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Abstract

Memory Hard Functions (MHFs) have been proposed as an answer to the growing inequality between
the computational speed of general purpose CPUs and ASICs. MHFs have seen widespread applications
including password hashing, key stretching and proofs of work. Several metrics have been proposed
to quantify the memory hardness of a function. Cumulative memory complexity (CMC) quantifies the
cost to acquire/build the hardware to evaluate the function repeatedly at a given rate. By contrast,
bandwidth hardness quantifies the energy costs of evaluating this function. Ideally, a good MHF would
be both bandwidth hard and have high CMC. While the CMC of leading MHF candidates is well
understood, little is known about the bandwidth hardness of many prominent MHF candidates.

Our contributions are as follows: First, we provide the first reduction proving that, in the parallel
random oracle model (pROM), the bandwidth hardness of a data-independent MHF (iMHF) is described
by the red-blue pebbling cost of the directed acyclic graph associated with that iMHF. Second, we show
that the goals of designing an MHF with high CMC/bandwidth hardness are well aligned. Any function
(data-independent or not) with high CMC also has relatively high bandwidth costs. Third, we prove that
in the pROM the prominent iMHF candidates such as Argon2i, aATSample and DRSample are maximally
bandwidth hard. Fourth, we prove the first unconditional tight lower bound on the bandwidth hardness
of a prominent data-dependent MHF called Scrypt in the pROM. Finally, we show the problem of finding
the minimum cost red-blue pebbling of a directed acyclic graph is NP-hard.

Keywords: memory-hard functions, energy cost, bandwidth hardness, graph pebbling, cumulative mem-
ory complexity, parallel random oracle model

1 Introduction

Memory Hard Functions (MHFs) [28, 1] are a crucial building block in the design of password hashing
functions, moderately hard key-derivation functions and egalitarian proofs of work [19, 9]. For example,
in password hashing we would like to ensure that it is prohibitively expensive for an offline attacker to
evaluate the function millions or billions of times to check each password in a large cracking dictionary.
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The development of improved Application Specific Integrated Circuits (ASICs) or Field Programmable Gate
Arrays (FPGAs) for computing cryptographic hash functions such as SHA256 makes this goal increasingly
challenging. For example, the Antminer S9, an ASIC Bitcoin [27] miner, is able to compute SHA256 hashes
at a rate of 13.6 trillion hashes per second with energy consumption of only 1274 Joules per second (Watts).
By contrast, the energy needed to compute SHA256 13.6 trillion times on a standard CPU would be about six
orders of magnitude higher! In fact, Blocki et al. [15] recently argued that non-memory-hard key derivation
functions (e.g., PBKDF2-SHA256 and BCRYPT) cannot provide sufficient protection against a rational
(economically motivated) offline attacker without introducing unacceptably long authentication delays.

MHFs are based on the observation that memory costs (e.g., latency, bandwidth, energy consumption)
tend to be equitable across different architectures. Thus, to develop an “egalitarian” function we want to
design a function where evaluation costs are dominated by memory costs. Two of the most prominent ap-
proaches to measure the “evaluation cost” of MHFs are memory hardness [28, 8] and bandwidth hardness [30].
Memory hardness [28] seeks to quantify construction costs i.e., the cost to build/obtain the hardware nec-
essary to compute the MHF. By contrast, bandwidth hardness [30] seeks to quantify the energy costs per
evaluation i.e., the cost of running the hardware. Ideally, one would hope to design an MHF that is both
bandwidth hard and memory hard.

Broadly speaking there are two types of MHFs: data-dependent memory hard functions (dMHFs) and
data-independent memory hard functions (iMHFs). As the name suggests an iMHF induces a memory access
pattern that is independent of the sensitive input (e.g., password), which makes them naturally resistant to
certain side channel attacks e.g., cache-timing [10]. Meanwhile, while dMHFs with high memory/bandwidth
hardness are potentially easier to construct [2, 6], they are also more vulnerable to side channel attacks. Ar-
gon2 [12], winner of the recently completed Password Hashing Competition [29], includes a data-independent
mode of operation (Argon2i), a data-dependent mode (Argon2d) and a hybrid mode (Argon2id).

To a large extent, most of the recent cryptanalysis of MHF candidates has focused on memory hardness.
In particular, cumulative memory complexity (CMC) [8] and the closely related metric amortized area-time
complexity (aAT) [2, 4] aim to approximate the cost of constructing enough chips to evaluate the function
T times per year. For example, if evaluating the function one time requires us to lock up 1GB of DRAM for
1 second then, at minimum, an attacker would need to buy roughly 32 (1GB) DRAM chips to evaluate the
function a billion times per year. Alwen et al. [6] showed that the dMHF scrypt [28] has aAT complexity
that scales quadratically with the running time parameter n i.e., the function has CMC Ω(n2).1 By contrast,

Alwen and Blocki [2, 3] showed that any iMHF has cumulative memory complexity at mostO
(

n2 log logn
logn

)
and

they exhibited even stronger amortization attacks against Password Hashing Competition [29] (PHC) winner
Argon2i [12] along with other candidate MHFs such as balloon hashing [17]. Blocki and Zhou [16] showed
that Argon2i has CMC at most O

(
n1.767

)
and at least Ω̃

(
n1.75

)
. Alwen et al. [5] also gave a theoretical

construction of an iMHF with CMC at least Ω
(

n2

logn

)
, which is essentially optimal in an asymptotic sense.

More recently, Alwen et al. [4] designed two practical iMHFs called DRSample and aATSample with the same
asymptotic complexity.

By contrast, the notion of bandwidth-hardness was only introduced recently [30] with the intention of
lower bounding the energy required to evaluate the function2. Ren and Devadas [30] observed that metrics
such as CMC or aAT do not provide an accurate picture of energy consumption. For example, certain types
of memory consume very little energy when idle, but cache misses are costly because we must retrieve data
from RAM. Memory Bound Functions [1] are functions whose computation always requires a large number
of cache-misses regardless of computation time. Bandwidth hardness [30] relaxes this notion by requiring
that any attacker who evaluates the function must either 1) incur a large number of expensive cache misses,
or 2) must perform a larger (e.g., super-linear) amount of computation.

Ren and Devadas proposed to cryptanalyze an iMHF using a variant of the red-blue pebbling game
in which red-moves (representing computation performed using data in cache) have a smaller cost cr than

1This is the best possible lower bound for CMC. In particular, any MHF that can be evaluated in time O (n) on a sequential
computer has cumulative memory cost at most O

(
n2

)
. This follows because we can only fill O (n) blocks of memory in O (n)

sequential steps. At best we can hope that the attacker will also need to lock up Ω(n) blocks of memory for Ω(n) steps.
2In contrast to [3], we use energy cost to refer to bandwidth cost.
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blue-moves cb (representing data movements to/from memory) [30]. Ren and Devadas also proved that the
bit reversal graph [25], which forms the core of iMHF candidate Catena-BRG [22], is maximally bandwidth
hard in the sense that any red-blue pebbling has cost Ω(n ·cb). However, Ren and Devadas [30] did not prove
that any attacker in the parallel random oracle model (pROM) can be viewed as a red-blue pebbling so it
was not clear whether or not a graph (e.g., Catena-BRG [22]) with high red-blue pebbling cost is necessarily
bandwidth hard in the pROM model. Similarly, Ren and Devadas [30] showed that scrypt is bandwidth
hard under a restrictive assumption about the cache-architecture adopted by the attacker i.e., data from
RAM can only be retrieved in large chunks. Prior to our work nothing was known about the bandwidth
hardness of key MHF candidates such as PHC winner Argon2i [29, 12], DRSample and aATSample [4].

Our Contributions. We formalize the notion of bandwidth hardness in the parallel random oracle model
and show that the bandwidth hardness of an iMHF is indeed captured by the red-blue pebbling game. This
does for bandwidth hardness what Alwen and Serbinenko [8] did for CMC when they showed that the CMC
of an iMHF is captured by the parallel black pebbling game. In particular, to determine whether a candidate
iMHF is sufficiently bandwidth-hard it suffices to analyze the red-blue pebbling costs associated with the
corresponding directed-acyclic graph G.

Second, we demonstrate that CMC lower bounds can be used to directly lower bound energy costs for both
iMHFs and dMHFs. Intuitively, an attacker running in time t will pay computation costs at least t ·cr, where
cr denotes the energy cost of each random oracle query, and must incur energy cost at least

(
CMC
t·w −m

)
cb

transferring data between cache/RAM. Here, m denotes the number of w bit words that can be stored in
cache and cb denotes the energy costs associated with transferring a w-bit word between cache/RAM — we
typically expect that m ≪ n and cb ≫ cr. Based on this observation we can show that the energy costs of

any attacker with cache size m are at least Ω
(√

cbcr · CMC/w − cb ·m
)
. The result also demonstrates that

the goals of high CMC and high bandwidth hardness are well aligned. For example, Alwen et al. [6] show
that scrypt has CMC at least Ω(n2 ·w) in the parallel random oracle model where the random oracle output
is a w-bit word. Combined with our result this implies that scrypt has energy cost at least Ω

(√
cbcrn

)
whenever m = o(n). Ren and Devadas [30] had previously shown that scrypt has energy cost at least
Ω(ncb) whenever m = o(n) under a somewhat restrictive assumption about the cache-architecture. While
the Ω

(√
cbcrn

)
lower bound on scrypt is not tight, it is interesting in that it is unconditional and follows

directly from the observation that CMC at least Ω(n2 · w).
Third, we establish the first unconditionally tight lower bound on the energy cost of scrypt. In particular,

we show that in the parallel random oracle model, any algorithm evaluating scrypt has energy cost Ω(n ·cb),
by modifying and extending ideas from the reduction of Alwen et al. [6]. By contrast, the conditional lower
bound of [30] makes a restrictive assumption about the cache-architecture so that prior results of Alwen
et al. [6] can be used as a blackbox.

Fourth, we introduce a new technique to lower-bound the red-blue pebbling cost of a DAG and we use
this new technical hammer to lower-bound the reb-blue pebbling cost of several important iMHF candidates
including: Argon2iB (the current version of PHC winner Argon2i [12]), Argon2iA (an older version of Argon2,
which is similar to balloon hashing [17]), DRSample and aATSample. For each of these functions we show
that if m = O

(
n1−ϵ

)
then then any pROM attacker with cache-size m ·w bits (m words) must incur energy

cost at least min{Ω (n · cb) , ω(n · cr)} where the specific ω(n · cr) cost term can vary depending on m and the
particular iMHF. In an asymptotic sense, we can say that the functions are maximally bandwidth hard as
the ω(n · cr) cost term will eventually dominate as n grows large so that our lower bound becomes Ω (n · cb).
We prove an even stronger lower bound for aATSample. In particular, aATSample is maximally bandwidth
hard as long as m = O (n/ log n) i.e., any pROM attacker with cache-size m must incur energy cost at least
min{Ω (n · cb) , ω(n · cr)}.

Interestingly, DRSample and aATSample have asymptotically higher CMC as well, which is consistent with
our observation that the goal of designing an MHF with high CMC is well aligned with the goal of designing
a maximally bandwidth hard function. On the other hand, Argon2iA and Argon2iB are still maximally
bandwidth hard even though their CMC is lower than aATSample or DRSample. Thus, bandwidth-hardness
does not necessarily imply high CMC.
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While we prove that DRSample, aATSample, Argon2iA and Argon2iB are all maximally bandwidth hard
in an asymptotic sense, it would be nice to gain a more precise understanding of the constant factors in
these bounds. To this end it would be useful to develop an efficient algorithm to find the minimum cost
red-blue pebbling of any DAG G. However, our final result is a negative one. In Appendix D we show that
it is NP-Hard to compute the minimum cost red-blue pebbling of a general DAG G. This result does not
definitively rule out efficient algorithms to compute (or approximate) the minimum cost red-blue pebbling
of specific graphs such as DRSample, aATSample or Argon2iB though any such algorithm would have to be
targetted to the specific graph structure.

1.1 Graph Pebbling and iMHFs

An iMHF fG,H is defined by a labeling game over a DAG G and a random oracle H : {0, 1}∗ → {0, 1}w. In
particular, the label ℓv of an intermediate node v is computed as ℓv = H

(
v, ℓv1 , . . . , ℓvindeg

)
where v1, . . . , vindeg

are the parents of node v in G. The output of the function is the label of the final sink node. Before we
provide an overview of our technical results it is necessary to first (informally) introduce the black pebbling
game and the red-blue pebbling game.

Black Pebbling. Given a directed acyclic graph (DAG) G = (V,E), the goal of the (parallel) black
pebbling game is to place pebbles on all sink nodes of G (not necessarily simultaneously). The game is
played in rounds and we use Pi ⊆ V to denote the set of currently pebbled nodes on round i. Initially all
nodes are unpebbled, P0 = ∅, and in each round i ≥ 1 we may only include v ∈ Pi if all of v’s parents
were pebbled in the previous configuration (parents(v) ⊆ Pi−1) or if v was already pebbled in the last round
(v ∈ Pi−1). More formally, a pebbling sequence P0, . . . , Pt ⊆ V is a legal partial pebbling of G if for all
pebbling rounds i ≤ t we have

⋃
v∈Pi\Pi−1

parents(v) ⊆ Pi−1. If we additionally have P0 = ∅ (i.e., we start

with no pebbles) and V ⊆
⋃

i≤t Pi (i.e., all nodes are pebbled at some point), we say that the pebbling
sequence is complete or, simply, a legal pebbling of G. In the sequential pebbling game we can place at
most one new pebble on the graph in any round (i.e., we additionally require that |Pi\Pi−1| ≤ 1 for each
round i ≤ t), but in the parallel pebbling game no such restriction applies. We use P∥(G) to denote the
set of all legal (complete) black pebblings of the DAG G and we use P(G) to denote the set of all legal
(complete) sequential pebblings of G. Observe that P(G) ⊂ P∥(G) since any sequential black pebbling is
also a legal parallel pebbling. The space cost of the pebbling is defined to be maxi |Pi|, which intuitively
corresponds to minimizing the maximum space required during computation of the associated function, and
relates to the space-complexity of the black-pebbling game. Gilbert et al. [23] studied the space-complexity
of the black-pebbling game and showed that this problem is PSPACE−Complete by reducing from the truly
quantified boolean formula (TQBF) problem. Given a (partial) black pebbling P = (P1, . . . , Pt) of a DAG
G, we define the cumulative cost to be cc(P ) := |P1|+ . . .+ |Pt|. Then we define Πcc(G) := minP∈P(G) cc(P )

(resp. Π
∥
cc(G) := minP∈P∥(G) cc(P )) as the minimum cumulative cost of any legal sequential (resp. parallel)

black pebbling of G.

Pebbling Reduction in the pROM Model. Alwen and Serbinenko [8] show that under the parallel random
oracle model (pROM) of computation, the cryptanalysis of an iMHF, under the amortized time-space metric,
can be approximately reduced to the cumulative cost of a pebbling strategy. The result is significant in that
it allows future cryptanalysis of iMHF candidates to focus on understanding the (parallel) black pebbling
costs of the underlying DAG. In particular, a lower bound on the aAT complexity of the best pebbling for
a DAG G immediately yields a lower bound on the aAT complexity of any pROM attacker evaluating the
function fG,H . Intuitively, this means that if G has sufficiently high (parallel) black pebbling cost then it
will be prohibitively expensive for an offline attacker to obtain enough hardware to compute the function
fG,H at a high rate e.g., millions/billions of times per second.

Red-Blue Pebbling. Given a DAG G = (V,E), the goal of the red-blue pebbling game [24] is again to place
pebbles on all sink nodes of G (not necessarily simultaneously) from a starting configuration that contains no
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pebbles on any nodes. The game is again played in rounds, with each node possibly containing a blue pebble
or a red pebble at each time step. Informally, at each time step, for any node v we can swap between a red
pebble at v and a blue pebble at v (and vice versa). Each swap is called a blue move, and while there is no
limit to the number of blue moves at a single time step, they each have an associated cost cb. Simultaneously,
we may place a red pebble at a node v if all of v’s parents contained red pebbles in the previous configuration.
This manner of placing a new red pebble is a red move and each occurrence incurs cost cr. We are allowed to
have at most m (cache-size) red-pebbles on the graph at any point in time. In a sequential red-blue pebbling
we are allowed to place at most one new red pebble on the graph during each round, while no such constraint
applies to a parallel red-blue pebbling. Finally, there is a parameter m that denotes a upper bound on the
number of nodes that can contain red pebbles at each time step. The total cost of the red-blue pebbling is the
sum of the costs induced by the blue moves and the red moves. We define rbpeb∥(G,m) (resp. rbpeb(G,m))
to be the minimum cost of any legal parallel (resp. sequential) red-blue pebbling of G that places at most m

red-pebbles on the graph at any point in time. We will focus on lower bounding rbpeb∥(G,m) since this also

lower bounds the sequential pebbling cost i.e., rbpeb(G,m) ≥ rbpeb∥(G,m). In contrast to black pebbling it
will turn out that the difference between sequential/parallel red-blue pebbling costs is minimal i.e., we can

show that rbpeb(G,m) ≥ rbpeb∥(G,m) ≥ rbpeb(G, 2m).

1.2 Overview of Our Results

Proving that the Red-Blue Pebbling Game Captures Bandwidth Hardness of iMHFs. We
consider the variant of the red-blue pebble game proposed by Ren and Devadas [30] in which red moves have
cost cr and blue moves have cost cb — note that if cr = 0 then we recover the traditional goal of minimizing
the number of cache misses. Ren and Devadas [30] proposed the adoption of red-blue pebbling to model the
bandwidth-complexity of iMHFs, with the idea that red moves correspond to hash computations and blue
moves correspond to (more expensive) swaps between cache and memory. However, they did not prove any
connection between red-blue pebbling costs and the actual bandwidth-costs of a pROM attacker.

Our contributions are two-fold. First, we formalize the notion of energy cost of a function fG,H in the
parallel random oracle model. Second, we prove that ecost (fG,H) the energy cost of fG,H is closely related
to red-blue pebbling costs. In particular, we prove that any pROM machine computing fG,H with cache-size

mw-bits has energy costs Ω(rbpeb∥(G, 9m)). This resolves an open question of [30], and shows that future
cryptanalysis of the bandwidth hardness of iMHF candidates can focus on the red-blue pebbling cost of the
underlying DAG G.

Theorem 1.1. (Informal, see Theorem 3.3.) fG,H has energy cost at least ecost (fG,H ,mw) ∈ Ω
(
rbpeb∥(G, 9m)

)
.

While Theorem 3.3 is similar to a result of Alwen and Serbinenko who showed that the cumulative
memory complexity of fG,H is captured by the black pebbling game [8], we stress that there are several
unique challenges in our reduction. Essentially, the pebbling reduction of [8] extracts a black pebbling from
the execution trace of a pROM attacker by examining the random oracle queries made during each round
i.e., each new pebble that is placed on the graph during round i corresponds directly to a random oracle
query that was made during the previous round. To complete the argument Alwen and Serbinenko then use
a compression argument to relate the number of pebbles on the graph to the size of the pROM attacker’s
state during each round. In our setting we need to additionally determine which pebbles are red and blue
during each round and we need to relate the number of blue moves to the number of bits transferred to/from
memory. However, in the red-blue pebbling model only red moves correspond to random oracle queries.
Intuitively, we expect that blue moves correspond to labels that are transferred to/from memory, but an
attacker may encode each of these labels in an unexpected way (e.g., encryption). Thus, even if we can
observe the data values being transferred to/from memory we stress that we cannot directly infer which
labels are being transferred making it difficult to extract a legal red-blue pebbling from the execution trace.

We overcome this difficulty by allowing the red-blue pebbling to use a little bit of extra memory (e.g., if
the pROM attacker has m ·w bits of cache then the red-blue pebbling is allowed to use 9m red-pebbles) and
by introducing the notion of a red-blue extension pebbling of a legal (partial) black pebbling P = (P1, . . . , Pt).
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In particular, we show that we can partition time into intervals (t0 = 0, t1], (t1, t2], . . . (tk−1, tk = t] in such
a way that 1) the pROM attacker transfers at least mw bits between cache/memory during each interval
(ti, ti+1], 2) our red-blue extension pebbling uses at most 9m red pebbles and, on average, makes at most
O (m) blue moves during each interval (ti, ti+1]. Thus, the pROM attacker incurs cost at least Ω(km · cb)
transferring data between cache and memory while the red-blue extension pebbling has cost at most O (kmcb)
for blue moves.

To partition time into intervals we introduce a set QueryFirst(x, y) that intuitively corresponds to the
data-labels that appear first as input to a random oracle query during the time interval [x, y] before the label
appears as the output of some random oracle query during the time interval (x, y]. We then define t1 to
be the minimum pebbling round such that there exists 1 < j1 ≤ t1 such that QueryFirst(j1, t1) has size
at least 3m. Similarly, once t1 < . . . < ti−1 have been defined we can define ti > ti−1 to be the minimum
pebbling round such that there exists ti−1 < ji ≤ ti s.t. QueryFirst(ji, ti) has size at least 3m. At the
beginning of each interval (ti, ti+1] our red-blue extension pebbling will place red pebbles on all nodes in
the set QueryFirst(ti, ti+1) (i.e., to “load” these values into cache). We can argue that there are at most
4m pebbles in this set QueryFirst(ti, ti+1). Thus, we can accomplish this initial step legally since the
extension pebbling is allowed to use up to 9m > 4m red-pebbles. Once we have red pebbles placed on all of
these nodes the extension pebbling is able to finish this interval without changing any other blue nodes into
red-nodes (i.e., zero cache misses). In particular, during the remainder of the interval we will simply assign
every newly pebbled node to have the color red. To ensure that we don’t use too many red pebbles during
each intermediate round ti < j ≤ ti+1 we can discard our red pebble on node v if this pebble will never be
needed to repebble any of v’s parents during the current time interval or if v will be (re)pebbled before any
of its parents (if we need node v for a future interval (ti′ , ti′+1] with i′ > i then we can convert node v to a
blue pebble and “charge” this cost to the future time interval). Thus, we can upper bound the total number
of red pebbles as m + |QueryFirst(ti, ti+1)| + maxti≤j≤ti+1 |QueryFirst(j, ti+1)| ≤ m + 4m + 4m = 9m.
Intuitively, |QueryFirst(ti, ti+1)| ≤ 4m accounts for red-pebbles added at the beginning of the interval,
|QueryFirst(j, ti+1)| ≤ 4m upper bounds the number of additional red-pebbles that need to be kept around
and m upper bounds the number of new red-pebbles placed on the graph in each round. Finally, at the end
of the interval we can use at most O(m) blue moves to free cache by converting any of our current 9m red
pebbles to blue pebbles i.e., if these pebbles will be required for future time intervals.

To prove that the pROM attacker must transfer at least mw bits from memory during each interval we
rely on an extractor argument. In particular, let γi encode the messages transferred to/from cache during
the interval (ti, ti+1]. Our extractor will extract 3m labels (without querying the random oracle at these
points) by simulating the pROM attacker starting with a hint. The labels we will extract correspond to
the nodes in the set QueryFirst(ji+1, ti+1) of size |QueryFirst(ji+1, ti+1)| ≥ 3m where ji+1 ∈ (ti, ti+1].
The hint consists of γi along with other information such as the current state of the cache (at most mw
bits), indices of the labels that we want to extract (at most |QueryFirst(ti, ti+1))| log n ≤ 4m log n bits to
encode), and the index of the first query in which each label appears as input to a random oracle query
(at most 4m log q bits to encode where q is an upper bound on number of queries made by the attacker).
Since a random oracle is incompressible, the extractor’s hint must have length at least 3mw if we expect the
extractor to output at least 3m labels (i.e., at least 3m distinct random oracle outputs of length w assuming
there are no hash collisions) without querying the random oracle at these points so it follows that |γi| ≥ m·w.

On the Bandwidth Hardness of Important iMHF Candidates. In Section 5, we provide lower
bounds on the bandwidth hardness of several important iMHF candidates including Argon2iA, Argon2iB [12],
aATSample and DRSample [4]. We use Argon2iA to refer to v1.1 and we use Argon2iB to refer to versions
v1.2+ 3. Thus, Argon2iB (the current version of Argon2i) is particularly important to cryptanalyze as it
won the password hashing competition [29] and is being considered for standardization by the Cryptography
Form Research Group (CFRG) of the IRTF [13].aATSample and DRSample are important to study as they

3The specification of Argon2i has changed several times, but the only changes that affect our analysis are changes that
affect the underlying DAG G. A change to the edge distribution was introduced in v1.2 where a non-uniform indexing was
introduced. We use Argon2iB to refer to the version that is currently being considered for standardization by the Cryptography
Form Research Group (CFRG) of the IRTF[13].
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are the first practical iMHF candidate with nearly asymptotically optimal cmc4.
For context we observe that there is always red-blue pebbling strategy that makes at most O (n) blue

moves and at most O (n) red moves for a total cost of at most O (ncb + ncr). In particular, the naive pebbling
strategy simply pebbles nodes in topological order immediately converting red nodes to blue nodes whenever
we need to free up cache and converting blue nodes back to red nodes only when needed. This naive strategy
works for any cache size m as long as m is larger than the indegree of the graph — if m is smaller than the
indegree then there is no legal red-blue pebbling. If m ≥ n then cache is large enough to store all labels
there is a naive red-blue pebbling strategy that makes at most O (n) red-moves and 0 blue moves. For the
families of graphs generated by aATSample and DRSample [4] we show the following:

Theorem 1.2. Let G be a graph generated by aATSample. Then there exists constants C,C ′ > 0 so that for
all m ≤ Cn

logn ,

rbpeb∥(G,m) ≥ C ′ ·min(n · cb, (n log n)cr),

holds with high probability.

Our lower bound for DRSample requires the slightly stronger (but still realistic) assumption thatm ≤ C ′nρ

for some constant ρ < 1 as opposed to the slightly weaker assumption that m ≤ Cn
logn in Theorem 1.2.On the

positive side the red cost term Ω(n3/2−ρ/2)cr from Theorem 1.3 is an improvement over Theorem 1.2. We
typically expect that n3/2−ρ/2cr ≥ ncb in which case the lower bound from Theorem 1.3 is simply Ω(n · cb).
Because the first n/2 nodes from aATSample form a copy of DRSample the same asymptotic lower bound
applies when m ≤ C ′nρ.

Theorem 1.3. Let G be a graph generated by DRSample or aATSample and 0 < ρ < 1. Then there exists
constants C,C ′ > 0 so that for all m ≤ C ′nρ, with high probability,

rbpeb∥(G,m) ≥ C ·min
(
n · cb, n3/2−ρ/2 · cr

)
.

Our lower bounds for Argon2iA and Argon2iB are comparable to DRSample. In fact, the red cost term
is slightly better than in Theorem 1.3 particularly when m is small. For example, if ϵ = 0.9 then m = n1/10

(unrealistically small in practice) and the red-cost term in Theorem 1.4 is n1+ϵcr = n1.9r . By contrast, if
m = n0.9 in Theorem 1.3 the red-cost term is just n1.05cr.

Theorem 1.4. Let G be a random Argon2iB (resp. Argon2iA) graph. Then there exists constants C,C ′ > 0
so that for any 0 < ϵ < 1 and for all m ≤ C ′n1−ϵ, with high probability,

rbpeb∥(G,m) ≥ C ·min(ncb, n
1+ϵcr).

At a technical level our template to establish each of these lower bounds is similar. We show that the graph
is “well dispersed.” Essentially, if our block size is b, then we show that for every interval I = [i, j] ⊆ [n/2, n]
of Ω(n/b) nodes in the second half and almost every block B of b consecutive nodes in the first half [n/2]
there is an edge from some node in the second half of B to some node in I 5. We then consider the pebbling
interval [ti, tj ] beginning at the time ti during which a pebble is first placed on node i and ending at the time
tj during which a pebble is first placed on node j. If block B initially contains no red-pebble and there is an
edge from the second half of B to I then either 1) we will need to make a blue move to place a red-pebble on
block B or 2) we will need to make at least b/2 red-moves to repebble all of the nodes in the first half of B. If
the cache size is m ∈ o (n/b) then most of these Ω(n/b) blocks will begin with no pebbles in cache. Because

4Prior work [5] gave a theoretical construction of an iMHF with Ω
(

n2·w
logn

)
(matching DRSample and aATSample), but to

the best of our knowledge no implementation exists. By contrast, DRSample can be easily implemented by modifying the
source code for Argon2iB and these modifications do not adversely impact performance [4]. Any iMHF fG,H has cmc at most

cmc
(
fG,H

)
∈ O

(
n2·w·log logn

logn

)
[2, 3] so cmc (DRSample) ∈ Ω

(
n2·w
logn

)
and cmc (aATSample) ∈ Ω

(
n2·w
logn

)
[4] are essentially

tight.
5For DRSample it suffices to show that this property holds for sufficiently many blocks B.
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the graph is “well dispersed” we will need to place a red pebble on at least one node from almost every
block. Thus, during the interval [ti, tj ], it is either the case that 1) we make Ω(n/b) blue moves, or 2) we
make Ω(n) red moves. The total cost can be lower bounded by summing over all (n/2)/|I| such time intervals.

On the Relationship between Bandwidth Complexity and Cumulative Memory Complexity.
We show that bandwidth complexity and cumulative memory complexity are intricately related concepts. If
rbpeb∥(G,m) is the minimum energy cost of any legal parallel reb-blue pebbling of G with cache size m and
Πcc is the cumulative complexity of sequential black pebbling, then

Theorem 1.5.

rbpeb∥(G,m) ≥ min
t

(
2cb

(
Πcc(G)

t
− 2m

)
+ crt

)
∈ Ω

(√
cb · cr ·Πcc(G)

)
,

where m is the cache size, t is the number of steps in the pebbling, cb is the cost of a blue move and cr is the
cost of a red move.

Theorem 1.5 demonstrates that the goals of designing an MHF with high cumulative complexity and
high bandwidth complexity are well aligned. In fact, we use Theorem 1.5 to show that a family {Gn}∞n=1

of constant indegree DAGs constructed by Schnitger [31] has high energy costs because the sequential black
pebbling cost is Πcc(Gn) ∈ Ω(n2) [7]. In particular, the optimal red-blue pebbling must either make t =
n
√

cb/cr red-moves or the pebbling strategy will use at least (n
√
crcb−2m) blue moves. As an intermediate

step to proving Theorem 1.5 we show that rbpeb∥(G,m) ≥ rbpeb(G, 2m). This result is interesting as it
suggests that an attacker will not be able to dramatically decrease energy costs by exploiting parallelism.
By contrast, for any constant indegree DAG G it is known that the parallel cumulative pebbling cost is at

most Π
∥
cc(G) ∈ O

(
n2 log logn

logn

)
[2] while it is known that Πcc(Gn) ∈ Ω(n2) for the constant indegree DAGs

constructed by Schnitger [31].
We also prove a similar theorem that directly relates ecost and cmc. In particular, we show that

ecost (fG,H) ∈ Ω

(√
cbcrcmc (fG,H)− cbm

)
.

Crucially, this bound applies to any MHF not just for iMHFs. For iMHFs we could use our pebbling
reduction to relate ecost (fG,H) to rbpeb∥(G) and we could use [8] to relate cmc (fG,H) to Πcc(G), but no
such pebbling reduction is known for dMHFs. Combining our result with a result of Alwen et al. [6] we
obtain the following lower bound for scrypt: ecost (scrypt) ∈ Ω

(√
cbcrn

)
. While we later obtain a tighter

lower bound ecost (scrypt) ∈ Ω (n · cb), the previous result is interesting because it follows immediately from
the cumulative memory complexity of scrypt without additional analysis.
On the Bandwidth Hardness of scrypt. In Section 6, we provide a tight lower bound on the band-
width hardness of scrypt [28] eliminating a restrictive assumption required in the lower bound of Ren and
Devadas [30]. Our pebbling analysis only applies to iMHFs so we are unable to apply pebbling arguments
to lower bound the energy cost of dMHFs such as scrypt. In particular, Theorem 1.6 shows that any
algorithm in the parallel random oracle model making at most q ≤ 2w/20 queries to the random oracle
H : {0, 1}∗ → {0, 1}w and computing scrypt correctly with probability at least ϵ has energy cost Ω(ϵncb).

Theorem 1.6. Whenever 4 log n < w, q ≤ 2w/20, n
4m · cr > cb, and ϵ ≥ 2(exp

(
−n

8

)
+ 3

2n
32−w + qn22−w +

2−mw/5) the following statement holds in the parallel random oracle model:

ecostq,ϵ(scryptn,m · w) ≥
ϵ

2
· ncb
16

Ren and Devadas [30] prove that the energy cost of scrypt is Ω(ncb) under a restrictive constraint that
an adversary must fetch w bits at a time. Under such a restrictive assumption the extractor argument from
Alwen et al. [6] can be used as a black box without any modification. In particular, the only way for an
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adversary to obtain a label is to either recompute the label without accessing memory at all or load at least
w bits of data (one full label) from memory. In our unrestricted setting the attacker has no such restriction
and transfers arbitrary bits of data from/to memory at a time e.g., the attacker could choose to only transfer√
w bits from memory in an attempt to minimize bandwidth costs. Proving the lower bound Ω(ncb) without

this constraint is challenging as we cannot simply use the results in Alwen et al. [6] as a black box. We give
the first tight unconditional lower bound on the bandwidth hardness of scrypt in the parallel random oracle
model i.e., without the restrictive constraint that an adversary must fetch w bits at a time.
On the Computational Complexity of Minimum Cost Red-Blue Pebbling. While we can establish
asymptotic lower bounds on the energy cost of important iMHF candidates, one would ideally want to find
the precise energy cost for each function. In particular, given a graph G and a cache parameter m we
would like to compute rbpeb∥(G,m) precisely. However, we show in Appendix D that, unfortunately, exactly
computing the red-blue pebbling cost of a DAG G is NP− Hard, even under realistic assumptions about cb
and cr:

Theorem 1.7 (Informal). Even for cb > 10000cr, the problem of determining the red-blue pebbling cost of
a directed acyclic graph G is NP− Hard.

A result of Demaine and Liu [18, 26] implies that it is PSPACE hard to compute rbpeb∥(G,m) when
cr = 0 (computation is free)6. However, we stress that in practice we have cr > 0 (computation may be
cheap, but it is not free). Furthermore, if we ensure that cr > 0 and cb/cr ≤ poly(n) the decision problem

rbpeb∥ = “is rbpeb∥(G,m) ≤ k” is in NP7 so, unless NP = PSPACE, the decision problem is fundamentally

different when computation is not free. While the decision problem rbpeb∥ is important for the cryptanalysis
of MHFs to the best of our knowledge nothing was known about the complexity of this problem prior to our
paper.

Gilbert et al. [23] previously showed that the following decision problem was PSPACE complete: Given a
DAG G decide if there is a legal black pebbling with space complexity at most m i.e., during every pebbling
round there are at most m pebbles on the graph. Gilbert et al. showed that the minimum space black
pebbling problem was PSPACE− Hard by reduction from the Truly Quantified Boolean Formula (TQBF)
problem. Observing that any 3− SAT instance ϕ with n variables is also a TQBF instance (albeit with no
∀ quantifiers) their reduction allows us to transform ϕ into a DAG Gϕ. The graph Gϕ has the property that
it can be pebbled with at most m = 3n + 3 black pebbles if and only if ϕ is satisfiable. In Appendix D we
detail a gadget to append to Gϕ to create a graph Hϕ so that rbpeb∥(H) = x1 if ϕ is a satisfiable assignment,

but rbpeb∥(Hϕ) > x1 if ϕ is not a satisfiable assignment.

2 Preliminaries

We use [n] to denote the set {1, 2, . . . , n} and [a, b] = {a, a+ 1, . . . , b} where a, b ∈ N with a ≤ b. Similarly,
we use (a, b] to denote the set [a, b]− {a}.

We assume a given directed acyclic graph (DAG) G = (V,E) is labeled in topological order and when G
has size n we will use V = [n] to denote the set of vertices E ⊆ {(i, j) : 1 ≤ i < j ≤ n} denotes the set
of all directed edges in G. We say a node v ∈ V has indegree δ = indeg(v) if there exist δ incoming edges
δ = |(V × {v}) ∩ E|. We say that G has indegree δ = indeg(G) if the maximum indegree of any node of G
is δ. A node with indegree 0 is called a source node and a node with no outgoing edges is called a sink. We
use parentsG(v) = {u ∈ V : (u, v) ∈ E} to denote the parents of a node v ∈ V and similarly for a set S ⊆ V ,
we define parentsG(S) = {u ∈ V : (u, v) ∈ E, v ∈ S}. In general, we use ancestorsG(v) =

⋃
i≥1 parents

i
G(v) to

denote the set of all ancestors of v — here, parents2G(v) = parentsG (parentsG(v)) denotes the grandparents
of v and parentsi+1

G (v) = parentsG
(
parentsiG(v)

)
. When G is clear from context we will simply write parents

6In particular, rbpeb∥(G,m) = 0 if and only if there is a legal black pebbling of G using at most m black pebbles where the
latter decision problem is PSPACE complete [23].

7In particular, if cr > 0 and cb/cr = poly(n) we are guaranteed that the optimal red-blue pebbling runs in time at most
poly(n). Thus, yes instances of our decision problem admit a polynomial size witness.
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(resp. ancestors). We denote the set of all sinks of G with sinks(G) = {v ∈ V : ∄(v, u) ∈ E}, the nodes with
no outgoing edges.

We often consider the set of all DAGs of equal size Gn = {G = (V,E) : |V | = n} and often will bound
the maximum indegree Gn,δ = {G ∈ Gn : indeg(G) ≤ δ}. For directed path p = (v1, v2, . . . , vz) in G, its
length is the number of nodes it traverses, length(p) := z (as opposed to the number of edges). We say the
depth d = depth(G) of DAG G is the length of the longest directed path in G.

An iMHF can be specified by a DAG G and a random oracle H as in the next definition.

Definition 2.1. Given a directed acyclic graph G = (V = [n], E) with a set of sink nodes sinks(G) and a
random oracle function H : Σ∗ → Σℓ over an alphabet Σ, we define the labeling of graph G as labG,H : Σ∗ →
Σ∗. We omit the subscripts G,H when the dependency on the graph G and hash function H is clear. In
particular, given an input x the (H,x) labeling of G is defined recursively by

labH,x(v) =

{
H(v, x), indeg(v) = 0

H (v, labH,x(v1), . . . , labH,x(vd)) , indeg(v) > 0,

where v1, . . . , vd are the parents of v in G, according to some predetermined lexicographical order. It will
also be convenient to use prelab(v) = (v, labH,x(v1), . . . , labH,x(vd)) to denote the prelabel of node v i.e., the
random oracle query whose output is labH,x(v). We define

fG,H(x) = {labH,x(s)}s∈sinks(G).

If there is a single sink node sG then fG,H(x) = labH,x(sG).

We will often consider graphs obtained from other graphs by removing subsets of nodes. Thus if S ⊂ V ,
then let G− S be the DAG obtained from G by removing nodes S and incident edges.

Given a directed acyclic graph (DAG) G = (V,E) the goal of the red-blue pebbling game is to place
pebbles on all sink nodes of G (not necessarily simultaneously).

Let RB = ((B0, R0), (B1, R1), . . . , (Bt, Rt)) (resp. RB∥) denote the set of all sequential (resp. parallel)
red-blue pebblings of a DAG G. The game is played in rounds and we use Bi ⊆ V (resp. Ri ⊆ V ) to
denote the set of nodes with blue pebbles (resp. red pebbles) in round i. Initially, no nodes contain pebbles,
so that B0 ∪ R0 = ∅. The goal is to eventually place a red-pebble on every node in V (not-necessarily
simultaneously) so we require that V ⊆

⋃
i Ri. We also require that in every round i > 0 we have (1)

parents (Ri \ (Ri−1 ∪Bi−1)) ⊆ Ri−1, (2) Bi \Bi−1 ⊆ Ri−1 and (3) |Ri| ≤ m.

We let RB∥(G,m) be the set of all valid parallel red-blue pebblings of G with a cache-size of m pebbles.
Intuitively, in each round i ≥ 1 we may place a red pebble on a node v ∈ V if either parents(v) ⊆ Ri−1 all of
v’s parents contain red pebbles in the previous configuration (called a red move) or v contained a blue pebble
in the previous round (called a blue move). On the other hand, we may place a blue pebble at v ∈ Pi (also
called a blue move) if v contained a red pebble in the previous round. Blue moves represent data transfer
to/from memory and are more expensive than red-moves (computation).

We say that a pebbling ((B0, R0), (B1, R1), . . . , (Bt, Rt)) is sequential if |Ri \Ri−1| ≤ 1 for all 0 < i ≤ t,

while for a parallel pebbling we make no such restriction. Note that RB ⊆ RB∥ since any sequential pebbling
is a legal parallel pebbling.

Formally we define a legal (partial) red-blue pebbling as below:

Definition 2.2. A pebbling ((B0, R0), (B1, R1), . . . , (Bt, Rt)) is a legal partial red-blue pebbling of G with a
cache size of m pebbles if for all 0 < i ≤ t we have: (1) |Ri| ≤ m, (2) parents (Ri \ (Ri−1 ∪Bi−1)) ⊆ Ri−1,
(3) Bi \Bi−1 ⊆ Ri−1, (4) B0 = R0 = ∅, (5) (for sequential pebbling only) |Ri \Ri−1| ≤ 1. Furthermore, the
pebbling is also complete (i.e. a legal red-blue pebbling of G) if (6) sinks(G) ⊆ ∪ti=1Ri.

Let #BMi and #RMi denote the number of blue moves and the number of red moves, respectively,
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during round i.8 Formally,

#BMi = |{v ∈ Ri \Ri−1 : parents(v) ̸⊂ Ri−1}|+ |Bi \Bi−1|
#RMi = |Ri \Ri−1| − |{v ∈ Ri \Ri−1 : parents(v) ̸⊂ Ri−1}|

Given cost parameters cr and cb, we define the energy cost of a red-blue pebbling (R,B) = ((R1, B1), . . . , (Rt, Bt))
to be

rbpeb∥ ((R,B)) =

t∑
i=1

cb#BMi + cr#RMi .

Generally, we assume cb is much larger than cr. Finally, we define

rbpeb∥ (G,m) = min
(R,B)∈RB∥(G,m)

rbpeb∥ ((R,B))

to be the cost of the optimal red-blue pebbling of G with maximum cache-size of m red pebbles.

2.1 Depth-Robustness

Definition 2.3 (Block Depth-Robustness). Given a node v, let N(v, b) = {v−b+1, . . . , v} denote a segment
of b consecutive nodes ending at v. Similarly, given a set S ⊆ V , let N(S, b) = ∪v∈SN(v, b). We say that a
DAG G is (e, d, b)-block-depth-robust if for every set S ⊆ V of size |S| ≤ e, we have depth(G−N(S, b)) ≥ d.
If b = 1, we simply say G is (e, d)-depth-robust and if G is not (e, d)-depth-robust, we say that G is (e, d)-
depth-reducible.

Note that when b > 1, (e, d, b)-block-depth robustness is a strictly stronger notion than (e, d)-depth-
robustness since for any set S with |S| ≤ e it follows that N(S, 1) ⊂ N(S, b). Hence, (e, d, b ≥ 1)-block
depth robustness implies (e, d)-depth robustness. On the other hand, (e, d)-depth robustness only implies
(e/b, d, b)-block depth robustness.

The cumulative memory complexity of an iMHF is very closely related to the notion of depth-robustness [2,

5, 4, 16]. In particular, we know that Π
∥
cc(G) ≥ ed [5] for any (e, d)-depth-robust DAG and that Π

∥
cc(G) ∈

O
(
en+ n ·

√
dn
)
for any graph that is not (e, d)-depth robust [2]. We will show that Π

∥
cc(G) can be used

to lower bound rbpeb∥(G,m), thus depth-robustness can also be a useful tool in bandwidth hardness. For
DAGS that contain edges (i, i + 1) for each i < n (all of the DAGs we consider) one can occasionally use
block depth robustness to prove tighter bounds e.g., [4, 16].

3 Modeling Energy Complexity as Red-Blue Pebbling

In this section we show that the energy cost of the function fG,H is characterized by the reb-blue pebbling

cost rbpeb∥(G,m) in the parallel random oracle model just as Alwen and Serbinenko [8] showed that cumu-
lative memory complexity can be characterized by the black pebbling game. Similar to [8] our reduction
uses Lemma 3.1 as a core building block. In particular, if the energy cost is significantly smaller than
rbpeb∥(G, 9m) for a pROM attacker with m · w bits of cache then we can build an extractor that receives a
small hint and predicts the random oracle output on a larger set of indices contradicting Lemma 3.1. One of
the unique challenges we face when designing our extractor is that it is not obvious how to relate messages
between cache and main memory to specific blue pebbling moves. By contrast, a black pebbling move always
corresponds to a specific random oracle query.

8In some cases we may have v ∈ Bi−1 and parents(v) ⊂ Ri−1 so that we could place a red pebble on node v using either a
red move or a blue move. In such cases we will assume that this is accomplished by a red move, since blue moves will be more
expensive.
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Lemma 3.1. [21] Let HINT be a set of hints that can be given, B be a series of random bits and A be an
algorithm that receives as input some hint hint ∈ HINT and can adaptively query B at specific indices. Let
WINA,hint denote the event that A, given hint ∈ HINT as input, eventually outputs a subset of k indices
i1, . . . , ik that were not previously queried as well as the corresponding values B[i1], . . . , B[ik] of each bit then

Pr [∃hint ∈ HINT. WINA,hint] ≤
|HINT|
2k

,

where the randomness is taken over the selection of B.

3.1 Memory and Cache in the Parallel Random Oracle Model

Before we present our reduction it is first necessary to give a formal definition of energy costs in the pROM
model.

We define a state of an algorithm AH(.) to be the tuple (σ, ξ), where σ contains the contents of the
cache and has size at most mw bits, and ξ contains the contents of the memory. We consider a pROM
attacker AH(.) with cache size m ·w who is given oracle access to a random oracle H : {0, 1}∗ → {0, 1}w. In
particular, the cache is large enough to store m labels. An execution of AH(.) on input x proceeds in rounds
as follows. Initially, the state at time 0 is (σ0, ξ0) where ξ0 is empty and σ0 encodes the initial input x. At
the beginning of round i the attacker is given the initial state (σi−1, ξi−1) as well as the answers Ai−1 to any
random oracle queries that were asked at the end of the last round. The algorithm AH(.) may then perform
arbitrary computation and/or transfer data between memory and cache. The round ends when the attacker
outputs a new state (σi, ξi) along with a batch of queries Qi = {qi1, qi2, . . . , qiki

}. Since the attacker only has
cache-size m ·w we only allow the attacker to make at most |Qi| ≤ m queries during a single step (otherwise
the attacker won’t even have room to store all of the random oracle responses in cache). In particular, we
require that |σi|+ kiw ≤ mw where ki = |Qi| denotes the number of random oracle answers given to AH(.)

at the beginning of round i. Similarly, we require that for all rounds i we have
∑ki

j=1

∣∣qij∣∣ ≤ mw (we must
have enough room in cache to store the random oracle queries).

We allow the attacker to specify arbitrary functions F1, F2, F3 and F4 to model communication between
cache and memory and subsequent state updates during each round so long as the specification of each
function is independent of the random oracle H (e.g., we cannot query the random oracle in between rounds).
In particular, the function F1 (σi−1, Ai−1) = r1i is used to specify the first message we will send to memory
during round i — in the event that we don’t send any message to memory we define F1 (σi−1, Ai−1) = ⊥.
Similarly, the function F2(ξi−1, r

1
i ) = s1i specifies the response from memory (or ⊥ if there is no response).

Once r1i , s
1
i , . . . , r

j−1
i , sj−1

i have been defined we set

rji = F1

(
σi−1, Ai−1, r

1
i , s

1
i , . . . , r

j−1
i , sj−1

i

)
,

sji = F2

(
ξi−1, r

1
i , s

1
i , . . . , r

j−1
i , sj−1

i , rji

)
.

We terminate when rji = ⊥ or when sji = ⊥.
We let Ri = {r1i , r2i , . . . , r

ℓi
i } denote the sequence of messages sent from cache to memory9 during round

i and we let Si = {s1i , s2i , . . . , s
ℓi
i } denote the responses sent from memory back to the cache. Finally, the

round ends when the attacker uses the function F3 (ξi−1, Ri, Si) = ξi to output a new state ξi for memory
and F4 (σi−1, Ri, Si) to output a new state σi for cache and a new batch Qi of at most m random oracle
queries. At this point AH(.) outputs the next state (σi, ξi) along with the next batch of queries Qi

Crucially, the functions F2 and F3, which are used to generate response from main memory and update
the state of main memory at the end of the round, do not have access to σi−1 (the state of cache) or Ai−1

(the answers to random oracle queries). In particular, any information about σi−1 (cache-state) and Ai−1

(most recent answers to random oracle queries) that main memory receives must be communicated through
one of the messages in the set Ri. Similarly, the functions F1 and F4 are used to generate the requests sent

9In this subsection we use Ri to denote messages from cache to memory instead of a pebbling configuration.
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from cache to main memory, to update the state of cache σi at the end of the round and to output the
next batch Qi of random oracle queries. Crucially these functions do not have access to ξi−1 (the state of
memory). Thus, any information about ξi−1 must be communicated through one of the responses in the set
Si.

Dziembowski et al. [20] also addresses communication between two parties, Asmall (e.g., a space-bounded
virus) and Abig, over a bounded channel. However, both parties in this model can query the random oracle.
This is a crucial difference, since one of the parties in our model, the main memory, is strictly forbidden
from querying the random oracle to avoid trivialization of the problem (e.g., the attacker can perform all
computation in RAM with no blue moves).

Execution Trace. We define the execution trace of the algorithm AH(.) by the sequence of cache states,
memory states, messages passed between cache and memory, and queries made to the random oracle H.
Formally, the execution trace is TraceA,R,H(x) = {(σi, ξi, Ri, Si, Qi)}ti=1, where the trace TraceA,R,H(x) is
dependent on the algorithm AH(.), random oracle H, internal randomness R, and input value x. Given

Si = {s1i , s2i , . . . , s
ℓi
i } and Ri = {r1i , r2i , . . . , r

ℓi
i } we define NBits(Si, Ri) =

∑ℓi
j=1

(
|rji |+ |s

j
i |
)
to denote the

total number of bits transferred between cache and memory during round i. Then we say the cost of the
execution trace is

cost(TraceA,R,H(x)) =

t∑
i=1

(
crki + NBits(Si, Ri)

cb
w

)
.

Intuitively, the cr term is the cost of each random oracle query we make to the random oracle H and ki is
the number of queries at round i. The cb term results from the messages passed between cache and memory
— here cb denotes the cost of transferring w bits between cache and memory.

We now formally define the energy cost of computing a function based on its execution trace.

Definition 3.2. Given constants cb and cr, the energy cost ecost of a function fG,H is defined by

ecostq,ϵ(fG,H ,m · w) = min
A,x

E [cost(TraceA,R,H(x))],

where the expected cost is taken over the selection of the random oracle H, and the minimum of the expected
cost is taken over all valid inputs x and all algorithms A with cache size m ·w bits making at most q queries
that compute fG,H(x) correctly with probability at least ϵ.

3.2 Red-Blue Extension Pebbling

We are now ready to prove our main result in this section. Theorem 3.3 lower bounds the energy cost
ecostq,ϵ(fG,H ,m · w) of the function fG,H with cache size m · w using rbpeb∥(G, 9m) the red-blue pebbling
cost of the DAG G with 9m red pebbles.

Theorem 3.3. For any DAG G with n nodes and any AH(.)
mw making at most q < 2w/20 queries that compute

fG,H(x) correctly with probability at least ϵ > 0, if 20 log n < w then,

ecostq,ϵ (fG,H ,m · w) ≥
(

ϵ

16
− 2−2mw/5 − q + 1

2w

)
rbpeb∥(G, 9m).

Given a DAG G and a legal (partial) black pebbling P = (P1, . . . , Pt) with |Pi+1 \ Pi| ≤ m we say that a
(partial) red-blue pebbling ((B1, R1) , . . . , (Bt, Rt)) is a (m, k)-extension of P if for all i ∈ [t] we have |Ri| ≤ m
and we can find a small set Di ⊆ V (G) such that |Di| ≤ k and Ri ∪Bi = Pi ∪Di . We let RBExt(P,m, k)
denote the set of all possible (m, k)-extensions of P . Observed that if P ∈ P∥(G) is a complete black

pebbling of G then RBExt(P,m, k) ⊆ RB∥ (G,m) as any (m, k)-extension of P will be complete. To prove
Theorem 3.3 we extract a legal partial black pebbling P = (P1, . . . , Pt) from the execution trace of AH(.),
and then use P to build a legal (9m, 8m)-extension pebbling ((B1, R1) , . . . , (Bt, Rt)) ∈ RBExt(P, 9m, 8m)
which may use up to 9m = (m+ 8m) red-pebbles.
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We then show how to upper bound the cost of the extension pebbling and lower bound the energy cost of
the attacker A in the random oracle model.

Step 1: We start by using AH(.)
mw to extract a legal (partial) black pebbling following Alwen and Ser-

binenko [8]. Given an execution trace TraceA,R,H(x) we say that node v ∈ V is an output at time i + 1 if
prelabH,x(v) ∈ Qi i.e., if v has parents v1, . . . , vd and the random oracle query (v, labH,x(v1), . . . , labH,x(vd))
is submitted at the end of round i. Similarly, if prelabH,x(v) ∈ Qi where node v has parents v1, . . . , vd then
we say that nodes v1, . . . , vd are inputs at time i i.e., the values labH,x(v1), . . . , labH,x(vd) can all be extracted
from the random oracle query prelabH,x(v) ∈ Qi submitted at the end of round i. For a non-sink node v let
next(i, v) = 1 if v appears as an input at time i or if for some round j > i node v appears as an input at time
j and for all intermediate rounds i < j′ ≤ j node v does not appear as an output during round j′; otherwise
we set next(i, v) = 0 i.e., if v never appears as an input in any future round j ≥ i or if the next time node
v appears it appears as an output before node v will appear as an input. If v is a sink node then we will
set next(i, v) = 1 if and only if v is an output at time i. Now, given an execution trace TraceA,R,H(x), the
corresponding black pebbling BlackPebbleH (TraceA,R,H(x)) = P0, . . . , Pt is defined by setting P0 = ∅ and
Pi = {v : next(i, v) = 1} for each round 1 ≤ i ≤ t. Intuitively, at each time j, Pj contains all nodes v
whose label will appear as input to a future random oracle query before the label appears as the output of
a random oracle query. We first observe that |Pi+1 \ Pi| ≤ |Qi| because if v ∈ Pi+1 \ Pi then v must have
appeared as an output during round i + 1 since next(i, v) = 0 but next(i + 1, v) = 1. As we previously
observed we only allow the attacker to make at most |Qi| ≤ m queries during a single step because the

attacker algorithm AH(.)
mw only has cache-size m ·w and must have room to store all of the responses in cache.

Thus, |Pi+1 \ Pi| ≤ m for all rounds i < t. Similarly, for all rounds i we have the total size of all queries∑ki

j=1 |qij | is at most mw because it must have enough room in cache to store the random oracle queries.
Thus, |parents(Pi+1 \ Pi)| ≤ m for all rounds i < t.

Alwen and Serbineneko [8] showed that the black pebbling constructed this way is a legal partial black
pebbling with probability at least 1−q/2w where q is the total number of random oracle queries. Intuitively,
the only way for the extracted partial pebbling to not be legal is if a label appears out of order i.e., some
node v appears as an input before it ever appears as an output. But this means that the random oracle query
prelabH,x(v) was never submitted. Thus, labH,v(x) can still be viewed as a uniformly random w-bit string

and the probability of guessing it is at most 2−w. The result then follows by a union bound over all q random
oracle queries. We also observe that as long as for each node v the label labH,x(v) appears as a random
oracle output at some point in time that the extracted pebbling will be complete. Note that if the extracted
pebbling is legal, but incomplete then for some sink node v the query prelabH,x(v) is never submitted and

the attacker will guess the correct output with probability at most 2−w since the output contains labH,x(v)
which can still be viewed as a uniformly random w bit string. Thus, we will get a complete/legal pebbling
with probability at least ϵ− q/2w − 1/2w where ϵ is the probability attacker computes function correctly.

Theorem 3.4. [8] The pebbling extracted from an execution trace (P1, . . . , Pt) = BlackPebbleH (TraceA,R,H(x))
is a legal partial black pebbling with probability at least 1− q

2w , where w is the label size and q is the number of
queries made by TraceA,R,H . Furthermore, if for every node v ∈ V the corresponding label labH,x(v) appears
as an output of the random oracle H at some point in the execution trace then the pebbling is also complete
i.e., BlackPebbleH (TraceA,R,H(x)) ∈ P∥(G). If A makes at most |qi| ≤ m random oracle queries in each
round of the execution trace then in each pebbling round |Pi+1 \ Pi| ≤ m.

Formally, given P and an interval [t1, t2] we let

QueryFirst(t1, t2) =

t2⋃
i=t1

parents (Pi+1 \ Pi) \

 i⋃
j=t1+1

(Pj \ Pj−1)

 .

Intuitively, we can think of parents(Pi+1 \ Pi) as the set of inputs at time i and Pj \ Pj−1 as the outputs at
time j so that QueryFirst(t1, t2) denotes the vertices v whose data-labels will appear as an input during
rounds [t1, t2] before the data-label appears as an output during the interval (t1, t2]. We will later see how
we can extract the labels labH,x(v) for each node v ∈ QueryFirst(t1, t2) by simulating the attacker AH(.)
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starting from round ti. As an edge case notice that if a node v appears as an input at time t1 and also as
an output at time t1 that v will still be in the set QueryFirst(t1, t2) — this is intended as our extractor
begins simulation after v has appeared as an output and we will still be able to extract labH,x(v).

We present a few properties about QueryFirst that we will use in the rest of the proof.

Lemma 3.5. Assume that P = (P1, . . . , Pt) is a legal partial black pebbling of G then ∀0 ≤ x < y < z ≤ t,

QueryFirst(y, z) \QueryFirst(x, z) ⊆
y⋃

i=x+1

(Pi \ Pi−1).

Proof. Consider a node v ∈ QueryFirst(y, z) \ QueryFirst(x, z). Since v ∈ QueryFirst(y, z) there

exists some round i ∈ [y, z] such that v ∈
(
parents (Pi+1 \ Pi) \

(⋃i
j=y+1 (Pj \ Pj−1)

))
. However, since

v ̸∈ QueryFirst(x, z) for any i ∈ [x, z] we also have v ̸∈
(
parents (Pi+1 \ Pi) \

(⋃i
j=x+1 (Pj \ Pj−1)

))
.

Therefore, v ∈
⋃y

j=x+1 (Pj \ Pj−1).

Step 2: We partition the pebbling rounds [t] into sub time-intervals (t0 = 0, t1], (t1, t2], . . . recursively as
follows. Let t1 be the minimum pebbling round such that there exists j < t1 such that |QueryFirst(j, t1)| ≥
3m. As a special case, if |QueryFirst(i, j)| < 3m for all i < j ≤ t (i.e., no such intervals exist), then set
t1 = t and output (t0, t1]. In this case, there is a red-blue extension pebbling in RBExt(P, 9m, 8m) that
requires 0 blue moves and at most

∑
i |Pi \ Pi−1| red-moves.

Once t1 < . . . < ti−1 have been defined we inductively define ti > ti−1 to be the minimum round such
that there exists ti−1 < j ≤ ti such that |QueryFirst(j, ti)| ≥ 3m — if no such ti exists then we set ti = t.

Step 3: We will show that there is an extension pebbling that makes at most 4m blue moves during
each interval (except for the first one where it needs 0 blue moves). In particular, we set k = 8m and we
will define an extension pebbling (B∗, R∗) ∈ RBExt(P, 9m, k) by dividing the cache into two sets of size

4m and one size of m denoted as Rinter
i , Rlegal

i and Rnew
i , respectively. We will set Ri = Rlegal

i ∪Rinter
i ∪Rnew

i ,
and show that Ri ∪Bi ⊃ Pi gives a legal red-blue pebbling and then bound its cost.

We set Rinter
ti+1 = {} at the start of each time interval (ti, ti+1] and for each j ∈ (ti + 1, ti+1] we have

Rinter
j =

(
Rinter

j−1 ∪ (Pj \ Pj−1)
)
∩QueryFirst(j, ti+1).

Intuitively, Rinter
j stores all of the red-pebbles we have computed during the interval (ti + 1, j] that are later

needed in the interval [j, ti+1]. Thus, any node that is pebbled during rounds (ti + 1, j] and subsequently
needed in round [j, ti+1] must be in Rinter

j , which we will keep in cache. Note that Rinter
j does not include

the nodes that are computed at the start time ti + 1 and we set Rinter
ti+1 = {}. This is because the nodes

we compute at time ti + 1 that are later needed in [ti + 1, ti+1] are in QueryFirst(ti + 1, ti+1), and such

nodes are stored in Rlegal
j = QueryFirst(ti + 1, ti+1) for j ∈ (ti, ti+1] as we will define below. This yields

the following invariant.

Invariant 1. For any j ∈ (ti, ti+1),

QueryFirst(j + 1, ti+1) ∩
j⋃

i=ti+2

(Pi \ Pi−1) ⊆ Rinter
j

To maintain legality across all time steps, we add a few rules about red and blue moves:

(1) We convert a pebbled node v from blue to red if node v is in QueryFirst(ti +1, ti+1). That is for any

j ∈ (ti, ti+1], we define Rlegal
j = QueryFirst(ti + 1, ti+1).
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(2) We set Rnew
j = (Pj \ Pj−1) \ (Rinter

j ∪ Rlegal
j ) to be the nodes that are newly output at time j but not

already in cache. This ensures that all nodes that are output at time j are pebbled even if this node
won’t be used as an input during the current time interval. A sink node may never appear as an
input in any round, but as long as the black pebbling is complete we can guarantee that our red-blue
extension pebbling is also complete i.e., every sink node is pebbled eventually. Finally, observe that in
our case we will have

∣∣Rnew
j

∣∣ ≤ |Pj \ Pj−1| ≤ m.

(3) Given a node v ∈ Rj \Bj such that v is in QueryFirst(ti′ + 1, ti′+1) for some later interval (ti′ , ti′+1]
with i′ > i we use a blue move to ensure that v ∈ Bj+1. We never remove blue pebbles so v can be
converted back to a red node when required for the future interval (ti′ , ti′+1]. (Note that a node may
have both a red pebble and a blue pebble at the same time.) In this case, for accounting purposes, it
will be helpful to “charge” the cost cb of this blue move to the future interval (ti′ , ti′+1]. More formally,
we can set

Bj+1 = Bj ∪ {v ∈ Rj : ∃i′ .s.t. (j ≤ ti′ ∧ v ∈ QueryFirst(ti′ + 1, ti′+1))} .

We show the following bound on the size of QueryFirst(j, ti+1). We remark that as long as the extracted
pebbling P is legal both of the conditions |parents(Pj+1 \ Pj)| ≤ m and |Pj+1 \ Pj | ≤ m will be satisfied.
Intuitively, we can have at most m nodes appear as an output in each round since we only have space for
m labels in cache. Similarly, we can have at most m nodes appear as input during each round for the same
reason.

Lemma 3.6. Assume that P = (P1, . . . , Pt) is a legal partial black pebbling of G and that |Pj+1 \ Pj | ≤ m
and |parents(Pj+1 \ Pj)| ≤ m for all round j < t then ∀j ∈ (ti, ti+1], |QueryFirst(j, ti+1)| ≤ 4m.

Proof. By the definition ofQueryFirst,QueryFirst(j, ti+1) ⊆ QueryFirst(j, ti+1−1)∪parents
(
Pti+1+1 \ Pti+1

)
for j ∈ (ti, ti+1), and QueryFirst(j, ti+1) ⊆ parents

(
Pti+1+1 \ Pti+1

)
for j = ti+1. Due to our choice of ti+1,

QueryFirst(j, ti+1− 1) ≤ 3m. Since parents
(
Pti+1+1 \ Pti+1

)
≤ m i.e., parallelism is bounded by cache size

the lemma then follows.

Lemma 3.7.
∣∣Rinter

j

∣∣ ≤ 4m.

Proof. Observe that Rinter
j ⊆ QueryFirst(j, ti+1) since elements are only kept in Rinter

j if they are needed
for some later pebbling round. |QueryFirst(j, ti+1)| ≤ 4m by Lemma 3.6.

Also note that for any j ∈ (ti, ti+1], |Rlegal
j | = |QueryFirst(ti + 1, ti+1)| ≤ 4m and |Rnew

j | ⊆ |Pj \Pj−1| ≤
m. So the extension red-blue pebbling we constructed stores at most 9m labels in cache at any time.

Lemma 3.8. Assume that P = (P1, . . . , Pt) is a legal partial black pebbling of G and that |Pj+1 \ Pj | ≤ m for
all round j < t then the extension pebbling (B∗, R∗) ∈ RBExt(P, 9m, 8m) is a legal partial red-blue pebbling.

Furthermore, if P ∈ P∥(G) is a complete black pebbling then (B∗, R∗) ∈ RB∥(G, 9m) is also complete.

Proof. Let R∗ = (R1, . . . , Rt) where Rj = Rinter
j ∪ Rlegal

j ∪ Rnew
j and B∗ = (B1, . . . , Bt) be defined as above.

For any time interval (ti, ti+1] and any j ∈ (ti, ti+1], first observe parents(Pj+1 \ Pj) ⊆ QueryFirst(j, ti+1).
We now prove QueryFirst(j, ti+1) ⊆ Rj . Note that any node in QueryFirst(j, ti+1) must either be in
QueryFirst(ti + 1, ti+1) or have been pebbled at some point during time steps (ti, j]. In the former case,

the node would be in Rlegal
j , and in the latter case, the node would be in Rinter

j . Thus, parents(Pj+1 \ Pj) ⊆
QueryFirst(j, ti+1) ⊂ Rj .

Next we prove Rj+1 \ (Rj ∪ Bj) ⊆ Pj+1 \ Pj . According to the definition of Rinter
j , Rlegal

j and Rnew
j , for

j ∈ (ti, ti+1) during which Rlegal
j+1 = Rlegal

j , we have Rj+1 \ (Rj ∪Bj) ⊆ (Rinter
j+1 ∪Rnew

j+1 ∪R
legal
j+1) \ (Rinter

j ∪Rnew
j ∪

Rlegal
j ) ⊆ (Rinter

j+1 ∪ Rnew
j+1) \ (Rinter

j ∪ Rnew
j ) ⊆ Pj+1 \ Pj . For j = ti+1 at which Rinter

ti+1+1 = {}, note Rti+1+1 =

Rlegal
ti+1+1∪Rnew

ti+1+1 ⊆ QueryFirst(ti+1+1, ti+2)∪ (Pti+1+1 \ ti+1) ⊆ Pti+1+1 and Pti+1
⊆ Rti+1

∪Bti+1
. Thus,

Rti+1+1 \ (Rti+1
∪Bti+1

) ⊆ Pti+1+1 \ Pti+1
.
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Therefore, parents (Rj+1 \ (Rj ∪Bj)) ⊆ parents(Pj+1\Pj) ⊆ QueryFirst(j, ti+1) ⊂ Rj . Also, Invariant 1
guarantees that Bj+1 \ Bj ⊆ Rj , i.e., any newly pebbled blue node at time j + 1 is a red node at time j.
Therefore, {Rj , Bj} is a legal partial red-blue pebbling. Furthermore, if P is a complete black pebbling,
then for any node v ∈ V there exists a round j such that v ∈ Pj \ Pj−1. Recall that Rnew

j is defined to be

(Pj \ Pj−1) \ (Rinter
j ∪Rlegal

j ), indicating that Pj \ Pj−1 ⊆ Rnew
j ∪Rinter

j ∪Rlegal
j = Rj . Therefore, V ⊆ ∪ti=1Ri

and (B∗, R∗) is complete (i.e. legal red-blue pebbling).

We now bound the cost of the above extension pebbling. For any time j ∈ (ti, ti+1], since we never
discard necessary red pebbles from Rinter

j and Rnew
j only contain unecessary nodes that are newly outputted

at time j, the only cache-misses we incur come from Rlegal
j = Rlegal

ti+1, at most 4m. We “charge” double for
every cache-miss to account for the previous blue move that initially placed a blue pebble on a node. This
way, we can also charge the cost of placing new blue pebbles to future rounds. Therefore, the above extension
pebbling has cost at most

8mcb +
∑

j∈(ti,ti+1]

cr |Pj \ Pj−1| .

Step 4: To complete the proof, we show that during each interval any algorithm A must pay red-blue
cost at least mcb+

∑
j∈(ti,ti+1]

cr |Pj \ Pj−1|. Roughly speaking, we will set up an extractor that extracts 3m

random oracle labels (i.e., 3mw truly random bits) by simulating A during this time interval. The extractor
needs a hint of size mw + w(#wordsi) bits where #wordsi is the total amount of data (words) A transfers
to/from cache. If #wordsi ≤ m then we will arrive at a contradiction as we compressed a random string of
length 3mw — contradicting Lemma 3.1. Thus, A must pay blue cost at least mcb during each interval, and
by construction of P = BlackPebbleH (TraceA,R,H(x)) the red cost is at least

∑
j∈(ti,ti+1]

cr |Pj \ Pj−1|. We
detail this step in the next section.

3.3 Extractor

We now use a compression argument to relate the cost of an execution trace to the cost of the red-blue
extension pebbling. That is, an extractor with access to the attacking strategy, the state of the cache, and a
few select hints can successfully predict a large number of random bits, contradicting Lemma 3.1. The hints
we give the extractor will dictate the location of the random bits, and ensure these bits remain “random”
(that is, not queried by the extractor). Figure 1 illustrates this setup. In particular, the extractor will use a
hint to simulate AH(.) but this hint does not include the current state of memory ξi. Instead, the hint will
encode the messages that the attacker expects to receive from main memory which allows us to simulate the
attacker without storing the entire (large) state ξi.

Attacker A

Cache: σi

H(·)

M
e
m

o
r
y
:

ξ
i

−→

Attacker A

Cache: σi

H
in

t
:

σ
i
,
.
.
.

RO Pairs:
(x,H(x))

Extractor

H(·)

Fig. 1: Using the attacker to create an extractor that tries to predict 3m distinct outputs of random oracle
H(·).

Let t0 = 0, t1, . . . , ty = t denote the time intervals specified above. Intuitively, we expect that the evalu-
ation algorithm needs to transfer at least mw bits to/from cache during each interval (ti−1, ti] (potentially
excluding the last interval (ty−1, ty = t]). Let BadTrace denote the event that we extracted a legal (partial)
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black pebbling BlackPebbleH (TraceA,R,H(x)) = P0, . . . , Pt, but that for some i < y we did not transfer mw
bits to/from cache during the interval (ti−1, ti] i.e., for some i < y we have

ti∑
i′=ti−1+1

ℓi′∑
j=1

(
|rji′ |+ |s

j
i′ |
)
≤ mw .

The following lemma shows that the event BadTrace occurs with negligible probability so the attacker must
transfer at least mw bits between cache and memory. Intuitively, if the event BadTrace occurs then we can
define an extractor which extracts at least 3m random oracle outputs using a hint of length at most 13mw/5.
By Lemma 3.1 it immediately follows that Pr[BadTrace] ≤ 2−(3−13/5)mw. Note that in the edge case where
y = 1 the event BadTrace automatically does not occur. In this edge case we have QueryFirst(i, j) < 3m
for all i < j ≤ t and we also have |Pi| ≤ |QueryFirst(i, t) ∪ (Pi \ Pi−1)| ≤ 4m for each round i ≤ t. Thus,
we can define an extension pebbling with 0 blue moves by setting Ri = Pi and Bi = {} for each round i.

Lemma 3.9. If q < 2w/20 and 20 log n < w then Pr[BadTrace] ≤ 2−2mw/5 where q upper bounds the total
number of random oracle queries made in the execution trace, n is the number of nodes in the underlying
DAG, and the probability is taken over the random coins of A and the selection of the random oracle H.

Proof. Suppose, by way of contradiction, that for interval (ti, ti+1] with i+ 1 < y, an attacker transfers less
than mw bits between cache and memory. We first note that, by definition of ti and ti+1, we can find some
index j between ti and ti+1 such that |QueryFirst(j, ti+1)| ≥ 3m and by Lemma 3.6 |QueryFirst(j, ti+1)| ≤
4m. We define an extractor that can predict 3m labels given access to the attacker’s algorithm, the random
oracle, and a small set of hints to help the extractor. Recall that for a non-sink node v with parents v1, . . . , vd
we have

labH,x(v) = H
(
prelabH,x(v)

)
where prelabH,x(v) = (v, labH,x(v1), . . . , labH,x(vd)) .

Thus for nodes y ̸= z, the prelabels prelabH,x(y) ̸= prelabH,x(z) are different. Thus, the values of labH,x(y)
and labH,x(z) correspond to different inputs to H. That is, there are no input collisions and so the adversary
must separately determine the hash outputs for each of the 3m inputs, which correspond to 3mw truly
random bits in total.

The hint given to help the extractor consists of five components:

(1) The set QueryFirst(j, ti+1) is given as a hint to denote the indices that form the string that the
extractor will ultimately predict. Since |QueryFirst(j, ti+1)| ≤ 4m, this component of the hint is at
most 4m log n bits.

(2) For each v ∈ QueryFirst(j, ti+1), the index of the first query that appears in which lab(v) is needed as
input. This component of the hint tells the extractor the queries that require the prediction of random
strings, and has size at most 4m log q bits, where q =

∑
i≤t ki is the total number of queries made by

the attacker.

(3) For each v ∈ QueryFirst(j, ti+1), the index of the first query when lab(v) might be compromised.
Observe that if the extractor successfully predicts a random string lab(v) = H(prelab(v)) at a location
prelab(v), but then the query prelab(v) is later queried by the attacker, the extractor will need to
avoid submitting the query prelab(v) if we still want to claim credit for predicting the string lab(v)!
To avoid this, we give the extractor a hint of the queries that would compromise the randomness of
the desired locations i.e., (y, z) for the next query with qyz = lab(v). Since there are at most q queries
we can encode each pair (i, y) using at most log q bits, and there are at most 4m such pairs. Thus, this
component of the hint tells the extractor the locations of the random strings to be predicted, and has
size at most 4m log q bits.

(4) The cache state σj−1 given to AH(.) at time j is given as a hint to the extractor along with the answers
Aj−1 to the random oracle queries Qj−1 asked at the end of round j − 1. This allows the extractor
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to simulate the attacker beginning at time step j. Since the cache has size m, each containing w-bit
words, and Aj−1 is additionally stored in cache the size of this component of the hint is at most
|σj−1|+ kj−1w ≤ mw bits where kj−1 = |Qj−1| denotes the number of random oracle queries asked at
the end of round j − 1.

(5) Messages between the cache and memory during time steps [j, ti+1] are also given as a hint to the
extractor to simulate the attacker beginning at time step j. By assumption, the attacker transfers less
than mw bits between cache and memory, so the size of this component of the hint is at most mw bits
in total.

Since q < 2w/20 and 20 log n < w, then the total size, in bits, of the hint is at most

4m log n+ 4m log q + 4m log q +mw +mw ≤ 13

5
mw.

However, |QueryFirst(j, ti+1)| ≥ 3m, so the extractor successfully predicts the output of 3m hash outputs,
each of size w, given a hint of size at most 13

5 mw bits. By Lemma 3.1, such an extractor can succeed with

probability at most 2−2mw/5 and, it immediately follows that Pr[BadTrace] ≤ 2−2mw/5.

We now justify the correctness of Theorem 3.3.

Proof of Theorem 3.3:
Consider an pROM algorithm A which computes fG,H(x) correctly with probability at least ϵ using at

most mw bits of cache and making at most q random oracle queries. Let

TraceA,R,H(x) = {(σi, ξi, Ri, Si, Qi)}ti=1

be a randomly sampled execution trace, let P = BlackPebbleH(TraceA,R,H(x)) be the corresponding ex-post
facto (partial) black pebbling and let (B∗, R∗) be the corresponding red-blue (9m, 8m)-extension of P . We
first note that in the special case that |QueryFirst(i, j)| ≤ 3m for all i < j ≤ t, we have |QueryFirst(i, t)| ≤
3m and we also have |Pi| ≤ |QueryFirst(i, t) ∪ (Pi \ Pi−1)| ≤ 4m for all rounds i ≤ t. In this case we can
simply set Ri = Pi and Bi = {} since the entire set fits in cache, and the red-blue pebbling (B∗, R∗) has 0
blue moves. In this special case it follows that

cost(TraceA,R,H(x)) ≥
∑
j

cr|Qj | ≥
∑
j

cr|Pj \ Pj−1| ≥ rbpeb∥((R∗, B∗)) .

Here, the second inequality follows from the observation that |Qj | ≥ |Pj \ Pj−1| during each round j so the
total red cost of the execution trace is at least

∑
j cr|Qj | ≥

∑
j cr |Pj \ Pj−1| ≥

∑
j cr |Rj \Rj−1|. Otherwise,

we can define the sequence t0 = 0, t1, . . . , ty = t such that for all 1 ≤ i < y we can find j ∈ (ti−1, ti] such
that |QueryFirst(j, ti)| ≥ 3m and y ≥ 2. Assuming the event BadTrace does not occur then for all i < y:

ti∑
i′=ti−1+1

ℓi′∑
j=1

(
|rji′ |+ |s

j
i′ |
)
≥ mw .

In particular, the execution trace transfers at least m (w-bit) blocks between cache and memory in between
rounds ti−1 and ti at cost cb per w-bit block. Since this occurs for each i < y the total cost incurred
transferring data to/from cache is at least (y− 1)mcb. On the other hand the total number of blue moves in
our pebbling is upper bounded by

2

∣∣∣∣∣
y⋃

i=1

QueryFirst(ti−1 + 1, ti)

∣∣∣∣∣ ≤ 2

y∑
i=1

|QueryFirst(ti−1 + 1, ti)| ≤ 8ym ,

since we make at most |QueryFirst(ti−1 + 1, ti)| blue moves at the beginning of each each time interval
(ti−1 + 1, ti] (converting blue pebbles to red pebbles) and never place a blue pebble on a node unless it is
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in QueryFirst(ti−1 + 1, ti) for some future interval — once we place a blue pebble on a node it is never
removed. Thus, in this case we have

rbpeb∥((R∗, B∗)) ≤ 8ym · cb +
y∑

i=1

ti∑
j=ti−1+1

cr|Qj | ≤ 16(y − 1)m · cb + 16

y∑
i=1

ti∑
j=ti−1+1

cr|Qj |

and

cost(TraceA,R,H(x)) ≥ (y − 1)m · cb +
y∑

i=1

ti∑
j=ti−1+1

cr|Qj | ≥ rbpeb∥((R∗, B∗))/16 .

Note that P and (B∗, R∗) are both legal/complete with probability at least ϵ − q/2w − 2−w. Thus,

with probability at least ϵ − q/2w − 2−w we have rbpeb∥((R∗, B∗)) ≥ rbpeb∥(G, 9m). By Lemma 3.9, the
event BadTrace occurs with with probability at most 2−2mw/5. It follows that, with probability at least
ϵ− q/2w − 2−w − 2−2mw/5, that

cost(TraceA,R,H(x)) ≥ rbpeb∥(G, 9m)/16 .

Recall that ecostq,ϵ(fG,H ,m · w) = minA,x E[cost(TraceA,R,H(x)] where the expectation is taken over the
selection of the random oracle H and the minimum is taken over all algorithms that compute fG,H(x)
correctly with probability at least ϵ. In particular, we have

ecostq,ϵ(fG,H ,m·w) ≥
(
ϵ− q/2w − 2−w − 2−2mw/5

) rbpeb∥(G, 9m)

16
≥
(

ϵ

16
− 2−2mw/5 − q + 1

2w

)
rbpeb∥(G, 9m) .

2

4 Relating Memory Hardness and Bandwidth Hardness

In this section, we show that any function with high cumulative memory complexity also has high energy
costs. Namely,
Reminder of Theorem 1.5.

rbpeb∥(G,m) ≥ min
t

(
2cb

(
Πcc(G)

t
− 2m

)
+ crt

)
∈ Ω

(√
cb · cr ·Πcc(G)

)
,

where m is the cache size, t is the number of steps in the pebbling, cb is the cost of a blue move and cr is the
cost of a red move.

We also show that this connection can be exploited to design a maximally bandwidth hard iMHF. Thus,
the goals of designing an MHF with high cumulative memory complexity/bandwidth hardness are well

aligned. As a warmup we show that (parallel) cumulative pebbling complexity Π
∥
cc(G) can be used to lower

bound bound the energy cost rbpeb∥(G,m). By contrast, Theorem 1.5 uses the sequential black pebbling

complexity Πcc(G) to lower bound rbpeb∥(G,m). This is advantageous as we have Π
∥
cc(G) ≤ Πcc(G) since

for any graph P(G) ⊆ P∥(G). For some DAGs we have Π
∥
cc(G) ≪ Πcc(G) e.g., there are constant indegree

DAG G with n nodes for which Πcc(G) = Ω(n2) [31, 7, 14] while Π
∥
cc(G) = o(n2) for any any DAG G with

constant indegree [2].

Lemma 4.1. rbpeb∥(G,m) ≥ mint

(
2cb

(
Π∥

cc(G)
t −m

)
+ crt

)
.

Proof. For any red-blue pebbling P of DAG G, let Ri be the set of red pebbles at time step i and let Bi be
the set of blue pebbles at time step i. Setting Di = Bi ∪ Ri we remark that (D1, . . . , Dt) is a valid black
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pebbling of G. Thus, by the optimality of Π
∥
cc(G),

Π∥
cc(G) ≤

t∑
i=1

|Ri ∪Bi| ≤
t∑

i=1

|Ri|+
t∑

i=1

|Bi| ≤ tmax
i
|Bi|+ tm

Rearranging terms we have

max
i
|Bi| ≥

Π
∥
cc(G)

t
−m .

In the optimal red-blue pebbling, each blue pebble must eventually be converted back to a red pebble,
or else it should be discarded. Additionally, without loss of generality, we can assume that during each step
we make at least one red move. Otherwise, we could combine consecutive steps into one single step. Thus,

rbpeb∥(G,m) ≥ 2
∣∣∪ti=1Bi

∣∣ cb + tcr ≥ 2max
i
|Bi|cb + tcr ≥ 2

(
Π

∥
cc(G)

t
−m

)
cb + tcr

≥ min
t

(
2

(
Π

∥
cc(G)

t
−m

)
cb + tcr

)

Corollary 4.2. For an (e, d)-depth robust graph G,

rbpeb∥(G,m) ≥ min
t

(
2

(
ed

t
−m

)
cb + tcr

)
.

Proof. An (e, d)-depth robust DAG G has ed ≤ Π
∥
cc(G) [5].

We show that there exists a similar relationship between sequential black pebbling cost and sequential
red-blue pebbling cost.

Theorem 4.3.

rbpeb(G) ≥ 2cb

(
Πcc(G)

t
−m

)
+ crt,

where m is the cache size, t is the number of steps in the pebbling, cb is the cost of a blue move and cr is the
cost of a red move.

Proof. Let (B0, R0), . . . , (Bt, Rt) be an optimal sequential red-blue pebbling of our DAG G where Ri (resp.
Bi) denotes be the set of red (resp. blue) pebbles at time step i. In the optimal red-blue pebbling, each blue
pebble must eventually be converted back to a red pebble. Otherwise, we could reduce cost by discarding
this pebble immediately contradicting our assumption of optimality. Thus, for an optimal red blue pebbling
we have

rbpeb(G) ≥ 2

∣∣∣∣∣⋃
i

Bi

∣∣∣∣∣ cb + tcr ≥ 2max
i
|Bi|cb + tcr .

Setting Pi = Bi ∪ Ri we remark that (P1, . . . , Pt) is a valid sequential black pebbling of G. To see that the
pebbling is sequential observe that since Bi ⊆ Ri−1 ∪ Bi−1 we have Pi \ Pi−1 ⊆ Ri \ Ri−1 and therefore
|Pi \ Pi−1| ≤ |Ri \Ri−1| ≤ 1 i.e., we place at most one new pebble on the graph in each round. Then

max
i
|Bi| ≥ max

i
(|Pi| −m) ≥

(
Πcc(G)

t
−m

)
,

where the last step results from a simple averaging argument overall t steps. It immediately follows that

rbpeb(G) ≥ 2cb

(
Πcc(G)

t
−m

)
+ crt .
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To prove Theorem 1.5 we establish a relationship between the cost of parallel and sequential red-blue
pebblings in the following lemma:

Lemma 4.4. rbpeb(G, 2m) ≤ rbpeb∥(G,m) ≤ rbpeb(G,m).

Proof. rbpeb∥(G,m) ≤ rbpeb(G,m) follows immediately from definition.10 Now consider rbpeb(G, 2m) and

rbpeb∥(G,m). Any parallel pebbling with cache size m can be performed by a sequential pebbling with cache
size 2m. Note that at any step, a parallel pebbling with cache size m can have at most m labels stored and
m new pebbles placed in each step. Thus, a sequential pebbling with cache size 2m can emulate this by
retaining the stored labels while adding the new pebbles one by one.

Combining Theorem 4.3 and Lemma 4.4 yields Theorem 1.5.

Alwen and Blocki [2] show Π
∥
cc(G) = O

(
n2 log logn

logn

)
for any graph G with constant indegree. Moreover,

there exists a family of DAGs {Gn}∞n=1 with constant indegree with Πcc(Gn) ∈ Ω(n2) [31, 7].
We now show a relationship similar to Theorem 1.5 between the energy cost and cumulative memory

cost [8] of an execution trace. Following [8]the cumulative memory cost of an execution trace is defined as:

cmc(TraceA,R,H(x)) =
∑
|αi|,

where αi encodes the state of the attacker 11 at round i. Similarly, following [8] we can define

cmcq,ϵ(fG,H) = min
A,R,x

cmc(TraceA,R,H(x)),

where the minimum is taken over all A making at most q random oracle queries that compute fG,H correctly
with probability at least ϵ.

We note that for ecostq,ϵ (fG,H) the minimum is taken over all A making at most q random oracle
queries that compute fG,H correctly with probability at least ϵ and having cache size at most mw bits.
Thus, any attacker that satisfies all of the restrictions for ecostq,ϵ (fG,H) will also satisfy our restrictions for
cmcq,ϵ(fG,H) where there is no additional restriction on cache size. We emphasize that A can be an arbitrary
pROM algorithm, so that the following result also applies to dMHFs such as scrypt.

Theorem 4.5. For any execution trace TraceA,R,H(x) of an algorithm A with cache size mw bits

cost(TraceA,R,H(x)) ≥
(
cmc(TraceA,R,H(x))

tw
−m

)
cb + tcr,

where m is the cache size, t is the number of steps, cb is the cost of a blue move and cr is the cost of a red
move.

Proof. Recall that the energy cost of an execution trace TraceA,R,H(x) = {(σi, ξi, Ri, Si, Qi)}ti=1 is defined
as

cost(TraceA,R,H(x)) =

t∑
i=1

(
cr|Qi|+

cb
w
NBits(Si, Ri)

)
≥ max

i

|ξi|
w

cb + tcr ≥
(
cmc(TraceA,R,H(x))

tw
−m

)
cb + tcr

10To see that rbpeb∥(G,m) and rbpeb(G,m) are not identically equivalent quantities, consider the complete directed bipartite
graph Km,m with m sources A and m sink nodes B(m is also the cache size). In the parallel model we can finish in two steps
with zero blue moves: R0 = ∅, R1 = A, R2 = B. In the sequential pebble game we would have to keep pebbles on A while we
begin placing pebbles on B one by one. Each time we place a red-pebble on a node y ∈ B we need to evict some node x ∈ A
by converting x into a blue node (and then bring it back into the cache-later).

11While there is no notion of a cache in the pROM model of [8], we could trivially set αi = (σi, ξi) so that the state αi

explicitly includes the contents in cache σi as well as the content in main memory ξi.
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The second step above follows from the observation that for all j we have |ξj | ≤
∑j

i=1 NBits(Si, Ri), and
the third step follows from the observation that

cmc(TraceA,R,H(x))−mtw =

t∑
i=1

(|σi|+ |ξi|)−mtw ≤ tmax
i
|ξi| .

Let z = cmc(TraceA,R,H(x)) and define f(t) =
(

z
tw −m

)
cb + tcr. We observe that the function f is

minimized when we set t =
√

z cb
wcr

to balance out the terms tcr and z
tw cb. In particular, for any t ≥ 1 we

have f(t) ≥ 2
√

cmc(TraceA,R,H(x))·cr·cb
w −mcb. It follows that for any trace TraceA,R,H(x) we have

cost(TraceA,R,H(x)) ∈ Ω

(√
cmc(TraceA,R,H(x)) · cb · cr

w
−mcb

)

Alwen et al. [6] show that cmcq,ϵ(scrypt) ∈ Ω(ϵn2 · w) for any q > 0 and ϵ > 2−w/2 + 2−n/20+1 as long as
4n4q ≤ 2w/2. More specifically, they show that for some constant C > 0, any input x and any attacker A
making at most q ≤ 2w/2−2n−4 queries and evaluating scrypt(x) correctly with probability at least ϵ (over
A’s random coins and the selection of the random oracle) that cmc(TraceA,R,H(x)) ≥ Cn2w with probability
at least ϵ−2−w/2−2−n/20+1 (over A’s random coins and the selection of the random oracle). It follows that

cost(TraceA,R,H(x)) ≥
√

n2w · cb · cr
w

−mcb ≥ n
√
cbcr −mcb

with probability at least ϵ−2−w/2−2−n/20+1 (over A’s random coins and the selection of the random oracle).
We remark that the actual bound from Alwen et al. [6] is slightly tighter, but also more complicated to state.
We opted to use the above bounds to simplify the presentation.

Corollary 4.6. There exists a constant C > 0 such that for any m ≤ n and any 0 < q ≤ 2w/2−2n−4 and
ϵ
2 > 2−w/2 + 2−n/20+1,

ecostq,ϵ(scrypt,m · w) ≥ C · n
√
cb · cr −mcb.

While this lower bound for scrypt is not tight, it is interesting in that it follows in a black box matter
and highlights the connection between cumulative memory complexity and bandwidth hardness. We prove
a tighter unconditional lower bound for scrypt in Section 6, showing that ecostq,ϵ(scrypt) ∈ Ω (n · cb). The
proof of the tighter lower bound is substantially more involved.

5 Bandwidth Hardness of Candidate iMHFs

In this section, we provide lower bounds on the bandwidth hardness on the family of graphs generated by
Argon2i [11], aATSample, and DRSample [4]. Given a DAG G = ([n], E), a target set T ⊂ [n] and red/blue

subsets B,R ⊆ [n] with |R| ≤ m we let rbpeb∥(G,m, T,B,R) denote the red-blue cost to place red pebbles
on a target set T starting from an initial red-blue pebbling configuration B,R.

5.1 Analysis Framework

We follow a similar strategy for each candidate construction by defining a target set Ti = ((i− 1)cℓ, icℓ], and
analyzing the structure of the DAG to lower bound the following quantity for that DAG:

min
R,B′⊆[(i−1)cℓ]:|R|≤m

(|B′| cb + |ancestorsG−R−B′(Ti)| cr)
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We show in Theorem 5.2 that this quantity suffices to lower bound the bandwidth hardness. Intuitively, we
can think of B (resp. R) as the initial set of blue (resp. red) pebbles on the graph when we start to pebble
the target interval Ti and B′ ⊆ B as the set of blue pebbles that will be converted to red pebbles to help
pebble the target interval Ti. Recall that G − R − B′ denotes the subgraph of G obtained by deleting all
nodes in R ∪ B′. If a node v is in ancestorsG−R−B′(Ti) then this node will need to be repebbled with a red
pebble (at cost cr) before we can finish pebbling Ti.

12 We will use Lemma 5.1 to help prove Theorem 5.2.

Lemma 5.1. ∀T,B,R ⊆ [n] such that |R| ≤ m we have

rbpeb∥(G,m, T,B,R) ≥ min
B′⊆B

(|B′| cb + |ancestorsG−R−B′(T )| cr) ,

where cb is the cost of a blue move and cr is the cost of a red move.

Proof. Let P = (B0, R0) , (B1, R1) . . . , (Bt, Rt) denote a legal red-blue pebbling sequence with starting con-
figuration (B0, R0) = (B,R) such that every node v ∈ T in our target set is pebbled with a red-node at some
point in the sequence i.e., T ⊆

⋃t
i=0 Ri. Let B

′ ⊆ B0 = B denote the subset of initially blue nodes that are

eventually converted to red-pebbles during our sequence i.e., B′ = B∩
(⋃t

i=1{v : s.t. v ∈ Ri \Ri−1 ∧ parents(v) ̸⊂ Ri−1}
)
.

By definition, the pebbling sequence uses at least |B′| blue moves at cost |B′|cr.
Observe that we must place a red-pebble on all of the nodes in ancestorsG−R−B′(T ) at some point. Note

that any node u ∈ ancestorsG−R−B′(T ) is not in R0 = R by definition as thus does not initially contain a
red pebble. Similarly, we never use a blue-move to place a red-pebble on any node u ∈ ancestorsG−R−B′(T )
by definition of B′. It follows that all of the nodes ancestorsG−R−B′(T ) must be pebbled with red-pebbles in
topological order. Thus, we have at least |ancestorsG−R−B′(T )| cr red-moves and the cost of our pebbling
sequence is at least |B′|cb + |ancestorsG−R−B′(T )| cr . It follows that

rbpeb∥(G,m, T,B,R) ≥ min
B′⊆B

(|B′| cb + |ancestorsG−R−B′(T )| cr) .

Theorem 5.2. Let G = ([n], E) be any DAG such that (j, j + 1) ∈ E for each j < n, let c be a positive
integer and let Ti = ((i− 1)cℓ+ 1, icℓ],

rbpeb∥(G,m) ≥
⌊ n

cℓ⌋∑
i=1

min
R,B′⊆[(i−1)cℓ]:|R|≤m

(|B′| cb + |ancestorsG−R−B′(Ti)| cr) .

To prove Theorem 5.2, consider an optimal red-blue pebbling and let ti denote the first time we place a
pebble on node icℓ. For each i, we use Lemma 5.1 to lower bound the red-blue cost incurred between steps
ti−1 + 1 and ti. See Appendix B for more details.

As expected, if m = n then we have red-blue cost at most rbpeb∥(G,m) ≤ ncr for any graph G. Thus,
we require some upper bound on m to establish lower-bounds for red-blue pebbling cost.

5.2 Underlying DAGs

We now describe each of the underlying DAGs whose energy complexity we analyze.
The underlying graph for Argon2iB [12] has a directed path of length n nodes. Each node i has parents

i− 1 and r(i) =
⌈
i
(
1− x2

N2

)⌉
, where N ≫ n (in the implementation of Argon2iB we have N = 232) and x

is chosen uniformly at random from [N ]. See Algorithm 3 in Appendix A for a more formal description.

12To see this consider any directed path in G− R − B′ ending at some node v ∈ Ti in our target set. By definition none of
the nodes in this directed path contain a red-pebble at the start. While it is possible that some of the intermediate nodes on
the path initially contain blue pebbles these pebbles on B \ B′ will not be converted to red-pebbles in a blue move (otherwise
they would be in the set B′ and would have already been deleted). Thus, to place a red-pebble on any node u in our path
(including nodes in B \ B′) the parents of node u must first have a red-pebble. By backward induction each of the nodes on
our path will need to be pebbled with a red-pebble (in topological order) before we can place a red-pebble on node v.
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While Argon2iA (v1.1) is an outdated version of the password hash function it is still worthwhile to
study for several reasons. First, the uniform edge distribution is a natural one which has been adopted by
other iMHF constructions [17]. Second, it is possible that this older version of Argon2i may have seen some
adoption. Each node i in Argon2iA has two parents: i − 1 and r(i) = i

(
1− x

N

)
, where N = 232 and x is

chosen uniformly at random from [N ]. Thus, the parents in Argon2iA are slightly less biased towards closer
nodes than in Argon2iB. See Algorithm 4 in Appendix A for a more formal description.

DRSample is a family of graphs Gn with Π
∥
cc(G) ∈ Ω

(
n2

logn

)
with high probability for any G ∈ Gn. Like

Argon2i and Argon2iB, the underlying graph for DRSample has a directed path of length n nodes. Each
node i has parents i − 1 and r(i), but the distribution for r(i) differs greatly from Argon2i and Argon2iB.
Roughly speaking, DRSample samples an index j uniformly at random from [1, log i], an index k uniformly
at random from [1, 2j ], and sets r(i) = i− k. See Algorithm 1 in Appendix A for a more formal description.

A close relative to DRSample, aATSample [4] is also a family of graphs Gn with Π
∥
cc(G) ∈ Ω

(
n2

logn

)
with

high probability for any G ∈ Gn. aATSample modifies DRSample by starting with a copy of DRSample on
n/2 nodes and appending another directed path with n

2 nodes that strategically connects to the first half of
the graph so that the resulting cumulative pebbling complexity is high. The construction is parameterized
by a constant c > 0 which specifies how nodes from the second half of the graph connect to nodes in the
first half of the graph. See Algorithm 2 in Appendix A for a more formal description.

5.3 Argon2i

Let G be a random Argon2iB (or Argon2iA) graph and denote the incoming edges for each node i as (i−1, i)
and (r(i), i)). A key property that we will use in our analysis of Argon2iB is that for any j < i− 1 we have
Pr[r(i) = j] ≥ 1

3n and the selection of r(i) is independent for each node i13. Similarly, for Argon2iA we
have Pr[r(i) = j] ≥ 1

n . This will be sufficient to lower bound the red-blue pebbling cost of Argon2iA and
Argon2iB.

Lemma 5.3. Let G be a random Argon2iB (resp. Argon2iA) graph with n nodes then for any 1 ≤ j <
i− 1 ≤ n we have Pr[r(i) = j] ≥ 1

3n (resp. Pr[r(i) = j] ≥ 1
n).

The proof of Lemma 5.3 is implicit in [16]. For completeness we include the proof in the appendix Ap-
pendix B.3.

Lemma 5.4. Let m ≤ Cn1−ϵ for some constants C > 0 and 0 < ϵ < 1. Let i > n
2 and let T = [i, i+ ℓ− 1]

be an interval of length ℓ ≥ 150Cn1−ϵ. Then a graph G generated by Argon2iB or Argon2iA satisfies the
following with high probability:

min
R,B′⊆[i−1]:|R|≤m

(|B′| cb + |ancestorsG−R−B′(T )| cr) ≥ min
(
Cn1−ϵcb,

n

24
cr

)
.

Proof. We first consider casework on the size of B′. If |B′| ≥ Cn1−ϵ, then the claim trivially holds as we have
|B′|cb ≥ Cn1−ϵ · cb. Otherwise, we have |B′| < Cn1−ϵ, in which case |R ∪ B′| ≤ |R|+ |B′| < m+ Cn1−ϵ ≤
2Cn1−ϵ since |R| ≤ m. We then lower bound |ancestorsG−R−B′(T )| cr.

Partition the nodes in G into n
k intervals I1, I2, . . . where Ij

.
= [(j−1)k+1, jk] of k consecutive nodes for

a parameter k = nϵ

12C . For each interval Ij we let Lj
.
= [(j−1)k+⌈k/2⌉+1, jk] (resp. Fj

.
= [(j−1)k+1, (j−

1)k + ⌈k/2⌉] denote the last half (resp. first half) of this interval. Now for each j ∈ T define the random
variable Xj = 1 if for some i′ ≤ n

2k we have r(j) ∈ Li′ and for all prior nodes i ≤ j′ < j in the interval T we
have r(j′) ̸∈ Ei′ ; otherwise Xj = 0. Intuitively, Xj = 1 if the edge r(j) is connected to (the second half of) a
new interval. Let Bk = {i′ : |Ii′ ∩ (B′ ∪R)| ≥ 1} be the set of intervals that contain some node in B′ ∪R
and let X =

∑
j∈T Xj . Observe that there are at least X − |Bk| −m ≥ X − 2Cn1−ϵ intervals Ii′ such that

13The Argon2iB edge distribution depends on a parameter N > n. We make the mild assumption that N ≥ 6n where n
is the number of nodes in the graph. This assumption would hold in practical instantations of Argon2iB i.e., the Argon2i
implementation sets N = 232 while we would expect the running time parameter to be at most n ≤ 224.
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(1) the interval Ii′ contains no node in B′ ∪R i.e., Ii′ ∩ (B′ ∪R) = {}, and (2) there is an edge (r(j), j) with
j ∈ T and r(j) ∈ Li′ . For each such interval Ii′ the entire interval Fi′ is contained in ancestorsG−R−B′(T )
because the graph G contains all directed edges of the form (i, i+ 1) for i < n.

Thus,

|ancestorsG−R−B′(T )| ≥
(
X − 2Cn1−ϵ

) k
2
.

We now argue thatX ≥ min{ n
4k ,

ℓ
50} with high probability. To see this observe that ifX1+. . .+Xj−1 ≤ n

4k
then there at least n

4k of the intervals I1, . . . I n
2k

are still “uncovered” and for each uncovered interval Ii′ we
have

Pr[r(j) ∈ Fi′ ] ≥
|Fi′ |
3n
≥ k

6n

for Argon2iB and for Argon2iA we have

Pr[r(j) ∈ Fi′ ] ≥
|Fi′ |
n
≥ k

2n
.

Thus, for Argon2iA we have

Pr
[
Xj = 1Xi + . . .+Xj−1 ≤

n

4k

]
≥ k

2n
× n

4k
≥ 1

24

and for Argon2iB we have

Pr
[
Xj = 1Xi + . . .+Xj−1 ≤

n

4k

]
≥ k

6n
× n

4k
=

1

24
.

Since n
4k = 3Cn1−ϵ ≤ ℓ

50 we have min{ n
4k ,

ℓ
50} =

n
4k .

Concentration bounds imply that, except with negligible probability, we have
∑

j∈T Xj ≥ 3Cn1−ϵ. To
formalize the concentration bounds we can define new random variables Yj = 1 iffXj = 1 orX1+. . .+Xj−1 ≥
n
4k . Observe that X ≥ n

4k if and only if Y =
∑

j∈T Yi ≥ n
4k so it suffices to upper bound Pr[Y ≤ n

4k ]. We can
apply concentration bounds to upper bound Pr[Y ≤ n

4k ] (e.g., see Generalized Hoeffding Inequality [6, Claim
7]) because Pr[Yj = 1 | (Yi, . . . , Yj−1) = (yi, . . . , yj−1)] ≥ 1

24 for all prior outcomes yi, . . . , yj−1 ∈ {0, 1}. It
follows that (whp) X − 2Cn1−ϵ ≥ Cn1−ϵ and

|ancestorsG−R−B′(T )| ≥ Cn1−ϵ k

2
=

n

24
.

Reminder of Theorem 1.4. Let G be a random Argon2iB (resp. Argon2iA) graph. Then there exists
constants C,C ′ > 0 so that for any 0 < ϵ < 1 and for all m ≤ C ′n1−ϵ, with high probability,

rbpeb∥(G,m) ≥ C ·min(ncb, n
1+ϵcr).

Proof of Theorem 1.4: Set ℓ = 150C ′n1−ϵ so that n
ℓ = Ω(nϵ). Applying Lemma 5.4 to each of the

disjoint n
ℓ intervals in the second half of graph G, the theorem follows from Theorem 5.2. 2

5.4 DRSample

For DRSample [4] we rely on Lemma 5.5 to establish our main lower bound on the red-blue pebbling cost.

Lemma 5.5. Suppose m = O (nρ) for some constant 0 < ρ < 1 and i > n
2 . Let T = [i, i + ℓ − 1] be an

interval of length ℓ ≥ 16m/(1 − ρ). Then a graph generated by DRSample satisfies the following with high
probability:

min
R⊆[i−1]:|R|≤m

min
B′⊆[i−1]

(|B′| cb + |ancestorsG−R−B′(T )| cr) ≥ min

(
(1− ρ)ℓ

8
cb,

(
(1− ρ)ℓ

16

)√
n

64ℓ
cr

)
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Using Lemma 5.5, whose proof appears in Appendix B.2, we have:
Reminder of Theorem 1.3. Let G be a graph generated by DRSample or aATSample and 0 < ρ < 1.

Then there exists constants C,C ′ > 0 so that for all m ≤ C ′nρ, with high probability,

rbpeb∥(G,m) ≥ C ·min
(
n · cb, n3/2−ρ/2 · cr

)
.

Proof of Theorem 1.3: Applying Lemma 5.5 to each of the disjoint n
2ℓ intervals in the second half of

graph G and observing that ℓ = O (nρ), it follows from Theorem 5.2 that the cost is lower bounded by the

minimum of (1−ρ)ℓcb
8 × n

2ℓ = Ω(ncb) and
(1−ρ)ℓcr

16

√
n
64ℓ ×

n
2ℓ = Ω

(
n3/2−ρ/2

)
rbpeb∥(G,m) ≥ min

(
Ω(n)cb,Ω(n

3/2−ρ/2)cr

)
.

2

We also give an alternate bound for DRSample when the cache has sizem = O (nρ/ log n) for any 0 < ρ ≤ 1
in Appendix B.2 — see Theorem B.2. On the positive side the alternate bound applies when m is larger, but
the cost terms in the lower bound are slightly weaker i.e., rbpeb∥(G,m) ≥ min

(
Ω(n/ log n)cb,Ω(n

2/(m log n))
)
.

We remark that we cannot hope to obtain meaningful lower bounds form = ω(n/ log n). In particular, Blocki
et al. [14] gave a sequential black pebbling strategy for DRSample which uses space at most Cn/ logN and
time at most n. Thus, if m ≥ Cn/ logN this pebbling corresponds to red-blue pebbling strategy that uses
no blue pebbles and has cost ncr.

5.5 aATSample

The first n/2 nodes in a aATSample DAG [4] form a copy of DRSample. Thus, our lower bounds from Section
5.4 also apply to aATSample. For aATSample we can prove an additional lower bound which applies even

when m = O
(

n
logn

)
by utilizing the structure of the last n/2 nodes. Specifically, we rely on Lemma 5.6 to

establish our additional lower bound in Theorem 1.2.

Lemma 5.6. Let i > n
2 and T = [i, i + ℓ − 1] be an interval of length ℓ = n

logn . Then for any parameters

c ≥ 1 and m ≤ n
16c logn a graph generated by aATSample(n, c) satisfies the following property:

min
R,B′⊆[i−1]:|R|≤m

(|B′| cb + |ancestorsG−R−B′(T )| cr) ≥ min

(
n

16c log n
cb,

n

8
cr

)
We now use Lemma 5.6, whose proof appears in Appendix B.1.
Reminder of Theorem 1.2. Let G be a graph generated by aATSample. Then there exists constants

C,C ′ > 0 so that for all m ≤ Cn
logn ,

rbpeb∥(G,m) ≥ C ′ ·min(n · cb, (n log n)cr),

holds with high probability.

Proof of Theorem 1.2: Applying Lemma 5.6 to each of the disjoint log n intervals in the second half of
graph G, the theorem follows from Theorem 5.2. 2

6 Bandwidth Hardness of scrypt

In this section, we prove an unconditional tight lower bound on the bandwidth hardness of a data-dependent
MHF called scrypt [28], by analyzing the energy cost of its core subroutine ROMix (see Definition 6.1) in
the parallel random oracle model. Specifically, we prove Theorem 1.6.
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Reminder of Theorem 1.6. Whenever 4 log n < w, q ≤ 2w/20, n
4m · cr > cb, and ϵ ≥ 2(exp

(
−n

8

)
+

3
2n

32−w + qn22−w + 2−mw/5) the following statement holds in the parallel random oracle model:

ecostq,ϵ(scryptn,m · w) ≥
ϵ

2
· ncb
16

The ROMix construction is shown in Definition 6.1. We abuse notation slightly and refer to this function
as scryptH(X).

Definition 6.1. [6] For a hash function H : {0, 1}w → {0, 1}w, input x ∈ {0, 1}w, and parameter n ∈ N,
scryptH computes values X0, X1, ..., Xn−1, Y0, Y1, ..., Yn and outputs Yn as follows:

� X0 = x. Xi = H(Xi−1) for i = 1, ..., n− 1.

� Y0 = H(Xn−1). Yi = H(Yi−1 ⊕XYi−1 mod n) for i = 1, ..., n.

To bound the expected energy cost of scryptn, we study the energy cost of each single execution trace
running by an adversary algorithm to compute scryptn. Unlike previous sections, we consider a deterministic
adversary algorithm AR where the adversary algorithm’s internal randomness R is fixed in AR to simplify
the proof. Given an input x and a random oracle H, we define the execution trace determined by AR, H, and
x to be TraceAR,H(x) = TraceA,R,H(x). This simplification is without loss of generality because we quantify
over all random coins R and inputs x. In particular, for any algorithm A, input x and any R such that AR

computes scryptn correctly with probability ϵ > 0 (over the choice of random oracle H), we can argue that
cost (TraceAR,H(x)) = Ω

(
min{cbn, n2cr/m}

)
, except with probability ϵ− µ(w) for some negligible function

µ.
We first make a couple of basic observations about the energy cost of computing scrypt. The natural

sequential evaluation algorithm runs in time 2n and incurs at least n(1 − m/n) = Θ(n) cache misses in
expectation. Thus, the total cost is O (ncr + ncb). Similarly, we can define an evaluation algorithm that
avoids storing labels in RAM memory entirely (i.e., to avoid cache misses). Instead the algorithm stores
O (m) labels X0, Xn/m, X2n/m, . . . , Xn in cache. To compute Yi we must recalculate XYi−1

, which can be
accomplished using Θ(n/m) sequential calls to the random oracle (red moves). The total cost of computing
scryptn in this way (without cache) would be Θ

(
(n2/m)cr

)
in expectation. Notice that as the ratio n/m

increases the cost of the cache-free evaluation algorithm quickly exceeds the cost of the näıve evaluation
algorithm.

In our analysis we will assume that n
4m · cr > cb. Theorem 6.2, our main result in this section, shows

that if n/(4m) ≥ cb/cr then any algorithm in the parallel random oracle model has energy cost at least
Ω (ncr + ncb) i.e., scrypt is maximally bandwidth hard. If n/m ≪ cb/cr then an attacker would prefer to
use the cache free evaluation algorithm and scrypt is not maximally bandwidth hard for these parameter
settings. However, in practice we would expect that our condition n/(4m) ≥ cb/cr holds e.g., cb/cr ≈ 250
[30], n = 220,m = 210. We make several other reasonable assumptions about the parameters n,w and q
(#attacker random oracle queries) in our analysis i.e., we assume 4 log n < w, q ≤ 2w/20.

Theorem 6.2. For any input x ∈ {0, 1}w and n ≥ 2, if n
4m · cr > cb and AH

R (x, n) outputs Yn =
scryptH(x, n) correctly with probability at least ϵ, taken over the choice of the random oracle H, then
with probability (over the choice of H) at least ϵ− exp

(
−n

8

)
− 3

2n
32−w − qn22−w − 2−mw/5, we have

cost (TraceAR,H(x)) ≥ ncb
16

.

Theorem 1.6 is a corollary that can be derived directly from Theorem 6.2, since ecostq,ϵ(scryptn,m·w) ≥(
ϵ− exp

(
−n

8

)
− 3

2n
32−w − qn22−w − 2−mw/5

)
· ncb16 ≥

ϵ
2 ·

ncb
16 , where we assume ϵ ≥ 2(exp

(
−n

8

)
+ 3

2n
32−w +

qn22−w+2−mw/5). Theorem 1.6 implies that any algorithm A that always computes scryptH(x, n) correctly
has expected energy cost at least E [cost(TraceAR,H(x))] ≥ ncb

32 , where AR(x) := A(x;R) and the expectation

is taken over the selection of A’s random coins R. Similarly, an algorithm that only computes the answer
correctly half of the time has expected energy cost at least E [cost(TraceAR,H(x))] ≥ ncb

64 .
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We start the proof with considering the ways an attacker might hope to compute scryptH(x, n). We ex-
pect that any algorithm that computes the output Yn correctly must first compute the labelsX1, . . . , Xn−1, Y0,
Y1, . . . , Yn in order i.e., if j > i we expect that Xi (resp. Yi) will appear as the output of a random oracle
query before Xj (resp. Yj) and we expect that all Xi’s appear before any Yj . However, if the attacker is
lucky some of the labels might appear out of order and we will not be able to lower bound the attacker’s
cost e.g., if Yj happens to be the output of some random oracle query before Yj−1 appears for the first time.
We introduce two bad events “Collision” and “Wrong Order” to analyze (and upper bound) the probability
that the attacker gets lucky.

Notation: We define S = |H|, where H is the set of all possible random oracles H. We will use a
superscript H on a label to indicate that the label is generated by AH . We may omit the superscript H
when it is clear which random oracle H is used to generate this label. Also for simplicity, we abuse notation
slightly and refer to AR as A, and TraceAR,H(x) as TraceA,H(x).

Collision. For each 0 ≤ i ≤ n, we define the set COLLISIONi ⊆ H such that a random oracle H ∈
COLLISIONi if and only if there are collisions among the labels X0, X1,

H ..., XH
n−1, T

H
1 , ..., TH

i as input queries
to H. (Denote TH

k = Y H
k−1 ⊕XH

Y H
k−1 mod n

for all 1 ≤ k ≤ i and TH
0 = XH

n−1.) According to the definition,

we have COLLISION0 ⊆ COLLISION1 ⊆ · · · ⊆ COLLISIONn.

Wrong Order. For each 0 ≤ i ≤ n, we define the set WRONGORDERi ⊆ H such that a random oracle
H ∈ WRONGORDERi if and only if there exists k < i such that TH

k+1 = Y H
k ⊕XH

Y H
k mod n

appears as an input

query to H earlier than or in the same round of TH
k . According to the definition, we have WRONGORDER0 ⊆

WRONGORDER1 ⊆ · · · ⊆ WRONGORDERn.
Alwen et al. [6] proved the following two results about the size of the sets COLLISIONn and WRONGORDERn,

which will be useful for our analysis.

Lemma 6.3. [6, Claim 15] |COLLISIONn| ≤ S · 32n
32−w.

Lemma 6.4. [6, Claim 18] |WRONGORDERn \ COLLISIONn| ≤ S · qn22−w.

To prove Theorem 6.2, we will show that the energy cost of an execution trace in which A correctly
outputs scryptH(x, n) is at least ncb

4 with a high probability over the choice of the random oracle H. Before
we further describe the proof, it will be helpful to introduce a special way to sample a random oracle H
uniformly at random.

Sampling H. Intuitively, an easy way to construct a random oracle H is randomly choosing one from the
set H of all random oracles. To prove our main result, it will be helpful to think of H as being sampled in
a different (but equivalent) way as suggested by Alwen et al. [6]. In particular, Alwen et al. [6] iteratively
define a sequence H0, H1, . . . of random oracles and proved that each individual Hi (when viewed alone) can
be viewed as a uniformly random from H. Specifically, we define H0, ...,Hn as follows:

(1) Choose oracle H0 uniformly at random.

(2) Choose challenges c1, ..., cn uniformly at random in {0, 1, ..., n− 1}.

(3) Construct H1, ...,Hn in order. For i < n:

(a) If Hi ∈ COLLISIONi, let Hi+1 = Hi.

(b) If Hi /∈ COLLISIONi, let Hi+1 = Hi except that Hi+1(T
Hi
i ) = ⌊Y

Hi
i

n ⌋ × n + ci+1 = Y
Hi+1

i , where

THi
i = Y Hi

i−1 ⊕ X
Y

Hi
i−1 mod n

, and the superscript Hi shows the value is generated using random

oracle Hi. For simplicity of presentation we will assume that n is a power of 2 so that we can
avoid rounding issues.
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Note that if Hi /∈ COLLISIONi ∪ WRONGORDERi for all i ≤ n, then TraceA,Hn(x) is identical to TraceA,Hi(x)
until the time when Ti first appears as a query to the random oracle. Alwen et al. [6] gave a simple inductive
proof of this claim. While our notion of an execution trace is slightly different (due to the presence of a
cache) we remark that the exact same argument carries over. This observation will be useful later.

To evaluate the energy cost of an entire execution trace TraceA,H(x), we divide it into n partial execution
traces and lower bound the (expected) energy cost of each partial execution trace. See explanation below.

Partial Trace. The following notion of a partial trace will be useful in our security proof. Given a trace
TraceA,H(x) = {(σj , ξj , Rj , Sj , Qj)}tj=1 and a label index i ̸= n, we use ti to denote the first round in which

Ti = Y Hi
i−1 ⊕X

Y
Hi
i−1 mod n

appears as a query to random oracle H. Lemma 6.4 prove that only a few random

oracles H cause that Ti+1 is first queried before Ti (or that Ti is never queried in which case ti =∞), which

allows us to define the partial trace TraceA,H,i(x) = {(σj , ξj , Rj , Sj , Qj)}ti+1−1
j=ti

as the execution trace between
rounds ti and ti+1 for ti+1 > ti. When ti < ti+1 ̸= ∞ for each i < n (which is true for H /∈ WRONGORDERn)
we have

cost(TraceA,H(x)) ≥
n−1∑
i=0

cost(TraceA,H,i(x)) .

Lucky Partial Trace. We say that the partial trace TraceA,H,i(x) is “lucky” if cost(TraceA,H,i(x)) <
cb
4 .

We remark that cost(TraceA,H,i(x)) ≥ (ti+1− ti)cr as there is at least one query to the random oracle in each

round. Similarly, if
∑ti+1−1

j=ti
NBits(Sj , Rj) ≥ w/4 bits are transferred between memory and cache during

TraceA,H,i(x) then we have cost(TraceA,R,H(x)) ≥ cb/4. Thus if TraceA,H,i(x) is “lucky”, then at most w/4
bits are transferred between memory and cache while ti+1−ti ≤ cb

4cr
. Next, we will use concentration bounds

along with an extractor argument to show that for almost all random oracles, at least n
4 of the partial traces

in the entire trace are not lucky. Then total energy cost of such a trace is at least

cost(TraceA,H(x)) ≥
∑

i:Li=1

cost(TraceA,H,i(x)) ≥
n

4
· cb
4

=
ncb
16

.

To analyze the energy cost of a partial trace TraceA,H,i(x), we define Bi ⊆ [n] be the set of indices k of
the labels Xk that appear “out of thin air” during the following simulation:

(1) Give a random oracle Hi ∈ H which is chosen uniformly at random in advance. Hi is chosen using
H0, c1, ..., ci as we describe in the paragraph of “Sampling H” above.

(2) Define n random oracles Hi+1,0, Hi+1,1, · · · , Hi+1,n−1. For each j < n, let Hi+1,j = Hi except that

Hi+1,j(T
Hi
i ) = ⌊Y

Hi
i

n ⌋ × n + j = Y
Hi+1

i . Intuitively, Hi+1,j is “programmed” to ensure that Xj is
required to compute the next label. Consider ti to be the initial round of the partial trace using oracle
Hi. For each j < n, the extractor simulates in parallel the process of running A with random oracle
Hi+1,j by running A with random oracle Hi and replacing the output of query THi

i (i.e. Y Hi
i ) with

⌊Y
Hi
i

n ⌋+ j.

(3) Note that Hi+1,j (for j < n) only differ from Hi at the query Ti. Since ti is the first round that Ti

is queried, the execution traces of Hi+1,j (for all j < n) till the round ti are the same, as well as the
initial states at ti.

(4) Stop simulating AHi+1,j when at least one of the cases below happens:

(a) Xj is first queried.

(b) T
Hi+1,j

i+1 is first queried. (In this case, Xj can be obtained by computing Xj = T
Hi+1,j

i+1 ⊕ Y
Hi+1,j

i .)

(c) The algorithm transfers more than w
4 bits between cache and memory.
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(5) Note that the total rounds in simulating AHi+1,j (for any j < n) is no larger than ti+1 − ti. (ti and
ti+1 here means the ti and ti+1 defined in the execution trace of AHi+1,j .)

If (during the above) simulation, the label Xk appears as an input to a random oracle query before it
appears as output, then k ∈ Bi. We can use an extractor argument to upper bound the size of |Bi|. In
particular, our extractor will be given a hint of size |Bi|

(
2 log n+ log q + 1 + w

4

)
+ mw and for each node

v ∈ Bi our extractor will output the pair (Xv−1, H(Xv−1) = Xv) without ever querying the random oracle
at Xv−1. If |Bi| > 8m for most of the traces, then we obtain a contradiction as any extractor should succeed
with probability at most 2−|Bi|w+|Bi|(2 logn+log q+1+w

4 )+mw ≪ 1.
To accomplish this task, we will give the extractor a hint that includes the initial state of A (necessary

for simulation), the set Bi and for each v ∈ Bi the challenge jv s.t. Xv appears out of thin air during the
execution of AHi+1,jv (as well as the index of the relevant query where Xv appears out of thin air). The hint
also includes an encoding of the messages passed between cache and memory during each relevant execution
AHi+1,jv . In more detail, the hint given to help the extractor consists of the following components:

(1) The set Bi is given as a hint to denote the indices that form the string that the extractor will ultimately
predict. This component of the hint is |Bi| log n bits.

(2) For each v ∈ Bi, the challenge jv for which label Xv appears out of thin air in the execution trace of
AHi,jv , i.e. TraceA,R,Hi,jv ,i

(x). If there are multiple values of jv for which Xv appears out of thin air
we break ties by selecting the challenge jv for which the label Xv appears out of thin air in the earliest
round. This component of the hint is at most |Bi| log n bits.

(3) For each Xv, v ∈ Bi, the index of the first query zv in which Xv appears out of thin air in the execution
trace of AHi,jv , i.e. TraceA,R,Hi,jv ,i

(x). This component of the hint allows the extractor to extract the
random string Xv, and has size at most |Bi| log q bits, where q is the total number of queries made by
the attacker.

(4) For each Xv, v ∈ Bi, when running AHi+1,jv the extractor needs one bit indicating whether Xv first

appears as a query by itself or as part of the query T
Hi+1,jv
i+1 = Xv ⊕ Y

Hi+1,jv
i In the latter case the

extractor needs to obtain Xv by computing Xv = T
Hi+1,jv
i+1 ⊕ Y

Hi+1,jv
i . The size of this component of

the hint is at most |Bi| in total.

(5) The cache state at ti is given as a hint to the extractor to simulate the attacker beginning at time step
ti. Since the cache has size m, each containing w-bit words, the size of this component of the hint is
at most mw bits.

(6) For each v ∈ Bi, the hint includes the messages passed between cache and memory during rounds
[ti, ti+1) of execution trace of AHi,jv where jv was the index of the challenge for which Xv appears out
of thin air. Since we have restricted our attention to execution traces in which the attacker transfers less
than w

4 bits between cache and memory when computing a challenge, then the size of this component

of the hint is at most |Bi|w
4 bits in total.

The total size, in bits, of the hint is at most

|Bi| log n+ |Bi| log n+ |Bi| log q + |Bi|+mw +
|Bi|w
4

= |Bi|
(
2 log n+ log q + 1 +

w

4

)
+mw

To know in which cases |Bi| < 8m, we first consider the cases of |Bi| ≥ 8m. The first case is Hi ∈
COLLISIONi ∪ WRONGORDERi. The second case is that the extractor successfully predicts 8m labels. We
define the set of random oracles in this case to be PREDICTABLE. Then we have |Bi| < 8m for all Hi /∈
COLLISIONi ∪ WRONGORDERi ∪ PREDICTABLE. The set PREDICTABLE is formally defined below.
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Predictable. We define a set PREDICTABLE containing all random oracles H for which there exists a hint
with length |Bi|

(
2 log n+ log q + 1 + w

4

)
+mw such that |Bi| ≥ 8m, i.e. the extractor can correctly output

at least 8m labels among X1, ..., Xn−1 using this hint without querying them.

Lemma 6.5. |PREDICTABLE| ≤ S · 2−mw/5.

Proof. Since the number of bits we want to predict is 8mw, the size of the hint is |Bi|(2 log n+ log q + 1 +
w
4 ) +mw, using Lemma 3.1 we can bound the size of PREDICTABLE:

|PREDICTABLE| ≤ S · 2−|Bi|w+(|Bi|(2 logn+log q+1+w
4 )+mw) ≤ S · 2−8mw+(8m·(2·w4 + w

20+1+w
4 )+mw) ≤ S · 2−mw/5.

The second inequality holds under our assumption that 4 log n < w, q ≤ 2w/20.

Lemma 6.6 says that the probability that our partial execution trace is “unlucky” is at least 1
2 . This

holds even if we condition on any H0, c1, . . . , ci choice of prior challenges so long as Hi is not in our bad set
of random oracles (Hi ̸∈ COLLISIONi ∪ WRONGORDERi ∪ PREDICTABLE) — these conditional probabilities allow
us to apply concentration bounds in the next step of the proof.

Lemma 6.6. For any i < n, any H0, c1, ..., ci s.t. Hi /∈ COLLISIONi ∪ WRONGORDERi ∪ PREDICTABLE,

Pr

ti+1 − ti ≥
n

16m
∨

ti+1−1∑
j=ti

NBits(Sj , Rj) ≥ w/4 H0, c1, ..., ci

 ≥ 1

2
,

where the probability is taken over the choice of ci+1 ∈ {0, . . . , n − 1} and
∑ti+1−1

j=ti
NBits(Sj , Rj) > w/4

means more than w/4 bits are transferred between cache and memory between rounds [ti, ti+1).

Proof. Since Hi is constructed using H0, c1, ..., ci, the probability of ti+1 − ti ≥ n
16m under the condition of

H0, c1, ..., ci is equivalent to the probability under the condition of Hi.
Given our randomly sampled challenge j ∈ {0, . . . , n− 1}, we let tmin := minv∈B,v≤j{j − v} denote the

time cost of computing Xj given only the labels Xv for each v ∈ B. Then for any Hi /∈ COLLISIONi ∪
WRONGORDERi ∪ PREDICTABLE, either

∑ti+1−1
j=ti

NBits(Sj , Rj) > w/4 or ti+1− ti ≥ tmin. We will show that for
all H0, c1, ..., ci such that Hi /∈ COLLISIONi ∪ WRONGORDERi ∪ PREDICTABLE, we have

Pr
[
tmin ≥

n

16m
H0, c1, ..., ci

]
≥ 1

2
,

where the probability is taken over the selection of ci+1. We conclude that Pr[ti+1−ti ≥ n
16m∨

∑ti+1−1
j=ti

NBits(Sj , Rj) ≥
w/4 H0, c1, ..., ci] ≥ 1

2 .
Note that |Bi| < 8m for all Hi /∈ COLLISIONi ∪ WRONGORDERi ∪ PREDICTABLE, so we can bound the

probability as Pr
[
tmin ≥ n

16m H0, c1, ..., ci
]
≥ Pr

[
tmin ≥ n

2(|Bi|+1) H0, c1, ..., ci

]
. We denote the elements

in Bi to be b1, ..., b|Bi|, where b1 < · · · < b|Bi|. Given the labels that appear as inputs to the random oracle
before appearing as outputs, we partition the label indices into |Bi|+1 intervals: [0, b1), [b1, b2), ..., [b|Bi|, n).
Let b0 = 0, b|Bi|+1 = n. Then for each challenge index c in the interval [bk, bk+1) for 0 ≤ k ≤ |Bi|,
if n

2(|Bi|+1) ≥ bk+1 − bk, then the attacker can compute any challenge Xc using time less than n
2(|Bi|+1) ;

otherwise, the attacker needs c− bk ≥ n
2(|Bi|+1) time to compute challenge Xc for c ∈

[
bk + n

2(|Bi|+1) , bk+1

)
.

This means, for each interval [bk, bk+1) (k = 0, 1, ..., |Bi|), there are max
(
0, bk+1 − bk − n

2(|Bi|+1)

)
challenges

that need at least n
2(|Bi|+1) time to compute. Therefore, we have:

Pr
[
tmin ≥

n

16m
H0, c1, ..., ci

]
≥ Pr

[
tmin ≥

n

2(|Bi|+ 1)
H0, c1, ..., ci

]

=

∑|Bi|
k=0 max

(
0, bk+1 − bk − n

2(|Bi|+1)

)
n

≥

∑|Bi|
k=0

(
bk+1 − bk − n

2(|Bi|+1)

)
n

=
n− 0− (|Bi|+ 1) n

2(|Bi|+1)

n
=

1

2
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Since for each case of tmin ≥ n
16m , either ti+1 − ti ≥ tmin or

∑ti+1−1
j=ti

NBits(Sj , Rj) > w/4, we have

Pr
[
ti+1 − ti ≥ n

16m ∨
∑ti+1−1

j=ti
NBits(Sj , Rj) ≥ w/4 H0, c1, ..., ci

]
≥ Pr

[
tmin ≥ n

16m H0, c1, ..., ci
]
≥ 1

2 .

Indicator Li. For i < n, let Li ∈ {0, 1} be an indicator random variable for the ith partial execution
trace TraceA,H,i(x). In particular, we set Li = 1 if TraceA,H,i(x) is not “lucky” given random oracle Hi or
Hi ∈ COLLISIONi ∪ WRONGORDERi ∪ PREDICTABLE; otherwise Li = 0. Next, we will first bound the probability
of Li = 1 for each i < n, and then use concentration bounds to show that

∑n−1
i=0 Li ≥ n

4 is true for most
random oracles.

Lemma 6.7. For any i < n, Pr [Li = 1 L0, ..., Li−1] ≥ 1
2 .

Proof. Consider an random oracle Hi constructed uniformly at random using H0, c1, ..., ci.
If Hi ∈ COLLISIONi ∪ WRONGORDERi ∪ PREDICTABLE, Pr [Li = 1 L0, ..., Li−1] = Pr [Li = 1] = 1.
If Hi /∈ COLLISIONi ∪ WRONGORDERi ∪ PREDICTABLE, Li = 0 means TraceA,H,i(x) is a lucky partial trace;

Li = 1 means TraceA,H,i(x) is not “lucky”. Note that if TraceA,H,i(x) is “lucky”, then at most w/4 bits are
transferred between memory and cache while ti+1 − ti ≤ cb

4cr
. Also, we assume n

4m · cr > cb at the beginning
of this section. Then by Lemma 6.6 we can bound the probability of Li = 1 as below:

Pr [Li = 1 H0, c1, ..., ci] ≥ Pr

ti+1 − ti ≥
cb
4cr
∨

ti+1−1∑
j=ti

NBits(Sj , Rj) ≥ w/4 H0, c1, ..., ci


> Pr

ti+1 − ti ≥
n

16m
∨

ti+1−1∑
j=ti

NBits(Sj , Rj) ≥ w/4 H0, c1, ..., ci

 ≥ 1

2

Define Hconsistent as the set of all {H0, c1, . . . , ci} consistent with L0, . . . , Li−1. Then we have:

Pr [Li = 1 L0, ..., Li−1] ≥ min
{H0,c1,...,ci}∈Hconsistent

Pr [Li = 1 H0, c1, ..., ci] ≥
1

2

Next, we will use concentration bounds to show that
∑n−1

i=0 Li ≥ n
4 is true for most random oracles.

Lemma 6.8.

Pr

[
n−1∑
i=0

Li <
n

4

]
< exp

(
−n

8

)
where the probability is taken over the choice of random oracle H with an arbitrary fixed input X.

Proof. Lemma 6.7 proves that Pr [Li = 1 L0, ..., Li−1] ≥ 1
2 for any i < n. Noting that the random variables

L0, ..., Ln−1 are not independent, we define independent Bernoulli random variables L′
0, ..., L

′
n−1 with Pr[L′

i =

1] = 1
2 . Then Pr[L′

i = 1] ≤ Pr [Li = 1 L0, ..., Li−1] for all i < n. Thus, we have Pr
[∑n−1

i=0 Li <
n
4

]
≤

Pr
[∑n−1

i=0 L′
i <

n
4

]
. Using Chernoff bound we have:

Pr

[
n−1∑
i=0

Li <
n

4

]
≤ Pr

[
n−1∑
i=0

L′
i < E

[
n−1∑
i=0

L′
i

]
− n

4

]
< exp

(
−n

8

)
.

An alternate way to prove this lemma is to define a sequence Xk =
∑k

i=1 Li − k+1
2 for k = 0, . . . , n− 1,

observe that the sequence can be viewed as a submartingale, and then apply Azuma’s inequality to bound
Xn−1.
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Denote E1 be the set of random oracles such that
∑n−1

i=0 Li ≥ n
4 , SUCCESS be the set of random oracles such

that TraceA,H(x) outputs Yn correctly for H ∈ SUCCESS. Note that |E1| < S ·exp
(
−n

8

)
, and |SUCCESS| ≥ Sϵ.

Then E1 ∩ SUCCESS ∩ COLLISIONn ∩ WRONGORDERn ∩ PREDICTABLE is the set of random oracles such that for
each H ∈ E1 ∩ SUCCESS ∩ COLLISIONn ∩ WRONGORDERn ∩ PREDICTABLE, there are at least n

4 of the partial
execution traces in the entire trace each of which costs no less than cb

4 energy, and thus cost(TraceA,H(x)) ≥∑
i:Li=1 cost(TraceA,H,i(x)) ≥ n

4 ·
cb
4 = ncb

16 .

In the end, we only need to bound the probability of H ∈ E1 ∩ SUCCESS ∩ COLLISIONn ∩ WRONGORDERn ∩
PREDICTABLE to finish the proof of Theorem 6.2.

Note that E1∩SUCCESS∩COLLISIONn∩WRONGORDERn∩PREDICTABLE ≥ |SUCCESS|−|E1|−|COLLISIONn|−
|WRONGORDERn|−|PREDICTABLE| ≥ S·(ϵ−exp

(
−n

8

)
− 3

2n
32−w−qn22−w−2−mw/5). SinceH is chosen uniformly

at random, we have:

Pr
[
H ∈ E1 ∩ SUCCESS ∩ COLLISIONn ∩ WRONGORDERn ∩ PREDICTABLE

]
≥ϵ− exp

(
−n

8

)
− 3

2
n32−w − qn22−w − 2−mw/5.

This completes the proof of Theorem 6.2.
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A Specification of Candidate iMHFs

In this section we give provide detailed descriptions of the iMHFs analyzed in the main body of the paper.
DRSample is described in Algorithm 1, aATSample is described in Algorithm 2, Argon2iB is described in
Algorithm 3 and Argon2iA is described in Algorithm 4. The aATSample construction in Algorithm 2 uses
DRSample (Algorithm 1) as a building block. Intuitively, the subgraph induced by the first n/2 nodes form
a DRSample graph with n/2 nodes and the following n/2 nodes form a path with additional parents selected
from DRSample.

B Missing Proofs

Reminder of Theorem 5.2. Let G = ([n], E) be any DAG such that (j, j + 1) ∈ E for each j < n, let c

be a positive integer and let Ti = ((i− 1)cℓ+ 1, icℓ],

rbpeb∥(G,m) ≥
⌊ n

cℓ⌋∑
i=1

min
R,B′⊆[(i−1)cℓ]:|R|≤m

(|B′| cb + |ancestorsG−R−B′(Ti)| cr) .
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Algorithm 1: An algorithm for sampling depth-robust graphs. [4]

Function DRSample(n ∈ N≥2):

V := [v]
E := {(1, 2)}
for v ∈ [3, n] and i ∈ [2] do // Populate edges

E := E ∪ {(v,GetParentDRS(v, i))} // Get ith parent

end
return G := (V,E).

Function GetParentDRS(v,i):
if i = 1 then

u := i− 1
else

g′←[1, ⌊log2(v)⌋+ 1] // Get random range size.

g := min(v, 2g
′
) // Don’t make edges too long.

r←[max(g/2, 2), g] // Get random edge length.

end
return v − r

Proof of Theorem 5.2: (Sketch) Repeatedly invoke Lemma 5.1. Consider an optimal red-blue pebbling
and let ti denote the first time we place a pebble on node icℓ. For each i the red-blue cost incurred between
steps ti−1 + 1 and ti starting from some red-blue configuration Bti−1 , Rti−1 is at least

rbpeb∥(G,m, Ti, Bti−1 , Rti−1)

≥ min
B′⊆[(i−1)cℓ]

(
|B′| cb +

∣∣∣ancestorsG−Rti−1
−B′(Ti)

∣∣∣ cr)
≥ min

R,B′⊆[(i−1)cℓ]:|R|≤m
(|B′| cb + |ancestorsG−R−B′(Ti)| cr) .

To complete the proof we observe that

rbpeb∥(G,m) ≥
⌊ n

cℓ⌋∑
i=1

rbpeb∥(G,m, Ti, Bti−1
, Rti−1

) .

2

B.1 aATSample

Reminder of Lemma 5.6. Let i > n
2 and T = [i, i+ ℓ− 1] be an interval of length ℓ = n

logn . Then for

any parameters c ≥ 1 and m ≤ n
16c logn a graph generated by aATSample(n, c) satisfies the following property:

min
R,B′⊆[i−1]:|R|≤m

(|B′| cb + |ancestorsG−R−B′(T )| cr) ≥ min

(
n

16c log n
cb,

n

8
cr

)
Proof of Lemma 5.6: We first consider casework on the size of B′. If |B′| ≥ n

16c logn , then we trivially

have |B′|cb ≥ n
16c logncb. Otherwise, we have |B′| ≤ n

16c logn , in which case |R ∪B′| ≤ n
8c logn since |R| ≤ m.

We now lower bound |ancestorsG−R−B′(T )| cr under the assumption that |R ∪B′| < n
8c logn .

Partition the nodes [n/2] into n
2k intervals [1, k], [k + 1, 2k], . . . where k = 2c log n and c ≥ 1 is the

parameter used in Algorithm 2 (aATSample). Observe that for each interval [(v − 1)k + 1, vk] the graph G
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Algorithm 2: An algorithm for sampling a high aAT graph. [4]

Function aATSample(n, c):
V := [n]
E := {(i, i+ 1) : i ∈ [n− 1]}
for v ∈ [3, n] and i ∈ [2] do // Populate new edges of graph.

E := E ∪ {(v,GetParentc(v, i))} // Get ith parent of node v
end
return G := (V,E).

Function GetParentc(v,i):
if i = 1 then

u := i− 1
end
else if v ≤ n/2 then

u := GetParentDRS(v, i) // First n/2 nodes form copy of DRSample

end
else

m := ⌊c log(n)⌋
b := (v − n) mod

⌊
n
2m

⌋
u := bm

end
return u

contains an edge from some node x ∈ [vk− k/2+1, vk] (the second half of the interval) to some node y ∈ T .
Let Bk = {v ≤ n

2k : [(v− 1)k+1, vk]∩ (R∪B′) ̸= ∅} denote the set of intervals which intersect with R∪B′.
Clearly, |Bk| ≤ |R ∪B′| ≤ n

8c logn . We claim that if v ̸∈ Bk then every node in [(v− 1)k, vk− k/2] (first half

of the interval) is also in ancestorsG−R−B′(T ). To see this observe that for each interval [(v − 1)k + 1, vk]
the graph G contains an edge from some node x ∈ [vk − k/2 + 1, vk] to some node y ∈ T and the entire
interval [(v − 1)k + 1, vk] is disjoint from B′ ∪ R. Thus, we have at least k

2

(
n
2k − |Bk|

)
= n

8 nodes in
ancestorsG−R−B′(T ). 2

B.2 DRSample

Reminder of Lemma 5.5. Suppose m = O (nρ) for some constant 0 < ρ < 1 and i > n
2 . Let

T = [i, i+ ℓ− 1] be an interval of length ℓ ≥ 16m/(1− ρ). Then a graph generated by DRSample satisfies the
following with high probability:

min
R⊆[i−1]:|R|≤m

min
B′⊆[i−1]

(|B′| cb + |ancestorsG−R−B′(T )| cr) ≥ min

(
(1− ρ)ℓ

8
cb,

(
(1− ρ)ℓ

16

)√
n

64ℓ
cr

)
Proof of Lemma 5.5:

Let T = [i, i+ ℓ] where ℓ ≥ 16m/(1− ρ) for some constant 1
2 < ρ < 1 and let r(j) denote the predecessor

of a node j in the graph (besides j − 1) i.e., r(j) = GetParent(j, 2). We first note that if |B′| ≥ cℓ
2 for

the constant c = 1−ρ
4 then |B′|cb ≥ cℓ

2 cb and we are immediately done. Otherwise, we let b =
√

n
64ℓ and

for i < j ≤ i + ℓ, let Xj be an indicator random variable for the event far(j), which we define to be the
event that |r(j) − r(k)| > b for all k ∈ [i, j − 1] and r(j) < i. Observe that if far(j) = 1 then either B′ ∪ R
contains some node in the interval [r(j) − b, r(j)] or these nodes will be contained in ancestorsG−R−B′(T ).
In particular, if X =

∑
i∈T Xi we have ancestorsG−R−B′(T ) ≥ (X −m− |B′|). It remains to lower bound
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Algorithm 3: An algorithm for sampling depth-robust graphs. [11]

Function Argon2iB(n ∈ N≥2):

V := [v]
E := {(1, 2)}
for v ∈ [3, n] and i ∈ [2] do // Populate edges

E := E ∪ {(v,GetParent(v, i))} // Get ith parent

end
return G := (V,E).

Function GetParent(v,i):
if i = 1 then

u := i− 1
else

N := 232 // Set sample range.

g← [1, N ] // Get random range length.

r :=
[

g2

N2 v
]

// Set quadratic dependency.

end
return v − r

X. Observe that for any setting of r(i), . . . , r(j − 1) the set S =
⋃j−1

y=i [r(y) − b, r(y) + b] has size at most
(2b+ 1)(j − i) and thus Pr[r(j) ∈ S] is maximized when S = [i− (2b+ 1)(j − i), i− 1]. Hence,

Pr [far(j)] ≥ Pr [r(j) < i− (j − i)(2b+ 1)]

≥ Pr [j − r(j) > ℓ+ (j − i)(2b+ 1)]

≥ Pr [j − r(j) > ℓ+ (ℓ)(2b+ 1)]

≥ Pr

[
j − r(j) >

√
nℓ

2

]

since j ≤ i+ ℓ and b =
√

n
64ℓ . In the last inequality we assume that n ≥ 64ℓ so that b ≥ 1 and ℓ+ ℓ(2b+1) ≤

4ℓb =
√
nℓ
2 . Hence,

Pr [far(j)] ≥ log(j)− log
√
nℓ

log(j)

≥ 1−
(
1

2
− ρ

2

)(
log(n)

log(n)− 1

)
≥ 1

2
− ρ

2
− o(1) = Ω(1).

Let c = 1−ρ
4 With high probability, X =

∑i+ℓ
k=i Xk > cℓ. Setting ℓ ≥ 4m/c, then with high probability, the

number of ancestors of T in G−R−B′ is at least

(X − |R| − |B′|)b ≥ (X −m− |B′|)b

≥
(
cℓ

4

)√
n

64ℓ
,

for |B′| ≤ cℓ
2 . Thus, either |B

′| ≥ cℓ
2 or |ancestorsG−R−B′(T )| ≥

(
cℓ
4

)√
n
64ℓ . It follows that

min
R⊆[i−1]:|R|≤m

min
B′⊆[i−1]

(|B′| cb + |ancestorsG−R−B′(T )| cr) ≥ min

(
cℓ

2
cb,

(
cℓ

4

)√
n

64ℓ
cr

)
.
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Algorithm 4: An algorithm for sampling depth-robust graphs. [11]

Function Argon2iA(n ∈ N≥2):

V := [v]
E := {(1, 2)}
for v ∈ [3, n] and i ∈ [2] do // Populate edges

E := E ∪ {(v,GetParent(v, i))} // Get ith parent

end
return G := (V,E).

Function GetParent(v,i):
if i = 1 then

u := i− 1
else

N := 232 // Set sample range.

g← [1, N ] // Get random range length.

r :=
[
g
N v
]

// Set linear dependency.

end
return v − r

2

We now give an alternate bound for DRSample when the cache has size O (nρ/ log n) for any 0 < ρ < 1.
It shows that either the pebbling has Ω̃(n) blue moves or there are at least Ω̃(n2−ρ) red moves. The alternate
bound is incomparable to our prior bound showing that any pebbling either has Ω(n) blue moves or at least
Ω(n3/2−3ρ/2) red moves. In particular, we cannot minimize the number of blue moves without paying a steep
cost in the number of red moves.

Lemma B.1. Suppose m = Cnρ/ log n for some constants C > 0 and 0 < ρ ≤ 1 and i > n
2 . Let

T = [i, i+ ℓ− 1] be an interval of length ℓ = 100m log n. Then a graph generated by DRSample satisfies the
following with high probability:

min
R⊆[i−1]:|R|≤m

min
B′⊆[i−1]

(|B′| cb + |ancestorsG−R−B′(T )| cr) ≥ min
(
mcb,

n

24
· cr
)
.

Proof. Let T be an interval of length ℓ. If |B′| > m then we immediately have |B′| cb > mcb. Thus, in the
remainder of the proof we assume that |B′| ≤ m so that |R ∪B′| ≤ 2m. Partition nodes in G into intervals
I1, I2, . . . of length k = n

12m = O
(
n1−ρ log n

)
where Ij = [(j−1)k+1, jk]. Let Lj = [(j−1)k+ ⌈k/2⌉+1, jk]

(resp. Fj = [(j − 1)k + 1, (j − 1)k + ⌈k/2⌉]) denote the last (resp. first) half of the nodes in Ij . Now for
each j ∈ T define the random variable Xj = 1 if for some i′ ≤ n

2k we have r(j) ∈ Li′ and for all prior
nodes i ≤ j′ < j in the interval T we have r(j′) ̸∈ Ei′ ; otherwise Xj = 0. Intuitively, Xj = 1 if the edge
r(j) is connected to (the second half of) a new interval. Let Bk = {i′ : |Ii′ ∩ (B′ ∪R)| ≥ 1} be the
set of intervals that contain some node in B′ ∪ R and let X =

∑
j∈T Xj . Observe that there are at least

X − |Bk| − m ≥ X − 2Cn1−ϵ intervals Ii′ such that (1) the interval Ii′ contains no node in B′ ∪ R i.e.,
Ii′ ∩ (B′ ∪ R) = {}, and (2) there is an edge (r(j), j) with j ∈ T and r(j) ∈ Li′ . For each such interval Ii′

the entire interval Fi′ is contained in ancestorsG−R−B′(T ) because the graph G contains all directed edges
of the form (i, i+ 1) for i < n.

Thus,

|ancestorsG−R−B′(T )| ≥ (X − 2m)
k

2
.

We now argue that X ≥ min{ n
4k ,

ℓ
25 logn} with high probability. To see this observe that if X1 + . . . +

Xj−1 ≤ n
4k then there at least n

4k of the intervals I1, . . . I n
2k

are still “uncovered” and for each uncovered
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interval Ii′ we have

Pr[r(j) ∈ Fi′ ] ≥
k

2n log n
.

Thus, we have

Pr
[
Xj = 1X1 + . . .+Xj−1 ≤

n

4k

]
≥ k

2n log n
× n

4k
≥ 1

8 log n
.

Thus, in expectation we have E[X] ≥ min{ n
4k ,

ℓ
8 logn}. We picked our parameters such that n

4k = 3m and
ℓ

25 logn = 4m. We can apply concentration bounds to argue that (whp) we have X ≥ ℓ
4k ≥ 3m. To see this

we can introduce new random variables Yj such that Yj = 1 if either Xj = 1 or X1 + . . . +Xj−1 ≥ n
4k . By

definition, we have
∑

j∈T Yj ≥ n
4k if and only if

∑
j∈T Xj ≥ n

4k . We also have Pr[Yj = 1 |Yi = yi, . . . Yj−1 =

yj−1] ≥ 1
8 logn for all prior outcomes yi, . . . , yj−1 ∈ {0, 1}. We can apply concentration bounds to upper bound

Pr[Y ≤ n
4k ] (e.g., see Generalized Hoeffding Inequality [6, Claim 7]) because Pr[Yj = 1 | (Yi, . . . , Yj−1) =

(yi, . . . , yj−1)] ≥ 1
8 logn for all prior outcomes yi, . . . , yj−1 ∈ {0, 1}. It follows that (whp) X − 2m ≥ m and

|ancestorsG−R−B′(T )| ≥ m
k

2
=

n

24
.

Theorem B.2. Let G be a graph generated by DRSample and 0 < ρ ≤ 1. Then there exists a constant C > 0
so that for all m ≤ Cnρ/ log n, it follows that

rbpeb∥(G,m) ≥ C ·min(
n

log n
cb,

n2

m log n
cr)

with high probability.

Proof. Applying Lemma B.1 to each of the disjoint n
ℓ = n

100m logn intervals in the second half of graph G

and observing that ℓ = O (nρ), it follows from Theorem 5.2 that

rbpeb∥(G,m) ≥ min(Ω(n/ log n)cb,Ω(n
2/(m log n))cr).

We remark that ifm = o(n/ log n) in Theorem B.2, e.g.,m = n/(log n log log n), then we have n2

m = ω(ncr)

and rbpeb∥(G,m) ≥ C ·min( n
logncb, ω(ncr)).

B.3 Argon2i Edge Distribution

Reminder of Lemma 5.3. Let G be a random Argon2iB (resp. Argon2iA) graph with n nodes then for
any 1 ≤ j < i− 1 ≤ n we have Pr[r(i) = j] ≥ 1

3n (resp. Pr[r(i) = j] ≥ 1
n).

Proof of Lemma 5.3: Let 1 ≤ j < i − 1 < n be given. For Argon2iA the edge distribution for r(i) is
uniform over the set {1, . . . , i − 2} so for any j ≤ i − 2 we have Pr[r(i) = j] = 1

i−2 ≥
1
n . In the Argon2iB

edge distribution to determine the value r(i) < i− 1 for the directed edge (r(i), i) we have

Pr[r(i) = j] = Pr
x∈[N ]

[
i

(
1− x2

N2

)
∈ (j − 1, j]

]
where N ≥ 6n and the randomness is taken over the selection of x ∈ [N ]. Equivalently, r(i) = j whenever

(i− j + 1)
N2

i
≥ x2 ≥ (i− j)

N2

i
.
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The above probability is minimized when j = 1 and i = n. Thus, it suffices to lower bound Pr[r(n) = 1] ≥ 1
3n .

Observe that

Pr[r(n) = 1] = Pr

[
(i− j + 1)

N2

i
≥ x2 ≥ (i− j)

N2

i

]
= Pr

[
N ≥ x ≥ N

√
(n− 1)/n

]
=

N − ⌈N
√
(n− 1)/n⌉
N

≥
N −N

√
(n− 1)/n− 1

N

≥

(
1−

√
n− 1

n
− 1

6n

)

≥ 1

3n
.

The last line follows because 1− 1
2n ≥

√
n−1
n i.e.,

(
1− 1

2n

)2

= 1− 1

n
+

1

4n2
≥ n− 1

n
.

2

C Background on the Gilbert et al.Black Pebbling Reduction

Gilbert et al. [23] showed that the minimum space black pebbling problem was PSPACE− Hard by reduction
from the Truly Quantified Boolean Formula (TQBF) problem. They provide a construction from any instance
of TQBF to a DAG GTQBF with pebbling number 3n+3 if and only if the instance is satisfiable, where the
pebbling number of a DAG G is minP=(P1,...,Pt)∈P∥ maxi≤t |Pi|, the number of pebbles necessary to pebble
G. For our purposes it will be sufficient to describe how their reduction map 3-SAT instance ϕ to a DAG
Gϕ (observe that a 3-SAT instance can be viewed as a TQBF instance in which all of the quantifiers are
existential).

An important gadget in their construction is the so-called pyramid DAG, whose key property is that any
legal pebbling of a k-pyramid requires at least k pebbles on the DAG at some point in time. A k-pyramid
consists of

∑k
i=1 i nodes, including k sources and a unique sink node. Formally, a pyramid graph ∆k has

nodes V = {vi,j : 1 ≤ j ≤ k, 1 ≤ i ≤ k − j + 1} with k sources vi,1 for i ≤ k and one sink node vk,k. The
edge set is defined as E = {(vi,j , vi,j+1) : k > j ≥ 1} ∪ {(vi,j , vi,j+1) : 1 ≤ j < k, i < k − j + 1}. We use
both ∆k and a triangle with the number k inside to denote a k-pyramid (see Figure 2 for an example of a
3-pyramid). The space complexity of ∆k is exactly k.

≡
k

Fig. 2: A 3-Pyramid.
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3i + 1
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bi
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x′
i

xi

x′
i
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Fig. 3: A variable gadget Gxi with xi set to “true” (left figure) and xi set to “false” (right figure). The node
qi−1 actually belongs to Gxi−1 . It is drawn here to illustrate how variable gadgets are connected.

Construction of Gϕ. Consider a 3-SAT formula ϕ with variables x1, . . . , xn and 3CNF clauses C1, . . . , Cc.
For each variable xi, there is a variable gadget Gxi and for each clause Cj , there is a clause gadget GCj .
Each clause gadget has a sink node pj that is connected to one of the source nodes in GCj+1

, and there is
a special source node p0 that is connected to one of the source nodes in GC1

. The variable gadget Gxi
is

shown in Figure 3. This gadget in turn is constructed from three pyramid graphs ∆3i+1,∆3i+2 and ∆3i+3.
The remaining nodes in Gxi are xi, x

′
i, x

′
i, xi, ai, bi and qi. While the node ci is a source node in Gxi

, it will
not be a source node in the final graph Gϕ since we will add the edges (qi−1, ci) for each i > 1 and (pm, c1)
for i = 1. By contrast, the source nodes in the pyramids ∆3i+1,∆3i+2 and ∆3i+3 will remain source nodes
in the final graph Gϕ. The graph Gϕ contains a unique sink node qn from the gadget Gxn

.
For each clause Cj , there exists a corresponding clause gadget that is a 3-pyramid with sink node pj , as

previously discussed. Suppose the three variables appearing in the clause are yj,1, yj,2, yj,3 ∈ {x1, . . . , xn, x1, . . . , xn}
and the three source nodes of the 3-pyramid are nodes vj,1, vj,2, vj,3. Then we create incoming edges
(pj−1, vj,1) and (yj,1, vj,1) to vj,1, incoming edges (yj,1, vj,2) and (yj,2, vj,2) to vj,2, and incoming edges
(yj,2, vj,3) and (yj,3, vj,3) to vj,3. Note that we can only pebble the clause gadget Cj if there exist pebbles
on nodes yj,1, yj,2, yj,3, corresponding to assignments for these variables. Finally for the final clause Cc, we
create an edge between pc and node q0 of the variable gadget corresponding to x1.

Any instance of TQBF in which each quantifier is an existential quantifier requires at most a quadratic
number of pebbling moves. Specifically, we look at instances of 3-SAT, such as in Figure 4. In such a graph
representing an instance of 3-SAT, the sink node to be pebbled is qn. By design of the construction, any true
statement requires exactly three pebbles for each pyramid representing a clause. On the other hand, a false
clause requires four pebbles, so that false statements require more pebbles. Thus, by providing extraneous
additions to the construction which force the number of pebbling moves to be a known constant, we can
extract the pebbling number, given the space-time complexity. For more details, see the full description in
[23].

C.1 Pebbling Strategy

Gilbert et al. [23] show that the DAG Gϕ has pebbling number 3n + 3 if and only if ϕ is satisfiable. We
outline the pebbling strategy below as this will be important to build intuition for our modified construct.
We start off by placing a pebble on the sink nodes of every pyramid graph. The graph has 3n pyramid
graphs ∆3n+3,∆3n+2, . . . ,∆4 where ∆3i+1,∆3i+2 and ∆3i+3 are associated with the variable gadget Gxi .
We pebble the pyramid graphs in descending order of size i.e., we first place a pebble on the sink of ∆3n+3

using space 3n + 3 and
∑3n+3

i=1 i sequential pebbling moves. We then discard all pebbles on ∆3n+3 except
for the sink node and move on to pebble ∆3n+2 etc... After the sink of each pyramid has been pebbled we
move each variable gadget to a true/false configuration as shown in Figure 3. We first slide a pebble from
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the sink of ∆3i+2 to node x′
i. Next if the variable xi is assigned to be true in the satisfying assignment we

slide a pebble from node x′
i to xi. On the other hand if xi is assigned to be false we instead slide a pebble

from node x′
i to node xi. Assuming the boolean formula is satisfiable we can now walk all the way across

the clause gadgets to the node q0 = pc without ever placing more than 3n+ 3 pebbles on the graph.

Advancing a Pebble from qi−1 to qi. We will maintain the invariant that when we reach node qi−1

with a pebble we will have 3n− 3i+3+ 1 pebbles on the graph. The steps to move a pebble from qi−1 (the
source in Gxi

) to qi (the sink) depend on whether or not Gxi
is in the true or false configuration. If we are in

the true configuration then we can place a pebble on xi (keeping the pebble on node x′
i for the time being!)

and then we slide the pebble on node qi−1 to node ci followed by nodes bi, ai and qi+1. If instead we are
in the false configuration then we can start by sliding the pebble on node qi−1 to node ci and then to node
bi. At this point we will need to pause to re-pebble node x′

i before we can place our pebble on node ai. To
place a pebble on node x′

i we will need to re-pebble the pyramid ∆3i+1. To ensure we have enough space we
can first discard all pebbles on Gxi

except for nodes bi and x′
i leaving us with a total of 3(n− i) + 2 pebbles

on Gϕ (including the 3 pebbles on Gxj for each j ≥ i). Since 3n + 3 − 3(n − i) − 2 = 3i + 1 we have just
enough available space to accomplish this task. Once we place a pebble on the sink of ∆3i+1 we can slide
this pebble to node x′

i and then slide this pebble to ai. Now we can slide the pebble on x′
i to xi and finally

shift our pebble from ai to qi. Once we place a pebble on node qi we can discard pebbles from every other
node in Gxi

so that the total number of pebbles on the graph is 1 + 3(n− i− 1) (3 pebbles on Gxj
for each

n ≥ j > i) and our invariant is maintained.

C.2 Red-Blue Pebbling Strategy

Setting our cache size m = 3n + 3 we would like to claim that Gϕ also has higher red-blue pebbling cost
whenever ϕ is not satisfiable. Intuitively, a black pebbling which only uses 3n+ 3 pebbles corresponds to a
red-blue pebbling strategy with no expensive blue moves i.e., 3n+3 red pebbles are sufficient. Unfortunately,
the claim is not true about the graph Gϕ. In particular, the optimal red-blue pebbling may not place each
variable gadget Gxi

in a true or false configuration. In particular, instead of placing a variable gadget xi in
the false configuration xi it would be better to maintain red-pebbles on nodes xi and xi. Instead of discarding
a pebble on node x′

i we simply place a blue pebble on this node. This allows us to avoid re-pebbling the
pyramid ∆3i+1 later on when moving our pebble from node qi−1 to qi. This strategy incurs two extra blue
moves (cost: 2cb) but saves at least

∑3i+1
i=1 i red moves (cost: Θ(i2cr)). We address the issue by adding an

additional path gadget to form a new graph Hϕ. Intuitively, the path gadget forces us to pebble every node
in ∆3i+1 twice. We can then prove that Hϕ has higher red-blue pebbling cost (with m = 3n+ 4) whenever
ϕ is not satisfiable. Intuitively, when ϕ is not satisfiable the pebbling will need to make at least 1 blue move
without reducing the number of red-moves (each node in ∆3i+1 still needs to be pebbled twice). If ϕ is
satisfiable a red-blue pebbling will essentially follow the same strategy for Gϕ to avoid any blue moves with
a few additional steps to pebble the path gadget.

Lemma C.1. [23] The quantified Boolean formula

Q1x1Q2x2 · · ·QnxnFn

is true if and only if the corresponding DAG GTQBF has pebbling number 3n+ 3.

D NP-Hardness of the Red-Blue Pebbling Cost

In this section, we consider the computational complexity of computing rbpeb∥ (G,m), defining a decision
version below and showing it is NP− Hard.

The decision problem rbpeb∥ is defined as follows:
Input: a DAG G on n nodes, parameter cb, cr, and integers m, d > 0.
Output: Yes, if rbpeb∥(G,m) ≤ d; otherwise No.
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Fig. 4: Graph GTQBF for ∃x1, x2, x3, x4 s.t. (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x1).

We now show that it is NP− Hard to compute rbpeb∥(G,m). Quanquan Liu [26] observed that when
cr = 0 the problem is PSPACE− Hard via a straightforward reduction from minimum space black pebbling.
As we observed previously, when cb/cr ∈ O (poly(n)) the decision problem is in NP and has a fundamentally
different structure. We show that even when the cost of red moves is significant, the problem remains
NP− Hard. We first reduce from a version of 3− SAT in which each variable appears in exactly 4 clauses and
the negation of each variable also appears in exactly 4 clauses. Moreover, no consecutive n

105 clauses share
the same variable (or negation). We show this version of 3− SAT is NP− Hard in Theorem D.2, but first we
show that even if each variable and negation appear in exactly 4 clauses, determining whether a 3CNF is
satisfiable is NP− Hard.

Lemma D.1. Let ϕ be a 3CNF formula with n variables and m = 8
3n clauses such that each variable appears

in exactly 4 clauses and the negation of each variable also appears in exactly 4 clauses. Then determining
whether ϕ is satisfiable is NP− Hard.

Proof. [32] shows that if ϕ′ is a 3CNF formula with n variables such that each variable or its negation
appears in at most 4 clauses each and no clause contains the same literal multiple times, then determining
whether ϕ′ is satisfiable is NP− Hard. We show that ϕ′ can be transformed into a 3CNF formula ϕ so that
each variable and its negation appear in exactly 4 clauses each.

We first transform ϕ′ so that each variable and its negation appear exactly 4 times. For each variable
xi that does not appear 4 times, we can force xi to appear 4 times by appending ϕ′ with the clause
(xi ∨ xn+j ∨ ¬xn+j) for a new variable xn+j that has not previously appeared in ϕ′. We can do this
until all n original variables and their negations appear exactly 4 times each. Now we may have some
variables xj , ¬xj for j > n that only appear once. We thus append further ϕ′ by additional clauses with
variables xk, xk+1, xk+2 that have not appeared in ϕ′, but are set to true. Namely, we append ϕ′ with
(xj ∨ xk ∨ ¬xk), (xj ∨ xk ∨ ¬xk), (xj ∨ xk ∨ ¬xk), (¬xj ∨ xk ∨ ¬xk), (¬xj ∨ xk+1 ∨ ¬xk+1), (¬xj ∨ xk+1 ∨
¬xk+1), (xk+1 ∨ xk+2 ∨ ¬xk+2), (xk+1 ∨ xk+2 ∨ ¬xk+2), (¬xk+1 ∨ xk+2 ∨ ¬xk+2), (¬xk+1 ∨ xk+2 ∨ ¬xk+2).
Since we add at most 21n variables xj with j > n, then the total number of variables in the resulting ϕ′ is
at most 22n and the total number of clauses is at most 64n. Note that these extra clauses are inherently
satisfiable, but do not affect the original clauses, so that resulting 3CNF formula is satisfiable if and only if
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Fig. 5: Path P that is used in Hϕ.

the original 3CNF formula is satisfiable. Since it is NP− Hard to determine whether ϕ′ is satisfiable, then it
is also NP− Hard to determine whether ϕ is satisfiable.

We now show that such a 3CNF formula can be written so that no consecutive n
105 clauses share the

same variable (or negation).

Theorem D.2. Let ϕ be a 3CNF formula with n variables and c = 8
3n clauses such that each variable

appears in exactly 4 clauses and the negation of each variable also appears in exactly 4 clauses. Furthermore,
suppose that no consecutive n

105 clauses share the same variable (or negation). Then determining whether ϕ
is satisfiable is NP− Hard.

Proof. Let ϕ′ be a 3CNF formula with n variables such that each variable or its negation appears in at most
4 clauses each and no clause contains the same literal multiple times. We now reorder ϕ′ to obtain a 3CNF
formula ϕ so that no consecutive n

105 clauses share the same variable. We use a greedy strategy to construct
the first part of ϕ. We arbitrarily pick a clause in ϕ′ to be the first clause of ϕ and then repeatedly append
clauses in ϕ′ that that do not share variables with any of the last n

105 clauses, until this is no longer possible.
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Then there are at most n
35 variables in the last n

105 clauses, so there are at most r ≤ (8−1)n
35 = n

5 remaining
clauses in ϕ′ that use one of these variables.

For each remaining clause ci, we search for an interval of n
50 clauses that do not intersect with ci and

insert ci in the middle of this interval. Such an interval must exist since there are at least 50 such disjoint
intervals and each of the 3 variables appearing in ci can intersect with at most 8 of these intervals. Thus ϕ
has the desired form that each variable and its negation appear in exactly 4 clauses each and no consecutive
n

105 clauses share the same variable (or negation). Moreover, ϕ is satisfiable if and only if ϕ′ is satisfiable
by construction. Since it is NP− Hard to determine whether ϕ′ is satisfiable, then it is also NP− Hard to
determine whether ϕ is satisfiable.

We now use a 3CNF formula satisfying the form of Theorem D.2 to show that the problem rbpeb∥ is
NP− Hard.

Theorem D.3. For cb > 10000cr, the problem rbpeb∥ is NP− Hard.

Gilbert et al. showed that the minimum space black pebbling problem was PSPACE− Hard by reduction
from the Truly Quantified Boolean Formula (TQBF) problem. For more details about the Gilbert et al. [23]
reduction, we refer an interested reader to Appendix C. We note that an instance ϕ of 3− SAT with n
variables and c clauses is still a TQBF instance (albeit with no ∀ quantifiers). Thus, given an instance
ϕ of 3− SAT satisfying the conditions in Theorem D.2 with n variables and c clauses, we can create the
corresponding DAG Gϕ, as described in the reduction of Gilbert et al. [23]. The graph Gϕ has the property
that it can be pebbled with at most 3n+ 3 black pebbles if and only if ϕ is satisfiable.

In particular, the optimal pebbling for Gϕ first uses 3n + 3 pebbles for ∆3n+3 and then leaves three
pebbles on the corresponding existential quantifier for xn, including a pebble at the node corresponding to
the value of xn, so that the sink node qn can eventually be pebbled. The optimal pebbling then uses 3n
additional pebbles for ∆3n and determines the value of xn−1, so that the total number of pebbles at any
point is still at most 3n + 3. This process continues so that pebbling Gϕ requires at least 3n + 3 pebbles
until there is a value for each variable and the sink node can be pebbled. On the other hand, if ϕ is not
satisfiable, then some variable must be “set” to both true and false, requiring an additional pebble. Hence
the pebbling requires at least 3n+ 4 black pebbles.

In fact, if variable xi is “set” to both true and false, then the nodes in ∆3i+3 and the node x′
i need to be

pebbled twice in a legal black pebbling. For red-blue pebblings, we could potentially use an extra blue move
to store the sink of ∆3i+3 rather than completely repebbling ∆3i+3. Thus we create an extra gadget that
requires ∆3i+3 and x′

i to be completely repebbled, so that the strategy of storing x′
i and the sink of ∆3i+3

is useless.
We detail a gadget to append toGϕ to create a graphHϕ so that rbpeb∥(Hϕ,m) = d := 6n3+27n2+61n+20+12c

2

if ϕ is a satisfiable assignment, but rbpeb∥(Hϕ,m) > d if ϕ is not satisfiable. The key goal of the additional
gadget is to ensure that we cannot significantly reduce the number of red moves (computation costs) by
including a few blue moves. Moreover, by setting m ≥ 3n+4 to be large, then there is no restriction on the
number of red moves.

For DAG Gϕ corresponding to n variables, there exist unique k-pyramids for k = 4, . . . , 3n + 2, 3n + 3.
Let ∆i be the i-pyramid and let αi be the vertex above the apex of pyramid ∆i. Let P1 be a directed path
with 3n vertices so that there exists an edge from the apex of ∆3n+4−i to vertex i of P1, for each 1 ≤ i ≤ 3n.
Thus P1 requires all sinks of the pyramids to be pebbled. See Figure 5 for an example of P1.

We then connect the final vertex of P1 to a directed path P2 with(
(3n+ 2)(3n+ 1)

2
+ 1

)
+

(
(3n− 1)(3n− 2)

2
+ 1

)
+ . . .+ (28 + 1) + (10 + 1) =

3n3 + 9n2 + 10n

2

vertices. Moreover, the first (3n+2)(3n+1)
2 vertices of P2 each have an edge from separate vertices of ∆3n+1,

starting with the vertices in the bottom layer and moving upwards. More specifically, let u1, . . . , u3n+1 be
the 3n+ 1 vertices at the bottom layer of ∆3n+1 and v1, . . . , v3n+1 be the first 3n+ 1 vertices of P2. Then
there exist edges (ui, vi) for each i ∈ [3n+1]. Similarly, let y1, . . . , y3n be the 3n vertices at the next layer of
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∆3n+1 and z1, . . . , z3n be the next 3n vertices of P2, following v3n+1. Then there exist edges (yi, zi) for each
i ∈ [3n], and so forth until all vertices of ∆3n+1 have an outgoing edge to a separate vertex of P2. We also
create an edge to the following vertex from the vertex α3n+1. This ensures that ∆3n+1 must be completely
repebbled, so that any strategy of saving a pebble on a particular node of ∆3n+1, such as its sink α3n+1, is
useless.

The next (3n−1)(3n−2)
2 vertices of P2 each have an edge from separate vertices of ∆3n−2, starting with the

vertices in the bottom layer and moving upwards. We also create an edge to the following vertex from the
vertex α3n−2. We continue this process until all vertices from all pyramids of the form ∆3i+1 are connected
to P2, as well as the vertices α3i+1. Finally, we connect P2 to the same sink node as Gϕ. Thus P2 ensures
that all pyramids of the form ∆3i+1 must be completely repebbled. See Figure 5 for an example of P2.

Then by setting P to be the path P1 concatenated with P2, we have the following result:

Lemma D.4. P contains exactly 3n+ 3 +
∑n

i=1

(
(3i+2)(3i+1)

2 + 1
)
= 3n3+9n2+16n+6

2 vertices.

Let Hϕ = Gϕ ∪ P and recall that P and Gϕ have the same sink node. We claim that Hϕ with capacity
3n + 4 will have a certain pebbling cost if and only if ϕ is satisfiable. Thus, if ϕ is satisfiable, the optimal
pebbling will correspond to the minimum space black pebbling and will require 0 blue moves. We first claim
that if ϕ is unsatisfiable, then Hϕ has pebbling number at least 3n+ 5.

Lemma D.5. Hϕ has pebbling number 3n+ 4 if and only if ϕ is satisfiable.

Proof. We first note that if ϕ is satisfiable, then Hϕ has pebbling number 3n + 3. Recall that there exists
a valid pebbling Q of Gϕ with pebbling number 3n+ 3 that begins with all 3n+ 3 pebbles on the pyramid
graph ∆3n+3 at some point. When the apex of ∆3n+3 is pebbled by Q, we can begin pebbling P in the next
step. We keep a single pebble on path P and move the pebble forward along P1 whenever the apex of the
next pyramid is pebbled. The pebbling strategy Q must then pebble each of the pyramids ∆3n+2, . . . ,∆4 in
that order, which allows us to completely pebble the path P1 using at most 3n+3 pebbles in total. We then
proceed with the pebbling strategy Q, observing that the sink of Gϕ has two parents: a node representing
the variable xn set to true and some other node, say β. At some point Q will pebble β, at which point we
maintain pebbles on β and P . We then hold the pebble on β while we pebble P2, which can be done using
3n + 3 additional pebbles. When the final node of P2 is pebbled, we can use β to pebble the sink node of
Gϕ, using 3n+ 4 pebbles in total.

Suppose by way of contradiction, there exists an unsatisfiable ϕ such that each pebbling Q = {Q1, Q2, . . .}
of Hϕ has pebbling number at most 3n+ 4. By Lemma C.1, Gϕ has pebbling number at least 3n+ 4 if ϕ is
unsatisfiable. Thus there exists a time in which there are at least 3n+4 pebbles on Gϕ, i.e., |Qt∩Gϕ| ≥ 3n+4.
Let t be the final time in the pebbling Q, in which there are at least 3n + 4 pebbles on Gϕ. Moreover, we
can assume without loss of generality that the sink node of Gϕ is not pebbled at time t, since the pebbling
will not need any other pebbles in future steps, as the pebbling can terminate after pebbling the sink node.
Since Gϕ and P only intersect at the sink node and Qt already has at least 3n + 4 nodes at Gϕ and no
pebble on the sink node, then either Qt contains at least 3n + 5 pebbles or Pt has no pebbles on P , i.e.,
either |Qt| ≥ 3n+5 or Gϕ ∩P = ∅. We have by assumption that |Qt| ≤ 3n+4, so it follows that there must
be no pebbles on P .

To pebble the sink node of Hϕ, we must completely pebble P after time t. Thus we must pebble a
pyramid graph ∆3n+3 while holding a pebble on P , while requiring 3n+4 pebbles with no other pebbles on
Gϕ. However, because t is the final time in which Q has 3n+4 pebbles on Gϕ, then Q can no longer pebble
the sink node of Gϕ, which is a contradiction. Hence, Hϕ has pebbling number 3n + 4 if and only if ϕ is
satisfiable.

Lemma D.6. If ϕ is satisfiable, then there exists a pebbling strategy of Hϕ with capacity 3n+ 4 and cost at
most (

6n3 + 27n2 + 101n+ 20

2

)
cr.
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Proof. The total number of nodes in Gϕ corresponding to variable assignments from the GLT construction
is

6n+

3n+3∑
i=4

i =
9n2 + 33n+ 12

2
,

since each existential quantifier gadget has six internal nodes in addition to the pyramids of size 4, . . . , 3n+3.
This can be visualized in Figure 4 by the nodes on the left hand side, excluding the nodes qi. Additionally,
there are n nodes qi, six nodes for each of the c clauses pi for 1 ≤ i ≤ c, and an additional node for
p0. Moreover, it should be noted that since both xi and xi appear in 4 clauses, then regardless of the
configuration in Figure 3, 4n additional pebbles are required for Gϕ, either 4n pebbles on xi or 4n pebbles
on xi. Thus the total number of nodes that must be pebbled in Gϕ is

4n+ 6c+ 1 + 7n+

3n+3∑
i=4

i =
9n2 + 35n+ 14

2
+ 6c+ 4n =

9n2 + 75n+ 14

2
,

where the last equality results from the fact that c = 8
3n.

By Lemma D.4, the number of nodes in the additional path P is 3n3+9n2+16n+6
2 . Moreover, we can

completely re-pebble each of the pyramids ∆3i+1 a second time, as well as each α3i+1, to pebble P , requiring
an additional

n∑
i=1

(
(3i+ 2)(3i+ 1)

2
+ 1

)
=

3n3 + 9n2 + 10n

2

steps. Namely, we walk a pebble down P so that the pebble is placed on each node of P for a single step.
Accordingly, we begin pebbling each pyramid so that its apex contains a pebble in the round before the
descendent of the apex in P contains a pebble.

Thus, the total number of steps required to pebble Hϕ is

9n2 + 75n+ 14

2
+

3n3 + 9n2 + 16n+ 6

2
+

3n3 + 9n2 + 10n

2
=

6n3 + 27n2 + 101n+ 20

2
.

Finally, recall from Lemma C.1 that the GLT construction has pebbling number 3n+ 3 for a satisfiable
instance of ϕ. Since the nodes in P are ordered corresponding to the natural pebbling order in Gϕ, a single
additional pebble suffices for P . Thus, if the capacity of Gϕ is 3n+4, then all pebbling moves can be achieved

with red moves, so there exists a pebbling strategy with total cost is
(

6n3+27n2+101n+20
2

)
cr.

Lemma D.7. If ϕ is unsatisfiable, then the pebbling cost of Hϕ with capacity 3n+ 4 is greater than(
6n3 + 27n2 + 101n+ 20

2

)
cr.

Proof. If ϕ is unsatisfiable, then Hϕ has pebbling number at least 3n + 5 by Lemma D.5. Thus if Hϕ has
capacity 3n + 4, then Hϕ any red-blue pebbling strategy must have a blue pebble at some point. Suppose
that our pebbling strategy makes k blue moves e.g., by placing blue pebbles on the top of 3i+ 2 pyramids.
The only way such a strategy could be beneficial is if there is a large reduction in the number of red moves.
We observe that in the pebbling strategy from Lemma D.6 almost all nodes are pebbled only once with the
exception of (1) pyramids ∆3i+1, which are each pebbled twice, and (2) the vertices corresponding xi and/or
xi.

This pebbling strategy incurs 4n extra red moves on vertices
⋃

i≤n{xi, xi}. We also remark that any
pebbling strategy will need to place a red pebble on every node at least once. Since blue moves are more
expensive the only reason to place a blue pebble on a node is if this allows us to reduce the number of
red moves. Suppose that our pebbling strategy places k′ blue pebbles on pyramids ∆3i+1 and k blue
pebbles on other nodes. We claim that the total cost of the red pebbling moves can be reduced by at most
105(8/3)(k + 2k′ + 3)(4cr) + k′cr.
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Suppose we place k′ blue pebbles on pyramids ∆3i+1. We can either keep blue pebbles on internal nodes
of the pyramids or on top of the pyramid ∆3i+1. Each blue pebble kept on some node of a pyramid ∆3i+1

can save an additional red move in the pebbling strategy, but it does not free up any room for additional
red pebbles in cache because the honest pebbling strategy does not store red pebbles on this pyramid. Thus
the total cost of the red moves saved by the k′ blue pebbles is at most k′cb.

Suppose we place k blue pebbles on nodes that are not in pyramids ∆3i+1. Then each blue pebble will not
save any red moves on the pyramids ∆3i+1, but can save some of the 4n red moves on the nodes {xi, xi}. For
each i ∈ [n], we define the indicator variable Yi = 1 if and only if we reduce the red cost on variable gadget
i to anything below 4cr. Observe that if

∑
Yi > 105(8/3)(T ), then there would be some point in time t

where more than T variable gadgets have pebbles on both nodes xi and xi. Suppose by way of contradiction
that T > k + 2k′ + 3. Then we would have at least 4 pebbles on T − k′ variable gadgets and at most k′

variable gadgets with only two pebbles, for a total of 3n+ (T − k′)− k′ + 2 ≥ 3n+ k+ 5 pebbles (extra two
pebbles on path P and at least one on clause gadget). However, this contradicts the fact that we have at
most 3n + 4 + k total pebbles (red and blue) at all times in the pebbling. Thus, we have T ≤ k + 2k′ + 3,
so that

∑
Yi ≤ 105(8/3)(k + 2k′ + 3) and the total cost of the red moves saved by the k blue pebbles is at

most 105(8/3)(k + 2k′ + 3)(4cr).
In summary, for k + k′ ≥ 1, the total cost of blue moves is (k + k′)cb and the total number of saved red

moves is at most 105(8/3)(k+2k′+3)(4cr)+k′cr. Thus for cb > 10000cr, we have (k+k′)cb > 105(8/3)(k+

2k′ + 3)(4cr) + k′cr. Therefore, any pebbling strategy has a cost greater than
(

6n3+27n2+101n+20
2

)
cr.

Together, Lemma D.6 and Lemma D.7 imply Theorem D.3.
Reminder of Theorem D.3. For cb > 10000cr, the problem rbpeb∥ is NP− Hard.

Proof of Theorem D.3: First, we remark that given a DAG Hϕ with some capacity m, as well as a
complete pebbling strategy as the certificate, the certificate can be verified in polynomial time by checking
the validity of each step in the pebbling strategy. Thus, the computation of rbpeb∥(Hϕ) is in NP.

We now reduce 3− SAT to the computation of rbpeb∥(Hϕ). Now, given an instance ϕ of 3− SAT with
n variables, we construct the above DAG Hϕ. This procedure clearly takes polynomial time. Moreover, by
Lemma D.6, if ϕ is satisfiable, then the optimal pebbling cost of Hϕ with capacity 3n+ 4 is exactly(

6n3 + 27n2 + 101n+ 20

2

)
cr.

On the other hand, by Lemma D.7, if ϕ is unsatisfiable, then the pebbling cost of Hϕ with capacity 3n+ 4
is greater than (

6n3 + 27n2 + 101n+ 20

2

)
cr.

Thus, the computation of rbpeb∥(Hϕ,m) distinguishes whether ϕ is satisfiable or not, for m ≥ 3n + 4 and

d = 6n3+27n2+101n+20
2 . Since 3− SAT is NP− Hard, it follows that the rbpeb∥(Hϕ,m) is NP− Hard. 2
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