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ABSTRACT
Distributed ledger technologies provide high availability and
integrity, making them a key enabler for practical and secure
computation of distributed workloads among mutually dis-
trustful parties. However, many practical applications also
require confidentiality, the third pillar of the CIA triad. In
this work, we enhance permissioned and permissionless block-
chains with the ability to manage confidential data without
forfeiting availability or decentralization. More specifically,
CALYPSO sets out to achieve two orthogonal goals that
challenge modern distributed ledgers: (a) enable blockchains
to auditably manage secrets and (b) protect distributed com-
putations against arbitrage attacks when their results depend
on the ordering and secrecy of inputs.

To this end, CALYPSO proposes on-chain secrets, a novel
abstraction that enforces atomic deposition of an auditable
trace whenever users access confidential data. Furthermore,
CALYPSO provides user-controlled consent management
that ensures revocation atomicity and accountable anonymity.
Finally, to enable the permissionless deployment of CA-
LYPSO, we introduce an incentive scheme and provide users
with the option to select their preferred trustees. We evalu-
ated our CALYPSO prototype with a confidential document
sharing application and a decentralized lottery. Our bench-
marks show that the latency of processing transactions in-
creases linearly to the added security (in number of trustees)
and is in the range of 0.2 to 8 seconds for 16 to 128 trustees.
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1. INTRODUCTION
Blockchain technology enables secure and public exchange

of value online and has many interesting applications. Decen-
tralized data-sharing can give rise to data markets controlled
by users [62] and not solely by tech giants, such as Google
or Facebook; it can enable sharing of (confidential) data be-
tween mutually distrustful parties, such as state institutions
or even different countries; or it can bring the much needed
transparency to lawful access requests [21]. Decentralized
data life-cycle management can enable the implementation of
secure key-recovery mechanisms for users or an information-
publication version of a dead man’s switch [19] that enables
journalists to create contingency plans. Finally, if correctly
implemented, decentralized data life-cycle management can
guarantee fairness for lotteries [4], games (e.g., poker [37]),
and trading (e.g., exchanges [14]).

In many of the above use cases it is crucial to exchange
private data in a secure manner, which current decentralized
data-sharing applications [40, 47] do not provide. They only
provide partial solutions that either forfeit availability guar-
antees for the private data [24] or fall back on semi-centralized
solutions for key management [6, 68]. Furthermore, decen-
tralized applications that rely on the timing of data disclosure
to enforce fairness are susceptible to front-running attacks
where adversaries get early access to information enabling
them to unfairly adapt their strategies. For example, the
winner of the Fomo3D [58] lottery event enforced an early
termination of the entire process by submitting a sequence
of high-fee transactions, which significantly increased his
winning probability. Thanks to that exploit, this participant
obtained an overall prize of 10.5k Ether corresponding to
USD $2.2 M at the time.

In this paper we introduce CALYPSO, a new secure data-
management framework that addresses the challenge of pro-
viding fair and verifiable access to confidential information
without relying on a trusted party. To achieve this goal
CALYPSO needs to address three key challenges. First,
CALYPSO has to provide accountability for all accesses
to confidential data to ensure that data is not improperly
disclosed and to enforce proper recording of data accesses.
Ideally this accountability should not reveal the relationship
between the users and instead provide anonymity to the
data consumers. Second, CALYPSO has to enable data own-
ers to maintain control over the data they share, and data
consumers to be able to access even when their identities

1



Figure 1: Auditable data sharing in CALYPSO: (1) Wanda
encrypts data under the secret-management committee’s
public key, specifying the intended reader (e.g., Ron) and
the access policy, and then sends it to the access-control
blockchain which verifies and logs it. (2) Ron downloads
the encrypted secret from the blockchain and then requests
access to it by contacting the access-control blockchain which
logs the query if valid, effectively authorizing Ron’s access to
the secret. (3) Ron asks the secret-management committee
for a re-encryption of the downloaded secret by proving that
the previous authorization by the access-control blockchain
was successful. (4) Ron decrypts the re-encrypted secret.
If a specific application requires fairness, the data can be
atomically disclosed on-chain.

(public keys) are updated. In particular, CALYPSO should
allow for flexible updates to access-control rules and user
identities, e.g., to add or revoke access rights or keys. Third,
CALYPSO needs to enable permissionless functionality in
order to be deployable along open ecosystems such as exist-
ing blockchains. Figure 1 provides an overview of a typical
data-sharing application using CALYPSO that builds on top
of a novel abstraction called on-chain secrets (OCS) and
provides dynamic access-control and identity management.

On-chain secrets addresses the first challenge by balancing
the availability and confidentiality guarantees any data man-
agement system should provide with the decentralization
requirements of blockchain technology [34, 67]. On-chain
secrets combines threshold cryptography [57, 60, 61] with a
blockchain that enforces access control and atomically dis-
closes data to authorized parties. To further enable dynamic
access-control and identity management CALYPSO combines
on-chain secrets with skipchains [33, 46]. This results in the
first decentralized role-based access-control [55] system that
enables user-controlled consent management. Finally, CA-
LYPSO addresses the third challenge by building incentives
around the authorized decryption of data and enabling users
to securely select the number and the identities they want
to trust based on personal preference.

We implemented a prototype of CALYPSO in Go and
evaluated it on commodity servers. Our experiments show
that both versions of on-chain secrets that we propose scale
linearly in the number of trustees (level of decentralization),
exhibiting a moderate overhead of 2 to 17 seconds for 16
to 128 trustees. Furthermore, we evaluated CALYPSO in
the context of secure document-sharing and a zero-collateral

decentralized lottery. In our experiments, we used both syn-
thetic and real-world workloads and we compared CALYPSO
to cloud-only and semi-centralized (cloud plus blockchain)
solutions. For the document-sharing application, CALYPSO
takes 10 to 20 (10 to 150) seconds to execute a write (read)
request for low (4 trustees) to high (256 trustees) fault tol-
erance. For a realistic permissioned deployment, e.g., with
4 to 16 trustees, CALYPSO adds only a negligible amount
of overhead to the centralized solution in comparison to a
semi-centralized approach. For the zero-collateral lottery,
we show that our CALYPSO-based solution requires only
1 round to finish outperforming existing solutions requiring
logn rounds (n denotes the number of participants).

In summary, this paper makes the following contributions.

1) We introduce CALYPSO, a decentralized framework for
auditable management of private data that provides all three
CIA properties (Section 3), ensures fairness, enables updates
to access-control rules without compromising security, and
provides reader privacy.
2) We present on-chain secrets and propose two CALYPSO

variants for permissioned and permissionless deployments
(Section 4 and 5) enabling decentralized, transparent, and
efficient data management.
3) We demonstrate the feasibility of using CALYPSO to

address the data sharing needs of real-world organizations by
presenting three concrete use cases: auditable data sharing,
data life-cycle management, and atomic data publication
(Section 7). To evaluate our system and conduct these feasi-
bility studies, we implemented CALYPSO, which was inde-
pendently audited and is open-source (Section 8 and 9). The
code and a demo can be found at https://github.com/calypso-
demo/.

2. MOTIVATION AND BACKGROUND
In this section, we first motivate CALYPSO by describing

how it can enable security and fairness in data management
and atomic data publication applications. We then summa-
rize the main building blocks that we employ.

2.1 Motivating Examples

2.1.1 Auditable Data Management
Centralized custodian systems that provide policy-based

data publication mechanisms unlock a variety of useful data
life-cycle management applications, such as automatic publi-
cation of documents (e.g., legal wills or estate plans) when
certain conditions are met. This functionality also enables
digital life insurances for whistleblowers where files are pub-
lished automatically unless the custodian receives a digitally
signed “heartbeat” message from the insured person on a
regular basis [19, 52]. Moving to fully decentralized custo-
dians bears new challenges in terms of how to specify and
implement data publication and secure consent-management
in this deployment model and how to integrate these compo-
nents with each other.

To enable secure decentralized data-management, CA-
LYPSO uses threshold cryptography and distributed ledger
technology to protect the integrity and confidentiality of
shared data and to ensure accountability for data accesses
by generating a third-party verifiable audit trail for data
accesses. Furthermore, CALYPSO employs an expressive
policy-mechanism that enables atomic modification of access
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rights so that data owners can revoke the access rights of
those who have not yet exercised their publicly verifiable
rights to access the data. As a result, designers of decentral-
ized applications can use CALYPSO to achieve additional
functionalities, such as monetizing data accesses or providing
proofs to aid investigations of data leaks or breaches. A rep-
resentative application of this class is the document sharing
application that we present in Section 7.1.

2.1.2 Atomic Data Publication
Security and fairness requirements significantly change

when an application is deployed in a Byzantine, decentral-
ized environment as opposed to a traditional, centralized
setting. For example, an adversary can easily gain unfair
advantage over honest participants through front-running [14,
58, 63] (early, unfair access to information) if decentralized
applications, such as lotteries [4], poker games [37], or ex-
changes [14], are not designed with such attacks in mind. In
CALYPSO, inputs provided by the participants (e.g., lottery
randomness, trading bids, game moves) remain confidential
up to a barrier point that is expressed by defining specific
rules in a policy. After the barrier point, all the information
is published and the computed result is atomically disclosed
to every interested party (e.g., which trades were successful,
winner of the lottery). Consequently, CALYPSO resolves the
tension between decentralization, fairness, and availability
and provides a secure foundation for decentralized appli-
cations. A representative application of this class is the
zero-collateral lottery that we present in Section 7.3.

2.2 Blockchains and Skipchains
Blockchain is a distributed, append-only and tamper-

evident log that is composed of blocks that are connected to
each other via cryptographic hashes and is used in many de-
centralized applications [18, 45, 3]. CALYPSO does not inno-
vate on this front and can be deployed along any blockchain
(or state-machine replication system [11])1 that supports
programmability (i.e., smart contracts [2, 64, 67]), thereby
enabling custom validation.

Skipchains [46] track configuration changes of a decentral-
ized authority (cothority) by using each block as a represen-
tation of all public keys of the cothority that are necessary to
authenticate the next block. When a cothority wants to alter
its configuration, it creates a new block that includes the new
set of public keys and signs it with the old set of public keys
delegating trust to the new set. This signature is a forward
link [33] that clients follow to get up-to-date with the current
authoritative group. In Section 4.3, we define identity and
policy skipchains. Our construction is a simple extension
of the skipchains in order to support federated groups and
enable expressive consent-management (Appendix E).

2.3 Threshold Cryptosystems
A (t, n)-secret sharing scheme [9, 60] enables a dealer to

share a secret s among n trustees such that any subset of t
trustees can reconstruct s, whereas smaller subsets cannot.
Hence, the sharing scheme can withstand up to t−1 malicious
participants. The downside of simple secret-sharing schemes
is that they assume an honest dealer, an issue that verifiable
secret sharing (VSS) [22] solves by enabling the trustees to
verify that the distributed shares are consistent. VSS is used

1Directly inheriting their Byzantine Fault Tolerant proper-
ties.

for threshold signing and threshold encryption. Publicly
verifiable secret sharing (PVSS) [57] is a variation of VSS
that enables external third-parties to verify the shares.

Once we are able to securely share and hold a collective
secret, we can construct more complex systems out of it.
A distributed key generation (DKG) [25, 31, 36] protocol
allows to create a collective key pair without a trusted dealer.
The DKG produces a private-public key pair (sk, gsk) such
that the public key pk = gsk is known to everyone whereas
the private key sk is not known to any single trustee and
can only be used when a threshold of trustees collaborates.
Afterwards, anyone can encrypt data under this public key.

3. CALYPSO OVERVIEW
This section provides an overview of CALYPSO. We start

with two strawman solutions to illustrate the challenges that
a secure decentralized data-management system should ad-
dress and show how interconnected and fragile the properties
of such a system are, especially in a Byzantine environment.
Based on our observations, we then derive the system goals
and present the system design (as shown in Figure 1).

3.1 Strawman Protocols
As a motivation, consider an application on top of our

system where Wanda is the operator of a paid service that
provides asynchronous access to information about stock
orders, and Ron is a customer. This applications requires
auditability, which is a main property we have set out to
achieve. This means that Wanda should be able to audit the
fact that Ron accessed the information and claim payment.
At the same time, Ron should receive the stock information
once he has paid the service fee even if Wanda is dishonest,
i.e., wants to steal the money and reveal nothing. Next, we
present two strawman protocols and show that they provide
auditability but not the other desirable properties.

3.1.1 Strawman I: Trusted Custodian
The first strawman is a simple trusted custodian. Wanda

sends her information to the custodian specifying that Ron
can read if he pays the fee. Then, Wanda publicly announces
this on Bitcoin, which serves as both a public bulletin board
and a payment processor. Ron sees the on-chain announce-
ment, pays the fee and then shows the transaction to the
custodian who in turn releases the information encrypted
under Ron’s public key.

Strawman I provides auditability, however it puts too
much trust on the custodian. First, if the custodian crashes,
Ron has no guarantee of getting the information. To avoid
this, the second property that our system has to have is
decentralization. Second, if the custodian is malicious, he can,
undetectably by Wanda, give the information to Ron without
any proof of payment. To protect from this attack, we require
the third property of our system to be confidentiality. Finally,
even if the custodian does not compromise the confidentiality,
he releases the information on a first-come-first-serve basis.
As a result, customers with better connectivity can make
payments faster and thereby mount arbitrage attacks, on the
stock market in this scenario. To protect against unfairness,
the fourth property we require is fair access to data.

3.1.2 Strawman II: The Secret Sharer
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The straightforward solution to achieve decentralization
of data is replication: for instance, we can have n custodi-
ans. However, this worsens the confidentiality of the system
since we now have n custodians who can potentially leak the
information. Instead, Strawman II symmetrically encrypts
the information and publishes the encryption on-chain. Note
that the encryption does not have to be stored on-chain, how-
ever doing so guarantees high availability of data. To provide
confidentiality, Wanda uses the (t, n)-threshold Shamir secret
sharing scheme [60] to split the encryption key between the
n custodians. As a result if at least t custodians are honest,
both decentralization and confidentiality are preserved.

Although Strawman II seems to solve two of our issues, it is
actually worse than Strawman I. The challenge is that Wanda
can now fake her secret-sharing step, claiming that she did
a (t, n) secret sharing while she actually sends garbage to
the custodians, thereby making it impossible to ever recover
the secret. To defend against this, we force Wanda to post
consistent shares on-chain using PVSS [57]. However, now
an unauthorized adversary (e.g., Eve) can mount a replay
attack. Eve can copy the consistent shares available on-chain
in a seemingly independent new transaction (with Eve as
the authorized reader and the payment recipient) and trick
the custodians to decrypt without authorization. This shows
how fragile auditability is. Strawman II shows that simple
solutions can easily fail if they are not carefully designed.

3.1.3 Additional Properties
Before we introduce our goals, we mention two additional

properties that are desirable from Ron’s point of view. First,
Ron might not want to make publicly known that he is
accessing the stock market. In such as case, we can use a
privacy preserving blockchain such as Zcash [56] for payment,
but we also need receiver anonymity. Second, if Ron ever
needs to change his public key, he would lose access to all
data that are bound to authorization from the old key. We
ideally want Ron to have a dynamic sovereign identity, which
he can evolve independently and retain access to previous
shared data. To provide all properties, we introduce three
components and transform the Strawman II into CALYPSO.

1. To enable auditability of data accesses and ensure
atomic data delivery, we introduce on-chain secrets
(OCS). Specifically, we introduce long-term secrets
(LTS) and one-time secrets (OTS) in Section 4 and 5,
which are suitable for permissioned and permissionless
deployment respectively.

2. To enable receiver anonymity we introduce in Sec-
tion 4.2 the on-chain blinded key exchange which en-
ables Wanda to help Ron blind his identity, without
forfeiting her right to hold him accountable.

3. To enable decentralized, dynamic, user-sovereign iden-
tities and access policies, we extend skipchains and
integrate them with CALYPSO in Section 4.3.

3.2 System Goals
CALYPSO has the following primary goals.
• Auditability: All access transactions are third-party

verifiable and recorded in a tamper-resistant log.
• Decentralization: There are no single points of com-

promise or failure.
• Confidentiality: Secrets stored on-chain can only be

decrypted by authorized clients.

• Fair access: Clients are guaranteed to get access to
a secret they are authorized for only if they posted
a valid access request on-chain. If a barrier point
exists, authorized clients get concurrent access after it
(protecting against front-running attacks).
• Receiver anonymity: The auditable proof-of-access

logged on-chain does not identify the user unless an
audit is requested.
• Dynamic sovereign identities: Users (or organiza-

tions) fully control their identities (public keys) and
can update them in a third-party verifiable way.

3.3 System Model
There are four main entities in CALYPSO’s architecture:

writers who put secrets on-chain, readers who retrieve secrets,
an access-control blockchain that is responsible for logging
write and read transactions on-chain and enforcing access
control for secrets, and a secret-management committee that
is responsible for managing and delivering secrets. The ac-
cess-control blockchain and secret-management committee
can be deployed on the same set of servers or the access-
control blockchain can be an independent blockchain (such
as Ethereum [67]) not managed by the system administra-
tors. In the rest of the paper, we keep them separate for
architectural clarity. We also use Wanda and Ron to refer
to a (generic) writer and reader, respectively.

The access-control blockchain requires a Byzantine fault-
tolerant consensus [34, 35, 38, 45]. There are various ways
to implement an access-control blockchain, e.g., as a set of
permissioned servers that maintains a blockchain using BFT
consensus or as an access-control enforcing smart contract on
top of a permissionless cryptocurrency. The secret-manage-
ment committee membership is fixed; it may be set up on a
per-secret basis or in a more persistent setting, the differences
of which are discussed in Section 5.1.1. The secret-manage-
ment trustees maintain their private keys and may need to
maintain additional secret state, such as private-key shares.
They do not run consensus for every transaction.

We denote private and public key pairs of Wanda and
Ron by (skW , pkW ) and (skR, pkR). Analogously, we write
(ski,pki) to refer to the key pair of trustee i. To denote a
list of elements we use angle brackets, e.g., we write 〈pki〉 to
refer to a list of public keys pk1, . . . , pkn. We assume that
there is a registration mechanism through which writers have
to register their public keys pkW on the blockchain before
they can start any secret-sharing processes. We denote an
access-control label by policy, where policy = pkR is the
simplest case with Ron being the only reader.

3.4 Threat Model
We assume that the adversary is computationally bounded,

secure cryptographic hash functions exist, and there is a
cyclic group G (with generator g) in which the decisional
Diffie-Hellman assumption holds. We assume that partici-
pants, including trustees, verify the signatures of the mes-
sages they receive and process only those correctly signed.

We denote the number of trustees by n and the malicious
by f . Depending on the consensus mechanism of the ac-
cess-control blockchain, we either require an honest majority
n = 2f + 1 for Nakamoto-style consensus [45] or n = 3f + 1
for classic BFT consensus [34]2. In the secret-management

2We assume the associated network model is strong enough
to guarantee the security of the blockchain used.
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Figure 2: On-chain secrets protocol steps: (1) Write trans-
action, (2) Read transaction, (3) Share retrieval, (4) Secret
reconstruction.

committee, we require n = 2f + 1 and set the threshold to
recover a secret to t = f + 1.

We assume that readers and writers do not trust each other.
We further assume that writers encrypt the correct data and
share the correct symmetric key with the secret-management
committee, as readers can release a protocol transcript and
prove the misbehavior of writers. Conversely, readers might
try to get access to a secret and later claim that they have
never received it. Additionally, writers might try to frame
readers by claiming that they shared a secret although they
have never done so. Finally, the writer can define a barrier
point, an event before which no one can access the secret,
thereby guaranteeing fairness.

3.5 Architecture Overview
On a high level CALYPSO enables Wanda, the writer, to

share a secret with Ron, the reader, under a specific access-
control policy. When Wanda wants to put a secret on-chain
(see Figure 1), she encrypts the secret and sends a write
transaction txw to the access-control blockchain. The access-
control blockchain verifies and logs txw, making the secret
available for Ron, the authorized reader. To access a secret,
Ron downloads the secret from the blockchain and sends to
the access-control blockchain a read transaction txr, which
carries a valid authorization from Ron’s identity skipchain
with respect to the current policy.

If Ron is authorized to access the secret, the access-control
blockchain logs txr. Subsequently, Ron contacts the secret-
management committee to recover the secret. The secret-
management trustees verify Ron’s request using the block-
chain and check that the barrier point (if any) has occurred.
Afterwards, trustees deliver the secret shares of the key
needed to decrypt Wanda’s secret as shared in txw. In
Section 4, we show the deployed system (Section 7) that
adopts a permissioned model where trustees are externally
accountable. In Section 5, we extend CALYPSO to work
in a permissionless model where clients choose the trustees
on an ad-hoc basis and employ correct incentives using the
blockchain as a payment layer.

4. PERMISSIONED DEPLOYMENT
In this section, we introduce CALYPSO’s components and

show that they achieve all of our goals. Due to lack of space,

we refer to Appendix A for further discussion of the security
of CALYPSO. First, we introduce long-terms secrets, which
provides auditable access-control and fair data-access in a
permissioned setting with well-defined sets of trustees for
all clients. Second, we describe how Wanda can help Ron
obfuscate his identity but still be able to deanonymize him in
case of misbehavior. Finally, we describe the skipchain-based
identity and access management that adds dynamic access-
control for Wanda and self-sovereign identity management
to the non-obfuscated part of Ron’s identity. The writer can
either encrypt the data directly or use a symmetric key and
offload the storage of the symmetrically-encrypted data Cm
to IPFS [7] or some other decentralized storage service. If
Cm is not on chain, the reader should make sure he has the
encrypted data3 before he asks for access in order to preserve
the decentralization.

4.1 Long-Term Secrets
In order to understand the challenges of long-term secrets

we need to look into Strawman II. We can see that our first
challenge is preventing Wanda from posting bad shares. To
solve this, CALYPSO uses VSS [22], which forces Wanda
to publicly announce a commitment to her shares against
which all trustees can verify consistency. Using VSS however
has two challenges. First, Wanda needs to interact with
the trustees for every new transaction in order to get their
agreement on the correctness of the transaction. Second, the
size of the transaction grows linear to the number of trustees.
In order to resolve these challenges we leverage the fact that
the group of trustees is predefined and reduce the size of the
write transactions from linear to the number of trustees (one
share per trustee) to constant. In long-term secrets, trustees
generate a shared public key during setup. Wanda can then
use threshold ElGamal encryption [15] to hide the symmetric
key. This transaction can be made non-interactive with a
zero-knowledge proof of correct encryption [12]. Additionally,
the transaction size only depends on the security parameter
and not the number of trustees.

A third challenge is that Wanda needs to bind the secret
shares with Ron’s identity in order to prevent unauthorized
reads by Eve. For this reason we use the zero-knowledge
proofs of Lueks et al. [41, 61]. They are originally proposed to
protect against chosen-ciphertext attacks, but the core con-
struction of binding the policy with the ciphertext matches
exactly our needs as well. One final performance challenge is
that Ron needs to verify and reconstruct O(n) shares. To al-
leviate this burden we let Ron delegate the costly operations
of verifying and combining shares to a trustee who is assumed
to be honest-but-curious and would not DoS Ron. Then we
make sure that the trustee does not obtain direct access to
the secret and Ron can always detect any misbehavior and
ask another trustee or carry out the process himself. The
full protocol can be found in the Appendix A.

4.1.1 Evolution of Secret-Management Committee
The secret-management committee is expected to persist

over a long period of time while remaining secure and avail-
able. However, a number of issues can arise during its lifetime.
First, trustees can join and leave, thereby causing churn. Sec-
ond, even if the secret-management committee memberships
remain static, the private shares of the servers should be

3He can ask the writer to send it to him directly if IPFS is
unresponsive
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refreshed regularly (e.g., every month) to provide backward
secrecy. Lastly, the shared private key of the secret-manage-
ment committee should be rotated periodically (e.g., once
every year).

We address the first two problems by periodically re-
sharing [66] the existing threshold public key when a server
joins or leaves the secret-management committee, or when
servers want to refresh their private key shares. Lastly, when
the secret-management committee wants to rotate the thresh-
old public/private key pair (pksmc, sksmc), CALYPSO needs
to collectively re-encrypt each individual secret under the
new shared public key. To achieve this, we generate and
use translation certificates [30] such that the secrets can be
re-encrypted without the involvement of their writers and
without revealing the underlying secrets.

4.2 On-chain Blinded Key Exchange
In our protocols so far, Wanda includes the public key of

Ron in a secret’s policy to mark him as the authorized reader.
Once Wanda’s write transaction is logged, everyone knows
that she has shared a secret with Ron and correspondingly,
once his read transaction is logged, everyone knows that he
has obtained the secret. While this property is desirable for
some deployment scenarios we envision, certain application
may benefit from concealing the reader’s identity.

We introduce an on-chain blinded key exchange protocol,
an extension that can be applied to both on-chain secrets
protocols. This protocol allows the writer to conceal the
intended reader’s identity in the write transaction and to
generate a blinded public key for the reader to use in his
read transaction. The corresponding private key can only be
calculated by the reader and the signature under this private
key is sufficient for the writer to prove that the intended
reader created the read transaction. The protocol works as
follows and achieves our goal of receiver anonymity.

1. Public Key Blinding. Wanda generates a random blind-
ing factor b and uses it to calculate a blinded version
of Ron’s public key pkR̃ = pkbR = gb skR .

2. Write Transaction. Wanda creates a txw with the fol-
lowing modifications. Wanda encrypts b under pkR to
enable Ron to calculate the blinded version of his public
key by picking a random number b′ and encrypting b as

(cb1 , cb2) = (gskR b′b, gb
′
). Then, she uses pkR̃ instead

of pkR in the policy. Wanda includes cb = (cb1 , cb2)
and policy in txw. After txw is logged, she notifies Ron
on a separate, secure channel that she posted txw such
that he knows which block to retrieve.

3. Read Transaction. When Ron wants to read Wanda’s
secret, he first decrypts cb using skR to retrieve b =

(cb1)(cskR
b2

)−1 = (gskR b′b)(gb
′skR)−1. Then, he can com-

pute skR̃ = b skR and use this blinded private key to
anonymously sign his txr.

4. Auditing. If Wanda wants to prove that Ron generated
the txr, she can release b. Then, anyone can unblind
Ron’s public key pkR = pk−b

R̃
, verify the signature on

the transaction and convince themselves that only Ron
could have validly signed the transaction as he is the
only one who could calculate skR̃.

4.3 Identity and Access Management
The CALYPSO protocols described so far do not provide

dynamic access control or sovereign identities. They only
support static identities (public keys) and access policies as

they provide no mechanisms to update these objects. How-
ever, these assumptions are rather unrealistic, as participants
might need to change or add new public keys to revoke a
compromised private key or to extend access rights to a new
device. Similarly, it should be possible to change access
polices so that access to resources can be extended, updated
or revoked; and to define access-control rules for individual
identities and groups of users for greater flexibility. Finally,
any access-control system that supports the above properties
should prevent freeze attacks [54] and race conditions.

To achieve dynamic sovereign-identities, we look into role-
based access control (RBAC) [55] policies. These policies can
evolve dynamically depending on the role of users, however,
they rely on a central manager to assign users to roles. In
order to address this challenge, we use skipchains that enable
sovereignty over identities and roles. Specifically, we intro-
duce the skipchain-based identity and access management
(SIAM) subsystem for CALYPSO that provides the follow-
ing properties: (1) Supports identities for both individual
users and groups. (2) Enables users to specify and announce
updates to resource access keys and policies. (3) Enforces
atomic data accesses and updates to access rights to prevent
race conditions.

We achieve the first two goals of SIAM by using skipchains
to encode the identities of individuals and the memberships of
roles. As a result, our system is the first decentralized instan-
tiation of an RBAC policy mechanism. More specifically, we
deploy three types of skipchains in CALYPSO (as shown in
Figure 3). Personal identity skipchains store the public keys
that individual users control [33]. A user can have a number
of public keys that may be used for accessing resources from
different devices, for example. Federated identity skipchains
specify identities and public keys of a collective identity that
encompasses users with the same role (e.g., part of the same
group), such as employees of a company, members of a re-
search lab, etc. They are recursive in order to provide scaling
and ease of use. Resource policy skipchains track access rights
of identities, personal or federated, to certain resources and
enable dynamic access-control based on the role of each user.
In addition to listing federated identities and their public
keys, policy skipchains include access-control rules to enforce
fine-grained update conditions.

When SIAM is used, Ron is able to evolve the idR skip-
chain arbitrarily, e.g., rotate existing access keys or add new
devices, and still retain access to the encrypted resource.
Similarly, Wanda can set up a resource policy skipchain idP
she is in charge of and include idR as non-administrative
members. Then, Wanda would use policy = idP in txw

seamlessly authorizing Ron to access the respective resource.
Later Wanda can decide to revoke that resource for anyone,
who has not yet accessed it, by setting policy = ∅.

Ensuring Atomicity. A final challenge for adapting RBAC
in our setting is to guarantee atomicity of events such as
changing an identity (e.g., to exclude someone) and later
granting it more access rights. For example, Wanda, ad-
ministrator of the sales group, decides that Ron should be
fired because he is performing industrial espionage, hence
she removes the identity skipchain of Ron from the federated
skipchain of the sales group. Later, Wanda grants the rest
of her employees access to the new corporate strategy plan.
In a naive asynchronous access-control system where policy
changes can take varying amounts of time to propagate and
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take effect (e.g., OAuth2 [27]), there is a significant time
window in which Ron can still convince someone that he
is part of the sales group, as he can prove membership to
the controller of the sensitive object (i.e., to a threshold of
trustees).

A key idea in CALYPSO’s design is using the blockchain to
timestamp the latest versions of the skipchains. All skipchain
changes are serialized together with the txw and txr on-
chain. Hence the exclusion of Ron happens strictly after the
granting of access. This means that Ron will be unable to
provide a correctly timestamped proof to the secret-manage-
ment committee and as a result cannot read the sensitive
document. For more details on the integration of SIAM with
on-chain secrets, please refer to Appendix F.

5. PERMISSIONLESS DEPLOYMENT
In this section, we introduce a different on-chain secrets

protocol for CALYPSO that is more suitable for a permis-
sionless environment. One-time secrets does not assume the
existence of a predefined set of trustees; instead, it allows
clients to choose the servers that will hold their secret and
to choose the threshold. Having this flexibility comes at a
cost as transaction size is linear in the number of trustees.
However, we still manage to remain non-interactive so that
the trustees can remain stateless. Lastly, we show how to
incentivize the trustees using the underlying blockchain as a
payment processor.

5.1 One-Time Secrets
In one-time secrets, Wanda, the writer, first prepares a

secret she wants to share along with a policy that lists the
public key of the intended reader. She then runs PVSS [57] for
a random or personal choice of secret-management committee
members and uses the secret that was generated during PVSS
as the symmetric key. To prevent against replay attacks, as
discussed in Strawman II, we bind the secret shares to the
policy by deriving the base point of the PVSS consistency
proofs from the policy. In Appendix D we show that this
is secure if we use Elligator maps [8] when deriving the
base point. Furthermore, we provide an analysis of the
recommended group size based on Wanda’s perception of
how many adversarial nodes are present in the environment
where she deploys one-time secrets.

Finally, Wanda sends a write transaction txw to the access-
control blockchain to log the information for the verification
and retrieval of her secret. The reading part is similar to
long-term secrets except for the reconstruction, which has to
be done by Ron. We describe the full protocol in Appendix B.

5.1.1 Advantages and Shortcomings
One-time secrets does not require a setup phase among

the secret-management members, e.g., to generate a shared
private-public key pair. It also enables the use of a differ-
ent, ad-hoc, secret-management committee for each secret,
without requiring the servers to maintain any protocol state.

However, one-time secrets has a few shortcomings com-
pared to long-term secrets. First, it incurs a relatively high
PVSS setup and share reconstruction cost as Wanda needs
to evaluate the secret sharing polynomial at n points, and
create n encrypted shares and NIZK proofs, along with t
polynomial commitments. Second, the transaction size in-
creases linearly with the secret-management committee size,
as the secret-management trustees are stateless. This means

that the txw must contain the encrypted shares, NIZK proofs
and the polynomial commitments. Lastly, one-time secrets
shares are bound to the initial set of trustees, preventing the
possibility of updating the secret-management committee.

5.2 Incentives
When deploying CALYPSO in a permissionless network,

it is natural to ask why the trustees will participate. We
envision a system where the trustees are service providers
that want to build trust with the users in order to be selected.
For this reason, they lock some collateral. In Appendix D,
we analyze the incentives assuming the trustees have locked
collateral for one transaction, however we expect that the
trustees provide more liquidity and Wanda is locking col-
lateral proportional to the value of her data every time she
creates a new write transaction.

In this setting, we want to see what is the best strategy
for Ron and Wanda considering that the trustees will act
rationally. We assume that Wanda’s data have some intrinsic
value v, which Ron is willing to pay. As a result Wanda will
decide on a fraction a < 1 and av, which will be the amount
of money the trustees will receive. We have two challenges to
solve: First, trustees might receive payment and do nothing.
Second, trustees might accept bribe and give Ron the data
without waiting for a transaction on-chain.

In order to prevent a public-goods game [5], we need to
ensure two things: only the first t trustees get paid (each
one gets av/t) and trustees that reply with an invalid share
need to lose more than their expected payment. The solu-
tion to the invalid-share attack is also the solution to the
second challenge, collateral. In order to prevent bribes the
trustees need to lock collateral. The total collateral locked
by a sufficient threshold of trustees should be higher than
v. Hence, we assume that every trustee locks v/f collateral.
This collateral can be claimed by Ron by proving misbehav-
ior of the trustee4 and he gets a < 1 of it. The rest goes
to Wanda. In order for the protocol to work the trustees
send the encrypted shares on-chain claiming their payment
and upon verification of the signature the smart contracts
accepts them. Only the first t trustees get paid and only
after a dispute window ∆ during which Ron can claim their
collateral.

6. ACHIEVING SYSTEM GOALS
In this section we discuss how CALYPSO achieves its

goals.

Auditability: All access transactions are third-party verifi-
able and recorded in a tamper-resistant log.

Under the assumption that the access-control blockchain
provides Byzantine consensus guarantees, all properly created
read and write transactions are logged by the access-control
blockchain. Once a transaction is logged, anyone can obtain
a third-party verifiable transaction inclusion proof. For one-
time secrets we further showed that the secret-management
committee trustees will not deviate from the protocol and
accept a bribe.
Decentralization: There are no single points of compro-
mise or failure.

4The trustee produced an invalid signed share or it produced
a valid share without although no read transaction exists
on-chain
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id: idRon
admin: pk1 ∧ pk2

service: pklab, pkdoc

id: idRon
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service: pklab, pkdoc
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sigsk1∧sk2

hash
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admin: idRon

members: idRon, idEve
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admin: idRon
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id: idPaper
admin: idRon

access: idRon

id: idPaper
admin: idRon ∨ idAna

access: idLab

sigskdoc
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Personal identity skipchain

Federated identity skipchain

Resource policy skipchain

Figure 3: First, Ron updates his personal skipchain idRon

to include pkssh. He then uses sklab to extend the federated
skipchain idlab to add idAna as a member. Finally, he adds
idAna as an admin and idlab as authorized readers to the policy
skipchain idpaper by using skdoc.

By design, the protocols do not assume a trusted third
party and they tolerate up to f = t− 1 failures.

Confidentiality: Secrets stored on-chain can only be de-
crypted by authorized clients.

In long-term secrets, the secret message m is encrypted un-
der a symmetric key k that is subsequently encrypted under
a threshold public key of the secret-management committee
such that at least t = f + 1 trustees must cooperate to de-
crypt it. The ciphertext is bound to a specific policy through
the use of NIZK proofs [61] so it cannot be reposted in a new
write transaction with a malicious reader listed in its policy.
The access-control trustees log the write transaction txw that
includes the encrypted key, which, based on the properties
of the encryption scheme, does not leak any information
about k. After the secret-management trustees receive a
valid request reqshare, they respond with the blinded shares
of the shared private key encrypted under the public key in
the policy of the respective txw. Based on the properties of
the DKG protocol, the shared private key is never known to
any single entity and can only be used if t trustees cooperate.
This means, only the intended reader gets the secret shares.

In one-time secrets, the secret message m is encrypted
under a symmetric key k which is securely secret-shared
using PVSS among the secret-management trustees such
that t = f + 1 shares are required to reconstruct it. The
access-control trustees verify and log on the blockchain the
encrypted secret shares which, based on the properties of
PVSS, do not leak any information about k. After the secret-
management trustees receive a valid request reqshare, they
respond with their secret shares encrypted under the public
key listed in the policy from the respective txw. Further, a
dishonest reader cannot obtain access to someone else’s secret
through a new write transaction that uses a policy that lists
him as the reader but copies secret shares from another txw

in hopes of having them decrypted by the secret-management
committee (replay attack). This is because each transaction
is bound to a specific policy which is used to derive the base
point for the PVSS NIZK consistency proofs. Without the
knowledge of the decrypted secret shares (and the key k),
the malicious reader cannot generate correct proofs and all

transactions without valid proofs are rejected. This means
that only the intended reader obtains a threshold of secret
shares necessary to recover k and then access m.

Fair access: Clients are guaranteed to get access on a
secret they are authorized for if any only if they posted an
access request on-chain. If a barrier point exists, authorized
clients get concurrent access after it (protecting against front-
running attacks).

Before a read transaction txr is logged by the access-control
blockchain confidentiality protects all secrets. Once a read
transaction txr is logged by the access-control blockchain and
the barrier point has passed, the reader can run the share
retrieval protocol with the secret-management committee.
Under the assumption that n = 2f + 1, the reader receives
at least t = f + 1 shares of the symmetric encryption key k
from the honest trustees. This guarantees that the reader
has enough shares to reconstruct k and access the secret
message m.

Receiver Anonymity: The auditable proof-of-access logged
on-chain does not identify the user unless an audit is re-
quested.

The on-chain blinded-key exchange protocol exposes a
composite public key as Ron’s identity which is secure under
the DDH assumption. Furthermore, the on-chain encryption
provides Ron the blinding factor, which makes him the only
one that can reconstruct the composite private key. If Wanda
reveals that blinding factor then it is easy to verify the DDH
triplet exposed, hence deanonymize Ron.

Dynamic sovereign identities: Users (or organizations)
fully control their identities (public keys) and can update
them in a third-party verifiable way.

Ron is always in control of his identity skipchain and
can evolve it as he sees fit. Thanks to the authenticated
forward and backward links Ron is able to prove paths from
the genesis block used as policy to his current keys, hence
convince the secret-management to decrypt. Finally, due to
the on-chain time-stamping, even if some of Ron’s stale keys
are compromised the adversary cannot forge an alternate
path. The time-stamping smart contract will detect that the
adversaries proposed updates as they do not originate from
the latest block of Ron’s identity and reject it.

7. CASE STUDIES USING CALYPSO
Below we describe two real-world deployments, one com-

pleted and one in-progress, of CALYPSO that resulted from
collaborations with companies that needed a flexible, secure,
and decentralized solution to manage data. We also describe
a zero-collateral, constant-round decentralized lottery and
compare it with existing solutions.

7.1 Clearance-enforcing Document Sharing
To show the power of CALYPSO for auditable data-sharing,

we deployed a decentralized, clearance-enforcing document-
sharing system than enables two organizations, A and B, to
share a document D, such that a policy of confidentiality
can be enforced on D. We have realized this system with a
contractor of the Ministry of Defense of a European country
using a permissioned BFT blockchain and long-term secrets.
The evaluation of this application is discussed in Section 9.2.
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Figure 5: Latency of one-time secrets protocol for varying
sizes of secret-management committee and access-control
blockchain.

Problem Definition. Organization A wants to share with
organization B a document D whose entirety or certain parts
are classified as confidential and should only be accessible
by people with proper clearance. Clearance is granted to (or
revoked from) employees individually as needed or automati-
cally when they join (or leave) a specific department so the
set of authorized employees continuously changes. The goal
is to enable the mutually distrustful A and B to share D while
dynamically enforcing the specific clearance requirements
and securely tracking accesses to D for auditing.
Solution with CALYPSO. First, A and B agree on a
mutually-trusted blockchain system and define the secret-
management committee whose trustees include servers con-
trolled by both organizations. In order to prevent any of the
organization from having a majority of trustees the service
provider is also managing 1/3 of the trustees. Then, each
organization establishes federated identity skipchains with
all the identities that have clearance, idA and idB , respec-
tively which include references to (a) federated skipchains for
departments that have top-secret classification (e.g., senior
management), (b) federated skipchains for attributes that
have top-secret classification (e.g., ranked as captain) and
(c) personal skipchains of employees.

Organization A creates a document D and labels each
paragraph as confidential or unclassified. Then it derives a
confidential symmetric key and an unclassified key, which
is derived deterministically from the symmetric key using a
secure hash function. Then A encrypts the document, shares
the ciphertext with B and shares the symmetric keys using
CALYPSO and and policy = idB . Any employee of B whose
public key is included in the set of classified employees as
defined in the most current skipblock of idB can retrieve the
classified symmetric key by creating a read transaction and
decrypt the full document, whereas unclassified employees
can only retrieve the lower-clearance key. CALYPSO logs
the txr, creates a proof of access and delivers the key. Both
organizations can update their identity skipchains as needed
to ensure that at any given moment only authorized employ-
ees have access. As a result, both organizations manage to
share information and maintain the ability to access a secure
audit log without having to trust each other and without
having to fully rely on a service provider.

7.2 Patient-centric Medical Data Sharing
CALYPSO lends itself well for applications that require

secure data-sharing for research purposes. We are in the
process of working with hospitals and research institutions
from a European country to build a patient-centric system
to share medical data based on long-term secrets. We do
not provide evaluation of this application as it is similar to
the previous. In order to guarantee the confidentiality and
decentralization of the system there should be at least three
independent institutions maintaining a proportional number
of trustees that run the secret-management committee.
Problem Definition. Researchers face difficulties in gath-
ering medical data from hospitals as patients increasingly
refuse to approve access to their data for research purposes
amidst rapidly-growing privacy concerns [28]. Patients dis-
like consenting once and completely losing control over their
data and are more likely to consent to sharing their data
with specific institutions [32]. The goal of this collaboration
is to enable patients to remain sovereign over their data;
hospitals to verifiably obtain patients’ consent for specific
purposes; and researchers to obtain access to valuable patient
data. In the case that a patient is unable to grant access
(unconscious), the medical doctor can request an exception
(specified in the policy) and access the data while leaving an
auditable proof.
Solution with CALYPSO. We designed a preliminary
architecture for a data-sharing application enabling a pa-
tient P to share her data with multiple potential readers.
This deployment is different from the previous one since the
data generator (hospital) and the data owner (P) are differ-
ent. For this reason, we use a resource policy skipchain idP
representing P’s data usage preferences. Policy skipchains
can dynamically evolve by adding and removing authorized
readers, and can include rich access-control rules.

CALYPSO enables P to initialize idP when she first reg-
isters with the medical system. Initially, idP is empty, in-
dicating that P’s data cannot be shared. If a new research
organization or another hospital requests to access some of
P’s data, then P can update idP by adding a federated iden-
tity of the research organization and specific rules. When
new data is available for sharing, the hospital generates a
new write transaction that consists of the encrypted and
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Figure 6: Average write and read transaction latencies replay-
ing real-world data traces from clearance-enforcing document
sharing.

possibly obfuscated, or anonymized medical data and idP
as policy. As before, users whose identities are included in
idP can post read transactions to obtain access. Hence, with
CALYPSO, P remains in control of her data and can unilat-
erally update or revoke access, solving the data availability
versus consent-management challenge.

7.3 Decentralized Lottery
Prior proposals for decentralized lotteries either need collat-

eral (e.g., Ethereum’s Randao [50]) or run in a non-constant
number of rounds [43]. CALYPSO enables a simpler design,
as the lottery executes in one round and needs no collateral
because the participants cannot predict the final randomness
or abort prematurely.
Problem Definition. We assume there is a set of n partic-
ipants who want to run a decentralized zero-collateral lottery
selecting one winner. A smart contract manages the lottery
by collecting bids and deciding on the winner via public
randomness. We present the evaluation in Section 9.3. We
assume that the secret-management committee acts as hon-
est/malicious, further incentive analysis and slashing would
be necessary if all the secret-management committee acted
rationally.
Solution with CALYPSO. Each participant creates a txw

with their secret contribution to the randomness calculation
and shares it using long-term secrets. After a predefined
number of blocks (the barrier point), the input phase of
the lottery closes. Any user can then generate a txr upon
which the smart contract retrieves all committed inputs and
posts the reconstructed values and their proofs. Finally, the
smart contract computes the XOR of all (random) inputs
and uses it to select the winner. Using the same idea we
can see the power of CALYPSO on simplifying collaborative
decentralized games (e.g., poker).

8. IMPLEMENTATION
We implemented all components of CALYPSO, namely

long-term secrets, one-time secrets and SIAM, in Go [26]. For
cryptographic operations we used Kyber [39], an advanced
cryptographic library for Go. In particular, we used its imple-
mentation of the Edwards25519 elliptic curve that provides
128-bit security level. For the consensus mechanism required
for the access-control blockchain, we used an implementation
of ByzCoin [34], a scalable Byzantine consensus protocol. All
our implementations are available as open source on GitHub
and have gone through an independent security audit.

9. EVALUATION
First, we evaluate and compare the performance of two

on-chain secrets protcols using micro-benchmarks. Next,
we evaluate the performance of CALYPSO using two real-
world applications: clearance-enforcing document sharing
(Section 7.1) and a decentralized lottery (Section 7.3), using
both synthetic and real-world data traces. For the docu-
ment sharing application, we compare CALYPSO with both
a fully-centralized and a semi-centralized solution. As for
the decentralized lottery, we compare a CALYPSO-based
lottery to a state-of-the-art zero-collateral lottery. The syn-
thetic workloads are significantly heavier than those from
the real data traces. For the experimental evaluation of
SIAM, see Appendix F.1. We ran all our experiments on four
Mininet [44] servers, each equipped with 256 GB of memory
and 24 cores running at 2.5 GHz. To simulate a realistic
network, we configured Mininet with a 100 ms point-to-point
latency between the nodes and a per-node bandwidth of
100 Mbps.

9.1 Mirco-benchmarks
The two primary questions we want to answer for on-chain

secrets are whether the latencies of read and write trans-
actions are acceptable when deployed on top of blockchain
systems and whether it can scale to hundreds of trustees
to achieve a high degree of decentralization. We compare
CALYPSO against a centralized (single server) and a semi-
centralized setup (secrets are stored off-chain and access
policies are enforced by the access-control blockchain). We
measure the total latency of both on-chain secrets protocols
where we separately analyze the cost of the write, read, share
retrieval and share reconstruction sub-protocols. We vary
the number of trustees in the secret-management committee
and access-control blockchain, where all trustees belong to
both. A comparison of the transaction size for one-time
secrets and long-term secrets is in Appendix G.

9.1.1 Long-term Secrets
To answer our questions for the permissioned setting we

look at Figure 4. It presents the overall latency costs of
the key setup (DKG), write, read, share retrieval and share
reconstruction sub-protocols. Except for the DKG setup
(which is a one-time cost), all steps scale linearly in the size
of the committee. Even for a committee of 128 servers, it
takes less than 8 seconds to process a transaction. Further-
more, CPU-time is significantly lower than the wall-clock
time due to the network overhead included in the wall-clock
measurements. This experiment makes clear that the over-
head of long-term secrets scales well with the added level of
decentralization and can support workloads running on per-
missioned blockchains who tend to have similar latencies [34,
2] for the same level of decentralization.

9.1.2 One-time Secrets
To answer our questions for the permissionless setting we

look at Figure 5. We observe that the client-side creation
of the txw takes almost one second for 64 trustees. This
is expected as preparing the txw involves picking a polyno-
mial, evaluating it at n points, and setting up the PVSS
shares and commitments. Our experiments also show that
verifying the NIZK decryption proofs and recovering the
shared secret is substantially faster than creating the txw

and differ by an order of magnitude for large numbers of
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Figure 7: Write transaction latency for different loads in
clearance-enforcing document sharing.
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Figure 8: Read transaction latency for different loads in
clearance-enforcing document sharing.

shares because the verification and reconstruction require
less eliptic-curve cryptography operations than the setup of
the PVSS shares. Finally, the overhead for the recovery on
the secret-management committee is an order of magnitude
higher than the client side since the client sends a request
to each trustee. Although these overheads look substantial,
the microbenchmark actually demonstrates the feasibility of
deploying one-time secrets in a premissioneless setting with
minmal overhead compared to the confirmation latency of
minutes that existing open blockchain have [67].

9.2 Clearance-Enforcing Document Sharing
To show both the cost and the benefit of CALYPSO, we

compare our clearance-enforcing document sharing deploy-
ment with both a fully-centralized access-control system and
our implementation of a state-of-the-art semi-centralized
access-control system (e.g., [6, 17, 29, 59]), where accesses
and policies are logged on-chain but the data is managed in
the cloud. We vary the simulated workload per block from
4 to 256 read and write transactions and report the time it
takes to execute all transactions. These experiments use a
blocktime of 10 seconds.

Figure 7 shows that CALYPSO not only provides better
security, but also has less latency overhead than the semi-
centralized solution when executing write transactions. The
difference becomes more substantial as the number of trans-
actions increase: the semi-centralized solution is 20% slower
than CALYPSO for 256 write transactions. The additional
overhead of the semi-centralized solution is because in addi-
tion to logging the access-control policies on the blockchain,
writers also have to separately store the secret in the cloud.
On the other hand, if the users are comfortable outsourcing
their data then CALYPSO is not suitable as it takes 2× to
100× more time to execute the write transactions compared
to the fully-centralized solution.

Figure 8 shows the results of the same experiment for
read transactions. The latency values have two components:
storing the read transactions on the blockchain and decrypt-
ing the corresponding secrets. The semi-centralized solution
takes 10× to 421× and CALYPSO takes 55× to 457× more
time than the fully-centralized solution when executing the
read transactions. These results show that CALYPSO in-
curs between 0.9× and 4.5× more latency overhead than
the semi-centralized solution depending on the level of de-
centralization. The reason for CALYPSO’s higher overhead
is the secret reconstruction step that is executed by the
secret-management committee. For smaller number of trans-
actions CALYPSO and the semi-centralized solution have

comparable latency values because they are dominated by
the blocktime, which is almost the same for both systems.
However, as the number of transactions increase, the secret
reconstruction step starts dominating the total latency in
CALYPSO and causes the larger overhead. More specifically,
the secret reconstruction step of CALYPSO amounts to 11%
(2 s) and 85% (125 s) of the total latency for 4 and 256 read
transactions, respectively. For the semi-centralized solution
the corresponding step of decrypting the secrets amounts to
0.4% (40 ms) and 19% (2.6 s) of the total latency for the same
number of transactions. Allthough CALYPSO has moderate
overhead to the semi-centralized solution, we believe the
added security benefit is more important.

Next, we show the actual performance of the clearance-
enforcing document sharing deployment of CALYPSO using
real-world data traces from our governmental contractor
partner mentioned in Section 7.1. Data traces are collected
from the company’s testbed over a period of 15 days. There
are 1821 txw and 1470 txr, and the minimum, maximum and
average number of transactions per block are 1, 7 and 2.62,
respectively. We replayed the traces on CALYPSO and the
fully-centralized and semi-centralized access-control system
implementations. We use a blocktime of 10 seconds as it is in
the original data traces. Figure 6 shows the average latency
for the write and read transactions. The results show that
CALYPSO and the semi-centralized system have comparable
performance as the latency is dominated by the blocktime
due to the small number of transactions per block, meaning
that for existing deployments CALYPSO’s additional security
comes at almost no cost.

9.3 Decentralized Lottery
Finally, to show that CALYPSO can provide algorithmic

speedup to certain applications, we compare our CALYPSO-
based zero-collateral lottery with the corresponding lottery
by Miller et al. [43] (tournament) on simulated and real
workloads. Figure 9 shows that CALYPSO-based lottery
performs better both in terms of overall execution time and
bandwidth usage. Specifically, our lottery runs in one round
(it always takes two blocks to finish) while the tournament
runs in a logarithmic number of rounds due to its design
consisting of multiple two-party lotteries.

Next, we evaluate both lottery implementations using
transactions from an Ethereum-based lottery called Fire
Lotto [65]. We consider transactions sent to the Fire Lotto
smart contract over a period of 30 days, where each day is a
different run of the lottery. Figure 10 shows the total time
it takes to run the lotteries. Each data point in the graph
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Figure 9: Lottery evaluation using simulated workloads.
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Figure 10: Lottery evaluation using Fire Lotto
workloads.

corresponds to a single lottery run. As before, CALYPSO-
based lottery performs better because it completes in one
round whereas the tournament lottery requires a logarithmic
number of interactions with the blockchain and consequently
has a larger overhead. More specifically, while the blocktime
of 15 seconds makes up 14 − 20% of the total latency in
CALYPSO, it contributes most of the per-round latency to
the lottery. Our results only include the latency of the reveal
phase since the commit phase happens asynchronously over
a full day.

10. RELATED AND FUTURE WORK
In our deployments we demonstrated the power of CA-

LYPSO, which enables mutually distrustful parties who want
to collaborate within a blockchain ecosystem to auditably
exchange data and payments, and be protected from front-
running attacks. In one sentence, CALYPSO is the first
truly decentralized system that provides the full CIA triad
that modern businesses want from their data-management
systems. As a result, new applications such as accountable
data-sharing [21], time-locked vaults [52], and multi-party
games [37] can now be deployed within blockchain ecosystems
without the need for a centralized manager.

Private data storage has been widely studied in databases [48],
however adding decentralization is challenging. One inter-
esting work on secure data-sharing is Vanish [23], which
guarantees that data, which is no longer needed or used, self-
destructs to protect against accidental leakage. CALYPSO
can implement a similar functionality by adding a time out
on the write transaction after which the symmetric encryp-
tion keys (or the secret shares) are destroyed, but it is more
robust as it uses a blockchain instead of a DHT.

Nevertheless, CALYPSO is still limited to guarantee data
confidentiality up to the point where an authorized reader
gains access. To maintain confidentiality after this point,
writers might rely on additional privacy-preserving tech-
nologies, such as differential privacy [16] or homomorphic
encryption [20]. Differential privacy can also be used to help
identify leaks in the case of multiple readers. Wanda can
create multiple write transactions if she wants to pinpoint
leaks and apply a different noise to each.

The closest work to ours is the decentralized data man-
agement platform Enigma [69] that provides a comparable
functionality to CALYPSO. Users own and control their
data and a blockchain enforces access control by logging
valid requests (as per the on-chain policy). However, Enigma
stores the confidential data at a non-decentralized storage

provider that can read and/or decrypt the data or refuse to
serve the data even if there is a valid on-chain proof. The
storage provider in Enigma is therefore a single point of
compromise/failure. Other projects [6, 17, 29, 59] rely on
centralized key-management and/or storage systems as well
and hence suffer from similar issues with respect to atomicity
and robustness against malicious service providers.

Ekiden [13], takes a different approach than Enigma. It
removes the need for a cloud storage provider, however this
comes at a cost of trusting a secure enclave (e.g., Intel
SGX), which is not decentralized as CALYPSO. CALYPSO
is the first system that truly supports the full CIA triad
without having any single point of failure or compromise.
However, this comes at moderate overhead. CALYPSO
can only provide constant-sized write transactions in the
permissioned model. If a client in the permissionless model
wants this feature, he needs to trust a predefined set of
service providers as he cannot randomly choose anyone. One
possible extension is to combine multiple predefined sets of
long-term secrets servers in an one-time secrets instance and
generating one PVSS share per group. This would make the
transaction linear to the number of groups instead of the
number of trustees, hence reducing the total transaction size.

Finally, other privacy-focused blockchain systems [42, 56]
do not sufficiently address the problem of sharing data. Al-
though they allow commiting confidential data on-chain, they
rely on the intial data provider to reveal the data, which
means that they do not have high-availability. This is not an
issue for these systems, as they focus on hiding the identity
and amounts of monetary transactions, but the actual data
might be inaccessible forever. The only thing available is
zero-knowledge proofs that the system is consistent, hence
they cannot be used to achieve our goals. The on-chain
blinded key-exchange protocol is designed with a goal in
mind. It enables Wanda to protect the identity of the in-
tended reader of her secrets without forfeiting any of on-chain
secrets’ guarantees, however, it requires knowledge of reader’s
public key. If Ron wants to have a dynamic identity and a
hidden identity, he would still need to perform the exchange
before the rotation and maintain the hidden key securely.

Despite its limitations, CALYPSO shows how to preserve
the confidentiality of information and guarantee the fairness
of disclosure, opening up new possibilities for investigation.
For example, we are now closer to building decentralized
marketplaces [62], or even using the already decentralized
confidential data to build prediction models without seeing
the data, but only the final result.
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11. CONCLUSION
This paper shows how to enable a blockchain to hold secrets

using CALYPSO. CALYPSO achieves its goals by introduc-
ing two separate components. The first component, on-chain
secrets, is deployed on top of a blockchain to enable trans-
parent and efficient management of secret data via threshold
cryptography. The second component, skipchain-based iden-
tity and access management, allows for dynamic identities
and roles, and user-managed access policies. We have im-
plemented CALYPSO and shown that it can be efficiently
deployed with blockchain systems to enhance their function-
ality. Lastly, we describe three deployments of CALYPSO
to illustrate its applicability to real-world applications.
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APPENDIX
A. FULL PROTOCOL FOR Long-term se-

crets
Let G be a cyclic group of prime order q with generators

g and ḡ. We assume the existence of two hash functions:
H1 : G6 × {0, 1}l → G and H2 : G3 → Zq.

Setup Protocol.. Initially, the secret-management commit-
tee needs to run a DKG protocol to generate a shared private-
public key pair such that the private key is not known to
any single party, but can be reconstructed by combining
a threshold of key shares. There exist a number of DKG
protocols that are synchronous [25] or asynchronous [36].
Given the rarity of the setup phase we run the DKG by Gen-
naro et al. [25] using the blockchain to emulate synchronous
communication.

The output of the setup phase is a shared public key
pksmc = gsksmc , where sksmc is the unknown private key.
Each server i holds a share of the secret key denoted as ski
and all servers know the public counterpart pki = gski . The
secret key can be reconstructed by combining a threshold
t = f + 1 of individual shares. We assume that pksmc is
registered on-chain of the access-control blockchain, e.g., in
the genesis block.

Write Transaction Protocol
Wanda and the access-control blockchain perform the fol-
lowing protocol to log the txw on the blockchain. Wanda
encrypts a message under the threshold public key pksmc

such that it can be decrypted by anyone that is included in
policy5 L ∈ {0, 1}l. Wanda performs the following steps.

1. Retrieve the threshold public key pksmc of the secret-
management committee.

2. Choose a symmetric key k and encrypt the secret mes-
sage m using authenticated encryption [53] to be shared
as cm = enck(m) and compute Hcm = H(cm). Set
policy = pkR to designate Ron as the intended reader
of the secret message m.

3. Encrypt k towards pksmc using a threshold variant of
the ElGamal encryption scheme. To do so, embed k
as a point k′ ∈ G, pick a value r uniformly at random,
compute ck = (pkrsmck

′, gr) and create the NIZK proof
πck to guarantee that the ciphertext is correctly formed
and resistant to replay attacks as follows.

4. Choose at random r, s ∈ Zq. Compute:

c = pkrsmck
′, u = gr, w = gs, ū = ḡr, w̄ = ḡs,

e = H1 (c, u, ū, w, w̄, L) , f = s+ re.

5This policy is the identifier (hash of genesis block) of an
identity skipchain

5. Finally, prepare and sign the write transaction: txw =
[ck, πck , Hcm ,policy]sigskW

, and send it to the access-

control blockchain.
The ciphertext is (c, L, u, ū, e, f).
The access-control blockchain then logs the txw.
1. Verify the correctness of the ciphertext ck using the

NIZK proof πck .
2. If the check succeeds, log txw in block bw.

Read Transaction Protocol.
After txw has been recorded, Ron needs to log a txr before
he can request the decryption key shares. To do so, Ron
performs the following steps.

1. Retrieve the ciphertext cm and the block bw, which
stores txw, from the access-control blockchain.

2. Check that H(cm) is equal to Hcm in txw to ensure
that the ciphertext cm of Wanda’s secret has not been
altered.

3. Compute Hw = H(txw) as the unique identifier for the
secret that Ron requests access to and determine the
proof πtxw showing that txw has been logged on-chain.

4. Prepare and sign the txr: txr = [Hw, πtxw ]sigskR
, and

send it to the access-control blockchain.
The access-control blockchain then logs txr as follows.
1. Retrieve txw using Hw and use pkR, as recorded in

policy, to verify the signature on txr.
2. If the signature is valid and Ron is authorized to access

the secret, log txr in block br.

Share Retrieval Protocol.
Ron can recover the secret data by running the share retrieval
protocol with the secret-management committee. To do so
Ron does as follows.

1. Create and sign a secret-sharing request: reqshare =
[txw, txr, πtxr ]sigskR

, where πtxr proves that txr has been

logged on-chain.
2. Send reqshare to each secret-management trustee to re-

quest the blinded shares.
Given a ciphertext (c, L, u, ū, e, f) and a matching autho-

rization to L, each trustee i performs the following steps.

1. Check if e = H1 (c, u, ū, w, w̄, L) by computing w = gf

ue

and w̄ = ḡf

ūe , which is a NIZK proof that logg u = logḡ ū.
2. If the share is valid, choose si ∈ Zq at random and

compute:

ui = uski , ûi = usi , ĥi = gsi ,

ei = H2

(
ui, ûi, ĥi

)
, fi = si + skiei

3. Create and sign the secret-sharing reply: repshare =
[ui, ei, fi]sigski

, and send it back to Ron.

Secret reconstruction

Ron can reconstruct the secret and obtain the decryption
key k both on the client side or at an untrusted server. We
describe both schemes below.

Secret reconstruction at Ron
1. Each secret-management server i prepares a blinded

share ui = (gr)ski along with its NIZK proof of correct-
ness, computes ci = encpkR

(ui), and sends (ci, ei, fi)
back to Ron.
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2. Run the decryption share check to make sure that the
trustees are not misbehaving.

3. If the check passes then verify that (u, ui, hi) is a DH

triple by checking that ei = H2

(
ui, ûi, ĥi

)
, where ûi =

ufi

ui
ei and ĥi = gfi

hi
ei .

4. If there are at least t valid shares, (i, ui), the recovery
algorithm is doing Lagrange interpolation of the shares:

pkrsmc =

t∏
k=0

ui
λi

where λi is the ith Lagrange element.
5. Ron recovers the encoded encryption key: k′ = (ck)(pkrsmc)−1 =

(pkrsmck
′)(pkrsmc)−1, retrieves the symmetric encryption

key k from k′, and finally decrypts the secret message
m = deck(cm).

Secret reconstruction at the trusted server

Ron authenticates himself using his public key gxc . One
of the trustees is assigned to do the reconstruction for the
client.

1. Each secret-management server i ElGamal encrypts
its secret key share ui = (gr)ski using Ron’s public
key pkR = gskR and its secret key ski instead of the
usual random exponent. The encrypted share is u′i =

grskigskRski = g(r+skR)ski = gr
′ski Then the trustee

computes ĥi, as before and û′i = u′ski . Finally e′i =

H2

(
u′i, û

′
i, ĥi

)
and f ′i = si + xie

′
i

2. The trustee collects t valid shares, then uses Lagrange

interpolation to reconstruct gr
′sksmc = g(r+skR)sksmc

which he sends to Ron. Note that the server never
sees grsksmc and consequently cannot decrypt the secret
message intended for Ron.

3. Ron knows pksmc = gsksmc and skR, and can calculate

(gr skR)−1. Then, he can recover pkrsmc as (gr
′sksmc)(gr skR)−1 =

(g(r+skR)sksmc)(gr skR)−1 = (gr sksmc)(gr skR)(gr skR)−1 =
gr sksmc = pkrsmc.
Finally, Ron recovers the symmetric key k and car-
ries out the decryption as explained in the step above.
If the authenticated decryption fails then Ron cannot
distingusih between a bad server and Wanda’s misbe-
havior. As a result he can either optimistically ask
another server to do the interpolation or pessimistically
do it himself and blame Wanda if decryption fails again.
Another path would be for the server to contact the
secret-management committee in order to generate a
ZK-proof of correct re-encryption but we opted for the
optimistic appraoch that has less overhead.

B. ONE-TIME SECRETS PROTOCOLS
We follow the protocol in [57] where a dealer wants to

distribute shares of a secret value among a set of trustees.
Let G be a cyclic group of prime order q where the decisional
Diffie-Hellman assumption holds. Let g and h denote two
distinct generators of G. We use N = {1, . . . , n} to denote
the set of trustees, where each trustee i has a private key
ski and a corresponding public key pki = gski . The protocol
runs as follows:

Write Transaction Protocol.
Wanda, the writer and each trustee of the access-control
blockchain perform the following protocol to log the write
transaction txw on the blockchain. Wanda initiates the
protocol as follows.

1. Compute h = H(policy) to map [8] the access-control
policy to a group element h to be used as the base point
for the PVSS polynomial commitments. This prevents
replay attacks as described later.

2. Choose a secret sharing polynomial s(x) =
∑t−1
j=0 ajx

j

of degree t− 1. The secret to be shared is s = gs(0).
3. For each secret-management trustee i, compute the en-

crypted share ŝi = pk
s(i)
i of the secret s and create the

corresponding NIZK proof πŝi that each share is cor-
rectly encrypted. Create the polynomial commitments
bj = haj , for 0 ≤ j ≤ t− 1.

4. Set k = H(s) as the symmetric key, encrypt the secret
message m to be shared as c = enck(m), and compute
Hc = H(c). Set policy = pkR to designate Ron as the
intended reader of the secret message m.

5. Finally, prepare and sign the write transaction: txw =
[〈ŝi〉 , 〈bj〉 , 〈πŝi〉 , Hc, 〈pki〉 , policy]sigskW

, and send it to

the access-control blockchain.
πŝi proves that the corresponding encrypted share ŝi is

consistent. More specifically, it is a proof of knowledge of
the unique s(i) that satisfies:

Ai = hs(i), ŝi = pk
s(i)
i

where Ai =
∏t−1
j=0 bj

ij . In order to generate πŝi , the dealer
picks at random wi ∈ Zq and computes:

a1i = hwi , a2i = pkwi
i ,

Ci = H(Ai, ŝi, a1i, a2i), ri = wi − s(i)Ci

where H is a cryptographic hash function, Ci is the chal-
lenge, and ri is the response. Each proof πŝi consists of Ci
and ri, and it shows that loghAi = logpki

ŝi.
The access-control blockchain then logs the write transac-

tion on the blockchain as follows.
1. Derive the PVSS base point h = H(policy).

2. Compute Ai =
∏t−1
j=0 cj

ij using the polynomial commit-
ments cj , 0 ≤ j < t.

3. Compute a′1i = hriACi
i and a′2i = pkrii ŝi

Ci

4. Check that H(Ai, ŝi, a
′
1i, a

′
2i) matches the challenge Ci.

5. If all shares are valid, log txw in block bw.

Read Transaction Protocol.
After the write transaction has been recorded, Ron needs
to log the read transaction txr through the access-control
blockchain before he can request the secret. To do so, Ron
performs the following steps.

1. Retrieve the ciphertext c and block bw, which stores txw,
from the access-control blockchain.

2. Check that H(c) is equal to Hc in txw to ensure that
the ciphertext c of Wanda’s secret has not been altered.

3. Compute Hw = H(txw) as the unique identifier for the
secret that Ron requests access to and determine the
proof πtxw showing that txw has been logged on-chain.
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4. Prepare and sign the transaction: txr = [Hw, πtxw ]sigskR
,

and send it to the access-control blockchain. The trans-
action can optionally bear a payment value v that the
trustees receive upon replying.

The access-control blockchain then logs the read transac-
tion on the blockchain as follows.

1. Retrieve txw using Hw and use pkR, as recorded in
policy, to verify the signature on txr.

2. If the signature is valid and Ron is authorized to access
the secret, log txr in block br.

Share Retrieval Protocol.
After the read transaction has been logged, Ron can recover
the secret message m by running the share retrieval protocol
with the secret-management committee to obtain shares of
the encryption key used to secure m. To do so, Ron initiates
the protocol as follows.

1. Create and sign a secret-sharing request: reqshare =
[txw, txr, πtxr ]sigskR

, where πtxr proves that txr has been

logged on-chain.
2. Send reqshare to each secret-management trustee to ob-

tain the decrypted shares.
Each trustee i of the secret-management committee re-

sponds to Ron’s request as follows.
1. Use pkR in txw to verify the signature of reqshare and
πtxr to check that txr has been logged on-chain.

2. Compute the decrypted share si = (ŝi)
sk−1

i , create a
NIZK proof πsi that the share was decrypted correctly.
The proof shows the knowledge of the unique value that
satisfies logg pki = logsi ŝi.

3. Derive ci = encpkR
(si) to ensure that only Ron can

access it.
4. Create and sign the secret-sharing reply: repshare =

[ci, πsi ]sigski
, and send it back to Ron or publish on-

chain claiming payment.

Secret Reconstruction Protocol.
To recover the secret key k and decrypt the secret m, Ron
performs the following steps.

1. Decrypt each si = decpkR
(ci) and verify it against πsi .

2. If there are at least t valid shares, use Lagrange inter-
polation to recover s.

3. Recover the encryption key as k = H(s) and use it to
decrypt the ciphertext c to obtain the message m.

C. POST-QUANTUM ONE-TIME SECRETS
The one-time secrets implementation can be converted to

a post-quantum secure version by using Shamir’s secret shar-
ing [60]. We need the following assumptions to provide con-
fidentiality. First, we assume that Wanda has post-quantum
confidential and authenticated point-to-point communication
channels [10] with the trustees. Second, we assume that the
cryptographic protocols (for access control, authentication
and blockchain security) are upgraded gradually over time
to achieve post-quantum security. To protect CALYPSO
from confidentiality violations by quantum attackers, we
need to ensure that the on-chain secrets generated now are
post-quantum secure.

Unlike the publicly-verifiable scheme we previously used,
Shamir’s secret sharing does not prevent a malicious writer
from distributing bad secret shares. To mitigate this problem,
we provide accountability of the secret sharing phase by (1)

requiring the writer to commit to the secret shares she wishes
to distribute and (2) requesting that each secret-manage-
ment trustee verifies and acknowledges the consistency of
their secret share against the writer’s commitment. As a
result, assuming n = 3f + 1 and secret sharing threshold t =
f + 1, the reader can hold the writer accountable for a bad
transaction should he fail to correctly decrypt the secret
message.

We sketch the protocol for one-time secrets below. We
remark that long-term secrets can also achieve post-quantum
security through verifiable secret sharing that relies on lat-
tices [49] or NTRU [1].

Write Transaction Protocol

Wanda prepares her write transaction txw with the help of
the secret-management committee and access-control block-
chain, where each individual trustee carries out the respective
steps. Wanda initiates the protocol by preparing a write
transaction:

1. Choose a secret sharing polynomial s(x) =
∑t−1
j=0 ajx

j

of degree t− 1. The secret to be shared is s = s(0).
2. Use k = H(s) as the symmetric key for encrypting the

secret message m. c = enck(m) and set Hc = H(c).
3. For each trustee i, generate a commitment qi = H(vi ‖
s(i)), where vi is a random salt value.

4. Specify the access policy and prepare and sign txw.
txw = [〈qi〉 , Hc, 〈pki〉 , policy]sigskW

5. Send the share s(i), salt vi, and txw to each secret-man-
agement trustee using a secure channel.

The secret-management committee verifies txw as follows.
• Check that (s(i), vi) corresponds to the commitment
qi. If yes, sign txw and send it back to Wanda as a
confirmation that the share is valid.

The access-control blockchain finally logs Wanda’s txw.
• Wait to receive txw signed by Wanda and the secret-

management trustees. Verify that at least 2f+1 trustees
signed the transaction. If yes, log txw.

Read Transaction, Share Request, and Reconstruc-
tion

The other protocols remain unchanged except that the secret-
management trustees are already in possession of their secret
shares and the shares need not be included in txr. Once
Ron receives the shares from the trustees, he recovers the
symmetric key k as before and decrypts c. If the decryption
fails, then the information shared by Wanda (the key, the
ciphertext, or both) was incorrect. Such an outcome would
indicate that Wanda is malicious and did not correctly ex-
ecute the txw protocol (e.g., provided bad shares or used
a higher-order polynomial). In response, Ron can release
the transcript of the txr protocol in order to hold Wanda
accountable.

D. SECURITY CONSIDERATIONS AND IN-
CENTIVE STRUCTURE

Our contributions are mainly pragmatic rather than the-
oretical as we employ mostly existing, well-studied crypto-
graphic algorithms in a black box, modular fashion. For the
replay attack adversary that was not considered in prior work
we provide a sketch of the security proofs. Then, we show the
incentive compatibility of our permissionless protocol and
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analyze the number of trustees Wanda should for sufficient
security.

D.1 Replay attack
In both long-term secrets and one-time secrets Wanda

posts on-chain the ciphertexts which the adversary (Eve)
can easily access. The replay attack consists of Eve copying
the ciphertext and creating a new transaction that includes
the ciphertext (or a homomorphic modification of it), but
changes the policy from Ron to Eve. As a result, Eve can
now authorize decryption of the new transaction and get the
decrypted shares from the secret-management committee.

D.1.1 Long-term secrets Security Argument
In order to show that long-term secrets is secure under

this attack we need to show that Eve is unable to generate a
valid transaction after seeing the ciphertext.

Recall the ciphertext includes form (pkrsmck
′, gr, gs, ū =

ḡr, w̄ = ḡsL, e = H1 (c, u, ū, w, w̄, L) , f = s+ re). Eve wants
to take pkrsmck

′, gr and generate a new valid transaction so
that she can convince the secret-management committee
to reveal pkrsmc to her, since she does not know r. This
would not be a problem if Wanda was using simple threshold
encryption. However in CALYPSO, Eve needs to generate
e′ = H1 (c, u, ū, w, w̄, L′)] (where L′ is her public key instead
of Ron’s) and f = s+ re however she know neither s nor r.
From the two she can trivially choose a new s′ since it is not
crucial for decryption, however she still does not know r and
she cannot recover it form u = gr (DLOG is hard in G).

Let’s assume that Eve can somehow generate a valid f such

that gf
′

= gs
′
+gre

′
and convince access-control blockchain to

log the transaction as valid. Then we can use Eve’s algorithm

to solve the DDH problem as the triple (gr, ge
′
, gf − gs

′
) is

a DDH triple and Eve generated it without knowing r which
should be hard.

This means that under the ROM model the only valid e
comes from including the original L in H1, which ties the
transaction to the policy.

D.1.2 One-time secrets Security Argument
In order to bind one-time secrets with the policy L we use

it to derive a base point from H(L). Eve wants to change
the policy to L′, hence she would need to do the proofs using
H(L′), but she does not know the secrets. Since we know
that our zk-proof of knowing the secret shares are secure
and Eve does not know the secret shares we get the security
directly from PVSS.

However we changed one thing in PVSS that can break
security if not handled properly. Instead of having a random
base point we derive it from H(L). As a result if Eve could
compute an exponent a such that H(L)a = H(L′) she could
homomorphically apply the exponent to all proofs and make
them work for her policy. We need to make sure when
deriving the point from H(L) that it is indistinguishable
from random to prevent this attack. If we simply cast H(L)
into a scalar a and derive H = Ga then Eve could also find
a as she knows L. Then she would derive a′ from H(L′) and
raise all the proofs to a′/a making them work for H(L′).

The security of one-time secrets comes from using Elligator
maps [8] when deriving the base point from H(L) which
makes sure that the point is random. As a result for Eve
to break one-time secrets she can to nothing better than
guessing, which has negligible probability of succeeding.

D.2 Incentive Analysis
In this section we analyze the incentives that rational par-

ticipants have when running CALYPSO in a permissionless
mode. The trustees have three possible deviations: (a) do
not release their share (b) claim they released their share but
encrypt garbage and (c) release their share even if there is no
valid read transaction. Ron has one possible deviation which
is to bribe the trustees in order to release their shares without
paying Wanda. Wanda has one possible deviation which is
to bribe the trustees to not reply or to release garbage. Next
we analyze these scenarios.

The easiest to analyze is Wanda’s deviation. Let’s say that
she sends a bribe ε to the trustees. Given that she cannot
stop them from sending a message the trustees best course
of action is to accept the bribe and still make money from
Ron, hence Wanda just loses money. Notice that this is not
a fair-exchange problem since in fair exchange both parties
have some secret. In this example the trustees have no secret
to trade. They can send the message whenever they want
and Wanda cannot stop them.

Next we analyze Ron’s deviation. In order for a trustee
to take a bribe Ron needs to send him av/t for the payment
the trustee would normally make and v/f for the collateral
that the trustee risks (again notice that the trustee has no
way to stop Ron from slashing). As a result Ron needs
to pay in total tv/f + av. From this he can claim back a
percentage a of the collateral through slashing the t trustees
for a total of atv/f . As a result his expected cost is tv/f +
av − atv/f = (f + 1)v/f + fav/f − a(f + 1)v/f = (fv +
v + fav − afv − av)/f = (f + 1− a)v/f . But a < 1 hence
(f + 1− a)v/f > (f + 1− 1)v/f = v. Hence a rational Ron
will not bribe the trustees. This analysis trivially extends to
Ron having shares from Byzantine parties that did not ask
for a bribe. This hold because slashing a Byzantine party
makes av/f and legally paying an rational a party costs
av/f + 1. Hence Ron will prefer to slash and pay than to
bribe.

Finally, we analyze the deviations of the trustees. The
third deviation is the trustees action when bribed. We already
showed that Ron will never bribe the trustees v/f + av/t or
more because he loses money. On the other hand the trustee
will never accept a bribe of less since av/t is his expected
revenue for following the protocol and v/f his expected loss
for deviating. Similarly the trustee has no incentive to put
garbage in a transaction since he can only lose his collateral.

The last deviation we look into is for the trustee to act
as a benign fault. Clearly here the collateral is not at risk,
and if t rational parties agree to not reply they can hold
Ron hostage. If we look the game from the perspective of a
single rational trustee it is a prisoner’s dilemma game [51].
If he follows the hostage protocol and the other f trustees
do as well then he can hold Ron hostage and gain more than
av/f , however, if a single party from the f releases his share
(mounting a front-running attack to everyone in the hostage
cluster) then the expected payoff for the rest of the hostage
cluster drops to 0. As a result, given that no f + 1 trustees
are managed by a single adversary the rational behavior is
to follow the protocol.

D.3 Selecting one-time secrets Group Size
From the rationality analysis it is clear that the minimum

one-time secrets size is 3 in order to prevent hostage situa-
tions. In this section, we analyze the recommended size for
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Figure 11: Verifier’s path checking for multi-signature re-
quests.

Wanda based on her perception of dishonest nodes in the
group. The goal is to have at least f + 1 rational parties in
her selection with high probability (failure probability 10−6).
We model this problem as a random sampling protocol. In
order to compute the appropriate group size for different
expected percentage of dishonest parties we use the binomial
distribution:

P [X ≤ c] =

c∑
k=0

(
w

k

)
pk (1− p)w−k (1)

Table 1 displays the results for the evaluation for various
percentages of adversarial power p.

p (%) 1 5 10 20 30 45

Group Size 7 13 24 41 127 501

Table 1: Recommended one-time secrets group size

E. ACCESS REQUESTS AND VERIFICA-
TION

In this section, we outline how we create and verify access
requests. A request consists of the policy and the rule invoked
that permits the requester to perform the action requested.
There is also a message field where extra information can be
provided e.g., a set of documents is governed by the same
policy but the requester accesses one specific document.. A
request req is of the form: req = [idPolicy, indexRule,M ],
where idPolicy is the ID of the target policy outlining the
access rules; indexRule is the index of the rule invoked by the
requester; and M is a message describing extra information.

To have accountability and verify that the requester is
permitted to access, we use signatures. The requester signs
the request and creates a signature consisting of the signed
request (sigreq) and the public key used (pk). On receiving
an access request, the verifier checks that the sigreq is correct.
The verifier then checks that there is a valid path from the
target policy, idPolicy, to the requester’s public key, pk. This
could involve multiple levels of checks, if the requester’s key
is not present directly in the list of subjects but included

transitively in some federated SIAM that is a subject. The
verifier searches along all paths (looking at the last version
timestamped by the access-control blockchain) until the
requester’s key is found.

Sometimes, an access request requires multiple parties
to sign. Conditions for multi-signature approval can be
described using the expression field in the rules. An access
request in this case would be of the form (req, [sigreq]) where
[sigreq] is a list of signatures from the required-for-access
parties. The verification process is similar to the single
signature case.

Figure 11 shows an example of the path verification per-
formed by the verifier. Report X has a policy with a Rule
granting read access to Bob and Amy. There is an expression
stating that both Bob’s and Amy’s signatures are required to
obtain access. Hence, if Bob wants access, he sends a request
(req, [sigreq,pk1

, sigreq,pk4
]), where req = [1234, 2, “ReportX ′′]

The verifier checks the paths from the policy to Bob’s pk4

and Amy’s to pk1 are valid. Paths are shown in red and
blue respectively. Then the expression AND : [0,1] is checked
against the signatures. If all checks pass, the request is
considered to be verified.

JSON Access-Control Language
A sample policy for a document, expressed in the JSON
based language, is shown in Figure 12. The policy states
that it has one Admin rule. The admins are S1 and S2
and they are allowed to make changes to the policy. The
Expression field indicates that any changes to the policy
require both S1 and S2’s signatures.

Figure 12: Sample Policy in JSON access-control language.

F. INTEGRATION OF SIAM AND CALYPSO
To integrate SIAM with CALYPSO, the long-term secrets

protocols described in Section 4.1 are adapted as follows.
Assume that Ron has logged the unique identifier idR of his
personal identity skipchain on the access-control blockchain.
If Wanda wants to give Ron access to a resource, she simply
sets policy = idR instead of policy = pkR in txw.
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Figure 13: Single-signature request verification.

This means that instead of defining access rights in terms
of Ron’s static public pkR, she does so in terms of Ron’s
skipchain and consequently, any public key(s) specified in the
most current most current block of idR. Then, the resource
is encrypted under the shared public key of the secret-man-
agement committee as before. To request access, Ron creates
the read transaction

txr = [Hw, πtxw ,pkR′ ]sigsk
R′

where Hw = H(txw) is the unique identifier for the secret
that Ron requests access to, πtxw is the blockchain inclusion
proof for txw, and pkR′ is one of Ron’s public keys that
he wishes to use from the latest block of the idR skipchain.
After receiving txr, the access-control blockchain follows the
idR skipchain to retrieve the latest skipblock and verifies
pkR′ against it. Then, the access-control blockchain checks
the signature on txr using pkR′ and, if valid, logs txr. Once
txr is logged, the rest of the protocol works as described in
Section 4.1, where the secret-management committee uses
pkR′ for re-encryption to enable Ron to retrieve the resource.

F.1 SIAM Evaluation
For SIAM, we benchmark the cost of validating the signa-

ture on a read transaction which is the most resource and
time intensive operation. We distinguish single and multi-
signature requests. The single signature case represents
simple requests where one identity is requesting access while
multi-signature requests occur for complex access-control
rules.

For single-signature requests, the verification time is the
sum of the signature verification and the time to validate
the identity of the reader requesting access by checking it
against the identity of the target reader as defined in the
policy. The validation is done by finding the path from the
target’s skipchain to the requester’s skipchain. We vary the
depth of the requester, which refers to the distance between
the two skipchains. Figure 13 shows the variation in request
verification time depending on the requester’s depth. We
observe that most of the request verification time is required
for signature verification which takes ≈ 385 µs and accounts
for 92.04− 99.94% of the total time. We observe that even
at a depth of 200, a relatively extreme scenario, path finding

Table 2: txw size for varying secret-management committee
sizes

txw size (bytes)

Number of trustees One-time secrets Long-term secrets

16 4’086 160
32 8’054 160
64 15’990 160
128 31’926 160
160 39’894 160
192 47’862 160
224 55’830 160
256 63’798 160

takes only about 35 µs.

G. EVALUATION OF TRANSACTION SIZE
IN On-chain secrets

The size of transactions is smaller in long-term secrets
than in one-time secrets because the data is encrypted under
the secret-management’s threshold public key which results
in a constant overhead regardless of the committee’s size.
Table 2 shows txw sizes in one-time secrets and long-term
secrets for different secret-management committee config-
urations. In one-time secrets, a txw stores three pieces of
PVSS-related information: encrypted shares, polynomial
commitments and NIZK encryption consistency proofs. As
the size of this information is determined by the number of
PVSS trustees, the size of the txw increases linearly with
the size of the secret-management committee. In long-term
secrets txw uses the shared key of the secret-management
committee and does not need to include the encrypted shares.
As a result, long-term secrets has constant write transaction
size.
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