
Combining Asynchronous and Synchronous
Byzantine Agreement:

The Best of Both Worlds

Julian Loss1 and Tal Moran2

1 Ruhr University Bochum, Germany
julian.loss@rub.de
2 IDC Herzliya, Israel

talm@idc.ac.il

Abstract. In the problem of byzantine agreement (BA), a set of n par-
ties wishes to agree on a value v by jointly running a distributed protocol.
The protocol is deemed secure if it achieves this goal in spite of a ma-
licious adversary that corrupts a certain fraction of the parties and can
make them behave in arbitrarily malicious ways. Since its first formal-
ization by Lamport et al. (TOPLAS ‘82), the problem of BA has been
extensively studied in the literature under many different assumptions.
One common way to classify protocols for BA is by their synchrony
and network assumptions. For example, some protocols offer resilience
against up to f < n

2
many corrupted parties by assuming a synchro-

nized, but possibly slow network, in which parties share a global clock
and messages are guaranteed to arrive after a given time ∆. By compar-
ison, other protocols achieve much higher efficiency and work without
these assumptions, but can tolerate only f < n

3
many corrupted parties.

A natural question is whether it is possible to combine protocols from
these two regimes to achieve the “best of both worlds”: protocols that
are both efficient and robust. In this work, we answer this question in
the affirmative. Concretely, we make the following contributions:

– We give the first generic compilers that combine BA protocols under
different network and synchrony assumptions and preserve both the
efficiency and robustness of their building blocks. Our constructions
are simple and rely solely on a secure signature scheme.

– We prove that our constructions achieve optimal corruption bounds.
– Finally, we give the first efficient protocol for (binary) asynchronous

byzantine agreement (ABA) which tolerates adaptive corruptions
and matches the communication complexity of the best protocols in
the static case.

1 Introduction

One of the most fundamental problems in distributed computing and cryptog-
raphy is the problem of byzantine agreement (BA). In this problem, a set of n
parties, each holding an input vi, aims to agree on a value v by jointly running

a distributed protocol. Their task is complicated by malicious parties trying to
prevent agreement by deviating from the protocol description in arbitrary ways.
Byzantine agreement has countless practical and theoretical applications. Most
commonly, it is used as a building block to design more complex systems which
should satisfy strong consistency guarantees, e.g. databases, replicated services,
or secure voting mechanisms. The related (slightly easier) problem of broadcast
(BC) also has many applications to secure multi party computation (MPC).

Formally, a protocol for BA must satisfy the following three properties. Ter-
mination: Every honest party Pi eventually terminates the protocol with some
output v′i. Consistency: All honest parties output the same value v′. Validity: If
all honest parties input vi = v then every honest party outputs v.

The problem of BA was first introduced in the seminal work of Lamport et
al. [19] and has since been extensively studied for almost four decades under
various assumptions. Very roughly speaking, protocols from the literature can
be separated into two classes.

– Synchronous Protocols: These protocols require synchronization in the form
of a global clock shared among the parties. Protocols in the synchronous
model are round-based and crucially rely on a network that guarantees the
delivery of messages within some a priori known time bound ∆. Protocols
in this regime can tolerate up to f < n

2 maliciously corrupted parties.
– Asynchronous Protocols: This type of protocols does not require the above

assumptions. In particular, protocols in this setting achieve byzantine agree-
ment in spite of arbitrary (but finite) message delays. The main challenge in
this setting is to distinguish between a party whose message is merely de-
layed by the network and one that has “failed” (and did not send a message
at all). Asynchronous protocols for byzantine agreement (ABA) can tolerate
at most f < n

3 maliciously corrupted parties.

In order to guarantee message delivery even for remote parties that suffer from
a poor connection to the network, the parameter ∆ is chosen as an upper bound
on the real network delay δ. Typically, ∆ is chosen rather pessimistically, i.e,
∆ � δ. Therefore, synchronous protocols are usually employed whenever ro-
bust protocols with a high tolerance for corruptions are needed and efficiency
takes only second priority. On the other hand, for many applications, efficiency
is more important than robustness. In such a setting, asynchronous protocols
are preferable to their synchronous counterparts, because they do not require a
priori bounds and thus parties can take full advantage of a fast network. In line
with [24], we will call protocols with this property responsive protocols. A natural
question that arises from the above discussion is whether it is possible to com-
bine protocols under different synchrony assumptions to obtain a hybrid protocol
with best-of-both-worlds properties in terms of robustness and efficiency.

1.1 Our Results

In this work, we present novel constructions that achieve precisely such guaran-
tees by compiling existing protocols under different synchrony assumptions into

a new protocol that boasts the beneficial properties of both synchronous and
asynchronous protocols.

Best-of-both-worlds compilers. Concretely, our generic compiler combines
protocols ΠABA and ΠSBA for asynchronous and synchronous byzantine agree-
ment, respectively, and leads to a hybrid protocol ΠHBA for byzantine agreement
with the following properties.

– Suppose that fAR ≤ 1
4 . If ΠABA achieves byzantine agreement, given that less

than an fAR-fraction of the parties are corrupted, ΠHBA is responsive in the
following sense: If the network is fast and less than an fAR-fraction of the
parties are corrupted, then every honest party can produce output in ΠHBA

within a time that depends only on the network delay δ. We refer to this
property as output responsiveness.

– Suppose that fAV ≤ 1
2 . If ΠABA satisfies validity, given that less than an

fAV-fraction of the parties are corrupted, ΠHBA also satisfies validity under
the same condition.

– If ΠSBA achieves byzantine agreement in time tSBA, given that less than half
of the parties are corrupted, then ΠHBA also achieves 1

2 -consistency.
– ΠHBA runs in time at most tout+∆+tSBA, where tout is a time-out parameter

that can be chosen arbitrarily in ΠHBA. In particular, if tSBA = O(1), then
tout may be chosen such that ΠHBA runs in O(1) synchronous rounds.

We present ΠHBA in Section 4.1. Also, the main properties achieved by ΠHBA are
stated in Theorem 1. In Section 4.2, we also give an alternative compiler which
leads to a responsive hybrid protocol ΠETHBA in which parties can terminate
immediately after outputting and within a time that depends only on the network
delay δ. We refer to this property simply as responsiveness. In addition, ΠETHBA

satisfies the same security guarantees as ΠHBA, but incurs a worst-case overhead
in running time of O(n) synchronous rounds if either the network is slow or
too many parties are corrupted. The properties of ΠETHBA are summed up in
Theorem 2.

Security against adaptive adversaries. Protocols obtained via our com-
pilers preserve security guarantees against adaptive adversaries offered by the
components ΠABA and ΠSBA. In particular, the responsiveness guarantees of-
fered by our hybrid protocols do not degrade under adaptive corruptions. This
is an important improvement over previous works such as [25] that offer secu-
rity and responsiveness only in the weaker model of mildly adaptive corruptions,
which take a short while to become active.

More generally, our protocol improves upon optimistic protocols, which im-
mediately lose all of their responsiveness properties under adaptive corruptions.
We provide a more detailed comparison of such protocols with ours in section 1.3.

Optimality of our construction. In Section 4.3, we prove that for the
parameters fAR, fAV such that fAV ≤ 1

2 (1 − fAR), our compilers are optimal.
Namely, no protocol ΠHBA can achieve both output-responsiveness when less than
an fAR-fraction of parties is corrupted and validity when at least an 1

2 (1− fAR)-
fraction of parties is corrupted.

Since existing ΠABA protocols do not offer validity above n
3 corrupted parties,

they do not give the optimal parameters when plugged into our transformation.
However, our transformation does not require consistency of ΠABA above an
fAR-fraction of corrupted parties. We make use of this by constructing a second
compiler that converts any ΠABA protocol achieving termination, validity, and
consistency for less than an fAR-fraction of corrupted parties into a new ΠABA

protocol that attains the desired properties.
Concretely, this means that the new protocol achieves termination given that

less than an fAR-fraction of parties is corrupted and validity, given that less than
a 1

2 (1−fAR)-fraction is corrupted, but may violate consistency, given that at least
an fAR-fraction of parties is corrupted. Combined with our compilers from above,
we therefore show how to obtain optimal parameters for our compilers from any
given ΠABA protocol that achieves byzantine agreement, given that less than a
1
4 -fraction of the parties is corrupted.

ABA with probabilistic termination. In both of our compilers, the ter-
mination property of ΠABA may be probabilistic, i.e., parties may (all) terminate
only with some probability p. In this case, the responsiveness properties for
ΠHBA are achieved also with probability p, whereas validity, consistency, and
termination of ΠHBA are preserved.

It is not known how to obtain an ΠABA protocol which terminates for all
parties with overwhelming probability, given an ΠABA protocol which terminates
only with some constant probability p. Because of this, such protocols have not
received much (if any) attention in the literature. Since termination is one of
the hardest properties to achieve in an ABA protocol, it may be much easier
to design highly efficient protocols for ΠABA which terminate only with some
non-negligible (or constant) probability.

Combined with our compilers, this may lead to very efficient tradeoffs be-
tween responsiveness properties and communication efficiency. To the best of our
knowledge, this presents the first clear motivation for designing ABA protocols
which are not guaranteed to terminate with overwhelming probability.

Communication-efficient ABA with adaptive security. In Section 5, we
present a novel common coin protocol that leads to a new, highly efficient pro-
tocol for binary ABA (BABA) which achieves security for up to f < n

3 adaptive
corruptions. This protocol has an overall communication complexity of O(n2),
in line with the state-of-the-art for the best adaptively-secure synchronous pro-
tocols. Plugging this into our best-of-both-worlds compiler, the resulting hybrid
protocol can also achieve the best of both worlds in terms of communication
complexity.

Of independent interest, our result resolves the long-standing open question
of obtaining an efficient BABA protocol that tolerates adaptive corruptions and
presents a significant improvement over the best known solution in this setting
(due to [26]), which requires O(n5) total communication complexity.

BABA serves as a core building block to more complex protocols such as
protocols for multi-valued BA [12], asynchronous common subset [5,7,9,22] and
state-machine replication (SMR)/atomic broadcast [11,12,22]. Many of the these

protocols use the statically secure BABA protocol presented in the work of
Cachin et al. [8] as a subcomponent due to its low communication complexity.

This holds true in particular for the highly efficient SMR protocol presented
in [22]. Our protocol, combined with the BABA protocol of Mostéfaoui et al. [23],
slightly improves upon the protocol from [8] in terms of efficiency while also being
secure against adaptive corruptions.

Therefore, the new protocol for BABA immediately implies adaptive security
for many of the aforementioned constructions essentially ‘for free’. Our solution
is made possible by a recent threshold signature scheme by Libert et al. [20] that
achieves security against adaptive corruptions.

1.2 Overview of Our Compiler

At a high level, our compiler uses the synchronous protocol as a slow, but robust
fallback path in case the asynchronous protocol fails to reach agreement within
a reasonable amount of time.

When combining protocols for BA for different synchrony assumptions, the
main technical difficulty comes from the fact that some ‘early’ parties may ob-
tain an output in the asynchronous path of the protocol, while for other ‘late’
parties, either the network was running very slow or the adversary has corrupted
sufficiently many parties to control the outcome of the protocol at will. In this
case, the consistency property of the hybrid protocol demands that the output
of the ‘late’ parties be equal to the output of the ‘early’ parties. Thus, ΠHBA

must ensure that the late parties do not re-agree on a value that is inconsistent
with the early parties’ output as otherwise, it would not make any improvements
over a synchronous protocol.

Here, we rely on ideas from the recent work of Pass and Shi [25]. In essence,
their protocol lets an honest party output a value v, if it sees that at least 3n

4
parties have signed it. This makes it impossible for an adversary controlling less
than n

2 parties to split the honest parties’ view, as it cannot generate sufficiently
many signatures on distinct values v′, v.

On the other hand, an adversary that controls n
4 or more parties may succeed

in violating the validity property by making parties accept a message v′ 6= v in
the case where every honest party has input v to ΠHBA. To prevent this from
happening, we rely on the validity property of ΠABA: namely, we are guaranteed
that as long as less than n·fAV parties are corrupted, validity is achieved in ΠABA.
Therefore, if every honest party inputs v to ΠABA, then every honest party that
terminates its exeuction of ΠABA must output v.

We can use this property as follows. Every party in ΠHBA first runs ΠABA

with its input to ΠHBA. Then, it signs its output v from ΠABA and broadcasts
it to everybody. It outputs v, as soon as it obtains 3n

4 signatures on v. This
ensures our ‘early output’ property (output-responsiveness) in case sufficiently
many parties are honest.

Since no honest party ever broadcasts a value other than v, also no adversary
controlling less than n

2 parties can produce 3n
4 valid signatures on a value other

than v. Furthermore, if at least one honest party does output v, then it will

broadcast the entire list of 3n
4 signatures to the network. This ensures that every

other honest party obtains v along with a valid proof of 3n
4 signatures.

Finally, the parties can run ΠSBA, using either their initial input or the unique
value that they have obtained together with a proof from another party. Our
argument now ensures that if every honest party has input v to ΠHBA, then every
honest party will also input v to ΠSBA, i.e., the input v of an honest party to
ΠSBA is preserved by the above procedure. Therefore, by validity of ΠSBA, every
honest party outputs v and terminates the protocol.

Näıve Solutions Don’t Work One might wonder whether the same type of
guarantees could also be obtained by simply running a constant round asyn-
chronous protocol ΠABA in the synchronous model. However, as we sketch in
Supplementary Material A.2, this can actually lead to a protocol which runs in
O(n) synchronous rounds despite tolerating only f < n

3 corrupted parties.
In comparison, the protocols ΠHBA and ΠETHBA we have sketched above can

tolerate up to 1
2 (1 − fAR) ≤ 3

8 corruptions, given suitable subcomponents and
always run in a number of synchronous rounds that depends on the worst case
running time of ΠSBA.

Importantly, the näıve solution does not allow for early termination, i.e.,
responsiveness, of the parties. All bets are off if, say, the parties run ΠABA and
terminate immediately after obtaining output. Namely, a party that participates
honestly in ΠABA is considered malicious if it does not complete the protocol with
the remaining parties that have not yet obtained output. On the other hand,
if the parties simply run ΠABA in a synchronous network then responsiveness
is immediately lost, because the time until termination now depends on the
parameter ∆.

1.3 Related Work

Owing to its importance, there is a vast body of literature on the problem of
byzantine agreement and related problems. We focus here on closely related
work.

Optimistic Protocols and Their Limitations A common paradigm in the
literature to obtain protocols with high efficiency is to take an optimistic ap-
proach. Protocols of this type try to reach agreement by optimistically imple-
menting an efficient strategy that works as long as the adversary does not carry
out a specific attack.

For example, a widely implemented strategy is to elect a leader who dis-
tributes messages among the parties to prevent expensive all-to-all communica-
tion. As long as the leader is not corrupted, the protocol keeps running at a very
efficient rate. On the other hand, the honest parties can use time-outs to detect
when the leader becomes unavailable or acts maliciously to prevent agreement
for a prolonged period of time, and eventually switch to a new leader.

This approach has been most widely used in the related (harder) problem
of state-machine-replication (SMR) in which the parties agree instead on an
ordered log of values. SMR protocols that use this approach include for example
the well known PBFT protocol due to Castro and Liskov [11] as well as the
works of [16,2,28,29]. Another example of an optimistic protocol is considered in
the elegant work of [18], which makes fast progress as long as no party behaves
maliciously and switches to a pessimistic, more robust fallback mode otherwise.
Interestingly, contrary to our approach, the work of [18] considers an optimistic
case with a fast synchronous network and uses an asynchronous fallback.

Optimistic protocols behave very well in the common case where corruptions
occur infrequently or according to a fixed distribution. Indeed, these assumptions
appear to be justified for many practical applications. However, one of the most
important applications of BA protocols is their use as subcomponents to cryp-
tographic protocols, which typically consider a much more powerful adversary
that can corrupt parties also in a maliciously predetermined or even adaptive
fashion. In such cases, optimistic protocols such as the above tend to fare poorly.

As an important example, BA protocols have recently enjoyed renewed inter-
est from the cryptographic community in the design of cryptocurrency protocols.
Here, the use of optimistic BA and SMR protocols can be somewhat problematic
since an adaptive adversary can, for example, launch a Denial-of-Service attack
to prevent the parties from making progress.

Comparison with closely related work An interesting example in this area
is the recent work of Pass and Shi [25], which we have already mentioned. In
their protocol for SMR, they use a designated party called the accelerator to
stamp transactions with increasing sequence numbers and distribute them to
the network. Once a party sees a stamped transaction, it signs the transaction
and broadcasts it to the network. When a party garners 3n

4 signatures from the
parties on a single transaction, it accepts it.

As long as the accelerator and at least 3n
4 parties are honest, this strategy

guarantees that per sequence number, only a single transaction is accepted by
the honest parties. Moreover, since the above steps can be carried out in a fully
asynchronous manner, the above protocol has the responsiveness property.

If the accelerator or more than n
4 parties become corrupted, the protocol uses

an underlying synchronous SMR protocol to detect that progress is no longer
being made. In this case, the parties agree to fall back to the synchronous proto-
col for a while, until they later restart to run the optimistic strategy by electing
a new accelerator. Importantly, their protocol tolerates f < n

2 corruptions in its
fallback mode, whereas all of the above protocols fail whenever f ≥ n

3 .

On the downside however, their protocol can easily be degraded to a slow,
fully synchronous SMR protocol by an adaptive adversary that immediately
corrupts the accelerator after its election. Thus, their protocol suffers from the
same weaknesses as the aforementioned works when confronted with an adaptive
adversary. More importantly however, their approach seems to be inherently
limited to the realm of SMR protocols. Though generic transformations from

SMR to BA exist, it is unclear how their optimistic properties would translate
to the case of BA. Furthermore, these transformations are not efficient, as they
require to run the the SMR protocol for O(n) rounds in order to achieve BA
even once.

Existing Protocols for Asynchronous Byzantine Agreement The literate
of existing protocols for ABA is very rich. We focus on the binary case and
restrict our discussion to solutions which handle the maximal corruption bound
of n

3 corrupted parties and require a polynomial amount of running time. Also,
we focus on solutions which do not require set up beyond the assumption of a
trusted dealer who distributes public keys to the parties before the protocol.

The problem of BABA was first solved independently by Ben-Or and Ra-
bin [4,27] (albeit, not with optimal resilience). To circumvent the well-known
impossibility for deterministic solutions to the BABA problem by Fischer et
al. [21], they were the first to harness the power of randomness in the form of
a common coin, that is available to all parties, but is not predictable for the
adversary. Most subsequent solutions to the BABA problem use the abstraction
of a common coin.

The first (polynomial time) protocol to implement a common coin without
any set-up assumptions is the beautiful work by Canetti and Rabin [10]. However,
their protocol uses an expensive variant of asynchronous verifiable secret sharing
(AVSS) which renders their protocol completely impractical. Their common coin
construction was subsequently improved by Abraham et al. [1] and Choudhury
et al. [26]. However, their solutions are still far beyond the scope of practicality.

Cachin et al. [8] gave the first efficient solution to the BABA problem which
has a communication complexity of O(n2`), where ` denotes the size of an
RSA signature. Their protocol is based on a threshold signature scheme and
thus achieves security only against a bounded adversary, whereas the protocols
in [10,1,26] can tolerate even unbounded adversaries, given that private channels
are available for free. As already pointed out earlier, another difference of [8] to
the aforementioned protocols is that the latter tolerates only static corruptions.
The protocol’s weakness against adaptive corruptions is inherited from their
common coin protocol, which tolerates only static corruptions.

Most recently, Mostéfaoui et al. [23] gave an improvement over the protocol
of [8], which reduces the communication complexity to O(n2) when using the
common coin from [8]. In theory, their protocol could also be instantiated with
the AVSS-based common coin protocols which would improve its security to the
adaptive case. We use this observation and instantiate the common coin in their
protocol with an efficient protocol that attains adaptive security and is based
on the work of [20]. In this way, we obtain the first adaptively secure BABA
protocol which runs in O(n2) communication complexity.

2 Preliminaries and Notation

In this section, we recall some basic notation and definitions.

2.1 Notation

We denote algorithms with serif-free letters A. We use the standard probabilistic
polynomial time efficiency and negligibility notions with respect to some security
parameter λ. We write x← S to denote that variable x is sampled uniformly at
random from set S. We write (y1, y2...)← A(x1, x2...) to denote that algorithm
A produces outputs y1, y2... when run on inputs x1, x2... We write [n] to denote
the integers {1, ..., n}.

2.2 Random Oracle Model

Our results are stated in the random oracle model [3]. In this model, all hash
functions are modelled as an oracle H, which is defined in the following manner.
H keeps tracks of all queries that it answers. On input x, H first checks whether
H(x) has previously been defined, i.e., whether it has previously answered a
query on the value x. If so, it replies with H(x). If not, it samples a value s
uniformly at random in the codomain of H and returns s.

3 Model

In this work, we consider the problem of byzantine agreement among a set of
parties P1, ..., Pn.

Definition 1 (Byzantine Agreement). A distributed protocol Π among n
parties P1, ..., Pn where party Pi initially holds input vi achieves byzantine agree-
ment if the following three properties are satisfied and the randomness is taken
over the coins of the honest parties.

– Validity: If for every honest party Pi, vi = v, then every honest party outputs
v with overwhelming probability.

– Consistency: Every honest party outputs the same value v with overwhelming
probability.

– p-Termination: Every honest party eventually outputs some value with prob-
ability at least p.

We consider the following setting:

– Synchrony and setup assumptions: Parties initially share a public key infras-
tructure that is set up by a trusted dealer before the start of the protocol.
We assume that the parties are fully synchronized, i.e., they have access to a
global clock. We denote by (ski, pki) the secret/public key pair of party Pi.
Throughout the following sections, we assume the existence of a signature
scheme that satisfies the standard security notion of unforgeabitliy under
chosen message attacks. We write σ ← Sign(v, sk) to denote that a party
computes a signature on v using its secret key sk. σ can in turn be verified
using the corresponding public key, pk.

– Adversary Model : We consider a malicious, fully adaptive adversary that
can corrupt any party at any given point in time. A malicious adversary in
this setting is typically referred to in the literature as ‘byzantine’. A party
corrupted in a byzantine fashion can deviate arbitrarily from the protocol
description, for example by not participating or equivocating to different
parties. Upon corruption of a party P , the adversary learns the entire internal
state of P . In particular, the adversary knows the initial state of all parties
that are corrupted at the beginning of the protocol. However, the adversary
does not know the internal state of the honest parties, which includes any
secret values that they obtain from the honest dealer at the beginning of the
protocol.

– Network assumptions: We assume that the parties are connected via pair-
wise, reliable channels. In particular, any message that is sent over a channel
is guaranteed to arrive after at most time ∆. For simplicity, we also assume
that the channels are authentic (this is implied by the assumption of a public
key infrastructure). Other than this, the adversary has full control over the
network: It has the power to delay messages arbitrarily up to ∆ time steps, it
can reorder messages, and it can make some messages arrive multiple times
at its intended recipient.

As already pointed out, all entities that we consider, i.e., the adversary, the
honest parties, and the honest dealer, are assumed to be PPT algorithms.

3.1 Running Asynchronous Protocols in a Synchronous Network

It is important to note that even though messages in our model can be delayed
by at most ∆ time steps, it is possible that they arrive much faster, i.e. within
some time δ � ∆. In this case, fully synchronous protocols could run very
slowly, since they pessimistically proceed in rounds of a priori bounded length.
Therefore, when a 2n

3 majority can be ensured, it is often preferable to use an
asynchronous protocol even if the parties share a global clock.

One might be tempted to say that the asynchronous protocol would always be
preferable in this case, since at worst it would devolve to a synchronous protocol.
Somewhat surprisingly, however, this argument doesn’t hold when the network is
slow. In this case, simply running an asynchronous protocol in a synchronized,
i.e., round-based fashion, may incur an overhead of O(n) synchronous rounds
until every party has terminated–even if the asynchronous protocol has O(1)
(asynchronous) rounds. In Supplementary Material A.2, we sketch how this blow-
up can occur if the reliable broadcast protocol of Bracha [6] is naively run in
a round-based fashion, i.e., when the parties proceed in synchronized rounds of
length ∆.

To mitigate this blow up in round complexity, one can use the parameter ∆
to define time-outs in our protocol. At a high level, this means that if a party
has waited for some sufficiently long time t(∆) without making progress in the
asynchronous protocol, then it can proceed with the next step. Indeed, time-
outs have been used in a model that sometimes is referred to as the partially

synchronous model. Protocols in this model typically rely on a leader (sometimes
called the primary) to ensure progress. If the leader becomes unresponsive, the
protocol executes a leader replacement subprotocol called a view change protocol.
The main issue with known protocols in this model is that once the leader is
known to all parties, an adaptive adversary can immediately corrupt it and
thus force the protocol to repeatedly execute expensive view changes without
making progress. We circumvent this problem by showing a different strategy
that combines an asynchronous protocol with a synchronous one without the use
of a leader. Our protocol has the useful property that it runs at the network’s
speed when more than 3n

4 of the parties are honest but can tolerate up to 3n
8

corrupted parties while still requiring only a constant amount of synchronous
rounds. We then show in Section 4.3 that the parameters in our transformation
are optimal.

4 Generic Compilers for Byzantine Agreement Protocols

In this section, we propose solutions to the byzantine agreement problem that
obtain ‘best of both worlds guarantees.’ More specifically, our protocol has the
efficiency of an asynchronous protocol if the network is fast and sufficiently many
parties are honest, but preserves the worst-case guarantees of a synchronous
protocol if the network is slow or up to f < 3n

8 parties are dishonest.
The solution that we present generically interleaves a synchronous protocol

with an asynchronous one to achieve this goal. The idea is to use the synchronous
protocol as a slow, but robust fallback path in case the asynchronous protocol
fails to reach agreement within a reasonable amount of time. The main challenge
is to ensure that if an honest party obtains an output in the asynchronous proto-
col, it can directly output this value without having to wait for the synchronous
protocol to terminate–otherwise, our protocol would make no improvement over
the synchronous protocol.

We define the following properties (and abbreviations) for a byzantine agree-
ment protocol ΠBA.

Definition 2. Let ΠBA be a protocol which achieves byzantine agreement among
n parties. In the following, the probability is taken over the random coins of the
honest parties and p is a non-negligible value.

– ΠBA is said to be (p, fAT)-terminating if with probability p, every honest party
terminates the protocol, given that less than an fAT-fraction of the parties is
dishonest.

– ΠBA is said to be (p, fAR)-responsive if every honest party terminates with
probability at least p within some time that does not depend on ∆, given
that less than an fAR-fraction of the parties is dishonest. Note that (p, fAR)-
responsiveness implies (p, fAR)-termination.

– ΠBA is said to be (p, fAR)-output responsive if every honest party outputs a
value with probability at least p within some time that does not depend on
∆, given that less than an fAR-fraction of the parties is dishonest.

– ΠBA is said to be fAV-valid if it has the validity property, given that less than
an fAV-fraction of the parties is dishonest.

– ΠBA is said to be fAC-consistent if it has the consistency property, given that
less than an fAC-fraction of the parties are dishonest.

As a special case of our generic transform, we obtain a protocol for byzantine
agreement that is output responsive as long as less than n

4 parties are corrupted
and still guarantees termination, consistency, and validity in a constant number
of synchronous rounds if less than 3n

8 of the parties are corrupted. Interestingly,
termination and consistency are preserved even up to a bound of f < n

2 corrupted
parties. In other words, when less than n

4 parties are corrupted, the time until
agreement is reached depends only on the actual speed of the network and not
on some a priori established upper bound on the network delay. However, if the
network is slow and at most 3n

8 parties are corrupted, our protocol still manages
to guarantee agreement within a constant amount of synchronous rounds. We
then show that these parameters are optimal in Section 4.3.

4.1 A Protocol With Early Output Support

In the following, we describe our construction for Hybrid Byzantine Agreement,
which we denote as ΠHBA. ΠHBA makes black-box use of two subprotocols: an
asynchronous protocol for byzantine agreement, ΠABA, and a synchronous pro-
tocol for byzantine agreement, ΠSBA. We denote the running time of ΠSBA by
tSBA. In the following, assume that:

– ΠABA is an asynchronous protocol for byzantine agreement that guarantees
validity, consistency, and p-termination if less than nfAR parties are dishonest
and satisfies validity if less than nfAV parties are dishonest.

– ΠSBA is a synchronous protocol for byzantine agreement that guarantees
validity and consistency, given that less than n

2 parties are corrupted. ΠSBA

runs in time tSBA.
– The parties run the protocol ΠHBA at time tstart.
– 1

2 > fAV ≥ fAR.

Figure 1 contains the view of party Pi for protocol ΠHBA. We parametrize ΠHBA

with the timeout parameter tout.
The idea of ΠHBA is as follows. Parties first run ΠABA with their input to

ΠHBA. Upon obtaining output from ΠABA, they sign it and broadcast the signa-
ture to every party. If a party Pi obtains 3n

4 signatures on any value v before
time tstart + tout, then it outputs v and broadcasts v along with a proof Li con-
taining the signatures. Intuitively, Li can justify to another party that v was a
correct output from Pi’s perspective. If a party does not terminate until time
tstart + tout, it waits for another ∆ time steps to ensure that all messages that
were sent prior to tstart + tout have been received. It then participates in a run of
ΠSBA, using either its initial input vi as input to ΠSBA or any value upon which
it has received 3n

4 valid signatures after time tstart + tout. Since ΠABA ensures
termination for nfAR <

n
4 corrupted parties, the honest parties can obtain the

Fig. 1: ΠHBA protocol (view of Pi)

– The parties begin with a shared global clock. Let vi denote the input of
party Pi.

time tstart
– At some fixed time step t, they start to execute ΠABA. Pi inputs vi to ΠABA.
– Initialize v∗ ← vi.
– Party Pi runsΠABA until it terminatesΠABA or until time tstart+tout (whichever

comes first).
– If party Pi’s view ofΠABA has terminated with output v at time t′ < tstart+tout,

it computes a signature σi ← Sign(v, ski). It broadcasts (i, v, σi) to every
party (including itself).

– Upon, receiving at least 3n
4

valid signatures (from different parties) on a
single value v′ at time t′ < tstart + tout, Pi sets v∗ ← v′ outputs v∗ and
broadcasts (i, v∗, Li), where Li denotes a list containing these signatures.
Note that this instruction may also be triggered upon receiving a correctly
formed tuple (j, vj , Lj) from party Pj .

time tstart + tout
– Upon receiving at least 3n

4
valid signatures (from different parties) on a

single value v′ at time t′, tstart + tout ≤ t′ ≤ tstart + tout + ∆, Pi sets v∗ ← v′

(but does not output yet).

time tstart + tout +∆
– At time tstart + tout + ∆, Pi participates in a run of ΠSBA, using v∗ as its

input. It outputs the output of ΠSBA (if it hasn’t output anything yet) and
terminates.

necessary 3n
4 signatures for termination at a speed that depends only on the

network delay whenever less than nfAR parties are dishonest. In this way, ΠHBA

guarantees fAR-output responsiveness. On the other hand, if the parties do not
all terminate ΠABA, it is impossible that two honest parties output different val-
ues v′ and v. Namely this would require that both of these values have been
signed at least 3n

4 many times. This in turn leads to a contradiction, because it
implies that there exists an honest party that has signed both v′ and v, since
two quorums of 3n

4 parties must intersect in at least one honest party, given that
more than n

2 parties are honest. If at least one honest party obtains such a list
on a value v before time tstart + tout (and therefore outputs v), every other honest
party is ensured to receive from this party by time t + tout + ∆. Therefore, in
this case, all honest parties use v as their input to ΠSBA. Validity of ΠSBA now
ensures that all the parties agree on v and terminate. If no party outputs before
running ΠSBA, then consistency trivially follows from the consistency of ΠSBA.
Therefore, ΠHBA satisfies n

2 -consistency. What remains to show is that ΠHBA

also satisfies validity. Here, the idea is the following: If all parties initially hold
v, then validity of ΠABA ensures that every honest party either terminates ΠABA

with v or does not terminate ΠABA at all. In either case, no party will ever sign a
value other than v, which ensures that only proofs (lists of signatures) on v can
be valid proofs. On the other hand, a party that never receives a proof during
the protocol (before time t+ tout +∆) runs ΠSBA with its initial input, which is
v. The validity of ΠHBA now follows from the validity of ΠSBA.

Lemma 1. Suppose that:

– fAR ≤ 1
4 .

– Every honest party that terminates ΠABA, terminates within time tABA.
– tABA + δ < tout.

Then ΠHBA is (p, fAR)-output responsive.

Proof. Suppose less than nfAR ≤ n
4 parties are dishonest. By the consistency

property of ΠABA, every honest party that outputs a value in ΠABA, outputs
the same value v. Furthermore, by the p-termination property of ΠABA, with
probability at least p, every honest party eventually delivers the value v in ΠABA.
Therefore, it follows by assumption that with probability at least p, every honest
party in ΠABA terminates within time tABA and output v. Subsequently, every
honest party broadcasts v along with a valid signature.This ensures that with
probability at least p, every honest party Pi obtains at least 3n

4 valid signatures
on the value v by time tABA + δ. In this case, Pi immediately outputs v. Thus,
ΠHBA is (p, fAR)-output responsive.

For the remainder of the following sections, let us call a message (i, v, L)
correctly formed, if it L contains at least 3n

4 valid signatures on v from distinct
parties.

Lemma 2. Suppose that less than a 1
2 -fraction of the parties is dishonest. If Pi

and Pj broadcast correctly formed messages (i, v, Li) and (j, v′, Lj), respectively,
in ΠHBA at time t′ < tstart + tout, then v = v′.

Proof. Let ε > 0 and suppose that n(1
2−ε) parties are dishonest. By assumption,

Li and Lj each contain at least 3n
4 valid signatures on v and v′, respectively.

This means, that Li and Lj each contain 3n
4 − n(1

2 − ε) = n
4 + ε signatures

from honest parties on v and v′, respectively (since signatures are unforgeable).
Since no honest party signs distinct messages v and v′, there must be at least
2(n

4 + ε) = n(1
2 + 2ε) many honest parties. This is a contradiction, since by

assumption, there are n(1
2 + ε) < n(1

2 + 2ε) many honest parties.

Lemma 3. Suppose that less than an 1
2 -fraction of the parties is dishonest and

let Pi be the first honest party that outputs v in ΠHBA at time t′ < tstart + tout.
Then all honest parties output v in ΠHBA.

Proof. Since Pi outputs v at time t′ < tstart + tout, it has sent a valid message
of the form (j, v, Lj) to all parties by time tstart + tout. Thus, all honest parties
receive this message by time tstart + tout + ∆, and set their inputs to ΠSBA to
v (by Lemma 2, no party Pk broadcasts a correctly formed message (k, v′, Lk),
s.t. v′ 6= v.). Now the validity property of ΠSBA ensures that every honest party
outputs v at the end of ΠHBA.

Corollary 1. ΠHBA is 1
2 -consistent.

Proof. Lemma 3 ensures consistency in the case where an honest party outputs
at time t′ < tstart + tout. It remains to show that consistency also holds when no
honest party outputs before time tstart + tout. However, this trivially follows from
the fact that now, every honest party will output whatever they obtain from
running ΠSBA. Thus, consistency follows from the consistency property of ΠSBA.

Lemma 4. Suppose that less than an fAV-fraction of the parties is dishonest
and all honest parties input v to ΠHBA. Let Pi be an honest party that outputs
in ΠHBA at time t′ < tstart + tout. Then Pi outputs v.

Proof. By validity of ΠABA, every honest party that delivers a value in ΠABA,
delivers v. Therefore, no honest party Pj broadcasts a message of the form
(j, v′, σ′j), v 6= v′. This ensures that no party can obtain a list L of 3n

4 valid
signatures on a value other than v (since less than nfAV <

n
2 parties are dishonest

and signatures are unforgeable). Therefore, Pi outputs v.

Lemma 5. Suppose that less than an fAV-fraction of the parties is dishonest
and all honest parties input v to ΠHBA. Further, suppose that no honest party
outputs in ΠHBA at time t′ < tstart + tout. Then every honest party outputs v in
ΠHBA at time tstart + tout +∆+ tSBA.

Proof. By validity of ΠABA, every honest party that delivers a value in ΠABA, de-
livers v. Thus, no honest party Pj broadcasts a message of the form (j, v′, σ′j), v 6=
v′. This ensures that no honest party will ever see 3n

4 valid signatures on a value
other than v (since less than nfAV <

n
2 parties are dishonest and signatures are

unforgeable). In particular, an honest party Pi will never set v∗ to any value
other than v, since v∗ is initially set to vi = v. This ensures that every honest
party inputs v to ΠSBA at time tstart + tout +∆. Now, validity of ΠSBA guarantees
that every honest party outputs v in ΠHBA at time tstart + tout +∆+ tSBA.

Corollary 2. ΠHBA is fAV-valid.

Proof. Combining Lemma 4 with Corollary 3, if an honest party outputs v before
time tstart + tout, then every other honest party also outputs v. This ensures
validity in the case where an honest party outputs before time tstart + tout. On
the other hand, if no party outputs before this time, then validity is ensured by
Lemma 5.

We sum up the properties of ΠHBA in the following theorem.

Theorem 1. Assume that:

– ΠABA is an asynchronous protocol for byzantine agreement that guarantees
validity, consistency, and p-termination if less than nfAR parties are dishon-
est and satisfies validity if less than nfAV parties are dishonest.

– ΠSBA is a synchronous protocol for byzantine agreement that guarantees va-
lidity and consistency, given that less than n

2 parties are corrupted. ΠSBA

runs in time tSBA.
– 1

2 > fAV ≥ fAR.

Then the following statements are true:

– Suppose that fAR ≤ 1
4 , every honest party that terminates ΠABA, terminates

within time tABA, and tABA + δ < tout. Then ΠHBA is (p, fAR)-output respon-
sive.

– ΠHBA is 1
2 -consistent.

– ΠHBA is fAV-valid.
– ΠHBA runs in time at most tout +∆+ tSBA.

4.2 A Protocol With Early Termination Support

In this section, we present a second variant of our compiler which offers early ter-
mination, i.e, responsiveness, under the same conditions in which ΠHBA achieves
early output. As we will see, our protocol incurs an overhead of O(n) synchronous
in the worst case. We first define the notion of broadcast.

Definition 3 (Broadcast). A distributed protocol Π among n parties P1, ..., Pn

where a designated sender Ps initially holds input v achieves broadcast if the
following two properties are satisfied at the end of the protocol.

– Termination: Every honest party terminates the protocol.
– Validity: If Ps is honest upon terminating, every honest party outputs v.
– Consistency: Every honest party outputs the same value v′.

For this subsection, we make use of an additional protocol ΠSBC which has
the following properties:

– ΠSBC achieves broadcast with honest termination validity for any number
f < n of dishonest parties.

– In the first round of ΠSBC, only the sender sends a message.
– The sender in ΠSBC terminates directly after sending its first message.
– The protocol is secure against a rushing adversary (who receives all messages

sent in a round before sending its own messages).

The variant of the classical Dolev-Strong protocol [13] that appears in the
thesis of Kumaresan [17] satisfies the aforementioned properties. It was shown
in [15] that any broadcast protocol with the above properties runs in O(f) rounds
in the worst-case. We note that if ΠSBC is meant to be executed at tout, the
sender can send its first message at any time t′ ≤ tout, since this message will be
received by all honest parties by the end of the first round, and ΠSBC is secure
against a rushing adversary. Moreover, the sender can terminate immediately
after sending its message, since ΠSBC specifies that the sender terminates after
sending a message in the first round.

Definition 4 (All-to-All Broadcast). A distributed protocol Π among n par-
ties P1, ..., Pn where party Pi holds input vi and all parties output a vector
o = (o1, . . . , on) achieves all-to-all broadcast if the following properties are sat-
isfied.

– Termination: Every honest party terminates the protocol.
– Validity: If Pi is honest on terminating, the output vector of every honest

party that did not terminate before giving output satisfies oi = vi.
– Consistency: Every honest party that did not terminate early outputs the

same vector value o.

In the following, we will denote Πpar
SBC as the parallel composition of n inde-

pendent executions of the protocol ΠSBC at time step tout, where for execution
i (denoted as Πi

SBC), Pi acts as the sender. We will denote the output of Πpar
SBC

as an n-tuple (v1, ..., vn), where vi denotes the output of the ith run of ΠSBC. In
Supplementary Material A.1, we prove the UC-Security for any number t < n
of malicious parties for Kumaresan’s variant of the Dolev-Strong protocol ΠDS,t

SBC

with early termination for the sender. By the UC composition theorem, this
easily implies that Πpar

SBC satisfies definition 4.
We now argue that the sender Pi in execution i may send its first message at

any time t′ ≤ tout and terminate right afterward in Πpar
SBC, without compromising

its security properties. Let Πpar-ea-S
SBC be the protocol Πpar

SBC in which a subset of
honest parties {Pi}i∈S abort (without output) after sending their first message.

Lemma 6. For every S ⊆ [n], Πpar-ea-S
SBC satisfies definition 4.

Proof. Let H be the set of all honest parties. To satisfy validity, note that for all
i ∈ H, the output of all honest parties in Πi

SBC is guaranteed to be vi even when
Pi terminates after sending its first message (by the validity of ΠSBC and the
composition theorem). Thus, validity (according to definition 4) is guaranteed

for Πpar-ea-S
SBC for any set S. Within any of the remaining executions of ΠSBC

within Πpar
SBC. Note that in Πj

SBC, j 6= i, party Pi will be counted as a malicious
party if it terminates after its first message. However, since ΠSBC tolerates any
number of malicious parties t < n, all parties in H \ S (i.e., all honest parties
that give output) are guaranteed to have consistent output on Πj

SBC. Thus, by

the composition theorem, Πpar-ea-S
SBC is consistent according to definition 4.

We are now ready to present our second transformation ΠETHBA which is
depicted in Figure 2.

Fig. 2: ΠETHBA protocol (view of Pi)

– The parties begin with a shared global clock. Let vi denote the input of Pi

time tstart
– At some fixed time step t, they start to execute ΠABA. Pi inputs vi to ΠABA.
– Initialize v∗ ← vi.
– Party Pi runs ΠABA until it terminates or until time tstart + tout (whichever

comes first).
– If party Pi’s view ofΠABA has terminated with output v at time t′ < tstart+tout,

it computes a signature σi ← Sign(v, ski). It broadcasts (i, v, σi) to every
party (including itself).

– Upon, receiving at least 3n
4

valid signatures (from different parties) on a
single value v′ at time t′ < tstart + tout, Pi sets v∗ ← v′, outputs v∗ and
broadcasts (i, v∗, Li) in Πpar

SBC, where Li denotes a list containing these
signatures. Then it terminates.

time tstart + tout +∆+ tSBC
– At time tstart + tout + ∆ + tSBC, if Pi has not terminated and it receives a

valid message (j, v, Lj) over Πpar
SBC, it outputs v and terminates. Otherwise, it

participates in a run of ΠSBA, using v∗ as its input. It outputs the output of
ΠSBA and terminates.

Lemma 7. Suppose that:

– fAR ≤ 1
4 .

– Every honest party that terminates ΠABA, terminates within time tABA.
– tABA + δ < tout.

Then ΠETHBA is (p, fAR)-responsive.

Proof. Suppose less than nfAR ≤ n
4 parties are dishonest. By the consistency

property of ΠABA, every honest party that outputs a value in ΠABA, outputs
the same value v. Furthermore, by the p-termination property of ΠABA, with
probability at least p, every honest party eventually delivers the value v in ΠABA.
Therefore, it follows by assumption that with probability at least p, every honest
party in ΠABA terminates within time tABA and output v. Subsequently, every

honest party broadcasts v along with a valid signature.This ensures that with
probability at least p, every honest party Pi obtains at least 3n

4 valid signatures
on the value v by time tABA + δ. In this case, Pi immediately outputs v and
broadcasts a message of the form (i, v, Li) to every party via Πpar

SBC. Then, it
terminates. Thus, ΠETHBA is (p, fAR)-responsive.

Lemma 8. Suppose that less than n
2 parties are dishonest and suppose that the

output for every honest party in Πpar
SBC is x. If for some i 6= j, xi = (i, v, Li) and

xj = (j, v′, Lj) are correctly formed messages, then v′ = v.

Proof. This statement can be proved in the same way as Lemma 2.

Lemma 9. Suppose that less than n
2 parties are dishonest and let Pi be the first

honest party that terminates with output v in ΠETHBA at time t′ < tstart + tout.
Then all honest parties output v in ΠETHBA.

Proof. Since Pi terminates with output v at time t′ < tstart + tout, it broadcasts
a valid message of the form (i, v, Li) to all parties via Πpar

SBC. By the properties
of Πpar

SBC, all honest parties receive this message by time tstart + tout + ∆ + tSBC,
and output v. Lastly, the value v is unique, as is ensured by Lemma 8. Namely,
no party Pk can ever collect sufficiently many signatures to correctly form a
message (k, v′, Lk), s.t. v′ 6= v.

Corollary 3. ΠETHBA is 1
2 -consistent.

Proof. Lemma 9 ensures consistency in the case where an honest party outputs
at time t′ < tstart + tout. It remains to show that consistency also holds when
no honest party outputs before time tstart + tout. This can be seen as follows.
Either, there is a dishonest party Pi that broadcasts a valid message of the
form (i, v, Li) at time t′ < tstart + tout via Πpar

SBC by honestly participating in
Πpar

SBC. In this case, lemma 8 ensures that no party Pj broadcasts a correctly
formed message (j, v′, Lj), s.t. v′ 6= v. Thus, at time tstart + tout +∆+ tSBC, every
honest party outputs v. Otherwise, every honest party outputs the output that
it obtains from running ΠSBA. Thus, consistency follows from the consistency
property of ΠSBA.

Lemma 10. Suppose that less than nfAV parties are dishonest and all honest
parties input v to ΠETHBA. Let Pi be an honest party that outputs in ΠETHBA at
time t′ < tstart + tout. Then Pi outputs v.

Proof. Follows analogously to the proof of lemma 4.

Lemma 11. Suppose that less than nfAV parties are dishonest and all honest
parties input v to ΠETHBA. Further, suppose that no honest party outputs in
ΠETHBA at time t′ < tstart + tout. Then every honest party outputs v in ΠETHBA

at time tstart + tout + tSBC + tSBA +∆.

Proof. By validity of ΠABA, every honest party that delivers a value in ΠABA,
delivers v. Thus, no honest party Pj signs a message of the form (j, v′, σ′j), v 6= v′.

This ensures that no party will ever see 3n
4 valid signatures on a value other than

v (since less than nfAV <
n
2 parties are dishonest). In particular, an honest party

Pi will never set v∗ to any value other than v, since v∗ is initially set to vi = v.
This ensures that every honest party inputs v to ΠSBA at time tstart + tout +
tSBC + ∆, unless some dishonest party Pk broadcasts a valid message (k, v, Lk)
(via an honest participation in Πpar

SBC). In this case, every honest party is ensured
to output v at time tstart + tout + tSBC + ∆, and thus validity is guaranteed.
Otherwise, validity of ΠSBA guarantees that every honest party outputs v in
ΠETHBA at time tstart + tout + tSBC + tSBA +∆.

Corollary 4. ΠETHBA is fAV-valid.

Proof. Follows from lemma 10 and lemma 11 in the same way that corollary 2
follows from lemma 4 and lemma 5.

Theorem 2. Assume that:

– ΠABA is an asynchronous protocol for byzantine agreement that guarantees
validity, consistency, and p-termination if less than nfAR parties are dishon-
est and satisfies validity if less than nfAV parties are dishonest.

– ΠSBA is a synchronous protocol for byzantine agreement that guarantees va-
lidity and consistency, given that less than n

2 parties are corrupted. ΠSBA

runs in time tSBA.
– Πpar

SBC is a synchronous protocol for all-to-all byzantine broadcast that runs
in time (at most) tSBC.

– 1
2 > fAV ≥ fAR.

Then the following statements are true:

– Suppose that fAR ≤ 1
4 , every honest party that terminates ΠABA, terminates

within time tABA, and tABA + δ < tout. Then ΠHBA is (p, fAR)-responsive.
– ΠETHBA is n

2 -consistent.
– ΠETHBA is fAV-valid.
– ΠETHBA runs in time at most tout + tSBC + tSBA +∆.

4.3 Optimality of ΠHBA and ΠETHBA

In this section, we show thatΠHBA andΠETHBA achieve optimal parameters. Con-
cretely, we show that it is not possible to obtain a hybrid protocol which achieves
(p, fAR)-output responsiveness and fAV-validity if fAV >

1
2 (1−fAR). We also show

that it is possible to convert any protocol ΠABA which achieves binary byzantine
agreement (with p-termination) when less than fAR ≤ n

4 parties are corrupted

into a protocol Πopt
BABA that achieves (p, fAR)-termination, fAR-consistency, and

1
2 (1 − fAR)-validity. This transformation can be used to transform an existing
BABA protocol which tolerates up to f < n

4 (or more) corruptions into a pro-
tocol that gives optimal parameters when plugged into ΠHBA or ΠETHBA. The
transformation Πopt

BABA is described in Figure 3.

Fig. 3: Πopt
BABA protocol (view of Pi), parametrized with parameter fAR.

1. Let bi denote the input of party Pi.
2. Pi computes a signature σi ← Sign(bi, ski) and broadcasts (i, bi, σi) to every

party (including itself).
3. Pi wait until it obtains n(1− fAR) valid messages (i.e., with a valid signature

of bi under pki) of the form (i, bi, σi) (from n(1− fAR) different parties).
4. Let b denote the majority bit among the valid messages that Pi received. Pi

broadcasts a message of the form (i, b, Li) to every party (including itself),
where the list Li contains all the valid signatures that Pi received on b.

5. Pi runs ΠABA with input b. Let b∗ denote the output of ΠABA.
6. Upon receiving a valid message of the form (j, b∗, Lj) (i.e., where Li contains

at least n(1−fAR) valid signatures on b∗ from different parties), Pi terminates
the protocol with output b∗.

Lemma 12. Let fAR ≤ n
4 and let ΠABA be a protocol for BABA that achieves

(p, fAR)-termination, fAR-validity, and fAR-consistency. Then protocol Πopt
BABA

achieves (p, fAR)-termination, fAR-consistency, and 1
2 (1− fAR)-validity.

Proof. We proceed by proving the properties of Πopt
BABA separately.

– (p, fAR)-termination: Assume that less than an fAR fraction of the parties are
corrupted. In this case, every honest party obtains at least n(1− fAR) valid
messages of the form (i, bi, σi) in the third step of Πopt

BABA and subsequently
broadcasts a valid message of the form (i, b, Li), where b is the majority bit
it has computed from these messages. It then runs ΠABA on the bit b. By
(p, fAR)-termination and fAR-consistency of ΠABA, with probability p, every
honest party terminates ΠABA in step five the with same bit b∗ (note that if a
party does terminate ΠABA, then it terminates with b∗). By validity of ΠABA,
at least one honest party Pj has input b∗ to ΠABA and broadcasted a valid
message of the form (j, b∗, Lj) in step 4. Thus, with probability p, every
honest party will eventually obtain the message (j, b∗, Lj) and terminate.
This ensures (p, fAR)-termination of Πopt

BABA.

– fAR-consistency:. Follows easily from fAR-consistency of ΠABA, since every
party outputs b only if it has previously seen b as output from ΠABA.

– 1
2 (1− fAR)-validity: Assume that every honest party inputs b to Πopt

BABA and
less than an 1

2 (1− fAR)-fraction of the parties is corrupted. Therefore, if any
party obtains n(1−fAR) valid messages of the form (i, bi, σi) in step three, it
obtains strictly more than n

2 (1−fAR) such messages from honest parties. The
majority bit computed from these messages is b, since by assumption, every
honest party Pi has sent (i, b, σi) in step 2 (and signatures are unforgeable).
It now follows that every valid message obtained by an honest party in the
final step of the protocol must be of the form (i, b, Li). Therefore, in the
final step, every party either terminates with output b upon receiving a valid

message of the form (j, b, Lj) or does not terminate (in case it received 1− b
as output from ΠABA in the previous step).

The dual-threshold structure of Πopt
BABA is reminiscent of the work of Fitzi et

al. [14] who considered broadcast protocols (see section 4.2) with a two-threshold
structure. In their protocols, either validity or consistency is lost when nf1 or
more parties are corrupted, but the second property is preserved until nf2 or
more parties are corrupted, where f1 < f2 and 2f1 +f2 < 1. However, their work
considers the the notion of information theoretic broadcast in the synchronous
model, whereas our results consider byzantine agreement in the asynchronous
model with a computationally bounded adversary.

We now show that our construction for ΠHBA, combined with Πopt
BABA, achieves

optimal corruption bounds.

Lemma 13. Let ΠABA be a protocol for byzantine agreement which achieves
validity, consistency, and p-termination when less than an fAR-fraction of the
parties are dishonest. Then ΠABA does not satisfy validity if the fraction of cor-
rupt parties fAV ≥ 1

2 (1− fAR). Moreover, there exists an adversary controlling a
1
2 (1−fAR)-fraction of the parties that violates validity and ensures p-termination
for all honest parties.

Proof. Let ΠABA be a protocol for byzantine agreement that achieves validity,
consistency, and p-termination in the asynchronous setting when less than nfAR
parties are dishonest. Let H denote the set of honest parties. It suffices to show
that ΠABA does not satisfy validity if exactly n

2 (1 − fAR) parties are dishonest.
For this purpose, let ` > n(1−fAR) be the minimum number of honest parties for
which ΠABA is still guaranteed to terminate for all honest parties with probability
at least p.

Let S be the set of partitions of [n] into three sets, S0, S1, SX such that
|SX | < n · fAR. We define f : S × R` → {0, 1,⊥} to be a randomized function.
For (S0, S1, SX) ∈ S, the distribution of f(S0, S1, SX) is induced via ΠABA as
follows.

– Parties in S0 have input 0, parties in S1 have input 1.
– The messages of parties in SX in ΠABA are indefinitely delayed.
– Once every honest party in S0 ∪ S1 has output a value, all messages from

parties in SX are delivered.
– The output of f is defined as v, if every honest party terminates ΠABA with

output v and as ⊥ otherwise.

Note that by fAR-consistency of ΠABA, every honest party outputs the same
value v or does not terminate ΠABA. Since v cannot depend on messages from
parties in SX , the output distribution of f is always well defined for these inputs.
Furthermore, observe that by p-termination of ΠABA, Pr {f(S0, S1, SX) 6= ⊥} ≥
p.

For every partition S̄ = (S0, S1, SX) ∈ S, we can construct an adversary AS̄

that corrupts at most max (|S0|, |S1|) parties and a set of inputs to the honest.
We show in the following how this results in a violation of validity.

1. Let b be a bit such that Pr {f(S0, S1, SX) = b} ≥ p
2 (this must hold for either

b = 0 or b = 1).
2. Let the parties in SX have input 1− b.
3. AS̄ corrupts the parties in Sb, and instructs them to behave honestly.

By our definition of f , in an execution of the ΠABA protocol in the presence
of AS̄ , the honest parties output b with probability at least p

2 . However, this is
a violation of validity since all honest parties have input 1 − b and p

2 is non-
negligible.

To compute the optimal parameters for the attack, we need to find a partition
that minimizes max (|S0|, |S1|). This happens when n − |SX | is minimized and
|S0| = |S1| = 1

2 (n− |SX |).
In a protocol that’s valid as long as less than an fAV-fraction of the parties

are corrupted, validity should hold for every number of parties n as long as less
than n · fAV parties are corrupted. Thus, to show validity is violated we can pick
n such that (1− fAR) divides n, n− |SX | = n(1− fAR) and n− |SX | is even.

Then |S0| = |S1| = n · 1
2 (1− fAR).

n − |SX | ≥ n(1 − fAR) , so we can always set |SX | such that n − |SX | =
bn(1−fAR)c+1 ≤ n(1−fAR)+1 When n−|SX | is odd, then we can split almost
evenly, so in any case

max (|S0|, |S1|) ≤
⌈

1

2
(n− |SX |)

⌉
≤ 1

2
(n− |SX |) + 1 (1)

≤ 1

2
(n(1− fAR) + 1) + 1 =

n

2
(1− fAR) +

3

2
. (2)

Corollary 5. If ΠHBA is both (p, fAR)-responsive and fAV-valid, then fAV <
1
2 (1− fAR).

Proof. We prove the statement by contradiction. Thus, assume that ΠHBA is
both (p, fAR)-responsive and fAV-valid. Assume further that fAV ≥ 1

2 (1 − fAR).
We show that either (p, fAR)-responsiveness or fAV-validity must be violated in
this case. To see this, note that ΠHBA is also an asynchronous BA protocol when
less than an fAR fraction of the parties are corrupted and tout =∞ (since in this
case ΠHBA guarantees early termination for all honest parties with probability
at least p). Thus, by lemma 13, when tout = ∞, ΠHBA either violates (p, fAR)-
termination or fAV-validity. However, setting tout =∞ is equivalent to reducing
the real network delays to 0 (or arbitrarily close). Thus, if ΠHBA must violate
either (p, fAR)-responsiveness (if it violates termination when tout = ∞) or fAV-
validity otherwise.

5 An Efficient Common-Coin Protocol with Adaptive
Security

In this section, we present a new, efficient common-coin protocol with security
against adaptive adversaries. Coupling the BABA protocol from [23] with our

common-coin protocol from Section 5.4, we can obtain a new protocol for BABA
with security against adaptive adversaries that may corrupt at most f < n

3 par-
ties. The message- and communication complexities of this protocol are O(n2).
Notably, this complexity matches the best known algorithms for the static case
as well as the complexity for the best known synchronous BA protocols. There-
fore, the common-coin protocol in this section is well-motivated by the generic
compilers from the previous sections. Namely, it leads to a best-of-both worlds
protocol ΠHBA (or ΠETHBA) also in terms of communication complexity. Previ-
ously, for the case of adaptive corruptions, the most efficient solution due to [26]
achieved only an impractical communication complexity of O(n5). At a technical
level, our contribution consists mainly of the simple observation that the thresh-
old signature scheme from [20] satisfies the uniqueness property needed for the
common-coin construction of Cachin et al. [8] and proving this property under
the double pairing assumption, which we state below.

5.1 Weak Common Coin Protocols

Definition 5 ((p, t)-Weak Common Coin Protocol). A (p, t)-weak common
coin protocol is a distributed protocol with a subroutine GetCoin() that takes as
input a session identifier sid and outputs a bit b ∈ {0, 1}. Furthermore, for
any value of sid, it satisfies the following three properties if at most t parties
are dishonest. Here, the probability is taken over the random coins of the honest
parties.

– Termination: Once every honest party has locally called GetCoin(sid), the
protocol is guaranteed to terminate for every honest party (except with neg-
ligible probablity).

– Fairness: Every honest party outputs 0 with probability at least p and 1 with
probability at least p.

– Unpredictability: No efficient adversary can predict the outcome of GetCoin(sid)
with probability better than 1 − p + η before the first honest party calls
GetCoin(sid) (where η is a negligible function of the security parameter).

5.2 Pairing Groups

Let G, Ĝ, and GT be cyclic groups of prime order p with generators g, ĝ, and
gT , respectively. We assume a bilinear map e : G × Ĝ → GT . For this work, we
assume a type 3 setting, i.e., there is no efficiently computable isomorphism that
maps from Ĝ to G. We use the following hardness assumptions.

Definition 6 (Decision Diffie-Hellman Assumption). We say that the De-
cision Diffie-Hellman Assumption (DDH) holds with respect to G, if every effi-
cient adversary A has negligible advantage in the distinguishing the distributions
(g, ga, gb, gab) and (g, ga, gb, gab), where a, b, c← Z.

In the type 3 setting, we can also make the following stronger assumption, which
states that the DDH assumptions holds for both G and GT .

Definition 7 (Symmetric eXternal Diffie-Hellman Assumption). We say
that the Symmetric eXternal Diffie-Hellman Problem (SXDH) holds with respect

to G and Ĝ, if the DDH problem is hard in both G and Ĝ.

For convenience, we also state the so-called Double Pairing (DP) assumption,
which is implied by the DDH assumption in group GT .

Definition 8 (Double Pairing Assumption.). We say that the Double Pair-

ing Assumption (DP) holds with respect to G, Ĝ, and GT , if given (ĝz, ĝr)← Ĝ2,
every efficient algorithm A has negligible success probability in finding a non-
trivial pair (z, r) 6∈ G2 \ {(1G, 1G)} such that e(z, ĝz)e(r, ĝr) = 1T .

5.3 Threshold Signature Schemes

In this subsection, we formally introduce (non-interactive) threshold signature
schemes along with their security properties. We implicitly assume a message
space M and a signature space S.

Definition 9 (Threshold Signature Scheme). Let 0 ≤ t ≤ n. A (t, n)-
non-interactive threshold signature scheme is a tuple of efficient algorithms
Sig = (KeyGenTS,SignTS,ShareVerifyTS,VerifyTS,CombineTS) with the following
properties.

– The randomized key generation algorithm KeyGenTS takes a security param-
eter λ and outputs a tuple (sk1, ..., skn) of secret keys, a tuple (pk1, ..., pkn)
of public keys, and a special public key pk.

– The deterministic signing algorithm SignTS takes as input a secret key ski
and message m ∈M. It outputs a signature share σi on m.

– The deterministic share verification algorithm takes as input a public key
pki, a signature share σi and a tuple (i,m), where i ∈ [n]. It outputs a
bit b ∈ {0, 1}, indicating whether σi is a valid signature share on m under
secret key ski. We assume correctness, i.e., for all tuples (pk1, ...pkn) and
(sk1, ..., skn) output by KeyGenTS, all m ∈ M, and all i ∈ [n], we have that
ShareVerifyTS(pki,SignTS(ski,m), i,m) = 1.

– The deterministic combining algorithm CombineTS takes as input a tuple
of public keys (pk1, ...pkn), a message m, and a list of pairs {(i, σi)}i∈S,
where S ⊂ [n] is of size t + 1. It outputs either a signature σ on m or ⊥,
if {(i, σi)}i∈S contains ill-formed signature shares. We will omit the public
keys in the input to CombineTS when we can ensure that all the shares given
as input to it are valid.

– The deterministic verification algorithm VerifyTS takes as input a signature
σ, a message m and a special public key pk. It outputs a bit b ∈ {0, 1}
indicating whether σ is a valid signature on m. We again require correctness;
for all tuples (pk1, ...pkn) and (sk1, ..., skn) output by KeyGenTS, all m ∈M,
and S ′ = {(i, σi)}i∈S, where S ⊂ [n] is of size t+ 1 and σi = SignTS(ski,m),
we have that VerifyTS(pk,CombineTS(S ′, (pk1, ...pkn),m),m) = 1.

We next state the definition of unforgeability under chosen message attacks. Our
definition is inspired by the work of [20], but instead assumes that the scheme
uses a trusted dealer to set up the public key infrastructure, rather than the
parties agreeing on the structure in a fully distributed fashion, thus emulating
the trusted dealer used in our setting.

Definition 10 (Unforgeability Under Chosen Message Attacks). A (t, n)-
non-interactive threshold signature scheme satisfies unforgebility under chosen
message attacks if every efficient algorithm A has negligible advantage in the
following game.

– The challenger computes (sk1, ..., skn, pk1, ..., pkn, pk) ← KeyGenTS(λ) and
gives pk1, ..., pkn, pk to A. Throughout the game, the challenger maintains a
list C ⊆ [n].

– A may ask the following two types of queries:
• Corruption Queries: A submits an index i ∈ [n] to the challenger. The

challenger returns ski and sets C = C ∪ {i}.
• Signing Queries: A submits a pair (i,m) to the challenger. The challenger

computes σi ← SignTS(ski,m) and returns σi.
– A outputs a pair (m∗, σ∗). Let S ⊂ [n] be the list of values for which A made

a signing query of the form (i,m∗). A wins if VerifyTS(pk,m∗, σ∗) = 1 and
|S ∪ C| ≤ t.

For this work, we will consider the (t, n)-non-interactive threshold signature
scheme from [20]. Figure 4 presents a simplified version of their scheme which
assumes that a trusted dealer computes the secret keys and public keys of the
parties.

Lemma 14 ([20]). The scheme in Figure 4 provides unforgeability against cho-
sen message attacks in the random oracle model and under the SXDH assump-
tion.

Lemma 15. Suppose that (sk1, ..., skn, pk1, ..., pkn, pk) are generated as described

above. Let m ∈M, (h1, h2)← H(m), and let σ = (h
−A1[0]
1 h

−A2[0]
2 , h

−B1[0]
1 h

−B2[0]
2).

If the DP assumptions holds with respect to (G, Ĝ,GT), no efficient algorithm
can come up with σ′ 6= σ such that VerifyTS(σ′,m, pk) = 1 with non-negligible
probability, even when given (sk1, ..., skn, pk1, ..., pkn, pk).

Proof. Let A be an algorithm that, with non-negligible probability, on input
(sk1, ..., skn, pk1, ..., pkn, pk) outputs σ′ 6= σ such that VerifyTS(σ′,m, pk) =
1 . We show how to construct an equally efficient algorithm B that breaks
the DP assumption. On input ĝz, ĝr ← Ĝ, B works as follows. It simulates
KeyGenTS using the values ĝz, ĝr for its simulation. At the end of the simula-
tion, it gives (sk1, ..., skn, pk1, ..., pkn, pk) to A. Clearly, this simulation is per-
fect since the values ĝz, ĝr are uniformly distributed and thus have the same
distribution as if they were sampled in KeyGenTS. It simulates the random or-
acle H to A in the straightforward way. Once A returns σ′, B constructs a

Fig. 4: LJY Threshold Signature Scheme

– KeyGenTS(λ) : Choose bilinear groups G, Ĝ,GT of prime order p > 2λ. Sample
ĝz, ĝr ← Ĝ and values aik, bik ← Fp where i ∈ {0, ..., n} and k ∈ {1, 2}. For
k ∈ [2], set Ak[X] =

∑t
i=0 aikX

i and Bk[X] =
∑t
i=0 bikX

i. Compute ski =

{(Ak[i], Bk[i])}2k=1 and pki = (ĝ
A1[i]
z ĝ

B1[i]
r , ĝ

A2[i]
z ĝ

B2[i]
r). Compute {ĝk}2k=1 as

ĝk = ĝ
Ak[0]
z ĝ

Bk[0]
r and set pk = (G, Ĝ,GT , p, ĝz, ĝr, ĝ1, ĝ2).

– SignTS(ski,m): Compute (h1, h2) ← H(m) ∈ G2. Use ski =

{(Ak[i], Bk[i])}2k=1 to compute (zi, ri) ∈ G2 as zi =
∏2
k=1 h

−Ak[i]
k , ri =∏2

k=1 h
−Bk[i]
k

– ShareVerifyTS(pki,m, σi) : Parse σi as σi = (zi, ri) and pki as
pki = (v̂1,i, v̂2,i). Compute (h1, h2) ← H(m) ∈ G2. Return 1 if
e(zi, ĝz)e(ri, ĝr)

∏2
k=1 e(hk, v̂k,i) = 1T .

– CombineTS(m, pk1, ..., pkn, {(i, σi)}i∈S) : For each pair (i, σi), run
ShareVerifyTS(pki,m, σi). Return ⊥ if |S| ≤ t+ 1 or for less than t+ 1 values
of i, ShareVerifyTS(pki,m, σi) = 0. Otherwise, parse σi as σi = (zi, ri) ∈ G2

and compute (z, r) = (
∏
i∈S z

∆i,S(0)

i ,
∏
i∈S r

∆i,S [])

i) by using Lagrange
interpolation in the exponent, i.e., ∆i,S denotes the Lagrange polynomial
corresponding to party i ∈ S. Return (z, r).

– VerifyTS(pk,m, σ) : Parse σ as σ = (z, r) ∈ G2. Compute (h1, h2)← H(m) ∈
G2 and return 1 iff e(z, ĝz)e(r, ĝr)e(h1, ĝ1)e(h2, ĝ2) = 1T .

solution to the DP problem as follows. It parses σ′ as σ′ = (z′, r′). We write

σ = (z, r) = (h
−A1[0]
1 h

−A2[0]
2 , h

−B1[0]
1 h

−B2[0]
2). W.l.o.g. assume that z 6= z′.

This implies that z′h
A1[0]
1 h

A2[0]
2 6= 1G. On the other hand, VerifyTS(σ′,m, pk) =

e(z′, ĝz)e(r′, ĝr)
∏2

k=1 e(hk, ĝk) = e(z′, ĝz)e(r′, ĝr)
∏2

k=1 e(hk, ĝ
Ak[0]
z ĝ

Bk[0]
r). Thus,

expanding terms yields

VerifyTS(σ′,m, pk) = e(z′, ĝz)e(r′, ĝr)

2∏
k=1

e(hk, ĝ
Ak[0]
z ĝBk[0]

r) (3)

= e(z′h
A1[0]
1 h

A2[0]
2 , ĝz)e(r′h

B1[0]
1 h

B2[0]
2 , ĝr) = 1T . (4)

Thus, (z′h
A1[0]
1 h

A2[0]
2 , r′h

B1[0]
1 h

B2[0]
2) is a solution to the DP problem.

5.4 Putting Things Together: The Common-Coin Protocol

We use the common coin protocol by Cachin et al [8]. The idea of their protocol
is very simple. All parties share each others’ public keys from the (t, n)-threshold
signature scheme described in Figure 4. To produce a common coin on sid, every
party Pi produces locally a signature share σi = SignTS(sid, ski) and broadcasts
it. Once Pi obtains t + 1 valid signature shares on sid, it uses CombineTS to
combine them into signature σ. By lemma 15, the DP assumption assures that
any set of t + 1 shares uniquely determines σ. The parties can now use the

random oracle H ′ : GT → {0, 1} to convert the signature into an unbiased and
unpredictable bit b. The coin-tossing protocol is described in Protocol 1.

Protocol 1 Common coin protocol CoinToss from [8]

1: procedure KeyGenCoin(λ) // Execute only once
2: (sk1, ..., skn, pk1, ..., pkn, pk)← KeyGenTS(λ)
3: for all i ∈ [n] do
4: Send (pk1, ..., pkn, pk, ski) to Pi
5: end for
6: end procedure
7:
8: procedure GetCoin(sid) // For party Pi
9: σi ← SignTS(ski, sid)

10: Broadcast σi
11: upon receiving a set S of t+ 1 valid signature shares on sid

12: Compute σ ← CombineTS(pk, sid, S)
13: return H ′(σ)
14: end procedure

Lemma 16. For t < 1
2 , Protocol 1 is a (1

2 , t)-weak common coin protocol under
the DP assumption.

Proof. We prove that Protocol 1 satisfies termination, fairness, and unpredictabil-
ity. The termination property is easily seen to be true; since t < n

2 , once every
honest party has broadcast its share σi on sid, every party will eventually re-
ceive t+ 1 valid signature shares and thus will terminate the protocol. Fairness
is ensured by Lemma 15, which can be seen as follows. It is clear that if ev-
ery honest party obtains the same signature σ on sid by combining shares via
CombineTS, thenH ′(σ) is a random bit, where the randomness is over the random
coins that determine the secret keys of the honest parties. On the other hand,
any efficient adversary that can make two honest parties combine their shares
to distinct signatures σ and σ′ can clearly be used to break the DP assump-
tion by Lemma 15. It remains to argue about unpredictability. This property is
ensured by Lemma 14. Namely, any (unbounded) adversary has negligible ad-
vantage in predicting the value of H ′(σ) if it does not query H ′ on σ. However,
for any efficient adversary that controls at most t parties, Lemma 14 ensures that
it is computationally infeasible to come up with the value of σ given sid, before
the first honest party Pi broadcasts its signature share σi = SignTS(ski, sid) and
if the SXDH assumption holds. This concludes the proof.

References

1. I. Abraham, D. Dolev, and J. Y. Halpern. An almost-surely terminating polynomial
protocol forasynchronous byzantine agreement with optimal resilience. In R. A.

Bazzi and B. Patt-Shamir, editors, 27th ACM PODC, pages 405–414. ACM, Aug.
2008.

2. Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru, J. Olsen,
and D. Zage. Steward: Scaling byzantine fault-tolerant replication to wide area
networks. In IEEE Transactions on Dependable and Secure Computing.

3. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press,
Nov. 1993.

4. M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement
protocols (extended abstract). In R. L. Probert, N. A. Lynch, and N. Santoro,
editors, 2nd ACM PODC, pages 27–30. ACM, Aug. 1983.

5. M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous secure computations with
optimal resilience (extended abstract). In J. Anderson and S. Toueg, editors, 13th
ACM PODC, pages 183–192. ACM, Aug. 1994.

6. G. Bracha. Asynchronous byzantine agreement protocols. Information and Com-
putation, 75:130–143, 1987.

7. C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient asyn-
chronous broadcast protocols. In J. Kilian, editor, CRYPTO 2001, volume 2139 of
LNCS, pages 524–541. Springer, Heidelberg, Aug. 2001.

8. C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Constantinople: Practi-
cal asynchronous byzantine agreement using cryptography. Journal of Cryptology,
18(3):219–246, July 2005.

9. C. Cachin and J. Poritz. Secure intrusion-tolerant replication on the internet. In
DSN, 2002.

10. R. Canetti and T. Rabin. Fast asynchronous byzantine agreement with optimal
resilience. In 25th ACM STOC, pages 42–51. ACM Press, May 1993.

11. M. Castro and B. Liskov. Practical byzantine fault tolerance. In OSDI, pages
173–186, 1999.

12. M. Correia, N. F. Neves, and P. Verissimo. From consensus to atomic broadcast:
Time-free byzantine-resistant protocols without signatures. The Computer Jour-
nal, 2006.

13. D. Dolev and H. R. Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

14. M. Fitzi, M. Hirt, T. Holenstein, and J. Wullschleger. Two-threshold broadcast
and detectable multi-party computation. In E. Biham, editor, EUROCRYPT 2003,
volume 2656 of LNCS, pages 51–67. Springer, Heidelberg, May 2003.

15. J. A. Garay, J. Katz, C.-Y. Koo, and R. Ostrovsky. Round complexity of authen-
ticated broadcast with a dishonest majority. In 48th FOCS, pages 658–668. IEEE
Computer Society Press, Oct. 2007.

16. R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: speculative
byzantine fault tolerance. In ACM SIGOPS Operating Systems Review, volume 41,
pages 45–48, 2007.

17. R. Kumaresan. Broadcast and verifiable secret sharing: New security models and
round optimal constructions. PhD thesis, 2012.

18. K. Kursawe. Optimistic byzantine agreement. In SRDS, pages 262–267, October
2002.

19. L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(382–401), July 1982.

20. B. Libert, M. Joye, and M. Yung. Born and raised distributively: fully distributed
non-interactive adaptively-secure threshold signatures with short shares. In M. M.

Halldórsson and S. Dolev, editors, 33rd ACM PODC, pages 303–312. ACM, July
2014.

21. M.Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374–382, April 1985.

22. A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The honey badger of BFT pro-
tocols. In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi,
editors, ACM CCS 16, pages 31–42. ACM Press, Oct. 2016.

23. A. Mostéfaoui, M. Hamouma, and M. Raynal. Signature-free asynchronous byzan-
tine consensus with t < n/3 and O(n2) messages. In M. M. Halldórsson and
S. Dolev, editors, 33rd ACM PODC, pages 2–9. ACM, July 2014.

24. R. Pass and E. Shi. Hybrid consensus: Efficient consensus in the permissionless
model. In DISC, 2017.

25. R. Pass and E. Shi. Thunderella: Blockchains with optimistic instant confirmation.
In EUROCRYPT, 2018.

26. A. Patra, A. Choudhary, and C. P. Rangan. Simple and efficient asynchronous
byzantine agreement with optimal resilience. In S. Tirthapura and L. Alvisi, edi-
tors, 28th ACM PODC, pages 92–101. ACM, Aug. 2009.

27. M. O. Rabin. Randomized byzantine generals. In 24th FOCS, pages 403–409.
IEEE Computer Society Press, Nov. 1983.

28. G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung. Spin one’s wheels?
byzantine fault tolerance with a spinning primary. In SRDS, 2009.

29. G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung. Ebawa: Efficient
byzantine agreement for wide-area networks. In HASE, pages 10–19, 2010.

A Supplementary Material

A.1 UC Security of Dolev-Strong Protocol With Early Termination

Fig. 5: Functionality Fwbc from [17]

Fwbc interacts with an adversary S and a set of parties {P1, ..., Pn} and a desig-
nated sender Ps.

1. upon receiving (bcast, sid, v) from Ps, send (bcast, sid, Ps, v) to S.
2. upon receiving v′ from S:

– If Ps is corrupted, broadcast (bcast, sid, Ps, v
′).

– Otherwise, broadcast (bcast, sid, Ps, v).

Lemma 17. For t < n dishonest parties, ΠDS,t
SBC securely realizes Fwbc in the

Fsig-hybrid model, where signatures are replaced by calls to Fsig.

Proof. (sketch) Let A be an adversary that interacts with the parties running

the protocol ΠDS,t
SBC in the Fsig-hybrid model. We construct a simulator S that

Protocol 2 Dolev-Strong protocol ΠDS,t
SBC [13] for synchronous byzantine broad-

cast, adapted from [17]

Let v be the input of dealer Ps and let pki, ski denote the public/secret key of party i.
We say that a set SET is r-valid for a value v′, if it contains at least r valid signatures
from distinct parties on v′. Finally, denote by σvi a (valid) signature on v under public
key pki.

1: Broadcast (v, σs). Output v and terminate. // Only Ps
2: Set ACCi = SETi = ∅. // Every party Pi
3: For rounds r = 1, ..., t :
4: upon receiving (v′, SET) from Pj , if SET is r-valid, set ACCi ← ACCi∪{v′}, SETi ←

SETi ∪ SET.
5: If a value v′ was newly added to ACCi in round r− 1, broadcast (v′,SETi ∪ {σv

′
i }.

6: In round t+ 1:
7: if ACCi = {v′} for some v′ then
8: return v′

9: end if
10: Let v′ denote the first element in lexicographic order of ACCi
11: return v′

runs in the idealized model and interacts with Fwbc. We show that no efficient
environment Z can distinguish whether it is interacting with A and the parties
running ΠDS,t

SBC in the Fsig-hybrid model or S interacting with dummy parties
and accessing Fwbc. S acts as follows.

1. S waits until either Ps is corrupted or it receives (bcast, sid, Ps, v) from
Fwbc.

2. S simulates the honest parties in ΠDS,t
SBC . This is easily seen to be possible,

because ΠDS,t
SBC is deterministic and S knows the inputs of Ps (which is the

only party with input). Namely, either Ps is corrupted in which case S knows
the input of Ps or Ps is honest, and we have argued that S learns the input
of Ps from Fwbc. Lastly Fsig can efficiently be simulated.

3. If A wishes to corrupt some party Pi, S corrupts Pi and simulates Pi’s
internal state to A. Again, this can be done efficiently, because ΠDS,t

SBC is
deterministic and parties’ internal states are public.

4. Upon completing the simulation of the protocol, suppose that some honest
party Pi outputs v′ in the simulation of ΠDS,t

SBC . S now sends v′ to Fwbc and
terminates.

This simulation is perfect, since S knows the inputs of all honest parties. Sec-
ondly, by the consistency property of ΠDS,t

SBC , every honest party outputs v′ at the

end of the simulation of ΠDS,t
SBC . Furthermore, by honest termination validity of

ΠDS,t
SBC , v′ = v in the simulation of ΠDS,t

SBC if Ps was not corrupt upon terminating.
Therefore, the parties in the ideal world will output the same as the parties in
the real world.

A.2 Round-Based Bracha Broadcast

Consider the reliable broadcast protocol by Bracha [6] depicted in Protocol 3.
This protocol runs in a constant number of asynchronous rounds, but we de-
scribe in the following an attack strategy of a malicious sender that causes the
protocol to run in Ω(n) synchronous rounds until every party terminates, when
the protocol is translated to the synchronous setting naively.

Protocol 3 Protocol RBC for reliable broadcast [6] with sender Ps and input
m.

1: Broadcast message (send,m) // For party Ps only
2: upon receiving a message (send,m) from Ps
3: Broadcast message (echo,m)
4: upon receiving dn+t+1

2
e messages (echo,m), if ready message was not previously

sent:
5: Broadcast (ready,m)
6: upon receiving t + 1 messages (ready,m), if ready message was not previously

sent:
7: Broadcast (ready,m)
8: upon receiving 2t+ 1 messages (ready,m):
9: Output m and terminate

The parties proceed to run the protocol in synchronized rounds of length
∆. In the first round, the sender Ps broadcasts (send,m) to dn+t+1

2 e− 1 honest
parties. Thus, after ∆ time, each of these honest parties receives (send,m) and in
turn broadcast a total of dn+t+1

2 e−1 (echo,m) messages in the second round. Let
P1, ..., Pt+1 denote some set of t honest parties. In the second round Ps, sends
an additional (echo,m) exclusively to the party Pt+1. Thus, Pt+1 broadcast
(ready,m) at the end of the second round as the only honest party to do so.
At the end of round two, the adversary also sends t (ready,m) messages to Pt,
t− 1 such messages to Pt−1,..., and one such message to P1. It sends nothing to
the other honest parties. Thus, Pt broadcast (ready,m) at the end of the third
round, having now received a total of t+1 messages of the form (ready,m). This
in turn causes party Pt−1 to receive a total of t+1 ready messages by the end of
the fourth round. Continuing this argument, P1 receives t+1 ready messages by
the end of round 2 + t and in turn broadcasts (ready,m). Now, every remaining
honest party has received t + 1 ready messages by the end of round 3 + t and
broadcasts (ready,m). Thus, by the end of round 4 + t, every honest party has
received 2t+ 1 ready messages, and the protocol finally terminates.

	Combining Asynchronous and Synchronous Byzantine Agreement: The Best of Both Worlds

