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Abstract. Memory Hard Functions (MHFs) have been proposed as
an answer to the growing inequality between the computational speed
of general purpose CPUs and Application Specific Integrated Circuits
(ASICs). MHFs have seen widespread applications including password
hashing, key stretching and proofs of work. Several metrics have been
proposed to quantify the ‘memory hardness’ of a function. Cumulative
memory complexity (CMC) [AS15] (or amortized Area × Time complexity
[ABH17]) attempts to quantify the amortized cost to acquire/build the
hardware to evaluate the function — amortized by the number of instances
of the function that can be evaluated of this hardware. By contrast,
bandwidth hardness [RD17] attempts to quantify the amortized energy
costs of evaluating this function on hardware — which in turn is largely
dominated by the number of cache misses. Ideally, a good MHF would
be both bandwidth hard and have high cumulative memory complexity.
While the cumulative memory complexity of leading MHF candidates is
well understood, little is known about the bandwidth hardness of many of
the most prominent MHF candidates.
Our contributions are as follows: First, we provide the first reduction
proving that, in the parallel random oracle model, the bandwidth hardness
of a Data-Independent Memory Hard Function (iMHF) is described by
the red-blue pebbling cost of the directed acyclic graph (DAG) associated
with that iMHF. Second, we show that the goals of designing an MHF
with high CMC/bandwidth hardness are well aligned. In particular, we
prove that any function with high CMC also has relatively high bandwidth
costs. This result leads to the first unconditional lower bound on the
bandwidth cost of scrypt in the parallel random oracle model. Third, we
analyze the bandwidth hardness of several prominent iMHF candidates
such as Argon2i [BDK15], winner of the password hashing competition,
aATSample and DRSample [ABH17] — the first practical iMHF with
asymptotically optimal CMC. More specifically, we show that Argon2i
is maximally bandwidth hard as long as the cache-size m is at most

m ∈ O
(
n2/3−ε

)
where n is the total number of data-labels produced

during computation. We also show that aATSample and DRSample are
maximally bandwidth hard as long as the cache-size is m ∈ O

(
n1−ε).

Finally, we show that the problem of finding a red-blue pebbling with
minimum bandwidth cost is NP-hard.



1 Introduction

Memory Hard Functions (MHFs) [Per09,ABMW05] are a crucial building block
in the design of moderately hard key-derivation function and in the design
of egalitarian proof of work schemes [DN92,Bac02]. For example, in password
hashing it is critically important to ensure that it is moderately expensive for an
offline attacker to check each password — even if the attacker uses customized
hardware. The development of Application Specific Integrated Circuits (ASICs)
or Field Programmable Gate Arrays (FPGAs) for computing cryptographic
hash functions such as SHA256 make this goal increasingly challenging. In fact,
Blocki et al. [BHZ18] recently argued that key derivation functions based on
hash iteration (e.g., PBKDF2-SHA256) cannot provide sufficient protection
against a rational (economically motivated) offline attacker without introducing
unacceptably long authentication delays. The Antminer S9, an ASIC customized
for bitcoin mining Bitcoins [Nak08], is able to compute SHA256 hash values
at a rate of 13.6TH/s (approximately 14 trillion hashes per second) using just
1274 Joules of energy per second (Watts). By contrast, the energy needed to
compute SHA256 14 trillion times on a standard CPU would be about six orders
of magnitude higher!

MHFs are based on the observation that memory costs (e.g., latency, band-
width, energy consumption) tend to be equitable across different architectures.
Thus, to develop an “egalitarian” function we want to design a function where
evaluation costs are dominated by memory costs. Two of the most promi-
nent approaches to measure the “evaluation cost” of MHFs are capacity hard-
ness [Per09,AS15] and bandwidth hardness [RD17]. Capacity hardness [Per09]
seeks to quantify construction costs i.e., the building/obtaining the hardware
necessary to compute the MHF amortized over the number of instances that
can be evaluated over the lifetime of the device. By contrast, bandwidth hard-
ness [RD17] seeks to quantify the energy costs per evaluation i.e., the cost of
running the hardware.

Broadly speaking there are two types of MHFs: data-dependent memory
hard functions (dMHFs) and data-independent memory hard functions (iMHFs).
As the name suggests an iMHF induces a memory access pattern that must be
independent of the sensitive input (e.g., password) which makes them naturally
resistant to certain side channel attacks e.g., cache-timing [Ber05]. Thus, while
dMHFs may be easier to construct with high capacity/bandwidth hardness these
functions are potentially more vulnerable to side channel attacks.

To a large extent most of the recent cryptanalysis of MHF has focused on
metrics for capacity hardness. In particular, cumulative memory complexity
(CMC) [AS15] and the closely related metric amortized area-time complexity
(aAT) [AB16,ABH17] aim to lower bound the cost of constructing enough chips
to evaluate the function T times per year. For example, if evaluating the function
one time requires us to lock up 1GB of DRAM for 1 second then, at minimum,
an attacker would need to buy roughly 32 (1GB) DRAM chips to evaluate
the function a billion times per year. Alwen et al. [ACP+17] showed that the
dMHF scrypt [Per09] has maximal CMC Ω(n2). Alwen and Blocki [AB16,AB17]
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showed that any iMHF has cumulative memory complexity O
(
n2 log logn

logn

)
and

they exhibited even stronger amortization attacks against against Password
Hashing Competition [PHC] (PHC) winner Argon2i [BDK16] along with other
candidate MHFs such as balloon hashing [BCS16]. Alwen et al. [ABP17] also gave

a theoretical construction of an iMHF with CMC Ω
(

n2

logn

)
, which is essentially

optimal in an asymptotic sense. More recently, Alwen et al. [ABH17] designed
two practical iMHFs called DRSample and aATSample with the same complexity.
Blocki and Zhou [BZ17] showed that Argon2i has CMC at most O

(
n1.767

)
and

at least Ω̃
(
n1.75

)
.

By contrast, the notion of bandwidth-hardness was only introduced re-
cently [RD17] with the intention of lower bounding the energy required to
evaluate the function. Ren and Devadas [RD17] observed that metrics such as
CMC or aAT do not provide an accurate picture of energy consumption. For
example, certain types of memory consume very little energy when idle, but cache
misses are costly because we must retrieve data from RAM. Memory Bound
Functions [ABMW05] are functions whose computation requires a large number
of cache-misses regardless of computation time. Bandwidth hardness [RD17]
relaxes this restriction by requiring that any attacker who evaluates the function
must either 1) incur a large number of expensive cache misses, or 2) must perform
a larger (e.g., super-linear) amount of computation.

Ideally, one would hope to design a MHF that is both bandwidth hard and
capacity hard. However, very little is known about the bandwidth hardness of
practical MHF candidates. Ren and Devadas proposed to cryptanalyze an iMHF
using a variant of the red-blue pebbling game in which red-moves (representing
computation performed using data in cache) have a smaller cost cr than blue-
moves cb (representing data-values being transferred to/from memory) [RD17]
and they gave a theoretical construction of an directed acyclic graph with prov-
ably high red-blue pebbling costs using stacked expander graphs. However, Ren
and Devedas [RD17] did not prove that the red-blue pebbling game captures
bandwidth hardness in the parallel random oracle model so it was not known for
sure whether or not the corresponding iMHF was maximally bandwidth hard.
Similarly, Ren and Devedas [RD17] showed that scrypt is bandwidth hard under
a restrictive assumption about the cache-architecture adopted by the attacker e.g.,
they need to assume data from RAM can only be retrieved in larger chunks. Prior
to our work nothing was known about the bandwidth hardness of practical MHF
candidates such as Argon2i [PHC,BDK16], Balloon Hashing [BCS16], DRSample
and aATSample [ABH17].

Our Contributions We formalize the notion of bandwidth hardness in the
parallel random oracle model and show that bandwidth hardness is captured by
the red-blue pebbling game. This does for bandwidth hardness what Alwen and
Serbinenko [AS15] did for CMC when they showed that CMC is captured by the
parallel black pebbling game. One immediate consequence of this result is that
the stacked expander iMHF is bandwidth hard [RD17].
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Second, we demonstrate that CMC lower bounds can be used to directly lower
bound bandwidth costs. In particular, we show that bandwidth costs are at
least Ω

(√
cbcrCMC − cb ·m

)
. Intuitively, an attacker running in time t will pay

computation costs at least t · cr3 and bandwidth cost at least
(
CMC
t·w −m

)
· cb

where m denotes the number of w-bit words that can be stored in cache. Alwen
et al. [ACP+17] show that scrypt has CMC at least Ω(n2 · w). Combined with
our result this implies that scrypt has bandwidth cost at least Ω

(√
cbcrn

)
.

While we would ideally hope for a lower bound of Ω(n · cb), we stress that this is
the first lower bound for scrypt that does not require any restrictive assumptions
about cache-architecture [RD17]. The result also demonstrates that the goals
of constructing a MHF with high CMC and constructing a MHF with high
bandwidth hardness are well aligned.

Third, we introduce a new technique to lower-bound the red-blue pebbling
cost of a DAG and we use this new technical hammer to lower-bound the reb-
blue pebbling cost of several important iMHF candidates including: Argon2iB
(the current version of PHC winner Argon2i [BDK16]), Argon2iA (an older
version of Argon2, which is similar to balloon hashing [BCS16] 4), DRSample
and aATSample. In particular, we show that if m = O

(
n2/3−ε

)
then any PROM

attacker with cache-size m · w bits must incur cost min{Ω (n · cb) , ω(n · cr)}. In
particular, Argon2iB is maximally bandwidth hard whenever the attacker’s cache
size is sufficiently small. Argon2iB uses a round function with word size w = 210

Bytes. Assuming that we set our memory hardness parameter n = 220 (filling
nw = 1GB of RAM in about 1 second according to Argon2 benchmarks [BDK16])
then n2/3 ·w corresponds to a cache-size of 10MB— our lower bounds would not
apply if the attacker’s cache size is larger. We prove even stronger lower bounds
for DRSample and aATSample. In particular, we prove that these functions are
maximally bandwidth hard as long as m = O

(
n1−ε

)
. Interestingly, DRSample

and aATSample have asymptotically higher CMC as well, which is consistent
with our observation that the goals of designing a MHF with high CMC is well
aligned with the goal of designing an maximally bandwidth hard function.

While we prove that DRSample, aATSample and Argon2iB are all maximally
bandwidth hard in an asymptotic sense, it would be nice to gain a more precise
understanding of the constant factors in these bounds. To this end it would be
useful to develop an efficient algorithm to determine the minimum cost red-blue
pebbling of a DAG G. However, our final result is a negative one. We show that
it is NP-Hard to compute the minimum cost red-blue pebbling of a DAG G.

3 In the parallel random oracle measure running time is measured in terms of the
number of sequential queries that are made to the random oracle. Thus, there must
be at least one query made to the random oracle during each time step — otherwise
the round would not have been incremented.

4 In particular, edges in Argon2iA and Balloon Hashing are both sampled from the
uniform distribution.
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1.1 Overview of Our Results

An iMHF fG,H is defined by a labeling game over a DAG G and a random
oracle H. In particular, the label `v of an intermediate node v is computed as
`v = H

(
v, `v1 , . . . , `vindeg

)
where v1, . . . , vindeg are the parents of node v in G. The

output of the random oracle is the label of the final sink node. Before we provide
an overview of our technical results it is necessary to first (informally) introduce
the black pebbling game and the red-blue pebbling game.

Graph Pebbling

Black Pebbling. Given a directed acyclic graph (DAG) G = (V,E), the goal of
the (parallel) black pebbling game is to place pebbles on all sink nodes of G (not
necessarily simultaneously). The game is played in rounds and we use Pi ⊆ V
to denote the set of currently pebbled nodes on round i. Initially all nodes are
unpebbled, P0 = ∅, and in each round i ≥ 1 we may only include v ∈ Pi if all of v’s
parents were pebbled in the previous configuration (parents(v) ⊆ Pi−1) or if v was
already pebbled in the last round (v ∈ Pi−1). In the sequential pebbling game we
can place at most one new pebble on the graph in any round (i.e., |Pi\Pi−1| ≤ 1),
but in the parallel pebbling game no such restriction applies. The space cost of the
pebbling is defined to be maxi |Pi|, which intuitively corresponds to minimizing
the maximum space required during computation of the associated function, and
relates to the space-complexity of the black-pebbling game. Gilbert et al. [GLT79]
studied the space-complexity of the black-pebbling game and showed that this
problem is PSPACE − Complete by reducing from the truly quantified boolean
formula (TQBF) problem. Given a (parallel) legal black pebbling P1, . . . , Pt of a
DAG G, we define the cumulative cost to be |P1| + . . . + |Pt|. Then we define

Πcc(G) (resp. Π
‖
cc(G) ) as the minimum cumulative cost of any legal sequential

(resp. parallel) black pebbling of G.
Alwen and Serbinenko [AS15] show that under the parallel random oracle

model (pROM) of computation, the cryptanalysis of an iMHF, under the amortized
time-space metric, can be approximately reduced to the cumulative cost of a
pebbling strategy. Intuitively, this quantity corresponds to the total space required
during the computation of the associated function and is resilient to adversaries
that use multiple iMHF instances (e.g., multiple password guesses) in parallel.
Blocki and Zhou show that while the actual computation of the amortized
time-space cost of iMHFs is NP− Hard [BZ18], upper and lower bounds may be
computed for several proposed candidate iMHFs [BZ17], continuing a line of
active work [ABP17,AB17,ABH17].
Red-Blue Pebbling. Given a DAG G = (V,E), the goal of the red-blue
pebbling game [HK81] is again to place pebbles on all sink nodes of G (not
necessarily simultaneously) from a starting configuration that contains no pebbles
on any nodes. The game is again played in rounds, with each node possibly
containing a blue pebble or a red pebble at each time step. Informally, at each
time step, for any node v we can swap between a red pebble at v and a blue
pebble at v (and vice versa). Each swap is called a blue move, and while there is
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no limit to the number of blue moves at a single time step, they each have an
associated cost cb. Simultaneously, we may place a red pebble at a node v if all
of v’s parents contained red pebbles in the previous configuration. This manner
of placing a new red pebble is a red move and each occurrence incurs cost cr. We
are allowed to have at most m (cache-size) red-pebbles on the graph at any point
in time. In a sequential red-blue pebbling we are allowed to place at most one
new red pebble on the graph during each round, while no such constraint applies
to a parallel red-blue pebbling. Finally, there is a parameter m that denotes a
threshold on the number of nodes that can contain red pebbles at each time step.
The total cost of the red-blue pebbling is the sum of the costs induced by the
blue moves and the red moves. We define rbpeb‖(G,m) (resp. rbpeb(G,m)) to
be the minimum cost of any legal parallel (resp. sequential) red-blue pebbling of
G that places at most m red-pebbles on the graph at any point in time.
Proving that the Red-Blue Pebbling Game Captures Bandwidth Hard-
ness. We consider the variant of the red-blue pebble game proposed by Ren and
Devadas [RD17] in which red moves have cost cr and blue moves have cost cb —
note that if cr = 0 then we recover the traditional goal of minimizing the number
of cache misses. Ren and Devadas [RD17] proposed the adoption of red-blue
pebbling to model the bandwidth-complexity of iMHFs, with the idea that red
moves correspond to hash computations and blue moves correspond to (more
expensive) swaps between cache and memory. However, they did not prove any
connection between red-blue pebbling costs and the actual bandwidth-costs of a
pROM attacker.

Our contributions are two-fold. First, we formalize the notion of bandwidth
cost of a function fG,H in the parallel random oracle model. Second, we prove that
ecost (fG,H) the bandwidth cost of fG,H is closely related to red-blue pebbling
pebbling costs. This resolves an open question of [RD17].

Theorem 1.1. (Informal, see Theorem 3.3.) Any pROM algorithm that computes

fG,H has bandwidth cost at least ecost (fG,H) ∈ Ω
(
rbpeb‖(G, 8m)

)
.

While Theorem 3.3 is similar to a result of Alwen and Serbinenko who showed
that the cumulative memory complexity of fG,H is captured by the black pebbling
game [AS15], we stress that there are several unique challenges in our reduction.
In particular, it is easier to extract a black pebbling from the execution trace
of a pROM attacker since each new pebble that is placed on the graph during
round i corresponds directly to a random oracle query that was made during
the previous round. However, in the red-blue pebbling model only red moves
correspond to random oracle queries. Intuitively, we expect that blue moves
correspond to labels that are transferred to/from memory, but an attacker may
encode each of these labels in an unexpected way (e.g., encryption). Thus, even if
we can observe the data values being transferred to/from memory we stress that
we cannot directly infer which labels are being transferred making it difficult to
extract a legal red-blue pebbling from the execution trace.

We overcome this difficulty by allowing the red-blue pebbling to use a little bit
of extra memory (e.g., if the pROM attacker has m ·w bits of cache then the red-
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blue pebbling is allowed to use 8m red-pebbles) and by introducing the notion of a
red-blue extension pebbling of a legal black pebbling P = (P1, . . . , Pt). Given a legal
black pebbling extracted from the execution trace of the pROM attacker running
in time t we can partition time into intervals [t0 = 1, t1), [t1, t2), . . . [tk−1, tk = t]
such that 1) during each interval [ti, ti+1) the pROM attacker transfers at least
mw bits from memory (at cost m · cb), and 2) there is a red-blue extension
pebbling that makes at most O (m) blue moves during each interval [ti, ti+1).

To partition time into intervals we introduce a set QueryFirst(x, y)) that
intuitively corresponds to the data-labels that appear first as input to a random
oracle query during the time interval [x, y) before the label appears as the output
of some random oracle query during the same interval. We then define t1 to
be the minimum pebbling round such that there exists 1 ≤ j1 < t1 such that
QueryFirst(j1, t1) has size at least 3m. Similarly, once t1 < . . . < ti−1 have
been defined we can define ti > ti−1 to be the minimum pebbling round such that
there exists ti > ji ≥ ti−1 s.t. QueryFirst(ji, ti) has size at least 3m. At the
beginning of each interval [ti, ti+1) our red-blue extension pebbling will place red
pebbles on all nodes in the set QueryFirst(ji, ti) (e.g., to “load” these values
into cache). We can accomplish this legally since the extension pebbling is allowed
to use up to 8m red-pebbles. Once we have red pebbles placed on all of these
nodes the extension pebbling is able to finish this interval without changing any
other blue nodes into red-nodes (i.e., zero cache misses).

To prove that the pROM attacker must transfer at least mw bits from memory
during each interval we rely on extractor argument. In particular, let γi encode the
messages transferred to/from cache during the interval [ti, ti+1). Our extractor
will extract 3m labels (without querying the random oracle at these points) by
simulating the pROM attacker starting with a hint. The labels we will extract
correspond to the nodes in the set QueryFirst(ti, ti+1)) The hint consists of γi
along with other information such as the current state of the cache (at most mw
bits) indices of the 4m labels that we want to extract (4m log n bits to encode)
and the index of the first query in which each label appears as input to a random
oracle query (4m log q bits to encode where q is an upper bound on number
of queries made by the attacker). Since, a random oracle is incompressible the
extractor’s hint must have length at least 4mw if we expect the extractor to
output 4m labels (i.e., 4m distinct random oracle outputs of length w assuming
there are no hash collisions) without querying the random oracle at these points
so it follows that |γi| ≥ m · w.
On the Relationship between Bandwidth Complexity and Cumulative
Memory Complexity. We show that bandwidth complexity and cumulative
memory complexity are intricately related concepts. If rbpeb‖(G,m) is the mini-
mum energy cost5 of any legal parallel reb-blue pebbling of G with cache size m
and Πcc is the cumulative complexity of sequential black pebbling, then

Theorem 1.2.

rbpeb‖(G,m) ≥ 2cb

(
Πcc(G)

t
− 2m

)
+ crt ∈ Ω

(√
cb · cr ·Πcc(G)

)
,

5 In contrast to [AB17], we use energy cost to refer to bandwidth cost.
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where m is the cache size, t is the number of steps in the pebbling, cb is the cost
of a blue move and cr is the cost of a red move.

Theorem 1.2 demonstrates that the goals of designing an MHF with high
cumulative complexity and high bandwidth complexity are well aligned. In fact,
we use Theorem 1.2 to show that a family {Gn}∞n=1 constant indegree DAGs
constructed by Schnitger [Sch83] has high bandwidth costs because Πcc(Gn) ∈
Ω(n2) [AdRNV16]. As an intermediate step to proving Theorem 1.2 we show that

rbpeb‖(G,m) ≥ rbpeb(G, 2m). This result is interesting as it suggests that an
attacker will not be able to dramatically decrease bandwidth costs by exploiting
parallelism. By contrast, for any constant indegree DAG G it is known that the

parallel cumulative pebbling cost is at mostΠ
‖
cc(G) ∈ O

(
n2 log logn

logn

)
[AB16] while

it is known that Πcc(Gn) ∈ Ω(n2) for the constant indegree DAGs constructed
by Schnitger [Sch83].

We also prove a similar theorem that directly relates ecost and cmc. In partic-

ular, we show that ecost (fG,H) ∈ Ω
(√

cbcrcmc (fG,H)− cbm
)

. Crucially, this

bound applies to any MHF not just for iMHFs. For iMHFs we could use our
pebbling reduction to relate ecost (fG,H) to rbpeb‖(G) and we could use [AS15]
to relate cmc (fG,H) to Πcc(G), but no such pebbling reduction is known for
dMHFs. Combining our result with a result of Alwen et al. [ACP+17] we obtain
the following lower bound for scrypt: ecost (scrypt) ∈ Ω

(√
cbcrn

)
. While Ren

and Devadas [RD17] previously proved that ecost (scrypt) ∈ Ω (n · cb) their
result assumes that the attacker must transfer data to/from cache in blocks of
size w. While our lower bound is weaker it is the first unconditional lower bound
on the bandwidth hardness of scrypt. We conjecture that our results could be
extended to show that ecost (scrypt) ∈ Ω (n · cb) without condition.

On the Bandwidth Hardness of Important iMHF Candidates. In Sec-
tion 5, we provide lower bounds on the bandwidth hardness of several impor-
tant iMHF candidates including Argon2iA, Argon2iB [BDK16], aATSample and
DRSample [ABH17]. We use Argon2iA to refer to v1.1 and we use Argon2iB to
refer to versions v1.2+ 6. Thus, Argon2iB (the current version of Argon2i) is par-
ticularly important to cryptanalyze as it won the password hashing competition
and is being considered for standardization by the Cryptography Form Research
Group (CFRG) of the IRTF [BDKJ16].

aATSample and DRSample are important to study as they are the first prac-
tical iMHF candidate with nearly asymptotically optimal cmc. In particular,

cmc (DRSample) ∈ Ω
(
n2·w
logn

)
and cmc (aATSample) ∈ Ω

(
n2·w
logn

)
[ABH17] while

6 The specification of Argon2i has changed several times, but the only changes that
affect are analysis are changes that affect the underlying DAG G. A change to
the edge distribution was introduced in v1.2 where a non-uniform indexing was
introduced. We use Argon2iB to refer to the version that is currently being considered
for standardization by the Cryptography Form Research Group (CFRG) of the
IRTF[BDKJ16].
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any iMHF fG,H has cmc (fG,H) ∈ O
(
n2·w·log logn

logn

)
. For the families of graphs

generated by aATSample and DRSample [ABH17] we show the following:

Theorem 1.3. Let G be a graph generated by aATSample. Then there exists a
constant C > 0 so that for all m ≤ Cn

logn , it follows that

rbpeb‖(G,m) ≥ min(Ω(n)cb, Ω(n log n)cr),

with high probability.

Theorem 1.4. Let G be a graph generated by DRSample and 0 < ρ < 1. Then
there exists a constant C > 0 so that for all m ≤ Cnρ, it follows that

rbpeb‖(G,m) ≥ min
(
Ω(n)cb, Ω(n3/2−ρ/2)cr

)
with high probability.

We provide lower bounds on the bandwidth hardness on the family of graphs
generated by Argon2iB. The bounds are slightly weaker for Argon2iB in that
they only hold if the attacker has cache size m ≤ Cn2/3−ε.

Theorem 1.5. Let G be a graph generated by Argon2iB. Then there exists a
constant C > 0 so that for any 0 < ε < 2/3 and for all m ≤ Cn

2
3−ε, it follows

that
rbpeb‖(G,m) ≥ min(Ω(n)cb, Ω(n5/3)cr),

with high probability.

At a technical level our template to establish each of these lower bounds is
similar. First, we show that the underlying DAG is “block-depth robust.” Second,
we show that the graph is “well dispersed.” Essentially, if our block size is b,
then we show that for every interval I = [i, j] ⊆ [n/2, n] of Ω(n/b) nodes in the
second half and almost every block B of b consecutive nodes in [n/2] there is an
edge from B to I. We then consider the pebbling interval [ti, tj ] beginning at the
time ti during which a pebble is first placed on node i and ending at the time
tj during which a pebble is first placed on node j. Because the graph is “well
dispersed” we will need to place a red pebble on at least one node from almost
every block. If the cache size is m ∈ o (n/b) then most of these Ω(n/b) blocks
will begin with no pebbles in cache. Thus, it is either the case that 1) we make
Ω(n/b) blue moves, or 2) we must re-pebble almost every block at some point
during the interval [ti, tj ]. Because the DAG is block-depth robust this second
step will be prohibitively expensive.
On the Computational Complexity of Minimum Cost Red-Blue Peb-
bling. While we can establish asymptotic lower bounds on the bandwidth cost of
important iMHF candidate, one would ideally want to find the precise bandwidth
cost for each function. In particular, given a graph G and a cache parameter m
we would like to compute rbpeb‖(G,m) precisely. However, we show in Section 6
that, unfortunately, exactly computing the red-blue pebbling cost of a DAG G is
NP− Hard, even under specific assumptions:
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Theorem 1.6 (Informal). Even for cb ≤ 3ncr, the problem of determining the
red-blue pebbling cost of a directed acyclic graph G is NP− Hard.

We remark that when cr = 0 the problem is PSPACE complete [Liu17]. In
particular, it is PSPACE complete to decide whether or not there is a legal black
pebbling of a graph G using at most m black pebbles [GLT79]. Demaine and
Liu [DL17] show that even determining the minimum number of pebbles to an
additive n1/3−ε term is PSPACE-hard. If cr = 0 then a black pebbling that uses
at most m black pebbles corresponds to a red-blue pebbling with cost zero (no
blue moves) and vice versa. However, to the best of our knowledge, when cr > 0
(i.e., when we charge for computation) nothing was known about the complexity

of computing rbpeb‖(G,m). We remark that whenever cb
cr
∈ poly(n) this means

that the decision problem “is rbpeb‖(G,m) ≤ k” is in NP. In particular, for a
DAG with indeg(G) = O (1) there is always a red-blue pebbling with cost at
most O (n · cr + n · cb) — pebble nodes in topological order and never remove a
pebble from a node. Thus, the optimal red-blue pebbling runs in time at most

t ∈ O
(
n+ n·cb

cr

)
since any red-blue pebbling running in time t in the parallel

random oracle model has cost at least t · cr.

2 Preliminaries

We use [n] to denote the set {1, 2, . . . , n} and [a, b] = {a, a + 1, . . . , b} where
a, b ∈ N with a ≤ b. Similarly, we use (a, b] to denote the set [a, b]− {a}.

We assume a given directed acyclic graph (DAG) G = (V,E) is labeled in
topological order and say that G has size n if |V | = n. We say a node v ∈ V
has indegree δ = indeg(v) if there exist δ incoming edges δ = |(V × {v}) ∩ E|.
More generally, we say that G has indegree δ = indeg(G) if the maximum
indegree of any node of G is δ. A node with indegree 0 is called a source node
and a node with no outgoing edges is called a sink. We use parentsG(v) =
{u ∈ V : (u, v) ∈ E} to denote the parents of a node v ∈ V . In general, we
use ancestorsG(v) =

⋃
i≥1 parents

i
G(v) to denote the set of all ancestors of v —

here, parents2G(v) = parentsG (parentsG(v)) denotes the grandparents of v and
parentsi+1

G (v) = parentsG
(
parentsiG(v)

)
. When G is clear from context we will

simply write parents (resp. ancestors). We denote the set of all sinks of G with
sinks(G) = {v ∈ V : @(v, u) ∈ E} — note that ancestors (sinks(G)) = V . We
often consider the set of all DAGs of equal size Gn = {G = (V,E) : |V | = n}
and often will bound the maximum indegree Gn,δ = {G ∈ Gn : indeg(G) ≤ δ}.
For directed path p = (v1, v2, . . . , vz) in G, its length is the number of nodes it
traverses, length(p) := z (as opposed to the number of edges). We say the depth
d = depth(G) of DAG G is the length of the longest directed path in G.

An iMHF can be specified by a DAG G and a random oracle H as in the
next definition.

Definition 2.1. Given a directed acyclic graph G = (V,E) with a set of sink
nodes sinks(G) and a random oracle function H : Σ∗ → Σ` over an alphabet Σ,
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we define the labeling of graph G as labG,H : Σ∗ → Σ∗. We omit the subscripts
G,H when the dependency on the graph G and hash function H is clear. In
particular, given an input x the (H,x) labeling of G is defined recursively by

labH,x(v) =

{
H(v, x), indeg(v) = 0

H (v, labH,x(v1), . . . , labH,x(vd)) , indeg(v) > 0,

where v1, . . . , vd are the parents of v in G, according to some predetermined
lexicographical order. We define fG,H(x) = {labH,x(s)}s∈sinks(G). In particular, if
there is a single sink node sG then fG,H(x) = labH,x(sG).

We will often consider graphs obtained from other graphs by removing subsets
of nodes. Therefore if S ⊂ V , then we denote by G− S the DAG obtained from
G by removing nodes S and incident edges.

Given a directed acyclic graph (DAG) G = (V,E) the goal of the red-
blue pebbling game is to place pebbles on all sink nodes of G (not necessarily

simultaneously). Let RB = ((B0, R0), (B1, R1), . . . , (Bt, Rt)) (resp. RB‖) denote
the set of all sequential (resp. parallel) red-blue pebblings of a DAG G. The
game is played in rounds and we use Bi ⊆ V (resp. Ri ⊆ V ) to denote the set of
nodes with blue pebbles (resp. red pebbles) in round i. Initially, no nodes contain
pebbles, so that B0∪R0 = ∅. The goal is to eventually place a red-pebble on every
node in V (not-necessarily simultanesouly) so we require that V ⊆

⋃
iRi. We also

require that in every round i > 0 we have (1) parents (Ri \Ri−1) ⊆ Ri−1 ∪Bi−1,
(2) parents (Ri \Ri−1) ⊆ Ri−1 ∪Bi−1 and (3) |Ri| ≤ m during every time step i.

We let RB‖(G,m) be the set of all valid parallel red-blue pebblings of G with
a cache-size of m pebbles. Intuitively, in each round i ≥ 1 we may place a red
pebble on a node v ∈ V if either parents(v) ⊆ Ri−1 all of v’s parents contain red
pebbles in the previous configuration (called a red move) or v contained a blue
pebble in the previous round (called a blue move). On the other hand, we may
place a blue pebble at v ∈ Pi (also called a blue move) if v contained a red pebble
in the previous round. Blue moves represent data transfer to/from memory and
are more expensive than red-moves (computation).

We say that a pebbling ((B0, R0), (B1, R1), . . . , (Bt, Rt)) ∈ RB‖(G,m) is
sequential if |Ri \Ri−1| ≤ 1 for all 0 < i ≤ t, while for a parallel pebbling we
make no such restriction.

Pebbling Costs. We use

#BMi = |{v ∈ Ri \Ri−1 : parents(v) 6⊂ Ri−1}|+ |Bi \Bi−1|

to denote the number of blue moves made during round i, and we use

#RMi = |Ri \Ri−1| − |{v ∈ Ri \Ri−1 : parents(v) 6⊂ Ri−1}|

to denote the number of red moves during round i 7.

7 In some cases we may have v ∈ Bi−1 and parents(v) ⊂ Ri−1 so that we could place a
pebble on node v using either a red move or a blue move. In such cases we will assume
that this is accomplished by a red move, since blue moves will be more expensive.
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Given cost parameters cr and cb, we define the energy cost of a red-blue
pebbling (R,B) = ((R1, B1), . . . , (Rt, Bt)) to be

rbpeb‖ ((R,B)) =

t∑
i=1

cb#BMi + cr#RMi .

Generally, it is assumed that cr is much larger than cb. Finally, we define

rbpeb‖ (G,m) = min
(R,B)∈RB‖(G,m)

rbpeb‖ ((R,B))

to be the cost of the optimal red-blue pebbling of G with maximum cache-
size of m red pebbles. We consider the computational complexity of computing
rbpeb‖ (G,m), defining a decision version below and showing it is NP− Complete.

The decision problem rbpeb‖ is defined as follows:
Input: a DAG G on n nodes, parameter cb, cr, and integers m, d > 0.
Output: Yes, if rbpeb‖(G,m) ≤ d; otherwise No.

2.1 Depth-Robustness

The cumulative memory complexity of an iMHF is very closely related to the
notion of depth-robustness [AB16,ABP17,ABH17,BZ17]. In particular, we know

that Π
‖
cc(G) ≥ ed for a depth-robust DAG and that Π

‖
cc(G) ∈ O

(
en+ n ·

√
dn
)

.

We will show that Π
‖
cc(G) can be used to lower bound rbpeb‖(G,m), thus depth-

robustness can also be a useful tool to lower bound bandwidth costs.

Definition 2.2 (Block Depth-Robustness). Given a node v, let N(v, b) =
{v− b+ 1, . . . , v} denote a segment of b consecutive nodes ending at v. Similarly,
given a set S ⊆ V , let N(S, b) = ∪v∈SN(v, b). We say that a DAG G is (e, d, b)-
block-depth-robust if for every set S ⊆ V of size |S| ≤ e, we have depth(G −
N(s, b)) ≥ d. If b = 1, we simply say G is (e, d)-depth-robust and if G is not
(e, d)-depth-robust, we say that G is (e, d)-depth-reducible.

Note that when b > 1 (e, d, b)-block-depth robustness is a strictly stronger notion
that (e, d)-depth-robustness since the set N(S, b) of nodes that we remove may
have size as large as |N(S, b)| = eb. Hence, (e, d, b ≥ 1)-block depth robustness
implies (e, d)-depth robustness. On the other hand, (e, d)-depth robustness only
implies (e/b, d, b)-block depth robustness.

2.2 Metagraphs

We will also frequently use the notion of a metagraph in our analysis. For a fixed
integer m ∈ [n], let n′ = bn/mc. For all i ∈ [n′], let Mi = [(i− 1)m+ 1, im] ⊆ V .
Moreover, we denote the first and last thirds respectively of Mi with

MF
i =

[
(i− 1)m+ 1, (i− 1)m+

⌊m
3

⌋]
⊆Mi ,
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and

ML
i =

[
(i− 1)m+

⌈
2m

3

⌉
+ 1, im

]
⊆Mi .

Given a DAG G, we call a DAG Gm = (Vm, Em) with the following properties
the metagraph of G.

Nodes: Vm contains one node vi per set Mi. We call vi the simple node and Mi

its meta-node.
Edges: If the end of a meta-node ML

i is connected to the beginning MF
j of

another meta-node we connect their simple nodes.

Vm = {vi : i ∈ [n′]} Em = {(vi, vj) : E ∩ (ML
i ×MF

j ) 6= ∅}.

3 Modeling Energy Complexity as Red-Blue Pebbling

In this section we show that the bandwidth cost of the function fG,H is charac-

terized by the reb-blue pebbling cost rbpeb‖(G,m) in the parallel random oracle
model just as Alwen and Serbinenko [AS15] showed that cumulative memory
complexity can be characterized by the black pebbling game. Similar to [AS15]
our reduction uses Lemma 3.1 as a core building block. In particular, if the
bandwidth cost is significantly smaller than rbpeb‖(G, 8m) for a pROM attacker
with m · w bits of cache then we will be able to build an extractor that receives
a small hint and predicts the random oracle output on a larger set of indices
contradicting Lemma 3.1. One of the unique challenges we face when designing
our extractor is that it is not obvious how to relate messages between cache and
main memory to specific blue pebbling moves. By contrast, a black pebbling
move always corresponds to a specific random oracle query.

Lemma 3.1. [DKW11b] Let B be a series of random bits and let A be an
algorithm that receives a hint h ∈ H and can query B at specific indices. If A
outputs a subset of k indices of B that were previously not queried, as well as
guesses for each of the bits, the probability there exists some h ∈ H so that all

the k guesses are correct is at most |H|
2k

.

3.1 Memory and Cache in the Parallel Random Oracle Model

Before we present our reduction it is first necessary to give a formal definition of
bandwidth costs in the pROM model.

We define a state of an algorithm AH(.) to be the tuple (σ, ξ), where σ
contains the contents of the cache and has size at most mw bits, to store at
most m labels, and ξ contains the contents of the memory. We consider a pROM
attacker AH(.) with cache size m ·w who is given oracle access to a random oracle
H : {0, 1}∗ → {0, 1}w. In particular, the cache is large enough to store m labels.
An execution of AH(.) on input x proceeds in rounds as follows. Initially, the state
at time 0 is (σ0, ξ0) where ξ0 is empty and σ0 encodes the initial input x. At the
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beginning of round i the attacker is given the initial state (σi−1, ξi−1) as well as
the answers Ai−1 to any random oracle queries that were asked at the end of the
last round. The algorithm AH(.) may then perform arbitrary computation and/or
transfer data between memory and cache. The round ends when the attacker
outputs a new state (σi, ξi) along with a batch of queries Qi = {qi1, qi2, . . . , q

ki
i }.

Since the attacker only has cache-size m · w we only allow the attacker to make
at most |Qi| ≤ m queries during a single step (otherwise the attacker won’t even
have room to store all of the responses).

Message Passing. We allow the attacker to specify arbitrary functions F1, F2,
F3 and F4 for communication between cache and memory during each round so
long as the specification of each function is independent of the random oracle H
(e.g., we cannot query to the random oracle in between rounds). In particular, the
function F1 (σi−1, Ai−1) = r1i is used to specify the first message we will send to
memory during round i — in the event that we don’t send any message to memory
we define F1 (σi−1) = ⊥. Similarly, the function F2(ξi−1, r

1
i ) = s1i specifies the

response from memory (or ⊥ if there is no response). One r1i , s
1
i , . . . , r

j−1
i , sj−1i

have been defined we set rji = F1

(
σi−1, Ai−1, r

1
i , s

1
i , . . . , r

j−1
i , sj−1i

)
and rji =

F2

(
ξi−1, r

1
i , s

1
i , . . . , r

j−1
i , sj−1i , rji

)
. We terminate when rji = ⊥ or when sji = ⊥.

We let Ri = {r1i , r2i , . . . , r
`i
i } denote the sequence of messages sent from cache to

memory during round i and we let Si = {s1i , s2i , . . . , s
`i
i } denote the responses

send from memory back to the cache. Finally, the round ends when the attacker
uses the function F3 (ξi−1, Ri, Si) = ξi to output a new state ξi for memory and
F4 (σi−1, Ri, Si) to ouput a new state σi for cache and a new batch Qi of at most
m random oracle queries. At this point AH(.) outputs the next state (σi, ξi) along
with the next batch of queries Qi

Crucially, the functions F2 and F3, which are used to generate response from
main memory and update the state of main memory at the end of the round, do
not have access to σi−1 (the state of cache) or Ai−1 (the answers to random oracle
queries). In particular, any information about σi−1 (cache-state) and Ai−1 (most
recent answers to random oracle queries) that main memory receives must be
communicated through one of the messages in the set Ri. Similarly, the functions
F1 and F4 are used to generate the requests sent from cache to main memory, to
update the state of cache σi at the end of the round and to output the next batch
Qi of random oracle queries. Crucially these functions do not have access to ξi−1
(the state of memory). Thus, any information about ξi−1 must be communicated
through one of the responses in the set Si.

Dziembowski et al. [DKW11a] also addresses communication between two
parties, Asmall (e.g., a space-bounded virus) and Abig, over a bounded channel.
However, both parties in this model can query the random oracle. This is a
crucial difference, since one of the parties in our model, the main memory, is
strictly forbidden from querying the random oracle to avoid trivialization of the
problem (e.g., the attacker can perform all computation in RAM with no blue
moves).
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Execution Trace. We define the execution trace of the algorithm AH(.) by the
sequence of cache states, memory states, messages passed between cache and
memory, and queries made to the random oracle H. Formally, the execution
trace is TraceA,R,H(x) = {(σi, ξi, Ri, Si, Qi)}ti=1, where the trace TraceA,R,H(x)
is dependent on the algorithm AH(.), random oracle H, internal randomness R,
and input value x. Then we say the cost of the execution trace is

cost(TraceA,R,H(x)) =

t∑
i=1

crki +

`i∑
j=1

cb
w

(
|rji |+ |s

j
i |
) .

Intuitively, the cr term is the cost of all of the queries we make to the random
oracle H and the cb terms result from the messages passed between cache and
memory — here cb denotes the cost of transferring w bits between cache and
memory.

We now formally define the energy cost of computing a function based on its
execution trace.

Definition 3.2. Given constants cb and cr, the energy cost ecost of a function
fG,H is defined by

ecostq,ε(fG,H ,m · w) = min
A,x

E [cost(TraceA,R,H(x))],

where the minimum is taken over all valid inputs x and all algorithms A with
cache size m · w bits making at most q queries that compute fG,H(x) correctly
with probability at least ε.

3.2 Red-Blue Extension Pebbling

We are now ready to prove our main result in this section. Theorem 3.3 lower
bounds the energy cost ecostq,ε(fG,H ,m ·w) of the function fG,H with cache size

m ·w using rbpeb‖(G, 8m) the red-blue pebbling cost of the DAG G with 8m red
pebbles.

Theorem 3.3. For any G and any AH(.)
mw making at most q < 2w/20 queries,

then for 4 log n < w,

ecostq,ε (fG,H ,m · w) ≥ ε

16
rbpeb‖ (G, 8m) .

Given a DAG G and a legal black pebbling P = (P1, . . . , Pt) ∈ P‖(G) with
|Pi+1 \ Pi| ≤ m we say that a (legal) red-blue pebbling ((B1, R1) , . . . , (Bt, Rt)) ∈
RB‖(G,m) is a k-extension of a black pebbling P if for all i ∈ [t] we can find a
small set Ei ⊆ V (G) such that |Ei| ≤ k, Pi ⊆ Bi ∪Ri and Ri ∪Bi = Pi ∪Ei. We

let RBExt(P,m, k) ⊆ RB‖ (G,m) denote the set of all possible k-extensions of P .
To prove Theorem 3.3 we extract a legal black pebbling P = (P1, . . . , Pt) ∈ P‖(G)
from the execution trace of AH(.), and then use P to build a legal extension
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pebbling ((B1, R1) , . . . , (Bt, Rt)) ∈ RBExt(P,m, 7m). Our extension pebbling
may use up to 8m = (m + 7m) red-pebbles, but the pROM attacker A has a
cache size mw bits — enough to store exactly m labels. We then show how to
upper bound the cost of the extension pebbling and lower bound the energy cost
of of the attacker A in the random oracle.

Step 1: Since the ε term is needed to account for algorithms that fail cheaply,

we focus on the instances in which AH(.)
mw correctly computes fG,H . We start

by using AH(.)
mw to extract a legal P = (P1, . . . , Pt) ∈ P‖(G) following Alwen

and Serbinenko [AS15], who show that the computation of a function fG,H with
hash function H and underlying directed acyclic graph G yields a legal black
pebbling with high probability. Given an execution trace TraceA,R,H(x), the
corresponding pebbling BlackPebbleH (TraceA,R,H(x)) = P0, . . . , Pt is defined
by setting P0 = ∅ and define the pebbles at each subsequent time step i based
on the corresponding batch of queries qi made during iteration i. We then apply
the following rules:

– For each query q in batch qi, if the query has the form v, labH,x(v1), . . . , labH,x(vd)
for some vertex v and its parents v1, . . . , vd, then we add a pebble to node v
in Pi.

– If there exists another query for v before v is used as input for a query, then
v is deleted from Pi.

Intuitively, at each time j, Pj contains all nodes v whose label will appear as
input to a future random oracle query before the label appears as the output of a
random oracle query. In this manner, we define BlackPebbleH (TraceA,R,H(x)) =
P1, . . . , Pt ⊆ V , which Alwen and Serbineneko show is legal with high probability,

BlackPebbleH (TraceA,R,H(x)) ∈ P‖(G).

Theorem 3.4. [AS15] The pebbling extracted from an execution trace,

BlackPebbleH (TraceA,R,H(x)) ∈ P‖(G),

is a legal black pebbling with probability at least 1− q
2w , where w is the label size

and q is the number of queries made by TraceA,R,H .

Once our black pebbling has been defined we can define the set QueryFirst(t1, t2)
to be the data-labels that will appear as input to a random oracle query during
rounds [t1, t2] before the data-label appears as the output of some random oracle
query made during the same interval. Formally, given P and an interval [t1, t2]
we let

QueryFirst(t1, t2) =

t2⋃
i=t1

parents (Pi \ Pi−1) \

 i−1⋃
j=t1

(Pj \ Pj−1)

 .

Step 2: We partition the pebbling rounds [t] into sub time-intervals (t0 =
0, t1], (t1, t2], . . . recursively follows. Let t1 be the minimum pebbling round such

16



that there exists j < t1 such that |QueryFirst(j, t1)| ≥ 3m — if no such t1
exists then set t1 = t and output (t0, t1]. We emphasize the importance of using
QueryFirst(j, t1), rather using than the naive QueryFirst(0, t1): the latter
never admits an index t1. As a special case if |QueryFirst(i, j)| ≤ 3m for all
i < j ≤ t (i.e., no such intervals exist) we remark that there is a red-blue
extension pebbling in RBExt(P, 8m, k) that requires 0 blue moves at at most∑
i |Pi \ Pi−1| red-moves.
Once t1 < . . . < ti−1 have been defined we let ti > ti−1 denote the

minimum pebbling round such that there exists ti−1 ≤ j < ti such that
|QueryFirst(j, ti)| ≥ 3m — if no such ti exists then we set ti = t. Thus, we can
assume that we have partitioned time into several intervals (t0 = 0, t1], (t1, t2], . . ..
We now argue that the attacker must pay Ω(m) blue moves during each sub-
interval except the last one and that the extension pebbling has at most 4m blue
moves during each interval — except for the first one where the the cost is 0.

First, note that for j < ti, any node in QueryFirst(j + 1, ti+1) must either
be in QueryFirst(ti, ti+1) or have been pebbled between rounds ti and j. Hence,
we have the following invariant:

Invariant 1 For any j ∈ (ti, ti+1),

QueryFirst(j + 1, ti+1) \
j⋃

i=ti

(Pi/Pi−1) ⊆ QueryFirst(ti, ti+1).

Step 3: We can argue that there is an extension pebbling that has at most
4m blue moves during each interval. In particular, we set k = 7m and we will
define an extension pebbling

(B∗, R∗) ∈ RBExt(P, 8m, k)

by dividing the cache into two sets of size 4m at each time i.
We now define sets Rinteri and Rlegali with the purpose of showing that

Ri = Rlegali ∪Rinteri is a legal red-blue pebbling with Bi ⊃ Pi. We set Rinterti = {}
at the start of each time interval (ti, ti+1] and for each j ∈ (ti, ti+1] we have

Rinterj =
(
Rinterj−1 ∪ (Pj \ Pj−1)

)
∩QueryFirst(j, ti+1).

Intuitively, Rinterj stores all of the red-pebbles we have computed during the
interval (ti, j] that are later needed in the interval [j + 1, ti+1). Thus, any node
that is pebbled during rounds (ti, j] and subsequently needed in round (j+1, ti+1)
must be in Rinterj , yielding the following invariant.

Invariant 2 For any j ∈ (ti, ti+1),

QueryFirst(j + 1, ti+1) ∩
j⋃

i=ti

(Pi/Pi−1) ⊆ Rinterj

To maintain legality across all time steps, we add a few rules about blue moves:
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(1) We convert a pebbled node v from blue to red if node v is in QueryFirst(ti, ti+1).

That is for any j ∈ [ti, ti+1), we define Rlegalj = QueryFirst(ti, ti+1).
(2) We convert a pebbled node v ∈ Rj from red to blue at time j if node v is

in QueryFirst(ti, ti+1) for some later interval (ti, ti+1) with j < ti and if
v /∈ Bj is not already stored in cache. In this case it will be helpful to “charge”
the cost cb of this blue move to the future interval (ti, ti+1).

We now show the following bound on the size of QueryFirst(j, ti+1).

Lemma 3.5. For any j ∈ (ti, ti+1),

|QueryFirst(j, ti+1)| ≤ 4m.

Proof. Observe that QueryFirst(i+ 1, j) \QueryFirst(i, j) ⊆ (Pi+1 \ Pi) and
that QueryFirst(i, j + 1) ⊆ QueryFirst(i, j) ∪ parents (Pj+1 \ Pj). Otherwise,
we would have |QueryFirst(j, ti+1 − 1)| ≥ 4m − |parents (Pj+1 \ Pj)| ≥ 3m,
which contradicts our choice of ti+1.

Lemma 3.6. For each (ti, ti+1), {Ri} = {Rlegali ∪Rinteri } is a legal pebbling.

Proof. First, observe that parents(Pj+1/Pj) ⊆ QueryFirst(j, ti+1) since any
parents of Pj+1 are either in Pj or not pebbled in round j, which inherently places
them in QueryFirst(ti, ti+1). Moreover, observe that QueryFirst(j, ti+1) ⊆ Rj ,
since any node in QueryFirst(j, ti+1) must either be in QueryFirst(ti, ti+1) or
have been pebbled at some point during time steps (ti, j). In the former case,

the node would be in Rlegalj , and in the latter case, the node would be in Rinterj .
Thus, parents(Pj+1/Pj) ⊆ QueryFirst(j, ti+1) ⊂ Rj , so the pebbling is legal.

Lemma 3.7. ∣∣Rinterj

∣∣ ≤ 4m.

Proof. First observe that Rinterj ⊆ QueryFirst(j + 1, ti+1) since elements are

only kept in Rinterj if they are needed for some later pebbling round. On the
other hand, |QueryFirst(j + 1, ti+1)| ≤ 4m by Lemma 3.5 and the attacker
being limited to cache size m. Thus,∣∣Rinterj

∣∣ ≤ |QueryFirst(j + 1, ti+1)| ≤ 4m.

Step 4: Argue that during each interval the optimal pebbling is “charged”
at most

8mcb +
∑

j∈(ti,ti+1]

cr |Pj \ Pj−1| ,

and thus rbpeb‖ (B∗, R∗) ≤
∑
i

(
8mcb +

∑
j∈(ti,ti+1]

cr |Pj \ Pj−1|
)

. The point is

that even if we start with a cold cache Rinterti = {} we can still have at most
4m cache-misses during this interval since we never discard red pebbles from
Rinterti . That is, by Lemma 3.7, the number of cache misses during the interval
(ti, ti+1) is at most |QueryFirst(ti, ti+1)| ≤ 4m. We will “charge” double for
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every cache-miss v ∈ QueryFirst(ti, ti+1) to account for the previous blue move
where a blue pebble was initially placed on node v. In this way we can also charge
the cost of all new blue pebbles that are placed on the graph during rounds
[ti, ti+1) to future rounds.

Step 5: Argue that during each interval the algorithm A must pay red-blue
cost at least mcb +

∑
j∈(ti,ti+1]

cr |Pj \ Pj−1|. The point is that we can set up

an extractor that extracts 3m random oracle labels (i.e., 3mw truly random
bits) by simulating A during this time interval. The extractor needs a hint of
size mw + w(#wordsi) where #wordsi is the total amount of data A transfers
to/from cache. If #wordsi ≤ m then we will arrive at a contradiction as we
compressed a random string of length 3mw — contradicting Lemma 3.1. Thus, A
must pay blue cost at least mcb during each interval, and by construction of P =
BlackPebbleH (TraceA,R,H(x)) the red-cost is at least

∑
j∈(ti,ti+1]

cr |Pj \ Pj−1|.
We detail this step formally in Section 3.3.

3.3 Extractor

We now show that if an attacking strategy does not yield a corresponding
legal red-blue pebbling, then the attacking strategy can be modified to form an
extractor for the labels of a subset of nodes. That is, an extractor with access
to the attacking strategy, the state of the cache, and a few select hints can
successfully predict a large number of random bits, which cannot happen with
high probability. The hints we give the extractor will dictate the location of the
random bits, and ensure these bits remain “random” (that is, we do not explicitly
query these locations later). Figure 1 illustrates this setup. In particular, the
extractor will use a hint to simulate AH(.) but this hint does not include the
current state of memory ξi. Instead, the hint will encode the messages that the
attacker expects to receive from main memory which allows us to simulate the
attacker without storing the entire (large) state ξi.

Attacker A

Cache: σi

H(·)

M
e
m

o
r
y
:
ξ
i

−→

Attacker A

Cache: σi

H
in

t
:
σ
i
,
.
.
.

RO Pairs:
(x,H(x))

Extractor

H(·)

Fig. 1. Using the attacker to create an extractor that tries to predict 3m distinct
outputs of random oracle H(·).

Lemma 3.8. Given a randomly sampled execution trace

TraceA,R,H(x) = {(σi, ξi, Ri, Si, Qi)}ti=1,
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let BlackPebbleH(TraceA,R,H(x)) be the extracted black pebbling and (ti, ti+1) be
defined from this black pebbling as above. If q < 2w/20 and 4 log n < w, then with
probability at least 1− 2

2w/2
, the following holds for all i:

ti+1∑
i=ti

crki +

`i∑
j=1

cb
w

(
|rji |+ |s

j
i |
) ≥ m,

where q is the total number of random oracle queries made in the execution trace
and the probability is taken over the random coins of A and the selection of the
random oracle H.

Proof. Suppose, by way of contradiction, that for interval (ti, ti+1), an attacker
transfers less than mw bits between cache and memory. We define an extractor
that can predict 3m labels given access to the attacker’s algorithm, the random
oracle, and a small set of hints to help the extractor. Recall that labH,x(v) =
H (v, labH,x(v1), . . . , labH,x(vd)) for all nodes after the first node. Thus for nodes
y 6= z, the values of labH,x(y) and labH,x(z) correspond to different inputs to
H. That is, there are no input collisions and so the adversary must separately
determine the hash outputs for each of the 3m inputs, which correspond to 3mw
truly random bits in total.

The hint given to help the extractor consists of four components, which we
now detail.

(1) The set QueryFirst(ti, ti+1) is given as a hint to denote the indices that form
the string that the extractor will ultimately predict. Since |QueryFirst(ti, ti+1)| ≤
4m, then the size of this component of the hint is at most 4m log n bits.

(2) For each v ∈ QueryFirst(ti, ti+1), the index of the first query that appears
in which lab(v) is needed as input. This component of the hint tells the
extractor the queries that require the prediction of random strings, and has
size at most 4m log q bits, where q is the total number of queries made by
the attacker.

(3) For each v ∈ QueryFirst(ti, ti+1), the index of the first query when lab(v)
might be compromised. Observe that if the extractor successfully predicts a
random string at a location v, but then lab(v) is later queried by the attacker,
we cannot distinguish this case at the end from the case that the extractor
simply read lab(v) after making the query. In the later case, the extractor is
not predicting a random string at all! To avoid this, we give the extractor
a hint of the queries that would compromise the randomness of the desired
locations. Formally, the hint is the minimal index i such that qji = v, which

yields returns the query H(qji ) = lab(v). This component of the hint tells the
extractor the locations of the random strings to be predicted, and has size at
most 4m log q bits.

(4) The cache state at ti is given as a hint to the extractor to simulate the attacker
beginning at time step ti. Since the cache has size m, each containing w-bit
words, the size of this component of the hint is at most mw bits.

20



(5) Messages between the cache and memory during time steps (ti, ti+1) are also
given as a hint to the extractor to simulate the attacker beginning at time
step ti. By assumption, the attacker transfers less than mw bits between
cache and memory, so the size of this component of the hint is at most mw
bits in total.

Since q < 2w/20 and 4 log n < w, then the total size, in bits, of the hint is at most

4m log n+ 4m log q + 4m log q +mw +mw ≤ 13

5
mw.

However, |QueryFirst(ti, ti+1)| ≥ 3m, so the extractor must successfully predict
the output of 3m hash outputs, each of size w, given a hint of size at most 13

5 mw
bits. Thus, the extractor must predict 3mw − 13

5 mw = 2
5mw random bits. The

probability that the extractor predicts 2
5mw random bits is 2−2mw/5, so the

probability that the extractor does not predict 2
5mw random bits over any set of

time intervals (ti, ti+1) is at least 1− n2

22mw/5
> 1− 1

2mw/5
, for sufficiently large

m, by a union bound over the intervals. Since the probability that the execution
does not yield a legal black pebbling is q

2w by Theorem 3.4, then the probability
that an attacker must transfer mw bits between cache and memory for each time
interval (ti, ti+1) is at least 1− 1

2mw/5
− q

2w > 1− 2
2w/2

.

We now justify the correctness of Theorem 3.3.

Proof of Theorem 3.3: Recall that ecostq,ε(fG,H ,m · w) is taken over al-
gorithms that compute fG,H(x) correctly with probability at least ε. Thus,
ecostq,ε(fG,H ,m · w) is at least ε times the expected cost of an execution
trace that correctly computes fG,H(x). Lemma 3.8 implies that an execution
trace that correctly computes fG,H(x) must transfer at least m words be-
tween memory and cache for each interval (ti, ti+1) with probability at least(
1− 2

2w/2

)
> 1

2 . Recall that by construction, the red-cost for each interval is at

least
∑
j∈(ti,ti+1]

cr |Pj \ Pj−1|. Therefore with probability at least 1
2 , the band-

width cost of an execution trace that correctly computes fG,H(x) is at least
mcb +

∑
j∈(ti,ti+1]

cr |Pj \ Pj−1| for each interval (ti, ti+1]. On the other hand,

recall that rbpeb‖ (B∗, R∗) ≤
∑
i

(
8mcb +

∑
j∈(ti,ti+1]

cr |Pj \ Pj−1|
)

. Hence,

ecostq,ε(fG,H ,m · w) >
ε

16
rbpeb‖ (B∗, R∗) .

2

4 Relating Memory Hardness and Bandwidth Hardness

In this section, we show that any function with high cumulative memory com-
plexity also has high bandwidth costs. Namely,
Reminder of Theorem 1.2.
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rbpeb‖(G,m) ≥ 2cb

(
Πcc(G)

t
− 2m

)
+ crt ∈ Ω

(√
cb · cr ·Πcc(G)

)
,

where m is the cache size, t is the number of steps in the pebbling, cb is the cost
of a blue move and cr is the cost of a red move.

We also show that this connection can be exploited to design a maximally
bandwidth hard iMHF. Thus, the goals of designing an MHF with high cumulative
memory complexity/bandwidth hardness are well aligned.

Lemma 4.1.

rbpeb‖(G,m) ≥ min
t

(
2

(
Π
‖
cc(G)

t
−m

)
cb, tcr

)
,

where cb is the cost of a blue move and cr is the cost of a red move.

Proof. For any red-blue pebbling P of DAG G, let Ri be the set of red pebbles at
timestep i and let Bi be the set of blue pebbles at timestep i. Setting Di = Bi∪Ri
we remark that (D1, . . . , Dt) is a valid black pebbling ofG. Thus, by the optimality

of Π
‖
cc(G),

Π‖cc(G) ≤
t∑
i=1

|Ri∪Bi| ≤
t∑
i=1

|Ri|+
t∑
i=1

|Bi| ≤ tmax |Bi|+
t∑
i=1

|Ri| ≤ t
(

max
i
|Bi|+m

)
.

Rearranging terms we have

max
i
|Bi| ≥

Π
‖
cc(G)

t
−m .

On the other hand, in the optimal red-blue pebbling, each blue pebble must
eventually be converted back to a red pebble, or else it should be discarded
instead. Additionally, without loss of generality, we can assume that during each
step we make at least one red move. Otherwise, we could combine consecutive
steps into one single step. Thus,

rbpeb‖(G,m) ≥ 2
∣∣∪ti=1Bi

∣∣ cb + tcr

≥ 2 max
i
|Bi|cb + tcr

≥ 2

(
Π
‖
cc(G)

t
−m

)
cb + tcr

≥ min
t

(
2

(
Π
‖
cc(G)

t
−m

)
cb, tcr

)

Corollary 4.2. For an (e, d)-depth reducible graph,

rbpeb‖(G,m) ≥ min
t

(
2

(
ed

t
−m

)
cb, tcr

)
.
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Proof. [ABP17] show that any (e, d)-depth reducible DAG G has ed ≤ Π‖cc(G).

We show that there exists a similarly relationship between sequential black
pebbling cost and sequential red-blue pebbling cost.

Theorem 4.3.

rbpeb(G) ≥ 2cb

(
Πcc(G)

t
−m

)
+ crt,

where m is the cache size, t is the number of steps in the pebbling, cb is the cost
of a blue move and cr is the cost of a red move.

Proof. Given a sequential black pebbling P1, . . . , Pt of G, let Bi be the set of
blue pebbles at time step i. Then

max
i
|Bi| ≥ max

i
(|Pi| −m) ≥

(
Πcc(G)

t
−m

)
,

where the last step results from a simple averaging argument over all t steps.
Finally, each item in Bi requires cost cb to load into cache and another cost cb
to be retrieved from memory (if the item is not ever retrieved from memory, it
would not be in Bi for an optimal pebbling).

Observe that Theorem 1.2 can also be related to parallel pebblings 8 through
the following relationship:

Lemma 4.4.

rbpeb(G, 2m) ≤ rbpeb‖(G,m) ≤ rbpeb(G,m)

Proof. We show that rbpeb(G, 2m) ≤ rbpeb‖(G,m) since rbpeb‖(G,m) ≤ rbpeb(G,m)
follows immediately from definition. We argue that any move performed by a
parallel pebbling with capacity m can also be performed by a sequential pebbling
with capacity 2m. Note that at any step, a parallel pebbling with capacity m
can have at most m labels stored and similarly, at most m new pebbles can be
placed in each step. Thus, a sequential pebbling with capacity 2m can emulate
this by retaining the stored labels of the parallel pebbling, while also adding the
new pebbles at each step.

8 To see that rbpeb‖(G,m) and rbpeb(G,m) are not identically equivalent quantities,
consider the complete directed bipartite graph Km,m with m sources A and m sink
nodes B(m is also the cache size). In the parallel model we can finish in two steps
with zero blue moves: R0 = ∅, R1 = A, R2 = B. In the sequential pebble game we
would have to keep pebbles on A while we begin placing pebbles on B one by one.
Each time we place a red-pebble on a node y ∈ B we need to evict some node x ∈ A
by converting x into a blue node (and then bring it back into the cache-later).
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Combining Theorem 4.3 and Lemma 4.4 yields Theorem 1.2.
Alwen and Blocki [AB16] show that for any graph G with constant indegree,

Π
‖
cc(G) = O

(
n2 log logn

logn

)
. Moreover, there exist a family of DAGs {Gn}∞n=1 with

constant indegree with Πcc(Gn) ∈ Ω(n2) [Sch83,AdRNV16].
We now show a relationship similar to Theorem 1.2 between the bandwidth

cost and cumulative memory cost of an execution trace. Recall that Alwen and
Serbinenko [AS15] formally define cumulative memory cost of an execution trace
as cmc(TraceA,R,H(x)) =

∑
|αi|, where αi encodes the state of the attacker

at round i. Similarly, cmcq,ε(fG,H) = minA,R,x cmc(TraceA,R,H(x)) where the
minimum is taken over all A making at most q random oracle queries that
compute fG,H correctly with probability at least ε. While there is no notion of
a cache in their pROM model, we could trivially set αi = (σi, ξi). We note that
for ecostq,ε (fG,H) minimum is taken over all A making at most q random oracle
queries that compute fG,H correctly with probability at least ε and having cache
size at most m, which means that the set of attackers we consider is even more
restrictive.

Theorem 4.5. For any execution trace TraceA,R,H(x) of an algorithm A with
cache size m · w bits we have

ecost(TraceA,R,H(x)) ≥
(
cmc(TraceA,R,H(x))

tw
−m

)
cb + tcr,

where m is the cache size, t is the number of steps, cb is the cost of a blue move
and cr is the cost of a red move.

Proof. Recall that the bandwidth cost of an execution trace TraceA,R,H(x) =
{(σi, ξi, Ri, Si, Qi)}ti=1 is defined as

ecost(TraceA,R,H(x)) =

t∑
i=1

(
cr|Qi|+

cb
w

(|Ri|+ |Si|)
)

≥ max
i

|ξi|
w
cb + tcr

≥
(
cmc(TraceA,R,H(x))

tw
−m

)
cb + tcr

Where the second step follows from the observation that for all j we have
|ξj | ≤

∑j
i=1 (|Ri|+ |Si|), and the third observation follows from the observation

that cmc(TraceA,R,H(x))−mtw =
∑t
i=1 (|ξi|+ |σi|)−mtx ≤ twmaxi |σi|.

In particular, by minimizing over all t it follows that for any trace TraceA,R,H(x)
we have

ecost(TraceA,R,H(x)) ∈ Ω

(√
cmc(TraceA,R,H(x)) · cb · cr

w
−mcb

)
(1)

Since Alwen et al. [ACP+17] note that that cmcq,ε(scrypt) ∈ Ω(εn2 · w) for any
q > 0 and ε > 2−w/2 + 2−n/20+1 it follows that
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Corollary 4.6. For any q > 0 and ε > 2−w/2 + 2−n/20+1,

ecostq,ε(scrypt) ∈ Ω (n
√
cb · cr) .

5 Bandwidth Hardness of Candidate iMHFs

In this section, we provide lower bounds on the bandwidth hardness on the family
of graphs generated by Argon2i [BDK15], aATSample, and DRSample [ABH17].
Given a DAG G = ([n], E), a target set T ⊂ [n] and red/blue subsets B,R ⊆ [n]

with |R| ≤ m we let rbpeb‖(G,m, T,B,R) denote the red-blue cost to place red
pebbles on a target set T starting from an initial red-blue pebbling configuration
B,R.

5.1 Analysis Framework

We follow a similar strategy for each proof by defining a target set T = ((i −
1)c`, ic`], and analyzing the structure of the DAG to prove that the following
bound is large:

min
R⊆[(i−1)c`]:|R|≤`

min
B′⊆[(i−1)c`]

(|B′| cb + |ancestorsG−R−B′(((i− 1)c`, ic`])| cr)

We show in Theorem 5.2 that this quantity suffices to lower bound the bandwidth
hardness.

Lemma 5.1. ∀T,B,R ⊆ [n] such that |R| ≤ m we have

rbpeb‖(G,m, T,B,R) ≥ min
B′⊆B

(|B′| cb + |ancestorsG−R−B′(T )| cr) ,

where cb is the cost of a blue move and cr is the cost of a red move.

Proof. Let P = (B0, R0) , (B1, R1) . . . , (Bt, Rt) denote a legal red-blue pebbling
sequence given starting configuration B0 = {v ∈ B : ∃j ≤ t.v ∈ Rj} (e.g., B0

is the subset of all blue pebbles in B that we will use at some point during the
pebbling) and R0 = R. By construction of B0 the pebbling contains at least B0

blue moves at cost |B0| cb. Similarly, we remark that we must place a red-pebble
on all of the nodes in ancestorsG−R−B′(T ) at some point. Thus, we have at least
|ancestorsG−R−B′(T )| cr red-moves. It follows that

rbpeb‖(G,m, T,B,R) ≥ min
B′⊆B

(|B′| cb + |ancestorsG−R−B′(T )| cr) .

Theorem 5.2. Let G = ([n], E) be any DAG such that (i, i+ 1) ∈ E for each
i < n and let c ≥ 1 be a positive integer then

rbpeb‖(G,m) ≥
b nc`c∑
i=1

min
R⊆[(i−1)c`]:|R|≤`

min
B′⊆[(i−1)c`]

(|B′| cb + |ancestorsG−R−B′(((i− 1)c`, ic`])| cr) ,

where cb is the cost of a blue move and cr is the cost of a red move.
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Proof. (Sketch) Repeatedly invoke the previous theorem. Consider an optimal
red-blue pebbling and let ti denote the first time we place a pebble on node ic`.
For each i the red-blue cost incurred between steps ti−1 + 1 and ti starting from
some red-blue configuration Bti−1 , Rti−1 is at least

rbpeb‖(G,m, T =[(i− 1)c`+ 1, ic`], Bti−1
, Rti−1

)

≥ min
B′⊆[(i−1)c`]

(|B′| cb + |ancestorsG−R−B′(T )| cr)

≥ min
R⊆[(i−1)c`]:|R|≤m

min
B′⊆[(i−1)c`]

(|B′| cb + |ancestorsG−R−B′(T )| cr) .

To complete the proof we observe that

rbpeb‖(G,m) ≥
b nc`c∑
i=1

rbpeb‖(G,m, T = [(i− 1)c`+ 1, ic`], Bti−1
, Rti−1

) .

Now for our lower bounds on specific graphs we simply need to lower bound

min
R⊆[(i−1)cm]:|R|≤m

min
B′⊆[(i−1)cm]

(|B′| cb + |ancestorsG−R−B′(T )| cr)

for each i ≥
⌊

n
2cm

⌋
.

Observe that if m = n then we have red-blue cost at most rbpeb‖(G,m) ≤ ncr
for any graph G. Thus, we must assume some upper bound on m to establish
lower-bounds for red-blue pebbling cost.

5.2 Underlying DAGs

We now describe each of the underlying DAGs whose energy complexity we
analyze. The underlying graph for Argon2iB [BDK16] has a directed path of

length n nodes. Each node i has parents i − 1 and r(i) = i
(

1− x2

N2

)
, where

N = 232 and x is chosen uniformly at random from [N ]. See Algorithm 3 for
details.

While Argon2iA (v1.1) is an outdated version of the password hash function it
is still worthwhile to study for several reasons. First, the uniform edge distribution
is a natural one which has been adopted by other iMHF constructions [BCS16].
Second, it is possible that this older version of Argon2i may have seen some
adoption.

Each node i in Argon2iA has two parents: i− 1 and r(i) = i
(
1− x

N

)
, where

N = 232 and x is chosen uniformly at random from [N ]. Thus, the parents in
Argon2iA are slightly less biased towards closer nodes than in Argon2iB. See
Algorithm 4 for details.

DRSample, introduced by Alwen, Blocki, and Harsha [ABH17], is a family of

graphs Gn with Π
‖
cc(G) ∈ Ω

(
n2

logn

)
with high probability for any G ∈ Gn. Like

Argon2i and Argon2iB, the underlying graph for DRSample has a directed path
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of length n nodes. Each node i has parents i− 1 and r(i), but the distribution
for r(i) differs greatly from Argon2i and Argon2iB. Roughly speaking, DRSample
samples an index j uniformly at random from [1, log i], an index k uniformly at
random from [1, 2j ], and sets r(i) = i− k. See Algorithm 1 for details.

A close relative to DRSample, aATSample [ABH17] is also a family of graphs

Gn with Π
‖
cc(G) ∈ Ω

(
n2

logn

)
with high probability for any G ∈ Gn. aATSample

modifies DRSample by appending another directed path with n nodes that strate-
gically connects to the first half of the graph so that the resulting computational
complexity is high. See Algorithm 2 for details.

5.3 aATSample

We now consider the family of graphs generated by aATSample (Algorithm 2)
[ABH17]. Alwen et al. showed that the first half of the nodes of aATSample
is a (e, d, b)-block depth robust graph with e = Ω(n/ log n), d = Ω(n) and
b = Ω(log n) [ABH17]. This graph can be viewed as a metagraph Gk with Ω(n/b)
meta-nodes Mi. Recall that we connect two meta-nodes i < j in Gk if there
exists a node in the last k/3 nodes of i to a node in the first k/3 nodes of j. The
second half of the nodes of aATSample is a chain of n/2 nodes so that for each
meta-node Mi and each interval [v, v + `− 1] of length ` = Ω(n/b) in the second
half of the graph, it holds that parents([v, v + `− 1]) contains some node in the
last k/3 nodes of Mi. In order to move a pebble from node v to node v+ `− 1 in
this construction, either the starting configuration must have at least e/2 pebbles
on the graph, or a significant fraction of the block depth robust graph in the first
half of the graph must be re-pebbled.

Lemma 5.3. Let i > n
2 and T = [i, i+ `− 1] be an interval of length ` = n

logn .

Then there exists a constant C > 0 so that for m ≤ Cn
logn , a graph generated by

aATSample satisfies the following with high probability:

min
R⊆[i−1]:|R|≤m

min
B′⊆[i−1]

(|B′| cb + |ancestorsG−R−B′(T )| cr) ≥ min

(
Ω

(
n

log n

)
cb, Ω(n)cr

)
.

Using Lemma 5.3, whose proof appears in Appendix A.1, we have:
Reminder of Theorem 1.3. Let G be a graph generated by aATSample. Then

there exists a constant C > 0 so that for all m ≤ Cn
logn , it follows that

rbpeb‖(G,m) ≥ min(Ω(n)cb, Ω(n log n)cr),

with high probability.

Proof of Theorem 1.3: Applying Lemma 5.3 to each of the disjoint log n
intervals in the second half of graph G, it follows from Theorem 5.2 that

rbpeb‖(G,m) ≥ min(Ω(n)cb, Ω(n log n)cr).

2
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5.4 Argon2iB

We now consider the family of graphs generated by Argon2iB (Algorithm 3)
[BDK15]. Let G be a graph generated by Argon2iB and Gk be the metagraph
with n

k nodes, so that each meta-node in Gk represents k nodes in G. Again, we
connect two meta-nodes i < j in Gk if there exists a node in the last k/3 nodes
of i to a node in the first k/3 nodes of j. Then Gk has the following property:

Lemma 5.4. [BZ17] For any two meta-nodes x < y of Gk, the last third of x is

connected to the first third of y with probability at least k
√
k

k
√
k+36
√
n(y−x+1)

.

Lemma 5.5. Suppose there exists a C > 0 and 0 < ε < 2/3 so that m = Cn
2
3−ε.

Let i > n
2 and let T = [i, i+ `− 1] be an interval of length ` = O

(
n

2
3−ε
)

. Then

a graph generated by Argon2iB satisfies the following with high probability:

min
R⊆[i−1]:|R|≤m

min
B′⊆[i−1]

(|B′| cb + |ancestorsG−R−B′(T )| cr) ≥ min
(
Ω(n

1
3−ε)cb, Ω(n)cr

)
.

Proof. Consider the metagraph Gk with n
k nodes for some constant k that we

shall define. Let B be the set of nodes in G that have a blue pebble at some point,
and let Bm be the set of meta-nodes that contain some node in B. Partition the
second half of graph G into intervals of size ` = n

k : [i, i+ `− 1]. By Lemma 5.4,

there exists a constant α such that for k = αn
2
3+ε, the meta-nodes in [i, i+ `− 1]

are connected to Ω
(
n
k

)
meta-nodes in Gk with high probability. Thus, pebbling

the interval [i, i+ `− 1] requires pebbling at least βn/k −m− |Bk| meta-nodes

in Gk for some constant β. Noting that m = O
(
n

2
3−ε
)

and that the middle k/3

nodes of a meta-node must be pebbled for two meta-nodes that are connected in
Gk, it follows that at least

(
c1n
k − |Bk|

)
k
3 = Ω(n) nodes must be pebbled. Thus,

the cost of pebbling [i, i+ `− 1] is at least min(Ω(n/k)cb, Ω(n)cr) nodes.

Reminder of Theorem 1.5. Let G be a graph generated by Argon2iB. Then
there exists a constant C > 0 so that for any 0 < ε < 2/3 and for all m ≤ Cn 2

3−ε,
it follows that

rbpeb‖(G,m) ≥ min(Ω(n)cb, Ω(n5/3)cr),

with high probability.

Proof of Theorem 1.5: Applying Lemma 5.5 to each of the disjoint n
` = k =

O
(
n

2
3+ε
)

intervals in the second half of graph G, it follows from Theorem 5.2

that

rbpeb‖(G,m) ≥ min(Ω(n)cb, Ω(n5/3)cr).

2
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5.5 DRSample

We now consider the family of graphs generated by DRSample (Algorithm 1)
[ABH17]. This graph can be viewed as a metagraph Gb with Ω(n/b) meta-nodes
Mi. Recall that we connect two meta-nodes i < j in Gb if there exists a node in
the last b/3 nodes of i to a node in the first b/3 nodes of j.

Lemma 5.6. Suppose m = O (nρ) for some constant 0 < ρ < 1 and i > n
2 . Let

T = [i, i+ `− 1] be an interval of length ` = O (nρ). Then a graph generated by
DRSample satisfies the following with high probability:

min
R⊆[i−1]:|R|≤m

min
B′⊆[i−1]

(|B′| cb + |ancestorsG−R−B′(T )| cr) ≥ min
(
Ω(nρ)cb, Ω(n1/2+ρ/2)cr

)
.

Using Lemma 5.6, whose proof appears in Appendix A.2, we have:
Reminder of Theorem 1.4. Let G be a graph generated by DRSample and

0 < ρ < 1. Then there exists a constant C > 0 so that for all m ≤ Cnρ, it follows
that

rbpeb‖(G,m) ≥ min
(
Ω(n)cb, Ω(n3/2−ρ/2)cr

)
with high probability.

Proof of Theorem 1.4: Applying Lemma 5.6 to each of the disjoint n
` intervals

in the second half of graph G and observing that ` = O (nρ), it follows from
Theorem 5.2 that

rbpeb‖(G,m) ≥ min
(
Ω(n)cb, Ω(n3/2−ρ/2)cr

)
.

2

We also give a stronger bound for DRSample when the cache has sizeO (nρ/ log n)
for any 0 < ρ < 1 in Appendix A.2.

6 NP-Hardness of the Red-Blue Pebbling Cost

In this section we prove that it is NP− Hard to compute rbpeb‖(G,m). Quanquan
Liu [Liu17] observed that when cr = 0 the problem is PSPACE− Hard via a
straightforward reduction from minimum space black pebbling. As we observed
previously, when cb/cr ∈ O (poly(n)) the decision problem is in NP and has a
fundamentally different structure. We show that even when the cost of red moves
is significant, the problem remains NP− Hard.

Theorem 6.1. For cb ≤ 3ncr, the problem rbpeb‖ is NP− Hard.

Gilbert et al. showed that the minimum space black pebbling problem was
PSPACE− Hard by reduction from the Truly Quantified Boolean Formula (TQBF)
problem. We note that an instance φ of 3− SAT with n variables is still a TQBF
instance (albeit with no ∀ quantifiers). Thus, given an instance φ of 3− SAT
with n variables, we can create the corresponding DAG Gφ, as described in the
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reduction of Gilbert et al. [GLT79]. The graph Gφ has the property that it can
be pebbled with at most 3n+ 3 black pebbles if and only if φ is satisfiable.

We detail in Appendix A.4 a gadget to append to Gφ to create a graph Hφ

so that rbpeb‖(H) = x1 if φ is a satisfiable assignment, but rbpeb‖(Hφ) > x1 if φ
is not a satisfiable assignment. The key goal of the additional gadget is to ensure
that we cannot significantly reduce the number of red moves (computation costs)
by including a few blue move. Thus, if φ is satisfiable, the optimal pebbling will
correspond to the minimum space black pebbling and will require 0 blue moves.

Lemma 6.2. If φ is satisfiable, then there exists a pebbling strategy of Hφ with
capacity 3n+ 4 and cost exactly(

3n3 + 15n2 + 40n+ 14 + 12c

2

)
cr.

Lemma 6.3. If φ is unsatisfiable, then the pebbling cost of Hφ with capacity
3n+ 4 is greater than(

3n3 + 15n2 + 40n+ 14 + 12c

2

)
cr.

Together, Lemma 6.2 and Lemma 6.3, whose proofs appear in Appendix A.4,
imply Theorem 6.1.
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AB16. Joël Alwen and Jeremiah Blocki. Efficiently computing data-independent
memory-hard functions. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part II, volume 9815 of LNCS, pages 241–271. Springer,
Heidelberg, August 2016. 1, 1.1, 2.1, 4
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A Complete Proofs

A.1 aATSample

Reminder of Lemma 5.3. Let i > n
2 and T = [i, i + ` − 1] be an interval

of length ` = n
logn . Then there exists a constant C > 0 so that for m ≤ Cn

logn , a
graph generated by aATSample satisfies the following with high probability:

min
R⊆[i−1]:|R|≤m

min
B′⊆[i−1]

(|B′| cb + |ancestorsG−R−B′(T )| cr) ≥ min

(
Ω

(
n

log n

)
cb, Ω(n)cr

)
.

Proof. Lemma 5.3 Consider the metagraph Gk with n
logn nodes and recall that

Gk is (Ω(n/ log n), Ω(n/ log n)) depth robust. Let B be the set of nodes in G
that have a blue pebble at some point, and let Bk be the set of meta-nodes that
contain some node in B. Then by depth-robustness, there exists a path of length
at least c1n/ log n− |Bk| in Gk.
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Now, partition the second half of graph G into intervals of size ` = n/ log n:
[i, i + ` − 1]. Since parents([i, i + ` − 1]) ∩Mi 6= ∅, then pebbling the interval
[i, i+ `− 1] requires pebbling at least c1n/ log n−m− |Bk| meta-nodes in Gk.

Noting that m = O
(

n
logn

)
and the middle log n/3 nodes of a meta-node must

be pebbled for two meta-nodes that are connected in Gk, it follows that at least(
c1n
logn − |Bk|

)
logn
3 = Ω(n) nodes must be pebbled. Thus, the cost of pebbling

[i, i+ `− 1] is at least min
(
Ω
(

n
logn

)
cb, Ω(n)cr

)
nodes.

A.2 DRSample

Reminder of Lemma 5.6. Suppose m = O (nρ) for some constant 0 < ρ < 1
and i > n

2 . Let T = [i, i+ `− 1] be an interval of length ` = O (nρ). Then a graph
generated by DRSample satisfies the following with high probability:

min
R⊆[i−1]:|R|≤m

min
B′⊆[i−1]

(|B′| cb + |ancestorsG−R−B′(T )| cr) ≥ min
(
Ω(nρ)cb, Ω(n1/2+ρ/2)cr

)
.

Proof of Lemma 5.6: Let T = [i, i+ `] where ` = Ω(nρ) for some constant
1
2 < ρ < 1 and let r(j) denote the predecessor of a node j in the graph (besides
j − 1). Let Xj be an indicator random variable for the event far(j), which we
define to be the event that |r(j)− r(k)| > b =

√
n
16` for all k ∈ [1, j− 1]. Observe

that

Pr [far(j)] ≥ Pr [far(j)|r(i) = i− b, r(i+ 1) = i− 2b, . . . , r(j − 1) = i− (j − i+ 1)b]

since the conditioned event has the maximum number of invalid nodes for r(j),
and with the highest probability of hitting each of these invalid nodes, since they
are the closest to i. Thus,

Pr [far(j)] ≥ Pr [r(j) < i− (j − i+ 1)b]

≥ Pr [j − r(j) > `+ (j − i+ 1)b]

≥ Pr [j − r(j) > `+ (`+ 1)b]

≥ Pr

[
j − r(j) >

√
n`

2

]

since j ≤ i+ ` and b =
√

n
16` . Hence,

Pr [far(j)] ≥ log(j)− log
√
n`

log(j)

≥ 1−
(

1

2
− ρ

2

)(
log(n)

log(n)− 1

)
≥ 1

2
− ρ

2
− o(1) = Ω(1).
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Let X =
∑i+`
k=iXk. With high probability, X > c` for some constant c that

depends on ρ. Picking ` to satisfy m < c`
4 , then with high probability, the number

of ancestors of T in G−R−B′ is at most

(X − |R| − |B′|)b ≥ (X −m− |B′|)b

≥
(
c`

4

)√
n

16`
.

Thus to pebble T , either c`
2 blue moves are required, or at least

(
c`
4

)√
n
16` red

moves are required, to pebble the ancestors of T in G−R−B′. Hence, the cost
is at least min

(
c`
2 cb,

(
c`
4

)√
n
16`cr

)
. Since ` = Ω(nρ), then the cost is at least

min
(
Ω(nρ)cb, Ω(n1/2+ρ/2)cr

)
.

2

We now give a stronger bound for DRSample when the cache has size
O (nρ/ log n) for any 0 < ρ < 1.

Lemma A.1. For each x, y ∈ Gb with y > x and node i in meta-node y, there
exists an edge from the last third of meta-node x to node i with probability at
least 1

6|y−x| log y .

Proof. Recall that for node i, DRSample creates an edge from i to parent node
r(i) by first sampling j from [1, blog ic]. Then DRSample sets r(i) = i − k by
randomly sampling k from (2j−1, 2j ]. Thus, for nodes i, j ∈ G with i > j, there
exists an edge from node j to i with probability at least 1

2b|y−x| log i . Taking the

union bound over all b3 nodes in the last third of meta-node x and observing that
i < y yields the desired result.

Lemma A.2. For any two meta-nodes x, y ∈ Gb with x < y, the last third of x
is connected to the first third of y with probability at least b

b+18|y−x| logn .

Proof. Let p be the probability that the final third of x is connected to the
first third of y. Let Ei be the event that the ith node of meta-node y is the
first node in y to which there exists an edge from the last third of meta-node x,
so that by Lemma A.1, Pr [E1] ≥ 1

6|y−x| log y . Note that furthermore, Pr [Ei] is

the probability that there exists an edge from the last third of meta-node x to
the ith node of meta-node y and no previous meta-node of y. Hence, Pr [Ei] ≥

1
6|y−x| log y (1− p). Thus,

p = Pr [E1] + Pr [E2] + . . .+ Pr
[
Eb/3

]
≥
(
b

3

)
1

6|y − x| log y
(1− p).

Setting α =
(
b
3

)
1

6|y−x| log y , then it follows that p + αp ≥ α, so that p ≥ α
1+α .

Since y ≤ n
b ,

p ≥ b

b+ 18|y − x| log y
≥ b

b+ 18|y − x| log n
.
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Lemma A.3. Suppose m = O (nρ/ log n) and i > n
2 . Let T = [i, i + ` − 1] be

an interval of length ` = O (nρ) for some 0 < ρ < 1. Then a graph generated by
DRSample satisfies the following with high probability:

min
R⊆[i−1]:|R|≤m

min
B′⊆[i−1]

(|B′| cb + |ancestorsG−R−B′(T )| cr) ≥ min(Ω̃(nρ)cb, Ω̃(n)cr).

Proof. Let T be an interval of length `. Consider a metagraph Gn/` with `
nodes. Then by Lemma A.2, a meta-node y in G` is connected to a previous

meta-node x with probability `
`+18|y−x| logn = Ω(1) for |y− x| = O

(
nρ

logn

)
, since

` = Ω(nρ). Thus in expectation, y is connected to Cnρ

logn previous meta-nodes for
some constant y.

Now, partition the second half of graph G into intervals of size n/`. For each
interval of length n/`, to pebble a meta-node, either there already exists a blue
pebble in the previous meta-node or we must spend 2n

3` red moves to repebble the

previous meta-node. Applying the same argument for Cnρ

logn −m of the previous

meta-nodes, and noting that ` = O (nρ) and m = O (nρ/ log n), then the cost of
pebbling [i, i+ `− 1] is at least Ω̃(nρ) min

(
cb,

2n
3` cr

)
= min(Ω̃(nρ)cb, Ω̃(n)cr).

Theorem A.4. Let G be a graph generated by DRSample and 0 < ρ < 1. Then
there exists a constant C > 0 so that for all m ≤ Cnρ/ log n, it follows that

rbpeb‖(G,m) ≥ min( ˜Ω(n)cb, Ω̃(n2−ρ)cr)

with high probability.

Proof. Applying Lemma A.3 to each of the disjoint n
` intervals in the second half

of graph G and observing that ` = O (nρ), it follows from Theorem 5.2 that

rbpeb‖(G,m) ≥ min(Ω̃(n)cb, Ω̃(n2−ρ)cr).

A.3 Argon2iA

We now consider the family of graphs generated by Argon2iA (Algorithm 4)
[BDK15]. Notably, the same underlying graph is also used in Balloon Hashing
(Boneh et al. [BCS16]) Let G be a graph generated by Argon2i and Gb be the
metagraph with n

b nodes, so that each meta-node in Gb represents b nodes in G.
Again, we connect two meta-nodes i < j in Gb if there exists a node in the last
b/3 nodes of i to a node in the first b/3 nodes of j.

Lemma A.5. For each x, y ∈ Gb with y > x and node i in meta-node y, there
exists an edge from the last third of meta-node x to node i with probability at
least 1

6y .

Proof. Recall that for node i, Argon2i creates an edge from i to parent node
i
(
1− k

N

)
, where k ∈ [N ] is picked uniformly at random. Thus, for nodes i, j ∈ G
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with i > j, there exists an edge from node j to i with probability at least

Pr

[
(x− 1)m + 1 ≤ i

(
1− k

N

)
≤

(
x− 1 +

1

3

)
m

]
= Pr

[(
x− 1 +

1

6

)
m ≤ ym

(
1− k

N

)
≤

(
x− 1 +

1

3

)
m

]
≥ Pr

[
y − x + 5

6

y
≥ k

N
≥

y − x + 2
3

y

]
≥

(
y − x + 5

6

y

)
−

(
y − x + 2

3

y

)
≥ 1

6y
.

Lemma A.6. For any two meta-nodes x, y ∈ Gb with x < y, the last third of x

is connected to the first third of y with probability at least b2

9y log y+b2 .

Proof. Let p be the probability that the final third of x is connected to the first
third of y. Let Ei be the event that the ith node of meta-node y is the first node
in y to which there exists an edge from the last third of meta-node x, so that
by Lemma A.5, Pr [E1] ≥ 1

6y . Note that furthermore, Pr [Ei] is the probability
that there exists an edge from the last third of meta-node x to the ith node of
meta-node y and no previous meta-node of y. Hence, Pr [Ei] ≥ 1

6y (1− p). Thus,

p = Pr [E1] + Pr [E2] + . . .+ Pr
[
Eb/3

]
≥
(
b

3

)
1

6y
(1− p).

Setting α =
(
b
3

)
1
6y , then it follows that p + αp ≥ α, so that p ≥ α

1+α . Since

y ≤ n
b , then p ≥ b

18y+b ≥
b2

18n+b2 .

Lemma A.7. Let i > n
2 and T = [i, i+`−1] be an interval of length ` = O

(
n1/2

)
.

There exists a constant C > 0 so that for 0 < ε < 1/2 and m ≤ Cn1/2, a graph
generated by Argon2i satisfies the following with high probability:

min
R⊆[i−1]:|R|≤m

min
B′⊆[i−1]

(|B′| cb + |ancestorsG−R−B′(T )| cr) ≥ min
(
Ω(n1/2)cb, Ω(n)cr

)
.

Proof. Consider the metagraph Gk with n
k nodes for some constant k that we

shall define. Let B be the set of nodes in G that have a blue pebble at some point,
and let Bm be the set of meta-nodes that contain some node in B. Partition the
second half of graph G into intervals of size ` = n

k : [i, i+ `− 1]. By Lemma A.6,

there exists a constant α such that for k = αn1/2, the meta-nodes in [i, i+ `− 1]
are connected to Ω

(
n
k

)
meta-nodes in Gk with high probability. Thus, pebbling

the interval [i, i+ `− 1] requires pebbling at least βn/k −m− |Bk| meta-nodes
in Gk for some constant β. Noting that m = O (n/k) and that the middle k/3
nodes of a meta-node must be pebbled for two meta-nodes that are connected in
Gk, it follows that at least

(
c1n
k − |Bk|

)
k
3 = Ω(n) nodes must be pebbled. Thus,

the cost of pebbling [i, i+ `− 1] is at least min(Ω(n/k)cb, Ω(n)cr) nodes.
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Theorem A.8. Let G be a graph generated by Argon2i. Then there exists a
constant C > 0 so that for all m ≤ Cn1/2, it follows that

rbpeb‖(G,m) ≥ min(Ω(n)cb, Ω(n3/2)cr),

with high probability.

Proof of Theorem A.8: Applying Lemma A.7 to each of the disjoint n
` =

k = O
(
n1/2

)
intervals in the second half of graph G, it follows from Theorem 5.2

that
rbpeb‖(G,m) ≥ min(Ω(n)cb, Ω(n1/2)cr).

2

A.4 NP-Hardness of the Red-Blue Pebbling Cost

For more details about the Gilbert et al. [GLT79] reduction, we refer an interested
reader to Appendix B. Since an instance φ of 3− SAT with n variables is still a
TQBF instance (albeit with no ∀ quantifiers), we can create the corresponding
DAG Gφ, as described in the reduction of Gilbert et al. [GLT79]. For DAG Gφ
with t vertices, there exist unique pyramid gadgets with 3n+3, 3n+2, 3n+1, . . . , 1
vertices in the bottom layer. Let ∆i be the pyramid gadget with φ vertices in the
bottom layer. Additionally, let αi be the vertex above the apex of pyramid ∆i.
Create a directed path P1 with 3n+ 3 vertices so that for each 1 ≤ i ≤ 3n+ 3,
connect an edge to vertex 3i− 2 of P1 from the top vertex of ∆3n+4−i.

We then connect the final vertex of P1 to a directed path P2 with(
(3n+ 1)(3n)

2
+ 1

)
+

(
(3n− 2)(3n− 3)

2
+ 1

)
+. . .+(21 + 1)+(6 + 1) =

3

2
n(n+1)2+n

vertices. Moreover, the first (3n+1)(3n)
2 vertices of P2 each have an edge from

separate vertices of ∆3n+1, starting with the vertices in the bottom layer and
moving upwards. We also create an edge to the following vertex from the vertex

α3n+1. The next (3n−2)(3n−3)
2 vertices of P2 each have an edge from separate

vertices of ∆3n−2, starting with the vertices in the bottom layer and moving
upwards. We also create an edge to the following vertex from the vertex α3n−2.
We continue this process until all vertices from all pyramids of the form ∆3i+1

are connected to P2, as well as the vertices α3i+1. Finally, we connect P2 to a
sink node. Then by setting P to be the path P1 concatenated with P2, we have
the following result:

Lemma A.9. P contains exactly 3n + 3 +
∑n
i=1

(
(3i+1)(3i)

2 + 1
)

= 4n + 3 +

3
2n(n+ 1)2 = 3n3+6n2+11n+6

2 vertices.

See Figure 5 for an example. Let Hφ = Gφ ∪ P . We claim that Hφ with capacity
3n+ 4 will have a certain pebbling cost if and only if φ is satisfiable.
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Reminder of Lemma 6.2. If φ is satisfiable, then there exists a pebbling
strategy of Hφ with capacity 3n+ 4 and cost exactly(

3n3 + 15n2 + 40n+ 14 + 12c

2

)
cr.

Proof of Lemma 6.2: The total number of nodes in Gφ corresponding to
variable assignments from the GLT construction is

6n+

3n+3∑
i=4

i =
9n2 + 33n+ 12

2
.

This can be visualized in Figure 4 by the nodes on the left hand side, excluding
the nodes qi. Additionally, there are n nodes qi, six nodes for each of the c clauses
pi for 1 ≤ i ≤ c, and an additional node for p0. Thus,

6c+ 1 + 7n+

3n+3∑
i=4

i =
9n2 + 35n+ 14

2
+ 6c

nodes must be pebbled in Gφ.

By Lemma A.9, the number of nodes in the additional path P is 3n3+6n2+21n+18
2 .

However, pebbling P requires that each of the pyramids ∆3i+1 are pebbled a
second time, as well as each α3i+1, requiring an additional

n∑
i=1

(
(3i+ 1)(3i)

2
+ 1

)
= n+

3

2
n(n+ 1)2 =

3n3 + 6n2 + 5n

2

steps.
Thus, the total number of steps required to pebble Hφ is

9n2 + 35n+ 14

2
+ 6c+

3n3 + 6n2 + 5n

2
=

3n3 + 15n2 + 40n+ 14 + 12c

2
.

The GLT construction has pebbling number 3n+ 3. Since the nodes in P are
ordered corresponding to the natural pebbling order in Gφ, a single additional
pebble suffices for P . Thus, if the capacity of Gφ is 3n + 4, then all pebbling
moves can be achieved with red moves, so there exists a pebbling strategy with

total cost is
(

3n3+15n2+40n+14+12c
2

)
cr.

By construction, the pebbling strategy of Lemma 6.2 is the optimal pebbling
with only red moves. Thus, it remains to show that no strategy containing any
blue pebbles has better cost.

Since blue pebbles are more expensive than red pebbles, the only place the
above strategy can be possibly improved would be using blue pebbles on nodes
in Hφ that are pebbled multiple times in the strategy of Lemma 6.2. As it turns
out, the only nodes that are pebbled multiple times are the pyramids ∆3i+1,
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which are each pebbled twice, as well as the vertices α3i+1. However, all of the
vertices in ∆3i+1 are parents of vertices in P . Thus, a blue pebble on any of
these nodes must be returned to red, and then subsequently discarded. That
is, a blue pebble will replace at most one red move in the pebbling strategy of
Lemma 6.2. The number of the other red moves is unaffected so that the overall
cost cannot be cheaper. Therefore, no pebbling strategy has a better cost than(

3n3+15n2+40n+14+12c
2

)
cr. 2

Reminder of Lemma 6.3. If φ is unsatisfiable, then the pebbling cost of Hφ

with capacity 3n+ 4 is greater than(
3n3 + 15n2 + 40n+ 14 + 12c

2

)
cr.

Proof of Lemma 6.3: By the construction of the DAG Hφ, if φ is unsatisfiable,
then Hφ has pebbling number at least 3n+ 5. Thus, if Hφ has capacity 3n+ 4,
any pebbling strategy must have a blue pebble at some point.

As in the proof of Lemma 6.2, any optimal strategy only places blue pebbles
on nodes that the strategy of Lemma 6.2 pebbles twice. Again, the only nodes
that are pebbled multiple times are the pyramids ∆3i+1, which are each pebbled
twice, as well as the vertices α3i+1. Since each vertex in ∆3i+1 is a parent of
a vertex in P , a blue pebble on any of these nodes must be returned to red,
and then subsequently discarded. Thus, a blue pebble will replace at most one
red move in the pebbling strategy of Lemma 6.2. The remaining red moves are
unaffected, so the overall cost is more expensive, under the assumption that blue
pebbles are more expensive than red moves. Therefore, any pebbling strategy

has a cost greater than
(

3n3+15n2+40n+14+12c
2

)
cr. 2

Reminder of Theorem 6.1. For cb ≤ 3ncr, the problem rbpeb‖ is NP− Hard.

Proof of Theorem 6.1: First, we remark that given a DAG Hφ with some
capacitym, as well as a complete pebbling strategy as the certificate, the certificate
can be verified in polynomial time by checking the validity of each step in the
pebbling strategy. Thus, the computation of rbpeb‖(Hφ) is in NP.

We now reduce 3− SAT to the computation of rbpeb‖(Hφ). Now, given
an instance φ of 3− SAT with n variables, we construct the above DAG Hφ.
This procedure clearly takes polynomial time. Moreover, by Lemma 6.2, if φ is
satisfiable, then the optimal pebbling cost of Hφ with capacity 3n+ 4 is exactly(

3n3 + 15n2 + 40n+ 14 + 12c

2

)
cr.

On the other hand, by Lemma 6.3, if φ is unsatisfiable, then the pebbling cost of
Hφ with capacity 3n+ 4 is greater than(

3n3 + 15n2 + 40n+ 14 + 12c

2

)
cr.
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Thus, the computation of rbpeb‖(Hφ) distinguishes whether φ is satisfiable or

not. Since 3− SAT is NP− Hard, it follows that the computation of rbpeb‖(Hφ)
is NP− Hard. 2

B Background on the Gilbert et al.Black Pebbling
Reduction

Recall that Gilbert et al. [GLT79] showed that the minimum space black pebbling
problem was PSPACE− Hard by reduction from the Truly Quantified Boolean
Formula (TQBF) problem. Gilbert et al. [GLT79] provide a construction from
any instance of TQBF to a DAG GTQBF with pebbling number 3n+ 3 if and
only if the instance is satisfiable. Here, the pebbling number of a DAG G is
minP=(P1,...,Pt)∈P‖ maxi≤t |Pi| is the number of pebbles necessary to pebble G.
An important gadget in their construction is the so-called pyramid DAG. We
use both ∆k and a triangle with the number k inside to denote a k-pyramid (see
Figure 2 for an example of a 3-pyramid). The key property of these DAGs is that
any legal pebbling P = (P0, . . . , Pt) ∈ P‖(∆k) of a k-pyramid requires at least
mini |Pi| ≥ k pebbles on the DAG at some point in time.

≡

k

Fig. 2. A 3-Pyramid.

Another gadget, which appears in Figure 3, is the existential quantifier gadget,
which requires that si, si − 1, and si − 2 pebbles must be placed in each of the
pyramids to ultimately pebble qi.

Any instance of TQBF in which each quantifier is an existential quantifier
requires at most a quadratic number of pebbling moves. Specifically, we look at
instances of 3-SAT, such as in Figure 4. In such a graph representing an instance
of 3-SAT, the sink node to be pebbled is qn. By design of the construction, any
true statement requires exactly three pebbles for each pyramid representing a
clause. On the other hand, a false clause requires four pebbles, so that false
statements require more pebbles. Thus, by providing extraneous additions to the
construction which force the number of pebbling moves to be a known constant,
we can extract the pebbling number, given the space-time complexity. For more
details, see the full description in [GLT79].
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si − 1

si − 2

si

qi+1

qi

x′i

xi

x′i

xi

si − 1

si − 2

si

qi+1

qi

x′i

xi

x′i

xi

Fig. 3. An existential quantifier, with xi set to true in the left figure and xi set to false
in the right figure.

Lemma B.1. [GLT79] The quantified Boolean formula Q1x1Q2x2 · · ·QnxnFn
is true if and only if the corresponding DAG GTQBF has pebbling number 3n+ 3.

Lemma B.2. [BZ18] Suppose that we have a satisfiable TQBF formula Q1x1Q2x2 · · ·QnxnFn
with Qi = ∃ for all i ≤ n. Then there is a legal sequential pebbling P =
(P0, . . . , Pt) ∈ P

(
GTQBF

)
of the corresponding DAG GTQBF from [GLT79]

with t ≤ 6n2 + 33n pebbling moves and maxi≤t |Pi| ≤ 3n+ 3.

Proof. We repeat the proof of [BZ18] for completion. We describe the pebbling
strategy of Gilbert et al. [GLT79], and analyze the pebbling time of their strategy.
Let T (i) be the time it takes to pebble qi in the proposed construction for any
instance with i variables, i clauses, and only existential quantifiers.

Suppose that xi is allowed to be true for the existential quantifier Qi = ∃.
Then vertex x′i is pebbled using si moves, where si = 3n−3i+6. Similarly, vertices
di and fi are pebbled using si − 1 and si − 2 moves respectively. Additionally, fi
is moved to x′i and then xi is moved to x′i in the following step, for a total of
two more moves. We then pebble qi+1 using T (i+ 1) moves and finish by placing
a pebble on xi and moving it to ci, bi, ai, and qi, for five more moves. Finally,
we use six more moves to pebble an additional clause. Thus, in this case,

Ttrue(i) = si + (si − 1) + (si − 2) + 13 + T (i+ 1).

On the other hand, if xi is allowed to be false for the existential quantifier
Qi = ∃, then first we pebble x′i, di, and fi sequentially, using si, si−1, and si−2
moves respectively. We then move the pebble from fi to x′i and then to xi, for a
total of two more moves. We then pebble qi+1 using T (i+ 1) moves. The pebble
on qi+1 is subsequently moved to ci and then bi, using two more moves. Picking
up all pebbles except those on bi and x′i, and using them to pebble fi takes si− 2
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more moves. Additionally, the pebble on fi is moved to x′i and then ai, while the
pebble on x′i is moved to xi and then qi, for four more moves. Finally, we use six
more moves to pebble an additional clause. In total,

Tfalse(i) = si + (si − 1) + (si − 2) + (si − 2) + 14 + T (i+ 1).

Therefore,
T (i) ≤ 4si + 10 + T (i+ 1),

where si = 3n− 3i+ 6. Thus,

T (i) ≤ 12(n− i) + 34 + T (i+ 1).

Writing R(i) = T (n− i) then gives

R(i) ≤ 12i+ 34 +R(i− 1),

so that R(n) ≤
∑n
i=1(12i+ 34) = 6n2 + 40n. Hence, it takes at most 6n2 + 40n

moves to pebble the given construction for any instance of TQBF which only
includes existential quantifiers.

C Figures and Candidate iMHFs

In this section we give provide detailed descriptions of the iMHFs analyzed in
the main body of the paper. DRSample is described in Algorithm 1, aATSample
is described in Algorithm 2, Argon2iB is described in Algorithm 3 and Argon2iA
is described in Algorithm 4.
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Algorithm 1: An algorithm for sampling depth-robust graphs. [ABH17]

Function DRSample(n ∈ N≥2):
V := [v]
E := {(1, 2)}
for v ∈ [3, n] and i ∈ [2] do // Populate edges

E := E ∪ {(v,GetParent(v, i))} // Get ith parent

end
return G := (V,E).

Function GetParent(v,i):
if i = 1 then

u := i− 1
else

g′←[1, blog2(v)c+ 1] // Get random range size.

g := min(v, 2g
′
) // Don’t make edges too long.

r←[max(g/2, 2), g] // Get random edge length.

end
return v − r

Algorithm 2: An algorithm for sampling a high aAT graph. [ABH17]

Function aATSample(H = (V̄ = [n], Ē), c ∈ (0, 1)):
V := [2n]
E := Ē ∪ {(i, i+ 1) : i ∈ [2n− 1]}
for v ∈ [n+ 1, 2n] and i ∈ [2] do // Populate new edges of

graph.

E := E ∪ {(v,GetParentc(v, i))} // Get ith parent of node v
end
return G := (V,E).

Function GetParentc(v,i):
if i = 1 then

u := i− 1
end
else if v ≤ n then

u := GetParentH(v, i)
// DRSample

end
else

m := bc log(n)c
b := (v − n) mod bn/mc
u := bm

end
return u
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Fig. 4. Graph GTQBF for ∃x1, x2, x3, x4 s.t. (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4).
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Fig. 5. Path P for Hφ.
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Algorithm 3: An algorithm for sampling depth-robust graphs. [BDK15]

Function Argon2iB(n ∈ N≥2):
V := [v]
E := {(1, 2)}
for v ∈ [3, n] and i ∈ [2] do // Populate edges

E := E ∪ {(v,GetParent(v, i))} // Get ith parent

end
return G := (V,E).

Function GetParent(v,i):
if i = 1 then

u := i− 1
else

N := 232 // Set sample range.

g← [1, N ] // Get random range length.

r :=
[
g2

N2 v
]

// Set quadratic dependency.

end
return v − r

Algorithm 4: An algorithm for sampling depth-robust graphs. [BDK15]

Function Argon2iA(n ∈ N≥2):
V := [v]
E := {(1, 2)}
for v ∈ [3, n] and i ∈ [2] do // Populate edges

E := E ∪ {(v,GetParent(v, i))} // Get ith parent

end
return G := (V,E).

Function GetParent(v,i):
if i = 1 then

u := i− 1
else

N := 232 // Set sample range.

g← [1, N ] // Get random range length.

r :=
[
g
N v
]

// Set linear dependency.

end
return v − r
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