Reading in the Dark: Classifying Encrypted Digits with Functional Encryption

Edouard Dufour Sans ${ }^{1,2}$, Romain Gay ${ }^{1,2}$, and David Pointcheval ${ }^{1,2}$
${ }^{1}$ DIENS, École normale supérieure, CNRS, PSL Research University, Paris, France
${ }^{2}$ INRIA
\{edufoursans,rgay,david.pointcheval\}@ens.fr

Abstract

As machine learning grows into a ubiquitous technology that finds many interesting applications, the privacy of data is becoming a major concern. This paper deals with machine learning and encrypted data. Namely, our contribution is twofold: we first build a new Functional Encryption scheme for quadratic multi-variate polynomials, which outperforms previous schemes. It enables the efficient computation of quadratic polynomials on encrypted vectors, so that only the result is in clear. We then turn to quadratic networks, a class of machine learning models, and show that their design makes them particularly suited to our encryption scheme. This synergy yields a technique for efficiently recovering a plaintext classification of encrypted data. Eventually, we prototype our construction and run it on the MNIST dataset to demonstrate practical relevance. We obtain 97.54% accuracy, with decryption and encryption taking few seconds.

Keywords. Machine Learning on Encrypted Data, Functional Encryption, Quadratic polynomials.

1 Introduction

Functional Encryption (FE) [12,30] is a new paradigm for encryption which extends the traditional "all-or-nothing" requirement in a much more flexible way. FE allows users to learn specific evaluations of a plaintext from the corresponding ciphertext: for any function f from a class \mathcal{F}, a functional decryption key dk_{f} can be generated such that, given any ciphertext c with underlying plaintext x, using dk_{f}, a user can efficiently decrypt c and obtain $f(x)$, but does not get any additional information about x.

FE is the most general form of encryption as it encompasses identity-based encryption, attribute-based encryption, and broadcast encryption, using a function f that applies a simple access-control evaluation before outputting the full plaintext. Put simply, FE allows the user to control what is leaked about his data. Many applications such as spam filters, parental control, or targeted advertising, only require partial knowledge of the data. FE reconciles these useful applications with the need for privacy and confidentiality of the data, since only the relevant, aggregated information is revealed. More precisely, FE can be used to classify encrypted images into categories, without leaking more information about the images than the category itself.

1.1 Our Results

We first train a machine learning model using unencrypted labeled data. This model can then be used to classify new data. Finally, we use FE to encrypt data in such a way that, given a specific functional decryption key, one can obtain (in clear) the result of the classification of the encrypted data.

Use case for Functional Encryption: classifying encrypted data We first train a polynomial network on plain data. We consider low depth networks, for which we can build efficient FE schemes. Then, the data to be classified, \boldsymbol{x}, is encrypted using the FE scheme, and a functional decryption key dk_{f} is issued for the model f : using it, one can learn the scores output by the network in the
classification of $f(\boldsymbol{x})$, and nothing else about \boldsymbol{x} itself ${ }^{3}$. This resolves the apparent conflict between the need for confidentiality of the data, and the usefulness of machine learning classification. We use the open-source software library TensorFlow [2] to train our model on the MNIST dataset [23], to obtain 97.54% accuracy. We prototype our construction using the CHARM framework [5] to show practical relevance. See Section 5 for more details on our implementation. We chose this particular dataset as a benchmark, but we envision numerous other applications, such as email filtering.

Email filtering Think of a machine learning algorithm that automatically classifies incoming emails into folders, in a richer way than keyword search would allow for. Bob sets up an FE scheme and broadcasts his public key. Alice can use this key to send him an encrypted email, which Bob's email provider stores. Given the appropriate functional decryption key, the server will be able to learn the folder that the incoming email has to be put into, and nothing more about the email itself. Bob can then decrypt the email himself to read the details. Doing the filtering on the server side, rather than on the client side, has some advantages: it avoids the client sending back to the server the result of the classification so that emails are stored in the appropriate folder, and it allows the server to notify the user if, for instance, an incoming email is labeled "important".

The choice of a (quadratic) polynomial network is motivated by natural synergies that exist between accurate classifiers and efficient FE schemes for quadratic polynomials. See Section 4 for more details on the choice of a model for classifying data.

A new efficient Functional Encryption scheme for quadratic polynomials We design a new FE scheme for quadratic polynomials that outperforms the state of the art [7] in terms of decryption time and ciphertext size. Moreover, we exploit structural properties of our scheme to improve efficiency on the class of functions relevant to machine learning classification. Our scheme relies on a bilinear group, whose use in cryptography has been introduced by [10, 20]. As in [7], we prove security of our FE scheme in the Generic Bilinear Group Model, where it is assumed that no attack can make use of the algebraic structure of the underlying group that is used, which is the case for curves used in practice, where only generic attacks are known (such as Pollard's rho algorithm, or the baby-set giant-step algorithm). We use the MNT159 curve [27] which provides 80 bits of security.

Use cases for FE Unlike prior works, which rely on either Multi-Party Computation (MPC), or Fully-Homomorphic Encryption (FHE) to perform classification of encrypted data, we use functional encryption. This limits the interactivity of the protocol, relative to MPC, and directly outputs the result of the classification in clear, unlike FHE where the cloud only recovers an encrypted result that the user has to decrypt himself to continue the process.

FHE is particularly relevant when outsourcing huge computations on sensitive data, as they remain encrypted even when a result is output. But the server could compute arbitrary functions on the encrypted data, and possibly deviate from the intended protocol. With FE, the server is restricted to computing the function specified by the functional decryption key, and gets the result in clear. This allows it to proceed, without waiting for any help from the user.

1.2 Related Work

Classifying encrypted data via homomorphic encryption In $[14,16,19]$ a user encrypts sensitive data using an homomorphic encryption scheme, sends it to the cloud, which can blindly classify

[^0]it, using the homomorphic property of the encryption. But doing so, the cloud only obtains the encrypted result of the classification, and has to send it back to the user, who must decrypt it himself with his secret key. As in our work, the classifier used by the cloud is trained on plain data. The confidentiality of the data to be classified is guaranteed by the security of the homomorphic encryption scheme (in $[14,19]$, they use the encryption scheme from [13], while [16] uses [17]). In fact, there is absolutely no leakage of information to the cloud (unlike our approach which leaks the result of the classification), since the cloud only sees the encrypted result. This, however, prevents different users from sharing sensitive data using the cloud, since only the user that encrypts has the key to decrypt. This is a pure outsourcing of computation, and the user has to trust the server on the correctness of the computation (unless costly proofs are added) and the server base any further computations on the classification result, since it does not learn it.

An other work [15] considers the setting where the model itself, while trained on plain data, has to remain private from the persons classifying the encrypted data. This is particularly useful when the training data is private, since the model might reveal information about its underlying training data [32]. They build efficient, specialized 2-party protocols for the core functions used in most common classifiers (such as linear, naive Bayes, or decision tree classifiers), using homomorphic encryption and garbled circuits.

Learning on encrypted data While our work considers classifying encrypted data, using a classifier trained on plain data, [29] considers learning a linear curve that best fits the encrypted training data. The construction reveals the linear curve in the clear, and it can then be used for prediction on new data, but does not reveal any further information on the training data. This uses homomorphic encryption [31], and garbled circuits [35]. In [24], the authors build an optimized 2-party protocol for learning a decision tree from private databases.

Implementations of FE schemes [21] implements a function-hiding FE for inner product. This is a private-key scheme where functional decryption keys decrypt an inner product of an encrypted vector, without revealing their underlying functions. Their source code, which uses the Charm framework, is available on GitHub at https://github.com/kevinlewi/fhipe.

2 Preliminaries

2.1 Bilinear Groups

Our FE scheme uses bilinear groups (also known as pairing groups), whose use in cryptography has been introduced by $[11,20]$. More precisely, we denote by GGen a PPT algorithm that on input 1^{λ} returns a description $\mathcal{P G}=\left(\mathbb{G}_{1}, \mathbb{G}_{2}, p, g_{1}, g_{2}, e\right)$ of an asymmetric bilinear group, where \mathbb{G}_{1} and \mathbb{G}_{2} are cyclic groups of prime order p (for a 2λ-bit prime p) and g_{1} and g_{2} are generators of \mathbb{G}_{1} and \mathbb{G}_{2}, respectively. The application $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$ is an admissible pairing, which means that it is efficiently computable, non-degenerated, and bilinear: $e\left(g_{1}^{\alpha}, g_{2}^{\beta}\right)=e\left(g_{1}, g_{2}\right)^{\alpha \beta}$ for any scalars $\alpha, \beta \in \mathbb{Z}_{p}$. We thus define $g_{T}:=e\left(g_{1}, g_{2}\right)$ which spans the group \mathbb{G}_{T} of prime order p.

For the sake of clarity, for any $s \in\{1,2, T\}, n \in \mathbb{N}$, and vector $\boldsymbol{u}:=\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right) \in \mathbb{Z}_{p}^{n}$, we denote by $g_{s}^{\boldsymbol{u}}:=\left(\begin{array}{c}g_{s}^{u_{1}} \\ \vdots \\ g_{s}^{u_{n}}\end{array}\right) \in \mathbb{G}_{s}^{n}$. In the same vein, for any vectors $\boldsymbol{u} \in \mathbb{Z}_{p}^{n}, \boldsymbol{v} \in \mathbb{Z}_{p}^{n}$, we denote by $e\left(g_{1}^{\boldsymbol{u}}, g_{2}^{\boldsymbol{v}}\right)=\prod_{i=1} e\left(g_{1}, g_{2}\right)^{u_{i} \cdot v_{i}}=e\left(g_{1}, g_{2}\right)^{\boldsymbol{u} \cdot \boldsymbol{v}} \in \mathbb{G}_{T}$, since $\boldsymbol{u} \cdot \boldsymbol{v}$ denotes the inner product between the vectors \boldsymbol{u} and \boldsymbol{v}, that is: $\boldsymbol{u} \cdot \boldsymbol{v}:=\sum_{i=1}^{n} u_{i} v_{i}$.

2.2 Functional Encryption

We recall the definition of Functional Encryption, originally defined in [12,30].
Definition 1 (Functional Encryption). A functional encryption scheme FE for a set of functions $\mathcal{F} \subseteq \mathcal{X} \rightarrow \mathcal{Y}$ is a tuple of PPT algorithms $\mathrm{FE}=($ SetUp, KeyGen, Enc, Dec) defined as follows.
$\operatorname{SetUp}\left(1^{\lambda}, \mathcal{F}\right)$ takes as input a security parameter 1^{λ}, the set of functions \mathcal{F}, and outputs a master secret key msk and a public key pk.
KeyGen(msk, f) takes as input the master secret key and a function $f \in \mathcal{F}$, and outputs a functional decryption key dk_{f}.
Enc(pk, x) takes as input the public key pk and a message $x \in \mathcal{X}$, and outputs a ciphertext ct.
$\operatorname{Dec}\left(\mathrm{dk}_{f}, \mathrm{ct}\right)$ takes as input a functional decryption key dk_{f} and a ciphertext ct , and returns an output $y \in \mathcal{Y} \cup\{\perp\}$, where \perp is a special rejection symbol.

Perfect correctness For all $x \in \mathcal{X}, f \in \mathcal{F}, \operatorname{Pr}\left[\operatorname{Dec}\left(\mathrm{dk}_{f}, \mathrm{ct}\right)=f(x)\right]=1$, where the probability is taken over $(\mathrm{pk}, \mathrm{msk}) \leftarrow \operatorname{SetUp}\left(1^{\lambda} \mathcal{F}\right), \mathrm{dk}_{f} \leftarrow \operatorname{KeyGen}(\mathrm{msk}, f)$ and $\mathrm{ct} \leftarrow \operatorname{Enc}(\mathrm{pk}, x)$.

IND-CPA security For any stateful adversary \mathcal{A}, and any functional encryption scheme FE, we define the following advantage.

$$
\operatorname{Adv}_{\mathcal{A}}^{\mathrm{FE}}(\lambda):=\operatorname{Pr}\left[\begin{array}{l}
\quad(\mathrm{pk}, \mathrm{msk}) \leftarrow \operatorname{SetUp}\left(1^{\lambda}, \mathcal{F}\right) \\
\left(x_{0}, x_{1}\right) \leftarrow \mathcal{A}^{\text {KeyGen }(\text { msk,.) })}(\mathrm{pk}) \\
\beta^{\prime}=\beta: \\
\beta \stackrel{\&}{\leftarrow}\{0,1\} \\
\\
\mathrm{ct} \leftarrow \operatorname{Enc}\left(\mathrm{pk}, x_{\beta}\right) \\
\beta^{\prime} \leftarrow \mathcal{A}^{\text {KeyGen(msk,.) }(\mathrm{ct})}
\end{array}\right]-\frac{1}{2},
$$

with the restriction that all queries f that \mathcal{A} makes to KeyGen(msk, \cdot) must satisfy $f\left(x_{0}\right)=f\left(x_{1}\right)$. We say FE is IND-CPA secure if for all PPT adversaries $\mathcal{A}, \operatorname{Adv}_{\mathcal{A}}^{\mathrm{FE}}(\lambda)=\operatorname{negl}(\lambda)$.

3 Functional Encryption for Quadratic Polynomials

Here we build an efficient FE scheme (described Fig. 2) for the set of functions defined, for all $n, B_{x}, B_{y}, B_{f} \in \mathbb{N}^{*}$, as $\mathcal{F}_{n, B_{x}, B_{y}, B_{f}}=\left\{f:\left[-B_{x}, B_{x}\right]^{n} \times\left[-B_{y}, B_{y}\right]^{n} \rightarrow \mathbb{Z}\right\}$ where the functions $f \in \mathcal{F}_{n, B_{x}, B_{y}, B_{f}}$ are described as a set of bounded coefficients $\left\{f_{i, j} \in\left[-B_{f}, B_{f}\right]\right\}_{i, j \in[n]}$, and for all vectors $\boldsymbol{x} \in\left[-B_{x}, B_{x}\right]^{n}, \boldsymbol{y} \in\left[-B_{y}, B_{y}\right]$, we have:

$$
f(\boldsymbol{x}, \boldsymbol{y})=\sum_{i, j \in[n]} f_{i, j} x_{i} y_{j} .
$$

It relies on prime-order, asymmetric, bilinear groups (see Section 2.1), and is proven secure in the generic group model. We compare its efficiency with previous FE schemes in Fig. 1. Note that the efficiency of the decryption can be further optimized for the relevant quadratic polynomials used in our application (see Section 4).

Correctness For all $i, j \in[n]$, we have: $e\left(g_{1}^{\boldsymbol{a}_{i}}, g_{2}^{\boldsymbol{b}_{\boldsymbol{i}}}\right)=g_{T}^{\boldsymbol{a}_{i} \cdot \boldsymbol{b}_{\boldsymbol{i}}}=g_{T}^{x_{i} y_{j}-\gamma s_{i} t_{j}}$, since

$$
\begin{aligned}
\boldsymbol{a}_{i} \cdot \boldsymbol{b}_{i} & =\left(\left(\mathbf{W}^{-1}\right)^{\top}\binom{x_{i}}{\gamma s_{i}}\right)^{\top} \cdot\left(\mathbf{W}\binom{y_{j}}{-t_{j}}\right) \\
& =\binom{x_{i}}{\gamma s_{i}}^{\top} \mathbf{W}^{-1} \mathbf{W}\binom{y_{j}}{-t_{j}}=x_{i} y_{j}-\gamma s_{i} t_{j} .
\end{aligned}
$$

FE scheme	$c t$	dk_{f}	Dec	Assumption
BCFG 17 [7, Section 3]	$\mathbb{G}_{1}^{6 n+1} \times \mathbb{G}_{2}^{6 n+1}$	$\mathbb{G}_{1} \times \mathbb{G}_{2}$	$6 n^{2}\left(E_{1}+P\right)+2 P$	standard (SXDH, 3PDDH)
BCFG 17 [7, Section 4]	$\mathbb{G}_{1}^{2 n+1} \times \mathbb{G}_{2}^{2 n+1}$	\mathbb{G}_{1}^{2}	$3 n^{2}\left(E_{1}+P\right)+2 P$	GGM
ours	$\mathbb{G}_{1}^{2 n+1} \times \mathbb{G}_{2}^{2 n}$	\mathbb{G}_{2}	$2 n^{2}\left(E_{1}+P\right)+P$	GGM

Fig. 1. Performance comparison of public-key FE for quadratic polynomials. E_{1} and P denote exponentiation in \mathbb{G}_{1} and pairing evaluation, respectively. We ignore the description of the function f in dk_{f}. Decryption additionally requires solving a discrete logarithm. Since this computational overhead is the same for all schemes, we omit it here.

$$
\begin{aligned}
& \frac{\operatorname{SetUp}\left(1^{\lambda}, \mathcal{F}_{n, B_{x}, B_{y}, B_{f}}\right):}{\mathcal{P G}:=\left(\mathbb{G}_{1}, \mathbb{G}_{2}, p, g_{1}, g_{2}, e\right) \leftarrow \operatorname{GGen}\left(1^{\lambda}\right), \boldsymbol{s}, \boldsymbol{t} \stackrel{\$}{\circledR}_{\leftarrow}^{\mathbb{Z}_{p}^{n}}, \text { msk }:=(\boldsymbol{s}, \boldsymbol{t}), \mathrm{pk}:=\left(\mathcal{P G}, g_{1}^{s}, g_{2}^{t}\right)} \\
& \text { Return (pk, msk). } \\
& \operatorname{Enc}(\mathrm{pk},(\boldsymbol{x}, \boldsymbol{y})) \text { : } \\
& \gamma \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}, \mathbf{W} \stackrel{\&}{\leftarrow} \mathrm{GL}_{2} \text {, for all } i \in[n], \boldsymbol{a}_{i}:=\left(\mathbf{W}^{-1}\right)^{\top}\binom{x_{i}}{\gamma s_{i}}, \boldsymbol{b}_{i}:=\mathbf{W}\binom{y_{i}}{-t_{i}} \\
& \text { Return ct }:=\left(g_{1}^{\gamma},\left\{g_{1}^{\boldsymbol{a}_{i}}, g_{2}^{\boldsymbol{b}_{i}}\right\}_{i \in[n]}\right) \in \mathbb{G}_{1} \times\left(\mathbb{G}_{1}^{2} \times \mathbb{G}_{2}^{2}\right)^{n} \\
& \text { KeyGen(msk, } f \text {): } \\
& \text { Return } \mathrm{dk}_{f}:=\left(g_{2}^{f(s, t)}, f\right) \in \mathbb{G}_{2} \times \mathcal{F}_{n, B_{x}, B_{y}, B_{f}} . \\
& \frac{\operatorname{Dec}\left(\mathrm{pk}, \mathrm{ct}:=\left(g_{1}^{\gamma},\left\{g_{1}^{\boldsymbol{a}_{i}}, g_{2}^{\boldsymbol{b}_{i}}\right\}_{i \in[n]}\right), \mathrm{dk}_{f}:=\left(g_{2}^{f(s, t)}, f\right)\right):}{\text { out }:=e\left(g_{1}^{\gamma}, g_{2}^{f(s, t)}\right) \cdot \prod_{i, j \in[n]} e\left(g_{1}^{\boldsymbol{a}_{i}}, g_{2}^{\boldsymbol{b}_{\boldsymbol{i}}}\right)^{f_{i, j}}} \\
& \text { Return } \log (\text { out }) \in \mathbb{Z} \text {. }
\end{aligned}
$$

Fig. 2. Our functional encryption scheme for quadratic polynomials

Thus, we have:

$$
\begin{aligned}
\text { out } & =e\left(g_{1}^{\gamma}, g_{2}^{f(\boldsymbol{s}, t)}\right) \cdot \prod_{i, j} e\left(g_{1}^{\boldsymbol{a}_{i}}, g_{2}^{\boldsymbol{b}_{i}}\right)^{f_{i, j}}=g_{T}^{\gamma f(\boldsymbol{s}, t)} \cdot g_{T}^{\sum_{i, j} f_{i, j} x_{i} y_{j}-\gamma f_{i, j} s_{i} t_{j}} \\
& =g_{T}^{\gamma f(\boldsymbol{s}, \boldsymbol{t})} \cdot g_{T}^{f(\boldsymbol{x}, \boldsymbol{y})-\gamma f(\boldsymbol{s}, t)}=g_{T}^{f(\boldsymbol{x}, \boldsymbol{y})} .
\end{aligned}
$$

Security To prove security of our scheme, we use the Generic Bilinear Group Model, which captures the fact that no attacks can make use of the representation of group elements. For convenience, we use Maurer's model [26], where a third party implements the group and gives access to the adversary via handles, providing also equality checking. This is an alternative, but equivalent, formulation of the Generic Group Model, as originally introduced in [28, 33].

We prove security in two steps: first, we use a master theorem from [7] that relates the security in the Generic Bilinear Group model to a security in a symbolic model. Second, we prove security in the symbolic model. Let us now explain the symbolic model (the next paragraph is taken verbatim from [6]).

In the symbolic model, the third party does not implement an actual group, but keeps track of abstract expressions. For example, consider an experiment where values x, y are sampled from \mathbb{Z}_{p} and the adversary gets handles to g^{x} and g^{y}. In the generic model, the third party will choose a group of order p, for example ($\mathbb{Z}_{p},+$), will sample values $x, y \leftarrow_{R} \mathbb{Z}_{p}$ and will give handles to x and y. On the other hand, in the symbolic model the sampling won't be performed and the third party will output handles to X and Y, where X and Y are abstract variables. Now, if the adversary asks for equality of the elements associated to the two handles, the answer will be negative in the symbolic model, since abstract variable X is different from abstract variable
Y, but there is a small chance the equality check succeeds in the generic model (only when the sampling of x and y coincides).

To apply the master theorem, we first need to change the distribution of the security game to ensure that the public key, challenge ciphertext, and functional decryption keys only contain group elements whose exponent is a polynomial evaluated on uniformly random values in \mathbb{Z}_{p} (this is called polynomially induced distributions in [7, Definition 10], and previously in [8]). We show that this is possible with only a negligible statistical change in the distribution of the adversary view.

After applying the master theorem from [7], we prove the security in the symbolic model (cf. Lemma 4), which simply consists of checking that an algebraic condition on the scheme in satisfied.

Theorem 2 (IND-CPA Security in the Generic Bilinear Group Model). For any PPT adversary \mathcal{A} that performs at most Q group operations, against the functional encryption scheme described on Fig. 2, we have, in the generic bilinear group model:

$$
\operatorname{Adv}_{\mathcal{A}}^{\mathrm{FE}}(\lambda) \leq \frac{12 \cdot\left(6 n+3+Q+Q^{\prime}\right)^{2}+1}{p}
$$

where Q^{\prime} is the number of queries to KeyGen(msk, \cdot).
The proof of the above theorem is in the appendix.
Linear homomorphism Our FE scheme (Fig. 2) enjoys the property that the encryption alrogithm is linearly homomorphic with respect to both the plaintext and the public key. Namely, for all $(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{Z}_{p}^{n} \times \mathbb{Z}_{p}^{n}$, and $(\boldsymbol{u}, \boldsymbol{v}) \in \mathbb{Z}_{p}^{n} \times \mathbb{Z}_{p}^{n}$, given an encryption of $(\boldsymbol{x}, \boldsymbol{y})$ under the public key pk $:=\left(g_{1}^{s}, g_{2}^{t}\right)$, one can efficiently compute an encryption of $\left(\boldsymbol{u}^{\top} \boldsymbol{x}, \boldsymbol{v}^{\top} \boldsymbol{y}\right)$ under the public key $\mathrm{pk}^{\prime}:=\left(g_{1}^{\boldsymbol{u}^{\top} \boldsymbol{s}}, g_{2}^{\boldsymbol{v}^{\top} \boldsymbol{t}}\right)$. Indeed, given

$$
\operatorname{Enc}(\text { pk },(\boldsymbol{x}, \boldsymbol{y})):=\left(g_{1}^{\gamma},\left\{g_{1}^{\boldsymbol{a}_{i}}, g_{2}^{\boldsymbol{b}_{i}}\right\}_{i \in[n]}\right),
$$

and $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{Z}_{p}^{n}$, one can efficiently compute:

$$
\left(g_{1}^{\gamma}, g_{1}^{\sum_{i \in[n]} u_{i} \cdot \boldsymbol{a}_{i}}, g_{2}^{\sum_{i \in[n]} v_{i} \cdot \boldsymbol{b}_{i}}\right),
$$

which is $\operatorname{Enc}\left(\operatorname{pk}^{\prime},\left(\boldsymbol{u}^{\top} \boldsymbol{x}, \boldsymbol{v}^{\top} \boldsymbol{y}\right)\right)$, since:

$$
\begin{aligned}
& \sum_{i \in[n]} u_{i} \cdot \boldsymbol{a}_{i}=\sum_{i \in[n]} u_{i} \cdot\left(\mathbf{W}^{-1}\right)^{\top}\binom{x_{i}}{\gamma s_{i}}= \\
& \left(\mathbf{W}^{-1}\right)^{\top}\binom{\sum_{i \in[n]} u_{i} \cdot x_{i}}{\gamma \sum_{i \in[n]} u_{i} \cdot s_{i}}= \\
& \left(\mathbf{W}^{-1}\right)^{\top}\binom{\boldsymbol{u}^{\top} \boldsymbol{x}}{\gamma \boldsymbol{u}^{\top} s} .
\end{aligned}
$$

Similarly, we have:

$$
\begin{aligned}
& \sum_{i \in[n]} v_{i} \cdot \boldsymbol{b}_{i}=\sum_{i \in[n]} v_{i} \cdot \mathbf{W}\binom{y_{i}}{-t_{i}}= \\
& \mathbf{W}\binom{\boldsymbol{v}^{\top} \boldsymbol{y}}{-\boldsymbol{v}^{\top} \boldsymbol{t}}
\end{aligned}
$$

This is of particular interest for functions $f \in \mathcal{F}_{n, B_{x}, B_{y}, B_{f}}$ such that for all $\boldsymbol{x} \in\left[-B_{x}, B_{x}\right]$, $\boldsymbol{y} \in\left[-B_{y}, B_{y}\right]$,

$$
f(\boldsymbol{x}, \boldsymbol{y})=(\mathbf{U} \boldsymbol{x})^{\top} \mathbf{M}(\mathbf{V} \boldsymbol{y}),
$$

where $\mathbf{U} \in \mathbb{Z}_{p}^{d \times n}$ and $\mathbf{V} \in \mathbb{Z}_{p}^{d \times n}$ are projection matrices, for $d<n$, and $\mathbf{M} \in \mathbb{Z}_{p}^{d \times d}$, since decryption first computes the encryption of $(\mathbf{U} \boldsymbol{x}, \mathbf{V} \boldsymbol{y})$ by linear homomorphism, then applies the decryption algorithm on ciphertexts whose underlying plaintext are vectors of dimensions d. This requires $2 d n$ exponentiations in $\mathbb{G}_{1}, 2 d n$ exponentiations in \mathbb{G}_{2}, and $2 d^{2}$ pairing computations, as opposed to $2 n^{2}$ pairing evaluations for the naive decryption: this is a major efficiency improvement for small d, which is the case for the functions we are using to classify encrypted data, as explained in Section 4.

Computing the discrete logarithm for decryption Our decryption requires computing discrete logarithms of elements of \mathbb{G}_{T}, in base $e\left(g_{1}, g_{2}\right)$, which is independent of the ciphertext and the functional decryption key used to decrypt. Thus, to speed decryption up, we can pre-compute a table of discrete logarithm values in \mathbb{G}_{T} which is accessed during every decryption. See Section 5 for more details on the discrete logarithm computations. Note that previously implemented schemes, such as [21], do not satisfy this property, and thus need to compute the discrete logarithm from scratch with every new decryption.

4 Choosing a Model

We solve the challenging task of finding a model that is both accurate for classifying data and efficiently implementable by state of the art FE schemes. A natural choice for its simplicity is to use a linear classifier, since efficient FE for linear functions exists [3, 4]. However, linear classifiers achieve limited accuracy when attempting to classify data (TensorFlow's tutorial [1] claims 92% accuracy on MNIST dataset).

This unsatisfactory performance justifies the use of richer models, as permitted by our FE scheme for quadratic polynomials (introduced in Section 3). We want to classify data that can be represented as a vector $\boldsymbol{x} \in[0, B]^{n}$ for some $B, n \in \mathbb{N}$ (in the case of the MNIST dataset, the size $B=255$, and the dimension $n=784$). In the following, we build models $\left(f_{i}\right)_{i \in[\ell]}$ for each label $i \in[\ell]$, such that our prediction for the class of $\boldsymbol{x} \in[0, B]^{n}$ is $\underset{i \in[\ell]}{\operatorname{argmax}} f_{i}(\boldsymbol{x})$.

$$
i \in[\ell]
$$

Quadratic polynomial on \mathbb{R}^{n} A direct application of our FE scheme would lead us to learn a model $\left(\mathbf{Q}_{i}\right)_{i \in[\ell]} \in\left(\mathbb{R}^{n \times n}\right)^{\ell}$, which we would then round onto the integers (see paragraph below), such that $f_{i}(\boldsymbol{x})=\boldsymbol{x}^{\top} \mathbf{Q}_{i} \boldsymbol{x}, \forall i \in[\ell]$. This is a very powerful model with a lot of parameters: ℓn^{2} ! In the case of MNIST $(n=784)$, the training set is arguably too small to make use of such a large number of parameters, and the resulting number of pairings to compute $\left(2 \times 784^{2}\right)$ would be unreasonable.

Projection and quadratic polynomial on \mathbb{R}^{d} To reduce the number of pairings to evaluate, we first project the input vector from \mathbb{R}^{n} onto \mathbb{R}^{d} for a well chosen $d<n$, and we apply the quadratic polynomials on the projected vectors. We can do this thanks to our scheme's linear homomorphism (see Section 3). This means that we learn $\mathbf{P} \in \mathbb{R}^{n \times d}$ and $\left(\mathbf{Q}_{i}\right)_{i \in[\ell]} \in\left(\mathbb{R}^{d \times d}\right)^{\ell}$, and our model is $f_{i}(\boldsymbol{x})=(\mathbf{P} \boldsymbol{x})^{\top} \mathbf{Q}_{i}(\mathbf{P} \boldsymbol{x}), \forall i \in[\ell]$. Notice that \mathbf{P} is common to all the f_{i}, so we need only compute $\mathbf{P} \boldsymbol{x}$ once, and the number of pairings is reduced to $2 \ell d^{2}$. Better yet, we can also perform the pairings only once, effectively squaring $\mathbf{P} \boldsymbol{x}$ component-wise, and then compute the scores by exponentiating the results, which only requires $2 d^{2}$ pairing evaluations.

Adding a bias term Our model would be more general if it were expanded from $f_{i}(\boldsymbol{x})=$ $(\mathbf{P} \boldsymbol{x})^{\top} \mathbf{Q}_{i}(\mathbf{P} \boldsymbol{x})$ to $f_{i}(\boldsymbol{x})=(\mathbf{P} \boldsymbol{x}+\boldsymbol{b})^{\top} \mathbf{Q}_{i}(\mathbf{P} \boldsymbol{x}+\boldsymbol{b})$ for $\boldsymbol{b} \in \mathbb{Z}_{p}^{d}$. We achieve something equivalent by systematically adding a 1 at the beginning of \boldsymbol{x} when encrypting it, effectively operating on $\left(\begin{array}{c}1 \\ x_{1} \\ \vdots \\ x_{n}\end{array}\right)$.

Degree 2 polynomial network, with one hidden layer on \mathbb{R} To further reduce the number of pairings, we actually limit ourselves to diagonal matrices, we thus rename \mathbf{Q}_{i} to \mathbf{D}_{i}. We find that the gain in efficiency associated with only computing $2 d$ pairings (since the \mathbf{D}_{i} are diagonal, they contain at most d non-zero entries) is worth the small cost in accuracy. The resulting model is a polynomial network of degree 2 with one hidden layer of d neurons: the activation function is the square.

Rounding onto \mathbb{Z}_{p}^{d} Our encryption scheme operates on elements of \mathbb{Z}_{p}, so we need to round our model before we can use it on encrypted data. This does not significantly affect our accuracy.

Our final model can thus be written as $f_{i}(\boldsymbol{x})=\left(\mathbf{P} \boldsymbol{x}^{\prime}\right)^{\top} \mathbf{D}_{i}\left(\mathbf{P} \boldsymbol{x}^{\prime}\right), \forall i \in[\ell]$, where $\boldsymbol{x}^{\prime}=\left(\begin{array}{c}1 \\ x_{1} \\ \vdots \\ x_{n}\end{array}\right)$. In the remainder of this paper we simply use \boldsymbol{x} to denote \boldsymbol{x}^{\prime} when evaluating our model on an input \boldsymbol{x}.

We present the decryption algorithm that is optimized for our particular choice of model in Fig. 3.

$\underline{\operatorname{OptDec}\left(\mathrm{pk}, \mathrm{ct}, \mathrm{sk}_{f_{1}}, \ldots, \mathrm{sk}_{f_{\ell}}\right):}$

- Parse ct $:=\left(g_{1}^{\gamma},\left\{g_{1}^{\boldsymbol{a}_{i}}, g_{2}^{\boldsymbol{b}_{\boldsymbol{i}}}\right\}_{i \in[n]}\right)$, where for all $i \in[n], \boldsymbol{a}_{i}:=\left(\mathbf{W}^{-1}\right)^{\top}\binom{x_{i}}{\gamma s_{i}}, \boldsymbol{b}_{i}:=\mathbf{W}\binom{x_{i}}{-t_{i}}$.
- For all $i \in[\ell]$, parse $\mathbf{s k}_{f_{i}}:=\left(g_{2}^{f_{i}(\boldsymbol{s}, \boldsymbol{t})}, f_{i}\right)$, where $f_{i}(\boldsymbol{s}, \boldsymbol{t}):=(\mathbf{P} \boldsymbol{s})^{\top} \mathbf{D}_{i}(\mathbf{P} \boldsymbol{t})$
for some fixed matrix $\mathbf{P} \in \mathbb{Z}_{p}^{n \times d}$, and $\mathbf{D}_{i}:=\left(\begin{array}{ccc}t_{i, 1} & & \\ & \ddots & \\ & & t_{i, d}\end{array}\right) \in \mathbb{Z}_{p}^{d \times d}$ for each label $i \in[\ell]$.
- We write $\mathbf{P}:=\left(\begin{array}{c}\boldsymbol{p}_{1}^{\top} \\ \vdots \\ \boldsymbol{p}_{d}^{\top}\end{array}\right)$, where for all $i \in[d], \boldsymbol{p}_{i}^{\top} \in \mathbb{Z}_{p}^{1 \times n}$ is the i 'th row of \mathbf{P}.

For all $i \in[d]$, compute $e_{i}:=e\left(g_{1}^{\boldsymbol{c}_{i}}, g_{2}^{\boldsymbol{d}_{\boldsymbol{i}}}\right) \in \mathbb{G}_{T}$ where $\boldsymbol{c}_{i}:=\left(\mathbf{W}^{-1}\right)^{\top}\binom{\boldsymbol{p}_{i}^{\top} \boldsymbol{x}}{\gamma \cdot \boldsymbol{p}_{i}^{\top} \boldsymbol{s}}$ and $\boldsymbol{d}_{i}:=\mathbf{W}\binom{\boldsymbol{p}_{i}^{\top} \boldsymbol{x}}{-\boldsymbol{p}_{i}^{\top} \boldsymbol{t}}$

- For all labels $i \in[\ell]$, compute out $t_{i}:=e\left(g_{1}^{\gamma}, g_{2}^{f_{i}(s, t)}\right) \cdot \prod_{j \in[d]} e_{j}^{t_{i, j}}$

Return $\left\{\log \left(\text { out }_{i}\right) \in \mathbb{Z}\right\}_{i \in[\ell]}$.

Fig. 3. Optimized decryption algorithm, for quadratic polynomials of the form $f_{i}(\boldsymbol{x}, \boldsymbol{x}):=(\mathbf{P} \boldsymbol{x})^{\top} \mathbf{D}_{i}(\mathbf{P} \boldsymbol{x})$ with $\mathbf{P} \in \mathbb{Z}_{p}^{n \times d}$, and $\mathbf{D}_{i} \in \mathbb{Z}_{p}^{d \times d}$ is a diagonal matrix for all labels $i \in[\ell]$. Its performance is: $2 n d\left(E_{1}+E_{2}\right)+(\ell+2 d) P+$ $\ell d E_{T}+\ell \cdot$ dlog, where E_{1}, E_{T} denote exponentiation in $\mathbb{G}_{1}, \mathbb{G}_{T}$ respectively, P denotes a pairing evaluation, and dlog denotes the time needed to solve the discrete logarithm.

5 Implementation and Results

We train a polynomial network classifier in TensorFlow [2], and use it in conjunction with our FE scheme from Section 3, which we implement in Python, using the Charm framework [5]. Our code will be uploaded to a public GitHub repository to which we will provide a link in the final version of this paper.

Training a classifier in TensorFlow We follow a rather standard procedure on the Machine Learning side of the implementation. We describe our model in TensorFlow and train a classifier using the Adam optimization algorithm [22]. We use $\ell 2$-regularization to limit overfitting and adjust the hyperparameters using a validation set of 5000 labeled images. We train the final model on the full training set (60000 labeled images), and scale it so the largest scalars in absolute value of \mathbf{P} and $\left(\mathbf{D}_{i}\right)_{i}$ are 15 and 30, respectively, before rounding it. Rounding it down to a
small value is crucial to the efficiency of the final scheme. The resulting integer model achieves 97.54% accuracy on the test set of 10000 labeled images. We give a graphical representation of the confusion matrix in Fig. 4: each row represent a manuscript digit to be classified, and each column represents a classification result.

Fig. 4. Confusion matrix describing our performance on the MNIST dataset.

Implementing the scheme in Charm We use an asymmetric, prime-order, bilinear group: curve MNT159 [27], which provides 80 bits of security. We essentially follow the description of the scheme given in Section 3, except for the decryption algorithm, which we optimized using our insights from Section 4, as described in Fig. 3. To gain more efficiency, we batch the computation of exponentiations. Namely, the decryption algorithm requires exponentiating the same group
element by many scalars. Thus, we can re-use the exponentiations of the group element by the powers of two, used in the first step of the square and multiply algorithm, for all exponentiations ${ }^{4}$.

For encryption, we also need to compute exponentiations of a group element by many small scalars (in our case, the scalars are comprised between 0 and 255). We compute all the exponentiations for exponents between 0 and 255 once, and then, access them directly instead of actually computing new exponentiations. Doing so improves efficiency, and has the advantage of not introducing obvious timing attacks on the encryption procedure.

Solving the discrete logarithms The computation of the 10 discrete logarithms (one for each label) can be prohibitive in terms of computation time, as the scores computed by our classifier can be quite large. We avoid this issue by precomputing the giant steps of the Baby Step Giant Step algorithm during the setup. As mentioned in Section 3, the discrete logarithms we have to compute, are always relative to the same base: $e\left(g_{1}, g_{2}\right)$. We can thus store a large amount of exponents of $e\left(g_{1}, g_{2}\right)$, which significantly speeds decryption up, at the cost of a larger memory use. We store pairs of integers matching the hash of a group element to its discrete logarithm in a PostgreSQL database. In our tests, we chose bounds based on the maximum scores our classifier gives on the MNIST dataset [23], by evaluating it on the plaintext. We allow at most 2^{13} baby steps for each discrete logarithm in the online phase, which requires 2.81 seconds on average, for 1.8 GB of storage. We provide a method giving loose bounds on the scores output by a given model, and from it, we estimate that the same number of baby steps would require storing 26.3 GB. This can be prohibitive for an individual user, but should not be a problem for production software companies, as we envisioned when listing potential applications.

We give the average runtime for encryption, functional key generation, and decryption below, using a 2.60 GHz Intel Core $\mathrm{i} 5-6440 \mathrm{HQ}$ CPU and 8 GB of RAM. We break down the decryption phase into an evaluation phase (which covers exponentiations and pairings) and a discrete logarithm phase (whose runtime is independent of that of the latter, and can be reduced to almost nothing at the cost of storing a large database of precomputations). We stress that the later accounts for all 10 discrete logarithms.

Average encryption time	8.1 s
Average evaluation time	1.5 s
Average discrete logarithms time	3.3 s
Average functional key generation time	8 ms

6 Conclusion

In this work, we have proposed an efficient Functional Encryption scheme for the evaluation of multivariate quadratic polynomials. It outperforms every previous scheme. This opens up a path to richer classification models from Machine Learning. Thanks to our new FE scheme, one can indeed publicly classify encrypted data: given the functional decryption key, anyone can accurately predict the label that describes an encrypted digit, within just a few seconds, without being able to decrypt the ciphertext.

However, one can think to many improvements for better efficiency or more functionalities. Our implementation could be improved in the following ways:

- Using faster languages and frameworks, such as C with direct calls to the PBC library [25].
- Training Machine Learning models that can be turned into integers with even smaller bounds, thereby greatly decreasing the required number of discrete logarithms.
- Using finer algorithms to estimate the bounds between which we must precompute discrete logarithms, perhaps by borrowing techniques from the field of Mathematical Optimization.

[^1]- Tackling different datasets, that might not be used as benchmarks like MNIST but that might have practical relevance when it comes to protecting privacy. Note that while this work focused entirely on classification problems, our scheme can readily be used for regression tasks, and those only require solving one discrete logarithm.

We also list several open problems:

- Combining the previous FHE-based approach, and our FE-based approach, to perform both the learning and classification on encrypted data, for better privacy.
- Designing and implementing efficient FE schemes for richer classes of functions, that capture more powerful machine learning algorithms. From an efficiency viewpoint, it would be interesting to have an efficient FE for large inputs, and, in particular, without the need to solve a discrete logarithm. This only exists for a restricted class of functions, namely, inner products [3, 4].
- Building efficient FE for unbounded size inputs, which would provide a solution to the problem of email filtering we mentioned in Section 1.
- Designing efficient function hiding FE schemes, that is, where functional decryption keys hide their underlying function. This is useful for many scenarios where the person doing the classification of encrypted data should not learn the classifier itself. Such schemes only exist for inner products $[9,18,21,34]$.

FE is a recent cryptographic primitive, yet this paper shows that it could already be used in practice. This is encouraging, because FE allows just the type of controlled access to data that is useful in many practical scenarios, and that current tools fail to provide. We hope this work inspires further contributions applying FE to real-world problems.

Acknowledgments.

This work was supported in part by the European Community's Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 339563 - CryptoCloud), and a Google fellowship.

References

1. Mnist for ml beginners | tensorflow, https://www.tensorflow.org/versions/r0.12/tutorials/mnist/ beginners/\#evaluating_our_model (Page 7.)
2. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015), https://www.tensorflow.org/, software available from tensorflow.org (Pages 2 and 8.)
3. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733-751. Springer, Heidelberg (Mar / Apr 2015) (Pages 7 and 11.)
4. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 333-362. Springer, Heidelberg (Aug 2016) (Pages 7 and 11.)
5. Akinyele, J.A., Garman, C., Miers, I., Pagano, M.W., Rushanan, M., Green, M., Rubin, A.D.: Charm: a framework for rapidly prototyping cryptosystems. Journal of Cryptographic Engineering 3(2), 111-128 (2013), http://dx.doi.org/10.1007/s13389-013-0057-3 (Pages 2 and 8.)
6. Ambrona, M., Barthe, G., Gay, R., Wee, H.: Attribute-based encryption in the generic group model: Automated proofs and new constructions. In: ACM CCS 17. pp. 647-664. ACM Press (2017) (Page 5.)
7. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption for quadratic functions with applications to predicate encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 67-98. Springer, Heidelberg (Aug 2017) (Pages 2, 5, 6, and 14.)
8. Barthe, G., Fagerholm, E., Fiore, D., Mitchell, J.C., Scedrov, A., Schmidt, B.: Automated analysis of cryptographic assumptions in generic group models. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 95-112. Springer, Heidelberg (Aug 2014) (Page 6.)
9. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 470-491. Springer, Heidelberg (Nov / Dec 2015) (Page 11.)
10. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213-229. Springer, Heidelberg (Aug 2001) (Page 2.)
11. Boneh, D., Franklin, M.K.: Identity based encryption from the Weil pairing. SIAM Journal on Computing 32(3), 586-615 (2003) (Page 3.)
12. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253-273. Springer, Heidelberg (Mar 2011) (Pages 1 and 4.)
13. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homomorphic encryption scheme. In: Stam, M. (ed.) Cryptography and Coding. pp. 45-64. Springer Berlin Heidelberg, Berlin, Heidelberg (2013) (Page 3.)
14. Bos, J.W., Lauter, K.E., Naehrig, M.: Private predictive analysis on encrypted medical data. Journal of Biomedical Informatics 50, 234-243 (2014), https://doi.org/10.1016/j.jbi.2014.04.003 (Pages 2 and 3.)
15. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted data. In: 22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San Diego, California, USA, February 8-11, 2015 (2015), https://www.ndss-symposium.org/ndss2015/ machine-learning-classification-over-encrypted-data (Page 3.)
16. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of deep discretized neural networks. Cryptology ePrint Archive, Report 2017/1114 (2017), https://eprint.iacr.org/2017/1114 (Pages 2 and 3.)
17. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 3-33. Springer, Heidelberg (Dec 2016) (Page 3.)
18. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full function privacy. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang, B.Y. (eds.) PKC 2016, Part I. LNCS, vol. 9614, pp. 164-195. Springer, Heidelberg (Mar 2016) (Page 11.)
19. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy. Tech. rep. (February 2016) (Pages 2 and 3.)
20. Joux, A.: A one round protocol for tripartite Diffie-Hellman. Journal of Cryptology 17(4), 263-276 (Sep 2004) (Pages 2 and 3.)
21. Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-hiding inner product encryption is practical. Cryptology ePrint Archive, Report 2016/440 (2016), https://eprint.iacr.org/2016/440 (Pages 3, 7, and 11.)
22. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) (Page 8.)
23. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010), http://yann.lecun.com/exdb/mnist/ (Pages 2 and 10.)
24. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36-54. Springer, Heidelberg (Aug 2000) (Page 3.)
25. Lynn, B., et al.: The pairing-based cryptography library. Internet: crypto. stanford. edu/pbc/[Mar. 27, 2013] (2006) (Page 10.)
26. Maurer, U.M.: Abstract models of computation in cryptography (invited paper). In: Smart, N.P. (ed.) 10th IMA International Conference on Cryptography and Coding. LNCS, vol. 3796, pp. 1-12. Springer, Heidelberg (Dec 2005) (Page 5.)
27. Miyaji, A., Nakabayashi, M., TAKANO, S.: New explicit conditions of elliptic curve traces for fr-reduction (2001) (Pages 2 and 9.)
28. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm. Mathematical Notes 55(2), 165-172 (1994) (Page 5.)
29. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-preserving ridge regression on hundreds of millions of records. In: IEEE Symposium on Security and Privacy. pp. 334-348 (2013) (Page 3.)
30. O'Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556 (2010), https://eprint.iacr.org/2010/556 (Pages 1 and 4.)
31. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT'99. LNCS, vol. 1592, pp. 223-238. Springer, Heidelberg (May 1999) (Page 3.)
32. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: Security and Privacy (SP), 2017 IEEE Symposium on. pp. 3-18. IEEE (2017) (Page 3.)
33. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT'97. LNCS, vol. 1233, pp. 256-266. Springer, Heidelberg (May 1997) (Page 5.)
34. Tomida, J., Abe, M., Okamoto, T.: Efficient functional encryption for inner-product values with full-hiding security. In: International Conference on Information Security. pp. 408-425. Springer (2016) (Page 11.)
35. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science (sfcs 1986). pp. 162-167 (Oct 1986) (Page 3.)

A Security proof of our FE scheme

Theorem 3 (IND-CPA Security in the Generic Bilinear Group Model). For any PPT adversary \mathcal{A} that performs at most Q group operations, against the functional encryption scheme described on Fig. 2, we have, in the generic bilinear group model:

$$
\operatorname{Adv}_{\mathcal{A}}^{\mathrm{FE}}(\lambda) \leq \frac{12 \cdot\left(6 n+3+Q+Q^{\prime}\right)^{2}+1}{p}
$$

where Q^{\prime} is the number of queries to KeyGen(msk, \cdot).
Proof. For any experiment Exp, adversary \mathcal{A}, and security parameter $\lambda \in \mathbb{N}$, we use the notation: $\operatorname{Adv}_{\operatorname{Exp}}(\mathcal{A}):=\operatorname{Pr}\left[1 \leftarrow \operatorname{Exp}\left(1^{\lambda}, \mathcal{A}\right)\right]$, where the probability is taken over the random coins of Exp and \mathcal{A}.

Fig. 5. Experiment Exp_{1}, for the proof of Theorem 3.

While we want to prove the security result in the real experiment Exp_{0}, in which the adversary has to guess β, we slightly modify it into the hybrid experiment Exp_{1}, described in Fig. 5: we write the matrix $\mathbf{W} \stackrel{\&}{\leftarrow} \mathrm{GL}_{2}$ used in the challenge ciphertext as $\mathbf{W}:=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, chosen from the beginning. Then $\mathbf{W}^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$.

The only difference with the IND-CPA security game as defined in Section 2.2, is that we change the generator $g_{1} \stackrel{\&}{\leftarrow} \mathbb{G}_{1}^{*}$ into $g_{1}^{a d-b c}$ for $a, b, c, d \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}$, which only changes the distribution of the game by a statistical distance of at most $\frac{3}{p}$ (this is obtained by computing the probability that $a d-b c=0$ when $a, b, c, d \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}$). Thus,

$$
\operatorname{Adv}_{\mathcal{A}}^{\mathrm{FE}}(\lambda)=\operatorname{Adv}_{0}(\mathcal{A}) \leq \operatorname{Adv}_{1}(\mathcal{A})+\frac{3}{p}
$$

Note that in Exp_{1}, the public key, the challenge ciphertext and the functional decryption keys only contain group elements whose exponents are polynomials evaluated on random inputs (as opposed to $g_{1}^{\mathbf{W}^{-1}}$, for instance). This is going to be helpful for the next step of the proof, which uses the generic bilinear group model.

Next, we make the generic bilinear group model assumption, which intuitively says that no PPT adversary can exploit the structure of the bilinear group to perform better attacks than generic adversaries. That is, where Exp_{2} is defined in Fig. 6:

$$
\left.\max _{\mathrm{PPT}}^{\mathcal{A}}, \operatorname{Adv}_{1}(\mathcal{A})\right)=\max _{\mathrm{PPT} \mathcal{A}}\left(\operatorname{Adv}_{2}(\mathcal{A})\right) .
$$

```
\(\operatorname{Exp}_{2}\left(1^{\lambda}, \mathcal{A}\right):\)
\(L_{1}=L_{2}=L_{T}:=\emptyset, Q_{\text {sk }}:=\emptyset, \boldsymbol{s}, \boldsymbol{t} \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}^{n}, a, b, c, d \stackrel{\&}{\leftarrow} \mathbb{Z}_{p}\), append \(\left(L_{1},(a d-b c) \cdot \boldsymbol{s}\right)\), append \(\left(L_{2}, \boldsymbol{t}\right), \beta \stackrel{\&}{\leftarrow}\{0,1\}\)
\(\left(\left(\boldsymbol{x}^{(0)}, \boldsymbol{y}^{(0)}\right),\left(\boldsymbol{x}^{(1)}, \boldsymbol{y}^{(1)}\right)\right) \leftarrow \mathcal{A}^{\mathcal{O}_{\text {add }}, \mathcal{O}_{\text {pair }}, \mathcal{O}_{\text {sk }}, \mathcal{O}_{\text {eq }}}\left(1^{\lambda}, p\right)\)
\(\mathcal{O}_{\text {chal }}\left(\left(\boldsymbol{x}^{(0)}, \boldsymbol{y}^{(0)}\right),\left(\boldsymbol{x}^{(1)}, \boldsymbol{y}^{(1)}\right)\right)\)
\(\beta^{\prime} \leftarrow \mathcal{A}^{\mathcal{O}_{\text {add }}, \mathcal{O}_{\text {pair }}, \mathcal{O}_{\text {sk }}, \mathcal{O}_{\text {eq }}\left(1^{\lambda}, p\right)}\)
If \(\beta=\beta^{\prime}\), and for all \(f \in Q_{\text {sk }}, f\left(\boldsymbol{x}^{(0)}, \boldsymbol{y}^{(0)}\right)=f\left(\boldsymbol{x}^{(1)}, \boldsymbol{y}^{(1)}\right)\), output 1 . Otherwise, output 0 .
\(\underline{\mathcal{O}_{\text {add }}(s \in\{1,2, T\}, i, j \in \mathbb{N}):}\)
\(\operatorname{append}\left(L_{s}, L_{s}[i]+L_{s}[j]\right)\).
\(\mathcal{O}_{\text {pair }}(i, j \in \mathbb{N}):\)
\(\left.\underset{\operatorname{append}\left(L_{T}, L_{1}\right.}{ }[i] \cdot L_{2}[j]\right)\).
\(\frac{\mathcal{O}_{\text {chal }}\left(\left(\boldsymbol{x}^{(0)}, \boldsymbol{y}^{(0)}\right),\left(\boldsymbol{x}^{(1)}, \boldsymbol{y}^{(1)}\right)\right):}{\gamma \stackrel{\leftarrow}{\leftarrow} \mathbb{Z}_{p}, \operatorname{append}\left(L_{1}, \gamma(a d-b c)\right)}\)
for all \(i \in[n], \boldsymbol{a}_{i}:=\left(\begin{array}{cc}d & -c \\ -b & a\end{array}\right)\binom{x_{i}^{(\beta)}}{\gamma s_{i}}\), append \(\left(L_{1}, \boldsymbol{a}_{i}\right), \boldsymbol{b}_{i}:=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{y_{i}^{(\beta)}}{-t_{i}}\), append \(\left(L_{2}, \boldsymbol{b}_{i}\right)\).
\(\frac{\mathcal{O}_{\text {sk }}\left(f \in \mathcal{F}_{n, B_{x}, B_{y}, B_{f}}\right)}{\operatorname{append}\left(L_{2}, f(\boldsymbol{s}, \boldsymbol{t})\right), Q_{\text {sk }}}:=Q_{\text {sk }} \cup\{f\}\).
\(\mathcal{O}_{\text {eq }}(s \in\{1,2, T\}, i, j \in \mathbb{N}):\)
Output 1 if \(L_{s}[i]=L_{s}[j], 0\) otherwise
```

Fig. 6. Experiment Exp_{2}. Wlog. we assume no query contains indices $i, j \in \mathbb{N}$ that exceed the size of the involved lists.

In this experiment, we denote by \emptyset the empty list, by append (L, x) the addition of an element x to the list L, and for any $i \in \mathbb{N}$, we denote by $L[i]$ the i 'th element of the list L if it exists (lists are indexed from index 1 on), or \perp otherwise.

Thus, it suffices to show that for any PPT adversary $\mathcal{A}, \operatorname{Adv}_{2}(\mathcal{A})$ is negligible in λ. The experiment Exp_{2} defined in Fig. 6 falls into the general class of simple interactive decisional problems from [7, Definition 14]. Thus, we can use their master theorem [7, Theorem 7], which, for our particular case (setting the public key size $N:=2 n+2$, the key size $c=1$, the ciphertext size $c^{*}:=4 n+1$, and degree $d=6$ in [7, Theorem 7]) states that:

$$
\operatorname{Adv}_{2}(\mathcal{A}) \leq \frac{12 \cdot\left(6 n+3+Q+Q^{\prime}\right)^{2}}{p}
$$

where Q^{\prime} is the number of queries to $\mathcal{O}_{\text {sk }}$, and Q is the number of group operations, that is, the number of calls to oracles $\mathcal{O}_{\text {add }}$ and $\mathcal{O}_{\text {pair }}$, provided the following algebraic condition is satisfied:

$$
\left\{\mathbf{M} \in \mathbb{Z}_{p}^{(3 n+2) \times\left(3 n+Q^{\prime}+1\right)}: \mathrm{Eq}_{0}(\mathbf{M})\right\}=\left\{\mathbf{M} \in \mathbb{Z}_{p}^{(3 n+2) \times\left(3 n+Q^{\prime}+1\right)}: \mathrm{Eq}_{1}(\mathbf{M})\right\},
$$

where for all $\mathbf{M}, b \in\{0,1\}$,

$$
\mathrm{Eq}_{b}(\mathbf{M}):\left(\begin{array}{c}
1 \\
(A D-B C) \boldsymbol{S} \\
(A D-B C) \Gamma \\
D \boldsymbol{x}^{(b)}-\Gamma C \boldsymbol{S} \\
-B \boldsymbol{x}^{(b)}+\Gamma A \boldsymbol{S}
\end{array}\right)^{\top} \mathbf{M}\left(\begin{array}{c}
1 \\
\boldsymbol{T} \\
A \boldsymbol{y}^{(b)}-B \boldsymbol{T} \\
C \boldsymbol{y}^{(b)}-D \boldsymbol{T} \\
(f(\boldsymbol{S}, \boldsymbol{T}))_{f \in Q_{\mathrm{sk}}}
\end{array}\right)=0,
$$

where the equality is taken in the ring $\mathbb{Z}_{p}[\boldsymbol{S}, \boldsymbol{T}, A, B, C, D, \Gamma]$, and 0 denotes the zero polynomial. Intuitively, this condition captures the security at a symbolic level: it holds for schemes that are
not trivially broken. The latter means that computing a linear combination in the exponents of target group elements that can be obtained from pk , the challenge ciphertext, and functional decryption keys, does not break the security of the scheme. We prove this condition is satisfied in Lemma 4 above.

Lemma 4 (Symbolic Security). For any $\left(\boldsymbol{x}^{(0)}, \boldsymbol{y}^{(0)}\right),\left(\boldsymbol{x}^{(1)}, \boldsymbol{y}^{(1)}\right) \in Z_{p}^{2 n}$, and any set $Q_{\text {sk }} \subseteq$ $\mathcal{F}_{n, B_{x}, B_{y}, B_{f}}$ such that for all $f \in Q_{\text {sk }}, f\left(\boldsymbol{x}^{(0)}, \boldsymbol{y}^{(0)}\right)=f\left(\boldsymbol{x}^{(1)}, \boldsymbol{y}^{(1)}\right)$, we have:

$$
\left\{\mathbf{M} \in \mathbb{Z}_{p}^{(3 n+2) \times\left(3 n+Q^{\prime}+1\right)}: \mathrm{Eq}_{0}(\mathbf{M})\right\}=\left\{\mathbf{M} \in \mathbb{Z}_{p}^{(3 n+2) \times\left(3 n+Q^{\prime}+1\right)}: \mathrm{Eq}_{1}(\mathbf{M})\right\}
$$

where for all $\mathbf{M}, b \in\{0,1\}$,

$$
\mathrm{Eq}_{b}(\mathbf{M}):\left(\begin{array}{c}
1 \\
(A D-B C) \boldsymbol{S} \\
(A D-B C) \Gamma \\
D \boldsymbol{x}^{(b)}-\Gamma C \boldsymbol{S} \\
-B \boldsymbol{x}^{(b)}+\Gamma A \boldsymbol{S}
\end{array}\right)^{\top} \mathbf{M}\left(\begin{array}{c}
1 \\
\boldsymbol{T} \\
A \boldsymbol{y}^{(b)}-B \boldsymbol{T} \\
C \boldsymbol{y}^{(b)}-D \boldsymbol{T} \\
(f(\boldsymbol{S}, \boldsymbol{T}))_{f \in Q_{\mathrm{sk}}}
\end{array}\right)=0,
$$

where the equality is taken in the ring $\mathbb{Z}_{p}[\boldsymbol{S}, \boldsymbol{T}, A, B, C, D, \Gamma]$, and 0 denotes the zero polynomial. Proof. Let $b \in\{0,1\}$, and $\mathbf{M} \in \mathbb{Z}_{p}^{(3 n+2) \times\left(3 n+Q^{\prime}+1\right)}$ that satisfies $\mathrm{Eq}_{b}(\mathbf{M})$. We prove it also satisfies $\mathrm{Eq}_{1-b}(\mathbf{M})$. To do so, we use the following rules:

Rule 1 : for all $P, Q, R \in \mathbb{Z}_{p}[\boldsymbol{S}, \boldsymbol{T}, A, B, C, D, \Gamma]$, with $\operatorname{deg}(P) \geq 1$, if $P \cdot Q+R=0$ and R is not a multiple of P, then $Q=0$ and $R=0$.
Rule 2 : for all $P \in \mathbb{Z}_{p}[\boldsymbol{S}, \boldsymbol{T}, A, B, C, D, \Gamma]$, any variable $X \in\{\boldsymbol{S}, \boldsymbol{T}, A, B, C, D, \Gamma\}$, and any $x \in \mathbb{Z}_{p}, P=0$ implies $P(X:=x)=0$, where $P(X:=x)$ denotes the polynomial P evaluated on $X=x$.

Evaluating $\mathrm{Eq}_{b}(\mathbf{M})$ on $B=D=0$ (using Rule 2), then using Rule 1 on $P=C \Gamma S_{i} T_{j}$ for all $i, j \in[n]$, we obtain that:

$$
\mathbf{M}_{n+2+i}\left(\begin{array}{c}
0 \\
\boldsymbol{T} \\
\mathbf{0} \\
\mathbf{0} \\
(f(\boldsymbol{S}, \boldsymbol{T}))_{f \in Q_{\mathrm{sk}}}
\end{array}\right)=0
$$

where \mathbf{M}_{n+2+i} denotes the $n+2+i^{\prime}$ th row of \mathbf{M}.
Similarly, using Rule 1 on $P=\Gamma A S_{i} T_{j}$ for all $i, j \in[n]$, we obtain that:

$$
\mathbf{M}_{2 n+2+i}\left(\begin{array}{c}
0 \\
\boldsymbol{T} \\
\mathbf{0} \\
\mathbf{0} \\
(f(\boldsymbol{S}, \boldsymbol{T}))_{f \in Q_{\text {sk }}}
\end{array}\right)=0 .
$$

Thus, we have:

$$
\forall \beta \in\{0,1\}:\left(\begin{array}{c}
0 \tag{1}\\
\mathbf{0} \\
0 \\
D \boldsymbol{x}^{(\beta)}-\Gamma C \boldsymbol{S} \\
-B \boldsymbol{x}^{(\beta)}+\Gamma A \boldsymbol{S}
\end{array}\right)^{\top} \mathbf{M}\left(\begin{array}{c}
0 \\
\boldsymbol{T} \\
\mathbf{0} \\
\mathbf{0} \\
(f(\boldsymbol{S}, \boldsymbol{T}))_{f \in Q_{\text {sk }}}
\end{array}\right)=0 .
$$

Using Rule 1 on $P=(A D-B C) S_{i} B T_{j}$ for all $i, j \in[n]$ in the equation $\mathrm{Eq}_{b}(\mathbf{M})$, we get that the coefficient $M_{i+1, n+1+j}=0$ for all $i, j \in[n]$. Similarly, using Rule 1 on $P=$
$(A D-B C) S_{i} D T_{j}$ for all $i, j \in[n]$, we get $M_{i+1,2 n+1+j}=0$ for all $i, j \in[n]$. Then, using Rule 1 on $P=(A D-B C) \Gamma B T_{j}$ for all $j \in[n]$, we get $M_{n+2, n+1+j}=0$ for all $j \in[n]$. Finally, using Rule 1 on $P=(A D-B C) \Gamma D T_{j}$ for all $j \in[n]$, we get $M_{n+2,2 n+1+j}=0$ for all $j \in[n]$. Overall, we obtain:

$$
\forall \beta \in\{0,1\}:\left(\begin{array}{c}
0 \tag{2}\\
(A D-B C) \boldsymbol{S} \\
(A D-B C) \Gamma \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right)^{\top} \mathbf{M}\left(\begin{array}{c}
0 \\
\mathbf{0} \\
A \boldsymbol{y}^{(\beta)}-B \boldsymbol{T} \\
C \boldsymbol{y}^{(\beta)}-D \boldsymbol{T} \\
\mathbf{0}
\end{array}\right)=0
$$

We write:

$$
\begin{aligned}
& \left(\begin{array}{c}
0 \\
\mathbf{0} \\
0 \\
D \boldsymbol{x}^{(b)}-\Gamma C \boldsymbol{S} \\
-B \boldsymbol{x}^{(b)}+\Gamma A \boldsymbol{S}
\end{array}\right)^{\top} \mathbf{M}\left(\begin{array}{c}
0 \\
\mathbf{0} \\
A \boldsymbol{y}^{(b)}-B \boldsymbol{T} \\
C \boldsymbol{y}^{(b)}-D \boldsymbol{T} \\
\mathbf{0}
\end{array}\right)= \\
& \sum_{i, j \in[n]}\binom{D x_{i}^{(b)}-\Gamma C S_{i}}{-B x_{i}^{(b)}+\Gamma A S_{i}}^{\top} \cdot \\
& \left(m_{i, j}^{(1)}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+m_{i, j}^{(2)}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+m_{i, j}^{(3)}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+m_{i, j}^{(4)}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right) \\
& \binom{A y_{j}^{(b)}-B T_{j}}{C y_{j}^{(b)}-D T_{j}}
\end{aligned}
$$

Evaluating the equation $\mathrm{Eq}_{b}(\mathbf{M})$ on $C=D=0$ (by Rule 2), then using Rule 1 on $P=\Gamma A B S_{i} T_{j}$ for all $i, j \in[n]$, we obtain $m_{i, j}^{(3)}=0$ for all $i, j \in[n]$. Evaluating the equation $\mathrm{Eq}_{b}(\mathbf{M})$ on $A=B=0$ (by Rule 2), then using Rule 1 on $P=\Gamma C D S_{i} T_{j}$ for all $i, j \in[n]$, we obtain $m_{i, j}^{(4)}=0$ for all $i, j \in[n]$. Evaluating the equation $\mathrm{Eq}_{b}(\mathbf{M})$ on $A=B=C=D=1$ (using Rule 2), then using Rule 1 on $P=\Gamma S_{i} T_{j}$ for all $i, j \in[n]$, using the fact that $m_{i, j}^{(3)}=m_{i, j}^{(4)}=0$ and (1), we obtain $m_{i, j}^{(2)}=0$ for all $i, j \in[n]$. Using Rule 1 on $P=\Gamma(A D-B C) S_{i} T_{j}$ for all $i, j \in[n]$ in the equation $\mathrm{Eq}_{b}(\mathbf{M})$, we obtain that for all $i, j \in[n], m_{i, j}^{(1)}=\mathbf{M}_{n+2}\left(\begin{array}{c}0 \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \left(f_{i, j}\right)_{f \in Q_{\mathrm{sk}}}\end{array}\right)$,
where \mathbf{M}_{n+2} is the $n+2$ 'th row of \mathbf{M}. Putting everything together, we have:

$$
\begin{align*}
& \left(\begin{array}{c}
0 \\
\mathbf{0} \\
0 \\
D \boldsymbol{x}^{(b)}-\Gamma C \boldsymbol{S} \\
-B \boldsymbol{x}^{(b)}+\Gamma A \boldsymbol{S}
\end{array}\right)^{\top} \mathbf{M}\left(\begin{array}{c}
0 \\
\mathbf{0} \\
A \boldsymbol{y}^{(b)}-B \boldsymbol{T} \\
C \boldsymbol{y}^{(b)}-D \boldsymbol{T} \\
\mathbf{0}
\end{array}\right)= \\
& (A D-B C) \mathbf{M}_{n+2}\left(\begin{array}{c}
0 \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0} \\
\left(f\left(\boldsymbol{x}^{(b)}, \boldsymbol{y}^{(b)}\right)-\Gamma f(\boldsymbol{s}, \boldsymbol{t})\right)_{f \in Q_{\text {sk }}}
\end{array}\right)= \\
& (A D-B C) \mathbf{M}_{n+2}\left(\begin{array}{c}
0 \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0} \\
\left(f\left(\boldsymbol{x}^{(1-b)}, \boldsymbol{y}^{(1-b)}\right)-\Gamma f(\boldsymbol{s}, \boldsymbol{t})\right)_{f \in Q_{\text {sk }}}
\end{array}\right)= \\
& \left(\begin{array}{c}
0 \\
\mathbf{0} \\
0 \\
D \boldsymbol{x}^{(1-b)}-\Gamma C \boldsymbol{S} \\
-B \boldsymbol{x}^{(1-b)}+\Gamma A \boldsymbol{S}
\end{array}\right)^{\top} \mathbf{M}\left(\begin{array}{c}
0 \\
\mathbf{0} \\
A \boldsymbol{y}^{(b)}-B \boldsymbol{T} \\
C \boldsymbol{y}^{(b)}-D \boldsymbol{T} \\
\mathbf{0}
\end{array}\right) \tag{3}
\end{align*}
$$

where we use the fact that for all $f \in Q_{\text {sk }}, f\left(\boldsymbol{x}^{(b)}, \boldsymbol{y}^{(b)}\right)=f\left(\boldsymbol{x}^{(1-b)}, \boldsymbol{y}^{(1-b)}\right)$.
Evaluating the equation $\mathrm{Eq}_{b}(\mathbf{M})$ on $A=B=D=0$ (by Rule 2), then using Rule 1 on $\Gamma S_{i} C$ for all $i \in[n]$, and using (1) and (3), we obtain that the coefficient $M_{n+2+i, 1}=0$ for all $i \in[n]$. Evaluating $\mathrm{Eq}_{b}(\mathbf{M})$ on $B=C=D=0$ (by Rule 2), then using Rule 1 on $\Gamma S_{i} A$ for all $i \in[n]$, and using (1) and (3), we obtain that the coefficient $M_{2 n+2+i, 1}=0$ for all $i \in[n]$. Thus, we have:

$$
\forall \beta \in\{0,1\}:\left(\begin{array}{c}
0 \tag{4}\\
\mathbf{0} \\
0 \\
D \boldsymbol{x}^{(\beta)}-\Gamma C \boldsymbol{S} \\
-B \boldsymbol{x}^{(\beta)}+\Gamma A \boldsymbol{S}
\end{array}\right)^{\top} \mathbf{M}\left(\begin{array}{l}
1 \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right)=0 .
$$

Evaluating the equation $\mathrm{Eq}_{b}(\mathbf{M})$ on $A=C=D=0$ (by Rule 2), then using Rule 1 on $B T_{j}$ for all $i \in[n]$, and using (3), we obtain that the coefficient $M_{1, n+1+j}=0$ for all $j \in[n]$. Evaluating $\mathrm{Eq}_{b}(\mathbf{M})$ on $A=B=C=0$ (by Rule 2), then using Rule 1 on $D T_{j}$ for all $j \in[n]$, and using (3), we obtain that the coefficient $M_{1,2 n+1+j}=0$ for all $j \in[n]$. Thus, we have:

$$
\forall \beta \in\{0,1\}:\left(\begin{array}{l}
1 \tag{5}\\
\mathbf{0} \\
0 \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right)^{\top} \mathbf{M}\left(\begin{array}{c}
0 \\
\mathbf{0} \\
A \boldsymbol{y}^{(\beta)}-B \boldsymbol{T} \\
C \boldsymbol{y}^{(\beta)}-D \boldsymbol{T} \\
\mathbf{0}
\end{array}\right)=0 .
$$

Overall, we have:

$$
\begin{aligned}
& \mathrm{Eq}_{b}(\mathbf{M}):\left(\begin{array}{c}
1 \\
(A D-B C) \boldsymbol{S} \\
(A D-B C) \Gamma \\
D \boldsymbol{x}^{(b)}-\Gamma C \boldsymbol{S} \\
-B \boldsymbol{x}^{(b)}+\Gamma A \boldsymbol{S}
\end{array}\right)^{\top} \mathbf{M}\left(\begin{array}{c}
1 \\
\boldsymbol{T} \\
A \boldsymbol{y}^{(b)}-B \boldsymbol{T} \\
C \boldsymbol{y}^{(b)}-D \boldsymbol{T} \\
(f(\boldsymbol{S}, \boldsymbol{T}))_{f \in Q_{\text {sk }}}
\end{array}\right)=0 \\
& \Rightarrow{ }_{(1),(2),(4),(5)}\left(\begin{array}{c}
1 \\
(A D-B C) \boldsymbol{S} \\
(A D-B C) \Gamma \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right)^{\top} \mathbf{M}\left(\begin{array}{c}
1 \\
\boldsymbol{T} \\
\mathbf{0} \\
\mathbf{0} \\
(f(\boldsymbol{S}, \boldsymbol{T}))_{f \in Q_{\text {sk }}}
\end{array}\right)+ \\
& \left(\begin{array}{c}
0 \\
\mathbf{0} \\
0 \\
D \boldsymbol{x}^{(b)}-\Gamma C \boldsymbol{S} \\
-B \boldsymbol{x}^{(b)}+\Gamma A \boldsymbol{S}
\end{array}\right)^{\top} \mathbf{M}\left(\begin{array}{c}
0 \\
\mathbf{0} \\
A \boldsymbol{y}^{(b)}-B \boldsymbol{T} \\
C \boldsymbol{y}^{(b)}-D \boldsymbol{T} \\
\mathbf{0}
\end{array}\right)=0 \\
& \Rightarrow_{(3)}\left(\begin{array}{c}
1 \\
(A D-B C) \boldsymbol{S} \\
(A D-B C) \Gamma \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right)^{\top} \mathbf{M}\left(\begin{array}{c}
1 \\
\boldsymbol{T} \\
\mathbf{0} \\
\mathbf{0} \\
(f(\boldsymbol{S}, \boldsymbol{T}))_{f \in Q_{\text {sk }}}
\end{array}\right)+ \\
& \left(\begin{array}{c}
0 \\
\mathbf{0} \\
0 \\
D \boldsymbol{x}^{(1-b)}-\Gamma C \boldsymbol{S} \\
-B \boldsymbol{x}^{(1-b)}+\Gamma A \boldsymbol{S}
\end{array}\right)^{\top} \mathbf{M}\left(\begin{array}{c}
0 \\
\mathbf{0} \\
A \boldsymbol{y}^{(1-b)}-B \boldsymbol{T} \\
C \boldsymbol{y}^{(1-b)}-D \boldsymbol{T} \\
\mathbf{0}
\end{array}\right)=0 \\
& \Rightarrow_{(1),(2),(4),(5)} \mathrm{Eq}_{1-b}(\mathbf{M}):\left(\begin{array}{c}
1 \\
(A D-B C) \boldsymbol{S} \\
(A D-B C) \Gamma \\
D \boldsymbol{x}^{(1-b)}-\Gamma C \boldsymbol{S} \\
-B \boldsymbol{x}^{(1-b)}+\Gamma A \boldsymbol{S}
\end{array}\right)^{\top} \mathbf{M}\left(\begin{array}{c}
1 \\
\boldsymbol{T} \\
A \boldsymbol{y}^{(1-b)}-B \boldsymbol{T} \\
C \boldsymbol{y}^{(1-b)}-D \boldsymbol{T} \\
(f(\boldsymbol{S}, \boldsymbol{T}))_{f \in Q_{\text {sk }}}
\end{array}\right)=0
\end{aligned}
$$

[^0]: ${ }^{3}$ From the scores, the decryptor will likely want to compute an argmax to recover the most likely class. While in some cases it might be preferable, for privacy concerns, to reveal only the argmax as the output of the functional decryption, this would require using heavier cryptographic tools that would lead to significantly slower computations.

[^1]: ${ }^{4}$ see https://en.wikipedia.org/wiki/Exponentiation_by_squaring for a description of the square and multiply algorithm

