
Towards everlasting privacy and efficient
coercion resistance in remote electronic voting

Panagiotis Grontas1, Aris Pagourtzis1, Alexandros Zacharakis1, and Bingsheng
Zhang2?

1 School of Electrical and Computer Engineering
National Technical University of Athens

2 School of Computing and Communications, Lancaster University
pgrontas@corelab.ntua.gr, pagour@cs.ntua.gr, azach@corelab.ntua.gr,

b.zhang2@lancaster.ac.uk

Abstract. In this work, we propose a first version of an e-voting scheme
that achieves end-to-end verifiability, everlasting privacy and efficient co-
ercion resistance in the JCJ setting. Everlasting privacy is achieved as-
suming an anonymous channel, without resorting to dedicated channels
between the election authorities to exchange private data. In addition,
the proposed scheme achieves coercion resistance under standard JCJ as-
sumptions. As a core building block of our scheme, we also propose a new
primitive called publicly auditable conditional blind signature (PACBS),
where a client receives a token from the signing server after interaction;
the token is a valid signature only if a certain condition holds and the
validity of the signature can only be checked by a designated verifier. We
utilize this primitive to blindly mark votes under coercion in an auditable
manner.

Keywords: electronic voting, end-to-end verifiability, coercion resistance,
everlasting privacy, publicly auditable conditional blind signatures

1 Introduction

The cryptographic research on electronic voting spans almost four decades. De-
spite the proliferation of proposed schemes, few have been implemented and
used in actual elections. This can be attributed to the fact, that e-voting sys-
tems must reconcile conflicting properties with integrity and privacy being the
most important ones. Integrity is usually achieved through verifiability, which
can be individual, universal or administrative, allowing the voter, the public or
some trusted authorities, respectively, to check that all participants followed the
protocol. Privacy protection comes in many layers: At the most basic level the
secrecy of the vote is protected from the talliers. Everlasting privacy aims to
protect against future and more powerful adversaries modelling the fact that

? This author is supported by EPSRC grants EP/P034578/1 and EP/N023234/1.

2

theoretical and practical advances (e.g. quantum computing) might render ob-
solete the cryptographic assumptions upon which privacy rests. Receipt Freeness
protects from a dishonest voter wanting to sell her vote to a passive adversary.
Coercion Resistance is the essential property that will enable remote electronic
voting, where the lack of a controlled environment for vote casting, leaves the
voters vulnerable to active adversaries that can ‘look over their shoulder’ and
dictate their behavior.

Juels, Catalano and Jakobsson proposed in [12] a framework to defend against
coercion attacks, which was implemented in Civitas [19]. Their main idea was,
that in order to achieve coercion resistance, the aspiring coercer must not be able
to tell whether his attempt succeeded or not. This can be done by allowing the
voter, to cast many ballots accompanied by anonymous credentials. Specifically,
she obtains a valid credential through a one-time use of an untappable channel.
Moreover she is assumed to have the capability to generate many different but
indistinguishable ones. Under coercion, she uses fake (unregistered) credentials,
indistinguishable from the valid one, which is employed when the voter has a
moment of privacy, a necessary condition for coercion resistance. To correctly
count the votes, however, the system must filter out the ballots that correspond
to false credentials. This is done by comparing (in encrypted form) the supplied
credentials with the valid ones that are published in a master list - the voter roll -
after registration ends. Moreover, since the JCJ scheme allows for multiple votes
per voter, duplicate ballots must be removed before counting. In principle, these
operations are of quadratic complexity with respect to the number of ballots cast,
which is typically quite larger than the number of voters, making the scheme
impractical for large scale elections.

The motivation for this work stems from the reasonable assumption, first
stated in [15], that the importance of integrity peaks during and immediately
after the voting process, but diminishes as more parties are convinced about
the result and concede. On the other hand, privacy is important during both
voting and counting but retains its importance long after the announcement of
the results, since the votes serve as evidence of one’s political beliefs. Verifiability
implies that such evidence is available to many third parties, making it in effect
undeletable. This can have dire consequences in the case of a future oppressive
regime. Therefore, our focus is a voting protocol that enhances privacy, both
during and after voting without sacrificing verifiability.

Our contribution We propose a first version of a voting protocol based on the
architecture of FOO [4], one of the most privacy aware voting schemes in the
literature, augmented with an efficient implementetation of the coercion resis-
tance properties of JCJ [12]. In particular, we take advantage of the fact that
in FOO, voting occurs in two phases, namely authorization and counting, and
use it to overcome the performance bottleneck of JCJ. We achieve this by us-
ing the idea of [37], i.e. marking the fake credentials during the authorization
phase where voter identification is available. By using the voter ID the correct
credential can be efficiently retrieved and compared to the supplied one with no
need to check all credentials. Of course, during this phase the ballot contents

3

must be blinded, as they can be correlated with the voter ID. The fact that
the credential is invalid is conveyed to the counting phase by applying a pub-
licly auditable variation of a novel cryptographic primitive, Conditional Blind
Signatures (CBS) [40]. The counter receives the ballot and an authorization in
the form of a blind signature, that contains a bit that specifies if the vote is
valid or under coercion. The perfect blindness property of the CBS scheme com-
bined with an anonymous channel enable us to achieve the everlasting privacy
property, without residing to dedicated channels between the authorities. Our
protocol achieves verifiability, coercion resistance and everlasting privacy with
minimal assumptions.

Related work Various efforts in the literature have tried to overcome the per-
formance bottleneck of the JCJ scheme. In [13,17] linear complexity is achieved,
by blinding the credentials and then stripping off the encryption randomiza-
tion. As a result, they could be efficiently compared through a hashtable. Both
schemes, however, were later found by [16] not to be coercion resistant by using a
classic tagging attack. In the same paper, a new approach improves the quadratic
complexity of identifying invalid credentials, by representing them as tuples with
an underlying mathematical structure and not as mere random group elements.
Hashing could then be used on part of the credential, without affecting the coer-
cion resistance property. This approach was improved in [20,28,33] by utilizing
different forms of credential structure and renewal methods, in order to enable
use in multiple elections and minimize reliance on the untappable channel. In a
different line of work, in [25] it is pointed out that the tagging attack is irrele-
vant in the duplicate removal subphase. As a result, the blind hashtables can be
used there, thus achieving the goal of linearity in the number of votes. For linear
fake removal the voter retrieves through the untappable channel, during regis-
tration, the index where her real credential is stored in the voter roll. Through
this index, coerced credentials are identified. In an alternate approach, [22] and
[26] employ the idea of anonymity sets. During vote casting the voter presents
the real credential mixed with reencryptions of some other credentials from the
voter roll. Finally, [36] with the Selene system and [31] with coercion evidence
less strict definitions of coercion resistance are offered which might prove easier
to reconcile with the other conflicting properties of voting systems. Our work
utilizes ideas from all these works and integrates them in an efficient manner via
a new cryptographic primitive, conditional blind signatures.

The term everlasting privacy was introduced by [15] where a protocol that
uses perfectly hiding commitments and homomorphic encryption was proposed.
Their main idea was that the public votes are protected perfectly using the
commitment scheme, while the openings are computationally protected but are
exchanged through private channels. As a result they are not publicly available.
This idea is presented as a primitive that can be integrated in any homomorphic
tallying scheme in [30], while in [29] it is applied to mixnets providing everlasting
privacy towards the public. This is further expanded and formalized as practi-
cal everlasting privacy in [27] by noting that such a future adversary might be
more powerful in terms of computing power, but will have less information to

4

operate on, since ephemeral data generated by the protocol will be unavailable
in the long run. More recently, in [39], the authors implement the commitments
with verifiable secret sharing and present a scheme that provides privacy and
integrity against unbounded adversaries. However they assume untappable chan-
nels between the authorities and deny voters the ability to individually verify
their votes. Our scheme differs from this line of work, since we do not assume
or use specific channels between the authorities. All information is exchanged
through the public Bulletin Board. This mode of communication is more realistic
since a future regime with advanced cryptographic capabilities will have access
to information exchanged by former governmental agencies in a private manner.
Moreover our scheme also provides coercion resistance.

Coercion resistance combined with everlasting privacy seems to be an im-
portant desideratum in recent works. However this has not yet been possible in
the JCJ framework, which is what our scheme accomplishes. In [38], a version of
Selene enhanced for JCJ coercion resistance is equipped with everlasting privacy
towards the public with the use of pseudonyms. However the creation process
of pseudonyms and their relationship to real voter IDs and credentials requires
trust assumptions and private channels between the members of the registration
authority. Our work requires only the use of an anonymous channel and provides
the same guarantees to both insiders and outsiders. In [35], everlasting privacy
is achieved by using perfectly hiding commitments to registered identity creden-
tials along with an anonymous channel. To achieve coercion resistance, votes can
be overwritten and only the last one counts. As a result a voter under coercion
can save her real vote for the end. This is a much stronger assumption than a
simple moment of privacy required by our scheme and the JCJ framework; for
example, an adversary who is able to cast a last minute vote achieves coercion.

2 Preliminaries

We begin by describing the agents, the functional components and the crypto-
graphic primitives that make up our scheme.

– The main participants are naturally the n voters. In our protocol, like in [22],
we assume that there exist pro democratic organizations that cast extra votes
for registered voters in an effort to increase the size of the anonymity set.

– The registration authority RA registers the identities of the voters and pro-
vides credentials. We assume this occurs offline using an untappable channel.

– The tallying authority TA authorizes which ballots are accepted for counting
by using a blind signature with an implicit validity bit. Later in the tallying
phase it counts the valid ballots and announces the result.

In our scheme the registration authority and the tallying authority can be the
same physical election authority EA. In reality they both consist of many mem-
bers with conflicting interests for the election outcome. For clarity, however, we
shall refer to them henceforth as if they consist only of a single member.

5

Bulletin Board (BB) A standard component of most electronic voting schemes.
It is an authenticated broadcast channel with memory. It is meant to be imple-
mented with Byzantine agreement algorithms. We do not provide implementa-
tion details here, following the vast majority of the electronic voting literature.
We assume that whenever the voters use the BB, they are doing so through an
anonymous channel that reveals no information about the identity of the sender
of a message and that all the messages (requests, votes, proofs etc.) produced
by our protocol can be found on the BB.

Homomorphic Encryption Scheme We assume all cryptographic operations
are performed by a JCJ compatible cryptosystem, i.e. one that supports reen-
cryption and verifiable threshold decryption. In order to prove coercion resistance
for our scheme we will use the Modified El Gamal (M-El Gamal) cryptosystem
as presented in JCJ. It operates in a group G of prime order q where the DDH
Problem is hard. Two generators g1, g2 are chosen randomly. The secret key is
an element x ∈ Zq and the public key is h = gx1 . Encryption3 is performed as:
Eh(m, r) = (gr1, g

r
2,mh

r) while decryption as: Dx(a, b, c) = c · a−x.

Proofs of Knowledge We make extensive use of non-interactive zero knowl-
edge (NIZK) proofs of knowledge. For instance a (M-El Gamal) ciphertext
(a, b, c) is accompanied by proof that a, b have the same secret discrete logarithm
relative to g1, g2. This can be implemented with the Chaum - Pedersen protocol
[6] and made non interactive with the Fiat - Shamir heuristic [2]. We denote
this by the functionality NIZK in the following way: NIZK

{
(g1, g2, a, b), (x) : a =

gx1 ∧ b = gx2
}
. We also use proofs that a value is a member of a set. We achieve

this by using OR compositions of Chaum - Pedersen proofs as described in [7].
We also use proofs of knowledge of a discrete logarithm [3]. Finally designated
verifier proofs [8], denoted as DVP, convince the voter but not the coercer that
his credential was correctly encrypted, as in JCJ.

Verifiable Shuffles We assume a functionality Shuffle, like the one proposed
in [24], that takes as input a list of encrypted values and outputs a random
permutation and reencryption of these values along with NIZK proofs that these
operations were correctly performed. We use shuffles in tallying as in JCJ.

Blind Signatures They allow a signer to sign messages without having access
to their contents [1]. To this end the user blinds the message and the signer
signs it in this blinded form. The user subsequently unblinds the signature, and
retrieves a valid signature for the plain message. Their security properties [23,9]
are blindness or unlinkability which states that the signer cannot retrieve the
signed message or associate signatures with protocol executions. Unforgeability
states that the user cannot generate more message-signature pairs than those
obtained by the signer. In the proposed protocol we use a variation of blind

3 For compactness we omit the encryption randomness, except when it is absolutely
necessary for the operation of our scheme. We also use the plain ElGamal to describe
the protocol and refer to M-El Gamal only in the coercion resistance analysis.

6

signatures, Conditional Blind Signatures, to enable everlasting privacy and move
the marking of coerced votes from the tallying to the authorization phase.

Plaintext Equivalence Test The functionality PET is a primitive introduced
in [11] to convince a distributed set of entities, who share a decryption key
that two ciphertexts indeed encrypt the same plaintext. It works by first having
the participants blind the ciphertexts and then employing the homomorphic
properties of the underlying cryptosystem to compute a function on them, such
that a joint decryption of the result indicates if the two initial ciphertexts encrypt
the same message or not. We use PET to mark duplicate votes and also embed
them in the signatures that mark coerced votes in the authorisation phase.

3 Publicly Auditable Conditional Blind Signatures

Our voting scheme is built on a variation of Conditional Blind Signatures (CBS)
[40]. This primitive allows a signer S to blindly generate signatures on messages
submitted by the user U . These signatures however are verifiable only by a
designated verifier V, like in [8]. Furthermore, their validity depends on a secret
information bit ‘injected’ into the signature along with the possession of a secret
key by the designated verifier. In this way the signer can ‘instruct’ the verifier
to accept the signature or not. The secret bit cannot be learned by the user
however, since both cases are indistinguishable to her. Note that the roles of
S and V can be played by the same entity, thus allowing the signer to send
information regarding attributes of blinded messages to herself in the future.

The security of CBS extends the standard security properties of blind sig-
natures such as blindness and protection against One More Forgery to account
for the secret bit b. Additionally, to formally express the idea that b controls the
validity of the signature an extra property, Conditional Verifiability, is defined
in [40]. We must observe here that the user cannot validate the signature she
receives, since she does not have knowledge of b. Although this seems counter-
intuitive with respect to traditional signatures, in our setting it is essentially the
exact property we need to achieve coercion resistance.

In [40] an instantiation of CBS is given by extending the well known three-
round Okamoto-Schnorr blind signatures [5] (appendix B). This instantiation is
proved to have perfect blindness, computational resistance to Strong One More
Forgery under the Computational Diffie Hellman assumption and Conditional
Verifiability under the Decisional Diffie Hellman assumption.

In practice, the scheme’s round complexity can be reduced by randomly
generating the initial commitment in a preagreed manner. Moreover it can also
be combined with a multiplicatively homomorphic encryption scheme as the one
we assume in our voting protocol. We present this modified version in appendix
C, where the signer and verifier are the same entity.

Public auditability The purpose of the CBS in the proposed voting scheme
is to “mark” a ballot as valid if it is accompanied by an encryption of the same
credential σ that was generated during registration. If any other credential σ′ is

7

used, the ballot is marked as invalid, indicating that the voter is under coercion.
The CBS scheme can be used to convey this bit of information to the verifier,
but by design it hides it from the user. As a result we cannot apply it as-is, since
this will lead to loss of verifiability. We overcome this by introducing Publicly
Auditable CBS, which adds auditability using NIZK proofs of correctness dur-
ing signing and verifiaction. In particular the CBS conditional bit is implicitly
computed and embedded in the signature by applying the PET functionality on
the registered and voting credentials.

The PACBS scheme operates in a group G of prime order q, where the
DDH is hard. During the parameter generation phase random group elements
(g1, g2, v, h1) are selected. These elements are the public parameters of the pro-
tocol and are denoted as paramsCBS. A signing key s ∈ Zq and an encryption
key z ∈ Zq are also selected. These secret keys are collectively denoted as skCBS.
The corresponding public keys are k := gs1 and h := hz1, denoted as pkCBS.

The PACBS signing protocol in Figure 1 assumes two random oraclesH1,H2.

Common input: paramsCBS, pkCBS, C1, C2 ∈ G2,H1 : G4 → G, H2 :M×G→ Zq
U ’s private input: m ∈M
S’s private input: s ∈ Zq s.t. k = gs1

U executes the Blind Algorithm:

– Compute x := H1(C1, C2);
– Pick random u1, u2, d ←R Zq and compute x∗ := xgu1

1 gu2
2 vd, e∗ := H2(m,x∗)

and e := e∗ − d;
– Send e to S.

S executes the Sign Algorithm:

– Compute x := H1(C1, C2);
– Pick random y2 ←R Zq as the second part of the CBS;
– Compute ν := xg−y22 v−e;
– Pick random t ∈ Zq and compute N := Eh(ν; t);
– Pick random blinding factor α ∈ Zq and compute W := (C2/C1)α and apply

signing key to compute B := (N ·W)s with:

π1 ← NIZK
{

(h1, h, ν,N), (t) : N = Eh(ν; t)
}

π2 ← NIZK
{

(C1, C2,W), (α) : W = (C2/C1)α
}

π3 ← NIZK
{

(h, k,N,W,B), (s) : B = (N ·W)s ∧ k = gs
}

– Set bsig := (B,N,W, y2, π1, π2, π3) and send bsig to the U .

U executes the Unblind Algorithm:

– Verify π1, π2, π3;
– Unblind by computing sig1 := B · Eh(ku1) and sig2 := y2 + u2.
– Set sig := (x∗, e∗, sig1, sig2) and output (m, sig).

Fig. 1. The Publicly Auditable CBS Sign protocol PACBS Sign

8

The signer obtains after registration an encryption of the valid credential
C1 := E(σ). During voting the voter provides an encryption of the voting cre-
dential C2 := E(σ′) along with a blinded version e of the message being signed
(the vote). The value (C2/C1) is blinded with a random α ∈ Zq and multiplied
with the signature. The essence of this procedure is that (C2/C1) is an encryp-
tion of a random element unless σ = σ′ in which case it is an encryption of
1. In the former case the random element will ‘corrupt’ the signature. In the
latter case the signature will be valid, since it is homomorphically multiplied by
1. Every interested entity can verify that the signer did not deviate from the
protocol by checking the transcript and the proofs. Thus, an honest voter who
knows the input and in particular whether C1, C2 are encryptions of the same
plaintext knows that his output corresponds to a valid signature.

The PACBS verification algorithm is given in Figure 2. The verifier V, given
a message a signature and key pair, outputs whether the signature is valid or
not in a way that every other entity can be convinced about it. In reality, V
embeds the PET functionality inside the signature verification equation, which
will again hold only if the credentials supplied are the same.

Public input: paramsCBS, pkCBS, m ∈M, sigCBS and H2 :M×G→ Zq
Signer’s Private input: skCBS

– If H2(m,x∗) 6= e∗ then S sends ⊥.
– Otherwise S picks a random β ∈ Zq and computes

validity := x∗ · g−sig22 · v−e
∗
; M := Eh(validity; r1); V := Ms;

R :=
(V

sig1

)β
and result := Dz(R)

π1 ← NIZK
{

(h1, h, validity), (r1) : M = Eh(validity; r1)
}

π2 ← NIZK
{

(k, g1, V,M), (s) : V = Ms}
π3 ← NIZK

{
(V, sig1, R), (β) : R =

(V

sig1

)β}
π4 ← NIZK

{
(h1, h, result, R), (z) : result = Dz(R)

}
– S sends M,V,R, result, π1, π2, π3, π4 to V
– If a proof is not correct V outputs ⊥.
– Otherwise V outputs 1 (valid) iff result = 1.

Fig. 2. The Publicly Auditable CBS Verify protocol PACBS Verify

4 The voting protocol

Our scheme builds on the variation of FOO presented in [10] that is based on
public key encryption instead of commitments, thus reducing the number of
communication rounds. We use an extra authorization phase, where the issued
credentials are secretly marked as valid or invalid using PACBS. Our main idea
is that the validity checks for the credentials are (implicitly) done during vote
authorization and not during tallying. The protocol has a one-time Registration

9

phase and in each election there are three phases, namely Authorization, Voting
and Tallying. To achieve the security properties we take advantage of the separa-
tion between Authorization and Voting phases. We stress that each phase starts
only after the previous one has ended. A simplified view of the workflow of our
protocol is depicted in Figure 3. In the Authorization phase the EA checks for

1. Registration through untappable channel

3.Receive Anonymous Credential σ
4. Create and publish to BB

encrypted list of valid credentials

5. Create candidate slate
6. Evade coercion by generating fake

credential or reuse the original and issue blind

authorisation request
7. Check eligibility

8. Remove ballots with invalid proofs

9. Allow unique (ID,E(σ')) pairs

10. Apply PACBS Sign protocol

11. Unblind signature

12. Submit encrypted vote, signature and

proofs to the BB through an anonymous

channel 13. Filter out invalid votes

14. Compute validity token.

15. Shuffle encrypted vote and validity token

using a verifiable shuffle

16. Decrypt and count only uncoerced votes

Voter

Registration Phase (1-4) (one-time)

Anonymous Channel

BB

EA

2. Distributed Generation of Anonymous Credential

VOTER
ROLL

Verifiable Shuffle

Authorisation Phase (7-10)

EA

Voting Phase (11-12)

Tallying Phase (13-16)

Fig. 3. Framework architecture and workflow

the validity of the supplied voter credentials. This can be done in constant time
as the voter identity is known (but not the vote) and the EA has access to the
voter roll. As a result, it compares the voter supplied credential Eh(σ′) with the
voter roll version Eh(σ) and finds out if the voter is under coercion. Since the
identity of the voter is known at this point, the EA can use it to check eligibility
by inspecting if there is a corresponding credential in the voter roll. Moreover
it can be used to group all the ID and credential pairs so that only one is kept,
according to some predefined rule (e.g. last credential counts). Finally the voter
and the EA interact according to the PACBS Sign protocol and obtain a valid-
ity token on the blinded ballot. While the honest voter knows that σ = σ′ and
can be sure that the signature will be valid, a coercer without this information
cannot know if the ballot will be counted.

In the Voting phase, the voter casts the (unblinded) signature and the ballot
to the BB. In the Tallying phase the EA must act as the verifier in PACBS
and counts the votes only if the signature is valid. However, the ballot and re-
sult pairs must also be shuffled, so that the coercer loses track. Only then can
they be decrypted to yield the final tally. This cannot be achieved directly by
the PACBS Verify algorithm in Figure 2 because shuffling must occur before de-

10

cryption. Consequently the EA, actually uses a slight variation of PACBS Verify,
which does not decrypt the final result nor create the proof of correct decryp-
tion, since these take place “outside” of the algorithm. We denote this alternate
verification procedure EncVerify. In this stage neither the ID nor any credential
information is present so the ballot cannot be linked to a voter.

A detailed description is given in Figure 4. Correctness follows by inspecting
Figure 1, Figure 2 and Figure 4. We assume that honest voters intentionally
issue invalid votes during authorization to thwart forced abstention attacks.

Distributed EA The EA can be modeled as a set of mutually distrustful parties
executing secure protocols. In particular, the parameters for the protocol can be
securely generated using standard techniques. The keys can be computed using
a verifiable secret sharing scheme. The credentials can be generated as in [19].
Apart from the PACBS Sign and PACBS Verify all other actions performed by the
EA (Decryption, Shuffle) are also standard and the checking for doubly issued
credentials can be performed using PETs. The PACBS Sign and PACBS Verify
can easily be extended by essentially performing the same protocols with each
key share and combining the results.

Performance Our analysis closely resembles [21]. Excluding the elimination of
double votes all computations are linear in the number of votes. If |IDi| denotes
the number of votes cast with IDi and m = maxi|IDi| then the number of
computations is O(m2n). This can be further reduced to O(mn) using a method
like the blind hashtables of [17], since the tagging attack is not applicable in this
phase. In any case, assuming that the number of duplicates per voter will be
constant in practice - i.e. m = O(1) - then the number of computations becomes
linear in the number of voters n.

5 Security Analysis

Threat model Since our work is an extension of [12], our assumptions follow
theirs closely. Firstly we require trusted implementation in software and hard-
ware. While the amount of trust required can be decreased by using techniques
such as Benaloh challenges and code-voting as in [18,36,32], it cannot be com-
pletely disregarded. This is easier said than done, but it is a common practice
in the vast majority of proposed voting protocols at our level of abstraction.

We assume two types of adversaries, one computationally bounded that acts
during or shortly after the election and one that is computationally unbounded
and acts in the future. The former models the security requirements which are
vital during the election such as integrity, verifiability and coercion resistance
while the latter models our requirement for everlasting privacy.

As far as present adversaries are concerned, we assume that they can per-
form only probabilistic polynomial time computations and for which our compu-
tational assumptions hold. To prove verifiability we assume that the adversary
fully controls the election authorities and corrupts voters of his choice [32].

As far as coercion resistance is concerned, the adversary can fully control a
subset of the voters by impersonating them, but there exists another subset with

11

Common input: paramsCBS

EA’s private input: skCBS

EA’s public keys: pkCBS

Voter’s private input: v ∈ C

One Time Registration Phase:

– The EA generates the voter credential σ ←R G and computes: C1 := Eh(σ)
along with δ ← DVP

{
C1 = Eh(σ)

}
.

– The EA publishes the encrypted credential BB ⇐ (ID, C1) and sends σ, δ to
the voter using an untappable channel.

Election Setup Phase:

– The EA publishes the candidate slate C ⊂ G by assigning a random group
element to each candidate and a list of IDs denoted I corresponding to the
voters with a right to vote in the election.

Authorization Phase:

– The voter computes a new credential σ′ ←R G and C2 := Eh(σ′; r1) along with:

π1 ← NIZK
{

(g1, h, C2), (σ′, r1) : C2 = Eh(σ′; r1)
}

– The voter encrypts his vote as C := Eh(v; rv) along with:

π2 ← NIZK
{

(g1, h,C, C), (v, rv) : v ∈ C ∧ C = Eh(v; rv)
}

– The voter invokes Blind (Figure 1) for m := C to get:

e := Blind(paramsCBS, pkCBS, C, C1, C2)

– The voter posts (ID,C2, e, π1) to the BB.
– The EA checks the validity of the proof and that ID ∈ I.
– The EA checks that no other request C′2 with the same supplied credential σ′

is submitted for ID. If some condition fails the request is ignored as double and
the EA publishes

πC2 ← NIZK
{

(h1, h, C2, C
′
2)(z) : Dz(C2/C

′
2) = 1

}
– Otherwise the EA publishes BB⇐ bsig where:

bsig := SignCBS(paramsCBS, skCBS, e, C1, C2)

– The voter computes:

sig := Unblind(paramsCBS, pkCBS, bsig)

Voting Phase:

– The voter appends to the BB the vote tuple

BB⇐ (C, sig, π2)

Tallying Phase:

– To prevent double casting if more than one lines with correct proofs contains
C the EA keeps only the last submitted.

– For each submitted ballot with valid proofs the EA calls

EncVerifyCBS(paramsCBS, skCBS, C, sig)

and publishes the result tuples R = (M,V,R, π1, π2, π3) from Figure 2.
– The EA appends L⇐ (C, R) where L is a designated section of the BB

– Then it executes L′ := {(C
′
, R
′
)} := Shuffle(L).

– The EA verifiably decrypts all pairs. A vote is counted iff Dz(R
′
) = 1

Fig. 4. The voting protocol

12

uncertain behavior. As in [12] each uncontrolled voter has a moment of privacy.
The adversary can corrupt a subset of the voting authorities, which consist of
mutually distrusting agents. Moreover he is capable of controlling the Bulletin
Board and all other public channels, but there exist anonymous channels, where
the identity of the sender of a message cannot be discovered. Finally there are
honest participants, maybe nonprofit organizations, that cast invalid votes with
valid voter IDs in order to thwart a forced abstention attack.

The future adversary is computationally unbounded and so can break any
cryptographic assumption. Her goal is to gain information about the votes of a
subset of the voters. We make the assumption that she can gain no information
about the identity of the voter by the anonymous channel.

Verifiability We follow the end-to-end verifiability definition proposed by Ki-
ayias et al. [32], which can be viewed as a computational variant of the KTV
framework as summarized in [34]. The adversarial goal against system’s integrity
is to cause deviation from the intended tally of all the honest voters while elec-
tion auditing remains successful without complains. We consider an adversary
that controls the EA and a subset of the voters. All the voters who did not
participate in the election are considered to be compromised. This is because a
malicious (registration) authority can always impersonate absent voters without
the PKI assumption.

Our scheme achieves end-to-end verifiability against a fully corrupted EA
under the random oracle model. As a standard requirement, we assume the exis-
tence of a trusted BB. Although the voters’ clients are assumed to be honest for
current protocol description, it is easy to add the Benaloh challenge mechanism
[14] to prevent the malicious clients from tampering the ballot as the patch for
Helios [18]. The voter needs to verify that her submitted ballot was recorded
correctly on the BB and was taken as an input of the shuffle/mix-net.

During registration (Figure 3 - step 2), the consistency between the voter’s
credential σ and the published Eh(σ) is guaranteed by the DVP, which is inten-
tionally not universally verifiable to enable coercion resistance. In the authoriza-
tion phase, the signatures for the validity of the credential (Figure 3 - step 10)
are verifiable due to the design of PACBS Sign and the proof published for each
unprocessed request. More specifically, EA shows that the produced signature is
valid if and only if the submitted credential matches the recorded ones. In the
tallying phase, the public auditability property of the PACBS Verify protocol, the
verifiable shuffle and the proof of correct decryption prevent the authority from
deviating in any way from the protocol specification. Finally, everyone can check
if the total number of valid signatures are less than or equal to the number of
voters, n. This would prevent the malicious EA from inserting additional valid
signatures. Since the honest voters’ signatures are all cast, recorded, and tallied
correctly, the rest valid signatures can be viewed as the adversarial ones. Hence,
the malicious EA cannot add more votes even if she has the signing key.

Eligibility The eligibility property is based on the resistance to Strong One
More Forgery property of the signature scheme, since a valid signature is required

13

for the vote to be counted. This implies the strong assumption that the adversary
is restricted to a polylogarithmic number of honest authorizations.

Privacy Our protocol satisfies vote privacy. In the authorization phase the en-
crypted vote is blinded when posted to the BB. As a result there is no way to
recover the selection of the voter even if the EA is fully corrupted. In the voting
phase the privacy of the vote depends on the privacy of the actions performed by
the EA (Decryption, Shuffle). Without the assumption of an anonymous chan-
nel our system offers Helios [18] level privacy under similar trust assumptions.
However, assuming an anonymous channel privacy protection becomes complete.

Everlasting privacy Our scheme easily meets the requirements for practical
everlasting privacy set in [27], despite the fact that there are no private channels
between the participants. A future adversary with access to the data in the BB,
but without access to the untappable channels and to network related informa-
tion will not be able to associate authorization requests and votes because of the
blindness of the signatures. Moreover the tallying phase where there are neither
voter identities nor credentials present, matches the Helios without identities
case of [27] which is proved to satisfy practical everlasting privacy. However if
we assume an anonymous channel as in [4,35] our scheme has complete everlast-
ing privacy. In the authorization phase, the perfect blindness of the signature
scheme ensures that no information regarding the vote is leaked. Furthermore,
when the ballots are posted in the BB, despite being only computationally pro-
tected, they are cast through an anonymous channel and contain no information
about the identity of the voter. Moreover, the encrypted vote and signatures
cannot be associated with any particular execution of the signing protocol that
validated it. As a result a semi-honest unbounded adversary, watching all the
public interactions cannot associate any voter with his vote.

Coercion Resistance Our scheme is Coercion Resistant. In particular if a
coercer requests a credential σ from a voter, its validity cannot be proved. As a
result the validity of the signature issued for this credential is unknown to the
coercer, due to the properties of PACBS. Moreover multiple votes cast with the
same ID in the authorization phase, protect from a forced abstention attack. The
reasoning is similar to [22,26]. In the tallying phase, shuffling and PACBS Verify
ensure the coercer loses track of his submitted vote and the only information he
gets is the final tally. A detailed analysis is given in appendix A.

6 Conclusion

In this paper we presented a new approach to provide coercion resistance in an
efficient manner and combine it with everlasting privacy. Our protocol is based
on minimal assumptions: a single use of an untappable channel and the existence
of an anonymous channel. We utilized Conditional Blind Signatures [40], a re-
cent primitive that allows a signer to inject a bit of secret information to a blind
signature that controls if it should validate or not, which we improved for our
purposes. Our scheme is proved secure under the JCJ [12] coercion resistance

14

framework. The perfect blindness provided by CBS allows for stronger privacy
guarantees; combined with a perfectly anonymous channel it provides the ever-
lasting privacy property. In a future version of this work we plan to augment the
intuitive security analysis presented here, using rigorous definitions and proofs.

Acknowledgements The authors would like to thank Peter Browne Roenne
and the anonymous reviewers for their helpful comments and suggestions.

References

1. David Chaum. Blind signatures for untraceable payments. In D. Chaum, R.L.
Rivest, and A.T. Sherman, editors, CRYPTO ’82, pages 199–203, 1983.

2. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifi-
cation and signature problems. In CRYPTO’ 86, pages 186–194, 1986.

3. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
CRYPTO ’89, pages 239–252, 1989.

4. Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting
scheme for large scale elections. In ASIACRYPT ’92, pages 244–251, 1992.

5. Tatsuaki Okamoto. Provably secure and practical identification schemes and cor-
responding signature schemes. In CRYPTO ’92, pages 31–53, 1992.

6. David Chaum and Torben P. Pedersen. Wallet databases with observers. In
CRYPTO ’92, pages 89–105. Springer-Verlag, 1993.

7. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In CRYPTO ’94, pages
174–187, 1994.

8. Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated verifier
proofs and their applications. In EUROCRYPT ’96, LNCS, pages 143–154, 1996.

9. Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures
(extended abstract). In CRYPTO ’97, pages 150–164, 1997.

10. Miyako Ohkubo, Fumiaki Miura, Masayuki Abe, Atsushi Fujioka, and Tatsuaki
Okamoto. An improvement on a practical secret voting scheme. In Information
Security, LNCS, pages 225–234. 1999.

11. Markus Jakobsson and Ari Juels. Mix and match: Secure function evaluation via
ciphertexts. In ASIACRYPT ’00, pages 162–177. Springer-Verlag, 2000.

12. Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic
elections. In Proceedings of the 2005 ACM workshop on Privacy in the electronic
society, pages 61–70. ACM, 2005.

13. Warren D. Smith. New cryptographic voting scheme with best-known theoretical
properties. In Frontiers in Electronic Elections (FEE 2005), June 2005.

14. Josh Benaloh. Simple verifiable elections. In EVT’06, 2006.

15. Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with everlast-
ing privacy. In CRYPTO’06, pages 373–392, 2006.

16. Roberto Araújo, Sébastien Foulle, and Jacques Traoré. A practical and secure
coercion resistant scheme for remote elections. In Frontiers of Electronic Voting,
2007.

17. Stefan G. Weber, Roberto Araujo, and Johannes Buchmann. On coercion-resistant
electronic elections with linear work. In ARES, pages 908–916. IEEE, 2007.

18. Ben Adida. Helios: web-based open-audit voting. In Proceedings of the 17th con-
ference on Security symposium, pages 335–348. USENIX Association, 2008.

15

19. Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: Toward a
secure voting system. In IEEE Security and Privacy Symposium, 2008.

20. Roberto Araújo, Narjes Ben Rajeb, Riadh Robbana, Jacques Traoré, and Souheib
Yousfi. Towards practical and secure coercion-resistant electronic elections. In
CANS, pages 278–297, 2010.

21. Reto E. Koenig, Rolf Haenni, and Stephan Fischli. Preventing board flooding
attacks in coercion-resistant electronic voting schemes. In SEC, 2011.

22. Michael Schlapfer, Rolf Haenni, Reto E. Koenig, and Oliver Spycher. Efficient vote
authorization in coercion-resistant internet voting. In VOTE-ID, 2011.

23. Dominique Schröder and Dominique Unruh. Security of blind signatures revisited.
IACR Cryptology ePrint Archive, page 316, 2011.

24. Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness
of a shuffle. In EUROCRYPT 2012, pages 263–280, 2012.

25. Oliver Spycher, Reto Koenig, Rolf Haenni, and Michael Schlapfer. A new approach
towards coercion-resistant remote e-voting in linear time. In FC 2011, 2012.

26. Jeremy Clark Urs and Hengartner. Selections: Internet voting with over-the-
shoulder coercion-resistance. In FC 2011, 2012.

27. Myrto Arapinis, Véronique Cortier, Steve Kremer, and Mark Ryan. Practical
everlasting privacy. In Principles of Security and Trust, POST 2013, 2013.

28. Roberto Araújo and Jacques Traoré. A practical coercion resistant voting scheme
revisited. In VOTE-ID, pages 193–209, 2013.

29. Johannes A. Buchmann, Denise Demirel, and Jeroen van de Graaf. Towards a
publicly-verifiable mix-net providing everlasting privacy. In FC 2013, 2013.

30. Edouard Cuvelier, Olivier Pereira, and Thomas Peters. Election verifiability or
ballot privacy: Do we need to choose? In ESORICS 2013, pages 481–498, 2013.

31. Gurchetan S Grewal, Mark D Ryan, Sergiu Bursuc, and Peter Y.A. Ryan. Caveat
coercitor: Coercion-evidence in electronic voting. In IEEE Security and Privacy
Symposium. IEEE, 2013.

32. Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-to-end verifiable
elections in the standard model. In EUROCRYPT 2015, pages 468–498, 2015.

33. Roberto Araújo, Amira Barki, Solenn Brunet, and Jacques Traoré. Remote elec-
tronic voting can be efficient, verifiable and coercion-resistant. In FC’16 Work-
shops, BITCOIN, VOTING, WAHC, 2016.

34. V. Cortier, D. Galindo, R. Ksters, J. Mller, and T. Truderung. Sok: Verifiability
notions for e-voting protocols. In IEEE Security and Privacy Symposium, pages
779–798, 2016.

35. Philipp Locher, Rolf Haenni, and Reto E. Koenig. Coercion-resistant internet
voting with everlasting privacy. In FC’16 Workshops, BITCOIN,VOTING,WAHC,
2016.

36. Peter Y.A.Ryan, Peter B. Roenne, and Vincenzo Iovino. Selene: Voting with
transparent verifiability and coercion-mitigation. In FC’16 Workshops, BITCOIN,
VOTING, WAHC, 2016.

37. Panagiotis Grontas, Aris Pagourtzis, and Alexandros Zacharakis. Coercion resis-
tance in a practical secret voting scheme for large scale elections. In ISPAN-FCST-
ISCC 2017, pages 514–519, 2017.

38. Vincenzo Iovino, Alfredo Rial, Peter B Roenne, and Peter Ryan. Using selene to
verify your vote in jcj. In FC’17 Workshops, BITCOIN, VOTING, WAHC, 2017.

39. Nan Yang and Jeremy Clark. Practical governmental voting with unconditional
integrity and privacy. In FC’17 Workshops, BITCOIN, VOTING, WAHC, 2017.

40. Alexandros Zacharakis, Panagiotis Grontas, and Aris Pagourtzis. Conditional blind
signatures. In 7th International Conference on Algebraic Informatics (short ver-
sion), 2017. Full version available on: http://eprint.iacr.org/2017/682.

http://eprint.iacr.org/2017/682

16

A Analysis of coercion resistance

We prove the coercion resistance property of the proposed voting scheme by
closely following the JCJ techniques. We slightly modify the games c-resist and
c-resist-ideal of JCJ to account for the extra authorization phase. We treat the
auth functionality as a function that provides a valid or invalid ballot in relation
to its private input.

Firstly, we examine the options of a coerced voter. Such a voter, can simply
supply the adversary with a fake random element of G. Having a fake credential,
the signature she receives will be invalid, a fact undetectable by A due to the
design of the CBS protocol. The voter can authenticate and cast her real vote
during her moment of privacy. The coercer cannot decrypt the corresponding
entry in the voter roll and find out if he was presented with the real one or not.
If he tries to vote, when he receives the signature he will not be able to validate
it himself. In the tallying phase the shuffle will make him lose track of the vote.

The games c-resist and c-resist-ideal. The only change in the c-resist game of JCJ
is the extra authorization phase. During this phase voters supply the essential
information, based on their secret credential, and they get a ballot which can
be either valid or invalid. We assume that all messages are exchanged via the
bulletin board and thus are available to the adversary.

In the c-resist-ideal game an extra ideal functionality is needed, which we call
idauth and its purpose is to authenticate and cast the ballots to the BB. This
functionality gets the inputs of the players and computes the ballots as follows:

– It gives only one valid ballot for each valid credential.
– For honest voters it extracts the underlying credential and responds with a

valid/invalid ballot based on it.
– Adversarial requests with credentials of corrupted players are answered nor-

mally. For the credential of the coerced voter the validity of the ballot com-
puted is determined by the coin toss.

– The outputs are written directly to the BB.

In both games, λ is the security parameter, n is the number of voters and
nV is the number of voters the adversary can corrupt. Further inputs include
the candidate slate C and the distribution D that governs the behaviour of the
uncontrolled voters. In c-resist-game, the adversary corrupts a subset V of the
voters and obtains their credentials after registration. We denote by U the rest
of the voters. They perform the registration process and receive their credential.
Subsequently the coercer chooses the voter j to coerce and her uncoerced vote
β. Of course the voter should not be already corrupted and the vote should be a
valid choice. A coin is flipped and if it is 0, the coerced voter fools A by invoking
the functionality fakekey and generating a fake credential while voting with her
real one. If it is 1 she obeys and gives her real credential skj to A. Honest voters
perform the authorization phase and cast their votes, while A invokes the auth
functionality with any input of his choice using the information gathered so far.

17

The tallying phase is then performed and A tries to guess the result of the
coin, using the data on the BB, the final tally X and the proofs provided. In
c-resist-ideal-game the same things happen with minor differences. The keys
obtained by A do not assist him with the choice of the voter to coerce. He is
always given the real credential and auth is replaced with idauth. Finally, the
only data A can use to guess the coin flip is the final tally X and the number of
invalid votes Γ .

We now present the simulation for the proof that our scheme is coercion
resistant.

1. Input: The simulator S takes as input the elements g1, g2, h1, h2 of a group
G of order q and a vector w from a distribution D, which mirrors A’s un-
certainty. Each element of w is a set of valid and invalid votes, taking into
account that each voter casts more than one ballot. S tries to answer whether
(g1, g2, h1, h2) is a DH quadruple or not.

2. Parameter generation: Initially the S creates the M-El Gamal encryption
key by randomly choosing x1, x2 ∈ Zq and computing h = gx1

1 gx2
2 . The public

key is (g1, g2, h). He then creates a signing key pair for the CBS scheme by
choosing g3, g4, y ←R G, s ∈ Zq and k = gs3. The secret key is s and the
public key is (g3, g4, y, k).

3. Registration: Each voter is assigned a random σi ←R G. Using the public
key, S publishes the voter roll. Finally, the candidate slate C is published.

4. Corruption: A corrupts voters.
5. Coercion: A chooses the player to coerce and her honest vote (j, β). The

appropriate tests are performed in (j, β) according to the games’ definitions.
6. Coin Flip: S chooses b ←R {0, 1}. If b = 0, A is given a random group

element σ∗ ←R G, else she is given the real credential σ∗ ← σj
7. Authorization Requests: S issues the signature requests for the honest

voters according to w. For each element of w she issues (Eh(σi), IDi,PoK1)
where Eh(σi) = (hui

1 , h
ui
2 , h

uix1
1 huix2

2 σi) for random ui and the proof PoK1 is
simulated by the programmability of the random oracle by using standard
techniques. A issues his authorization requests.

8. Double requests elimination: Using the secret key x1, x2, S decrypts and
eliminates double requests with the same credential.

9. Authorization: S simulates this phase using her CBS signing key. The
messages are encrypted votes according to w. Encryptions are done in the
same way as before. A is given signatures in a straightforward manner.

10. Vote Casting: S submits ballots for the honest voters. A submits ballots
for the corrupt and the coerced voters.

11. Tallying: Using his secret keys and standard techniques for proofs, S sim-
ulates tallying in a straightforward manner.

12. Guess: A decides b′

13. Output: S outputs 1 iff b = b′.

Let’s examine the view of A. Apart from the data he produces, in the autho-
rization phase he sees the encrypted credentials with the proofs that accompany
them, and the signatures given. These include a message x uniformly distributed

18

in G, an encrypted first part of a signature and the second part of the signature
which is a uniformly distributed element in Zq. In the tallying phase he sees the
encrypted ballots, their proofs and the signatures. The signatures include two
random elements x∗, sig2 and an encrypted first part. Finally he gets the inter-
mediate results and the tally with the proof. Apart from the encrypted messages
and the proofs, all other data are random and do not assist him in deciding b.

Suppose that the input of S is a Diffie-Hellman (DH) tuple. Then all the
encryptions done by S are valid and the view of A is the same as the c-resist
experiment. If the input is not a DH tuple then every encryption S did results in
uniformly distributed elements in G3. A’s view is the same as in the c-resist-ideal
experiment.

These imply that

Advc-resist
ES,A = |Pr[S = 1|DH(g1, g2, h1, h2)]− Pr[S = 1|¬DH(g1, g2, h1, h2)]|

which is equal to AdvDDH
S and so it is negligible if the DDH assumption holds.

Algorithm 1: c-resist

Input : n, nV ,C, D, λ
Output: result ∈ {0, 1}
(V,U)← A(corrupt)
{(ski, pki)← reg(skR, IDi, λ)}i∈[n]
(j, β)← A({ski}i∈V ,Coerce)
if β /∈ C or j /∈ U then

output 0
end
b←R {0, 1}
if b = 0 then

sk∗ ← fakekey(pkT , skj , pkj)
BB⇐
auth(skj , pkj , skT , pkT ,C, β, λ)

else
sk∗ ← skj

end

BB⇐
auth(ski, pki, skT , pkT ,C, D, λ)}i∈U\{j}
BB⇐
Aauth(·)({ski}i∈V , sk∗, pkT ,C,BB)

(X, P)←
tally(skT ,BB,C, {pki}i∈V ∪U , λ)
b′ ← A(X, P,BB,Guess)
output b == b′

Algorithm 2: c-resist-ideal

Input : n, nV ,C, D, λ
Output: result ∈ {0, 1}
(V,U)← A(corrupt)
{(ski, pki)← reg(skR, IDi, λ)}i∈[n]
(j, β)← A(Coerce)
if β /∈ C or j /∈ U then

output 0
end
b←R {0, 1}
sk∗ ← skj
if b = 0 then

BB⇐
idauth(skj , pkj , skT , pkT ,C, β, λ)

end

{BB⇐
idauth(ski, pki, skT , pkT ,C, D, λ)}i∈U\{j}
BB⇐
Aidauth(·)({ski}i∈V , sk∗, pkT ,C)
(X, P)←

tally(skT ,BB,C, {pki}i∈V ∪U , λ)
b′ ← A(X, P, Γ,Guess)

output b == b′

Finally, we must note that the exact level of protection each voter receives
depends on the size of the anonymity set, i.e. the number of decoy votes cast

19

with their ID by other honest voters or organizations. We plan to incorporate
this analysis in future versions of our work.

B Plain Okamoto-Schnorr CBS Scheme

We briefly present the simple Okamoto Shnorr CBS Scheme from [40]. The se-
cret signing key consists of the values s1, s2 ∈ Zq as in [5] with corresponding
public verification key v = g−s11 g−s22 . During the signing and unblinding phases
the public key k of the verifier is used. For the verification algorithm, the verifier
checks the verification equation using the hash of the message and the commit-
ment using the secret key s ∈ Zq. If the secret signer bit is 1, then the signature
will be valid, otherwise the verification equation will not hold. Thus the verifier
will learn the secret bit of the signer. We also assume the existence of a random
oracle H.

Common input: G, g1, g2, v, k ∈ G, H :M×G→ Zq
Signers’s private input: s1, s2 ∈ Zq : v = g−s11 g−s22 and b ∈ {0, 1}
Verifier’s private input: s ∈ Zq : k = gs1
Recipient’s private input: m

Commitment Phase. The Signer:

– Picks random r1, r2 ←R Zq;
– Computes x := gr11 g

r2
2 ;

– Sends x to the recipient.

Blinding Phase. The Recipient:

– Selects blinding factors u1, u2, d←R Zq;
– Computes x∗ := xgu1

1 gu2
2 vd, e∗ := H(m,x∗), e := e∗ − d;

– Sends e to the signer.

Signing Phase. The Signer:

– Computes y1 := r1 + es1, y2 := r2 + es2;
– If b = 1 then computes (bsig1, bsig2) := (ky1 , y2);
– If b = 0 then selects randomly (bsig1, bsig2)←R G× Zq;
– Outputs (x, e, bsig1, bsig2).

Unblinding Phase. The Recipient:

– Unblinds by computing sig1 := bsig1 · ku1 and sig2 := bsig2 + u2;
– Outputs (m,x∗, e∗, sig1, sig2).

Verification Phase. The Verifier:

– Computes e∗
′

:= H(m,x∗)
– Computes y1

′ := sig1 and y2
′ := sig2;

– Checks if x∗s = y1
′g2

y2
′·sve

∗·s and e∗
′

= e∗.

Fig. 5. The original CBS Scheme based on Okamoto Schnorr signatures

20

C Modified Okamoto-Schnorr CBS Scheme

The protocol in Figure 5 can be combined with a multiplicatively homomorphic
encryption scheme. It can also be made more practical if the parties agree in a
common method to randomly generate the commitment message x. Moreover,
we can let the signer play the role of the verifier, as a way to send the secret bit
to oneself in the future.

We present this modified version in Figure 6. Note that the unblinding of
the first part of the signature, still occurs on the exponent, but this time in
encrypted form.

Common input: G, g1, g2, h1, v, x ∈ G, public keys k, h, H :M×G→ Zq
Signers’s private input: s ∈ Zq : k = gs1, z ∈ Zq : h = hz1 and b ∈ {0, 1}
Recipient’s private input: m

Blinding:

– U chooses random u1, u2, d←R Zq
– U computes x∗ := xgu1

1 gu2
2 vd, e∗ := H(m,x∗) and e := e∗ − d;

– U sends e to S

Signing:

– S randomly selects bsig2 ←R Zq;
– If b = 1 then compute bsig1 := Eh((x · g−bsig22 · v−e)s);
– If b = 0 then select randomly bsig1 ← G2;
– Output (x, e, bsig1, bsig2).

Unblinding:

– U computes sig1 := bsig1 · Eh(ku1) and sig2 := bsig2 + u2;
– Output (m,x∗, e∗, sig1, sig2).

Verification:

– V recomputes e∗ as H(m,x∗). If e∗ 6= H(m,x∗) V outputs 0.
– V decrypts the first part of the signature to receive y1

′ := Dz(sig1)
– V sets y2

′ := sig2
– V checks if x∗s = y1

′g2
y2
′·sve

∗·s and outputs 1 iff it holds

Fig. 6. Modified Conditional Blind Signatures

	Towards everlasting privacy and efficient coercion resistance in remote electronic voting
	Introduction
	Preliminaries
	Publicly Auditable Conditional Blind Signatures
	The voting protocol
	Security Analysis
	Conclusion
	Analysis of coercion resistance
	Plain Okamoto-Schnorr CBS Scheme
	Modified Okamoto-Schnorr CBS Scheme

