
Number "Not" Used Once - Key Recovery Fault
Attacks on LWE Based Lattice Cryptographic

Schemes

Prasanna Ravi1, Shivam Bhasin1, and Anupam Chattopadhyay2

1 Temasek Laboratories, Nanyang Technological University, Singapore
2 School of Computer Science and Engineering
Nanyang Technological University, Singapore

PRASANNA.RAVI@ntu.edu.sg sbhasin@ntu.edu.sg anupam@ntu.edu.sg

Abstract. This paper proposes a simple single bit flip fault attack
applicable to several LWE (Learning With Errors Problem) based lattice
based schemes like KYBER, NEWHOPE, DILITHIUM and FRODO which were
submitted as proposals for the NIST call for standardization of post
quantum cryptography. We have identified a vulnerability in the usage
of nonce, during generation of secret and error components in the key
generation procedure. Our fault attack, based on a practical bit flip model
(single bit flip to very few bit flips for proposed parameter instantiations)
enables us to retrieve the secret key from the public key in a trivial
manner. We fault the nonce in order to maliciously use the same nonce
to generate both the secret and error components which turns the LWE
instance into an exactly defined set of linear equations from which the
secret can be trivially solved for using Gaussian elimination.

1 Introduction

There have been a number of schemes proposed for NIST’s standardization process
for post quantum cryptography [26]. This initiative is due to the emerging threat of
quantum computers to classical public key cryptographic primitives which provide
the essential security services to almost all known digital infrastructures [7,20,33].
Among all the known strains of post-quantum cryptography, Lattice based
cryptography has attracted a lot of interest due to its very good efficiency and
unique security guarantees. A significant amount of research has been done with
respect to lattice based cryptography in terms of efficient implementations [28,32],
security analysis [2,12,13,14,16,22] and implementation attacks [11,17,18,30,31].

In this short paper, we focus on identifying fault vulnerabilities across many
LWE (Learning with Errors Problem) based lattice key encapsulation mechanisms
(KEM) like KYBER [10], NEWHOPE [4], FRODO [9] and also the DILITHIUM [15]
signature scheme. The afore mentioned references of the schemes denote the
earlier versions of the respective schemes, but every analysis in this paper is
done with reference to the latest version of the algorithm submitted to the NIST

standardization conference for post quantum cryptographic standards. One can
find reference implementations and specifications for all the submitted proposals
in [27]. We have identified a fault vulnerability in handling the nonce during
the key generation and propose a single bit flip attack that could generate the
public key as a trivially solvable LWE instance in both the NEWHOPE and FRODO
KEM schemes. Nonces are predominantly used in all the afore mentioned schemes
in order to reduce the amount of randomness required to generate the secret
and error components used in the generation of the LWE instance during key
generation. Similar attacks can also be applied over schemes like DILITHIUM and
KYBER which may not lead to trivial key recovery as in NEWHOPE and FRODO, but
could severely weaken the security of the scheme. Thus, these fault vulnerabilities
arise as a single point of failures that have the potential to break down many other
LWE based lattice cryptographic schemes. This vulnerability stems only from the
implementation in the view of improving performance and hence we believe that
this can be easily corrected albeit with a small increase in performance overhead.

2 Background

2.1 Preliminaries

We separately describe in brief, the four schemes NEWHOPE, KYBER, FRODO and
DILITHIUM with main focus on the key generation algorithm, as that is the
target of our attack. We do not describe in detail all the functions that are used
in their key generation procedures as they are out of scope for this work. For
the exact description of all the functions used in the key generation procedure
of the aforementioned schemes, please refer to the reference documentation of
the corresponding schemes submitted to the NIST standardization procedure
available in [27]. We denote Z[X]/(Xn + 1) and Zq[X]/(Xn + 1) for q ∈ Z as
rings R and Rq respectively. We also use × to denote the formal multiplication
between any two entities (matrix-vector, polynomial multiplication in ring), but
use · to denote point-wise multiplication of two vectors. We also refer to the
elements (matrices of polynomials) in Rkq as modules and polynomials in Rq
using Bold upper case letters. We also use x← Sη to denote the module x whose
coefficients lie in the range [−η, η].

2.2 NEWHOPE KEM scheme

The NEWHOPE KEM scheme is a triplet of probabilistic algorithms (KeyGen,
Encaps, Decaps) that are based on conjectured quantum hardness of the RLWE
(Ring Learning With Errors) problem. The NEWHOPE KEM scheme consists of
both the CPA (Chosen Plaintext Attack) secure and CCA (Chosen Ciphertext
Attack) secure variants which are built with the previously proposed NEWHOPE-
SIMPLE [3] modelled as a semantically secure public-key encryption (PKE)
scheme secure in the CPA model. The ring under operation isRq = Zq[X]/(Xn+1)
where n is a power of 2 and q is prime thus allowing the use of the Number

Theoretic Transform (NTT) operation for polynomial multiplication. Refer to
Alg.1 for the key generation procedure of the NEWHOPE CPA.PKE scheme. A 32
byte array is chosen as a seed and is expanded into 64 bytes, denoted as z using
the SHAKE256 algorithm used as an XOF (Extendable Output) function. The first
32 bytes of z are considered to be the publicseed which is used to generate the
polynomial A using the GenA function. The remaining 32 bytes are considered to
be then noiseseed which are used to generate the polynomials s and e, but with
different nonces. Both the polynomials s and e are later converted to the NTT
domain using the PolyBitRev function. Further, the RLWE instance is created
in the NTT domain as b̂ which is declared to be the public key pk while ŝ is
considered to be the secret key sk.

Algorithm 1 NEWHOPE CPA-PKE Key Generation
1: procedure NEWHOPE.CPAPKE.GEN()
2: seed← {0, . . . , 255}32

3: z ← SHAKE256(64, seed)
4: publicseed← z[0 : 31]
5: noiseseed← z[32 : 63]
6: Â← GenA(publicseed)
7: s← PolyBitRev(Sample(noiseseed, 0))
8: ŝ← NTT(s)
9: e← PolyBitRev(Sample(noiseseed, 1))
10: ê← NTT(e)
11: b̂← Â · ŝ + ê
12: Return (pk = EncodePK(b̂, publicseed), sk = EncodePolynomial(s))

2.3 KYBER KEM scheme

KYBER (KYBER.CCAKEM) is a MLWE (Module LWE) based IND-CCA2 (Indistin-
guishability under Chosen Ciphertext Attack) secure key-encapsulation mecha-
nism (KEM). The KYBER.CCAKEM scheme is built in two stages - The KYBER.KEM
scheme is based on an IND-CPA secure public key encryption scheme (KYBER.CPAPKE)
which is later converted to a CCA-secure KEM scheme based on a slightly tweaked
Fujisaki-Okamoto (FO) transform [19]. KYBER.CPAPKE is essentially the LPR
encryption scheme introduced by Lyubashevsky, Peikert and Regev in [25],
but with extension to module lattices. Thus, the hardness of KYBER is derived
from the hardness of solving the MLWE problem [23], while the classical LPR
encryption scheme is based on the hardness of solving the RLWE problem. Apart
from this, there are other modifications to the scheme like the modified technique
for generation of the public module A as in [4], compressed public key and
ciphertexts through "Bit-dropping" using the Learning-with-rounding (LWR)
problem [6]. Computation is done over Rkq = Zkq [X]/(Xn + 1) with k > 1 which
correlates to module lattices with rank k.

Refer Alg.2 for the key generation procedure of the KYBER.CPAPKE scheme. A
256 bit seed is expanded into two more 256 bit seeds ρ and σ from which ρ is
used to generate the public module A of dimension k × k wherein each element
is present in the ring Rq while σ is used to generate the secret module s and the
error module e in dimension k and l respectively. Both the secret module s and
error module e are generated by sampling from a Centered Binomial Distribution
denoted as CBDη where η denotes that each sampled element is present in the
range [−η, η] where η << q. Randomness required for sampling from CBDη is
derived from a Pseudo Random function (PRF implemented using SHAKE256 as
XOF) whose inputs are σ and N where N is the nonce incremented with each
sampled polynomial of the module. Module t is computed as an MLWE instance
in the normal domain and is further input to the Compressq function to generate
the public key pk. The Compressq function acts upon every coefficient of t and
rounds it to a lower modulus 2dt . This Compressq function is used to reduce
the size of the public key and ciphertexts but also provides additional security
as it forms an MLWR (Module based Learning With Rounding) instance. A
corresponding Decompressq function is used further in both the encryption and
decryption procedures to recover t, but every coefficient of the recovered t is
only a perturbed version of the original t generated during the key-generation
procedure KYBER.CPAPKE.GEN(). Thus, the public key can be assumed to be
built based on the hardness of both the MLWE and MLWR problem.

Algorithm 2 KYBER CPA-PKE Key Generation
1: procedure KYBER.CPAPKE.GEN()
2: d← {0, 1}256

3: (ρ, σ) := G(d)
4: N := 0
5: for i from 0 to k − 1 do
6: for j from 0 to k − 1 do
7: A[i][j] := Parse(XOF(ρ||j||i))
8: for i from 0 to k − 1 do
9: s[i] := CBDη(PRF(σ,N))
10: N := N + 1
11: for i from 0 to k − 1 do
12: e[i] := CBDη(PRF(σ,N))
13: N := N + 1
14: ŝ := NTT(s)
15: t := NTT−1(Â · ŝ) + e
16: pk := (Encodedt (Compressq(t, dt))||ρ)
17: sk := Encode13(ŝmod+q)
18: Return (pk, sk)

2.4 FRODO KEM scheme

The FRODO lattice based KEM scheme unlike many lattice schemes bases its
hardness on standard lattice assumptions. The FRODO KEM scheme is a CCA
secure scheme that has in its core a public key encryption scheme denoted
FRODO.CPAPKE, which is a CPA secure scheme whose security is tightly related
to the hardness of a corresponding LWE problem. The FRODO.CPAPKE scheme
is actually based on the implementation of the Lindner-Peikert scheme [24]
with some modifications like pseudo-random generation of the public matrix A
using a small seed, sampling from a near Gaussian distribution and new LWE
parameters. The FRODO KEM scheme achieves IND-CCA security by transforming
the IND-CPA secure FRODO.CPAPKE scheme using the Fujisaki-Okamoto (FO)
transform [19] in the random oracle model. The FRODO.CPAPKE scheme has
a very simple structure allowing for easy implementation to also reduce the
potential for errors. The modulus q is chosen to be a power of 2 that enables easy
reduction through bit masking. The secret and error components are sampled
using the inversion sampling technique, otherwise known as the CDT (Cumulative
Distribution Table) technique. Operation in the FRODO KEM scheme is done
over matrices and vectors and hence has moderately larger running times and
bandwidth requirements compared to schemes like NEWHOPE and KYBER which are
based on algebraically structured LWE variants, but consists of a simpler design
with much better hardness guarantees.

Refer Alg.3 for the key generation procedure of the FRODO.CPAPKE scheme.
The public constant matrix A ∈ Zn×nq matrix is generated from a seed seedA
of length lenA using the procedure Frodo.Gen. Subsequently, both the secret
component S ∈ Zn×nq and the error component E ∈ Zn×nq are generated using
the same seed seedE of length lenE but with different nonces 1 and 2 respectively.
The LWE instance generated using these components is declared as the public
key of the scheme, while S remains the secret key.

Algorithm 3 FRODO CPA-PKE Key Generation
1: procedure FRODO.CPAPKE.GEN()
2: seedA ← U({0, 1}lenA)
3: A← Frodo.Gen(seedA) ∈ Zn×nq

4: seedE ← U({0, 1}lenE)
5: S← Frodo.SampleMatrix(seedE, n, n̄, Tχ, 1)
6: E← Frodo.SampleMatrix(seedE, n, n̄, Tχ, 2)
7: B = A× S + E
8: Return public key pk ← (seedA,B) and secret key sk ← S

2.5 DILITHIUM Digital Signature scheme

The DILITHIUM signature scheme, similar to the KYBER KEM scheme is based on
the hardness guarantees of MLWE [23] problem. The DILITHIUM signature scheme

operates over the same environment (as in Rkq) as KYBER except for different values
of n and q. The key generation procedure of DILITHIUM, DILITHIUM.KeyGen()
uses the SHAKE256 from SHA3 as an XOF to generate the public constant A ∈ Rk×lq

from a random 256 bit seed ρ. The secret keys s1 ∈ R`q and s2 ∈ Rkq are generated
by expanding another random seed ρ′ ∈ {0, 1}256. While the same ρ′ is used for
both s1 and s2, a nonce value starting from zero and incremented for every sampled
polynomial is used as input to the Sample function such that all coefficients of
the sampled polynomials are uniformly distributed in the range [−η, η]. The
value t = A · s1 + s2 is computed and is input to the Power2Roundq(t, d) function
which partitions each coefficient of t into higher and lower order bits t1 and t0
respectively. This function is computed coefficient wise such that t1 corresponds
to the dlog2(q)e−d higher order bits of all the coefficients of t, while t0 correspond
to the d lower order bits of the corresponding coefficients of t. The secret-key sk
is (ρ′, s1, s2, t) while the public-key pk is (ρ,A, t1).

Algorithm 4 DILITHIUM Key Generation
1: procedure DILITHIUM.KeyGen()
2: ρ, ρ′ ← {0, 1}256

3: K ← {0, 1}256

4: N := 0
5: for i from 0 to `− 1 do
6: s1[i] := Sample(PRF (ρ′, N))
7: N := N + 1
8: for i from 0 to k − 1 do
9: s2[i] := Sample(PRF (ρ′, N))
10: N := N + 1
11: A ∼ Rk×`q := ExpandA(ρ)
12: Compute t = A× s1 + s2
13: Compute t1 := Power2Roundq(t, d)
14: tr ∈ {0, 1}384 := CRH(ρ||t1)
15: Return pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0)

2.6 Insecure Instantiations of LWE

The error component in the LWE plays a very crucial part in ensuring its
hardness guarantees. There are some instantiations of LWE that are very trivial
to solve. For example, if the error component is an all zero vector, then the
LWE instance is converted into a set of linear equations with equal number of
equations and unknowns. This instance can be solved using straight forward
Gaussian elimination. If the error component only has values in a fixed interval
[z+ 1

2 , z−
1
2], then one can just "round away" the non-integral part and subtract z

to remove the error from every sample [29]. There are also other easy instances of
LWE, For eg. From a given set of n LWE instances, if k of the n error components

add up to zero, then one can simply add the corresponding samples to cancel the
error and obtain an error free sample. It is also possible to solve an LWE instance
in roughly nd time and space using nd samples if the error in the samples lie in a
known set of size d [5]. For a very small d, this yields a very practical attack.

In this work, we fault the nonce utilized to generate the secret and error
components in such a way, so as to obtain an error vector that is equal to the
secret vector in the LWE instance. By doing so, one reduces the LWE instance
into an exactly defined set of linear equations (equal number of equations and
unknowns) which can be trivially solved by Gaussian elimination. Thus, if the
nonce is not suitably protected from implementation attacks, faulting the nonce
serves as a single point of failure to trivially retrieve the hidden secret component
in the LWE instance.

3 Faulting the nonce

In the key generation procedures of all the four schemes KYBER, NEWHOPE, FRODO
and DILITHIUM, nonces have been used in the generation of the secret and
error components of the LWE instance. They have been used to reduce the
amount of randomness required for generating the required components. We will
illustrate, in this section, the use of nonces to generate both s and e in each
of the aforementioned schemes and analyse the effects of faulting the nonce to
certain values to generate an easy LWE instance. The code snippets described in
this section are all taken from the reference implementations of the corresponding
proposals submitted to the NIST standardization process.

3.1 Fault Model

We notice that the aforementioned schemes use a fixed set of nonces. The set
of nonces are usually derived from a fixed value like 0 or 1, in order to reduce
randomness requirement to generate secret and error components of the LWE
instance and associated overheads. Starting from a fixed nonce value, the following
nonces are derived by simply an increment operator for every new polynomial
generated. This specific choice of nonces, eases the effort of attacker in fault
injection. As shown later, we require in the proposed attack that both the secret
and error component are maliciously generated with the same nonce.

By using a simple bit flip model, which is widely studied and practically
demonstrated on a range of devices [1, 8] with high repeatability, we are able to
satisfy this attack requirement. For typical parameters, the attacker only needs to
perform a very few number of bit-flips (1-3) to fault the nonce to a desired value.
Recently, He et al. [21] realize sophisticated flip-flop bit flips (1-4 bit flips) even
on modern Virtex-5 FPGA device through fine-grained laser perturbations. In the
following, we assume this model to demonstrate a vulnerability and corresponding
key recovery attack on lattice based crypto-systems.

3.2 Vulnerability in NEWHOPE

Please refer to code snippet in Fig.1 that describes the function calls used to
sample s and e that are further used to create the LWE instance for the NEWHOPE
scheme. While a nonce of 0 is used to generate s, a nonce of 1 is used to generate e
with the noiseseed used for generating both the components remaining the same.
Thus, if an attacker can perform a single bit flip of the nonce such that both
the calls to the function poly_sample use the same seed, then it yields s = e.
An LWE instance generated with both s and e the same, can be very trivially
solved using Gaussian elimination. The fault can either be injected before the
first call to the function poly_sample to yield a nonce of 1 for both the calls or
a fault can be injected after the first call to the poly_sample function so that
the nonce used for generation of e is also 0 thus yielding s = e in both the cases.

1 /∗ Sample shor t v e c t o r s sha t and ehat ∗/
2 poly_sample(&shat , no i s e seed , 0) ;
3 poly_ntt(&shat) ;
4 poly_sample(&ehat , no i s e seed , 1) ;
5 poly_ntt(&ehat) ;

Fig. 1: Code Snippet showing sampling of s and e for the NEWHOPE scheme

3.3 Vulnerability in FRODO

Please refer to code snippet in Fig.2 that describes the function calls used to
sample S and E that are further used to create the LWE instance for the FRODO
scheme. We can see that the nonces are handled in a similar way as in the case
of NEWHOPE, but only have a different value (i.e 0 and 1 in NEWHOPE as opposed
to 1 and 2 in FRODO). But, both the values of nonces used in FRODO differ by
two bits, thus an attacker can attempt to insert faults using multiple ways so as
to ensure that the function calls to generate both S and E use the same value of
nonce. This creates an LWE instance which can be trivially solved using Gaussian
elimination. The attacker can either inject two faults (i.e) flip the second LSB
bit when nonce = 1 and flip the first LSB bit when nonce = 2, thus yielding the
same value of nonce = 3 for generation of both S and E. The attacker can vice
versa target the first LSB bit when nonce = 1 and second LSB bit when nonce
= 2 to yield a nonce of 0 for generation of both S and E. Thus, ultimately the
attacker has to inject a minimum of just two bit flips in order to create a very
easy LWE instance that results in direct retrieval of the secret key S through
Gaussian elimination.

1 // Generate S and E from procedure frodo_sample_n
2 frodo_sample_n (S , PARAMS_N∗PARAMS_NBAR,
3 randomness + CRYPTO_BYTES, CRYPTO_BYTES, 1) ;
4 frodo_sample_n (E, PARAMS_N∗PARAMS_NBAR,
5 randomness + CRYPTO_BYTES, CRYPTO_BYTES, 2) ;

Fig. 2: Code Snippet showing sampling of s1 and s2 for the KYBER scheme

3.4 Vulnerability in DILITHIUM

Please refer to code snippet in Fig.3 that describes the function calls used to
sample s1 and s2 that are further used in the MLWE instance for the DILITHIUM
signature scheme. One can see that the nonce, starting with the value of 0 is
incremented by 1 for every newly generated polynomial, thus ` polynomials are
sampled for s1 and k polynomials are sampled for s2. If one manages to fault
the value of nonce to zero after the generation of s1, then the same set of nonces
are used to generate both s1 and s2. It is important to note that the number of
polynomials in s1 (`) is less than the number of polynomials in s2. One can still
form n× ` equations with n× ` unknowns to solve for the unknown coefficients
of s1. But, this attack is only possible if the whole of t = A× s1 + s2 is known
to the attacker. But only the higher order bits of t (i.e) t1 is known to the
attacker, hence it might not be possible to directly solve for s1 through Gaussian
elimination. But, it is also not clear if the lower order bits of t (i.e) t0 are leaked
through signature outputs of the DILITHIUM signature scheme. Hence, if the
whole of t can be reconstructed by observing a sufficient amount of signatures for
the same s1 and s2, then one can easily retrieve s1 through Gaussian elimination.

1 /∗ Sample shor t v e c t o r s s1 and s2 ∗/
2 unsigned char nonce=0;
3 for (i = 0 ; i < l ; ++i)
4 poly_uniform_eta(&s1 . vec [i] , rhoprime , nonce++);
5 for (i = 0 ; i < k ; ++i)
6 poly_uniform_eta(&s2 . vec [i] , rhoprime , nonce++);

Fig. 3: Code Snippet showing sampling of s1 and s2 for the DILITHIUM scheme

3.5 Vulnerability in KYBER

Please refer to code snippet in Fig.4 that describes the function calls used to
sample s1 and s2 that are further used to create the MLWE instance during key
generation in the KYBER CPA-PKE scheme. A similar fault vulnerability as in
DILITHIUM exists in the key generation procedure of KYBER that can ensure that

s1 = s2. In KYBER, the dimensions of both s1 and s2 are the same and equal k.
But, the generated MLWE instance t = a × s1 + s2 is further protected by the
hardness of the MLWR problem through the Compressq function and hence the
public key is formed by a combination of MLWE and MLWR instances. Thus,
an attacker cannot deduce the output after the creation of the MLWE instance
since, only the output of the Compressq function is revealed as the public key,
which is a combination of both the LWE and LWR instance. Thus, by inducing
the same fault in the nonce as in the DILITHIUM signature scheme, the attacker
can ensure that both the secret and error components are same, thus removing
the hardness derived from the MLWE problem. But, the scheme is still protected
by the LWR instance. Hence, we can conclude that though the induced fault
poses as a vulnerability for KYBER, it does not result in complete breakdown of
the scheme or in key recovery, but only weakens the scheme considerably.

1 /∗ Sample shor t v e c t o r s s and e ∗/
2 unsigned char nonce=0;
3 for (i =0; i<k ; i++)
4 po ly_getno i se (skpv . vec+i , no i s e seed , nonce++);
5 polyvec_ntt(&skpv) ;
6 for (i =0; i<k ; i++)
7 po ly_getno i se (e . vec+i , no i s e seed , nonce++);

Fig. 4: Code Snippet showing sampling of s1 and s2 for the KYBER scheme

4 Countermeasures

In all the aforementioned key generation procedures of the corresponding schemes,
we have seen that the nonce is more or less hard-coded and is incremented, starting
from 0 for every polynomial that is generated. Since the nonce is deterministically
generated, one can use an error correction scheme to check if the correct value of
nonce is being used for the generation of polynomials. This will ensure that the
same nonce is not used to generate the secret and error components thus thwarting
the generation of a straightforward LWE instance, whose secret can be solved
for using Gaussian elimination. The motivation to use a nonce for generation
of polynomials is mainly to reduce the randomness requirement and use the
same seed to generate multiple polynomials. Thus, one can simply forego the
use of the nonce and generate a new seed for the generation of every polynomial
generated, though this might yield a considerable performance overhead for the
key generation procedure. This is especially true in the case of schemes like KYBER,
DILITHIUM which work with module lattices as multiple polynomials have to be
generated for a single component, thus requiring generation of multiple seeds.

5 Conclusion

In this short paper, we point out to some fault vulnerabilities that exist in various
lattice based schemes like NEWHOPE, KYBER and FRODO CCA2 secure KEM schemes
and the DILITHIUM signature scheme. Nonces are used to reduce the randomness
requirement to generate the public and secret keys during key generation. The
fixed nonces that are used are easily vulnerable to faults and we have shown that
a single to very few bit flips on the nonce will result in complete key recovery in
the NEWHOPE and FRODO scheme. The nonces are faulted to ensure that the same
nonces are used to generate both the secret and error components of the LWE
instance and this can lead to trivial key recovery through Gaussian elimination.
The same attack with suitable modifications can also be applied to the DILITHIUM
signature scheme given that the complete output of the generated LWE instance
(t ∈ Rkq) can be reconstructed through observation of a sufficient number of
signatures. But, the same attack on KYBER cannot result in complete key recovery
as the public key is formed as a combination of both the LWE and LWR instance,
but we believe that our fault removes the hardness derived from the LWE problem.
The aforementioned fault vulnerabilities associated with the nonce only occur
due to the implementation strategies used and hence can we believe can be easily
corrected albeit with a small performance overhead.

References

1. Agoyan, M., Dutertre, J.M., Mirbaha, A.P., Naccache, D., Ribotta, A.L., Tria,
A.: How to flip a bit? In: On-Line Testing Symposium (IOLTS), 2010 IEEE 16th
International. pp. 235–239. IEEE (2010)

2. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions. In: Annual Cryptology Conference. pp. 153–178. Springer (2016)

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Newhope without reconciliation.
IACR ePrint 1157, 2016 (2016)

4. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-Quantum Key Exchange-A
New Hope. In: USENIX Security Symposium. pp. 327–343 (2016)

5. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: International
Colloquium on Automata, Languages, and Programming. pp. 403–415. Springer
(2011)

6. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. Advances
in Cryptology–EUROCRYPT 2012 pp. 719–737 (2012)

7. Barends, R., Kelly, J., Megrant, A., Veitia, A., Sank, D., Jeffrey, E., White, T.C.,
Mutus, J., Fowler, A.G., Campbell, B., et al.: Superconducting quantum circuits at
the surface code threshold for fault tolerance. Nature 508(7497), 500–503 (2014)

8. Barenghi, A., Bertoni, G.M., Breveglieri, L., Pellicioli, M., Pelosi, G.: Fault attack
on aes with single-bit induced faults. In: Information Assurance and Security (IAS),
2010 Sixth International Conference on. pp. 167–172. IEEE (2010)

9. Bos, J., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghu-
nathan, A., Stebila, D.: Frodo: Take off the ring! practical, quantum-secure key
exchange from lwe. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. pp. 1006–1018. ACM (2016)

10. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M., Schwabe,
P., Stehlé, D.: CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM.
Tech. rep. (2017)

11. Bruinderink, L.G., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload–a
cache attack on the bliss lattice-based signature scheme. In: International Conference
on Cryptographic Hardware and Embedded Systems. pp. 323–345. Springer (2016)

12. Campbell, P., Groves, M., Shepherd, D.: Soliloquy: A cautionary tale. In: ETSI
2nd Quantum-Safe Crypto Workshop. pp. 1–9 (2014)

13. Chen, H., Lauter, K., Stange, K.E.: Attacks on search RLWE.
https://www.microsoft.com/en-us/research/publication/attacks-on-search-rlwe/
(2015)

14. Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of
principal ideals in cyclotomic rings. In: Annual International Conference on the
Theory and Applications of Cryptographic Techniques. pp. 559–585. Springer (2016)

15. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehle, D.:
Crystals–dilithium: Digital signatures from module lattices

16. Elias, Y., Lauter, K.E., Ozman, E., Stange, K.E.: Provably weak instances of
Ring-LWE. In: Annual Cryptology Conference. pp. 63–92. Springer (2015)

17. Espitau, T., Fouque, P.A., Gérard, B., Tibouchi, M.: Loop abort faults on lattice-
based fiat-shamir & hash’n sign signatures. IACR Cryptology ePrint Archive 2016,
449 (2016)

18. Espitau, T., Fouque, P.A., Gérard, B., Tibouchi, M.: Side-channel attacks on
bliss lattice-based signatures: Exploiting branch tracing against strongswan and
electromagnetic emanations in microcontrollers. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. pp. 1857–1874.
ACM (2017)

19. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In: Annual International Cryptology Conference. pp. 537–554.
Springer (1999)

20. Harty, T., Allcock, D., Ballance, C.J., Guidoni, L., Janacek, H., Linke, N., Stacey, D.,
Lucas, D.: High-fidelity preparation, gates, memory, and readout of a trapped-ion
quantum bit. Physical review letters 113(22), 220501 (2014)

21. He, W., Breier, J., Bhasin, S., Jap, D., Ong, H.G., Gan, C.L.: Comprehensive
laser sensitivity profiling and data register bit-flips for cryptographic fault attacks
in 65 nm fpga. In: International Conference on Security, Privacy, and Applied
Cryptography Engineering. pp. 47–65. Springer (2016)

22. Ishiguro, T., Kiyomoto, S., Miyake, Y., Takagi, T.: Parallel Gauss sieve algorithm:
Solving the SVP challenge over a 128-dimensional ideal lattice. In: International
Workshop on Public Key Cryptography. pp. 411–428. Springer (2014)

23. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Designs, Codes and Cryptography 75(3), 565–599 (2015)

24. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption.
In: CT-RSA. pp. 319–339 (2011)

25. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM 60(6), 43 (2013)

26. NIST: Post-quantum crypto project. http://csrc.nist.gov/groups/ST/post-
quantum-crypto/ (2016), accessed: 23.11.2017

27. NIST: Post quantum cryptography - round 1 submissions. https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions/ (2017)

28. Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical cca2-secure and
masked ring-lwe implementation

http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions/
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions/

29. Peikert, C.: How (not) to instantiate ring-lwe. In: International Conference on
Security and Cryptography for Networks. pp. 411–430. Springer (2016)

30. Pessl, P.: Analyzing the shuffling side-channel countermeasure for lattice-based
signatures. In: Progress in Cryptology–INDOCRYPT 2016: 17th International Con-
ference on Cryptology in India, Kolkata, India, December 11-14, 2016, Proceedings
17. pp. 153–170. Springer (2016)

31. Pessl, P., Bruinderink, L.G., Yarom, Y.: To bliss-b or not to be: Attacking
strongswan’s implementation of post-quantum signatures. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security. pp.
1843–1855. ACM (2017)

32. Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures on
reconfigurable hardware. In: International Workshop on Cryptographic Hardware
and Embedded Systems. pp. 353–370. Springer (2014)

33. Preskill, J.: Reliable quantum computers. In: Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences. vol. 454, pp. 385–410.
The Royal Society (1998)

	NUMBER "NOT" USED ONCE - KEY RECOVERY FAULT ATTACKS ON LWE BASED LATTICE CRYPTOGRAPHIC SCHEMES

