
Reading in the Dark: Classifying Encrypted Digits with
Functional Encryption

Edouard Dufour Sans1,2, Romain Gay1,2, and David Pointcheval1,2

1 DIENS, École normale supérieure, CNRS,
PSL Research University, Paris, France

2 INRIA
{edufoursans,rgay,david.pointcheval}@ens.fr

Abstract. As machine learning grows into a ubiquitous technology that finds many interesting
applications, the privacy of data is becoming a major concern. This paper deals with machine
learning and encrypted data. Namely, our contribution is twofold: we first build a new Functional
Encryption scheme for quadratic multi-variate polynomials, which outperforms previous schemes.
It enables the efficient computation of quadratic polynomials on encrypted vectors, so that only
the result is in clear. We then turn to quadratic networks, a class of machine learning models, and
show that their design makes them particularly suited to our encryption scheme. This synergy yields
a technique for efficiently recovering a plaintext classification of encrypted data. Eventually, we
prototype our construction and run it on the MNIST dataset to demonstrate practical relevance.
We obtain 97.54% accuracy, with decryption and encryption taking few seconds.
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1 Introduction

Functional Encryption (FE) [12,30] is a new paradigm for encryption which extends the traditional
“all-or-nothing” requirement in a much more flexible way. FE allows users to learn specific
evaluations of a plaintext from the corresponding ciphertext: for any function f from a class F , a
functional decryption key dkf can be generated such that, given any ciphertext c with underlying
plaintext x, using dkf , a user can efficiently decrypt c and obtain f(x), but does not get any
additional information about x.

FE is the most general form of encryption as it encompasses identity-based encryption,
attribute-based encryption, and broadcast encryption, using a function f that applies a simple
access-control evaluation before outputting the full plaintext. Put simply, FE allows the user to
control what is leaked about his data. Many applications such as spam filters, parental control,
or targeted advertising, only require partial knowledge of the data. FE reconciles these useful
applications with the need for privacy and confidentiality of the data, since only the relevant,
aggregated information is revealed. More precisely, FE can be used to classify encrypted images
into categories, without leaking more information about the images than the category itself.

1.1 Our Results

We first train a machine learning model using unencrypted labeled data. This model can then
be used to classify new data. Finally, we use FE to encrypt data in such a way that, given a
specific functional decryption key, one can obtain (in clear) the result of the classification of the
encrypted data.

Use case for Functional Encryption: classifying encrypted data We first train a polynomial network
on plain data. We consider low depth networks, for which we can build efficient FE schemes.
Then, the data to be classified, x, is encrypted using the FE scheme, and a functional decryption
key dkf is issued for the model f : using it, one can learn the scores output by the network in the



2 E. Dufour Sans, R. Gay and D. Pointcheval

classification of f(x), and nothing else about x itself3. This resolves the apparent conflict between
the need for confidentiality of the data, and the usefulness of machine learning classification. We
use the open-source software library TensorFlow [2] to train our model on the MNIST dataset [23],
to obtain 97.54% accuracy. We prototype our construction using the CHARM framework [5] to
show practical relevance. See Section 5 for more details on our implementation. We chose this
particular dataset as a benchmark, but we envision numerous other applications, such as email
filtering.

Email filtering Think of a machine learning algorithm that automatically classifies incoming
emails into folders, in a richer way than keyword search would allow for. Bob sets up an FE
scheme and broadcasts his public key. Alice can use this key to send him an encrypted email,
which Bob’s email provider stores. Given the appropriate functional decryption key, the server
will be able to learn the folder that the incoming email has to be put into, and nothing more
about the email itself. Bob can then decrypt the email himself to read the details. Doing the
filtering on the server side, rather than on the client side, has some advantages: it avoids the
client sending back to the server the result of the classification so that emails are stored in the
appropriate folder, and it allows the server to notify the user if, for instance, an incoming email is
labeled "important".

The choice of a (quadratic) polynomial network is motivated by natural synergies that exist
between accurate classifiers and efficient FE schemes for quadratic polynomials. See Section 4 for
more details on the choice of a model for classifying data.

A new efficient Functional Encryption scheme for quadratic polynomials We design a new FE
scheme for quadratic polynomials that outperforms the state of the art [7] in terms of decryption
time and ciphertext size. Moreover, we exploit structural properties of our scheme to improve
efficiency on the class of functions relevant to machine learning classification. Our scheme relies
on a bilinear group, whose use in cryptography has been introduced by [10, 20]. As in [7], we
prove security of our FE scheme in the Generic Bilinear Group Model, where it is assumed that
no attack can make use of the algebraic structure of the underlying group that is used, which is
the case for curves used in practice, where only generic attacks are known (such as Pollard’s rho
algorithm, or the baby-set giant-step algorithm). We use the MNT159 curve [27] which provides
80 bits of security.

Use cases for FE Unlike prior works, which rely on either Multi-Party Computation (MPC),
or Fully-Homomorphic Encryption (FHE) to perform classification of encrypted data, we use
functional encryption. This limits the interactivity of the protocol, relative to MPC, and directly
outputs the result of the classification in clear, unlike FHE where the cloud only recovers an
encrypted result that the user has to decrypt himself to continue the process.

FHE is particularly relevant when outsourcing huge computations on sensitive data, as they
remain encrypted even when a result is output. But the server could compute arbitrary functions
on the encrypted data, and possibly deviate from the intended protocol. With FE, the server
is restricted to computing the function specified by the functional decryption key, and gets the
result in clear. This allows it to proceed, without waiting for any help from the user.

1.2 Related Work

Classifying encrypted data via homomorphic encryption In [14,16,19] a user encrypts sensitive
data using an homomorphic encryption scheme, sends it to the cloud, which can blindly classify
3 From the scores, the decryptor will likely want to compute an argmax to recover the most likely class. While
in some cases it might be preferable, for privacy concerns, to reveal only the argmax as the output of the
functional decryption, this would require using heavier cryptographic tools that would lead to significantly
slower computations.
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it, using the homomorphic property of the encryption. But doing so, the cloud only obtains the
encrypted result of the classification, and has to send it back to the user, who must decrypt it
himself with his secret key. As in our work, the classifier used by the cloud is trained on plain data.
The confidentiality of the data to be classified is guaranteed by the security of the homomorphic
encryption scheme (in [14, 19], they use the encryption scheme from [13], while [16] uses [17]). In
fact, there is absolutely no leakage of information to the cloud (unlike our approach which leaks
the result of the classification), since the cloud only sees the encrypted result. This, however,
prevents different users from sharing sensitive data using the cloud, since only the user that
encrypts has the key to decrypt. This is a pure outsourcing of computation, and the user has to
trust the server on the correctness of the computation (unless costly proofs are added) and the
server base any further computations on the classification result, since it does not learn it.

An other work [15] considers the setting where the model itself, while trained on plain data, has
to remain private from the persons classifying the encrypted data. This is particularly useful when
the training data is private, since the model might reveal information about its underlying training
data [32]. They build efficient, specialized 2-party protocols for the core functions used in most
common classifiers (such as linear, naive Bayes, or decision tree classifiers), using homomorphic
encryption and garbled circuits.

Learning on encrypted data While our work considers classifying encrypted data, using a classifier
trained on plain data, [29] considers learning a linear curve that best fits the encrypted training
data. The construction reveals the linear curve in the clear, and it can then be used for prediction
on new data, but does not reveal any further information on the training data. This uses
homomorphic encryption [31], and garbled circuits [35]. In [24], the authors build an optimized
2-party protocol for learning a decision tree from private databases.

Implementations of FE schemes [21] implements a function-hiding FE for inner product. This is
a private-key scheme where functional decryption keys decrypt an inner product of an encrypted
vector, without revealing their underlying functions. Their source code, which uses the Charm
framework, is available on GitHub at https://github.com/kevinlewi/fhipe.

2 Preliminaries

2.1 Bilinear Groups

Our FE scheme uses bilinear groups (also known as pairing groups), whose use in cryptography
has been introduced by [11, 20]. More precisely, we denote by GGen a PPT algorithm that on
input 1λ returns a description PG = (G1,G2, p, g1, g2, e) of an asymmetric bilinear group, where
G1 and G2 are cyclic groups of prime order p (for a 2λ-bit prime p) and g1 and g2 are generators
of G1 and G2, respectively. The application e : G1 ×G2 → GT is an admissible pairing, which
means that it is efficiently computable, non-degenerated, and bilinear: e(gα1 , g

β
2 ) = e(g1, g2)

αβ for
any scalars α, β ∈ Zp. We thus define gT := e(g1, g2) which spans the group GT of prime order p.

For the sake of clarity, for any s ∈ {1, 2, T}, n ∈ N, and vector u :=

u1...
un

 ∈ Znp , we

denote by gus :=

g
u1
s
...
guns

 ∈ Gn
s . In the same vein, for any vectors u ∈ Znp ,v ∈ Znp , we denote by

e(gu1 , g
v
2 ) =

∏
i=1 e(g1, g2)

ui·vi = e(g1, g2)
u·v ∈ GT , since u · v denotes the inner product between

the vectors u and v, that is: u · v :=
∑n

i=1 uivi.

https://github.com/kevinlewi/fhipe
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2.2 Functional Encryption

We recall the definition of Functional Encryption, originally defined in [12,30].

Definition 1 (Functional Encryption). A functional encryption scheme FE for a set of
functions F ⊆ X → Y is a tuple of PPT algorithms FE = (SetUp,KeyGen,Enc,Dec) defined as
follows.

SetUp(1λ,F) takes as input a security parameter 1λ, the set of functions F , and outputs a master
secret key msk and a public key pk.

KeyGen(msk, f) takes as input the master secret key and a function f ∈ F , and outputs a
functional decryption key dkf .

Enc(pk, x) takes as input the public key pk and a message x ∈ X , and outputs a ciphertext ct.
Dec(dkf , ct) takes as input a functional decryption key dkf and a ciphertext ct, and returns an

output y ∈ Y ∪ {⊥}, where ⊥ is a special rejection symbol.

Perfect correctness For all x ∈ X , f ∈ F , Pr[Dec(dkf , ct) = f(x)] = 1, where the probability is
taken over (pk,msk)← SetUp(1λF), dkf ← KeyGen(msk, f) and ct← Enc(pk, x).

IND-CPA security For any stateful adversary A, and any functional encryption scheme FE, we
define the following advantage.

AdvFEA (λ) := Pr

β′ = β :

(pk,msk)← SetUp(1λ,F)
(x0, x1)← AKeyGen(msk,·)(pk)

β
$← {0, 1}

ct← Enc(pk, xβ)

β′ ← AKeyGen(msk,·)(ct)

− 1

2
,

with the restriction that all queries f that A makes to KeyGen(msk, ·) must satisfy f(x0) = f(x1).
We say FE is IND-CPA secure if for all PPT adversaries A, AdvFEA (λ) = negl(λ).

3 Functional Encryption for Quadratic Polynomials

Here we build an efficient FE scheme (described Fig. 2) for the set of functions defined, for all
n,Bx, By, Bf ∈ N∗, as Fn,Bx,By ,Bf = {f : [−Bx, Bx]n × [−By, By]n → Z} where the functions
f ∈ Fn,Bx,By ,Bf are described as a set of bounded coefficients {fi,j ∈ [−Bf , Bf ]}i,j∈[n], and for
all vectors x ∈ [−Bx, Bx]n, y ∈ [−By, By], we have:

f(x,y) =
∑
i,j∈[n]

fi,jxiyj .

It relies on prime-order, asymmetric, bilinear groups (see Section 2.1), and is proven secure in
the generic group model. We compare its efficiency with previous FE schemes in Fig. 1. Note that
the efficiency of the decryption can be further optimized for the relevant quadratic polynomials
used in our application (see Section 4).

Correctness For all i, j ∈ [n], we have: e(gai1 , g
bi
2 ) = gai·biT = g

xiyj−γsitj
T , since

ai · bi =
(
(W−1)>

(
xi
γsi

))>
·
(
W

(
yj
−tj

))
=

(
xi
γsi

)>
W−1W

(
yj
−tj

)
= xiyj − γsitj .
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FE scheme ct dkf Dec Assumption
BCFG 17 [7, Section 3] G6n+1

1 ×G6n+1
2 G1 ×G2 6n2(E1 + P ) + 2P standard (SXDH, 3PDDH)

BCFG 17 [7, Section 4] G2n+1
1 ×G2n+1

2 G2
1 3n2(E1 + P ) + 2P GGM

ours G2n+1
1 ×G2n

2 G2 2n2(E1 + P ) + P GGM

Fig. 1. Performance comparison of public-key FE for quadratic polynomials. E1 and P denote exponentiation in
G1 and pairing evaluation, respectively. We ignore the description of the function f in dkf . Decryption additionally
requires solving a discrete logarithm. Since this computational overhead is the same for all schemes, we omit it
here.

SetUp(1λ,Fn,Bx,By,Bf ):

PG := (G1,G2, p, g1, g2, e)← GGen(1λ), s, t $← Znp , msk := (s, t), pk :=
(
PG, gs1 , gt2

)
Return (pk,msk).

Enc
(
pk, (x,y)

)
:

γ
$← Zp, W $← GL2, for all i ∈ [n], ai := (W−1)>

(
xi
γsi

)
, bi := W

(
yi
−ti

)
Return ct :=

(
gγ1 , {g

ai
1 , gbi2 }i∈[n]

)
∈ G1 × (G2

1 ×G2
2)
n

KeyGen(msk, f):

Return dkf :=
(
g
f(s,t)
2 , f

)
∈ G2 ×Fn,Bx,By,Bf .

Dec
(
pk, ct :=

(
gγ1 , {g

ai
1 , gbi2 }i∈[n]

)
, dkf :=

(
g
f(s,t)
2 , f

))
:

out := e(gγ1 , g
f(s,t)
2 ) ·

∏
i,j∈[n] e

(
gai
1 , gbi2

)fi,j
Return log(out) ∈ Z.

Fig. 2. Our functional encryption scheme for quadratic polynomials

Thus, we have:

out = e(gγ1 , g
f(s,t)
2 ) ·

∏
i,j

e(gai1 , g
bi
2 )fi,j = g

γf(s,t)
T · g

∑
i,j fi,jxiyj−γfi,jsitj

T

= g
γf(s,t)
T · gf(x,y)−γf(s,t)T = g

f(x,y)
T .

Security To prove security of our scheme, we use the Generic Bilinear Group Model, which
captures the fact that no attacks can make use of the representation of group elements. For
convenience, we use Maurer’s model [26], where a third party implements the group and gives
access to the adversary via handles, providing also equality checking. This is an alternative, but
equivalent, formulation of the Generic Group Model, as originally introduced in [28,33].

We prove security in two steps: first, we use a master theorem from [7] that relates the security
in the Generic Bilinear Group model to a security in a symbolic model. Second, we prove security
in the symbolic model. Let us now explain the symbolic model (the next paragraph is taken
verbatim from [6]).

In the symbolic model, the third party does not implement an actual group, but keeps track
of abstract expressions. For example, consider an experiment where values x, y are sampled from
Zp and the adversary gets handles to gx and gy. In the generic model, the third party will choose
a group of order p, for example (Zp,+), will sample values x, y ←R Zp and will give handles
to x and y. On the other hand, in the symbolic model the sampling won’t be performed and
the third party will output handles to X and Y , where X and Y are abstract variables. Now, if
the adversary asks for equality of the elements associated to the two handles, the answer will
be negative in the symbolic model, since abstract variable X is different from abstract variable
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Y , but there is a small chance the equality check succeeds in the generic model (only when the
sampling of x and y coincides).

To apply the master theorem, we first need to change the distribution of the security game
to ensure that the public key, challenge ciphertext, and functional decryption keys only contain
group elements whose exponent is a polynomial evaluated on uniformly random values in Zp (this
is called polynomially induced distributions in [7, Definition 10], and previously in [8]). We show
that this is possible with only a negligible statistical change in the distribution of the adversary
view.

After applying the master theorem from [7], we prove the security in the symbolic model
(cf. Lemma 4), which simply consists of checking that an algebraic condition on the scheme in
satisfied.

Theorem 2 (IND-CPA Security in the Generic Bilinear Group Model). For any PPT
adversary A that performs at most Q group operations, against the functional encryption scheme
described on Fig. 2, we have, in the generic bilinear group model:

AdvFEA (λ) ≤ 12 · (6n+ 3 +Q+Q′)2 + 1

p
,

where Q′ is the number of queries to KeyGen(msk, ·).

The proof of the above theorem is in the appendix.

Linear homomorphism Our FE scheme (Fig. 2) enjoys the property that the encryption alrogithm
is linearly homomorphic with respect to both the plaintext and the public key. Namely, for all
(x,y) ∈ Znp × Znp , and (u,v) ∈ Znp × Znp , given an encryption of (x,y) under the public key
pk := (gs1 , g

t
2), one can efficiently compute an encryption of (u>x,v>y) under the public key

pk′ := (gu
>s

1 , gv
>t

2 ). Indeed, given

Enc(pk, (x,y)) := (gγ1 , {g
ai
1 , g

bi
2 }i∈[n]),

and u,v ∈ Znp , one can efficiently compute:

(gγ1 , g

∑
i∈[n] ui·ai

1 , g

∑
i∈[n] vi·bi

2 ),

which is Enc(pk′, (u>x,v>y)), since:∑
i∈[n]

ui · ai =
∑
i∈[n]

ui · (W−1)>
(
xi
γsi

)
=

(W−1)>

( ∑
i∈[n] ui · xi

γ
∑

i∈[n] ui · si

)
=

(W−1)>
(
u>x
γu>s

)
.

Similarly, we have: ∑
i∈[n]

vi · bi =
∑
i∈[n]

vi ·W
(
yi
−ti

)
=

W

(
v>y
−v>t

)
.

This is of particular interest for functions f ∈ Fn,Bx,By ,Bf such that for all x ∈ [−Bx, Bx],
y ∈ [−By, By],

f(x,y) = (Ux)>M(Vy),
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where U ∈ Zd×np and V ∈ Zd×np are projection matrices, for d < n, and M ∈ Zd×dp , since
decryption first computes the encryption of (Ux,Vy) by linear homomorphism, then applies the
decryption algorithm on ciphertexts whose underlying plaintext are vectors of dimensions d. This
requires 2dn exponentiations in G1, 2dn exponentiations in G2, and 2d2 pairing computations, as
opposed to 2n2 pairing evaluations for the naive decryption: this is a major efficiency improvement
for small d, which is the case for the functions we are using to classify encrypted data, as explained
in Section 4.

Computing the discrete logarithm for decryption Our decryption requires computing discrete
logarithms of elements of GT , in base e(g1, g2), which is independent of the ciphertext and the
functional decryption key used to decrypt. Thus, to speed decryption up, we can pre-compute a
table of discrete logarithm values in GT which is accessed during every decryption. See Section 5 for
more details on the discrete logarithm computations. Note that previously implemented schemes,
such as [21], do not satisfy this property, and thus need to compute the discrete logarithm from
scratch with every new decryption.

4 Choosing a Model

We solve the challenging task of finding a model that is both accurate for classifying data and
efficiently implementable by state of the art FE schemes. A natural choice for its simplicity is to
use a linear classifier, since efficient FE for linear functions exists [3, 4]. However, linear classifiers
achieve limited accuracy when attempting to classify data (TensorFlow’s tutorial [1] claims 92%
accuracy on MNIST dataset).

This unsatisfactory performance justifies the use of richer models, as permitted by our FE
scheme for quadratic polynomials (introduced in Section 3). We want to classify data that can be
represented as a vector x ∈ [0, B]n for some B,n ∈ N (in the case of the MNIST dataset, the size
B = 255, and the dimension n = 784). In the following, we build models (fi)i∈[`] for each label
i ∈ [`], such that our prediction for the class of x ∈ [0, B]n is argmax

i∈[`]
fi(x).

Quadratic polynomial on Rn A direct application of our FE scheme would lead us to learn a
model (Qi)i∈[`] ∈ (Rn×n)`, which we would then round onto the integers (see paragraph below),
such that fi(x) = x>Qix, ∀i ∈ [`]. This is a very powerful model with a lot of parameters: `n2!
In the case of MNIST (n = 784), the training set is arguably too small to make use of such a
large number of parameters, and the resulting number of pairings to compute (2× 7842) would
be unreasonable.

Projection and quadratic polynomial on Rd To reduce the number of pairings to evaluate, we first
project the input vector from Rn onto Rd for a well chosen d < n, and we apply the quadratic
polynomials on the projected vectors. We can do this thanks to our scheme’s linear homomorphism
(see Section 3). This means that we learn P ∈ Rn×d and (Qi)i∈[`] ∈

(
Rd×d

)`, and our model is
fi(x) = (Px)>Qi(Px), ∀i ∈ [`]. Notice that P is common to all the fi, so we need only compute
Px once, and the number of pairings is reduced to 2`d2. Better yet, we can also perform the
pairings only once, effectively squaring Px component-wise, and then compute the scores by
exponentiating the results, which only requires 2d2 pairing evaluations.

Adding a bias term Our model would be more general if it were expanded from fi(x) =
(Px)>Qi(Px) to fi(x) = (Px + b)>Qi(Px + b) for b ∈ Zdp. We achieve something equivalent
by systematically adding a 1 at the beginning of x when encrypting it, effectively operating on(

1
x1
...
xn

)
.
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Degree 2 polynomial network, with one hidden layer on R To further reduce the number of
pairings, we actually limit ourselves to diagonal matrices, we thus rename Qi to Di. We find that
the gain in efficiency associated with only computing 2d pairings (since the Di are diagonal, they
contain at most d non-zero entries) is worth the small cost in accuracy. The resulting model is a
polynomial network of degree 2 with one hidden layer of d neurons: the activation function is the
square.

Rounding onto Zdp Our encryption scheme operates on elements of Zp, so we need to round our
model before we can use it on encrypted data. This does not significantly affect our accuracy.

Our final model can thus be written as fi(x) = (Px′)>Di(Px′), ∀i ∈ [`], where x′ =

(
1
x1
...
xn

)
.

In the remainder of this paper we simply use x to denote x′ when evaluating our model on an
input x.

We present the decryption algorithm that is optimized for our particular choice of model in
Fig. 3.

OptDec (pk, ct, skf1 , . . . , skf`):

• Parse ct :=
(
gγ1 , {g

ai
1 , gbi2 }i∈[n]

)
, where for all i ∈ [n], ai := (W−1)>

(
xi
γsi

)
, bi := W

(
xi
−ti

)
.

• For all i ∈ [`], parse skfi :=
(
g
fi(s,t)
2 , fi

)
, where fi(s, t) := (Ps)>Di(Pt)

for some fixed matrix P ∈ Zn×dp , and Di :=

ti,1 . . .
ti,d

 ∈ Zd×dp for each label i ∈ [`].

• We write P :=

p>1
...

p>d

, where for all i ∈ [d], p>i ∈ Z1×n
p is the i’th row of P.

For all i ∈ [d], compute ei := e(gci1 , g
di
2 ) ∈ GT where ci := (W−1)>

(
p>i x

γ · p>i s

)
and di := W

(
p>i x

−p>i t

)
• For all labels i ∈ [`], compute outi := e(gγ1 , g

fi(s,t)
2 ) ·

∏
j∈[d] e

ti,j
j

Return {log(outi) ∈ Z}i∈[`].

Fig. 3. Optimized decryption algorithm, for quadratic polynomials of the form fi(x,x) := (Px)>Di(Px) with
P ∈ Zn×dp , and Di ∈ Zd×dp is a diagonal matrix for all labels i ∈ [`]. Its performance is: 2nd(E1 +E2) + (`+2d)P +
`dET + ` · dlog, where E1, ET denote exponentiation in G1, GT respectively, P denotes a pairing evaluation, and
dlog denotes the time needed to solve the discrete logarithm.

5 Implementation and Results

We train a polynomial network classifier in TensorFlow [2], and use it in conjunction with our
FE scheme from Section 3, which we implement in Python, using the Charm framework [5]. Our
code will be uploaded to a public GitHub repository to which we will provide a link in the final
version of this paper.

Training a classifier in TensorFlow We follow a rather standard procedure on the Machine
Learning side of the implementation. We describe our model in TensorFlow and train a classifier
using the Adam optimization algorithm [22]. We use `2-regularization to limit overfitting and
adjust the hyperparameters using a validation set of 5000 labeled images. We train the final
model on the full training set (60000 labeled images), and scale it so the largest scalars in absolute
value of P and (Di)i are 15 and 30, respectively, before rounding it. Rounding it down to a
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small value is crucial to the efficiency of the final scheme. The resulting integer model achieves
97.54% accuracy on the test set of 10000 labeled images. We give a graphical representation of
the confusion matrix in Fig. 4: each row represent a manuscript digit to be classified, and each
column represents a classification result.

Fig. 4. Confusion matrix describing our performance on the MNIST dataset.

Implementing the scheme in Charm We use an asymmetric, prime-order, bilinear group: curve
MNT159 [27], which provides 80 bits of security. We essentially follow the description of the
scheme given in Section 3, except for the decryption algorithm, which we optimized using our
insights from Section 4, as described in Fig. 3. To gain more efficiency, we batch the computation
of exponentiations. Namely, the decryption algorithm requires exponentiating the same group



10 E. Dufour Sans, R. Gay and D. Pointcheval

element by many scalars. Thus, we can re-use the exponentiations of the group element by the
powers of two, used in the first step of the square and multiply algorithm, for all exponentiations4.

For encryption, we also need to compute exponentiations of a group element by many
small scalars (in our case, the scalars are comprised between 0 and 255). We compute all the
exponentiations for exponents between 0 and 255 once, and then, access them directly instead of
actually computing new exponentiations. Doing so improves efficiency, and has the advantage of
not introducing obvious timing attacks on the encryption procedure.

Solving the discrete logarithms The computation of the 10 discrete logarithms (one for each label)
can be prohibitive in terms of computation time, as the scores computed by our classifier can
be quite large. We avoid this issue by precomputing the giant steps of the Baby Step Giant
Step algorithm during the setup. As mentioned in Section 3, the discrete logarithms we have to
compute, are always relative to the same base: e(g1, g2). We can thus store a large amount of
exponents of e(g1, g2), which significantly speeds decryption up, at the cost of a larger memory
use. We store pairs of integers matching the hash of a group element to its discrete logarithm in a
PostgreSQL database. In our tests, we chose bounds based on the maximum scores our classifier
gives on the MNIST dataset [23], by evaluating it on the plaintext. We allow at most 213 baby
steps for each discrete logarithm in the online phase, which requires 2.81 seconds on average, for
1.8 GB of storage. We provide a method giving loose bounds on the scores output by a given
model, and from it, we estimate that the same number of baby steps would require storing 26.3
GB. This can be prohibitive for an individual user, but should not be a problem for production
software companies, as we envisioned when listing potential applications.

We give the average runtime for encryption, functional key generation, and decryption below,
using a 2.60GHz Intel Core i5-6440HQ CPU and 8GB of RAM. We break down the decryption
phase into an evaluation phase (which covers exponentiations and pairings) and a discrete
logarithm phase (whose runtime is independent of that of the latter, and can be reduced to almost
nothing at the cost of storing a large database of precomputations). We stress that the later
accounts for all 10 discrete logarithms.

Average encryption time 8.1s
Average evaluation time 1.5s
Average discrete logarithms time 3.3s
Average functional key generation time 8ms

6 Conclusion

In this work, we have proposed an efficient Functional Encryption scheme for the evaluation
of multivariate quadratic polynomials. It outperforms every previous scheme. This opens up a
path to richer classification models from Machine Learning. Thanks to our new FE scheme, one
can indeed publicly classify encrypted data: given the functional decryption key, anyone can
accurately predict the label that describes an encrypted digit, within just a few seconds, without
being able to decrypt the ciphertext.

However, one can think to many improvements for better efficiency or more functionalities.
Our implementation could be improved in the following ways:

– Using faster languages and frameworks, such as C with direct calls to the PBC library [25].
– Training Machine Learning models that can be turned into integers with even smaller bounds,

thereby greatly decreasing the required number of discrete logarithms.
– Using finer algorithms to estimate the bounds between which we must precompute discrete

logarithms, perhaps by borrowing techniques from the field of Mathematical Optimization.
4 see https://en.wikipedia.org/wiki/Exponentiation_by_squaring for a description of the square and multi-
ply algorithm

https://en.wikipedia.org/wiki/Exponentiation_by_squaring
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– Tackling different datasets, that might not be used as benchmarks like MNIST but that might
have practical relevance when it comes to protecting privacy. Note that while this work focused
entirely on classification problems, our scheme can readily be used for regression tasks, and
those only require solving one discrete logarithm.

We also list several open problems:

– Combining the previous FHE-based approach, and our FE-based approach, to perform both
the learning and classification on encrypted data, for better privacy.

– Designing and implementing efficient FE schemes for richer classes of functions, that cap-
ture more powerful machine learning algorithms. From an efficiency viewpoint, it would be
interesting to have an efficient FE for large inputs, and, in particular, without the need to
solve a discrete logarithm. This only exists for a restricted class of functions, namely, inner
products [3, 4].

– Building efficient FE for unbounded size inputs, which would provide a solution to the problem
of email filtering we mentioned in Section 1.

– Designing efficient function hiding FE schemes, that is, where functional decryption keys
hide their underlying function. This is useful for many scenarios where the person doing the
classification of encrypted data should not learn the classifier itself. Such schemes only exist
for inner products [9, 18,21,34].

FE is a recent cryptographic primitive, yet this paper shows that it could already be used in
practice. This is encouraging, because FE allows just the type of controlled access to data that
is useful in many practical scenarios, and that current tools fail to provide. We hope this work
inspires further contributions applying FE to real-world problems.
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A Security proof of our FE scheme

Theorem 3 (IND-CPA Security in the Generic Bilinear Group Model). For any PPT
adversary A that performs at most Q group operations, against the functional encryption scheme
described on Fig. 2, we have, in the generic bilinear group model:

AdvFEA (λ) ≤ 12 · (6n+ 3 +Q+Q′)2 + 1

p
,

where Q′ is the number of queries to KeyGen(msk, ·).

Proof. For any experiment Exp, adversary A, and security parameter λ ∈ N, we use the notation:
AdvExp(A) := Pr[1← Exp(1λ,A)], where the probability is taken over the random coins of Exp
and A.

Exp1(1
λ,A): KeyGen(msk, f):

(G1,G2, p, g1, g2, e)← GGen(1λ), s, t $← Znp return (g
f(s,t)
2 , f).

a, b, c, d
$← Zp, set PG := (G1,G2, p, g

ad−bc
1 , g2, e)

msk := (s, t), pk :=
(
PG, g(ad−bc)s1 , gt2

)(
(x(0),y(0)), (x(1),y(1))

)
← AKeyGen(msk,·)(pk)

β
$← {0, 1}, γ $← Zp

for all i ∈ [n], ai :=
(
d −c
−b a

)(
x
(β)
i

γsi

)
, bi :=

(
a b
c d

)(
y
(β)
i

−tj

)
ct =:

(
g
γ(ad−bc)
1 , {gai

1 , gbi2 }i∈[n]
)

β′ ← AKeyGen(msk,·)(pk, ct)

Return 1 if β′ = β and for all queried f , f(x(0),y(0)) = f(x(1),y(1)).

Fig. 5. Experiment Exp1, for the proof of Theorem 3.

While we want to prove the security result in the real experiment Exp0, in which the adversary
has to guess β, we slightly modify it into the hybrid experiment Exp1, described in Fig. 5: we

write the matrix W
$← GL2 used in the challenge ciphertext as W :=

(
a b
c d

)
, chosen from the

beginning. Then W−1 = 1
ad−bc

(
d −b
−c a

)
.

The only difference with the IND-CPA security game as defined in Section 2.2, is that we
change the generator g1

$← G∗1 into gad−bc1 for a, b, c, d $← Zp, which only changes the distribution
of the game by a statistical distance of at most 3

p (this is obtained by computing the probability

that ad− bc = 0 when a, b, c, d $← Zp). Thus,

AdvFEA (λ) = Adv0(A) ≤ Adv1(A) +
3

p
.

Note that in Exp1, the public key, the challenge ciphertext and the functional decryption keys
only contain group elements whose exponents are polynomials evaluated on random inputs (as
opposed to gW−1

1 , for instance). This is going to be helpful for the next step of the proof, which
uses the generic bilinear group model.

Next, we make the generic bilinear group model assumption, which intuitively says that no
PPT adversary can exploit the structure of the bilinear group to perform better attacks than
generic adversaries. That is, where Exp2 is defined in Fig. 6:

max
PPT A

(
Adv1(A)

)
= max

PPT A

(
Adv2(A)

)
.
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Exp2(1
λ,A):

L1 = L2 = LT := ∅, Qsk := ∅, s, t $← Znp , a, b, c, d
$← Zp, append(L1, (ad− bc) · s), append(L2, t), β $← {0, 1}(

(x(0),y(0)), (x(1),y(1))
)
← AOadd,Opair,Osk,Oeq(1λ, p)

Ochal

(
(x(0),y(0)), (x(1),y(1))

)
β′ ← AOadd,Opair,Osk,Oeq(1λ, p)
If β = β′, and for all f ∈ Qsk, f(x(0),y(0)) = f(x(1),y(1)), output 1. Otherwise, output 0.

Oadd(s ∈ {1, 2, T}, i, j ∈ N):
append(Ls, Ls[i] + Ls[j]).

Opair(i, j ∈ N):
append(LT , L1[i] · L2[j]).

Ochal

(
(x(0),y(0)), (x(1),y(1))

)
:

γ
$← Zp, append(L1, γ(ad− bc))

for all i ∈ [n], ai :=
(
d −c
−b a

)(
x
(β)
i

γsi

)
, append(L1,ai), bi :=

(
a b
c d

)(
y
(β)
i

−ti

)
, append(L2, bi).

Osk(f ∈ Fn,Bx,By,Bf ):
append(L2, f(s, t)), Qsk := Qsk ∪ {f}.

Oeq(s ∈ {1, 2, T}, i, j ∈ N):
Output 1 if Ls[i] = Ls[j], 0 otherwise

Fig. 6. Experiment Exp2. Wlog. we assume no query contains indices i, j ∈ N that exceed the size of the involved
lists.

In this experiment, we denote by ∅ the empty list, by append(L, x) the addition of an element
x to the list L, and for any i ∈ N, we denote by L[i] the i’th element of the list L if it exists (lists
are indexed from index 1 on), or ⊥ otherwise.

Thus, it suffices to show that for any PPT adversary A, Adv2(A) is negligible in λ. The
experiment Exp2 defined in Fig. 6 falls into the general class of simple interactive decisional
problems from [7, Definition 14]. Thus, we can use their master theorem [7, Theorem 7], which,
for our particular case (setting the public key size N := 2n+ 2, the key size c = 1, the ciphertext
size c∗ := 4n+ 1, and degree d = 6 in [7, Theorem 7]) states that:

Adv2(A) ≤
12 · (6n+ 3 +Q+Q′)2

p
,

where Q′ is the number of queries to Osk, and Q is the number of group operations, that is, the
number of calls to oracles Oadd and Opair, provided the following algebraic condition is satisfied:

{M ∈ Z(3n+2)×(3n+Q′+1)
p : Eq0(M)} = {M ∈ Z(3n+2)×(3n+Q′+1)

p : Eq1(M)},

where for all M, b ∈ {0, 1},

Eqb(M) :


1

(AD −BC)S
(AD −BC)Γ
Dx(b) − ΓCS
−Bx(b) + ΓAS


>

M


1
T

Ay(b) −BT

Cy(b) −DT
(f(S,T ))f∈Qsk

 = 0,

where the equality is taken in the ring Zp[S,T , A,B,C,D, Γ ], and 0 denotes the zero polynomial.
Intuitively, this condition captures the security at a symbolic level: it holds for schemes that are
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not trivially broken. The latter means that computing a linear combination in the exponents of
target group elements that can be obtained from pk, the challenge ciphertext, and functional
decryption keys, does not break the security of the scheme. We prove this condition is satisfied in
Lemma 4 above.

Lemma 4 (Symbolic Security). For any (x(0),y(0)), (x(1),y(1)) ∈ Z2n
p , and any set Qsk ⊆

Fn,Bx,By ,Bf such that for all f ∈ Qsk, f(x(0),y(0)) = f(x(1),y(1)), we have:

{M ∈ Z(3n+2)×(3n+Q′+1)
p : Eq0(M)} = {M ∈ Z(3n+2)×(3n+Q′+1)

p : Eq1(M)},

where for all M, b ∈ {0, 1},

Eqb(M) :


1

(AD −BC)S
(AD −BC)Γ
Dx(b) − ΓCS
−Bx(b) + ΓAS


>

M


1
T

Ay(b) −BT

Cy(b) −DT
(f(S,T ))f∈Qsk

 = 0,

where the equality is taken in the ring Zp[S,T , A,B,C,D, Γ ], and 0 denotes the zero polynomial.

Proof. Let b ∈ {0, 1}, and M ∈ Z(3n+2)×(3n+Q′+1)
p that satisfies Eqb(M). We prove it also satisfies

Eq1−b(M). To do so, we use the following rules:

Rule 1 : for all P,Q,R ∈ Zp[S,T , A,B,C,D, Γ ], with deg(P ) ≥ 1, if P ·Q+ R = 0 and R is
not a multiple of P , then Q = 0 and R = 0.

Rule 2 : for all P ∈ Zp[S,T , A,B,C,D, Γ ], any variable X ∈ {S,T , A,B,C,D, Γ}, and any
x ∈ Zp, P = 0 implies P (X := x) = 0, where P (X := x) denotes the polynomial P evaluated
on X = x.

Evaluating Eqb(M) on B = D = 0 (using Rule 2), then using Rule 1 on P = CΓSiTj for all
i, j ∈ [n], we obtain that:

Mn+2+i


0
T
0
0

(f(S,T ))f∈Qsk

 = 0,

where Mn+2+i denotes the n+ 2 + i’th row of M.
Similarly, using Rule 1 on P = ΓASiTj for all i, j ∈ [n], we obtain that:

M2n+2+i


0
T
0
0

(f(S,T ))f∈Qsk

 = 0.

Thus, we have:

∀β ∈ {0, 1} :


0
0
0

Dx(β) − ΓCS
−Bx(β) + ΓAS


>

M


0
T
0
0

(f(S,T ))f∈Qsk

 = 0. (1)

Using Rule 1 on P = (AD − BC)SiBTj for all i, j ∈ [n] in the equation Eqb(M), we
get that the coefficient Mi+1,n+1+j = 0 for all i, j ∈ [n]. Similarly, using Rule 1 on P =
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(AD −BC)SiDTj for all i, j ∈ [n], we get Mi+1,2n+1+j = 0 for all i, j ∈ [n]. Then, using Rule 1
on P = (AD − BC)ΓBTj for all j ∈ [n], we get Mn+2,n+1+j = 0 for all j ∈ [n]. Finally, using
Rule 1 on P = (AD −BC)ΓDTj for all j ∈ [n], we get Mn+2,2n+1+j = 0 for all j ∈ [n]. Overall,
we obtain:

∀β ∈ {0, 1} :


0

(AD −BC)S
(AD −BC)Γ

0
0


>

M


0
0

Ay(β) −BT

Cy(β) −DT
0

 = 0. (2)

We write:


0
0
0

Dx(b) − ΓCS
−Bx(b) + ΓAS


>

M


0
0

Ay(b) −BT

Cy(b) −DT
0

 =

∑
i,j∈[n]

(
Dx

(b)
i − ΓCSi

−Bx(b)i + ΓASi

)>
·

(
m

(1)
i,j

(
1 0
0 1

)
+m

(2)
i,j

(
1 0
0 0

)
+m

(3)
i,j

(
0 0
1 0

)
+m

(4)
i,j

(
0 1
0 0

))
·(

Ay
(b)
j −BTj

Cy
(b)
j −DTj

)

Evaluating the equation Eqb(M) on C = D = 0 (by Rule 2), then using Rule 1 on
P = ΓABSiTj for all i, j ∈ [n], we obtain m(3)

i,j = 0 for all i, j ∈ [n]. Evaluating the equation
Eqb(M) on A = B = 0 (by Rule 2), then using Rule 1 on P = ΓCDSiTj for all i, j ∈ [n], we
obtain m(4)

i,j = 0 for all i, j ∈ [n]. Evaluating the equation Eqb(M) on A = B = C = D = 1 (using

Rule 2), then using Rule 1 on P = ΓSiTj for all i, j ∈ [n], using the fact that m(3)
i,j = m

(4)
i,j = 0

and (1), we obtain m(2)
i,j = 0 for all i, j ∈ [n]. Using Rule 1 on P = Γ (AD − BC)SiTj for all

i, j ∈ [n] in the equation Eqb(M), we obtain that for all i, j ∈ [n], m(1)
i,j = Mn+2


0
0
0
0

(fi,j)f∈Qsk

,
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where Mn+2 is the n+ 2’th row of M. Putting everything together, we have:


0
0
0

Dx(b) − ΓCS
−Bx(b) + ΓAS


>

M


0
0

Ay(b) −BT

Cy(b) −DT
0

 =

(AD −BC)Mn+2


0
0
0
0(

f(x(b),y(b))− Γf(s, t)
)
f∈Qsk

 =

(AD −BC)Mn+2


0
0
0
0(

f(x(1−b),y(1−b))− Γf(s, t)
)
f∈Qsk

 =


0
0
0

Dx(1−b) − ΓCS
−Bx(1−b) + ΓAS


>

M


0
0

Ay(b) −BT

Cy(b) −DT
0

 (3)

where we use the fact that for all f ∈ Qsk, f(x(b),y(b)) = f(x(1−b),y(1−b)).

Evaluating the equation Eqb(M) on A = B = D = 0 (by Rule 2), then using Rule 1 on
ΓSiC for all i ∈ [n], and using (1) and (3), we obtain that the coefficient Mn+2+i,1 = 0 for all
i ∈ [n]. Evaluating Eqb(M) on B = C = D = 0 (by Rule 2), then using Rule 1 on ΓSiA for all
i ∈ [n], and using (1) and (3), we obtain that the coefficient M2n+2+i,1 = 0 for all i ∈ [n]. Thus,
we have:

∀β ∈ {0, 1} :


0
0
0

Dx(β) − ΓCS
−Bx(β) + ΓAS


>

M


1
0
0
0
0

 = 0. (4)

Evaluating the equation Eqb(M) on A = C = D = 0 (by Rule 2), then using Rule 1 on
BTj for all i ∈ [n], and using (3), we obtain that the coefficient M1,n+1+j = 0 for all j ∈ [n].
Evaluating Eqb(M) on A = B = C = 0 (by Rule 2), then using Rule 1 on DTj for all j ∈ [n],
and using (3), we obtain that the coefficient M1,2n+1+j = 0 for all j ∈ [n]. Thus, we have:

∀β ∈ {0, 1} :


1
0
0
0
0


>

M


0
0

Ay(β) −BT

Cy(β) −DT
0

 = 0. (5)
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Overall, we have:

Eqb(M) :


1

(AD −BC)S
(AD −BC)Γ
Dx(b) − ΓCS
−Bx(b) + ΓAS


>

M


1
T

Ay(b) −BT

Cy(b) −DT
(f(S,T ))f∈Qsk

 = 0

⇒(1),(2),(4),(5)


1

(AD −BC)S
(AD −BC)Γ

0
0


>

M


1
T
0
0

(f(S,T ))f∈Qsk

+


0
0
0

Dx(b) − ΓCS
−Bx(b) + ΓAS


>

M


0
0

Ay(b) −BT

Cy(b) −DT
0

 = 0

⇒(3)


1

(AD −BC)S
(AD −BC)Γ

0
0


>

M


1
T
0
0

(f(S,T ))f∈Qsk

+


0
0
0

Dx(1−b) − ΓCS
−Bx(1−b) + ΓAS


>

M


0
0

Ay(1−b) −BT

Cy(1−b) −DT
0

 = 0

⇒(1),(2),(4),(5) Eq1−b(M) :


1

(AD −BC)S
(AD −BC)Γ
Dx(1−b) − ΓCS
−Bx(1−b) + ΓAS


>

M


1
T

Ay(1−b) −BT

Cy(1−b) −DT
(f(S,T ))f∈Qsk

 = 0
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