [ABB10]. In the sequel, we will write {0, 1}t shorthand for D1 × · · · × Dt,
but keep in mind that the HIB-KEM supports more fine-grained key delegation. Let
B = (BFGen,BFUpdate,BFCheck) be a Bloom filter for set {0, 1}λ. Furthermore,
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let G′ : K → {0, 1}λ be a hash function (which will be modeled as a random ora-
cle [BR93] in the security proof).

We define PKEM = (KGen,Enc,PuncCtx,Dec,PuncInt) as follows.
KGen(1λ,m, k, 2t) : This algorithm first runs ((Hj)j∈[k], T )←$ BFGen(m, k) to gen-
erate a Bloom filter, and (mpk, skε)←$ HIBGen(1λ) to generate a key pair. Finally, the
algorithm generates the keys for the first time slot. To this end, it first computes the
HIB-KEM key for identity 0t by recursively computing

sk0d ←$ HIBDel(sk0d−1 , 0) for all d ∈ [t].

Then it computes the m Bloom filter keys for time slot 0t by computing

sk0t|d←$ HIBDel(sk0t , d) for all d ∈ [m],

and setting skBloom := (sk0t|d)d∈[m]. Finally, it punctures the secret key skε at position
0t, by computing

sk0d−11←$ HIBDel(sk0d−1 , 1) for all d ∈ [t],

and setting sktime := (sk0d−1|1)d∈[t]. The algorithm outputs

sk := (T, skBloom, sktime) and pk := (mpk, (Hj)j∈[k]).

Enc(mpk, τ) : On input mpk and time slot identifier τ ∈ {0, 1}t, this algorithm first
samples a random string c←$ {0, 1}λ and a random key K←$ {0, 1}λ. Then it defines
k HIB-KEM identities as dj := (τ,Hj(c)) ∈ D for j ∈ [k], and generates k HIB-
KEM key encapsulations as

(Cj ,Kj)←$ HIBEnc(mpk,dj) for j ∈ [k].

Finally, it outputs the ciphertext C := (c, (Cj , G
′(Kj)⊕ K)j∈[k]).

Note that the ciphertexts essentially consists of k + 1 elements of {0, 1}λ, plus k
elements of C, where k is the Bloom filter parameter.
PuncCtx(sk, C) : Given a ciphertext C := (c, (Cj , G

′(Kj) ⊕ K)j∈[k]), and secret key
sk = (T, skBloom, sktime) where skBloom = (skτ |d)d∈[m], the puncturing algorithm first
computes T ′ = BFUpdate((Hj)j∈[k], T, c). Then, for each i ∈ [m], it defines

sk′τ |i :=

{
skτ |i if T ′[i] = 0, and
⊥ if T ′[i] = 1,

where T ′[i] denotes the i-th bit of T ′. Finally, this algorithm sets sk′Bloom = (sk′τ |d)d∈[m]

and returns sk′ = (T ′, sk′Bloom, sktime).
Remark. We note again that the above procedure is correct even if the procedure is
applied repeatedly, with the same arguments as for the construction from Section 2.5.
Also, the puncturing algorithm essentially only evaluates k universal hash functions and
then deletes a few secret keys, which makes this procedure extremely efficient.
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Dec(sk, C) : Given sk = (T, skBloom, sktime) where skBloom = (skτ |d)d∈[m] and ci-
phertext C := (c, (Cj , Gj)j∈[k]). If skτ |Hj(c) = ⊥ for all j ∈ [k], then it outputs ⊥.
Otherwise, it picks the smallest index j such that skτ |Hj(c) 6= ⊥, computes

Kj = HIBDec(skτ |Hj(c), Cj),

and returns K = Gj ⊕G′(Kj).
Remark. Again we have Dec(sk, C) 6= ⊥ ⇐⇒ BFCheck(H,T, c) = 0, which
guarantees extended correctness in the sense of Definition 4.
PuncInt(sk, τ) : Given a secret key sk = (T, skBloom, sktime) for time interval τ ′ < τ ,
the time puncturing algorithm proceeds as follows. First, it resets the Bloom filter by
setting T := 0m. Then it uses the key delegation algorithm to first compute skτ . This
key can be computed from the keys contained in sktime, because sk is a key for time
interval τ ′ < τ . Then it computes

skτ |d←$ HIBDel(skτ , d) for all d ∈ [m],

and redefines skBloom := (skτ |d)d∈[m]. Finally, it updates sktime by computing the HIB-
KEM secret keys associated to all right-hand siblings of nodes that lie on the path from
node τ to the root and adds the corresponding keys to sktime. Then it deletes all keys
from sktime that lie on the path from τ to the root.
Remark. Note that puncturing between time intervals may become relatively expen-
sive. Depending on the choice of Bloom filter parameters, in particular on m, this may
range between 215 and 225 HIBE key delegations. However, the main advantage of
Bloom filter encryption over previous constructions of puncturable encryption is that
these computations must not be performed “online”, during puncturing, but can actu-
ally be computed separately (for instance, parallel on a different computer, or when a
server has low workload, etc.).
Correctness error of this scheme. With exactly the same arguments as for the scheme
from Section 2.5, one can verify that the correctness error of this scheme is essentially
identical to the false positive probability of the Bloom filter, unless a given ciphertext
C = (c, (Cj , Gj)j∈[k]) has a value of c which is identical to the value of c of any previ-
ous ciphertext. Since c is uniformly random in {0, 1}λ, this probability is approximately
2−k + n · 2−λ.
Extended correctness. It is straightforward to verify that the scheme satisfies extended
correctness in the sense of Definition 4.
CPA Security. Below we state theorem for CPA security of our scheme.

Theorem 6. From each efficient adversary B that issues q queries to random oracleG′

we can construct an efficient adversary A with

AdvOW-sID-CPA
A,HIB-KEM (λ) ≥

Advs-CPA
B,PFSKEM(λ,m, k)

qk
.

The proof is almost identical to the proof of Theorem 1 and a straightforward reduction
to the security of the underlying HIB-KEM. We sketch it below.
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Proof (Sketch). We sketch the proof of Theorem 6. Recall that a ciphertext has the form

C := (c, (Cj , G
′(Kj)⊕ K)j∈[k]).

Essentially, one argues exactly as in Theorem 1 that the adversary receives no infor-
mation about the key K encapsulated by the Bloom filter encryption scheme, unless it
ever queries Kj to random oracle G′ for some j ∈ [k]. Therefore assume that B queries
some Kj to G′ in its q′-th query.

At the beginning of the reduction, A first guesses index j←$ [k] and q′←$ [q]. It
also samples the random string c←$ {0, 1}λ used for the challenge BFKEM ciphertext
at the beginning of the game, generates a Bloom filter

((Hj)j∈[k], T )←$ BFGen(m, k)

and requests a challenge ciphertext for identity d∗ = (τ∗|Hj(c)), where τ∗ is the
time slot selected by B. The challenge ciphertext received back from the HIB-KEM
experiment is then embedded in the BFKEM challenge ciphertext. The PuncCtx and
PuncInt(sk, ·) queries of B can trivially be simulated by A. The Corr queries can be
answered using the HIBDel oracle provided by the OW-sID-CPA security experiment
of the HIB-KEM.

When B makes its q′-th query to G′ on value K′, then A terminates and outputs K′.
We know that any non-trivial adversary B queries Kj toG′ for some j. IfA has guessed
q′ and j correctly, which happens with probability 1/(qk), then it holds that K′ = Kj ,
which yields the claim. ut

CCA Security. In order to apply the Fujisaki-Okamoto [FO99] transform in the same
way as done in Section 2.6 to achieve CCA security, we need to show that the time
based variants of the properties presented in Section 2.3 are satisfied (i.e., Defini-
tions 18, 19, 20, and 21). First, using a full-blown HIBE as a starting point yields a sepa-
rable HIB-KEM as discussed in Section 2.3. Hence, the separable randomness (Def. 19)
is satisfied. Moreover, the publicly-checkable puncturing (Def. 20) is given by construc-
tion (as in Section 2.5). Regarding extended correctness (Def. 18), the impossibility of
false-negatives is given by construction, the perfect correctness of the non-punctured
secret key is given by the perfect correctness of the HIBE and the semi-correctness of
punctured secret keys is given by construction. Finally, γ-spreadness (Def. 21) is also
given by construction: the ciphertext component c is chosen uniformly at random from
{0, 1}λ. Consequently, all properties are satisfied. We note that one could omit c in the
ciphertext if the concretely used HIBE ciphertexts are already sufficiently random. Con-
sidering the HIBE of Boneh-Boyen-Goh [BBG05], HIBE ciphertexts are of the form
(gr, (hI11 · · ·h

It
t ·h0)r, H(e(g1, g2)

r)⊕K), for honestly generated fixed group elements
g, g1, g2, h0, . . . , ht, universal hash function H , fixed K and fixed integers I1, . . . , It.
Consequently, we have that the ciphertext has at least min-entropy log2 p with p being
the order of the groups. We want to mention that also many other HIBE construction
satisfy the required properties, including, for example [GS02,Wat09,CW13].
Remark on CCA Security. Alternatively to applying the FO transform to a PFSKEM
satisfying the additional properties of extended correctness, separable randomness, pub-
licly checkable puncturing and γ-spreadness to obtain CCA security, we can add an-
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other HIBE level to obtain IND-CCA security via the CHK transform [CHK03] in the
standard model, and thus to avoid random oracles if required.

4 Forward-Secret 0-RTT Key Exchange

In [GHJL17], GHJL provide a formal model for forward-secret one-pass key exchange
(FSOPKE) by extending the one-pass key exchange [HK11] by Halevi and Krawczyk.
They provide a security model for FSOPKE which requires both forward secrecy and re-
play protection from the FSOPKE protocol and captures unilateral authentication of the
server and mutual authentication simultaneously. We recap the definition of FSOPKE
with a slightly adapted correctness notion in Appendix B.

Construction. The construction in [GHJL17] builds on puncturable forward-secret
key encapsulation (PFSKEM), and we can now directly plug our construction of time-
based BFE (PFSKEM) as defined in Def. 16 into the construction of [GHJL17, Def.
12], yielding a forward-secret 0-RTT key exchange protocols with non-negligible cor-
rectness error:

FSOPKE.KGen(1λ, r, τmax) : Outputs (pk, sk) as follows: if r = server, then obtain
(PK,SK)← KGen(1λ,m, k, t) (for suitable choices of m, k and t) and set pk :=
(PK, τmax) and sk := (SK, τ, τmax), for τ := 1. If r = client, then set (pk, sk) :=
(⊥, τ), for τ := 1.

FSOPKE.RunC(sk, pk) : Outputs (sk′,K,M) as follows: for sk = τ and pk = (PK,

τmax), if τ > τmax, then set (sk′,K,M) := (sk,⊥,⊥), otherwise obtain (C,K)←
Enc(pk, τ) and set (sk′,K,M) := (τ + 1,K, C).

FSOPKE.RunS(sk, pk,M) : Outputs (sk′,K) as follows: for sk = (SK, τ, τmax) and
pk = ⊥, if SK = ⊥ or τ > τmax, then set (sk′,K) := (sk,⊥) and abort. Obtain
K ← Dec(SK, τ,M). If K = ⊥, then set (sk′,K) = (sk,⊥), otherwise obtain
SK ′ ← PuncCtx(SK, τ,M) and set (sk′,K) = ((SK ′, τ, τmax),K).

FSOPKE.TimeStep(sk, r) : Outputs sk′ as follows: if r = server, then for sk = (SK,

τ, τmax): if τ ≥ τmax, then set sk′ := (⊥, τ +1, τmax) and abort, otherwise obtain
SK ′ ← PuncInt(SK, τ) and set sk′ := (SK ′, τ+1, τmax) and abort. If r = client,
then for sk = τ , set sk′ := τ + 1.

Correctness of the FSOPKE follows from the (extended) correctness property of the
underlying PFSKEM and security guarantees hold due to [GHJL17, Theorem 2]. We
state the following corollary:

Corollary 1. When instantiated with the PFSKEM from Section 3, the above FSOPKE
construction is a correct and secure FSOPKE protocol (with unilateral authentication).

5 Analysis

Finally, we compare our different BFKEM instantiations as presented in Section 2.5-2.8
regarding their time and space complexity (also see Table 1). Regarding computational
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efficiency of Dec and Punc, all schemes are roughly the same. Regarding space com-
plexity, our first construction is optimal regarding the size of public and secret keys,
and we achieve ciphertexts of size O(k). Our second construction can achieve constant
size ciphertexts when instantiated with an ABE scheme that achieves constant size ci-
phertexts. We, however, note that all ABE schemes achieving constant size ciphertext
we are aware of (i.e., [CCL+13,AHY15]) come at the cost of large public and secret
keys. Those key sizes also carry over to our BFKEM construction. Finally, our third
construction can be viewed as the dual to our first construction in terms of space com-
plexity. That is, our scheme is optimal regarding the size of ciphertexts and secret keys,
while it requires O(k) sized ciphertexts.

Construction |pk| |sk| |C| Dec Punc

direct O(1) O(m) O(k) O(k) O(k)

ABE [CCL+13,AHY15] O(m) O(m2) O(1) O(k) O(k)
IBBE [Del07] O(k) O(m) O(1) O(k) O(k)

Table 1. Performance Comparison

When taking concrete values regarding space complexity into account, our IBBE
based construction is the favorable one. In particular, when we use the IBBE by Del-
erablée [Del07] (for convenience we recall it in Appendix C), we obtain ciphertexts
C ′ ∈ G1 × G2 and secret keys skIDj ∈ G1. That is, ciphertexts are shorter and secret
key entries are only half the size of the ones in our direct construction. It is, however,
important to note that those efficiency gains come at the cost of a stronger assumption
(whose validity was analyzed in the generic bilinear group model in [Del07]).

In Table 2, we provide an overview of all existing practically instantiable approaches
to construct a PFSKEM and compare them to the one proposed in this paper.7 We com-
pare all schemes for an arbitrary number ` of time slots, where for sake of simplicity we
assume ` = 2w for some integer w, (corresponding to our time-based BFE/BFKEM)
and only count the expensive cryptographic operations, i.e., such as group exponentia-
tions and pairings.

To quickly summarize the schemes: The most interesting characteristic of our ap-
proach compared to previous approaches is that our scheme allows to offload all ex-
pensive operations to an offline phase, i.e., to the puncturing of time intervals. Here,
in addition to the O(w2) operations which are common to all existing approaches, we
have to generate a number of keys, linear in the size m of the Bloom filter. We be-
lieve that accepting this additional overhead in favor of blazing fast online puncturing
and decryption operations is a viable tradeoff. For the online phase, our approach has a
ciphertext size depending on k (where k = 10 is a reasonable choice), decryption de-
pends on k, the secret key shrinks with increasing amount of puncturings and one does
only require to securely delete secret keys during puncturing (note that all constructions
have to implement a secure-delete functionality for secret keys within puncturing any-

7 We consider all but the PE schemes from indistinguishability obfusca-
tion [CHN+16,CRRV17].
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Scheme |pk| |sk| |C| Dec PuncCtx PuncInt

` = 2w time slots (PFSKEM)

GM (w + 5)|G1| (2w + 3p+ 5)|G2| 3|G1|+ |GT | O(p) O(1) O(w2)
GHJL (w + 35)|G2| ≤ 3(p · 2λ+ w)|G2| 6|G1|+ 2|Zp| O(λ2) O(λ2) O(w2)

Ours (w + 4)|G2| (2me−kp/m + w(2 + w))|G2| 2|G1|+ (4k + 2)λ O(k) O(k) O(w2 +m)

Table 2. Overview of the existing approaches to PFSKEM. We denote by p the number a
secret key is already punctured, and ` the maximum number of time slots. We consider the
GHJL [GHJL17] instantiation with the BKP-HIBE of [BKP14], the GM [GM15] and our in-
stantiations with the BBG-HIBE [BBG05], though other HIBE schemes may lead to different
parameters. Finally, note that p ≤ 220, k and m refer to the parameters in the Bloom filter, where
k is some orders of magnitude smaller than λ, i.e., k = 10 vs. λ = 128, and |Gi| denotes the
bitlength of an element from Gi.

ways). In contrast, decryption and puncturing in GHJL is highly inefficient and takes
several seconds to minutes on decent hardware for reasonable deployment parameters
as it involves a large amount of O(λ2) HIBE delegations and consequently expensive
group operations. In the GM scheme8, puncturing is efficient, but the size of the secret
key and thus cost of decryption grows in the number of puncturings p. Hence, it gets
impractical very soon. More precisely, cost of decryption requires a number of pairing
evaluations that depends on the number of puncturings, and can be in the order of 220

for realistic deployment parameters.

6 Conclusion

In this paper we introduced the new notion of Bloom filter encryption (BFE) as a vari-
ant of puncturable encryption which tolerates a non-negligible correctness error. We
presented various BFKEM constructions. The first one is a simple and very efficient
construction which builds upon ideas known from the Boneh-Franklin IBE. It achieves
constant size public keys. The second one is a generic construction from CP-ABEs
where instantiations with constant size ciphertexts are available. Those constant size
ciphertexts, however, come at the cost of larger keys. The third one is a generic con-
struction from IBBEs, which can be instantiated with the IBBE by Delerablée [Del07].
This instantiation simultaneously yields constant size ciphertexts and compact public
keys. Furthermore, we extended the notion of BFE to the forward-secrecy setting and
also presented a construction of what we call a time-based BFE (TB-BFE). This con-
struction is based on HIBEs and in particular can be instantiated very efficiently using
the Boneh-Boyen-Goh Tiny HIBE [BBG05]. Our time-based BFKEM can directly be
used to instantiate forward-secret 0-RTT key exchange (fs 0-RTT KE) as in [GHJL17].

From a practical viewpoint, our motivation stems from the observation that forward-
secret 0-RTT KE requires very efficient decryption and puncturing. Our framework—
for the first time—allows to realize practical forward-secret 0-RTT KE, even for larger

8 Although GM supports an arbitrary number d of tags in a ciphertext, we consider the scheme
with only using a single tag (which is actually favourable for the scheme) to be comparable to
GHJL as well as our approach.
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server loads: while we only require to delete secret keys upon puncturing, puncturing
in [GHJL17] requires, besides deleting secret-key components, additional computations
in the order of seconds to minutes on decent hardware. Likewise, when using [GM15] in
the forward-secret 0-RTT KE protocol given in [GHJL17], one requires computations
in the order of the current number of puncturings upon decryption, while we achieve
decryption to be independent of this number. Finally, we believe that BFE will find
applications beyond forward-secret 0-RTT KE protocols.
Acknowledgments. This research was supported by H2020 project PRISMACLOUD,
grant agreement n◦644962, H2020 project CREDENTIAL, grant agreement n◦653454,
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A Formal Definitions for PE

Definition 25 (Puncturable Encryption). A puncturable encryption (PE) scheme is a
tuple (KGen,Enc,Punc,Dec) of PPT algorithms:

KGen(1λ,m, k) : Takes as input a security parameter λ, parameters m and k and out-
puts a secret and public key (sk, pk).
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Enc(pk,M) : Takes as input a public key pk, a messageM ∈M and outputs a cipher-
text C.

Punc(sk, C) : Takes as input a secret key sk, a ciphertext C and outputs an updated
secret key sk′.

Dec(sk, C) : Takes as input a secret key sk, a ciphertext C and outputs a message
M ∈M or ⊥ if decryption fails.

Correctness. We start by defining correctness of an PE scheme, which is essentially
our PKEM definition ported to the encryption setting.

Definition 26 (Correctness). For all λ,m, k,∈ N, all messages M ∈M, any (sk, pk)
←$ KGen(1λ,m, k) and C, ←$ Enc(pk,M), we have that Dec(sk, C) =M . Moreover,
for any (arbitrary interleaved) sequence i = 1, . . . , ` (where ` is determined by m, k)
of invocations of sk′←$ Punc(sk, C ′) for any C ′ 6= C it holds that

Pr
[
Dec(sk′, C) = ⊥

]
≤ µ(m, k),

where µ(·) is some (possibly non-negligible) bound.

As in 2.3, we can define the extended correctness, seperable randomness, publicly
checkable puncturing and γ-spreadness. As this is straightforward, we do not explic-
itly repeat the definitions here.

Security notions. Subsequently, in Figure 7 we define the IND-CPA/CCA2 experiment
for PE. The experiment is identical to CPA/CCA2 security for conventional public-key
encryption. But in addition the adversary in the second phase can arbitrarily puncture
the secret key and retrieve the punctured secret key as long as the key has been punc-
tured on the challenge ciphertext C∗. This still should not help the adversary to obtain
any information about the message hidden in C∗.

ExpIND-T
A,PE (λ,m, k):

(sk, pk)←$ KGen(1λ,m, k)
b←$ {0, 1},Q ← ∅
(M0,M1, stateA)←$ AO(pk)

where O ← Dec(sk, ·) if T = CCA2 and O ← ∅ otherwise.
if M0,M1 /∈M ∨ |M0| 6= |M1|, let C∗ ← ⊥
else, let C∗←$ Enc(pk,Mb)

b∗←$ AO,Punc(sk,·),Corr(C∗, stateA)
where O ← Dec′(sk, ·) if T = CCA2 and O ← ∅ otherwise.
Dec′(sk, C) behaves as Dec but returns ⊥ if C = C∗

Punc(sk, C) runs sk←$ Punc(sk, C) andQ ← Q∪ {C}
Corr returns sk if C∗ ∈ Q and ⊥ otherwise

return 1, if b∗ = b
return 0

Fig. 7. IND-T security for PE: T ∈ {CPA,CCA}.
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Definition 27 (IND-T Security of PE). We define the advantage of an adversary A in
the IND-T experiment ExpIND-T

A,PE (λ,m, k) as

AdvIND-T
A,PE (λ,m, k) :=

∣∣∣∣Pr [ExpIND-T
A,PE (λ,m, k) = 1

]
− 1

2

∣∣∣∣ .
A puncturable encryption scheme PE is IND-T, T ∈ {CPA,CCA}, secure, if AdvIND-T

A,PE (
λ,m, k) is a negligible function in λ for all m, k > 0 and all PPT adversaries A.

B Forward-Secret 0-RTT Key Exchange

We now generalize the definition of forward-secret one-pass key-exchange protocols
(FSOPKE) from [GHJL17], which is in turn a generalization of Halevi and Krawczyk’s
notion of one-pass key-exchange [HK11]. Essentially, the difference in the definition
below compared to the GHJL is that our correctness definition allows for a non-negligible
correctness error. The security model is exactly the same as in [GHJL17] and, hence,
we do not have to recap it here.

Definition 28 (FSOPKE). A FSOPKE supporting τmax time slots and providing mu-
tual or unilateral (server-only) authentication consists of four PPT algorithms FS-
OPKE = (FSOPKE.KGen,FSOPKE.RunC,FSOPKE.RunS,FSOPKE.TimeStep):

FSOPKE.KGen(1λ, r, τmax) : Takes as input a security parameter 1λ, a role r ∈ {ser-
ver, client}, and the maximum number of time slots τmax ∈ N and outputs public
and secret keys (pk, sk) for a specific role r (we assume that the key-space K is
implicit in pk).

FSOPKE.RunC(sk, pk) : Takes as input a secret key sk, a public key pk, and outputs
a (potentially modified) secret key sk′, a session key K ∈ {0, 1}∗ ∪ {⊥}, and a
message M ∈ {0, 1}∗ ∪ {⊥}.

FSOPKE.RunS(sk, pk,M) : Takes as input a secret key sk, a public key pk, and a
message M ∈ {0, 1}∗ and outputs a (potentially modified) secret key sk′ and a
session key K ∈ {0, 1}∗ ∪ {⊥}.

FSOPKE.TimeStep(sk, r) : Takes as input a secret key sk and an according role r ∈
{client, server} and outputs a (potentially modified) secret key sk′.

A server and a client are engaging in a FSOPKE protocol as follows. According to their
role, the server and the client execute (pkj , skj) ← FSOPKE.KGen(1λ, server, τmax)

and (pki, ski)← FSOPKE.KGen(1λ, client, τmax) to generate public and private keys,
respectively (where λ and τmax are pre-determined). By executing skj ← FSOPKE.
TimeStep(skj , server) and sk′i ← FSOPKE.TimeStep(ski, client), the server and the
client can progress from one time slot to the next slot to receive (potentially modified)
secret keys sk′j and sk′i, respectively. Further, the client can proceed with (sk′i,Ki,M)←
FSOPKE.RunC(ski, pkj), for its private key ski and a server’s public key pkj , to re-
ceive a (potentially modified) secret key sk′i, a session key Ki, and message M which
is transmitted to the server. The server obtains M and executes (sk′j ,Kj) ← FS-
OPKE.RunS(skj , pki,M), for its secret key skj and the client’s public key pki to re-
ceive a (potentially modified) secret key sk′j and a session key Kj . By correctness of
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the FSOPKE (see Def. 29 below), we have that Kj = Ki except with non-negligible
probability (bounded by a non-negligible function µ(·)).

Definition 29 (Correctness). For all λ, τmax, ` ∈ N with ` < τmax, for all (pki,
ski) ← FSOPKE.KGen(1λ, client, τmax) and (pkj , skj) ← FSOPKE.KGen(1λ, ser-
ver, τmax), for any `-iterative invocations of sk′i ← FSOPKE.TimeStep`(ski, client)
and sk′j ← FSOPKE.TimeStep`(skj , server), for all (sk′′i ,Ki,M)← FSOPKE.RunC(

sk′i, pkj), for all (sk′′j ,Kj) ← FSOPKE.RunS(sk′j , pki,M) (i.e., mutual authentica-
tion) and (sk′′j ,Kj) ← FSOPKE.RunS(sk′j ,⊥,M) (i.e., unilateral authentication), re-
spectively, we have that if Kj 6= ⊥, then Kj = Ki. Moreover, it holds that

Pr [Kj = ⊥] ≤ µ(`),

where µ(·) is some (possibly non-negligible) bound.

Security of FSOPKE. The security model of FSOPKE is the same as in defined
in [GHJL17, Section 3.2] and we omit it here. As a consequence, all security guar-
antees from [GHJL17, Theorem 2] directly translate to the FSOPKE construction in
Section 4 and we only have to argue about the slightly different correctness property of
our FSOPKE construction.

C Identity-based Broadcast Encryption with Constant Size
Ciphertexts and Private Keys

The subsequent construction is the identity-based broadcast encryption scheme by Del-
erablée [Del07]. The main advantages of her scheme are the constant size ciphertexts
and private keys.

Let (p, e,G1,G2,GT )←$ BilGen(1λ) be public parameters of a bilinear map e :
G1×G2 → GT with prime orders p and |p| = λ. LetH : Z∗p → Z∗p be a cryptographic
hash function. We construct an identity-based broadcast encryption scheme IBBE =
(Setup, Extract, Enc, Dec) as follows:

Setup(λ, k) : The key generation algorithm chooses two generators g1 ∈ G1 and
g2 ∈ G2 and a secret value γ←$ Z∗p. Finally, we set and output the public key pk and
master secret key msk as

pk :=
(
w = gγ1 , v = e(g1, g2), g

γ
2 , . . . , g

γk

2

)
and msk := γ.

Extract(msk, ID) : The key extraction algorithm takes as input the master secret key
msk = γ and an identity ID. Output is an extracted secret key

skID = g
1

γ+H(ID)

1 .

Enc(pk,S) : Given a public key pk = (w, v, gγ2 , . . . , g
γk

2 ) and a set of identities S =

{IDj}j∈[s] with s ≤ k, it samples a symmetric key K by choosing a secret value ρ←$ Zp
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and computing K := vρ = e(g1, g2)
ρ. Finally, the algorithm computes a ciphertext

C = (c1, c2) with

c1 := w−ρ and c2 := g
ρ·
∏s
j=1(γ+H(IDj))

2 .

It outputs (K, C).
Dec(skIDj ,S, C) : Given a ciphertext C = (c1, c2), it computes

K =
(
e
(
c1, g

pi,S(γ)
2

)
· e(skIDj , c2)

) 1∏s
j=1,j 6=iH(IDj) , where

pi,S(γ) =
1

γ

 s∏
j=1,j 6=i

(γ +H(IDj))−
s∏

j=1,j 6=i

H(IDj)


and returns K.

Note that indeed the ciphertext is C ∈ G1 × G2 and an extracted secret key is
skIDj ∈ G1.

Remark on computation of pi,S . The decapsulation algorithm uses a function pwhose
description is dependent of γ. However, neither γ nor any other secret value is needed
to compute it. Instead we can compute gpi,S2 by only using public values.

Let cv(a1, . . . , an) be a function that on input of n values returns the sum of all
possible pairwise distinct v-combinations of the input values, i.e. c2(a, b, c) = ab +
ac+ bc, and let Si = {H(IDj)|j ∈ S \ {i}}. Then we can rewrite

pi,S(γ) =
1

γ

 s∏
j=1,j 6=i

(γ +H(IDj))−
s∏

j=1,j 6=i

H(IDj)


=

1

γ

γs−1 + γs−2c1(Si) + . . .+ γcs−2(Si) + cs−1(Si)−
s∏

j=1,j 6=i

H(IDj)


= γs−2 + γs−3c1(Si) + . . .+ cs−2(Si).

In our case it suffices to compute

g
pi,S(γ)
2 = g

γs−2+γs−3c1(Si)+...+cs−2(Si)
2

= gγ
s−2

2 ·
(
gγ

s−3

2

)c1(Si)
· . . . · gcs−2(Si)

2 .

As s ≤ k, all gγ2 -like values are publicly known and thus, gpi,S2 is computable without
any secret knowledge. The given argument also holds for the computation of ciphertext
c2 in the key encapsulation.
Security of the IBBE. In [Del07] Delerablée also analyzes the security of the above
scheme under the so called (g, f, F )-GDDHE assumption. This is a variant of a gen-
eralization of the Diffie-Hellman Exponent Assumption introduced in [BBG05] and
analyzed in the generic bilinear group model in [Del07]. For the sake of completeness,
we restate the theorem from [Del07].
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Theorem 7. From each efficient adversary B against IND-sID-CPA-security of the
IBBE scheme, we can construct an efficient algorithm A against the (g, f, F )-GDDHE
assumption with advantage

AdvGDDHE
A (g, f, F ) ≥ 1

2
·AdvIND-sID-CPA

B,IBBE (λ, k).

45


	Bloom Filter Encryption and Applications to Efficient Forward-Secret 0-RTT Key Exchange

