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Abstract. As machine learning grows into a ubiquitous technology that finds many interesting
applications, the privacy of data is becoming a major concern. This paper deals with machine
learning and encrypted data. Namely, our contribution is twofold: we first build a new Functional
Encryption scheme for quadratic multi-variate polynomials, which outperforms previous schemes.
It enables the efficient computation of quadratic polynomials on encrypted vectors, so that only
the result is in clear. We then turn to quadratic networks, a class of machine learning models, and
show that their design makes them particularly suited to our encryption scheme. This synergy yields
a technique for efficiently recovering a plaintext classification of encrypted data. Eventually, we
prototype our construction and run it on the MNIST dataset to demonstrate practical relevance.
We obtain 97.54% accuracy, with decryption and encryption taking few seconds.
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1 Introduction

The growth of Machine Learning opens up many possibilities, but also raises challenges, particularly in
the realm of privacy protection. Machine Learning finds applications in Finance, Medicine, and Cloud
Computing, and in all cases, often seems to find itself in opposition to Cryptography. Recent works have
proved this need not be the case: Fully Homomorphic Encryption (FHE) allows a server to perform
computations on encrypted data, which means clients can delegate the evaluation of a Machine Learning
model to a computationally more powerful server.

However, FHE only outputs an encrypted result (not the result in clear), which limits its application.
The model’s prediction may be of use to the server. When that is the case, FHE would require sending
the encrypted result to the client for decryption (potentially with a Zero-Knowledge Proof that the
computation was performed correctly when the client is concerned that the server might try to cheat), then
having the client return the cleartext to the server (potentially with a Zero-Knowledge Proof certifying
that decryption was performed correctly when the server is concerned that the client might try to cheat).

For many practical applications, FHE is simply not the answer. When the goal is to enable
the party performing the computations to recover the result in the clear, and, necessarily, to provide
some way for the owner of the data to limit which computations can be performed, one should look to
Functional Encryption instead.

Functional Encryption (FE) [BSW11,O’N10] is a new paradigm for encryption which extends the “all-
or-nothing” requirement of traditional Public Key Encryption in a much more flexible way. FE allows
users to learn specific evaluations of a plaintext from the corresponding ciphertext: for any function f
from a class F , a functional decryption key dkf can be generated such that, given any ciphertext c with
underlying plaintext x, using dkf , a user can efficiently decrypt c to obtain f(x) without gaining any
additional information about x.

Put simply, FE allows the user to control what is leaked about his data. Many applications such as
spam filters, parental control, or targeted advertising, only require partial knowledge of the data. FE
reconciles these useful applications with the need for privacy and confidentiality of the data, since only
the relevant, processed information is revealed.

https://arxiv.org/abs/1905.10214
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Use cases for FE. Consider the following scenario: Alice uses a secure email protocol à la PGP [Zim95],
but which makes use of functional encryption. Bob uses Alice’s public key to send her an email, which
lands on Alice’s email provider server. Alice gave the server keys that enable it to process the email and
take appropriate actions without her being online. The server could learn how urgent the email is, and,
accordingly decide to alert Alice. It could decide whether the message is spam and not even notify Alice
in that case. It could even generate an automatic response encrypted under Bob’s public key which it
could send right away.

The aforementioned applications, while theoretically feasible, cannot realistically be implemented
today: constructions of FE for all circuits are known but rely on non-standard assumptions and are
extremely inefficient.

Practical FE. Abdalla et al. [ABDP15] suggested instead that we could construct FE schemes for
limited classes of functions but that remained practical, and were based on standard assumptions. They
introduced FE schemes for the Inner-Product functionality secure under the DDH assumption, making
it the first FE functionality (besides different forms access control) for which practical schemes were
proposed. More recently, at CRYPTO’2017, Baltico et al. [BCFG17] introduced schemes for quadratic
functional encryption. One of those is only proven secure in the generic group model but is efficient enough
that we can envision practical applications that make use of it.

1.1 Our Results

We demonstrate the practicality of quadratic FE in the context of image classification. After introducing
and proving secure in the Generic Group Model our own Quadratic FE scheme which is slightly more
efficient than that of [BCFG17], we train a classification model that tackles the standard MNIST dataset
[LC10]. The model class —degree 2 polynomial networks with one hidden layer— is carefully chosen
to enable optimizations on the functional decryption algorithm that bring the time required to recover
a cleartext classification of an encrypted image down to a few seconds, in a prototype implementation
developed using the Charm [AGM+13] framework with the PBC library [L+06] as back-end. We also tackle
the problem of the need for a discrete logarithm computation, which arises in all but a few practical FE
schemes: we both constrain the weights in our model to limit the size of the output domain and implement
a Baby-Step Giant-Step Algorithm which involves more pre-computations than on-line computations. We
store many discrete logarithms in a database which we fill once. This enables us to solve the (not too
large) discrete logarithms efficiently.

1.2 Related Work

Our work is, to our knowledge, the first application of Functional Encryption to Machine Learning. We list
and briefly summarize other works combining Cryptography and Machine Learning and an implementation
of Functional Encryption.

Classifying encrypted data via homomorphic encryption. In [BLN14,DGBL+16,BMMP18] a user encrypts
sensitive data using an homomorphic encryption scheme, sends it to the cloud, which can blindly classify it,
using the homomorphic property of the encryption. But doing so, the cloud only obtains the encrypted result
of the classification, and has to send it back to the user, who must decrypt it himself with his secret key. As
in our work, the classifier used by the cloud is trained on plain data. The confidentiality of the data to be
classified is guaranteed by the security of the homomorphic encryption scheme (in [BLN14,DGBL+16], they
use the encryption scheme from [BLLN13], while [BMMP18] uses [CGGI16]). In fact, there is absolutely no
leakage of information to the cloud (unlike our approach which leaks the result of the classification), since
the cloud only sees the encrypted result. This, however, prevents different users from sharing sensitive
data using the cloud, since only the user that encrypts has the key to decrypt. This is a pure outsourcing
of computation: the user has to trust the server on the correctness of the computation (unless costly
proofs are added) and the server cannot immediately base any further computations on the classification
result, since it does not learn it.

An other work [BPTG15] considers the setting where the model itself, while trained on plain data, has
to remain private from the persons classifying the encrypted data. They build efficient, specialized 2-party
protocols for the core functions used in most common classifiers (such as linear, naive Bayes, or decision
tree classifiers), using homomorphic encryption and garbled circuits.
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Learning on encrypted data. While our work considers classifying encrypted data, using a classifier trained
on plain data, [NWI+13] considers learning a linear curve that best fits the encrypted training data. The
construction reveals the linear curve in the clear, and it can then be used for prediction on new data, but
does not reveal any further information on the training data. This uses homomorphic encryption [Pai99],
and garbled circuits [Yao86]. In [LP00], the authors build an optimized 2-party protocol for learning a
decision tree from private databases.

Implementations of FE schemes. [KLM+18] implements a function-hiding FE for inner product. This is a
private-key scheme where functional decryption keys decrypt an inner product of an encrypted vector,
without revealing their underlying functions. Their source code, which also uses the Charm framework, is
available on GitHub at https://github.com/kevinlewi/fhipe.

2 Preliminaries

2.1 Bilinear Groups

Our FE scheme uses bilinear groups (also known as pairing groups), whose use in cryptography has
been introduced by [BF03, Jou04]. More precisely, we denote by GGen a PPT algorithm that on input
1λ returns a description PG = (G1,G2, p, g1, g2, e) of an asymmetric bilinear group, where G1 and G2

are cyclic groups of prime order p (for a 2λ-bit prime p) and g1 and g2 are generators of G1 and G2,
respectively. The application e : G1 ×G2 → GT is an admissible pairing, which means that it is efficiently
computable, non-degenerated, and bilinear: e(gα1 , g

β
2 ) = e(g1, g2)

αβ for any scalars α, β ∈ Zp. We thus
define gT := e(g1, g2) which spans the group GT of prime order p.

For the sake of clarity, for any s ∈ {1, 2, T}, n ∈ N, and vector u :=

u1...
un

 ∈ Znp , we denote by

gus :=

g
u1
s
...
gun
s

 ∈ Gns . In the same vein, for any vectors u ∈ Znp ,v ∈ Znp , we denote by e(gu1 , g
v
2 ) =

∏
i=1 e(g1, g2)

ui·vi = e(g1, g2)
u·v ∈ GT , since u · v denotes the inner product between the vectors u and

v, that is: u · v :=
∑n
i=1 uivi.

2.2 Functional Encryption

We recall the definition of Functional Encryption, originally defined in [BSW11,O’N10].

Definition 1 (Functional Encryption). A functional encryption scheme FE for a set of functions
F ⊆ X → Y is a tuple of PPT algorithms FE = (SetUp,KeyGen,Enc,Dec) defined as follows.
SetUp(1λ,F) takes as input a security parameter 1λ, the set of functions F , and outputs a master secret

key msk and a public key pk.
KeyGen(msk, f) takes as input the master secret key and a function f ∈ F , and outputs a functional

decryption key dkf .
Enc(pk, x) takes as input the public key pk and a message x ∈ X , and outputs a ciphertext ct.
Dec(dkf , ct) takes as input a functional decryption key dkf and a ciphertext ct, and returns an output

y ∈ Y ∪ {⊥}, where ⊥ is a special rejection symbol.

Perfect correctness. For all x ∈ X , f ∈ F ,

Pr[Dec(dkf , ct) = f(x)] = 1,

where the probability is taken over (pk,msk)← SetUp(1λF), dkf ← KeyGen(msk, f) and ct← Enc(pk, x).

IND-CPA security. For any stateful adversary A, and any functional encryption scheme FE, we define the
following advantage.

AdvFEA (λ) := Pr

β′ = β :

(pk,msk)← SetUp(1λ,F)
(x0, x1)← AKeyGen(msk,·)(pk)

β
$← {0, 1}, ct← Enc(pk, xβ)

β′ ← AKeyGen(msk,·)(ct)

− 1

2
,

with the restriction that all queries f that A makes to key generation algorithm KeyGen(msk, ·) must
satisfy f(x0) = f(x1). We say FE is IND-CPA secure if for all PPT adversaries A, AdvFEA (λ) = negl(λ).

https://github.com/kevinlewi/fhipe
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3 Functional Encryption for Quadratic Polynomials

Here we build an efficient FE scheme (described in Fig. 2) for the set of functions defined, for all
n,Bx, By, Bf ∈ N∗, as Fn,Bx,By,Bf

= {f : [−Bx, Bx]n × [−By, By]n → Z} where the functions f ∈
Fn,Bx,By,Bf

are described as a set of bounded coefficients {fi,j ∈ [−Bf , Bf ]}i,j∈[n], and for all vectors
x ∈ [−Bx, Bx]n, y ∈ [−By, By], we have:

f(x,y) =
∑
i,j∈[n]

fi,jxiyj .

It relies on prime-order, asymmetric, bilinear groups (see Section 2.1), and is proven secure in the generic
group model. We compare its efficiency with previous quadratic FE schemes in Fig. 1. Note that the
efficiency of the decryption can be further optimized for those quadratic polynomials used that are relevant
to our application (see Section 4).

For the encryption phase, ai and bi are not explicitly computed, but gai
1 and gbi

2 can be computed
from the group elements gs1 , gt2, and the scalars in W, γ, xi, and yi.

FE scheme ct dkf Dec Assumption

BCFG 17 [BCFG17, Sec. 3] G6n+1
1 ×G6n+1

2 G1 ×G2 6n2(E1 + P ) + 2P SXDH, 3PDDH
BCFG 17 [BCFG17, Sec. 4] G2n+1

1 ×G2n+1
2 G2

1 3n2(E1 + P ) + 2P GGM
ours G2n+1

1 ×G2n
2 G2 2n2(E1 + P ) + P GGM

Fig. 1. Performance comparison of public-key FE for quadratic polynomials. E1 and P denote exponentiation in
G1 and pairing evaluation, respectively. We ignore the description of the function f in dkf . Decryption additionally
requires solving a discrete logarithm. Since this computational overhead is the same for all schemes, we omit it
here.

SetUp(1λ,Fn,Bx,By,Bf ):

PG := (G1,G2, p, g1, g2, e)← GGen(1λ), s, t $← Znp , msk := (s, t), pk :=
(
PG, gs1 , gt2

)
Return (pk,msk).

Enc
(
pk, (x,y)

)
:

γ
$← Zp, W $← GL2, for all i ∈ [n], ai := (W−1)>

(
xi
γsi

)
, bi := W

(
yi
−ti

)
Return ct :=

(
gγ1 , {g

ai
1 , gbi2 }i∈[n]

)
∈ G1 × (G2

1 ×G2
2)
n

KeyGen(msk, f):

Return dkf :=
(
g
f(s,t)
2 , f

)
∈ G2 ×Fn,Bx,By,Bf .

Dec
(
pk, ct :=

(
gγ1 , {g

ai
1 , gbi2 }i∈[n]

)
, dkf :=

(
g
f(s,t)
2 , f

))
:

out := e(gγ1 , g
f(s,t)
2 ) ·

∏
i,j∈[n] e

(
gai
1 , gbi2

)fi,j
Return log(out) ∈ Z.

Fig. 2. Our functional encryption scheme for quadratic polynomials

Correctness. For all i, j ∈ [n], we have:

e(gai
1 , g

bj

2 ) = g
ai·bj

T = g
xiyj−γsitj
T ,
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since

ai · bj =
(
(W−1)>

(
xi
γsi

))>
·
(
W

(
yj
−tj

))
=

(
xi
γsi

)>
W−1W

(
yj
−tj

)
= xiyj − γsitj .

Thus, we have:

out = e(gγ1 , g
f(s,t)
2 ) ·

∏
i,j

e(gai
1 , gbi

2 )fi,j = g
γf(s,t)
T · g

∑
i,j fi,jxiyj−γfi,jsitj

T

= g
γf(s,t)
T · gf(x,y)−γf(s,t)T = g

f(x,y)
T .

Security. To prove security of our scheme, we use the Generic Bilinear Group Model, which captures
the fact that no attacks can make use of the representation of group elements. For convenience, we use
Maurer’s model [Mau05], where a third party implements the group and gives access to the adversary
via handles, providing also equality checking. This is an alternative, but equivalent, formulation of the
Generic Group Model, as originally introduced in [Nec94,Sho97].

We prove security in two steps: first, we use a master theorem from [BCFG17] that relates the security
in the Generic Bilinear Group model to a security in a symbolic model. Second, we prove security in
the symbolic model. Let us now explain the symbolic model (the next paragraph is taken verbatim
from [ABGW17]).

In the symbolic model, the third party does not implement an actual group, but keeps track of abstract
expressions. For example, consider an experiment where values x, y are sampled from Zp and the adversary
gets handles to gx and gy. In the generic model, the third party will choose a group of order p, for example
(Zp,+), will sample values x, y ←R Zp and will give handles to x and y. On the other hand, in the symbolic
model the sampling won’t be performed and the third party will output handles to X and Y , where X
and Y are abstract variables. Now, if the adversary asks for equality of the elements associated to the two
handles, the answer will be negative in the symbolic model, since abstract variable X is different from
abstract variable Y , but there is a small chance the equality check succeeds in the generic model (only
when the sampling of x and y coincides).

To apply the master theorem, we first need to change the distribution of the security game to ensure
that the public key, challenge ciphertext, and functional decryption keys only contain group elements
whose exponent is a polynomial evaluated on uniformly random values in Zp (this is called polynomially
induced distributions in [BCFG17, Definition 10], and previously in [BFF+14]). We show that this is
possible with only a negligible statistical change in the distribution of the adversary view.

After applying the master theorem from [BCFG17], we prove the security in the symbolic model (cf.
Lemma 3), which simply consists of checking that an algebraic condition on the scheme in satisfied.

Theorem 2 (IND-CPA Security in the Generic Bilinear Group Model). For any PPT adversary
A that performs at most Q group operations against the functional encryption scheme described on Fig. 2,
we have, in the generic bilinear group model:

AdvFEA (λ) ≤ 12 · (6n+ 3 +Q+Q′)2 + 1

p
,

where Q′ is the number of queries to KeyGen(msk, ·).

Since this proof is not the main result of this paper, it is postponed to the appendix.

Linear homomorphism. Our FE scheme (Fig. 2) enjoys the property that the encryption algorithm is
linearly homomorphic with respect to both the plaintext and the public key. Namely, for all (x,y) ∈ Znp×Znp ,
and (u,v) ∈ Znp ×Znp , given an encryption of (x,y) under the public key pk := (gs1 , g

t
2), one can efficiently

compute an encryption of (u>x,v>y) under the public key pk′ := (gu
>s

1 , gv
>t

2 ). Indeed, given

Enc(pk, (x,y)) := (gγ1 , {g
ai
1 , gbi

2 }i∈[n]),

and u,v ∈ Znp , one can efficiently compute:

(gγ1 , g
∑

i∈[n] ui·ai

1 , g
∑

i∈[n] vi·bi

2 ),
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which is Enc(pk′, (u>x,v>y)), since:∑
i∈[n]

ui · ai =
∑
i∈[n]

ui · (W−1)>
(
xi
γsi

)
= (W−1)>

( ∑
i∈[n] ui · xi

γ
∑
i∈[n] ui · si

)

= (W−1)>
(
u>x
γu>s

)
.

Similarly, we have: ∑
i∈[n]

vi · bi =
∑
i∈[n]

vi ·W
(
yi
−ti

)
= W

(
v>y
−v>t

)
.

This is of particular interest for functions f ∈ Fn,Bx,By,Bf
such that for all x ∈ [−Bx, Bx], y ∈ [−By, By],

f(x,y) = (Ux)>M(Vy),

where U ∈ Zd×np and V ∈ Zd×np are projection matrices, for d < n, and M ∈ Zd×dp , since decryption first
computes the encryption of (Ux,Vy) by linear homomorphism, then applies the decryption algorithm on
ciphertexts whose underlying plaintexts are vectors of dimensions d. This requires 2dn exponentiations in
G1, 2dn exponentiations in G2, and 2d2 pairing computations, as opposed to 2n2 pairing evaluations for
the naive decryption: this is a major efficiency improvement for small d, which is the case for the functions
we are using to classify encrypted data, as explained in Section 4.

Computing the discrete logarithm for decryption. Our decryption requires computing discrete logarithms
of elements of GT , in base e(g1, g2), which is independent of the ciphertext and the functional decryption
key used to decrypt. Thus, to speed decryption up, we can pre-compute a table of discrete logarithm
values in GT which is accessed during every decryption. See Section 5 for more details on the discrete
logarithm computations. Note that previously implemented schemes, such as [KLM+18], do not satisfy
this property, and thus need to compute the discrete logarithm from scratch with every new decryption.

4 Choosing a Model

We solve the challenging task of finding a model that is both accurate for classifying data and efficiently
implementable by state of the art FE schemes.

A natural choice for its simplicity is to use a linear classifier, since efficient FE for linear functions
exists [ABDP15,ALS16]. However, linear classifiers achieve limited accuracy when attempting to classify
data (TensorFlow’s tutorial [ten] claims 92% accuracy on MNIST dataset).

This unsatisfactory performance justifies the use of richer models, as permitted by our FE scheme
for quadratic polynomials (introduced in Section 3). We want to classify data that can be represented
as a vector x ∈ [0, B]n for some B,n ∈ N (in the case of the MNIST dataset, the size B = 255, and
the dimension n = 784). In the following, we build models (fi)i∈[`] for each label i ∈ [`], such that our
prediction for the class of x ∈ [0, B]n is argmax

i∈[`]
fi(x).

Quadratic polynomial on Rn. The most straightforward way to use our FE scheme would be for us to
learn a model (Qi)i∈[`] ∈ (Rn×n)`, which we would then round onto the integers (see paragraph below),
such that fi(x) = x>Qix, ∀i ∈ [`]. This is a very powerful model with a lot of parameters: `n2! In the
case of MNIST (n = 784), the training set is arguably too small to make use of such a large number
of parameters, and the resulting number of pairings to compute (2 × 7842 by reusing the pairings as
explained below) would be unreasonably large.

Projection and quadratic polynomial on Rd. To reduce the number of pairing computations, we first
project the input vector from Rn onto Rd for a well chosen d < n, and we apply the quadratic polynomials
on the projected vectors. We can do this thanks to our scheme’s linear homomorphism (see Section 3).
This means that we learn P ∈ Rn×d and (Qi)i∈[`] ∈

(
Rd×d

)`, and our model is fi(x) = (Px)>Qi(Px),
∀i ∈ [`]. Notice that the same P is used in all of the fi, so we need only compute Px once, and the number
of pairings is reduced to 2`d2. Better yet, we can also perform the pairings only once, and then compute
the scores by exponentiating with different coefficients the same results of the pairings, thus only requiring
2d2 pairing evaluations.
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Adding a bias term. Our model would be more general if it were expanded from fi(x) = (Px)>Qi(Px)
to fi(x) = (Px+ b)>Qi(Px+ b) for b ∈ Zdp. We achieve something equivalent by systematically adding a

1 at the beginning of x when encrypting it, effectively operating on


1
x1
...
xn

.

Degree 2 polynomial network, with one hidden layer. To further reduce the number of pairings, we actually
limit ourselves to diagonal matrices, we thus rename Qi to Di. We find that the gain in efficiency associated
with only computing 2d pairings (since the Di are diagonal, they contain at most d non-zero entries) is
worth the small cost in accuracy. The resulting model is a polynomial network of degree 2 with one hidden
layer of d neurons: the activation function is the square.

Rounding onto Zp. Our encryption scheme operates on elements of Zp, so we need to round our model
before we can use it on encrypted data. This does not significantly affect our accuracy.

Our final model can thus be written as

fi(x) = (Px′)>Di(Px′),∀i ∈ [`],

where x′ =


1
x1
...
xn

. In the remainder of this paper we simply use x to denote x′ when evaluating our model

on an input x.
We present the decryption algorithm that is optimized for our particular choice of model in Fig. 3.

OptDec (pk, ct, skf1 , . . . , skf`):

• Parse ct :=
(
gγ1 , {g

ai
1 , gbi2 }i∈[n]

)
,

where for all i ∈ [n], ai := (W−1)>
(
xi
γsi

)
, bi := W

(
xi
−ti

)
.

• For all i ∈ [`], parse skfi :=
(
g
fi(s,t)
2 , fi

)
,

where fi(s, t) := (Ps)>Di(Pt)

for some fixed matrix P ∈ Zn×dp ,

and Di :=


δi,1

. . .
δi,d

∈Zd×d
p for each label i ∈ [`].

• We write P :=


p>1
...
p>d

, where for all i ∈ [d], p>i ∈ Z1×n
p is the i’th row of P.

For all i ∈ [d], compute ei := e(gαi
1 , gβi

2 ) ∈ GT

where αi := (W−1)>
(
p>i x

γ · p>i s

)
and βi := W

(
p>i x

−p>i t

)
• For all labels i ∈ [`], compute outi := e(gγ1 , g

fi(s,t)
2 ) ·

∏
j∈[d] e

δi,j
j .

Return {log(outi) ∈ Z}i∈[`].

Fig. 3. Optimized decryption algorithm, for quadratic polynomials of the form fi(x,x) := (Px)>Di(Px) with
P ∈ Zn×dp , and Di ∈ Zd×dp is a diagonal matrix for all labels i ∈ [`]. Its performance is: 2nd(E1 +E2) + (`+2d)P +
`dET + ` · dlog, where E1, ET denote exponentiation in G1, GT respectively, P denotes a pairing evaluation, and
dlog denotes the time needed to solve the discrete logarithm.

5 Implementation and Results

We train a polynomial network classifier in TensorFlow [AAB+15], and use it in conjunction with our FE
scheme from Section 3, which we implement in Python, using the Charm framework [AGM+13] with the
Pairing-Based Cryptography (PBC) library [L+06] as back-end. Our code will be uploaded to a public
GitHub repository to which we will provide a link in the final version of this paper.
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Training a classifier in TensorFlow. We follow a rather standard procedure on the Machine Learning
side of the implementation. We describe our model in TensorFlow and train a classifier using the Adam
optimization algorithm [KB14]. We use `2-regularization to limit overfitting and adjust the hyperparameters
using a validation set of 5000 labeled images. We train the final model on the full training set (60000 labeled
images), and scale it so the largest scalars in absolute value of P and (Di)i are 15 and 30, respectively,
before rounding it. Rounding it down to a small value is crucial to the efficiency of the final scheme.
The resulting integer model achieves 97.54% accuracy on the test set of 10000 labeled images. We give a
graphical representation of the confusion matrix in Fig. 4: each row represents a manuscript digit to be
classified, and each column represents a classification result.

Fig. 4. Confusion matrix describing our performance on the MNIST dataset. Each row represents a manuscript
digit to be classified, and each column represents a classification result.

Implementing the scheme in Charm. We use an asymmetric, prime-order, bilinear group: curve MNT159 [MNT01],
which provides 80 bits of security. We essentially follow the description of the scheme given in Section 3,
except for the decryption algorithm, which we optimized using our insights from Section 4, as described in
Fig. 3. To gain more efficiency, we batch the computation of exponentiations. Namely, the decryption
algorithm requires exponentiating the same group element by many scalars. Thus, we can re-use the
exponentiations of the group element by the powers of two, used in the first step of the square and multiply
algorithm, for all exponentiations3.
3 see https://en.wikipedia.org/wiki/Exponentiation_by_squaring for a description of the square and multi-
ply algorithm

https://en.wikipedia.org/wiki/Exponentiation_by_squaring
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For encryption, we also need to compute exponentiations of a group element by many small scalars (in
our case, the scalars are comprised between 0 and 255). We compute all the exponentiations for exponents
between 0 and 255 once, and then, access them directly instead of actually computing new exponentiations.
Doing so improves efficiency, and has the advantage of not introducing obvious timing attacks on the
encryption procedure.

Solving the discrete logarithms. The computation of the 10 discrete logarithms (one for each label) can
be prohibitive in terms of computation time, as the scores computed by our classifier can be quite large.
We confront this issue by precomputing the giant steps of the Baby Step Giant Step algorithm during
the setup. As mentioned in Section 3, the discrete logarithms we have to compute are always relative to
the same base: e(g1, g2). We can thus store a large amount of exponents of e(g1, g2), which significantly
speeds decryption up, at the cost of a larger usage of memory. We store pairs of integers matching the
hash of a group element to its discrete logarithm in a PostgreSQL database. In our tests, we chose bounds
based on the maximum scores our classifier gives on the MNIST dataset [LC10], by evaluating it on the
plaintext. We allow at most 213 baby steps for each discrete logarithm in the online phase, which requires
2.81 seconds on average, for 1.8 GB of storage. We provide a method giving loose bounds on the scores
output by a given model, and from it, we estimate that computing the full database while requiring the
same number of baby steps would require storing 26.3 GB. This can be prohibitive for an individual user,
but should not be a problem for production software companies, as we envisioned when listing potential
applications.

We give the average runtime for encryption, functional key generation, and decryption below. They were
obtained using a 2.60GHz Intel Core i5-6440HQ CPU and 8GB of RAM. We break down the decryption
phase into an evaluation phase (which covers exponentiations and pairings) and a discrete logarithm phase
(whose runtime is independent of that of the latter, and can be reduced to arbitrarily short durations at
the cost of storing an ever larger database of precomputations). We stress that the latter accounts for all
10 discrete logarithms. While we chose to demonstrate our techniques on a classification problem with 10
classes, they could also be applied to a regression problem, and in that case only one discrete logarithm
would need to be retrieved.

Average encryption time 8.1s
Average evaluation time 1.5s
Average discrete logarithms time 3.3s
Average functional key generation time 8ms

6 Conclusion

In this work, we have proposed an efficient Functional Encryption scheme for the evaluation of multivariate
quadratic polynomials. It outperforms all previous schemes. This opens up a path to richer classification
models from Machine Learning. Thanks to our new FE scheme, one can indeed publicly classify encrypted
data: given the functional decryption key, anyone can accurately predict the label that describes an
encrypted digit, within just a few seconds, without being able to fully decrypt the ciphertext.

However, one can think to many improvements for better efficiency or more functionalities. Our
implementation could indeed be improved in the following ways:

– Using faster languages and frameworks, such as C with direct calls to the PBC library [L+06].
– Training Machine Learning models that can be turned into integers with even smaller bounds, thereby

greatly decreasing the required number of discrete logarithms.
– Using finer algorithms to estimate the bounds between which we must precompute discrete logarithms,

perhaps by borrowing techniques from the field of Mathematical Optimization.
– Tackling different datasets, that might not be used as benchmarks like MNIST but that might have

practical relevance when it comes to protecting privacy. Note that while this work focused entirely on
classification problems, our scheme can readily be used for regression tasks, and those only require
solving one discrete logarithm.

We also list several open problems:

– Combining the previous FHE-based approach, and our FE-based approach, to perform both the
learning and classification on encrypted data, for better privacy.
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– Designing and implementing efficient FE schemes for richer classes of functions, that capture more
powerful machine learning algorithms. From an efficiency viewpoint, it would be interesting to have an
efficient FE for large inputs, and, in particular, without the need to solve a discrete logarithm. This
only exists for a restricted class of functions, namely, inner products [ABDP15,ALS16].

– Building efficient FE for unbounded size inputs, which would provide a solution to the problem of
email filtering we mentioned in Section 1.

– Designing efficient function hiding FE schemes, that is, where functional decryption keys hide their
underlying function. This is useful for many scenarios where the person doing the classification of
encrypted data should not learn the classifier itself. Such schemes only exist for inner products
[BJK15,DDM16,TAO16,KLM+18].

FE is a recent cryptographic primitive, yet this paper shows that it could already be used in practice.
This is encouraging, because FE allows just the type of controlled access to data that is useful in many
practical scenarios, and that current tools fail to provide. We hope this work inspires further contributions
applying FE to real-world problems.
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A Security proof of our FE scheme

Theorem 2 (IND-CPA Security in the Generic Bilinear Group Model). For any PPT adversary
A that performs at most Q group operations against the functional encryption scheme described on Fig. 2,
we have, in the generic bilinear group model:

AdvFEA (λ) ≤ 12 · (6n+ 3 +Q+Q′)2 + 1

p
,

where Q′ is the number of queries to KeyGen(msk, ·).

Proof. For any experiment Exp, adversary A, and security parameter λ ∈ N, we use the notation:
AdvExp(A) := Pr[1← Exp(1λ,A)], where the probability is taken over the random coins of Exp and A.

Exp1(1
λ,A): KeyGen(msk, f):

(G1,G2, p, g1, g2, e)← GGen(1λ), s, t $← Znp return (g
f(s,t)
2 , f).

a, b, c, d
$← Zp, set PG := (G1,G2, p, g

ad−bc
1 , g2, e)

msk := (s, t), pk :=
(
PG, g(ad−bc)s1 , gt2

)(
(x(0),y(0)), (x(1),y(1))

)
← AKeyGen(msk,·)(pk)

β
$← {0, 1}, γ $← Zp

for all i ∈ [n], ai :=
(
d −c
−b a

)(
x
(β)
i

γsi

)
, bi :=

(
a b
c d

)(
y
(β)
i

−tj

)
ct =:

(
g
γ(ad−bc)
1 , {gai

1 , gbi2 }i∈[n]
)

β′ ← AKeyGen(msk,·)(pk, ct)

Return 1 if β′ = β and for all queried f , f(x(0),y(0)) = f(x(1),y(1)).

Fig. 5. Experiment Exp1, for the proof of Theorem 2.

While we want to prove the security result in the real experiment Exp0, in which the adversary has
to guess β, we slightly modify it into the hybrid experiment Exp1, described in Fig. 5: we write the

matrix W
$← GL2 used in the challenge ciphertext as W :=

(
a b
c d

)
, chosen from the beginning. Then

W−1 = 1
ad−bc

(
d −b
−c a

)
.

The only difference with the IND-CPA security game as defined in Section 2.2, is that we change the
generator g1

$← G∗1 into gad−bc1 for a, b, c, d $← Zp, which only changes the distribution of the game by a
statistical distance of at most 3

p (this is obtained by computing the probability that ad− bc = 0 when
a, b, c, d

$← Zp). Thus,

AdvFEA (λ) = Adv0(A) ≤ Adv1(A) +
3

p
.

Note that in Exp1, the public key, the challenge ciphertext and the functional decryption keys only
contain group elements whose exponents are polynomials evaluated on random inputs (as opposed to
gW

−1

1 , for instance). This is going to be helpful for the next step of the proof, which uses the generic
bilinear group model.

Next, we make the generic bilinear group model assumption, which intuitively says that no PPT
adversary can exploit the structure of the bilinear group to perform better attacks than generic adversaries.
That is, weh have (wih Exp2 defined in Fig. 6):

max
PPT A

(
Adv1(A)

)
= max

PPT A

(
Adv2(A)

)
.

In this experiment, we denote by ∅ the empty list, by append(L, x) the addition of an element x to the
list L, and for any i ∈ N, we denote by L[i] the i’th element of the list L if it exists (lists are indexed from
index 1 on), or ⊥ otherwise.

Thus, it suffices to show that for any PPT adversary A, Adv2(A) is negligible in λ. The experiment
Exp2 defined in Fig. 6 falls into the general class of simple interactive decisional problems from [BCFG17,
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Exp2(1
λ,A):

L1 = L2 = LT := ∅, Qsk := ∅, s, t $← Znp , a, b, c, d
$← Zp, append(L1, (ad− bc) · s), append(L2, t), β $← {0, 1}(

(x(0),y(0)), (x(1),y(1))
)
← AOadd,Opair,Osk,Oeq(1λ, p)

Ochal

(
(x(0),y(0)), (x(1),y(1))

)
β′ ← AOadd,Opair,Osk,Oeq(1λ, p)
If β = β′, and for all f ∈ Qsk, f(x(0),y(0)) = f(x(1),y(1)), output 1. Otherwise, output 0.

Oadd(s ∈ {1, 2, T}, i, j ∈ N):
append(Ls, Ls[i] + Ls[j]).

Opair(i, j ∈ N):
append(LT , L1[i] · L2[j]).

Ochal

(
(x(0),y(0)), (x(1),y(1))

)
:

γ
$← Zp, append(L1, γ(ad− bc))

for all i ∈ [n], ai :=
(
d −c
−b a

)(
x
(β)
i

γsi

)
, append(L1,ai), bi :=

(
a b
c d

)(
y
(β)
i

−ti

)
, append(L2, bi).

Osk(f ∈ Fn,Bx,By,Bf ):
append(L2, f(s, t)), Qsk := Qsk ∪ {f}.

Oeq(s ∈ {1, 2, T}, i, j ∈ N):
Output 1 if Ls[i] = Ls[j], 0 otherwise

Fig. 6. Experiment Exp2. Wlog. we assume no query contains indices i, j ∈ N that exceed the size of the involved
lists.

Definition 14]. Thus, we can use their master theorem [BCFG17, Theorem 7], which, for our particular
case (setting the public key size N := 2n+ 2, the key size c = 1, the ciphertext size c∗ := 4n+ 1, and
degree d = 6 in [BCFG17, Theorem 7]) states that:

Adv2(A) ≤
12 · (6n+ 3 +Q+Q′)2

p
,

where Q′ is the number of queries to Osk, and Q is the number of group operations, that is, the number of
calls to oracles Oadd and Opair, provided the following algebraic condition is satisfied:

{M ∈ Z(3n+2)×(3n+Q′+1)
p : Eq0(M)}

= {M ∈ Z(3n+2)×(3n+Q′+1)
p : Eq1(M)},

where for all M, b ∈ {0, 1},

Eqb(M) :


1

(AD −BC)S
(AD −BC)Γ
Dx(b) − ΓCS
−Bx(b) + ΓAS


>

M


1
T

Ay(b) −BT
Cy(b) −DT

(f(S,T ))f∈Qsk

 = 0,

where the equality is taken in the ring Zp[S,T , A,B,C,D, Γ ], and 0 denotes the zero polynomial. Intuitively,
this condition captures the security at a symbolic level: it holds for schemes that are not trivially broken.
The latter means that computing a linear combination in the exponents of target group elements that can
be obtained from pk, the challenge ciphertext, and functional decryption keys, does not break the security
of the scheme. We prove this condition is satisfied in Lemma 3 below.

Lemma 3 (Symbolic Security). For any (x(0),y(0)), (x(1),y(1)) ∈ Z2n
p , and any set Qsk ⊆ Fn,Bx,By,Bf

such that for all f ∈ Qsk, f(x(0),y(0)) = f(x(1),y(1)), we have:

{M ∈ Z(3n+2)×(3n+Q′+1)
p : Eq0(M)}

= {M ∈ Z(3n+2)×(3n+Q′+1)
p : Eq1(M)},
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where for all M, b ∈ {0, 1},

Eqb(M) :


1

(AD −BC)S
(AD −BC)Γ
Dx(b) − ΓCS
−Bx(b) + ΓAS


>

M


1
T

Ay(b) −BT
Cy(b) −DT

(f(S,T ))f∈Qsk

 = 0,

where the equality is taken in the ring Zp[S,T , A,B,C,D, Γ ], and 0 denotes the zero polynomial.

Proof. Let b ∈ {0, 1}, and M ∈ Z(3n+2)×(3n+Q′+1)
p that satisfies Eqb(M). We prove it also satisfies

Eq1−b(M). To do so, we use the following rules:

Rule 1 : for all P,Q,R ∈ Zp[S,T , A,B,C,D, Γ ], with deg(P ) ≥ 1, if P · Q + R = 0 and R is not a
multiple of P , then Q = 0 and R = 0.

Rule 2 : for all P ∈ Zp[S,T , A,B,C,D, Γ ], any variable X among the set {S,T , A,B,C,D, Γ}, and
any x ∈ Zp, P = 0 implies P (X := x) = 0, where P (X := x) denotes the polynomial P evaluated on
X = x.

Evaluating Eqb(M) on B = D = 0 (using Rule 2), then using Rule 1 on P = CΓSiTj for all i, j ∈ [n],
we obtain that:

Mn+2+i


0
T
0
0

(f(S,T ))f∈Qsk

 = 0,

where Mn+2+i denotes the n+ 2 + i’th row of M.
Similarly, using Rule 1 on P = ΓASiTj for all i, j ∈ [n], we obtain that:

M2n+2+i


0
T
0
0

(f(S,T ))f∈Qsk

 = 0.

Thus, we have:

∀β ∈ {0, 1} :


0
0
0

Dx(β) − ΓCS
−Bx(β) + ΓAS


>

M


0
T
0
0

(f(S,T ))f∈Qsk

 = 0. (1)

Using Rule 1 on P = (AD − BC)SiBTj for all i, j ∈ [n] in the equation Eqb(M), we get that the
coefficient Mi+1,n+1+j = 0 for all i, j ∈ [n]. Similarly, using Rule 1 on P = (AD − BC)SiDTj for all
i, j ∈ [n], we get Mi+1,2n+1+j = 0 for all i, j ∈ [n]. Then, using Rule 1 on P = (AD −BC)ΓBTj for all
j ∈ [n], we get Mn+2,n+1+j = 0 for all j ∈ [n]. Finally, using Rule 1 on P = (AD − BC)ΓDTj for all
j ∈ [n], we get Mn+2,2n+1+j = 0 for all j ∈ [n]. Overall, we obtain:

∀β ∈ {0, 1} :


0

(AD −BC)S
(AD −BC)Γ

0
0


>

M


0
0

Ay(β) −BT
Cy(β) −DT

0

 = 0. (2)



Reading in the Dark 15

We write: 
0
0
0

Dx(b) − ΓCS
−Bx(b) + ΓAS


>

M


0
0

Ay(b) −BT
Cy(b) −DT

0


=
∑
i,j∈[n]

(
Dx

(b)
i − ΓCSi

−Bx(b)i + ΓASi

)>

×
(
m

(1)
i,j

(
1 0
0 1

)
+m

(2)
i,j

(
1 0
0 0

)
+m

(3)
i,j

(
0 0
1 0

)
+m

(4)
i,j

(
0 1
0 0

))
×

(
Ay

(b)
j −BTj

Cy
(b)
j −DTj

)

Evaluating the equation Eqb(M) on C = D = 0 (by Rule 2), then using Rule 1 on P = ΓABSiTj for
all i, j ∈ [n], we obtain m(3)

i,j = 0 for all i, j ∈ [n]. Evaluating the equation Eqb(M) on A = B = 0 (by Rule
2), then using Rule 1 on P = ΓCDSiTj for all i, j ∈ [n], we obtain m(4)

i,j = 0 for all i, j ∈ [n]. Evaluating
the equation Eqb(M) on A = B = C = D = 1 (using Rule 2), then using Rule 1 on P = ΓSiTj for all
i, j ∈ [n], using the fact that m(3)

i,j = m
(4)
i,j = 0 and (1), we obtain m(2)

i,j = 0 for all i, j ∈ [n]. Using Rule 1
on P = Γ (AD −BC)SiTj for all i, j ∈ [n] in the equation Eqb(M), we obtain that for all i, j ∈ [n],

m
(1)
i,j = Mn+2


0
0
0
0

(fi,j)f∈Qsk

 ,

where Mn+2 is the n+ 2’th row of M.
Putting everything together, can write

0
0
0

Dx(b) − ΓCS
−Bx(b) + ΓAS


>

M


0
0

Ay(b) −BT
Cy(b) −DT

0


as

(AD −BC)Mn+2


0
0
0
0(

f(x(b),y(b))− Γf(s, t)
)
f∈Qsk



= (AD −BC)Mn+2


0
0
0
0(

f(x(1−b),y(1−b))− Γf(s, t)
)
f∈Qsk



=


0
0
0

Dx(1−b) − ΓCS
−Bx(1−b) + ΓAS


>

M


0
0

Ay(b) −BT
Cy(b) −DT

0

 (3)

where we use the fact that for all f ∈ Qsk, we have the equality f(x(b),y(b)) = f(x(1−b),y(1−b)).
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Evaluating equation Eqb(M) on A = B = D = 0 (by Rule 2), then using Rule 1 on ΓSiC for all
i ∈ [n], and using (1) and (3), we obtain that the coefficient Mn+2+i,1 = 0 for all i ∈ [n]. Evaluating
Eqb(M) on B = C = D = 0 (by Rule 2), then using Rule 1 on ΓSiA for all i ∈ [n], and using (1) and
(3), we obtain that the coefficient M2n+2+i,1 = 0 for all i ∈ [n]. Thus, we have:

∀β ∈ {0, 1} :


0
0
0

Dx(β) − ΓCS
−Bx(β) + ΓAS


>

M


1
0
0
0
0

 = 0. (4)

Evaluating equation Eqb(M) on A = C = D = 0 (by Rule 2), then using Rule 1 on BTj for all
i ∈ [n], and using (3), we obtain that the coefficient M1,n+1+j = 0 for all j ∈ [n]. Evaluating Eqb(M) on
A = B = C = 0 (by Rule 2), then using Rule 1 on DTj for all j ∈ [n], and using (3), we obtain that the
coefficient M1,2n+1+j = 0 for all j ∈ [n]. Thus, we have:

∀β ∈ {0, 1} :


1
0
0
0
0


>

M


0
0

Ay(β) −BT
Cy(β) −DT

0

 = 0. (5)

Overall, we have:

Eqb(M) :


1

(AD −BC)S
(AD −BC)Γ
Dx(b) − ΓCS
−Bx(b) + ΓAS


>

M


1
T

Ay(b) −BT
Cy(b) −DT

(f(S,T ))f∈Qsk

 = 0

which implies the following relation, under (1),(2),(4),(5)
1

(AD −BC)S
(AD −BC)Γ

0
0


>

M


1
T
0
0

(f(S,T ))f∈Qsk



+


0
0
0

Dx(b) − ΓCS
−Bx(b) + ΓAS


>

M


0
0

Ay(b) −BT
Cy(b) −DT

0

 = 0

and then, under (3) 
1

(AD −BC)S
(AD −BC)Γ

0
0


>

M


1
T
0
0

(f(S,T ))f∈Qsk



+


0
0
0

Dx(1−b) − ΓCS
−Bx(1−b) + ΓAS


>

M


0
0

Ay(1−b) −BT
Cy(1−b) −DT

0

 = 0.
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Under (1),(2),(4),(5), this implies

Eq1−b(M) :


1

(AD −BC)S
(AD −BC)Γ
Dx(1−b) − ΓCS
−Bx(1−b) + ΓAS


>

M


1
T

Ay(1−b) −BT
Cy(1−b) −DT
(f(S,T ))f∈Qsk

 = 0
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