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Abstract. Quantum computers are expected to have a dramatic impact
on numerous fields, due to their anticipated ability to solve classes of
mathematical problems much more efficiently than their classical coun-
terparts. This particularly applies to domains involving integer factori-
sation and discrete logarithms, such as public key cryptography.
In this paper we consider the threats a quantum-capable adversary could
impose on Bitcoin, which currently uses the Elliptic Curve Digital Sig-
nature Algorithm (ECDSA) to sign transactions.
We then propose a simple but slow commit-delay-reveal protocol, which
allows users to securely move their funds from old (non-quantum-resistant)
outputs to those adhering to a quantum-resistant digital signature scheme.
The transition protocol functions even if ECDSA has already been com-
promised. While our scheme requires modifications to the Bitcoin proto-
col, these can be implemented as a soft fork.

1 Introduction

Bitcoin is a decentralised digital currency system, which was introduced by the
pseudonymous Satoshi Nakamoto in 2008 [32]. It leverages a peer-to-peer dis-
tributed network characterised by the lack of a central authority governing the
state of transactions. Each consensus participant maintains a list of all historic
transactions, grouped together in blocks, in a distributed public ledger called
the blockchain. Blocks are chained together via the hashes of their predeces-
sors, thereby providing strong guarantees for the immutability of the transac-
tion history. Agreement on the current state of the system in the dynamically
changing and pseudonymous set of participants is achieved by requiring nodes
to solve complex cryptographic puzzles, known as Proof-of-Work (PoW). Con-
sensus participants are known as miners and upon finding a valid solution to the
PoW puzzle they are rewarded with new units of the underlying cryptocurrency
and fees associated with the transactions included in the respective block.



Even though quantum computers (QCs) have theoretically existed for about
40 years, relatively recent breakthroughs placed the idea in the public eye once
again. One such breakthrough, with a direct impact on Bitcoin’s security, is Peter
Shor’s polynomial time quantum algorithm [45] that can, in its subsequently
generalised form, break ECDSA. While more players enter this growing research
area, it appears increasingly likely that powerful quantum computers will emerge
in the near future. Although the early generations of QCs do not have enough
qubits to solve problems large enough to affect Bitcoin, different alternatives for
the architecture of QCs are being considered, tested and implemented [19,53,54]
so a sudden improvement in the approach might lead to a powerful quantum
computer appearing virtually overnight.

As the above context is increasingly appreciated by members of the Bitcoin
community, a number of informal discussions about ways to make Bitcoin adapt
to a post-quantum world have recently been taking place online. While our
methods were developed independently, the relevant discussions of which we
have become aware are:

– Adam Back’s mention of Johnson Lau’s two-stage commitment method on
Twitter [6].

– Tim Ruffing’s scheme described in online conversations on the Bitcoin-dev
Mailing list [48–50].

– Tristan Hoy’s article on Medium [51,52], which arguably represents the clos-
est proposal to ours.

In this paper we provide an overview of the potential impacts the emer-
gence of quantum computers could have on Bitcoin. As such, we describe how
a quantum-capable adversary is in the position of stealing funds from users
who have revealed their public keys. Consequently, we propose a commit–delay–
reveal protocol for the secure transition from Bitcoin’s current signature scheme
to a quantum-resistant signature scheme, applicable even if ECDSA has already
been compromised. In contrast to existing proposals, we emphasize the necessity
of a substantial delay phase to provide sufficient protection against accidental
and, especially, adversarial chain reorganisation. We assume that the Bitcoin
community has agreed on and deployed a quantum-resistant signature scheme,
either as measure of precaution or as reaction to the appearance of a (fast)
quantum-capable adversary. Independent of quantum computing, our protocol
can be generally applied to react to the appearance of vulnerabilities rooted in
Bitcoin’s public key cryptography. The transition can be implemented as a soft
fork using a similar approach as, for example, SegWit [27].

The remainder of this paper is organised as follows. Section 2 outlines the
workings of Bitcoin and and provides an introduction on quantum computing.
Section 3 examines the threats a quantum-capable attacker could pose for Bit-
coin. In Section 4 we propose a protocol for the transition from Bitcoin’s current
signature scheme to a quantum-resistant one, while discussing the implementa-
tion details in Section 5. We conclude our paper in Section 6.



2 Background

In the following sections we provide relevant background on the workings of Bit-
coin, its underlying cryptographic principles, as well as core quantum computing
concepts, relevant for this paper. However, due to space limitations, we do not
aspire to provide a complete description and hence recommend readers unfamil-
iar with these research fields to consult existing literature, such as [32, 33] for
Bitcoin and [24,36] for quantum computing.

2.1 Bitcoin and Blockchain

In Bitcoin, every transaction consists of inputs and outputs3. Each input refer-
ences some unspent transaction output (UTXO) and provides a spending script
(scriptSig) which will be used to authorize the transfer of funds. Each out-
put is secured by a challenge script (scriptPubKey) which must be solved by
the spending script of an input that wants to consume the funds. Based on the
challenge script, one can distinguish different types of outputs4:

– pay-to-pubkey (P2PK) outputs were used before the concept of an address
appeared. The challenge script contains the public key (pk) associated with
the secret key (sk). An input wishing to consume such an output has to
provide a digital signature of the transaction. If the signature can be verified
against pk, this means that it was indeed created by sk, so the transfer of
funds is valid.

– pay-to-pubkeyhash (P2PKH) outputs (presented in user interfaces as “ad-
dresses”) are 160-bit hashes of the public keys [15]. This has the advantage of
saving some space as addresses are shorter than public keys. To consume this
type of output, an input needs to provide both the public key that hashes to
the address and a digital signature that can be verified with the public key.

– pay-to-scripthash (P2SH) outputs (presented to the users as a new type
of “address”) are the hash of a script in which the user can specify dif-
ferent conditions to be satisfied by the input scriptSig. One use for this
type of addresses is to achieve a compact UTXO format for multi-signature
transactions.

Hence, a transaction takes some UTXOs as the source of funds and outputs
new UTXOs, associated with the same or a different public key5. The concept of
this transaction structure is fundamental in Bitcoin because it prohibits double
spending of funds, as transaction outputs will be marked as spent and unspent,
respectively, and hence no UTXO can be included by more than one transaction.

As part of Bitcoin’s underlying consensus mechanism, termed Nakamoto con-
sensus, a miner is asked to find the hash h of a block header which includes some

3 With exception of the first transaction in each block in which new units of Bitcoin
are released, termed coinbase transaction.

4 There are actually many more types of challenge scripts and in Section 5 we briefly
discuss how to make our transition protocol general enough to secure them all.

5 Using a different public key is recommended for security and privacy reasons.



random input, or nonce, along with entities such as the hash of the previous con-
firmed block, such that h is below a difficulty threshold. The network difficulty
is dynamically adjusted every 2,016 blocks such that the average block interval
is approximately equal to 10 minutes. As finding a valid nonce is a memoryless
process, the best known strategy for generating a PoW solution is the enumer-
ation of all possible inputs and is therefore very computationally expensive. On
the other hand, other nodes of the network can verify the proof-of-work criterion
trivially with a single hash.

2.2 Elliptic Curve Digital Signature Algorithm (ECDSA)

ECDSA is an implementation of the Digital Signature Standard (DSS) based
on Elliptic Curve Cryptography [5]. The purpose of such signatures is to allow
third parties to determine the legitimacy and integrity of a signed message, while
the signer cannot reasonably deny the act of signing. In Bitcoin, transactions
are digitally signed using ECDSA, thus securing the transfer of ownership of
bitcoins [11].

Elliptic Curve Cryptography (ECC) is a form of public-key cryptography
that uses the mathematical properties of elliptic curves over finite fields [5]. More
specifically, to define an elliptic curve cryptosystem one chooses a curve C and
a public point P on the curve. To generate a pair of keys, one chooses a random
number sk as the private key and uses elliptic curve point multiplication [5]
to multiply the point P with itself sk times thus obtaining the public key pk
which is itself another point on C. ECDSA or, in general, ECC, relies on the
assumption that it is intractable to solve the elliptic curve discrete logarithm
problem (ECDLP) [39], which would allow for deducing the private key from
the public key. Like integer factorisation [18], ECDLP has no known reasonably
fast (e.g. polynomial-time) solution on a classical computer [30].

2.3 Quantum Computing

Quantum computing makes use of various quantum phenomena such as super-
position and entanglement to represent classical data in a quantum context and
to manipulate it in ways that produce interpretable results [40]. Just like the
state of classical computers is made of bits, quantum computers use qubits that
have two fundamental (basis) states (0 and 1). However, while the computation
is running, the state is a linear combination (superposition) of basis states, each
having an associated probability to be measured.

To extract information about the state of a quantum computer (QC), the
system is measured collapsing the superposition to one of the possible basis
states. This means a QC with n qubits can represent internally the whole range
of n-bit numbers and can perform calculations on all of them simultaneously;
however, when measured, the state will collapse to just one of the basis states,
thus returning only one of the results to the performed calculation. Therefore,
instead, quantum algorithms try to make use of the underlying structure of the
problem in order to amplify (or otherwise home in on) certain basis states, to
increase their probability, and thus to make the result obtained repeatable and
conclusive. For some problems, quantum algorithms can yield a significantly



improved runtime complexity over their classical equivalents, thus offering a
speed up.

Shor’s Algorithm Shor’s algorithm for integer factoring is a quantum algo-
rithm with a runtime complexity of O((logN)2(log logN)(log log logN)) [45],
which is exponentially faster than all known classical algorithms. In fact, the
integer factorisation problem can be reduced to finding the period of f(x) = ax

mod N where a is a random integer and N is the number to be factored [26].
The algorithm works by preparing a superposition of basis states where each

basis state is formed by concatenating x with the value of f(x). When the qubits
that store f(x) are measured, the superposition will collapse leaving some value
v on the qubits measured, while the qubits on which x was stored will be in
a superposition of different x’s with f(x) = v. To obtain the period of the
function, the remaining algorithm needs to extract the difference between any
of the states in the superposition. The quantum Fourier transform circuit can
be used to achieve exactly this [26]. Shor’s algorithm drastically weakens the
security of some public-key cryptographic systems such as RSA, but Proos and
Zalka show how it can be adapted to solve ECDLP with even fewer steps [38],
offering a polynomial-time attack against ECDSA [45].

Grover’s Algorithm Grover’s algorithm is another efficient quantum compu-
tation. It aims to solve the problem of searching unstructured data by computing
with high probability a unique (or very rare) solution x for which f(x) equals

v, some desired value [22]. The time complexity is O
(√

N
t

)
where N is the size

of the domain of f and t is the number of solutions [16]. The algorithm works
by first arranging a superposition of all possible input states, each having equal
probability of being measured. Then, it uses some techniques to iteratively in-
crease the probability amplitude of the states that represent the solution [22].
Given N and t, the number of iterations after which the probability amplitudes
of the correct states become maximal can be mathematically computed [16].
In case t is unknown there exists a scheme which will produce a solution in

O
(√

N
t

)
steps [16].

Note that it is not possible to measure the state after each iteration as this
would collapse the superposition and the computation would end. Grover’s algo-
rithm is particularly interesting for mining as it theoretically offers a quadratic
speed up when guessing a nonce. However, in practice, it is believed that early
generations of QC will be slower than the optimised ASIC miners [7] [47].

2.4 Post-Quantum Cryptography

Post-quantum cryptography is a new branch of cryptography interested in a suite
of algorithms which are believed to be secure even against attackers equipped
with quantum computers [4]. There have been multiple proposals of crypto-
graphic systems which are not yet broken by QC. Some examples are:

1. Code-based cryptography relies on the intractability of decoding unknown
linear error-correcting codes [44]. McEliece used the algebraic properties of
Goppa codes and proposed the first such system [28], which took his name.



2. Hash-based cryptography is based on the security of hash functions which, as
mentioned, are not drastically weakened by QC. Merkle [31] was the first to
propose hash-based digital signatures by building on the concept of one-time
signature schemes such as Lamport’s signature scheme [25].

3. Lattice-based cryptography is based on the hardness of lattice problems such
as approximating the closest vector problem in a lattice [35].

For the purposes of our paper, it is important that the Bitcoin community agrees
on and implements an appropriate alternative (or perhaps more than one) to
replace Elliptic Curve Cryptography as the basis for digital signatures of trans-
actions.

3 Bitcoin in a Post-Quantum World

Given that we assume a powerful QC could appear at any time, where does
this leave Bitcoin? As presented in Section 2.3, in a post quantum world, min-
ers could gain an unfair advantage by mining blocks using Grover’s algorithm.
This provides a quadratic speed-up in the number of operations compared to a
classical computer, which should lead to an increased hashrate. However, cur-
rent miners use parallel computations on optimised hardware (ASICs) and it is
hence difficult to predict if and when quantum computers will be reliable and
fast enough to outperform them. To this end, we assume that early generations
of QCs will not be capable of outperforming classical miners in terms of hash
rate. Furthermore, once QCs reach a state of development acceptable for mining,
a quick adoption among miners can be expected, establishing an equilibrium as
the network difficulty adjusts.

In this paper we do not aim at addressing potential vulnerabilities rooted
in Bitcoin’s PoW but rather at examining the risks quantum-capable attackers
could pose for the embedded transaction processing mechanism. Once efficient
quantum computers with internal states comprised of many qubits are imple-
mented, the underlying cryptographic guarantees of Bitcoin can be challenged.
As briefly mentioned in Section 2.3, an attacker with a quantum computer of
about 1500 qubits [38, 47] can use Shor’s algorithm to solve the ECDLP and
compute an ECDSA private key given the public key, and is thus able to plant
fake transactions and perform double-spending attacks. In the following sections
we highlight why Bitcoin users should be concerned about exposing their pub-
lic keys and describe a potential attack scenario whereby a quantum-capable
attacker (QCA) engages in (live) transaction hijacking.

3.1 Public key unveiling

Under the assumption that quantum computers are being employed for malicious
intent by some adversary, previously revealed public keys pose a direct threat to
Bitcoin users. As outlined, a QCA is capable of deducing the private key from
a former revealed public key with little effort. Such a scenario could arise from
the following instances of public key unveiling:

1. Bitcoin transactions with P2PK UTXOs, as these display the public key in the
output of the transaction. As soon as such a transaction has been included



in the blockchain, or even just broadcast to the network, a slow QCA can
compute the corresponding private key and thereby essentially gain control
over the respective funds. This problem can be mitigated by using, for ex-
ample, P2PKH and P2SH addresses. However, when consuming such a UTXO,
the owner of the address must reveal her public key and digital signature in
the scriptSig of the respective input. Once this transaction is broadcast to
the network for confirmation and inclusion in a block, the attacker can com-
pute the private key from the revealed public key. Furthermore, the attacker
could then look for any additional UTXOs associated to the same address
and consequently consume them.

2. Bitcoin users publishing their public key on a Bitcoin fork, e.g. Bitcoin
Cash [1] or Bitcoin Gold [2]. As Bitcoin forks share the same transaction
history prior to the fork point, such behaviour may allow a QCA to gain
control over a user’s Bitcoin funds using the exposed public key. Further-
more, a QCA could then also exert control over funds on the blockchain
where the public key was initially obtained, i.e. Bitcoin Cash.

3. Any other revealing of public keys, such as part of signed messages to ensure
integrity, in forums, or in payment channels (e.g. Lightning Network [37]).

Regardless of how a public key is revealed, given the presence of a QCA,
the owner is at risk of losing control over her funds. Except for P2PK, one can
prevent against the aforementioned scenarios (so long as the QCA is slow to
deduce a private key) by using addresses only once. Reusing addresses is not
recommended, neither by Bitcoin developers nor the community, while numerous
studies identifying privacy risks have been conducted [10,21,29,43,55]. Hence, we
assume appropriate protective mechanisms are already employed by the majority
of Bitcoin users.

3.2 Transaction hijacking

We assume that a fast QCA is characterised by the ability to perform (live)
transaction hijacking. Thereby an attacker attempts to compute the private key
corresponding to a public key revealed in the input of a transaction published
to the network and sitting in nodes’ memory pools. Consequently, just like in a
double spending attack [8,23,41,46], she creates a conflicting transaction spend-
ing the same UTXOs6 (or the subset the QCA has gained control over), thus
stealing the victim’s funds. As the attacker must not only create, sign and broad-
cast the conflicting transaction, but also first run Shor’s algorithm to derive the
private key, timing is essential for such attacks. Hence, the performance of QCs
plays a central role for the success probability of transaction hijacking. Note that
this form of transaction hijacking differs from the more conventional notion of
double spending as the attacker is the sole beneficiary rather than the original
transaction initiator.

While double spending may potentially only be economically feasible for high
value transactions, an adversary with motives other than economic profit could

6 Possibly with a higher fee to incentivise inclusion in the blockchain over the victim’s
transaction



use this to perform denial of service attacks and/or hinder the transition to a
quantum-resistant signature scheme (as will be described in Section 4). Note we
do not discuss the possibility of using Grover’s algorithm to retrieve the public
key from an address here, as the achieved speed-up is merely quadratic and can
be mitigated by increasing the key size [7].

An extension to the described attacks is to combine transaction hijacking
with selfish mining strategies [20,21,34,42]. Assuming the QCA is also a miner,
she could employ her computational power to attempt to build up her own secret
chain and, when in the lead, selectively publish blocks to cause a reorganisation
of the public chain. In contrast to traditional selfish mining attacks, the feasi-
bility of such strategies under the presence of a QCA is expected to improve
significantly, since the adversary can now also perform transaction hijacking as
described above. The prospectively-gained revenue consists not only of block
rewards and transaction fees, but also of all funds contained in (non-quantum-
resistant) UTXOs spent in the overwritten transactions.

4 Transition to Quantum Resistance

In this section we describe a scheme which allows a secure transition from
Bitcoin’s current signature scheme to a quantum-resistant one. We assume a
quantum-resistant signature scheme has already been agreed upon by the com-
munity, and deployed as a protocol update in Bitcoin. However, it is presumably
unreasonable to hope that all Bitcoin users will have moved their coins from
non-quantum-resistant to quantum-resistant outputs; inevitably, some people
(perhaps even a majority) will still have control over non-quantum-resistant
outputs, especially the most popular P2PKH. The protocol described in the fol-
lowing sections is designed to allow such users to transition securely, if rather
slowly, to quantum-resistant outputs even in the presence of a fast QCA. It is
based on a simple commit–delay–reveal mechanism with a long security delay,
and can be deployed in Bitcoin using a soft fork. Bitcoin-specific implementation
details, as well as discussion on parametrisation and necessary data structures
are considered separately in Section 5. Note that if one uses an old client and
spends from a non-quantum-resistant public key, the respective funds will be
lost and no protective mechanism can be applied effectively.

4.1 Protocol Overview

Assume a user, Bob, is in possession of units of Bitcoin (BTC) stored in a non-
quantum-resistant output, the public key of which has not yet been revealed,
i.e., funded by an unspent P2PKH or P2SH output7. We shall denote Bob’s public
key as pk and the corresponding secret key as sk . Further, assume Bob has
already generated a quantum-resistant keypair (pkQR, skQR), which will be used
to replace his current address as part of the transition. To convince the network
he is the rightful controller of both keypairs and this way move funds to the
quantum-resistant address, Bob publishes a commitment H(pk |pkQR), i.e., the

7 Our protocol actually caters for spending any number of such UTXOs in one trans-
action, but for simplicity we will consider here the spending of only one.



hash of his concatenated public keys, and leaves the funds on pk untouched for a
sufficiently long security period tsec . Once the period has passed, Bob creates a
second transaction Treveal signed by skQR which consumes the UTXOs attributed
to (pk, sk) and reveals both public keys pk and pkQR, proving to the network
that he is the controller of both keypairs and signaling the transition of funds.
We describe each step of this process in more detail in the following paragraphs.

Fig. 1. Simplified visualization of the commit-delay-reveal transition scheme.

4.2 Commit

As a first step, to signal the commitment of the funds in (pk, sk), Bob publishes
the hash of both public keys pk and pkQR concatenated: H(pk |pkQR). This is
achieved by creating a transaction Tcommit , which includes the hash commitment
as an output. It is left for the user to decide upon the exact format of including
the hash commitment in the blockchain. In Bitcoin, this can be achieved, for
example, by using the OP RETURN opcode, which allows to store up to 80 bytes
of arbitrary data in a transaction [12].

The only secure way for Bob to perform such a Tcommit would be to create
a new address adhering to the quantum-resistant signature scheme with keypair
(pk ′

QR, sk ′
QR) and acquire an arbitrary amount of quantum-resistant BTC, e.g.,

which were initially mined directly to another quantum-resistant address. Bob
can then use sk′QR to sign transactions, without risk of losing funds to a quantum-
capable adversary.

4.3 Delay

After publishing the hash commitment, Bob leaves the funds in (pk, sk) un-
touched for a sufficiently long security period tsec . Any further attempted use of
this keypair, which would fail in accordance with the new protocol rules, puts
Bob’s funds at risk of theft. A long delay, is necessary to ensure no blockchain re-
organization could have occurred accidentally or have been caused intentionally
by an adversary. While the specific choice of delay may be subject to follow-up



scientific work and discussion in the community, we propose an initial period of
6 months. A more detailed discussion is provided in Section 5.

4.4 Reveal

Once the security period has elapsed, Bob proceeds to reveal his public keys pk
and pkQR, proving to the network he is the rightful controller of both keypairs.
To this end, Bob creates a transaction Treveal signed by the secret key skQR of
the new quantum-resistant keypair, which consumes the UTXOs of (pk, sk) and
in which he

1. Reveals his “old” non-quantum-resistant public key pk ,
2. Reveals the public key of the new quantum-resistant keypair pkQR,
3. Provides proof that he has published H(pk |pkQR) in a transaction older than

the security period tsec .

Miners, adhering to the new protocol rules, will then be able to verify the
funds that have been committed for a sufficient period to require a new quantum-
resistant public key for their eventual spending. Hence, Bob will be allowed to
spend his funds by providing a valid signature against his new quantum-resistant
public key. Unupgraded consensus participants will simply believe Treveal is a
normal transaction consuming the UTXOs of (pk, sk). The necessary implemen-
tation specifics are provided in Section 5.3. As a result, the protocol update
P → P ′ can be deployed as a soft fork, since the set of blocks valid under new
rules P ′ is a proper subset of blocks valid under current Bitcoin rules P , i.e.,
P ′ ⊂ P .

5 Discussion

In this section we discuss selected implementation details of the introduced
commit–delay–reveal transition scheme, including the choice of the delay period
and the structure of the commit and reveal transactions.

5.1 Necessity for a Long Delay Phase

The correct choice of the security period tsec, used as protection against acciden-
tal and adversarial chain reorganisations, has a significant impact on the security
properties of the proposed transition protocol. In contrast to previous proposals
and discussions [6,48–52] we emphasize the necessity of a sufficiently long delay
phase, substantially longer than the standard confirmation period of ∼6 blocks
in Bitcoin. While the exact duration of tsec may be subject to future discussion,
we propose to require hash commitments to be older than 6 months, i.e., the
UTXOs used as input to Treveal must remain unspent during this period.

As explained in Section 3.2 we assume that the feasibility of block reor-
ganisation attacks, such as 51% attacks or selfish mining attacks requiring a
smaller fraction of the overall computational power, is significantly increased for
quantum-capable adversaries. In contrast to traditional reorganisation attacks,
the prospective gains in this scenario are not only comprised of block rewards
and transaction fees but also include any funds associated with accounts whose
public keys have been revealed in one of the blocks overridden by the attacker.



Hence, relying on a short security period of a few blocks (or no delay at all)
provides insufficient protection against chain reorganisations in the presence of
a quantum-capable attacker.

We note that in theory an adversary controlling a significant portion of the
overall computational power could successfully rewind the chain further than
tsec , thereby altering the transaction history, and attempt to steal funds from
all non-quantum-resistant outputs which were spent from during this period.
However, we argue a fork overriding the block history of such substantial period
as 6 months would be classified as a catastrophic failure of the system, forcing
out-of-band measures to be undertaken by the majority of honest consensus
participants. Specifically, we assume clients and miners will have incentive to
manually reject the conflicting branch of the attacker8.

However, by intuitive continuity arguments there must exist a point between
short- and long-ranged attacks, where the community is unable to find even
out-of-band consensus on how to proceed, i.e., whether to perform a manual
invalidation (override of attacker’s fork) soft fork or accept the conflicting branch
of the adversary, as visualized in Figure 2. While under different circumstances,
similar disputes have been observed in other cryptocurrencies and have led to
permanent chain splits, as in the case of Ethereum [17] and Ethereum Classic [3].
Hence, a quantum-capable adversary may have incentive to attempt to exploit
this “sweet-spot” to her advantage, as a destabilization or split of the chain could
yield a higher success probability of an attack.

Fig. 2. While long-range forks are expected to be manually rejected by the majority of
nodes, this may not be possible with short-range chain-splits due to the limited time
frame. There may exist a “sweet-spot” which causes a dispute whether to accept or
reject the conflicting branch, destabilizing or even permanently splitting the network
to the benefit of the adversary (red).

8 Note that this does not require any changes to the reference client implementation,
as Bitcoin’s JSON-RPC API provides a invalidateblock call, which permanently
marks a specific block as invalid, as if it had violated a consensus rule [13].



By implementing a long delay phase, sufficient to trigger out-of-band actions
in case a longer fork is created by an adversary, the probability of a malicious
chain reorganisation interfering with the transition protocol can be minimized.

Arguments Against Parametrisation by Users Instead of defining the
delay phase tsec as part of the consensus rules, a näıve approach would be to
allow each user to declare their own security period. However, we emphasize the
necessity of a global fixed delay phase, as allowing individual parametrisation
by users leaves the transition scheme vulnerable to attacks, as described in the
following:

Declare tsec during Reveal: A straightforward approach would be for users to
declare their own security period tsec during the reveal phase, i.e., in Treveal . The
problem with this approach, however, is that a quantum-capable adversary can
then derive the user’s secret key sk from the now revealed public key pk. The
attacker will then attempt to revert the public chain so that Treveal is no longer
included in the blockchain, and create a new hash commitment H(pk, pk′QR) for
her own address pk′QR by publishing T ′

commit . After waiting for a minimal period
to be sure the majority of consensus participants has accepted the attacker’s
chain, she moves on to reveal the victim’s (non-quantum-resistant) and her own
(quantum-resistant) public key in T ′

reveal, declaring a very short security period.
As a result, the victim’s funds in (pk, sk) will be transferred to the attacker’s
address. Note that it is sufficient for the adversary to be able to revert only a
few blocks for this attack to be successful.

Declare tsec during Commit: A possible way of mitigating the attack described
above is to require users to declare tsec as part of the hash commitment and
employ a “first-seen” rule, i.e., only consider the first commitment included in
the blockchain for each address as valid. However, in order for clients to be able
to link the reveal transaction to the correct address and verify the individually
set delay phase when finalizing the transition, users are required to make their
hash commitments publicly verifiable, i.e., include the hash of their public key
in Tcommit

9. While this approach prevents an attacker from overriding a user’s
reveal transaction, it also enables griefing. As such, an adversary could easily
publish fake commitments containing arbitrary data for the supposed hash of
the pairing for any known addresses in Bitcoin, preventing the transition of funds
altogether.

5.2 Structure of the Hash Commitment

During the commit phase of the protocol, a transaction Tcommit containing
the hash commitment for pk and pkQR is created. As mentioned, the Bitcoin
OP RETURN script operation allows to push up to 80 bytes of arbitrary data
onto the stack [12], which is sufficient to, for example, persist a SHA-256 hash.
However, there may also be alternatives to this way of publishing the hash com-
mitment.

9 Signing the transaction with pk would reveal the public key, instantly making the
funds vulnerable to theft by a quantum-capable adversary



The exact format of the hash commitment, having little impact on the in-
troduced transition protocol, is expected to be subject to an open discussion in
the community. For simplification, we propose to use the concatenation of the
public keys pk and pkQR as input to the hash function. This, however, assumes
that agreement on the quantum-resistant signature scheme has been reached
beforehand.

5.3 Reveal Structure and Backward Compatibility

During the reveal phase of the transition protocol, users must prove to the
network they are the rightful controllers of the non-quantum-resistant keypair
(pk, sk) and the quantum-resistant keypair (pkQR, skQR), and provide evidence
that there exists a hash commitment for the public keys of these accounts older
then the security period tsec . The latter is achieved by providing a SPV (Sim-
plified Payment Verification) proof [9, 14], i.e., including the path to Tcommit in
the Merkle Tree transaction structure of the respective block, dating back tsec
or more, in the reveal transaction Treveal .

To enable the deployment of the transition scheme as a soft fork, i.e., without
requiring a permanent split of the blockchain, we propose a scheme similar to that
used in SegWit [27]. As such, the data witnessing the new rules are being obeyed
is held in a segregated area, termed QRWitness, which new clients receive and
check but old clients remain oblivious to. To make sure the witness structure
is part of the hash of the block it is contained in, the root of a Merkle Tree
consisting of all QRWitness-es is inserted in the respective coinbase transaction.
While the original transaction txid remains the same as before, a new qrtxid

is defined as the double SHA256 hash over the traditional transaction format
and the QRWitness. Thereby, a possible format for QRWitness could be the
following:

<oldPubkey><pubkeyQR><merklepath><signatureQR>

where oldPubkey denotes the non-quantum-resistant public key pk, pubkeyQR is
the quantum-resistant public key pkQR, merklepath represents the path to the
hash of the Tcommit transaction and signatureQR denotes the signature of the
traditional transaction format using skQR.

To achieve backward compatibility, the scriptSig field remains such that
it satisfies the consensus rules of old clients, e.g., the non-quantum-resistant
signature and the corresponding public key. This way, just like SegWit, our
transition protocol can be deployed as a soft fork in Bitcoin. Note however, that
as usual with soft fork attempts, if the majority of the mining power does not
upgrade and continues to accept transactions spending non-quantum-resistant
outputs without adhering to the commit–delay–reveal structure, the soft fork
will cause a potentially permanent split of the blockchain.

The extension to more diverse challenge scripts than are covered by the
usual address types should now be clear; namely, provide in the QRWitness
as many instances of <oldPubkey><pubkeyQR><merklepath><signatureQR> as



are necessary, i.e., one for each act of checking a non-quantum-resistant signature
under the old rules.

6 Conclusion

In light of the emerging threat of quantum-capable adversaries in Bitcoin, we
have outlined how Bitcoin could become subject to theft of funds rooted in
the exposure of public keys. Thus, we have proposed a commit–delay–reveal
scheme to allow for the secure transition to a quantum-resistant address scheme
in Bitcoin, the underlying protocol modifications for which can be implemented
as a soft fork. For the security of the transition scheme we emphasize the need for
a sufficiently long delay period and propose an initial period of 6 months in order
to prevent possible blockchain reorganisation. The proposed time frame should
suffice for allowing honest clients and miners to reach consensus on manually
rejecting long range forks that exceed the delay period. However, we suggest
that by intuitive continuity arguments there must exist some point in time where
the community would be indecisive on how to proceed given that a conflicting
branch created by an adversary exists. Hence, we note that the optimal duration
of the delay period may be subject to future discussion and analysis.
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