
Impeccable Circuits

Anita Aghaie1, Amir Moradi1, Shahram Rasoolzadeh1,
Falk Schellenberg1, and Tobias Schneider2?

1 Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany
2 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium
1{firstname.lastname}@rub.de 2{firstname.lastname}@uclouvain.be

Abstract. Active physical attacks pose a serious threat to cryptographic hard-
ware, i.e., by injecting faults during the computation. The tools to inject such
faults have evolved over the last years and are becoming increasingly powerful. A
promising approach to thwart this type of attacks is employing Concurrent Error
Detection (CED) schemes. They are usually based on an Error-Detecting Code
(EDC) which provides the capability to detect certain injected faults. Depending
on the assumed adversary model, the potency of the CED scheme can be adapted
during the design phase by adjusting the underlying code.
In this work, we propose a methodology to enable a correct, practical, and robust
implementation of code-based CED schemes. Indeed, we show that a straightfor-
ward hardware implementation of a given code-based CED scheme very likely suf-
fers from severe vulnerabilities and does not provide the desired level of protection
against fault attacks. In particular, the propagation of faults into the combinato-
rial logic is often not considered in the security evaluation of these schemes. First,
we formally define this detrimental effect and demonstrate its impact on the secu-
rity of common CED schemes. Second, we introduce an implementation strategy
to limit the negative effect of fault propagation. Third, in contrast to many other
works where the fault coverage of an implementation equipped with an EDC is
considered, we present a detailed implementation strategy which – based on the
specification of the underlying EDC – can guarantee (i.e., 100% coverage rate)
the detection of any fault. Fitting to the defined adversary model, this holds for
any time of the computation and any location of the circuit – both in the data
processing and in the control part. In short, we provide practical guidelines how to
construct efficient CED schemes with arbitrary EDCs to achieve the desired level
of protection against fault attacks. We evaluate the efficiency of our methodol-
ogy in a case study considering several symmetric block ciphers (i.e., PRESENT,
Skinny, Midori, GIFT, LED, and SIMON) for different design architectures and
various linear EDCs with different fault detection capabilities.

1 Introduction

Small embedded devices are ubiquitous and receive particular attention in the Internet
of Things (IoT). Often, such devices are expected to fulfill security relevant services
like authentication or storage of private and sensitive data. The crux of the matter is
the embedded device being in the hand of a potential attacker. This enables all sorts
of physical attacks on the implementation of some cryptographic scheme, independent
of their mathematical security. The goal of our work is to protect a circuit against one
class of such attacks: fault attacks or active implementation attacks, first introduced by
Boneh et al. [17]. Here, the attacker aims at disturbing the devices’ regular execution so
that an error occurs. Based on a subsequent mathematical analysis of the genuine and
the faulty response of the device, it might be possible to derive the used secret.

? The majority of his contribution was performed while he was with Ruhr-Universität Bochum.

2

An intuitive countermeasure to such attacks is to introduce redundancy by calcu-
lating twice, either in parallel (area redundancy or duplication) or consecutively (time
redundancy) [9, 33]. When a fault is detected, the output is omitted or sensitive data is
destroyed. However, only a single fault can be detected at the cost of at least twice the
area or twice the computation time, respectively. Since the consistency of information
is checked simultaneously with the computation, such schemes are usually denoted as
Concurrent Error Detection (CED).

Recently, “higher-order” fault attacks have been demonstrated even in practice, i.e.,
targeting two independent spots with two laser beams [57] and creating multiple useful
faults with only a single clock glitch [60]. Following the constant improvement of test
equipment caused by advancing semiconductor technology, we expect to see even stronger
adversaries in the future. To counteract, the scheme above can be extended easily to
account for multiple faults, yet at a large overhead. Instead, multiple advanced techniques
were proposed to improve fault detection capabilities or area/time penalties.

Error Detecting Codes (EDCs) seem to be a promising approach to counter strong
adversaries as they can be easily adjusted by increasing the distance of the code, i.e.,
the maximum number of faults that the code can detect. However, the implementation
of code-based CED suffers from certain problems: (a) the limited security of the sophis-
ticated codes in practice, and (b) the higher complexity compared to plain duplication.

In theory, the security of a code-based CED is defined by the parameters of the
employed code. In practice, however, it strongly depends on how the CED scheme is
implemented. It is a trivial observation that one faulty gate can affect multiple subsequent
gates. This effect which we later define as fault propagation can result in degradation of
the achieved error-detecting capability compared to the one defined by the underlying
code. While this is not considered an issue for duplication schemes, it can severely reduce
the security of other more complex codes as we show later in this article. We present
examples where a single faulty gate suffices to bypass advanced code-based CED schemes.

Contribution. In this paper, we present a methodology which enables the secure and
practical implementation of code-based CED schemes in the presence of fault propaga-
tion. To this end, we first formally define the problem of fault propagation and highlight
its consequences on the error-detection capability. Then, we present different strategies
to limit its effect, each of which mitigates the security issue while having different area
overheads. Consecutively, we define an adversary model, who is able to inject faults
at a bounded number of cells at any location of the circuit (including data processing
and control modules). On its basis, we present guidelines how to implement code-based
CED in dedicated hardware circuits in such a way that the detection of faults fitting
into the considered model is guaranteed. Note that opposed to considering only parity
in [47], we provide generic and efficient strategies for arbitrary EDCs. We further cover
every signal and component in our constructions including computational modules, finite
state machine, and controlling signals. Indeed, it would not matter where the faults are
injected, they must be detected as long as they are fitting to the considered bounded
model. Similarly to Threshold Implementation (TI) [46] (which defines requirements to
guarantee the security against side-channel analysis attacks up to a certain order), we
define requirements to guarantee the security against fault attacks making use of up to
certain number of faulty cells.

In order to explore the effectiveness of our methodology, we consider several case stud-
ies based on symmetric block ciphers including PRESENT [16], Skinny [12], Midori [7],
GIFT [8], LED [32], and SIMON [11] with compatible state- and key sizes. We further
cover different design architectures (round-based versus nibble-serial) as well as various
linear EDCs with different distances to examine the area-overhead and throughput of
our constructions by means of an ASIC standard cell library.

Impeccable Circuits 3

Related Work. There is an extensive body of work related to the design and implemen-
tation of CEDs. In some of such articles, the problem of fault propagation was already
identified and some basic countermeasures were discussed. In the following, we briefly
recall related works and indicate their limitations regarding the robust implementation
of code-based CEDs in hardware.

Parity is often used as an EDC for CED schemes [13,45,47]. Within a Register Trans-
fer Level (RTL) laser fault model, the authors of [5] presented a mechanism to reduce the
area overhead by grouping the parity computation of independent sub-graphs. Further-
more, the authors of [47] identified the fault propagation issue and suggested dividing
the circuit as a countermeasure, yet only within the context of parity-based schemes.
In further previously-published articles [6, 18, 19], the use of other more sophisticated
linear codes for CED schemes was proposed, including a formal verification of the error
detecting capabilities. However, in most cases only a software implementation was con-
sidered, which limits its portability to hardware circuits. In [54], the authors explored
how EDCs can be combined with TI [46] to construct an efficient hardware design re-
sistant against both fault and side-channel attacks. They briefly referred to the effect
of fault propagation and its danger to their construction. However, they did not for-
mally provide dedicated solutions. Private Circuits II [34] is another approach aiming
at designing a circuit protected against both active and passive adversaries. While it
does provide provable security, the efficiency of its practical realization is questionable
as shown in [22]. Recently, two new combined countermeasures based on multiparty com-
putation have been proposed in [51, 55]. While the theoretical foundation of [55] seems
sound, the paper does not include any implementations (apart from a SAGE imple-
mentation for simulations). Therefore, it is hard to assess the practical efficiency of the
proposed scheme. For CAPA [51], the authors introduce a new formal adversary model
including both active and passive attacks. Their approach is based on the concept of
tiles and not affected by fault propagation, as they do not consider an adversary that is
bounded by the number of faulty bits. Instead, they rely on the hardness of forging a
valid MAC tag for fault resistance. Since it is a combined countermeasure (i.e., also pro-
viding side-channel resistance), it is not easily possible to compare their efficiency with
our proposed method. With respect to setup time violation attacks, the problem of fault
propagation was also discussed in [61]. The authors proposed a metric to evaluate the
security of a given circuit called Timing Violation Vulnerability Factor (TVVF), which
models the effect of fault propagation as a set of probabilities for each gate. It provides
a good measure to compare the security of different circuits, but it is limited to a very
specific type of attacks.

2 Preliminaries

2.1 Fault Injection Attacks

Boneh et al. [17] were the first who showed a practical fault attack by exploiting an erro-
neous computation on a cryptographic device to recover a secret key. For such attacks,
the device is intentionally operated outside its specification so that some faulty output
can be observed. Based on a subsequent mathematical analysis of the faulty (and gen-
uine) output, the adversary is able to recover the secret key. Like all attacks that target
the implementation of a cryptographic scheme, the success of a fault attack is mainly
independent of the mathematical security considering a black-box model.

Physical means to inject a fault include tampering with the supply voltage [56] or the
clock signal [2]. Both relate to a violation of the time the combinatorial logic requires
for computation, either by slowing down the circuit (lower voltage) or by exceeding

4

the maximum frequency (faster clock). Strong electromagnetic pulses [49] can affect the
target’s execution as well. While the aforementioned methods usually affect the whole
device or a large area, optical fault injection [58] using focused laser beams can scale
down the focus to a single transistor. Recent works have shown that with advanced
optical setups it is even possible to target multiple transistors independently [57].

In practice, all physical fault injection techniques incorporate many parameters lead-
ing to vast search space for a successful attack. For example, the adversary must consider
the timing (i.e., clock cycle), the physical intensity, and the duration of the effect. For
targeted methods, the location (x/y) on the device and even the distance (EM) or fo-
cal plan (laser) is relevant as well. A useful fault might only occur if all parameters are
correct. This already lead to various approaches trying to reduce the search space [20,53].

Multiple properties can be derived how the target will be affected. Most notably we
can refer to its electrical effect, e.g., whether some internal value will be always set to
logical ‘1’ or always reset to logical ‘0’. Note that although faults sometimes are modeled
as bit-flip or bit-toggle (i.e., set and reset based on the genuine value respectively) there
is no reliable physical method known that would achieve this effect. In any case, bit
toggle is certainly useful to model both set and reset faults. Another parameter is the
area that will be affected, i.e., a single transistor, more bits, or the entire registers. A
crucial aspect is the distribution of the resulting faults as there is usually some form of
bias [2, 26, 28, 29, 31]. Considering for example clock glitches or underpowering, the bits
involved in the critical path will be the first becoming faulty. For optical fault injections,
only the exact area that is sufficiently illuminated will be affected.

From a mathematical point of view, the vast majority of attacks on ciphers is based
on comparing a single or multiple faulty outputs to genuine ones respectively, so-called
Differential Fault Analysis (DFA) [14]. However, there are multiple more “exotic” ap-
proaches that differ in certain aspects or requirements: Fault Sensitivity Analysis [44],
Differential Fault Intensity Analysis [28], Statistical Fault Attacks [26], etc. Using one
or another of such attacks, the implementations of both symmetric and asymmetric
schemes were found to be vulnerable. In fact, nearly every newly-proposed cipher is usu-
ally followed by a publication describing a corresponding DFA, that is indeed a form of
differential cryptanalysis on some last rounds of the cipher defined by a particular fault
model.

Considering countermeasures, one approach is to shield the cryptographic operation
in some way. This might include actual metal shields to hinder EM pulses, or generating
the clock signals and voltage levels internally so that they cannot be affected by an
attacker. Other countermeasures detect specific fault injection methods with particular
sensors. However, such countermeasures are usually applied ad-hoc and counter only
specific attacks.

An obvious generic approach is to introduce some form of redundancy in area and/or
time. This translates to repeating the encryption and/or decryption for time redundancy,
or multiple encryptions in parallel for area redundancy. More sophisticated approaches
employ coding schemes instead of plain redundancy [5, 6, 13, 18, 19, 45, 47]. All CED
schemes commonly check whether indeed no fault occurred to enable the output.

One interesting idea is Infective Computation which entirely omits the final check
whether an error occurred. Instead, any faulty intermediate value will randomize the
output of the cipher so that it is of no use for an attacker. Unfortunately, such approaches
for symmetric schemes were repeatedly broken (cf. [10]).

Impeccable Circuits 5

Target

A

Predictor

A′

Check

C

input

output

. . .

Fig. 1. Basic Structure of concurrent error detection schemes.

2.2 Concurrent Error Detection Schemes

As stated before, CED schemes are a common countermeasure against fault attacks.
In the following, we briefly introduce the basic structure and corresponding notations,
which we use in the rest of the paper.

Although a CED scheme can be realized in various ways with different types of
redundancy, its basic structure is mostly the same. As depicted in Figure 1, these schemes
usually include the original target algorithm A and its designated predictor A′. These
predictors range from an exact duplicate of A in the most basic case (i.e., duplication)
to sophisticated code-based predictors (e.g., parity). To increase the performance, some
predictors are designed to operate on a compressed mapping of input, e.g., only one bit
for parity. Depending on A, such predictors may not be able to predict the compressed
mapping of the output of A. Hence, they may require intermediate results from A during
the computation. When both A and A′ are finished, their results are checked in C to
detect possible errors before transmitting output. This structure is very generic and
can be applied on different levels of granularity or types of redundancy.

Definition 1 (Fault Coverage). The fault coverage of a given CED scheme C in a
specific fault model M is defined as the ratio

CovM(C) =
ξ(C,M)

ψ(C,M)
,

where ψ(C,M) (resp. ξ(C,M)) stands for the number of possible (resp. detectable) faults
of C adjusted to the distribution of M.

Such a metric to evaluate CED schemes has commonly been used in several related
works, e.g., [13, 59]. While a higher fault coverage theoretically indicates a higher level
of protection, the practical security strongly depends on the chosen fault model and
its closeness to reality. This model should be carefully adapted based on the assumed
adversary to avoid under- or overestimating the coverage. While underestimation reduces
the security, overestimation results in inefficient implementations due to large overheads.

2.3 Error Detecting Codes

EDCs are an essential aspect of information theory and are often used in CED schemes
to counter fault attacks. In the following, we introduce some notions [41] related to linear
codes which are relevant to our work.

Definition 2 (Linear Code). A binary linear [n, k]-code C is defined as a vector sub-
space over Fn2 which maps messages x ∈ Fk2 to codewords c ∈ C.

6

Most CEDs for symmetric cryptography rely on binary codes due to performance reasons
and, thus, are the focus of our considerations. In the following, we refer to the code
parameters n and k as the length and rank of an [n, k]-code C.

Definition 3 (Generator Matrix). A k × n-matrix G is a generator matrix of an
[n, k]-code C iff it consists of k basis vectors of C with length n. It can be used to map
every message x ∈ Fk2 to its corresponding codeword with x ·G = c ∈ C.

Definition 4 (Minimum Distance). The minimum distance d of a linear [n, k, d]-code
C is defined as

d = min
{
wt (c1 ⊕ c2) | c1, c2 ∈ C, c1 6= c2

}
,

where wt : Fn2 7→ N denotes the number of ‘1’s in the binary representation, i.e, Hamming
weight.

The error detection capability of a linear code C depends on its minimum distance, i.e.,
the larger the distance the more errors can be detected.

Lemma 1. An [n, k, d]-code C can detect erroneous codewords c′ = c⊕ e iff e /∈ C.

In particular, all error vectors e 6= 0 with wt(e) ≤ u = d− 1 are detected.

Definition 5 (Systematic Code). The generator matrix G of a systematic code C is
of the form G = [Ik|P] where Ik denotes the identity matrix of size k.

Most CEDs utilize systematic codes, since they offer several beneficial implementation
properties. Due to the structure of the generator matrix, each codeword c contains the
unchanged message x which is padded by check bits x′, i.e., c = [x|p]. The check bits
can be easily generated using the matrix P as x′ = x · P . This special structure of the
codewords enables a simple split of the data paths between message and check bits as
depicted in Figure 1. Therefore, the original implementation of the target operation A can
stay as it is, while it is extended with the predictors A′ for the check bits. Furthermore,
systematic codes do not require extra logic to recover the message from the codeword.
As noted in [15], the focus on systematic linear codes does not pose a restriction, since
every linear non-systematic code can be transformed into a systematic code with the
same minimum distance.

Example 1 (Parity). Parity codes are a common approach to realize a basic and area-
efficient CED scheme [5,13,45,47]. Since the check bits x′ consists of only one additional
bit, the required extra logic is rather small3. This leads to a [k + 1, k, 2]-code with an
error-detecting capability of u = 2 − 1 = 1. Parity provides only full fault coverage for
error vectors e with an odd weight.

Example 2 (Multiple Executions). Another common approach to CED schemes is to sim-
ply run the target algorithm multiple times (by either time or area redundancy) [33,37].
It turns to a [λk, k, λ]-code where λ denotes the number of executions of the target
algorithm (e.g., λ = 2 for running the target algorithm twice, i.e., duplication). The
error-detecting capability u = λ − 1 can be straightforwardly improved by increasing λ
at the cost of multiplying the overhead byλ.

Furthermore, in some articles it is proposed to use non-linear codes to improve the
fault coverage [4,27,36,38,39]. However, their benefits over linear codes are questionable
in some scenarios depending on the assumed fault model and overhead [42]. Nevertheless,
many of the issues discussed in this paper are based on the linear property of the under-
lying code. Therefore, we particularly focus on binary linear codes in our constructions.
3 Depending on the target algorithm the predictors can have an increased complexity, which

diminishes the overhead advantage [42].

Impeccable Circuits 7

3 Concept
As stated before, many CED schemes rely on linear codes to provide fault detection. The
effectiveness of this property heavily relies on the specific parameters of the underlying
code, i.e., length, rank, and distance. While the length and rank directly affect the size
of the code |C|, the distance determines a lower bound for the Hamming weight of
the error vector to which the code provides full fault coverage. In practice, these two
parameters (size and distance) define the effective fault coverage of the implementation.
However, many proposed CED schemes are either only theoretically evaluated in the
common uniform fault model [13, 33] or by practical experiments which are limited by
the capabilities of the evaluator [48]. In the uniform model, it is assumed that the error
vector e ∈ Fn2/{0} follows a uniform distribution, i.e., Pr(e) = 1

2n−1 , based on which
the fault coverage is evaluated. Considering such an adversary model, the fault detection
depends only on the code length and the rank.

Example 3 (Fault Coverage in the Uniform Model). The fault coverage of a CED scheme
using an arbitrary [n, k, d]-code C can be easily computed in the uniform fault model
(so-called U). As noted in the previous section, an error vector e cannot be detected by
the CED iff e ∈ C. This relation allows us to trivially derive the fault coverage from the
length n and rank k of the code as

CovU (C) = 1− | F
k
2/{0} |

| Fn2/{0} |
=

2n − 2k

2n − 1
. (1)

Since CovU is independent of the code distance d, every code with a constant length and
rank provides the same fault coverage, e.g., an [8, 4, 2]-code C1 and an [8, 4, 4]-code C2

both have a fault coverage of CovU (C1) = CovU (C2) = 0.94.

However, the uniform fault model assumes a relatively weak adversary without much
control over the fault injection process. In practice, most fault distributions, required by
certain fault attacks, contain a specific bias as discussed in [2, 26, 28, 29, 31] which can
increase the success rate of a potential attack. Furthermore, it is easy to see that the
fault coverage can be drastically reduced if the fault distribution changes, e.g., attacking
a duplication CED scheme by injecting a symmetric fault. Such a symmetric fault
model requires that the same fault is injected into A and A′. These errors might be
created using common injection techniques (e.g., clock glitching) leading to no detection
for constructions with A′ = A. In these scenarios, the distance of the code becomes an
important factor for the effective fault coverage, e.g., when the adversary has highly
accurate facilities to inject faults (e.g., laser fault injection targeting single bits [1, 3,23,
52]). A higher distance increases the number of bits that need to be faulty to enable an
attack.

The stronger an adversary is assumed to be, the more care needs to be taken when
implementing a specific CED scheme. While EDC provides formal bounds on the error
vectors, these bounds are only valid under certain assumptions. In the following, we first
introduce our adversary model representing an attacker with varying control over the
fault injection process. Then, we highlight the practical issue of fault propagation
for code-based CED schemes and discuss critical design choices, which strongly improve
the fault coverage of CED schemes in the presence of this issue. Some of these aspects
have been identified in previous publications [5,47,54,61]. We try to formalize them and
provide a guideline how CED schemes should be integrated into the implementation of
cryptographic algorithms.

3.1 Adversary Model

When considering CED schemes, the goal of the adversary is to create a faulty state
that is not detected, leading to a faulty output that suits a DFA. We assume a similar

8

Checkpoint

Checkpoint

c1

c2

1

2

3

(a) univariate

1

2

3

45

Clock Cycle i

Clock Cycle i+ 1

(b) multivariate

Fig. 2. Fault injection by an Mt=2 and M∗t=2 adversary.

adversary model to [34], i.e., the computation of the circuit is partitioned in clock cycles
and the adversary can adaptively make t wires faulty (toggle) per clock cycle. If a wire is
faulty, all its connections are also faulty, unless the attacker is able to cut a connection
and make certain wire(s) faulty without affecting the other wires of the same connection.
Each wire is the output of a cell (either a combinatorial gate or a register cell). Hence,
we can model every fault on a wire as a fault on the corresponding cell.

Definition 6 (Adversary Model Mt). In a given sub-circuit, the adversary is able
to make up to t cells (respectively wires) faulty at one clock cycle of the entire operation
of the algorithm, e.g., a full encryption.

Definition 7 (Adversary Model M∗t). Here, the Mt adversary model is extended to
allow the attacker to inject such bounded faults at multiple clock cycle.

In other words,Mt is a univariate model whileM∗t refers to a multivariate scenario.
In the following, we focus on Mt model and present techniques to construct a circuit
providing full fault coverage. Afterwards, we give a solution to turn anMt-secure circuit
to its M∗t -secure variant.

Definition 8 (Checkpoint). A checkpoint c monitors the correctness of the state of
the circuit at a specific point in the computation.

The check does not only include the data signals but extends to control signals
as well. Furthermore, the frequency and position of the checkpoints inside the circuit
strongly affect its security and efficiency. While too frequent checks will increase the
area overhead and the critical path of the design, a missing checkpoint at an essential
position could significantly reduce the fault coverage. Therefore, the module responsible
for the consistency check is itself an attractive target for an adversary and needs to be
implemented with care as we show later. Figure 2 depicts the concepts of checkpoints
for an (a) univariate and (b) multivariate adversary with t = 2. While the univariate
adversary can only make two cells faulty in one specific clock cycle (gates no. 1 and
3), the multivariate adversary is able to hit two cells per clock cycle with the result of
making every output wire in the circuit faulty (gates no. 1 and 3 in the first clock cycle,
and gates no. 4 and 5 in the second clock cycle).

The goal of EDC-based CED schemes is to set a relatively high lower bound for t, i.e.,
the attacker has to make at least t cells faulty to obtain a faulty output. This is based on

Impeccable Circuits 9

the observation that the difficulty of fault attacks grows exponentially with increasing t,
because of the increased parameter space (cf. Sect. 2.1). Note that we exclude Safe Error-
like attacks (cf. [21, 40]). Such attacks are based on forcing a particular internal state
to a known value, e.g., ‘0’. If no fault is observed, the adversary can conclude that the
value was already ‘0’. This knowledge leads to very powerful attacks, e.g., when directly
targeting the key register. Yet, as already discussed in [21, 40], despite its sophisticated
and powerful adversary model, no algorithmic fault countermeasure without using any
state randomization (e.g., Boolean masking) or error correction can thwart such attacks.

In this context, we want to note that while the paper focuses on error detection,
the proposed methodology provides a sound basis to incorporate error correction in the
circuit while still providing robustness again fault propagation. Since our approach al-
ready allows to correctly compute on encoded values, it would require only an additional
correction module which needs to be implemented robustly. In this way, our methodol-
ogy would achieve resilience against fault attacks immune to detection, e.g., statistical
ineffective fault attacks (SIFA) [25], however, with a worse bound of t = bd−12 c.

3.2 Fault Propagation

Below, we describe the observation that if an input of a gate in the circuit is faulty,
its output might be faulty as well depending on the type of the gate and the value of
the other inputs. This phenomenon is propagated through the circuit and as a result
an Mt-bounded adversary achieves t+ δ ≥ t faulty cells, where δ ≥ 0 depends on the t
chosen cells, the underlying sub-circuit (i.e., the type of the cells forming the sub-circuit),
and its input value. In the context of CED-based countermeasures, this aspect has been
briefly considered in [5,47,54], and it is noted that it may reduce the fault coverage. We
formally define fault propagation as follows.

Definition 9 (Fault Propagation). We assume the worst case for fault propagation,
i.e., one faulty input of a gate results in a faulty output. Hence, in the presence of fault
propagation it is possible for an Mt-bounded adversary to achieve tp faulty gates with

t ≤ tp ≤ |G|,
where |G| denotes the number of gates in the underlying sub-circuit.

This has serious implications for the security of code-based CED schemes as the
distance of the underlying code does not provide a reliable bound for t anymore. In
particular, this bound is only valid for the adversary who can only make faults at the
output cells of the circuit, i.e., those cells whose output are exclusively connected to
the checkpoints (i.e., no other fanout). Against an Mt adversary, however, who can
arbitrarily make cells faulty, the distance of the code is only a rough indicator of security.
We would rather have to design a CED scheme against an Mtp -bounded adversary to
achieve security against any Mt adversary.

Example 4 (Parity with Fault Propagation). To illustrate the threat of fault propagation
for CED schemes, we examine the susceptibility of a basic parity scheme. We assume a
[5, 4, 2]-code Cparity with a generator matrix

Gparity =




1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1


 =




1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1


 = (I | Pparity) .

We also suppose a circuit realizing the function T : F4
2 7→ F4

2 which is supposed to be
protected by such a CED. Exemplary, we consider a linear function T (x) = x · L with

10

L =




1 0 0 0
0 1 0 0
0 1 1 0
0 1 1 1


 .

Such a circuit protected by the [5, 4, 2]-code (including A and A′) is depicted in Figure 3(a)
consisting of three Exclusive OR (XOR) gates. A realizes T (x) = x · L and A′ is formed
by x · L · Pparity.

The checkpoints are also placed at the input and output of the circuit. In the uniform
fault model, its fault coverage can be easily derived according to Equation (1) as

CovU (Cparity) =
25 − 24

25 − 1
= 0.52,

meaning that the countermeasure can detect around 52% of all injected faults. As stated
before, the uniform fault model has a relatively low relevance in practice. Therefore, we
compute the fault coverage under anMt adversary model. Since the code has a distance
of d = 2, we restrict the adversary to t = d − 1 = 1 gates. Without fault propagation,
the code is indeed able to detect all possible faults injected at the gates whose output
is exclusively connected to the checkpoints (e.g., XOR gates 2 and 3 in Figure 3(a)).
Referring to such a fault model as Tt=1, it results in

CovTt=1
(Cparity) = 1.

However, in the presence of fault propagation there are multiple possibilities that the
adversary can increase the number of faulty gates and thus create a faulty state that is
not detectable at the checkpoints. One of them is depicted in Figure 3(a) in which the
adversary makes the XOR gate 1 faulty. It propagates through the XOR gate 2, and two
faulty values arrive at the following checkpoint, creating a state that is not detectable
by parity, i.e., the weight of the error vector is even. RepeatingMt=1-bounded faults on
all gates of the circuit results in

CovMt=1
(Cparity) = 2/3.

A commonly-believed simple solution to achieve the higher fault coverage would be
to increase the distance of the code (similar to increasing the order in Boolean mask-
ing [43]). However, a code with a better error-detecting capability would probably require
more area and results in a more complex circuit. These changes could amplify the fault
propagation leading to a larger tp possibly reducing the fault coverage even further.

Example 5 (Multiple Executions with Fault Propagation). An example for such type of
redundancy is the realization of the target algorithm as multiple executions. Using the
function T (.) of our previous example, the code for duplication would have a generator
matrix of

Gdup =




1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1


 .

The circuit is made up of two distinct realizations of A which do not share any interme-
diate wires. Under the uniform fault model, this scheme based on an [8, 4, 2]-code Cdup

provides a fault coverage of

CovU (Cdup) =
28 − 24

28 − 1
= 0.94.

However, due to the particular structure of the circuit, fault propagation does not reduce
the fault coverage considering an Mt=1 adversary. Therefore, the coverage is

CovTt=1(Cdup) = CovMt=1
(Cdup) = 1.

Impeccable Circuits 11

1

2

3A A′

(a)

1

2

3

4

A1 A′
1

A2 A′
2

(b)

1 2

3A A′

(c)

Fig. 3. Realization of T protected with the parity [5, 4, 2]-code. (a) undetectable fault with t = 1
faulty gates (red), (b) all t = 1 faulty gates detectable with an extra checkpoint, (c) all t = 1
faulty gates detectable with forced independence.

While duplication allows to trivially achieve the error-detection bound of the code, there
are caveats to this approach in practice. For one, duplication comes with a considerable
overhead. Secondly, due to the distance of the underlying code (i.e., d = 2) there is no
guarantee to detect the error vectors e with wt(e) > 1. In particular, it is sufficient for
an adversary to make the same gates in each duplicated circuit faulty to bypass the
detection mechanism (i.e., symmetric fault). The fault coverage strongly depends on the
target platform and the fault injection method. However, if we assume a symmetric fault
model S2t, where up to t gates in each instance of the circuit can symmetrically be faulty,
the fault coverage for duplication becomes

∀t, CovS2t(Cdup) = 0.

4 Methodology

In this section we present our solutions to provide full fault coverage under an Mt

adversary model.

4.1 Extra Checkpoints

One strategy to restrict the negative impact of fault propagation is the inclusion of extra
checkpoints in the circuit. The intuition behind this is very basic. If the design performs
only a final check after the computation, all cells of the circuits can potentially contribute
to the increased number of faulty cells. By splitting the circuit in smaller sub-circuits
divided by checkpoints, this effect can be damped assuming each sub-circuit contains
fewer gates than the whole design. Thereby, the effect of fault propagation is limited
since a detectable faulty state cannot traverse over a checkpoint. This concept can be
seen as the inclusion of registers in TIs of composed functions to prevent the propagation
of glitches [46].

An interesting question is at which points in a circuit the extra checkpoints need to be
inserted. An approach to reduce the effect of fault propagation for a given function T (.)
is a decomposition into multiple sub-functions as T (x) = Tl◦. . .◦T1(x) with a checkpoint
between every Ti(.) and Ti+1(.). This approach limits the fault propagation if each of the
sub-functions is less sensitive to fault propagation. To measure the sensitivity to fault
propagation, it can be trivially seen that the fault cannot be propagated if the circuit

12

realizing a sub-function Ti(.) has a depth of 1, i.e., there is no gate in the underlying sub-
circuit whose input is derived from another gate of the same sub-circuit. Therefore, to
completely remove fault propagation independent of the target function, it is necessary
to include a checkpoint after every circuit depth in the combinatorial logic as noted in
Lemma 2.

Lemma 2 (Preventing Fault Propagation with Checkpoints). Fault propagation
can be completely prevented by inserting a checkpoint at the output wires of all gates of
a given circuit. To achieve this, the state at each checkpoint has to be a valid codeword
under the employed code.

Proof. The proof of Lemma 2 is straightforward. By checking every wire of every gate
output, we prevent the propagation of one detectable faulty gate to undetectable multiple
faulty gates. Therefore, one faulty gate can only result in maximum one faulty wire at
the following checkpoint enforcing tp = t. ut

Example 6 (Parity with Extra Checkpoints). This strategy is very generic and can be
applied independent of the target algorithm. It is only necessary to ensure that the
state at every checkpoint is verifiable, i.e., a valid codeword. This can result in extra
combinatorial logic as shown in Figure 3(b) for our previous parity example. The inclusion
of an extra checkpoint in the middle of the circuit successfully prevents harmful fault
propagation and ensures the error-detection capability for t = 1. To this end T (x) = x ·L
(see Section 3.2) is decomposed to T = T2 ◦ T1 by

L1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1


 , L2 =




1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1


 .

Obviously, Ai∈{1,2} realizes Ti(x) = x ·Li and A′i is formed by x ·Li ·Pparity. Excluding
the extra checkpoint, this comes at the cost of one additional XOR. Nevertheless, the
new design Ĉparity provides the desired fault coverage of

CovTt=1
(Ĉparity) = CovMt=1

(Ĉparity) = 1.

4.2 Forced Independence

Another possibility to trivially achieve security against an Mt-bounded adversary is
based on the independence property of duplication. As noted in Section 3.2, the real-
ization of the target function as λ instantiations of A results in the trivial bound of
t = d − 1 = λ − 1, i.e., such a design (duplication/triplication/quadruplication/etc)
provides security against an Mt=λ−1-bounded adversary even with fault propagation.

Independence Property. The basic concept of independence can be generically applied
to other codes as well. To this end, the circuit needs to be split up into independent
component-circuits each computing exactly one output bit. Let us assume the target
function T : Fk2 7→ Fq2 which maps the input x to a q-bit output y : 〈y1, . . . , yq〉. The
function T (x) = y is physically realized by q component-circuits each of which realizing
a component-function T i : Fk2 7→ F1

2 in such a way that ∀i, T i(x) = yi. Such a set
of component-circuits are call independent if no gate is shared between every two
component-circuits.

∀i, j; i 6= j Gi ∩ Gj = ∅,

where Gi stands for a set of gates implementing the component-function T i(.). The
concept is formalized in Lemma 3.

Impeccable Circuits 13

A A′

Fig. 4. Forced independence of the target algorithm A and its predictor A′.

Lemma 3 (Preventing Fault Propagation with Forced Independence). Given
a function T : Fk2 7→ Fq2, a physical implementation realized by a set of q independent
component-circuits does not suffer from fault propagation issue. Hence, tp = t is fulfilled
if a checkpoint is placed at the output of T (.).

Proof. The proof of Lemma 3 is also trivial. Based on the assumption that the component-
circuits (each of which realizing a component-function T i : Fk2 7→ F1

2) are distinct and
do not share any resources, it is not possible for a faulty wire in T i to traverse to T j 6=i.
Therefore, one faulty gate can maximally affect one output wire of T (.), since each T i(.)
computes only one unique output bit of T (.). This trivially implies that every t faulty
gates in the entire set of component-circuits can make at most t output wires of T (.)
faulty. Therefore, tp = t. ut

This strategy to thwart fault propagation is very simple to implement for a given
function T (.) by instantiating completely-independent component-circuits for every out-
put bit (see Figure 4). Since the hardware synthesizers usually optimize the given design
(e.g., by sharing the identical components to achieve lower area footprint), particular
attention should be paid to avoid such optimizations4. Otherwise, the resulting circuit
may merge the component-circuits which are supposed to be independent.

Example 7 (Parity with Forced Independence). For our running example, however, the
strategy of forced independence can be readily applied. To this end, we consider A and
A′ as one function T : F5

2 7→ F5
2. Based on Lemma 3, it is required to implement T as

five distinct component-functions which do not share any resources. The resulting design
C̄parity is depicted in Figure 3(c). Similar to the previous approach with an extra check-
point, the design requires one more XOR gate. However, forced independence suffices
with only one checkpoint which makes it more efficient than Ĉparity, while providing the
same fault coverage of

CovTt=1
(C̄parity) = CovMt=1

(C̄parity) = 1.

4.3 Combination

While each aforementioned solution independently can limit the negative effect of fault
propagation, such designs are usually inefficient for complex cryptographic algorithms.
Frequent checkpoints require additional combinatorial logic to ensure that the state is

4 In common HDL designs, it can be done by instantiating a unique component for each
component-function, and forcing the synthesizer to keep the hierarchy.

14

always a valid codeword. Depending on the underlying function, forced independence
may require even more logic since ordinary optimizations (i.e., reuse of the common
modules) become not allowed. Therefore, we propose to utilize a hybrid approach based
on both strategies in three steps for a given target function T (.).

1. Decompose T : Fk2 7→ Fq2 into multiple sub-functions Ti : Fki2 7→ Fqi2 of a less complex-
ity while T = Tl ◦ . . . ◦ T1, k1 = k, ql = q, and ki+1 = qi<l.

Such a specific decomposition obviously depends on the target function T (.). Consider-
ing a classical symmetric cipher, a trivial decomposition is to show every fundamental
operation of the cipher (e.g., substitution, diffusion, and key addition) by a sub-function
Ti(.).

2. Split each Ti(.) into multiple smaller sub-functions Ti,j : Fki,j2 7→ Fqi,j2 with
∑
j ki,j =

ki and
∑
j qi,j = qi.

In other words, each sub-function Ti(.) is split into sub-functions with less input and
output bits. A basic split in a majority of symmetric ciphers follows the cipher’s structure
where a certain function is applied multiple times in parallel, e.g., the S-box on each
nibble or byte, and MixColumns on each word. In such cases, each sub-function Ti,j
would represent an S-box or a MixColumns. Obviously, step 1 and 2 can be repeated
until the desired level of granularity is achieved.

3. Implement each sub-function Ti,j fulfilling the independence property, and place a
checkpoint at their output.

This step benefits from the small input size of Ti,j , since it allows to reduce the area
overhead immensely when the independence property should be complied. However, a
decomposition (step 1) that is too fine would suffer from the basic problem of frequent
checkpoints. Therefore, it is imperative to find a balance between the two strategies
adjusted to the target function T (.).

4.4 Application

In order to clarify the application of our strategies in a code-based CED scheme, let us
consider an exemplary algorithm realized by the sequential circuit depicted in Figure 5(a)
consisting of a register which loads the Input at the start of the operation (triggered
by rst signal) and performs the function T (.) repeatedly till the Output is taken from
the register5. Note that any sequential circuit can be represented by such a construction.
For the sake of simplicity let us suppose that the bit-length of Input, register, and T (.)
input and output is a multiple of k bits. The application of an [n, k, d]-code would lead
to transforming every k-bit chunk x to an n-bit codeword c = [x | x′]. Hereafter, we refer
to the application of matrix P on x to derive the redundant part x′ by F : Fk2 7→ Fm2
as F (x) = x · P = x′, where m = n − k denotes the bit-length of the redundancy.
Without losing the generality, we omit mentioning the bit-lengths of the message and
the redundancy by a factor of k and m, respectively. Instead we use k and m (or ×k and
×m) for simplicity. In the following we distinguish two different cases for m and explain
how the underlying EDC is applied.

5 Finite State Machine (FSM) is not shown.

Impeccable Circuits 15

rst

T

Input

Output

(a) original

rst

T

Input

F

Output
C

rst

Input′

T ′

C ′

×k ×m ≥ k

A A′

(b) m ≥ k

rst

T

Input

F

Output
C

rst

Input′

T ′

C ′

×k ×m < k

A A′

(c) m < k

Fig. 5. Our construction with respect to application of an EDC.

m ≥ k. If the redundancy size is at least as large as the message size, i.e., n ≥ 2k, and
the function F (.) is injective6, the redundancy part of the circuit (noted beforehand by
A′) can operate on x′ independent of x, as shown in Figure 5(b). The redundant function
T ′(.) is also trivially achieved as T ′ = F ◦T ◦F−1, for any arbitrary function T (.). Both
T (.) and T ′(.) are implemented following the forced independence lemma. Note that
T ′(.) cannot be implemented as separate decomposed functions F−1(.), T (.), and F (.).
Instead, its description should be first derived (as given above) and then implemented
by independent component-functions. As the last step, a single checkpoint is placed at
the input of the T (.) function (marked by c and c′ in Figure 5(b)). Applying the hybrid
combination technique (given in Section 4.3) on T (.) is straightforward leading to more
checkpoints between every two consecutive decompositions (see Figure 6(a)).

An arising question is whether it is essential to place the checkpoint at the input of
T (.). Otherwise, if the checkpoints is moved to the output of T (.), the faults injected at
the register cells would potentially propagate to multiple output bits of T (.). Hence, in
order to maintain full fault coverage against an Mt=d−1-bounded adversary, the check-
point should be placed right at the input of the function implemented by the forced
independence lemma. It should be noted that since the multiplexer and the register (see
Figure 5(b)) independently operate on each bit of the T (.) output, they do not affect
the independent property of the entire circuit (i.e., from the T (.) input forward to the
register output). Therefore, any fault injected at T (.) fitting to Mt=d−1, is detected at
the checkpoint in the next clock cycle.

m < k. For the cases, where smaller redundancy n < 2k is desired (for lower area
overheads), the function F (.) cannot obviously be injective. Hence, the construction
shown in Figure 5(b) is not necessarily applicable. It indeed depends on the specification
of the underlying function T (.). For an arbitrary T (.), it is not always possible for T ′(.)
to solely operate on x′. In such cases, T ′(.) needs to receive the original data x instead
to be able to compute T ′(x) = F ◦ T (x). The corresponding construction is shown in
Figure 5(c), where the only difference to the former case (m ≥ k) is how the T ′(.) is
realized. It is noteworthy that – similar to before – the implementation of T ′(.) should
also fulfill the independence property.

We have observed that for some particular functions T (.) it is still possible to realize
the circuit similar to the one shown in Figure 5(b), i.e., T ′(.) can operate only on x′

while m < k. Any intermediate value of the circuit should be a valid codeword. In
other words, if x ∈ Fk2 and x′ ∈ Fm2 are the input of T (.) and T ′(.) respectively with
x′ = F (x), their output 〈T (x) , T ′ (x′)〉 should also form a valid codeword. This implies
that T ′(x′) = F (T (x)), i.e.,

T ′ ◦ F = F ◦ T. (2)

6 Note that if F (.) is non-injective, then it can be considered as a similar case to m < k.

16

rst

T1

T2

Input

F

Output
C1

C2

rst

Input′

T ′1

T ′2

C ′1

C ′2

×k ×m ≥ k

A A′

(a) m ≥ k

rst

T1

T2

Input

F

Output
C1

C2

rst

Input′

T ′1

T ′2

C ′1

C ′2

×k ×m < k

A A′

(b) m < k

rst

T1

T2

Input

F

Output
C1

C2

rst

Input′

T ′1

T ′2

C ′1

C ′2

×k ×m < k

A A′

(c) m < k

Fig. 6. Our construction with respect to application of an EDC with decomposition.

Given a T (.) and F (.), it can be examined if there exists such a function T ′(.) fulfilling
the above condition. In many cases, specially in SPN block ciphers, the linear layer uses
multiplication in F2k , i.e., T : F2k 7→ F2k in such a way that T (x) = a • x with constant
a ∈ F2k . In the following we show that if a 6= {0, 1} then there exists no such a function
T ′(.) fitting to Equation (2). Note that for simplicity we used F : F2k 7→ F2m instead of
F : Fk2 7→ Fm2 (there is always a bijective mapping between Fk2 and F2k).

Lemma 4. Let T : F2k 7→ F2k that T (x) = a • x with a ∈ F2k/{0, 1}, and let F : F2k 7→
F2m be any linear function with m < k. Then, there is no T ′ : F2m 7→ F2m such that
F ◦ T = T ′ ◦ F .

Proof. Since F (.) is a linear function, among its inputs there exist 2c (with c ≥ k −m)
values which are mapped to zero. In other meaning, there are 2c − 1 ≥ 1 nonzero roots
for F (.). So, let u be one of these nonzero roots, i.e., F (u 6= 0) = 0. Now assume that
there exists a T ′(.) function which F ◦ T = T ′ ◦ F . It is clear that as both F (.) and T (.)
are linear, T ′(.) is also a linear function. This results to T ′(0) = 0. Hence, we have

F ◦ T (u) = T ′ ◦ F (u) = T ′(0) = 0 ⇒ F (a • u) = 0,

which means a •u is another nonzero root of F (.). By repeating above equation, we find
out that for any i ≥ 0, ai • u is a nonzero root for F (.). Since T (.) is a multiplication in
F2k , none of (ai •u, aj •u) with i 6= j and i, j < 2k−1 are equal to each other. Hence, we
have 2k − 1 nonzero roots for F (.) which means that any x ∈ F2k is a root for F (.) (i.e.,
∀x, F (x) = 0) that is in contrast with our assumption that F (.) is an arbitrary linear
function. ut

Although with a 6= {0, 1} there is no solution for Equation (2), it has obvious so-
lutions for a = 0 or a = 1. It means that, if T (.) is a multiplication with a = 0/1 in
F2k , the redundant counterpart T ′(.) is a multiplication with the same constant in F2m .
The decomposition of T = T2 ◦ T1 would generally lead to a construction similar to Fig-
ure 6(b), where a checkpoint is placed between the composed sub-functions implemented
complying the independence property. However, if the linear layer of a block cipher uti-
lizes multiplications by only zero or one, then it is possible to realize the EDC-equipped
circuit with the architecture shown in Figure 6(c), which is the case for several block
ciphers including Midori [7], Skinny and Mantis [12].

Optimization. Suppose that T (.) is decomposed as T = T2 ◦ T1. Further, suppose
that – independent of the redundancy size m – the second sub-function T ′2(.) can solely
operate on the output of T ′1(.), i.e., either Figure 6(a) or Figure 6(c). In the following,
we present an observation that for certain linear sub-functions T2(.), it is not necessary
to place a checkpoint between the composed sub-function T2 ◦ T1, i.e., the checkpoint

marked by c2 and c′2 in Figure 6(a) and Figure 6(c).

Impeccable Circuits 17

Theorem 1. Let us represent the linear function T2(.) by matrix L with elements in

F2k . The extra check c2 and c′2 between T1(.) and T2(.) is not required if L is formed by
only 0 or 1.

Proof. Below, we represent an intermediate value of the circuit by x (resp. x′) as s
equally-sized k-bit chunks 〈x1, . . . , xs〉 (resp. m-bit chunks 〈x′1, . . . , x′s〉). Due to the in-
dependence property of the implementation of each sub-function, any fault injected at
t cells of a sub-function can be modeled by an additive error vector e at its output.
We use the notation e1 = 〈e1,1, . . . , e1,s〉, e′1 =

〈
e′1,1, . . . , e

′
1,s

〉
, e2 = 〈e2,1, . . . , e2,s〉 and

e′2 =
〈
e′2,1, . . . , e

′
2,s

〉
for the corresponding error vectors of injected faults in T1(.), T ′1(.),

T2(.) and T ′2(.), respectively. The check at c1 and c′1 examines indeed the equality of
the below equation:

F (T2(x⊕ e1)⊕ e2)
?
= T ′2(x′ ⊕ e′1)⊕ e′2,

where x denotes the fault-free output of T1(.), i.e., the input of T2(.). We already know
that x′ = F (x) and F ◦ T2 = T ′2 ◦ F , which simplifies the above equation to

F (T2(x))⊕ F (T2(e1))⊕ F (e2)
?
= T ′2(x′)⊕ T ′2(e′1)⊕ e′2 ⇒

F (T2(e1)⊕ e2)
?
= T ′2(e′1)⊕ e′2 (3)

Considering an Mt=d−1 adversary model, suppose that the attacker injects such
bounded faults, i.e., wt(e1) + wt(e′1) + wt(e2) + wt(e′2) < d. In order to detect such a

fault at checkpoint c1 and c′1 , the relation in Equation (3) should be unequal. In other
meaning

∀e1, e′1, e2, e′2 ; 0 < wt(e1)+wt(e′1)+wt(e2)+wt(e′2) < d =⇒ F (T2(e1)⊕e2) 6= T ′2(e′1)⊕e′2
which equally means

∀e1, e′1, e2, e′2 ;F (T2(e1)⊕ e2) = T ′2(e′1)⊕ e′2 =⇒ (4)

wt(e1) + wt(e′1) + wt(e2) + wt(e′2) ≥ d ∨ wt(e1) = wt(e′1) = wt(e2) = wt(e′2) = 0

With respect to the linear property of T2(.) and T ′2(.), we define L and L′ matrices
as follows

T2(x) = 〈x1, · · · , xs〉 · L , T ′2(x) = 〈x′1, · · · , x′s〉 · L′

L =




L11 L12 · · · L1s

L21 L22 · · · L2s

...
...

. . .
...

Ls1 Ls2 · · · Lss


 , L′ =




L′11 L
′
12 · · · L′1s

L′21 L
′
22 · · · L′2s

...
...

. . .
...

L′s1 L
′
s2 · · · L′ss


 ,

where each Lij and L′ij are binary k × k and m×m matrices, respectively, and

∀i, j Lij · P = P · L′ij .
Note that P is the part of the generator matrix of the underlying code in such a way
that F (x) = 〈x1 · P, . . . , xs · P 〉. Using above definitions, F (T2(e1) ⊕ e2) = T ′2(e′1) ⊕ e′2
can be written as following s equations

(s⊕

j=1

e1j · Lj1 ⊕ e21
)
· P =

s⊕

j=1

e′1j · L′j1 ⊕ e′21

...
(s⊕

j=1

e1j · Ljs ⊕ e2s
)
· P =

s⊕

j=1

e′1j · L′js ⊕ e′2s

18

Let us denote αi =
⊕s

j=1 e1j · Lji ⊕ e2i and βi =
⊕s

j=1 e
′
1j · L′ji ⊕ e′2i. If ∀i αi = 0, then

T2(e1)⊕ e2 = 0. It means that the output of T2(.) is fault free, hence not useful for the
adversary. Therefore, we can conclude that

∀e1, e′1, e2, e′2 ;F (T2(e1)⊕ e2) = T ′2(e′1)⊕ e′2 =⇒ e2 = T2(e1) ∨ ∃i; αi 6= 0.

So without loss of generality, we consider that there exists an i which αi 6= 0 and βi =
αi ·P . For an [n, k, d]-code, we already know that for any nonzero x, wt(x)+wt(x ·P) ≥ d
which implies that

αi 6= 0 =⇒ wt(αi) + wt(αi · P) = wt(αi) + wt(βi) ≥ d. (5)

As stated, every Lji/L
′
ji is either zero or identity matrix. Hence, e1j · Lji can be

considered as a scalar product of e1j · aji with aji = 0/1. Therefore, we can simplify
Equation (5) as follows.

αi 6= 0 =⇒ d ≤ wt(αi) + wt(βi) = wt
(s⊕

j=1

e1j · aji ⊕ e2i
)

+ wt
(s⊕

j=1

e′1j · aji ⊕ e′2i
)

≤ wt
(s⊕

j=1

e1j · aji
)

+ wt
(s⊕

j=1

e′1j · aji
)

+ wt(e2i) + wt(e′2i)

≤
s∑

j=1

wt(e1j · aji) +

s∑

j=1

wt(e′1j · aji) + wt(e2i) + wt(e′2i)

≤
s∑

j=1

wt(e1j) +

s∑

j=1

wt(e′1j) + wt(e2i) + wt(e′2i)

= wt(e1) + wt(e′1) + wt(e2i) + wt(e′2i)

≤ wt(e1) + wt(e′1) + wt(e2) + wt(e′2)

ut

We have observed that the corresponding matrix of MixColumns in Skinny [12] and
Midori [7] fulfill this condition, enabling to avoid the extra checkpoint.

Control Signals. In the examples shown above we excluded the Finite State Machine
(FSM) in our discussions. In contrast to masking countermeasures (against side-channel
analysis attacks), the FSM should be also protected against faults. Otherwise, the ad-
versary can change the control flow and obtains faulty results exploiting the secrets. As
a trivial example, independent of the employed EDC scheme on the data-processing part
of the circuit, the attacker can force to terminate an encryption process at the first cipher
rounds. This leads to having access to the cipher intermediate values, hence recovering
the key.

The FSM can also be seen as a set of register cells loaded by a certain Init value, and
updated at every clock cycle through an update function U(.). We refer to the content
of the register by State. Each control signal si is derived by a dedicated function over
the FSM register, marked by Gi(.) in Figure 7(a). The application of an [n, k, d]-code on
such a controlling circuit is the same as what shown above. The only difference is how
the control signals are encoded. Each control signal si and its redundant counterpart s′i
are related in a form of s′i = F ({0}k−1|si), i.e., si is padded with zero to form a k-bit
chunk. In other words, the redundancy of every single-bit control signal has a size of m
bits.

Impeccable Circuits 19

rst

s1 s2 si

U G1 G2 Gi
...

Init

State

(a) original

rst

C

C C C

F

s1 s2 si

U G1 G2 Gi
...

Init Init′

State

rst

C ′

C ′ C ′ C ′

s′1 s′2 s′i

U ′ G′1 G′2 G′i...

State′

×k ×m ≥ k

A A′

(b) m ≥ k

rst

C

C C C

F

s1 s2 si

U G1 G2 Gi
...

Init Init′

State

rst

C ′

C ′ C ′ C ′

s′1 s′2 s′i

U ′ G′1 G′2 G′i...

State′

×k ×m < k

A A′

(c) m < k

Fig. 7. Our construction with respect to application of an EDC on FSM.

– For m ≥ k, the redundant part of the update function would realize U ′ = F ◦U ◦F−1
over State′ (i.e., the redundant part of State). Each control signal si is mapped
to s′i = G′i(State

′) with G′i = F ◦ Gi ◦ F−1. Figure 7(b) shows an exemplary
construction.

– For m < k, the redundancy update function would operate on State as U ′ = F ◦U .
The same holds for the control signals as s′i = G′i(State) while G′i = F ◦ Gi (see
Figure 7(c)). Note that, depending on Gi(.) it might be possible to generate s′i over
State′. To this end, there should exist a G′i(.) satisfying G′i ◦ F = F ◦Gi.

It is important to emphasize that all above-given functions U(.), U ′(.), Gi(.), and G′i(.)
should be implemented following the forced independence lemma. As shown in Figure 7,
the checkpoints are placed at the register output as well as at the output of every function
generating a control signal si. As a side note, it is possible to merge a couple of control
signals before encoding them, but it usually leads to a more complicated multiplexer
which is controlled by such a redundant control signal. We give details about redundant
multiplexers in the following.

Multiplexers. As stated before, each redundant control singal s′ is an m-bit word.
This is essential since otherwise if the redundant counterpart of each control signal is also
single-bit wide, similar to the duplication scheme the control signals become vulnerable
to symmetric faults independent of the distance of the underlying EDC. Suppose that
the signal s controls a k-bit multiplexer switching between x and y (see Figure 8(a)). The
redundant counterpart should be a multiplexer switching between m-bit x′ and y′ words
by an m-bit redundant control signal s′. To this end, we propose the construction shown
in Figure 8(b) formed by a multiplexer tree in m levels. Each row of the multiplexers is
controlled by the corresponding bit of the redundant control signal. The first row by the
Least Significant Bit (LSB), i.e., s′1, and the last row by MSB s′m. The m-bit inputs

20

s10

kk

k

1

yx

z

(a) original

s′
mm

m

m

y′x′

z′

10

mm

v1v0

10

mm

v3v2

s′110

mm

v2m−1v2m−2

10

mm

v2m−3v2m−4

...

...

...

10 10 s′2

10

mm

m

s′m

z′

⇒

(b) redundancy

Fig. 8. Our construction with respect to application of an EDC on multiplexers.

vi∈{0,...,2m−1} of the first multiplexer row are defined as follows:

vi =




x′ ; i = F (0)
y′ ; i = F (1)
0 ; else7

〈
{0}k−1 | s, s′

〉
forms two n-bit valid codewords, hence with minimum distance d. There-

fore, considering the fact that the component-functions generating the control signals and
their redundant counterparts (i.e., Gi(.) and G′i(.)) fulfill the independence property, this
construction guarantees the detection of t < d faulty gates at the control logic.

Note that since all input signals vi except two are connected to zero, the synthesizer
usually optimizes this construction and removes those 2-to-1 multiplexers whose both
inputs are tied to zero independent of the select signal. Such an optimization does not
affect the fault propagation and hence the fault coverage of our construction.

We would also like to highlight that the faults on external signals, those provided
through the I/O ports of the circuit, cannot be internally detected. For instance, any fault
on plaintext of an encryption function is interpreted as encrypting another plaintext and
does not lead to any exploitable information about the secrets involved in the encryption
function. Therefore, the external control signals (e.g., the reset signal marked by rst in
Figure 5 and Figure 7) as well as the multiplexers which are controlled by such external
signals do not have to be encoded. In other words, the same external signal is used
in both original A and redundant part A′ of the circuit. This can be seen in Figure 5,
Figure 6 and Figure 7.

Registers with Enable. If the underlying circuit contains registers with enable sig-
nal, the redundant counterpart cannot trivially make use of the corresponding redundant
control signal with bit-length m > 1. Therefore, we propose the solution shown in Fig-
ure 9 to replace such registers with their equivalent construction formed by a register
without enable and a multiplexer. This makes it enable to employ the above-explained
redundant multiplexer controlled by redundant control signal.

Checkpoints. All the above given structures do not cover how the consistency check
at the checkpoints is performed. It is of great importance to integrate a fault detection
mechanism into the consistency check process as well. Otherwise, the attacker can target

7 Arbitrary random values can be given to those inputs vi which are tied to zero without
affecting the fault coverage.

Impeccable Circuits 21

en

1

Input

Output

(a) original

en10 1

Input

Output

en′m

Input′

Output′

(b) transformed

Fig. 9. Our construction with respect to application of an EDC on registers with enable.

the final module and force a faulty output to pass the consistency check process, inde-
pendent of the fault coverage of the data-processing part of the circuit. Therefore, it is
necessary to be able to detect up to t = d − 1 faults at the consistency check process
in order to provide full fault coverage on the entire circuit against an Mt-bounded ad-
versary. To cope with this issue, we propose the construction shown in Figure 10. The

values of the checkpoints at the original part of the circuit ci are concatenated8 and
each k-bit chunk is given to an instance of F (.) function, whose output is marked by
c′′. Its consistency is examined with the value of all checkpoints at the redundant part
concatenated together, marked by c′. Un-ordinarily the result of such a consistency check
is an m-bit error vector e. To this end, c′′ and c′ are split into m chunks9. The i-th bit
of the error vector examines the consistency of all bits of the corresponding i-th chunks:

ei∈{1,...,m} :
〈
c′′i, c′′i+m, c′′i+2m, . . .

〉 ?
=
〈
c′i, c′i+m, c′i+2m, . . .

〉
.

As shown in Figure 10, all bits of the error vector are ORed with the entire d− 1 bits of
the error register ê, before being stored in the same register. Such a register is reset by
the rst signal, the same signal which starts the operation of the circuit and the FSM. This
construction implies that once an error is detected, the full content of the error register is
filled by ‘1’ and stays unchanged till the next reset phase. As the last step, the d− 1 bits
result of the OR operation (marked by ẽ) controls a redundant multiplexer with d − 1
bits control signal (see Figure 8(b)). Such a multiplexer should pass the Output when
all d− 1 bits of the control signal ẽ are zero. Therefore, with respect to the construction
shown in Figure 8(b), the input signals of the multiplexer are selected as follows:

vi =

{
Output ; i = 0
0 ; else

Finally, the output of the multiplexer is stored in a dedicated register providing the final
output of the circuit. The register is reset by the rst signal and stores the multiplexer
output when the computation of the circuit is finished. This is identified by the done
signal, which is amongst the control signals derived from the State of the FSM, and its
consistency is also examined similar to other control signals. By detecting even a single-
bit fault, the entire d − 1 bits vector ẽ becomes ‘1’. It should be noted that although
all bits of ẽ are the same, the independence property should be also fulfilled in the
implementation of the OR operation realizing each bit of ẽ. As a simple example, suppose
that the attacker made a single cell faulty (in any part of the circuit). This causes ẽ to
be fully ‘1’. In order to force the faulty Output pass the multiplexer, this implies that
the attacker needs to make at least d−1 more cells faulty at the same clock cycle (due to
the underlying univariate model) to turn d−1 bits vector ẽ with value {1}d to {0}d This
achieves full fault coverage on the entire circuit under the Mt=d−1-bounded adversary.
8 As stated before, the single-bit control signals are padded with zero before being concatenated

with others.
9 The size of both c′ and c′′ is always a factor of m bits.

22

rst

...
... CheckF

Output

̂Output

C ′1

C ′2

C ′i

C2

C1

C i

×k ×m ×mc′′ c′

?
=c′′ c′

...

rst
E

d-1

Output

done

0

̂Output

e

ê ê ê

ẽ

ê

d-1

m

m m m

d-1

d-1

d-1

Fig. 10. Our construction with respect to application of an EDC on the consistency check.

4.5 Extension to Multivariate

As defined in Section 3.1, under the Mt model the adversary is able to make at most t
cells faulty at one clock cycle of the entire operation of the algorithm, i.e., between two
consecutive reset phases. Suppose the circuit shown in Figure 5(b) with an [n, k, d]-code
and d > 1, which should detect all single-cell faults. Suppose also that at one clock cycle
before the last, the adversary makes a gate in T (.) faulty, which results in a value with
a single-bit fault stored in the register. If at the next clock (which is the last one) the
adversary injects a single-gate fault on the corresponding F (.) function of the consistency
check process (Figure 10), the faulty output can pass the multiplexer and be stored in
the final register. In order to extend the adversary model to multivariate in order to
be able to keep the full fault coverage even if the adversary makes up to t-cell faults
at every clock cycle, it suffices to just introduce extra checkpoints right at the input
of the registers in the design. Independent of the redundancy size m, this includes the
register of the data-processing module and that of the FSM (see Figure 11). This makes
sure that the consistency of the values stored in the registers is examined. Hence, in
the aforementioned example the fault is detected at first clock cycle. Introducing more
checkpoints obviously increases the area requirements, further since they are placed right
at the input of the registers, the critical path delay of the circuit is increased leading to
lower throughput.

We further need to adjust the consistency check process to support the multivariate
M∗t model. To this end we have to increase the size of the error register ê (see Figure 10).
Assuming the adversary makes t gates faulty in the first cycle and leaves one bit of ẽ
set to ‘1’ (one fault inside the circuit, t− 1 faults on the output of the OR operations).
A multivariate adversary would be able to directly set this bit to ‘0’ in the following
cycle by targeting the register cell directly and, therefore, would circumvent the error
detection. In order to resist against such a case, it is necessary to increase the bit size of ẽ
and its corresponding register until it becomes impossible to set all these bits to ‘0’ with
at most t fault per clock cycle. While for this simple example it is sufficient to increase
the size to d+ (t− 1) bits (i.e., this would leave d+ (t− 1)− (t− 1) = d > t bits set to
‘1’ after the first cycle), we also have to consider other attack scenarios. Suppose that

Impeccable Circuits 23

rst

T

Input
F
F

Output
C2

C1

rst

si

U Gi

Init

C4

C3

rst

Input′

T ′

C ′
2

C ′
1

rst

s′i

U ′ G′
i

Init′

C ′
4

C ′
3

A A′

Fig. 11. Supporting the multivariate M∗t model.

all bits in ê are set to ‘1’. Now the adversary can reduce the Hamming weight of ẽ by t
by targeting the output gates of the OR operation in one clock cycle. In the next clock
cycle, she can again reduce it by t by targeting the register cells. Therefore, we have to
increase the bit size of the error register to t+ t+ 1 = d+ t > 2t which guarantees that
at least one ‘1’ will reach the OR operation and, thus, be mapped to d+ t ‘1’s before the
third cycle. Hence, the OR operations (i.e., whose result are indicated by ẽ), the error
register, and the control signal of the redundant multiplexer should change from d − 1
bits to d+ t = 2d−1 bits to support protection against the multivariateM∗t=d−1 model.

4.6 Combination with Side-Channel Countermeasures

Since our constructions make use of a binary linear code, none of the redundant func-
tions has algebraic degree higher than their original counterpart. Therefore, application
of hardware masking schemes (TI [46, 50] and DOM [30]) on our constructions would
not face any trouble. However, particular attention should be paid on the consistency
check module receiving the masked data to avoid side-channel leakage (see [54] for an
exemplary solution). Note that it is obviously not required to mask the control logic, but
all masked functions should fulfill the independence property as well. As a side note, the
combination presented in [54] mixing TI and an EDC is a special case for m = k = d = 4.
However, it does not deal with full fault coverage (i.e., the independence property has
been ignored) and the control logic is excluded from the underlying fault-detection mech-
anism. Therefore, independent of its resistance against side-channel analysis attacks, it
cannot detect all possible up to t = d− 1 faults, i.e., no full fault coverage against even
a univariate Mt adversary.

5 Case Studies

To assess the overhead of our proposed methodology, we examined several case studies
based on the encryption function of symmetric block ciphers with 64-bit state including
PRESENT [16], LED [32], SIMON [11], GIFT [8], Midori [7], and Skinny [12]. Below we
give details how different variants of Skinny are implemented. The rest of the covered
algorithms are given in Appendix B. The analyses and comparisons shown here are based
on hardware implementations using the IBM 130 nm ASIC standard cell library.

5.1 Skinny-64

The tweakable block cipher Skinny-64 [12] operates on a 64-bit state, and on a 64-, 128-,
or 192-bit key. Depending on the key size, the number of cipher rounds is defined as
32, 36, or 40 rounds. After the state is loaded by the 64-bit plaintext, a 4-bit S-box is
applied on each 4-bit chunk of the state. A part of a column of the state is XORed with

24

a RoundConstant, and two first rows are further XORed with a 32-bit SubTweaKey.
ShiftRows is the inverse of the AES ShiftRows (on 4-bit cells), and by MixColumns each
column of the state is multiplied by M matrix:

M =




1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0


 .

The KeySchedule is formed by three variants each of which operating on a 64-bit part
of the key. All variants share a nibble-wise permutation P , which is the sole operation for
the first variant of the 64-bit KeySchedule. The second and the third 64-bit KeySchedule
variants additionally make use of an LFSR-based operation on each nibble of the first
two rows of the key after applying the permutation P .

5.2 Implementation Details

Unless otherwise stated, we focus on a round-based implementation architecture, where
at every clock cycle a full encryption round is completed. In order to equip the imple-
mentation with an EDC, we first need to specify the parameters of the underlying code.
The specification of an [n, k, d]-code is commonly defined by the largest operation of the
algorithm with respect to the bit-length. Due to the 4-bit S-box of Skinny-64, the rank
k is fixed to 4, and depending on the considered adversary model Mt, the length n and
distance d are defined. Below we categorize our implementations into three groups:

– (n, d) = (8, 4). This implies the case with m ≥ k (see Figure 5(b)). The common
code for this case is the extended Hamming-code [8, 4, 4] (as also used in [54]).

– (n, d) = (7, 3)/(6, 2)/(5, 2), i.e., with m < k (see Figure 5(c)). The [7, 4, 3]-code is
the well-known Hamming code, and [5, 4, 2]-code computes 1-bit parity for each 4-bit
chunk. The remaining code [6, 4, 2] adds one bit redundancy compared to the parity
code, but its distance d = 2 indicates that its full fault coverage is the same as that
of the parity.

– (n, d) = (8, 2)/(12, 3)/(16, 4), i.e., duplication, triplication, and quadruplication re-
spectively. We included these cases into our investigations to enable a comparison be-
tween our methodology and common and straightforward duplication schemes which
provide full fault coverage considering the same adversary model.

[8, 4, 4]-code.
Figure 13 (in Appendix B) shows the design architecture for this case. Note that K0,
K1, and K2 indicate the first, second, and third 64-bit part of the key. The generator
matrix G of the extended Hamming code is

GeH =




1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1


 = (I4 | PeH) , F (x) = x · PeH .

As given in Section 4.4, the redundant part of the S-box operating on the redundant
part of the state is derived by F ◦S ◦F−1. Since ShiftRows is a nibble-wise permutation,
it is the same as its redundant counterpart. The matrix of the MixColumns involves
only 1 or 0 coefficients. With respect to the linear property of the underlying code,
similar to ShiftRows the same MixColumns module is used in the redundant part of the
circuit. This can be also seen in Figure 13 (in Appendix B), where the aforementioned

Impeccable Circuits 25

modules are marked by SR and MC. As an important notice, the Skinny MixColumns
has the special property explained in Section 4.4(§ Optimization) indicating that no extra
checkpoint before the MixColumns is required.

Since the nibbles of the key are also encoded in the similar way, the KeyAddition is
also done trivially on the redundancy. The same holds for the nibble-wise permutation
of the key schedule (shown by P in Figure 13 in Appendix B). Similar to the S-box
module, the LFSRs used in the KeySchedule of the second and third 64-bit keys K1

and K2 need to realize F ◦ LFSR ◦ F−1. The remaining operation is the XOR with
RoundConstant (shown by RC) derived from a 6-bit LFSR which is also used as the
round counter defined as

(rc5|rc4|rc3|rc2|rc1|rc0) 7→ (rc4|rc3|rc2|rc1|rc0||rc5 ⊕ rc4 ⊕ 1). (6)

The RoundConstant (c0, c1, c2, 0) is XORed to the first column of the cipher state with

c0 = (rc3|rc2|rc1|rc0), c1 = (0|0|rc5|rc4), c2 = (0|0|1|0).

If the state of the FSM is encoded following the way it is used by c0 and c1, the STATE′

which is of 2m = 8 bits can easily be split to make the redundant RoundConstant c′0
and c′1. Obviously, the last one c′2 = F (c2).

The update function U(.) of the FSM operates on 6 bits. However, the redundant
counterpart U ′(.) operates on 8-bit state′ (see Figure 7(b)). Therefore, every component-
function U ′i(.) is an 8-bit to 1-bit function which makes it area-wise larger than the
corresponding simple component-functions U i(.) (see Equation (6)). The FSM includes
only one control signal done indicating the end of the encryption process.

Considering an Mt=3 adversary model, the checkpoints are placed at the input of
the S-box, at the input of the permutation modules of the KeySchedule and the single
control signal done.

[7, 4, 3]-/[6, 4, 2]-/[5, 4, 2]-code.
With smaller redundancy size m < 4, several modules (e.g., SR, MC, P , and XORs)
can solely operate on state′. The S-box and the LFSRs are excluded from this list, as
it can be seen in Figure 14 (in Appendix B). The redundant counterpart of the S-box
realizes F ◦ S and the same holds for the LFSR of the KeySchedule as F ◦ LFSR. We
used the following generator matrices in our implementations:

G[7,4,3] =




1 0 0 0 0 1 1
0 1 0 0 1 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0


 , G[6,4,2] =




1 0 0 0 0 1
0 1 0 0 1 1
0 0 1 0 1 0
0 0 0 1 1 1


 , G[5,4,2] =




1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1


 .

[2, 1, 2]-/[3, 1, 3]-/[4, 1, 4]-code.
The generator matrix of duplication is already given in Section 3.2 which is formed
by Gdup = (Ik | Ik). Similarly, that of triplication and quadruplication are made by
three/four times repeating the identity matrix Ik. However, for the application of such
schemes it is not necessary to fulfill the independence property. We instantiated every
instance of the encryption function and placed the checkpoints at the Ciphertexti as
well as the control signals donei (see Figure 12 in Appendix B showing a general archi-
tecture of such schemes). It is noteworthy that in order to keep full fault coverage against
an Mt=d−1 adversary, for the given distance d we have used our-proposed consistency
check module shown in Section 4.4(§ Checkpoints).

26

Table 1. Area (GE) and Latency (ns) comparison of our implementations considering an
Mt=d−1-bounded adversary with an [n, k, d]-code, using IBM 130 nm ASIC library.

Algorithm Key
clock plain [5, 4, 2] [6, 4, 2] [7, 4, 3] [8, 4, 4] [2, 1, 2] [3, 1, 3] [4, 1, 4]

cycles
area area area area area area area area

lat. lat. lat. lat. lat. lat. lat. lat.

Skinny 64 33
1243 2732 3351 4153 5041 3155 4649 6147

4.11 5.27 5.38 6.08 6.43 4.53 5.04 5.68

Skinny-serial 64 688
990 1924 2408 3383 4870 2019 3028 4042

4.24 5.53 5.60 5.75 7.66 4.28 4.29 4.78

LED-2check
64 33

3667 4467 5697 7226
1665 9.17 10.13 11.52 12.15 3968 5874 7784

LED-combine
7.72 4155 4861 6039 7716 7.69 7.71 7.75

8.45 8.95 9.44 10.40

Skinny 128 37
1738 3640 4494 5636 6804 4128 6109 8095

3.66 5.16 5.24 6.09 6.37 4.34 4.86 5.50

Skinny-serial 128 772
1446 2778 3461 4867 6883 2906 4358 5815

4.03 5.42 5.46 5.92 7.18 5.55 5.55 5.55

LED-2check
128 49

3996 4900 6359 8240
1664 9.81 10.07 11.66 13.40 3991 5907 7822

LED-combine
9.15 4499 5264 6699 8718 9.37 9.37 9.36

9.57 9.17 10.04 12.80

Midori 128 17
1372 3282 3942 5262 6840 3412 5029 6657

7.57 8.25 8.16 8.87 10.40 8.81 9.51 9.85

PRESENT 128 32
1767 4211 5177 6639 8219 4174 6179 8186

2.93 5.19 5.62 6.32 6.71 4.59 5.10 5.78

GIFT 128 29
1587 3824 4722 6082 7767 3847 5688 7533

2.88 5.11 5.32 6.11 6.61 4.33 4.83 5.47

SIMON 128 45
1629 3614 4487 5621 7603 3912 5785 7663

2.86 5.20 5.27 5.93 6.44 4.47 4.97 5.61

Skinny 192 41
2206 4540 5656 7119 8553 5054 7494 9940

4.00 5.63 5.74 6.34 6.74 4.47 5.00 5.62

Skinny-serial 192 856
1896 3602 4490 6321 8893 3807 5710 7618

5.12 5.28 5.33 5.76 7.53 4.44 4.44 4.76

Serial Architecture.
We additionally considered a nibble-serial architecture in our implementations of Skinny.
In this fashion, which is known to provide the smallest area footprint at the cost of low
throughput10, the cipher state register is shifted one nibble at every clock cycle. Only
one instance of each operational module (S-box and MixColumns) is implemented at the
cost of a more complicated FSM (see Figure 15 in Appendix B). This architecture for
sure reduces the area, but since at every clock cycle the state (and the key) registers are
shifted, their consistency should be checked when the implementation is equipped with
an EDC. Therefore, as shown in Figure 15 to Figure 18 (in Appendix B), the checkpoints
are placed at all 64-bit output of the state register as well as the entire key register. This
means that due to the fact that – compared to the round-based architecture – the size
of the checkpoints is not reduced, the gain with respect to the area reduction is not
expected to be significantly high.

5.3 Comparison

In addition to all variants of Skinny-64, we applied the aforementioned codes on round-
based implementation of encryption function of LED-64, LED-128, PRESENT-128,
SIMON-64, GIFT-64 and Midori-64 all with 64-bit plaintext and 128-bit key (except
LED-64). The corresponding figure for each algorithm is given in Appendix B. In con-
trast to Skinny and Midori, the MixColumns of LED forces to place an extra checkpoint
unless the S-box and the MixColumns are combined and the entire round function fulfills
the independence property. Therefore, for LED we considered two variants referred as

10 Excluding the bit-serial fashion [35].

Impeccable Circuits 27

‘2check’ and ‘combine’ respectively (for example see Figure 19 in Appendix B). In com-
parison, the ‘2check’ variant leads to a smaller area overhead but with higher latency due
to its extra checkpoints. With respect to other algorithms we faced several challenges
when the operations do not fit into the nibble-wise fashion of the encoding, i.e., how the
[n, k, d]-code is applied. The extreme cases include the bit-permutation of PRESENT and
GIFT as well as the bit-wise shift and operations of SIMON. Considering the indepen-
dence property, the redundant counterpart of such operations led to large (e.g., 12-bit to
1-bit) functions, hence high area overhead. Our implementations were synthesized using
the Synopsys Design Compiler and publicly-available IBM 130 nm standard cell library.
By keeping the hierarchy, we made sure that synthesizer does not corrupt the modules
designed with independence property. The results are summarized in Table 1. Note that
the clock cycle was not tightened allowing the synthesizer to reach the smallest area.
Comparing the columns with the same distance d, it can be seen that in many cases
(excluding the nibble-serial variant of Skinny11) our approach outperforms the duplica-
tion schemes. However, such benefits depend on the target algorithm. For instance, in
almost all cases of LED128 the duplication outperforms our approach, that is the other
way around in case of SIMON. The same observations can be seen in terms of latency.

As given in Section 4.5, to extend the resistance of an implementation to the corre-
sponding multivariate adversaryM∗t , (a) extra checkpoints should be placed at the input
of every register in the design, and (b) the consistency check module should be adjusted
accordingly. This is independent of the underlying functions of the cipher; the number of
register bits in combination with the employed code define the additional area required
for such an extension. It is noteworthy that since such extra checkpoints are placed at the
registers’ input, the latency of the circuit is also increased by a roughly constant value.
Note that the same holds for the duplication/triplication/quadruplication techniques as
well. In other words, without introducing such extra checkpoints, they are also unable
to provide full fault coverage against a multivariate adversary M∗t . Considering such
an adversary model, we summarize the area and latency figures of our implementation
in Table 2 (in Appendix A). In this case, the advantage of our approach compared to
duplication schemes can be seen more clearly.

6 Conclusion

Fault attacks can be easily utilized to extract sensitive information from any unprotected
cryptographic implementation. Therefore, the inclusion of a dedicated countermeasure
in the design process is essential and sparked numerous research contributions covering
different hardening techniques. However, we have shown that the actual realization of
these schemes in practice is not trivial. Many previous publications have not consid-
ered the crucial threat of fault propagation and, thus, provide only a reduced detection
potential.

In this work, we have defined an adjustable adversary which takes advantages of this
phenomenon and presented design strategies to cope with this new constraint. Our con-
cepts allow the robust implementation of CED schemes in the presence of fault propaga-
tion. We defined a univariate (resp. multivariate) adversary model, in which the attacker
at one (resp. every) clock cycle is able to make up to t cells faulty in the entire circuit.
Accordingly, we showed how to provide security (i.e., full fault coverage) against such a
powerful adversary with high precision. Furthermore, we extended our observations to
the often-neglected protection of control signals and presented solutions to achieve an
entirely fault-resistant architecture.

11 This is due to the fact that the consistency check of duplication is also performed on only
small 4-bit output port.

28

Our case studies show the efficiency of our approach for different symmetric block
ciphers and highlight the effect of the chosen code on the resulting overhead. Overall, to
the best of our knowledge, we presented the first secure and efficient design methodology
against a realistic t-cell bounded adversary in the presence of fault propagation.

Regarding future works, a practical evaluation of the fault-resistance of our designs
using actual experiments could be of great interest. This would not only increase the
confidence in our methodology, but also allows to obtain a realistic estimate for the
number of possible faulty cells t in practice. It is noteworthy that the fault detection
ability of our constructions relies on the definition of the underlying code. Hence, the
fault coverage of every module is straightforwardly obtained. However, there is an obvious
lack of a simulation/verification tool to examine the fault coverage of a given design
considering a certain adversary model. The available logic simulation tools have not been
designed for this purpose. The scientific community would for sure benefit by having such
a tool enabling verification of the claimed fault coverages.

Another important aspect which needs to be further examined is error correction.
Recently, it has been demonstrated that combining a CED with state randomization
(i.e., masking) does not provide sufficient protection against statistical ineffective fault
attacks (SIFA) [24]. One proposed countermeasure is the inclusion of dummy rounds or
other hiding techniques which can be straight-forwardly combined with our methodology.
In addition, however, extending the encoded circuit with the capability to correct faulty
states would raise the bar for an adversary to create the errors even further. Therefore,
a combination of different techniques might provide the best results, but this requires
further research especially regarding combined attacks.

Acknowledgment
The work described in this paper has been supported in part by the German Federal
Ministry of Education and Research BMBF under grant number 16KIS0602 VeriSec, the
European Unions Horizon 2020 program under project number 645622 PQCRYPTO,
and the European Commission through the ERC project 724725 (acronym SWORD).

References

1. M. Agoyan, J. Dutertre, A. Mirbaha, D. Naccache, A. Ribotta, and A. Tria. How to flip a
bit? In IOLTS, pages 235–239. IEEE Computer Society, 2010.

2. M. Agoyan, J. Dutertre, D. Naccache, B. Robisson, and A. Tria. When Clocks Fail: On
Critical Paths and Clock Faults. In CARDIS, volume 6035 of LNCS, pages 182–193, 2010.

3. M. Agoyan, J. M. Dutertre, A. P. Mirbaha, D. Naccache, A. L. Ribotta, and A. Tria.
Single-bit DFA using multiple-byte laser fault injection. In HST, pages 113–119, 2010.

4. K. D. Akdemir, Z. Wang, M. G. Karpovsky, and B. Sunar. Design of Cryptographic Devices
Resilient to Fault Injection Attacks Using Nonlinear Robust Codes. In Fault Analysis in
Cryptography, pages 171–199. Springer, 2012.

5. C. Ananiadis, A. Papadimitriou, D. Hély, V. Beroulle, P. Maistri, and R. Leveugle. On the
development of a new countermeasure based on a laser attack RTL fault model. In DATE,
pages 445–450. IEEE, 2016.

6. S. Azzi, B. Barras, M. Christofi, and D. Vigilant. Using linear codes as a fault countermea-
sure for nonlinear operations: application to AES and formal verification. J. Cryptographic
Engineering, 7(1):75–85, 2017.

7. S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Akishita, and F. Regazzoni.
Midori: A Block Cipher for Low Energy. In ASIACRYPT, volume 9453 of LNCS, pages
411–436. Springer, 2015.

8. S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo. GIFT: A Small
Present - Towards Reaching the Limit of Lightweight Encryption. In CHES, volume 10529
of LNCS, pages 321–345. Springer, 2017.

Impeccable Circuits 29

9. H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The Sorcerer’s Apprentice
Guide to Fault Attacks. IACR Cryptology ePrint Archive, 2004:100, 2004.

10. A. Battistello and C. Giraud. Fault Cryptanalysis of CHES 2014 Symmetric Infective
Countermeasure. IACR Cryptology ePrint Archive, 2015:500, 2015.

11. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers. The SIMON
and SPECK lightweight block ciphers. In DAC, pages 175:1–175:6. ACM, 2015.

12. C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P. Sasdrich, and
S. M. Sim. The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS.
In CRYPTO, volume 9815 of LNCS, pages 123–153. Springer, 2016.

13. G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri. Error Analysis and Detection
Procedures for a Hardware Implementation of the Advanced Encryption Standard. IEEE
Trans. Computers, 52(4):492–505, 2003.

14. E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems. In
CRYPTO, volume 1294 of LNCS, pages 513–525. Springer, 1997.

15. R. E. Blahut. Algebraic codes for data transmission. Cambridge Univ. Press, 2003.
16. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw,

Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. In CHES,
volume 4727 of LNCS, pages 450–466. Springer, 2007.

17. D. Boneh, R. A. DeMillo, and R. J. Lipton. On the Importance of Checking Cryptographic
Protocols for Faults (Extended Abstract). In EUROCRYPT, volume 1233 of LNCS, pages
37–51. Springer, 1997.

18. J. Bringer, C. Carlet, H. Chabanne, S. Guilley, and H. Maghrebi. Orthogonal Direct Sum
Masking - A Smartcard Friendly Computation Paradigm in a Code, with Builtin Protection
against SCA and Fault Attacks. In WISTP, volume 8501 of LNCS, pages 40–56, 2014.

19. C. Carlet and S. Guilley. Complementary dual codes for counter-measures to side-channel
attacks. Adv. in Math. of Comm., 10(1):131–150, 2016.

20. R. B. Carpi, S. Picek, L. Batina, F. Menarini, D. Jakobovic, and M. Golub. Glitch It If
You Can: Parameter Search Strategies for Successful Fault Injection. In CARDIS, volume
8419 of LNCS, pages 236–252. Springer, 2013.

21. C. Clavier and A. Wurcker. Reverse Engineering of a Secret AES-like Cipher by Ineffective
Fault Analysis. In FDTC, pages 119–128. IEEE Computer Society, 2013.

22. T. D. Cnudde and S. Nikova. More Efficient Private Circuits II through Threshold Imple-
mentations. In FDTC, pages 114–124. IEEE Computer Society, 2016.

23. F. Courbon, P. Loubet-Moundi, J. J. A. Fournier, and A. Tria. Adjusting Laser Injections
for Fully Controlled Faults. In COSADE, volume 8622 of LNCS, pages 229–242, 2014.

24. C. Dobraunig, M. Eichlseder, H. Gross, S. Mangard, F. Mendel, and R. Primas. Statistical
ineffective fault attacks on masked aes with fault countermeasures. Cryptology ePrint
Archive, Report 2018/357, 2018. https://eprint.iacr.org/2018/357.

25. C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel, and R. Primas. Exploiting
ineffective fault inductions on symmetric cryptography. Cryptology ePrint Archive, Report
2018/071, 2018. https://eprint.iacr.org/2018/071.

26. T. Fuhr, É. Jaulmes, V. Lomné, and A. Thillard. Fault Attacks on AES with Faulty
Ciphertexts Only. In FDTC, pages 108–118. IEEE Computer Society, 2013.

27. G. Gaubatz, B. Sunar, and M. G. Karpovsky. Non-linear Residue Codes for Robust Public-
Key Arithmetic. In FDTC, volume 4236 of LNCS, pages 173–184. Springer, 2006.

28. N. F. Ghalaty, B. Yuce, M. M. I. Taha, and P. Schaumont. Differential Fault Intensity
Analysis. In FDTC, pages 49–58. IEEE Computer Society, 2014.

29. D. Giot, P. Roche, G. Gasiot, J. L. Autran, and R. Harboe-Sorensen. Heavy ion testing and
3D simulations of Multiple Cell Upset in 65nm standard SRAMs. In European Conference
on Radiation and Its Effects on Components and Systems, pages 1–6, 2007.

30. H. Groß, S. Mangard, and T. Korak. An Efficient Side-Channel Protected AES Implemen-
tation with Arbitrary Protection Order. In CT-RSA 2017, volume 10159 of LNCS, pages
95–112. Springer, 2017.

31. S. Guilley, L. Sauvage, J. Danger, N. Selmane, and R. Pacalet. Silicon-level Solutions to
Counteract Passive and Active Attacks. In FDTC, pages 3–17. IEEE, 2008.

32. J. Guo, T. Peyrin, A. Poschmann, and M. J. B. Robshaw. The LED Block Cipher. In
CHES, volume 6917 of LNCS, pages 326–341. Springer, 2011.

30

33. X. Guo, D. Mukhopadhyay, C. Jin, and R. Karri. Security analysis of concurrent error
detection against differential fault analysis. J. Cryptographic Eng., 5(3):153–169, 2015.

34. Y. Ishai, M. Prabhakaran, A. Sahai, and D. Wagner. Private Circuits II: Keeping Secrets
in Tamperable Circuits. In EUROCRYPT, volume 4004 of LNCS, pages 308–327, 2006.

35. J. Jean, A. Moradi, T. Peyrin, and P. Sasdrich. Bit-Sliding: A Generic Technique for Bit-
Serial Implementations of SPN-based Primitives - Applications to AES, PRESENT and
SKINNY. In CHES, volume 10529 of LNCS, pages 687–707. Springer, 2017.

36. M. G. Karpovsky, K. J. Kulikowski, and A. Taubin. Robust Protection against Fault-
Injection Attacks on Smart Cards Implementing the Advanced Encryption Standard. In
DSN, pages 93–101. IEEE Computer Society, 2004.

37. R. Karri, K. Wu, P. Mishra, and Y. Kim. Concurrent error detection schemes for fault-based
side-channel cryptanalysis of symmetric block ciphers. IEEE Trans. on CAD of Integrated
Circuits and Systems, 21(12):1509–1517, 2002.

38. K. J. Kulikowski, M. G. Karpovsky, and A. Taubin. Robust codes and robust, fault-tolerant
architectures of the Advanced Encryption Standard. Journal of Systems Architecture, 53(2-
3):139–149, 2007.

39. K. J. Kulikowski, Z. Wang, and M. G. Karpovsky. Comparative Analysis of Robust Fault
Attack Resistant Architectures for Public and Private Cryptosystems. In FDTC, pages
41–50. IEEE Computer Society, 2008.

40. P. Loubet-Moundi, D. Vigilant, and F. Olivier. Static Fault Attacks on Hardware DES
Registers. IACR Cryptology ePrint Archive, 2011:531, 2011.

41. F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. North-Holland
mathematical library. North-Holland Pub. Co. New York, 1977.

42. T. Malkin, F. Standaert, and M. Yung. A Comparative Cost/Security Analysis of Fault
Attack Countermeasures. In FDTC, volume 4236 of LNCS, pages 159–172. Springer, 2006.

43. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks - Revealing the Secrets of
Smart Cards. Springer, 2007.

44. A. Moradi, O. Mischke, C. Paar, Y. Li, K. Ohta, and K. Sakiyama. On the Power of Fault
Sensitivity Analysis and Collision Side-Channel Attacks in a Combined Setting. In CHES,
volume 6917 of LNCS, pages 292–311. Springer, 2011.

45. G. D. Natale, M. Flottes, and B. Rouzeyre. An On-Line Fault Detection Scheme for SBoxes
in Secure Circuits. In IOLTS, pages 57–62, 2007.

46. S. Nikova, V. Rijmen, and M. Schläffer. Secure Hardware Implementation of Nonlinear
Functions in the Presence of Glitches. J. Cryptology, 24(2):292–321, 2011.

47. V. Ocheretnij, G. Kouznetsov, R. Karri, and M. Gössel. On-Line Error Detection and BIST
for the AES Encryption Algorithm with Different S-Box Implementations. In IOLTS, pages
141–146, 2005.

48. S. Patranabis, A. Chakraborty, P. H. Nguyen, and D. Mukhopadhyay. A Biased Fault
Attack on the Time Redundancy Countermeasure for AES. In COSADE, volume 9064 of
LNCS, pages 189–203. Springer, 2015.

49. J.-J. Quisquater and D. Samyde. Eddy current for magnetic analysis with active sensor. In
Proceedings of Esmart, 2002.

50. O. Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, and I. Verbauwhede. Consolidating Masking
Schemes. In CRYPTO 2015, volume 9215 of LNCS, pages 764–783. Springer, 2015.

51. O. Reparaz, L. D. Meyer, B. Bilgin, V. Arribas, S. Nikova, V. Nikov, and N. Smart.
CAPA: The Spirit of Beaver against Physical Attacks. Cryptology ePrint Archive, Report
2017/1195, 2017.

52. C. Roscian, A. Sarafianos, J. Dutertre, and A. Tria. Fault Model Analysis of Laser-Induced
Faults in SRAM Memory Cells. In FDTC, pages 89–98. IEEE Computer Society, 2013.

53. F. Schellenberg, M. Finkeldey, B. Richter, M. Schapers, N. Gerhardt, M. Hofmann, and
C. Paar. On the Complexity Reduction of Laser Fault Injection Campaigns Using OBIC
Measurements. In FDTC, pages 14–27. IEEE Computer Society, 2015.

54. T. Schneider, A. Moradi, and T. Güneysu. ParTI - Towards Combined Hardware Counter-
measures Against Side-Channel and Fault-Injection Attacks. In CRYPTO, volume 9815 of
LNCS, pages 302–332. Springer, 2016.

55. O. Seker, T. Eisenbarth, and R. Steinwandt. Extending Glitch-Free Multiparty Protocols
to Resist Fault Injection Attacks. Cryptology ePrint Archive, Report 2017/269, 2017.

Impeccable Circuits 31

56. N. Selmane, S. Guilley, and J. Danger. Practical Setup Time Violation Attacks on AES. In
EDCC-7, pages 91–96, 2008.

57. B. Selmke, J. Heyszl, and G. Sigl. Attack on a DFA Protected AES by Simultaneous Laser
Fault Injections. In FDTC, pages 36–46. IEEE Computer Society, 2016.

58. S. P. Skorobogatov and R. J. Anderson. Optical Fault Induction Attacks. In CHES, volume
2523 of LNCS, pages 2–12. Springer, 2002.

59. C. Yen and B. Wu. Simple Error Detection Methods for Hardware Implementation of
Advanced Encryption Standard. IEEE Trans. Computers, 55(6):720–731, 2006.

60. B. Yuce, N. F. Ghalaty, H. Santapuri, C. Deshpande, C. Patrick, and P. Schaumont. Software
Fault Resistance is Futile: Effective Single-Glitch Attacks. In FDTC, pages 47–58, 2016.

61. B. Yuce, N. F. Ghalaty, and P. Schaumont. TVVF: Estimating the vulnerability of hardware
cryptosystems against timing violation attacks. In HOST, pages 72–77. IEEE, 2015.

32

Appendix

Impeccable Circuits 33

A Performance Figures againstM∗
t Adversary

Table 2. Area (GE) and Latency (ns) comparison of our implementations considering an
M∗t=d−1-bounded adversary with an [n, k, d]-code, using IBM 130 nm ASIC library.

Algorithm Key
clock plain [5, 4, 2] [6, 4, 2] [7, 4, 3] [8, 4, 4] [2, 1, 2] [3, 1, 3] [4, 1, 4]

cycles
area area area area area area area area

lat. lat. lat. lat. lat. lat. lat. lat.

Skinny 64 33
1243 3192 3968 5085 6294 3666 5592 7525

4.11 7.91 7.97 8.25 8.94 7.59 8.56 8.87

Skinny-serial 64 688
990 2250 2900 4115 5855 2389 3765 5149

4.24 8.71 9.03 9.06 11.55 8.81 9.92 10.00

LED-2check
64 33

3986 4904 6316 8086
1665 12.97 12.31 13.41 14.52 4290 6448 8613

LED-combine
7.72 4508 5284 6720 8569 11.28 11.81 12.28

12.57 12.52 13.47 13.47

Skinny 128 37
1738 4236 5320 6879 8477 4808 7385 9970

3.66 7.84 8.73 8.85 9.60 8.02 9.13 9.20

Skinny-serial 128 772
1446 3228 4140 5895 8257 3448 5434 7427

4.03 9.26 9.57 9.94 11.56 9.08 10.03 10.29

LED-2check
128 49

4320 5315 6972 9099
1664 13.51 13.35 13.71 16.18 4365 6557 8758

LED-combine
9.15 4813 5729 7359 9637 12.21 13.35 13.61

13.11 12.46 12.96 15.89

Midori 128 17
1372 3615 4358 5891 7693 3761 5656 7558

7.57 11.18 11.42 11.52 14.30 12.62 13.46 13.75

PRESENT 128 32
1767 4792 6015 7899 9896 4856 7457 10067

2.93 7.83 8.53 8.87 9.37 7.13 8.26 8.59

GIFT 128 29
1587 4420 5548 7325 9432 4517 6948 9386

2.88 7.49 8.43 8.56 9.01 6.98 7.91 8.28

SIMON 128 45
1629 4211 5311 6866 9277 4581 7044 9515

2.86 7.28 7.86 8.03 9.97 6.77 7.73 8.03

Skinny 192 41
2206 5272 6690 8676 10640 5890 9092 12300

4.00 7.69 8.26 8.79 9.34 7.92 8.87 9.17

Skinny-serial 192 856
1896 4219 5400 7698 10713 4495 7084 9679

5.12 8.55 9.03 9.21 11.42 8.42 9.67 9.93

B Implementation Figures

ENC

Plaintext Key

Ciphertext1 done1

C1,2

C2,2

C3,2

C2,1

C1,1

C3,1

ENC

Ciphertext2 done2

C ′
1,2C ′

1,1

ENC

Ciphertext3 done3

C ′
2,2C ′

2,1

ENC

Ciphertext4 done4

C ′
3,2C ′

3,1

Fig. 12. Duplication, triplication, and quadruplication concept.

3
4

rst rst

S

SR

P

Plaintext K1/K2

F

F

F

Ciphertext

RC(FSM)

MC

LFSR

C1 C3

part

rst

P

K0

C2part

rst rst

F◦S◦F−1

SR

P

Plaintext′ K ′1/K
′
2

RC ′(FSM ′)

MC

F◦LFSR◦F−1

C ′1 C ′3

part

rst

P

K ′0

C ′2part

×k
×k
×k

×m ≥ k

×m ≥ k

×m ≥ k

Fig. 13. Skinny, round-based, m ≥ k.

Im
p

ecca
b
le

C
ircu

its
3
5

rst rst

S

SR

P

Plaintext K1/K2

F

F

F

Ciphertext

RC(FSM)

MC

LFSR

C1 C3

part

rst

P

K0

C2

part

rst rst

F◦S

SR

P

Plaintext′ K ′1/K
′
2

RC ′(FSM ′)

MC

F◦LFSR

C′
1 C′

3

part

rst

P

K ′0

C ′
2

part

×k
×k
×k

×m < k

×m < k

×m < k

Fig. 14. Skinny, round-based, m < k.

36

rst

S

MC

RC(FSM)

RK

Ciphertext ×4

0 1 2 3

SR SR SR SR
MC

MC0

MC0

C C C C

4 5 6 7

SR SR SR SR
MC

MC1

MC1

C C C C

8 9 10 11

SR SR SR SR
MC

MC2

MC2

C C C C

12 13 14 15
SR MC

MC3

rst

MC3

Plaintext

×4
C C C C

rst

F◦S◦F−1

F◦MC◦F−1

RC ′(FSM ′)

RK ′

0 1 2 3

SR′ SR′ SR′ SR′
MC′

MC ′
0

MC ′
0

C ′ C ′ C ′ C ′

4 5 6 7

SR′ SR′ SR′ SR′
MC′

MC ′
1

MC ′
1

C ′ C ′ C ′ C ′

8 9 10 11

SR′ SR′ SR′ SR′
MC′

MC ′
2

MC ′
2

C ′ C ′ C ′ C ′

12 13 14 15
SR′ MC′

MC ′
3

rst

MC ′
3

Plaintext′
C ′ C ′ C ′ C ′

F

×k

×m ≥ k

Fig. 15. Skinny, nibble-serial, data path, m ≥ k.

Impeccable Circuits 37

LFSR

RK ×4
0 1 2 3

en en
P

en
P

en
P

C C C C

4 5 6 7

en
P

en en
P

en
P rst

C C C C

8 9 10 11

en en en enC C C C

12 13 14 15

en en en
en

rst
Key

×4C C C C

F◦LFSR◦F−1

0 1 2 3

en′ en′
P′

en′
P′

en′
P′

C ′ C ′ C ′ C ′

4 5 6 7

en′
P′

en′ en′
P′

en′
P′ rst

C ′ C ′ C ′ C ′

8 9 10 11

en′ en′ en′ en′C ′ C ′ C ′ C ′

12 13 14 15

en′ en′ en′
en′

rst
Key′C ′ C ′ C ′ C ′

F

×k

×m ≥ k

Fig. 16. Skinny, nibble-serial, key path, m ≥ k.

38

rst

S

MC

RC(FSM)

RK

Ciphertext ×4

0 1 2 3

SR SR SR SR
MC

MC0

MC0

C C C C

4 5 6 7

SR SR SR SR
MC

MC1

MC1

C C C C

8 9 10 11

SR SR SR SR
MC

MC2

MC2

C C C C

12 13 14 15
SR MC

MC3

rst

MC3

Plaintext

×4
C C C C

rst

F◦S

F◦MC

RC ′(FSM ′)

RK ′

0 1 2 3

SR′ SR′ SR′ SR′
MC′

MC ′
0

MC ′
0

C ′ C ′ C ′ C ′

4 5 6 7

SR′ SR′ SR′ SR′
MC′

MC ′
1

MC ′
1

C ′ C ′ C ′ C ′

8 9 10 11

SR′ SR′ SR′ SR′
MC′

MC ′
2

MC ′
2

C ′ C ′ C ′ C ′

12 13 14 15
SR′ MC′

MC ′
3

rst

MC ′
3

Plaintext′
C ′ C ′ C ′ C ′

F

×k

×m < k

Fig. 17. Skinny, nibble-serial, data path, m < k.

Impeccable Circuits 39

LFSR

RK ×4
0 1 2 3

en en
P

en
P

en
P

C C C C

4 5 6 7

en
P

en en
P

en
P rst

C C C C

8 9 10 11

en en en enC C C C

12 13 14 15

en en en
en

rst
Key

×4C C C C

F◦LFSR

0 1 2 3

en′ en′
P′

en′
P′

en′
P′

C ′ C ′ C ′ C ′

4 5 6 7

en′
P′

en′ en′
P′

en′
P′ rst

C ′ C ′ C ′ C ′

8 9 10 11

en′ en′ en′ en′C ′ C ′ C ′ C ′

12 13 14 15

en′ en′ en′
en′

rst
Key′C ′ C ′ C ′ C ′

F

×k

×m < k

Fig. 18. Skinny, nibble-serial, key path, m < k.

40

rst

SR

S

Plaintext K1K0

F

F

F

Ciphertext

MC

C1

C2

RC(FSM)

rst

SR

F◦S◦F−1

Plaintext′ K ′1K ′0

F◦MC◦F−1

C ′
1

C ′
2

RC ′(FSM ′)

×k
×k
×k

×m ≥ k

×m ≥ k

×m ≥ k

(a) 2check

rst

SR

Plaintext K1K0

F

F

F

Ciphertext

MC◦S

C1

RC(FSM)

rst

SR

Plaintext′ K ′1K ′0

F◦MC◦S◦F−1

C ′1

RC ′(FSM ′)

×k
×k
×k

×m ≥ k

×m ≥ k

×m ≥ k

(b) combine

Fig. 19. LED, round-based, m ≥ k.

Impeccable Circuits 41

rst

SR

Plaintext K1K0

F

F

F

Ciphertext

MC◦S

C1

RC(FSM)

rst

Plaintext′ K ′1K ′0

F◦MC◦S

C ′
1

RC ′(FSM ′)

×k
×k
×k

×m < k

×m < k

×m < k

(a) 2check

rst

SR

S

Plaintext K1K0

F

F

F

Ciphertext

MC

C1

C2

RC(FSM)

rst

SR

F◦S

Plaintext′ K ′1K ′0

F◦MC

C ′
1

C ′
2

RC ′(FSM ′)

×k
×k
×k

×m < k

×m < k

×m < k

(b) combine

Fig. 20. LED, round-based, m < k.

42

rst

S

SR

Plaintext K1K0

F

F

F

Ciphertext

MC

C1

RC(FSM)

rst

F◦S◦F−1

Plaintext′ K ′1K ′0

MC

SR

C ′1

RC ′(FSM ′)

×k
×k
×k

×m ≥ k

×m ≥ k

×m ≥ k

Fig. 21. Midori, round-based, m ≥ k.

rst

S

SR

Plaintext K1K0

F

F

F

Ciphertext

MC

C1

RC(FSM)

rst

F◦S

Plaintext′ K ′1K ′0

MC

SR

C ′
1

RC ′(FSM ′)

×k
×k
×k

×m < k

×m < k

×m < k

Fig. 22. Midori, round-based, m < k.

Impeccable Circuits 43

rst rst

S P

Plaintext Key

F

F

Ciphertext

FSM

P
S S

C1 C2

part

rst rst

Plaintext′ Key′

FSM′

F◦P◦S◦F−1
F◦S◦F−1F◦S◦F−1 F◦P◦F−1

C ′1 C ′2

part

×k

×k

×m ≥ k

×m ≥ k

Fig. 23. PRESENT, round-based, m ≥ k.

rst rst

S
P

Plaintext Key

F

F

Ciphertext

FSM

P
S S

C1 C2

part

rst rst

Plaintext′ Key′

FSM′

F◦P◦S
F◦S F◦S F◦P

C ′
1 C ′

2

part

×k

×k

×m < k

×m < k

Fig. 24. PRESENT, round-based, m < k.

44

rst rst

S
P

Plaintext Key

F

F

Ciphertext

P

C1 C2

part

rst rst

F◦P◦S◦F−1 F◦P◦F−1

Plaintext′ Key′

C ′1 C ′2

part

k

k

×m ≥ k

×m ≥ k

Fig. 25. GIFT, round-based, m ≥ k.

rst rst

S
P

Plaintext Key

F

F

Ciphertext

P

C1 C2

part

rst rst

F◦P◦S F◦P

Plaintext′ Key′

C ′
1 C ′

2

part

×k

×k

×m < k

×m < k

Fig. 26. GIFT, round-based, m < k.

Impeccable Circuits 45

rst rst

F◦f◦F−1
F◦f◦F−1

Plaintext′ Key′

Const′(FSM′)

C ′1 C ′2

rst rst

f f

Plaintext Key

F

F

Ciphertext

Const(FSM)

C1 C2

×k

×k

×m ≥ k

×m ≥ k

Fig. 27. SIMON, round-based, m ≥ k.

rst rst

F◦f F◦f

Plaintext′ Key′

Const′(FSM′)

C ′
1 C ′

2

rst rst

f
f

Plaintext Key

F

F

Ciphertext

Const(FSM)

C1 C2

×k

×k

×m < k

×m < k

Fig. 28. SIMON, round-based, m < k.

