
Faster Homomorphic Linear Transformations in HElib?

Shai Halevi1 and Victor Shoup1,2

1 IBM Research
2 New York University

Abstract. HElib is a software library that implements homomorphic encryption (HE), with a focus
on effective use of “packed” ciphertexts. An important operation (which is used in bootstrapping, as
well as in other applications) is applying a known linear map to a vector of encrypted data. In this
paper, we describe several algorithmic improvements that significantly speed up this operation: in our
experiments, our new algorithms were 30–75 times faster than those currently implemented in HElib
for typical parameters.
Our techniques also reduce the size of the large public evaluation key, often using 33%-50% less space
than the previous HElib implementation. We also implemented a new tradeoff that enables a drastic
reduction in size, maybe a 25x factor or more for some parameters, paying only a 2-4x factor in runtime
(and giving up some parallelization opportunities).

Keywords. Homomorphic encryption, Implementation, Linear transformations

? Supported by the Defense Advanced Research Projects Agency (DARPA) and Army Research Office(ARO) under
Contract No. W911NF-15-C-0236.

Table of Contents

1 Introduction . 1
2 Notations and Background . 3

2.1 The BGV Cryptosystem . 3
2.2 Encoding Vectors in Plaintext Slots . 4
2.3 Hypercube structure and one-dimensional rotations . 4
2.4 Frobenius and linearized polynomials . 5
2.5 Key switching strategies . 6

3 Matrix multiplication — basic ideas . 6
3.1 MatMul1D: one-dimensional E-linear transformations . 7
3.2 BlockMatMul1D: one-dimensional Zpr -linear transformations . 7

4 Overview of algorithmic improvements . 8
4.1 Baby-step/giant-step multiplication . 8
4.2 Hoisting . 8
4.3 Better key switching strategies in bad dimensions . 8
4.4 Decoupling rotations and automorphisms in bad dimensions . 8
4.5 A Horner-like rule with application to a minimal key-switching strategy 9
4.6 Exploiting multi-core platforms . 9

5 Hoisting . 9
5.1 Interaction with key-switching strategy . 11

6 Algorithms for one-dimensional linear transformations . 11
6.1 Logic for basic MatMul1D . 11
6.2 Revised logic for bad dimensions . 11
6.3 Baby-step/giant-step logic . 12
6.4 Revised baby-step/giant-step logic for bad dimensions . 13
6.5 Alternative revised baby-step/giant-step logic for bad dimensions 14
6.6 BlockMatMul1D logic . 15
6.7 Revised BlockMatMul1D logic for bad dimensions . 15

7 Algorithms for arbitrary linear transformations . 16
8 Timings . 17
References . 20

1 Introduction

Homomorphic encryption (HE) [9, 3] enables performing arithmetic operations on encrypted data
even without knowing the secret key. All contemporary HE schemes roughly follow the outline of
Gentry’s first candidate from 2009, where fresh ciphertexts are “noisy” to ensure security. This
noise grows with every operation, until it becomes so large so as to cause decryption errors. This
results in a “somewhat homomorphic” encryption scheme (SWHE) that can only evaluate low-depth
circuits, such a scheme can be converted to a “fully homomorphic” encryption scheme (FHE) using
bootstrapping. The most asymptotically efficient SWHE schemes are based on the hardness of
ring-LWE. These scheme all use Rp = Z[X]/(F (X), p) as their native plaintext space, with F a
cyclotomic polynomial and p an integer (usually a prime or prime power).

Smart and Vercauteren observed [11] that (for a prime p) an element in this native plaintext
space can be used to encode (via Chinese Remaindering) a vector of values from a finite field
Fpd , for some integer d that depends on F and p, and that operations on elements in Rp induce
the corresponding entry-wise operation on the encoded vectors. This technique of encoding many
plaintext elements from Fpd in a single Rp element, which is then encrypted and manipulated
homomorphically, is called “ciphertext packing”, and the entries in the vector are called “plaintext
slots.” Gentry, Halevi, and Smart showed in [4] how to use special automorphisms on Rp (which
were used for different purposes in [8] and [1]) to enable data movement between the slots.

HElib [7, 5, 6] is an open-source C++ library that implements the ring variant of the scheme due
to Brakerski-Gentry-Vaikuntanathan [1], focusing on effective use of ciphertext packing. It includes
an implementation of the BGV scheme itself with all its basic homomorphic operations, as well as
higher-level procedures for data-movement, simple linear algebra, bootstrapping, etc. One can think
of the lower levels of HElib as providing a “hardware platform”, defining a set of operations that
can be applied homomorphically. These operations include entry-wise additions and multiplications
operations on the vector of plaintext values, as well as data movement, making this “platform” a
SIMD environment.

Our Results. In this work, we improve performance of core linear algebra algorithms in HElib
that apply publicly known linear transformations to encrypted vectors. We implemented these new
algorithms in an experimental “fork” of HElib. For typical, realistic parameter settings, our new
algorithms can run 30-75 times faster than those in the current implementation of HElib, where the
exact speedup depends on myriad details.3 Our implementation also exploits multiple cores, when
available, to get even further speedups.

Our techniques also reduce the size of the large public evaluation key. In the old HElib imple-
mentation, the evaluation key typically consists of a large number of large “key switching matrices”:
Each of these “matrices” can take 1-4MB of space, and the implementation uses close to a hundred
of them. Our new implementation reduces the number of key-switching matrices by 33–50% in
some parameter settings (that arise fairly often in practice), while at the same time improves the
running time. Moreover, a new tradeoff that we implemented enables a drastic reduction in the
number of matrices (sometimes as few as four or six matrices overall), for a small prince of only
2-4x in performance. This space efficient variation, however, is inherently sequential, as opposed to
our other procedure than can be easily parallelized.

3 One could also consider algorithms that apply encrypted linear transformations to encrypted vectors; some of our
new algorithmic techniques may apply to that problem as well; however, HElib does not implement such algorithms,
and neither have we.

1

Applications. Linear transformations of encrypted vectors is a manifestly fundamental operation
with many applications. For one example, HElib itself makes critical use of such transformations in
its bootstrapping logic. As reported in [6], the bootstrapping routine can typically spend 25–40%
of its time performing such transformations.

As another example, consider a private information retrieval protocol in which a client selects
one value from a database of values held by a server, while hiding from the server which value
was accessed. Using HE, one way to do this is for the server to encode each value as a column
vector. The collection of all such values held by the server is thus encoded as a matrix M , where
each column in M corresponds to one value. To access the ith value, the client can send to the
server an encrypted unit vector v with 1 in the ith entry (or some other encrypted information
from which the server can homomorphically compute such an encrypted unit vector). The server
then homomorphically computes M × v, which is an encryption of the selected column of M . The
server sends the result to the client, who can decrypt it and recover the selected value.

Techniques. In the linear transformation algorithms currently implemented in HElib, the bulk of
the time is spent moving data among the slots in the encrypted vector. As mentioned above, this is
accomplished by using special automorphisms. The main cost of applying such an automorphism
to a ciphertext is actually that of “key switching”: after applying the automorphism to each ring
element in the ciphertext (which is actually a very cheap operation), we end up with an encryption
relative to the “wrong” secret key; by using data in the public key specific to this particular
automorphism — a so-called “key switching matrix” — we can convert the ciphertext back to one
that is an encryption relative to the “right” secret key. So the main goals in improving performance
are to reduce the number of automorphisms, and to reduce the cost of each automorphism.

– To reduce the number of automorphisms, we introduce a “baby-step/giant-step” strategy for
computing all of the required automorphisms. This strategy generalizes a similar idea that was
used in [6] in the context of bootstrapping. This strategy by itself speeds up the computation
by a factor of 15–20 in typical settings. See Section 4.1.

– We further reduce the number of automorphisms by refactoring a number of computations,
more aggressively exploiting the algebraic properties of the automorphisms that we use. See
Section 4.4.

– To reduce the cost of each automorphism, we introduce a new technique for “hoisting” the
expensive parts of these operations out of the main loop.4 Our main observation is that applying
many automorphisms to the same ciphertext v can be done faster than applying each one
separately. Instead we can perform an expensive pre-computation that depends only on v (but
not the automorphisms themselves), and this pre-computation makes each automorphism much
cheaper (typically, 6–8 times faster). See sections 4.2 and 5.

– Recall that key switching matrices are a part of the public key, we note that they consume
quite a lot of space (typically several megabytes per matrix), so keeping their numbers down
is desirable. In the current implementation of HElib, there can easily be several hundred such
matrices in the public key. We introduce a new technique that reduces the number of key-
switching matrices by 33–50% in some parameter settings (that arise fairly often in practice),
while at the same time improves the running time of our algorithms. See Section 4.3.

4 “Hoisting” is a term used in compiler optimization to describe the action of “hoisting” a computation out of a
loop, so that it is only performed once, instead of in every loop iteration.

2

– We introduce yet another technique that drastically reduces the number of key-switching ma-
trices to a very small number (less than 10), but comes at a cost in running time (typically
2–4 times more slowly as our fastest algorithms), and cannot be parallelized.5 Achieving this
reduction in key-switching storage without too much degradation in running time requires some
new algorithmic ideas. See Section 4.5.

Outline. The rest of the paper is organized as follows.

– In Section 2, we introduce notation and terminology, and review the basics of the BGV cryp-
tosystem, including ciphertext packing and automorphisms.

– In Section 3, we review the basic ideas underlying the current algorithms in HElib for apply-
ing linear transformations homomorphically. We focus on restricted linear transformations, the
“one-dimensional” transformations MatMul1D and BlockMatMul1D. It turns out that consider-
ing these restricted transformations is sufficient: they can be used directly in applications such
as bootstrapping, and can be easily be used to implement more general linear transformations.

– In Section 4, we give a more detailed overview of our new techniques.
– In Section 5, we give more of the details of our new hoisting technique.
– In Section 6, we present all of our new algorithms for MatMul1D and BlockMatMul1D in detail.
– In Section 7, we describe how to use algorithms for MatMul1D and BlockMatMul1D for more

general linear transformations.
– In Section 8, we report on the performance of the implementation of our new algorithms.

2 Notations and Background

For a positive modulus q ∈ Z>0, we identify the ring Zq with its representation as integers in
[−q/2, q/2) (except for q = 2 where we use {0, 1}). For integer z, we denote by [z]q the reduction
of z modulo q into the same interval. This notation extends to vectors and matrices coordinate-
wise, and to elements of other algebraic groups/rings/fields by considering their coefficients in some
convenient basis (e.g., the coefficient of polynomials in the power basis when talking about Z[X]).
The norm of a ring element ‖a‖ is defined as the norm of its coefficient vector in that basis.6

2.1 The BGV Cryptosystem

The BGV ring-LWE-based scheme [2] is defined over a ring R
def
= Z[X]/(Φm(X)), where Φm(X)

is the mth cyclotomic polynomial. For an arbitrary integer modulus N (not necessarily prime) we

denote the ring RN
def
= R/NR.

As implemented in HElib, the native plaintext space of the BGV cryptosystem is Rpr for a prime
power pr. The scheme is parametrized by a sequence of decreasing moduli qL � qL−1 � · · · � q0,
and an “ith level ciphertext” in the scheme is a vector v ∈ R2

qi . Secret keys are elements s ∈ R
with “small” coefficients (chosen in {0,±1} in HElib), and we view s as the second element of the
2-vector sk = (1, s) ∈ R2. A level-i ciphertext v = (p0, p1) encrypts a plaintext element α ∈ Rpr

with respect to sk = (1, s) if [〈sk, v〉]qi = [p0 + s · p1]qi = α + pr · ε (in R) for some “small” error
term, ‖ε‖ � qi/p

r.

5 While the “high level” operations using this technique are inherently sequential, the lower-level routines in HElib
will still exploit multiple cores, if available. Such low-level parallelism are usually less effective, however.

6 The difference between the norm in the different bases is not very important for the current work.

3

The error term grows with homomorphic operations of the cryptosystem, and switching from
qi+1 to qi is used to decrease the error term roughly by the ratio qi+1/qi. Once we have a level-0
ciphertext v, we can no longer use that technique to reduce the noise. To enable further computation,
we need to use Gentry’s bootstrapping technique [3]. In HElib, each qi is a product of small (machine-
word sized) primes.

2.2 Encoding Vectors in Plaintext Slots

As observed by Smart and Vercauteren [11], an element of the native plaintext space α ∈ Rpr

can be viewed as encoding a vector of “plaintext slots” containing elements from some smaller
ring extension of Zpr via Chinese remaindering. In this way, a single arithmetic operation on α
corresponds to the same operation applied component-wise to all the slots.

Specifically, suppose the factorization of Φm(X) modulo pr is Φm(X) ≡ F1(X) · · ·F`(X) (mod pr),
where each Fi has the same degree d, which is equal to the order of p modulo m, so that ` = φ(m)/d.
(This factorization can be obtained by factoring Φm(X) modulo p, followed by Hensel lifting.) Then
we have the isomorphism Rpr

∼=
⊕`

i=1(Z[X]/(pr, Fi(X)).

Let us now denote E
def
= Z[X]/(pr, F1(X)), and let ζ be the residue class of X in E, which is

a principal mth root of unity, so that E = Z/(pr)[ζ]. The rings Z[X]/(pr, Fi(X)) for i = 1, . . . , `
are all isomorphic to E, and their direct product is isomorphic to Rpr , so we get an isomorphism
between Rpr and E`. HElib makes extensive use of this isomorphism, using it to encode an `-vector
of elements in E as an element of the native plaintext space Rpr . Addition and multiplication of
ciphertexts act on all ` slots of the corresponding plaintext in parallel.

2.3 Hypercube structure and one-dimensional rotations

Beyond addition and multiplications, we can also manipulate elements in Rpr using a set of auto-
morphisms on Rpr of the form

θt : Rpr −→ Rpr , a(X) 7−→ a(Xt) (mod (pr, Φm(X))).

for t ∈ Z∗m. Since each θt is an automorphism, it distributes over addition and multiplication, i.e.,
θt(α + β) = θt(α) + θt(β) and θt(αβ) = θt(α)θt(β). Also, these automorphisms commute with one
another, i.e., θtθt′ = θtt′ = θt′θt. Moreover, for any integer i, we have θit = θti .

We can homomorphically apply such an automorphism by applying it to the individual ci-
phertext components and then performing “key switching” (see [2, 4]). In somewhat more detail, a
ciphertext in HElib consists of two “parts,” each an element of Rq for some q. Applying the same
automorphism (defined in Rq) to the two parts, we get a ciphertext with respect to a different
secret key. In order to do anything more with this ciphertext, we usually have to convert it back
to a ciphertext with respect to the original secret key. In order to do this, the public-key must
contain data specific to the automorphism θt, called a “key switching matrix”.7 We will discuss this
key-switching operation in more detail below in Section 5.

As discussed in [4], these automorphisms induce a hypercube structure on the plaintext slots,
that depends on the structure of the group Z∗m/〈p〉. Specifically, HElib keeps a hypercube basis

7 Note that this “key switching” technique is a generalization of that used to allow multiplication of ciphertexts.

4

g1, . . . , gn ∈ Z∗m with orders D1, . . . , Dn ∈ Z>0, and then defines the set of representatives for
Z∗m/〈p〉 as

{ge11 · · · g
en
n : 0 ≤ es < Ds, s = 1, . . . , n}.

Thus, the slots are in one-to-one correspondence with tuples (e1, . . . , en) with 0 ≤ es < Ds. This in-
duces an n-dimensional hypercube structure on the plaintext space. If we fix e1, . . . , es−1, es+1, . . . , en,
and let es range over 0, . . . , Ds − 1, we get a set of Ds slots, which we refer to as a hypercolumn in
dimension s (and there are `/Ds such hypercolumns).

Using automorphisms, we can efficiently perform rotations in any dimension; a rotation by
i in dimension s maps a slot corresponding to (e1, . . . , es, . . . , en) to the slot corresponding to
(e1, . . . , es + i mod Ds, . . . , en). In other words, it rotates each hypercolumn in dimension s by i.
We denote by ρs the rotation-by-1 operation in dimension s. Observe that ρis is the rotation-by-i
operation in dimension s.

We can implement ρis by applying either one or two of the automorphisms {θt}t∈Z∗m defined
above. If the order of gs in Z∗m is Ds, then we get by with just a single automorphism, since

ρis(α) = θgis(α). (1)

In this case, we call s a “good dimension”.

If the order of gs in Z∗m is different from Ds, then we call s a “bad dimension”, and we need to
implement this rotation using two automorphisms. Specifically, we use a constant “0-1 mask value”

µ that selects some slots and zeros-out the others, and use the two automorphisms ψ
def
= θgis and

ψ∗
def
= θgi−D

s
. Then we have

ρis(α) = ψ(µ · α) + ψ∗((1− µ) · α). (2)

The idea is roughly as follows. Even though ψ does not act as a rotation by i in dimension s, it
does act as the desired rotation if we restrict it to inputs with zeros in each slot whose coordinate
in dimension s is at least D− i. Similarly, ψ∗ acts as the desired rotation if we restrict it to inputs
with zeros in each slot whose coordinate in dimension s is less than D − i. This tells us that µ
should have a 1 in all slots whose coordinate in dimension s is less than D− i, and a 0 in all other
slots. Note also that

ρis(α) = µ′ · ψ(α) + (1− µ′) · ψ∗(α), (3)

where µ′ = ψ(µ) is a mask with a 1 is all slots whose coordinate in dimension s is at least i, and a
0 in all other slots. This formulation will be convenient in some of the algorithms we present.

2.4 Frobenius and linearized polynomials

We define the automorphism σ
def
= θp, which is the Frobenius map on Rpr (where θp is one of the

automorphisms defined in Section 2.3). It acts on each slot independently as the Frobenius map
σE on E, which sends ζ to ζp and leaves elements of Zpr fixed. (When r = 1, σ is the same as
the pth power map on E.) For any Zpr -linear transformation on E, denoted M , there exist unique

constants λ0, . . . , λd−1 ∈ E such that M(η) =
∑d−1

j=0 λjσ
j
E(η) for all η ∈ E. When r = 1, this follows

from the general theory of linearized polynomials (see, e.g., Theorem 10.4.4 on p. 237 of [10]), but
the same results are easily seen to hold for r > 1 as well. These constants are readily computable
by solving a system of equations mod pr.

5

Using linearized polynomials, we may effectively apply a fixed linear map to each slot of a plain-
text element α ∈ Rpr (either the same or different maps in each slot) by computing

∑d−1
j=0 κjσ

j(α),
where the κj ’s are Rpr -constants obtained by embedding appropriate E-constants in the slots.

2.5 Key switching strategies

The total number of automorphisms is φ(m), which is typically many thousands, so it is not very
practical to store all possible key switching matrices in the public key: each such matrix typically
occupies a few megabytes of storage, and storing all of them will consume hundreds of gigabytes.
Therefore, we consider strategies that trade off space for time with respect to key switching matrices.

For almost all applications, we only need the key switching matrices for one-dimensional rota-
tions in each dimension, as well as for the Frobenius map (and its powers). For a fixed dimension

s = 1, . . . , n of size D
def
= Ds with generator g

def
= gs, consider the automorphism θ

def
= θgs . In the

original implementation of HElib, one of two key switching strategies for dimension s are used.

Full: We store key switching matrices for θi for i = 0, . . . , D − 1. If s is a “bad dimension”, we
additionally store key switching matrices for θ−i for i = 1, . . . , D − 1.

Baby-step/giant-step: We store key switching matrices for θj with j = 1, . . . , g − 1, where

g
def
= d
√
De (the “baby steps”), as well as for θgk with k = 1, . . . , h− 1, where h

def
= dD/ge (the

“giant steps”). If s is a “bad dimension”, we additionally store key switching matrices for θ−gk

with k = 1, . . . , h (negative “giant steps”).

Using the full strategy, any rotation in dimension s can be implemented using a single automor-
phism and key switching if s is a good dimension, and using two automorphisms and key switchings
if s is a bad dimension.

Using the baby-step/giant-step strategy, any rotation in dimension s can be implemented using
at most two automorphisms and key switchings if s is a good dimension, and using at most four
automorphisms and key switchings if s is a bad dimension. The idea is that to compute θi(v), for
a given i = 0, . . . , D − 1, we can write i = j + gk, so that to compute θi(v), we first compute
w = θgk(v), which takes one automorphism and a key switching, and then compute θj(w), which
takes another automorphism and key switching.

These two strategies give us a time/space trade-off: although it slows down the computation time
by a factor of two, the baby-step/giant-step strategy requires space for just O(

√
D) key switching

matrices, rather than the O(D) key switching matrices required by the full strategy.
The same two strategies can be used to store key switching matrices for powers of the Frobe-

nius map, so that any power of the Frobenius map can be computed using either one or two
automorphisms. Indeed, it is convenient to think of the powers of the Frobenius map as defining
an additional (effectively “good”) dimension.

The default behavior of HElib is to use the full key-switching strategy for “small” dimensions
(of size at most 50), and the baby-step/giant-step strategy for larger dimensions.

3 Matrix multiplication — basic ideas

In [5], it is observed that we can multiply a matrix M ∈ E`×` by a column vector v ∈ E`×1 by
computing

Mv = M0v0 + · · ·+M`−1v`−1, (4)

6

where each vi is the vector obtained by rotating the entries of v by i positions, and each Mi is a
diagonal matrix containing one diagonal of M .

3.1 MatMul1D: one-dimensional E-linear transformations

In many applications, such as the recryption procedure in [6], instead of a general E-linear trans-
formation on Rpr , we only need to work with a one-dimensional E-linear transformation that acts
independently on the individual hypercolumns of a single dimension s = 1, . . . , n. We can adapt the
diagonal decomposition of Eqn. (4) to this setting using appropriate rotation maps on the slots of

Rpr . Let ρ
def
= ρs be the rotation-by-1 map in dimension s, and let D

def
= Ds be the size of dimension

s. If T is one-dimensional E-linear transformation on Rpr , then for every v ∈ Rpr , we have

T (v) =
D−1∑
i=0

κi · ρi(v), (5)

where the κi’s are constants in Rpr determined by T , obtained by embedding appropriate constants
in E in each slot. Eqn. (5) translates directly into a simple homomorphic evaluation algorithm, just
by applying the same operations to a ciphertext encrypting v. In a straightforward implementation,
in a good dimension, the computational cost is about D automorphisms and D constant-ciphertext
multiplications, and the noise cost is a single constant-ciphertext multiplication. In bad dimensions,
all of these costs would essentially double. In practice, if the constants have been pre-computed,
the computation cost of the constant-ciphertext multiplications is negligible compared to that of
the automorphisms.

One of our main goals in this paper is to dramatically improve upon the computational cost for
performing such a MatMul1D operation.

3.2 BlockMatMul1D: one-dimensional Zpr-linear transformations

In some applications (again, including the recryption procedure in [6]), instead of applying an
E-linear transformation, we need to apply a Zpr -linear map. Again, we focus on one-dimensional
Zpr -linear maps that act independently on the hypercolumns of a single dimension.

We can still use the same diagonal decomposition as in Eqn. (4), except that the entries in
the diagonal matrices are no longer elements of E, but rather, Zpr -linear maps on E. These maps
may be encoded using linearized polynomials, as in Section 2.4. Therefore, if T is one-dimensional
Zpr -linear transformation on Rpr , then for every v ∈ Rpr , we have

T (v) =
D−1∑
i=0

d−1∑
j=0

κi,j · σj
(
ρi(v)

)
, (6)

where the κi,j ’s are constants in Rpr determined by T .

A naive homomorphic implementation of the formula from Eqn. (6) takes O(dD) automor-
phisms, but as shown in [6], this can be reduced to O(d + D) automorphisms. In this paper, we
will also present significant improvements to the BlockMatMul1D algorithm in [6], although they
are not as dramatic as our improvements to the MatMul1D algorithm.

7

4 Overview of algorithmic improvements

4.1 Baby-step/giant-step multiplication

As already mentioned, [6] introduces a technique that reduces the number of automorphisms needed

to implement BlockMatMul1D in dimension s from O(dD) to O(d+D), where D
def
= Ds is the size of

the dimension, and d is the order of p mod m. A very similar idea, essentially a baby-step/giant-step
technique, can be used to reduce the number of automorphisms needed to implement MatMul1D in
dimension s from O(D) to O(

√
D). See Section 6 for details.

This technique is distinct from the baby-step/giant-step key switching strategy discussed above
in Section 2.5. However, for best results, the two techniques should be combined in a way that
harmonizes the baby-step/giant-step thresholds.

4.2 Hoisting

As we have seen, in many situations, we want to compute ψ(v) for a fixed ciphertext v and many
automorphisms ψ. Assuming we have key switching matrices for each automorphism ψ, the dom-
inant cost of computing all of these values is that of performing one key-switching operation for
each ψ. Our “hoisting” technique is a method that refactors the computation, performing a pre-
computation that only depends on v, and whose computational cost is roughly equivalent to a single
key-switching operation. After performing this pre-computation, computing ψ(v) for any individ-
ual ψ is much faster than a single key-switching operation (typically, around 6–8 times faster). We
describe this idea in more detail below in Section 5.

4.3 Better key switching strategies in bad dimensions

Recall from Section 2.5 that with the “full” key-switching strategy, in a bad dimension, we stored
key-switching matrices for the automorphisms θi, with i = −(D − 1), . . . ,−1, 1, . . . , D − 1. To
perform a rotation by i on v in the given dimension, we need to compute θi(v) and θi−D(v), and
so with these key-switching matrices available, we need to perform two automorphisms and key
switchings. However, we do not really need all of these negative-power key switching matrices.
In fact, we can get by with key-switching matrices just for θi, with i = 1, . . . , D − 1, and for
θ−D. To perform a rotation by i on v in the given dimension, we can compute w = θi(v) and
θ−D(w) = θi−D(v). So again, we need to perform two automorphisms and key switchings. This
cuts the number of key-switching matrices in half without a significant increase in running time.
Moreover, this key-switching strategy aligns well with the strategy discussed below for decoupling
rotations and automorphisms in bad dimensions.

Similarly, for the baby-step/giant-step key-switching strategy in a bad dimension, we just store
a key-switching matrix for θ−D, rather than for all the negative “giant steps”. This cuts down the
number of key-switching matrices by a third. Moreover, the number of key switchings we need to
perform per rotation is only 3 (instead of 4).

4.4 Decoupling rotations and automorphisms in bad dimensions

Recall that by Eqn. (3), a rotation by i on a ciphertext v in a given bad dimension can be im-
plemented as µθi(v) + (1 − µ)θi−D(v), where µ is a “mask” (a constant with a 0 or 1 encoded in

8

each slot). It turns out that in our matrix-vector computations, it is best to work directly with
this implementation, and algebraically refactor the computation to improve both running time and
noise. This refactoring exploits the fact that θ is an automorphism. See Section 6 for details.

4.5 A Horner-like rule with application to a minimal key-switching strategy

We introduce a new key-switching strategy that reduces the storage requirements even further, to
just 1, 2, or 3 key-switching matrices per dimension. This, combined with a simple algorithmic idea,
allow us to implement a variant of the baby-step/giant-step multiplication strategy that does not
run too much more slowly than when using the full or baby-step/giant-step key-switching strategy.
To do this, we observe that if we need to compute

∑h−1
i=0 ψ

i(vi), where ψ is some automorphism
and the vi’s are ciphertexts, we can do this using Horner’s rule, provided we have a key-switching
matrix just for ψ. Specifically, we can compute

h−1∑
i=0

ψi(vi) = ψ
(
· · ·ψ

(
ψ(vh−1) + vh−2

)
+ · · ·

)
+ v0,

setting wh−1 ← vh−1 and wi−1 ← ψ(wi) + vh−1 for i = h− 1, . . . , 1, and outputting w0.

4.6 Exploiting multi-core platforms

With the exception of the minimal key-switching strategy discussed above, all our other algorithms
are very amenable to parallelization. We thus implemented them so as to exploit multiple cores,
when available.

5 Hoisting

A ciphertext in HElib is a vector v = (p0, p1) ∈ R2
q , with each “part” p0, p1 represented in a Dou-

bleCRT format (i.e., both integer and polynomial CRT) [7]. We recall the steps in the computation
of each ψ(v), as implemented in HElib.

1. Automorphism step: We first apply the automorphism to each part of v, computing p′j ←
ψ(pj) for j = 0, 1.

Applying an automorphism to a DoubleCRT object is a fast, linear time operation, so this step
is cheap. If v = (p0, p1) decrypts to α under the secret key sk = (1, s), then v′ = (p′0, p

′
1) decrypts

to ψ(α) under the secret key sk′ = (1, ψ(s)). We next have to perform a “relinearization” operation
which converts v′ back to a ciphertext that decrypts to ψ(α) under the original secret key sk. This
operation can itself be broken down into two steps:

2. Break into digits step: decompose p′1 into “small” pieces: p′1 =
∑

k q
′
kDk.

Here, the Dk’s are integer constants, and the pieces q′k are elements of R of small norm. This
operation is rather expensive, as it requires conversions between DoubleCRT and coefficient
representations of elements in Rq.

9

3. Key switching step: compute the ciphertext (p′0 + p′′0, p
′′
1), where

p′′j =
∑
k

q′kAjk, (j = 0, 1).

Here, the Ajk’s are the “key switching matrices”, namely, pre-computed elements in RQ (for
some larger Q) which are stored in the public key. The Ajk’s are stored in DoubleCRT format,
so if we have the q′k in the same DoubleCRT format then this operation is also a fast, linear time
operation.

The key observation to our new technique is that we can reverse the order of the first two steps
above, without affecting the correctness of the procedure. Namely our new procedure is as follows:

1. Break into digits step: decompose the original p1 before applying the automorphism into
“small” pieces: p1 =

∑
k qkDk.

2. Automorphism step: compute p′0 ← ψ(p0), and q′k ← ψ(qk) for each qk. Namely, p′0 is computed
just as before, but we apply the automorphism to the pieces qk from above rather than to p1
itself.

3. Key switching step: compute the ciphertext (p′0 + p′′0, p
′′
1), where

p′′j =
∑
k

q′kAjk, (j = 0, 1).

This is exactly the same computation as before.

The reasons that this works, is that (i) ψ is an automorphism (so it distributes over addition
and multiplication), and (ii) applying ψ does not significantly change the norm of an element (cf.
[8]). In a little more detail, correctness of the key-switching step depends only on the following two
conditions on the q′k’s:

(a)
∑

k q
′
qDk = ψ(p1), and

(b) the q′k’s have low norm.

Condition (a) is satisfied in our new procedure since ψ is an automorphism (which acts as the
identity on integers), and so

ψ(p1) = ψ
(∑

k

qkDk

)
=
∑
k

ψ(qk)Dk =
∑
k

q′kDk.

Condition (b) is satisfied since the pieces qk have small norm, and applying ψ to a ring element
does not increase its norm significantly.

The new procedure is therefore just as effective as the old one, but now the expensive break-
into-digits step can be preformed only once, as a pre-computation that depends only on v, rather
than having to perform it for every automorphism ψ. The flip side is that we need to apply ψ to
each one of the parts qk instead of only once to p1. But as we mentioned, this is a cheap operation.

10

5.1 Interaction with key-switching strategy

If we want to compute ψ(v) for various automorphisms ψ, and we have key-switching matrices for
all of the ψ’s. then we can apply the above hoisting strategy directly. In some situations, what
we want to do is compute θi(v) for i = 0, . . . , D − 1, where θ = θgs for some dimension s with
generator gs ∈ Z∗m, and where D = Ds is the size of the dimension. If we are employing the baby-
step/giant-step strategy for storing key-switching matrices, then we do not have all of the requisite
key-switching matrices, so we cannot use the hoisting strategy directly. Instead, what we can do is
the following. Since we have key-switching matrices for all of the giant steps θgj , for j = 1, . . . , h−1,
we can use hoisting to compute θgj(v) for all of the giant steps, and for each of these values, we
perform the pre-computation (i.e., the break-into-digits step). Then, since we have key-switching
matrices for all of the baby steps θk, for k = 1, . . . , g − 1, we can compute any value θgj+k(v) as
θk(θgj(v)), using the precomputed data for θgj(v) and the key-switching matrix for θk.

6 Algorithms for one-dimensional linear transformations

In this section, we describe in detail our algorithms for applying one-dimensional linear transfor-

mations to a ciphertext v. We fix a dimension s = 1, . . . , n. Recall from Section 2.3 that ρ
def
= ρs is

the rotation-by-1 map in dimension s, and that D
def
= Ds is the size of dimension s.

6.1 Logic for basic MatMul1D

Recall from Section 3.1 that for that MatMul1D calculation, we need to compute

w =
∑
i∈[D]

κ(i)ρi(v),

where the κ(i)’s are constants in Rpr that depend on the matrix.

If s is a good dimension, then ρ is realized with a single automorphism, ρ = θ
def
= θgs where

gs ∈ Z∗m is the generator for dimension s. We can easily implement this in a number of ways. For
example, we can use the hoisting technique from Section 5 to compute all of the values θi(v) for
i ∈ [D]. Alternatively, if we are using a minimal key-switching strategy (see Section 4.5), then with
just a key-switching matrix for θ, we can compute the values θi(v) iteratively, computing θi+1(v)
from θi(v) as θ(θi(v)).

6.2 Revised logic for bad dimensions

From Eqn. (3), if s is a bad dimension, then we have

ρi(v) = µ(i)θi(v) + µ′(i)θi−D(v), (7)

where µ(i) is a “0-1 mask” and µ′(i) = 1 − µ(i). As discussed in Section 4.4, it is useful to
algebraically decouple the rotations and automorphisms in a bad dimension, which we can do as

11

follows:

w =
∑
i∈[D]

κ(i)ρi(v)

=
∑
i∈[D]

κ(i)
{
µ(i)θi(v) + µ′(i)θi−D(v)

}
=
∑
i∈[D]

κ′(i)θi(v) + θ−D
[∑
i∈[D]

κ′′(i)θi(v)

]
,

where

κ′(i) = µ(i)κ(i) and

κ′′(i) = θD
{
µ′(i)κ(i)}.

To implement this, we have to compute θi(v) for all i ∈ [D]. This can be done using the same
strategies as were discussed above in a good dimension, using either hoisting or iteration. The
only other automorphism we need to compute is one evaluation of θ−D. Note that with our new
key-switching strategy (see Section 4.3), we always have available a key-switching matrix for θ−D.

If we ignore the cost of pre-computing all the constants in DoubleCRT format, we see that the
computational cost is roughly the same in both good and bad dimensions. This is because the time
needed to perform all the constant-ciphertext multiplications is very small in comparison to the
time needed to perform all the automorphisms. The cost in noise is also about the same, essentially,
one constant-ciphertext multiplication.

6.3 Baby-step/giant-step logic

We now present the logic for a new baby-step/giant-step multiplication algorithm. As discussed
above in Section 4.1, this idea is very similar to the BlockMatMul1D implementation described in
[6]. Set g = d

√
De and h = dD/ge. We have:

w =
∑
i∈[D]

κ(i)ρi(v)

=
∑
j∈[g]

∑
k∈[h]

κ(j + gk)ρj+gk(v)

=
∑
k∈[h]

ρgk
[∑
j∈[g]

κ′(j + gk)ρj(v)

]
,

where κ′(j + gk) = ρ−gk(κ(j + gk)).

Algorithm 1. In a good dimension, where ρ = θ, we can implement the above logic using the
following algorithm.

1. For each j ∈ [g], compute vj = θj(v).
2. For each k ∈ [h], compute

wk =
∑
j∈[g]

κ′(j + gk)vj .

12

3. Compute

w =
∑
k∈[h]

θgk(wk).

Step 1 of the algorithm can be implemented by hoisting, or if we are using a minimal key-
switching strategy, by iteration. Also, if we using a minimal key-switching strategy, Step 3 can
be implemented using the Horner-rule idea discussed in Section 4.5 — for this, we just need a
key-switching matrix for θg. Otherwise, if we have key switching matrices for all of the ρgk’s, it
is somewhat faster to apply all of these automorphisms independently, which is also amenable to
parallelization.

6.4 Revised baby-step/giant-step logic for bad dimensions

Set g = d
√
De and h = dD/ge. Again, using Eqn. (7), and the idea of to algebraically decoupling

the rotations and automorphisms in a bad dimension, we have:

w =
∑
i∈[D]

κ(i)ρi(v)

=
∑
i∈[D]

κ(i)
{
µ(i)θi(v) + µ′(i)θi−D(v)

}
=
∑
j∈[g]

∑
k∈[h]

κ(j + gk)
{
µ(j + gk)θj+gk(v) + µ′(j + gk)θj+gk−D(v)

}
=
∑
k∈[h]

θgk
[∑
j∈[g]

{
κ′(j + gk)θj(v) + κ′′(j + gk)θj−D(v)

}]
,

where

κ′(j + gk) = θ−gk
{
µ(j + gk)κ(j + gk)

}
and

κ′′(j + gk) = θ−gk
{
µ′(j + gk)κ(j + gk)

}
.

Based on this, we derive the following:

Algorithm 2.

1. Compute v′ = θ−D(v).

2. For each j ∈ [g], compute vj = θj(v) and v′j = θj(v′)

3. For each k ∈ [h], compute

wk =
∑
j∈[g]

{
κ′(j + gk)vj + κ′′(j + gk)v′j

}
.

4. Compute

w =
∑
k∈[h]

θgk(wk).

13

Step 2 of the algorithm can be implemented by hoisting, or if we are using a minimal key-
switching strategy, by iteration. Also, if we using a minimal key-switching strategy, Step 4 can be
implemented using Horner’s rule. As before, if we have key switching matrices for all of the ρgk’s,
it is somewhat faster to apply all of these automorphisms independently, which is also amenable to
parallelization.

Based on experimental data, we find that using the baby-step/giant-step multiplication algo-
rithms are faster in dimensions for which we are using a baby-step/giant-step key-switching strategy.
Moreover, even if we are using the full key-switching strategy, and we have all key-switching matri-
ces for that dimensions available, the baby-step/giant-step multiplication algorithms are still faster
in very large dimensions (say, on the order of several hundred).

6.5 Alternative revised baby-step/giant-step logic for bad dimensions

We considered, implemented, and tested an alternative algorithm, which was found to be slightly
slower and was hence disabled. It proceeds as follows: Set g = d

√
De and h = dD/ge.

w =
∑
i∈[D]

κ(i)ρi(v)

=
∑
i∈[D]

κ(i)
{
µ(i)θi(v) + µ′(i)θi−D(v)

}
=
∑
j∈[g]

∑
k∈[h]

κ(i)
{
µ(j + gk)θj+gk(v) + µ′(j + gk)θj+gk−D(v)

}

=
∑
k∈[h]

θgk
[∑
j∈[g]

κ′(j + gk)θj(v)

]
+ θ−D

∑
k∈[h]

θgk
[
κ′′(j + gk)θj(v)

}] ,

where

κ′(j + gk) = θ−gk {µ(j + gk)κ(j + gk)} and

κ′′(j + gk) = θD−gk
{
µ′(j + gk)κ(j + gk)

}
.

Based on this, we derive the following:

Algorithm 3.

1. For each j ∈ [g], compute vj = θj(v)
2. For each k ∈ [h], compute

uk =
∑
j∈[g]

κ′(j + gk)vj and u′k =
∑
j∈[g]

κ′′(j + gk)v′j .

3. Compute

u =
∑
k∈[h]

θgk(uk) and u′ =
∑
k∈[h]

θgk(u′k).

4. Compute

w = u+ θ−D(u′).

14

6.6 BlockMatMul1D logic

Recall from Section 3.2 that for the BlockMatMul1D calculation, we need to compute

w =
∑
j∈[d]

∑
i∈[D]

κ(i, j)σj(ρi(v))

=
∑
j∈[d]

σj
[∑
i∈[D]

κ′(i, j)ρi(v)

]
,

where κ′(i, j) = σ−j(κ(i, j)). Here, σ is the Frobenius automorphism. This strategy is very similar
to the baby-step/giant-step strategy used for the MatMul1D computation.

Algorithm 4. In a good dimension, where ρ = θ, we can implement the above logic using the
following algorithm.

1. Initialize an accumulator wj = 0 for each j ∈ [d].
2. For each i ∈ [D]:

(a) compute vi = θi(v);
(b) for each j ∈ [d], add κ′(i, j)vi to wj .

3. Compute

w =
∑
j∈[d]

σj(wj).

Step 2(a) of the algorithm can be implemented by hoisting, or if we are using a minimal key-
switching strategy, by iteration. Also, if we are using a minimal key-switching strategy, Step 3
can be implemented using Horner’s rule, using just a key-switching matrix for σ. If we have key
switching matrices for all of the σj ’s, it is somewhat faster to apply all of these automorphisms
independently, which is also amenable to parallelization.

Typically, D is much larger than d. Assuming we are using the hoisting technique in Step 2(a), it
is much faster to perform Step 2(a) on the dimension of larger size D, and to perform Step 3 on the
dimension of smaller size d. Indeed, the amortized cost of computing each of the d automorphisms
in Step 3 is much greater than the amortized cost of computing each of the D automorphisms (via
hoisting) in Step 2(a). Note that in our actual implementation, if it turns out that D is in fact
smaller than d, then we switch the roles of θ and σ.

Observe that we store d accumulators u0, . . . , ud−1, rather than store the intermediate values
v0, . . . , vD−1. Either strategy would work, but assuming D is much larger than d, we save space
with this strategy (even though it is slightly more challenging to parallelize).

6.7 Revised BlockMatMul1D logic for bad dimensions

Again, using Eqn. (7) and the idea of algebraically decoupling rotations and automorphism, we
have:

w =
∑
j∈[d]

∑
i∈[D]

κ(i, j)σj(ρi(v))

w =
∑
j∈[d]

∑
i∈[D]

κ(i, j)σj
{
µ(i)θi(v) + µ′(i)θi−D(v)

}

=
∑
j∈[d]

σj
[∑
i∈[D]

κ′(i, j)θi(v)

]
+ θ−D

∑
j∈[d]

σj
[∑
i∈[D]

κ′′(i, j)θi(v)

] ,

15

where

κ′(i, j) = σ−j(κ(i, j))µ(i) and

κ′′(i, j) = θD
{
σ−j(κ(i, j))µ′(i)

}
.

Based on this, we derive the following:

Algorithm 5.

1. Initialize accumulators uj = 0 and u′j = 0 for each j ∈ [d].
2. For each i ∈ [D]:

(a) compute vi = ρi(v);
(b) for each j ∈ [d], add κ′(i, j)vi to uj and add κ′′(i, j)vi to u′j

3. Compute

u =
∑
j∈[d]

σj(uj) and u′ =
∑
j∈[d]

σj(u′j).

4. Compute
w = u+ θ−D(u′).

As above, Step 2(a) of the algorithm can be implemented by hoisting, or if we are using a
minimal key-switching strategy, by iteration. Also, if we using a minimal key-switching strategy,
Step 3 can be implemented using Horner’s rule, using just a key-switching matrix for σ. Again, if
it turns out that D is in fact smaller than d, then we switch the roles of θ and σ.

7 Algorithms for arbitrary linear transformations

So far, we have described algorithms for applying one-dimensional linear transformations to an
encrypted vector, that is, E- or Zpr -linear transformations that act independently on the hyper-
columns in a single dimension (i.e, the MatMul1D and BlockMatMul1D operations introduced in
Section 3). Many of the techniques we have introduced can be adapted to arbitrary linear transfor-
mations. However, from a software design point of view, we adopted a strategy of designing a simple
reduction from the general case to the one-dimensional case. For some parameter settings, this ap-
proach may not be optimal, but it will usually be much faster than the current implementations of
these operations in HElib.

We first consider the MatMulFull operation, which applies a general E-linear transformation
to an encrypted vector. Here, an encrypted vector is a ciphertext whose corresponding plaintext
is a vector with ` = φ(m)/d slots. One can easily extend the MatMulFull operation to E-linear
transformations on larger encrypted vectors that comprise several ciphertexts, although we have
not yet implemented such an extension.

Recall from Section 2.3 that ` = D1 · · ·Dn, where for s = 1, . . . , n, the size of dimension s is
Ds, and ρs is the rotation-by-1 map on dimension s. In [5], it was observed that we can apply the
MatMulFull operation to a ciphertext v by using a generalization of the simple rotation strategy we
presented above in Eqn. (4). More specifically, if T is an E-linear transformation on Rpr , then for
every v ∈ Rpr , we have

T (v) =
∑

i1∈[D1]

· · ·
∑

in∈[Dn]

κi1,...,in · (ρinn · · · ρ
i1
1)(v), (8)

16

where the κi1,...,in ’s are constants inRpr determined by the linear transformation. For each (i1, . . . , in−1),
there is a one-dimensional E-linear transformation T ′i1,...,in−1

that acts on dimension n, such that
for every w ∈ Rpr , we have

T ′i1,...,in−1
(w) =

∑
in∈[Dn]

κi1,...,in · (ρinn · · · ρ
i1
1)(w).

Therefore, we can refactor Eqn. (8) as follows:

T (v) =
∑

i1∈[Dn]

· · ·
∑

in−1∈[Dn−1]

T ′i1,...,in−1

{
(ρ

in−1

n−1 · · · ρ
i1
1)(v)

}
. (9)

To implement Eqn. (9), we compute all of the rotations (ρin−1 · · · ρi1)(v) using a simple recursive
algorithm. The main type of operation performed here is to compute all of the rotations ρiss (w) for
a given w, a given dimension, and for all is ∈ [Ds]. In a good dimension, where ρs = θgs , we can
use hoisting (see Section 5) to speed things up, provided the required key-switching matrices are
available, or sequentially if not. For bad dimensions, we can use the decoupling idea discussed in

Section 4.4. Specifically, using Eqn. (7), if θ
def
= θgs , then

ρiss (w) = µisθ
is(w) + (1− µis)θis−Ds

for an appropriate mask µis . Then we can compute w′ = θ−Ds , which requires a single key-switching
using our new key-switching strategy (see Section 4.3). After this, we need to compute θis(w) and
θis(w′) for all is ∈ [Ds], which again, can be done by hoisting or iteration, as appropriate.

The other main type of operation needed to implement Eqn. (9) is the application of all of
the one-dimensional transformations T ′i1,...,in−1

in dimension n, for which we can use our improved
implementation of MatMul1D.

The speedup over the current implementation in HElib will be roughly equal to the speedup
of our new implementation of MatMul1D in dimension n. So to get the best performance, our
implementation orders the dimensions to that Dn is the largest dimension size. If dimension n is a
bad dimension, we also save on noise as well (we save noise equal to that of one constant-ciphertext
multiplication). In many applications, it is desirable to choose parameters so that there is one very
large dimension, and zero, one, or two very small dimensions — indeed, by default, HElib will choose
parameters in this way. In this typical setting, the speedup for MatMulFull will be very significant.

Finally, we mention that the above techniques carry over in an obvious way to general Zpr -linear
transformations on Rpr . As above, we there is a simple reduction from the general BlockMatMulFull
operation to the one-dimensional BlockMatMul1D operation. The current implementation of Block-
MatMulFull is not particularly well optimized, and because of this, the speedup we get is roughly
equal to n times the speedup of our implementation of BlockMatMul1D, where, again, n is the
number of dimensions in the underlying hypercube.

8 Timings

We now present some timing data that demonstrates the effectiveness of our new techniques. All
of our testing was done on a machine with an Intel Xeon CPU, E5-2698 v3 @2.30GHz (which is a
Haswell processor), featuring 32 cores and 250GB of main memory. The compiler was GCC version

17

4.8.5, and we used NTL version 10.5.0 and GMP version 6.0. We implemented our new techniques
in an experimental “fork” of HElib.

Table 1 shows the running time (in seconds) for the old default behavior (“old def”) and the new
default behavior (“new def”) for MatMul1D computations (see Section 3.1). We do this for various
values of m defining a cyclotomic polynomial of degree φ(m). The quantity d is the order of p mod
m (which represents the “size” of each slot), while the quantity D is the size of the dimension. A
value of D marked with “?” denotes a “bad” dimension. Table 1 does not show the time taken to
build the constants associated with a matrix or to convert them to DoubleCRT representation. One
sees that for the large dimension of size 682 (which is a typical size for many applications), we get
a speedup of 30 if it is a good dimension, and a speedup of 75 if it is bad. Speedups for smaller
dimensions are less dramatic, but still quite significant.

Table 2 shows more detailed information on various implementation strategies, as well as the
cost of precomputing matrix constants. The “build” column shows the time to build the constants
associated with the matrix in a polynomial representation. The “conv” column shows that time
required to convert these constants to DoubleCRT representation. The following columns show that
time required to perform the matrix-vector multiplication, based on a variety of key switching and
algorithmic strategies. The columns are labeled as “[MBF]/[BF][HN]”, where

MBF: M is for Min KS strategy, B is for Baby-step/giant-step key-switching strategy, F is for
Full key-switching strategy,

BF: B is for Baby-step/giant-step multiplication strategy, F is for Full multiplication strategy,
HN: H is for Hoisting, N is for No hoisting.

As one can see from the data, the cost of converting constant to DoubleCRT representation can
easily exceed the cost of the remaining operations, so it is essential that these conversions are done
as precomputations, if at all possible.

Consider the first line in Table 2. Column B/BH represents the default behavior: baby-step/giant-
step key switching (since it is a large dimension of size 682), baby-step/step-step multiplication, and
hoisting (only the baby steps are subject to hoisting). The next column (B/BN) is the same, except
the baby steps are not hoisted, which is why it is slower. Column B/FH shows what happens if we
do not use baby-step/giant-step multiplication, and rely exclusively on hoisting (as in Section 5.1).
One can see that for such a large dimension, this is not an optimal strategy. Column M/B shows
what happens when we use the minimal key switching strategy (with baby-step/step-step multi-
plication). Even though it needs only two key switching matrices (rather than about 50), it is less
that twice as slow as the best strategy (although it does not parallelize very well). The algorithm
represented by column B/FN corresponds directly to the algorithm originally implemented in HE-
lib. The next line in the table represents a bad dimension. We note that for bad dimensions, the
algorithm originally implemented in HElib is about twice as slow as the one represented by column
B/FN (this is why the timing data in Table 1 for bad dimensions is not equal to the numbers in
column B/FN of Table 2).

Table 3 shows corresponding timing data for BlockMatMul1D computations (see Section 3.2).
For good dimensions, the current implementation in HElib roughly corresponds to the non-hoisting
strategy in our new implementation. So one can see that with hoisting we get a speedup of up
to 4 times over the current implementation for large dimensions (but only about 1.5 for small
dimensions). For large, bad dimensions, in the current implementation in HElib, the running time
will be close to twice that of the non-hoisting strategy in our new implementation; therefore, the
speedup in such dimensions is close to a factor 8.

18

Table 4 shows the effectiveness of parallelization using multiple cores. We show times for both
MatMul1D and BlockMatMul1D, using 1, 4, and 16 threads. These times are for the default strate-
gies, and do not show the time required to build the matrix constants or convert them to DoubleCRT
representation. While the speedups do not quite scale linearly with the number of cores, they are
clearly significant, with 16 cores giving roughly an 8X speedup in large dimensions and 4X speedup
in small ones.

We do not present detailed results for the running times of our new implementation of Mat-
MulFull and BlockMatMulFull, discussed in Section 7. However, our experiments indicate that the
speedups predicted in Section 7 closely align with practice: the speedup for MatMulFull is about the
same as our speedup for MatMul1D in the largest dimension; the speedup for BlockMatMulFull is
roughly our speedup for BlockMatMul1D in the largest dimension, times the number of dimensions
in the hypercube.

m φ(m) d D old def new def speedup

15709 15004 22 682 69.28 2.22 31.20
15709 15004 22 682? 138.20 3.14 75.86
18631 18000 25 120 20.27 1.38 14.69
18631 18000 25 120? 39.97 1.69 23.65
24295 18816 28 42 3.18 0.51 6.24
24295 18816 28 42? 6.20 0.55 11.27

Table 1. MatMul1D: summary of old vs new

m φ(m) d D build conv M/B M/F B/BH B/BN B/FH B/FN F/FH F/FN

15709 15004 22 682 0.47 5.54 3.80 44.81 2.22 3.19 6.46 69.28 5.30 28.30
15709 15004 22 682? 0.56 11.07 5.93 44.86 3.14 5.03 7.33 69.70 5.94 29.16
18631 18000 25 120 0.08 1.96 2.43 13.81 1.38 2.04 2.36 20.27 1.29 8.70
18631 18000 25 120? 0.10 3.91 3.68 13.95 1.69 2.89 2.45 20.27 1.29 8.78
24295 18816 28 42 0.03 0.70 1.39 5.09 0.82 1.17 1.11 6.87 0.51 3.18
24295 18816 28 42? 0.04 1.39 2.17 5.09 0.95 1.64 1.20 6.94 0.55 3.20

Table 2. MatMul1D

m φ(m) d D build conv M/ B/H B/N F/H F/N

15709 15004 22 682 15.47 122.62 54.73 21.03 84.42 18.15 42.67
15709 15004 22 682? 17.31 246.89 64.98 36.81 99.84 32.41 57.07
18631 18000 25 120 2.44 49.59 18.83 9.84 27.90 6.88 14.66
18631 18000 25 120? 2.96 98.79 23.83 17.62 35.80 12.73 20.58
24295 18816 28 42 0.95 19.73 9.25 7.84 13.64 5.01 7.70
24295 18816 28 42? 1.15 39.72 13.49 14.73 20.45 9.65 12.47

Table 3. BlockMatMul1D

19

MatMul1D BlockMatMul1D
m φ(m) d D nt = 1 nt = 4 nt = 16 nt = 1 nt = 4 nt = 16

15709 15004 22 682 2.18 0.67 0.29 20.21 7.60 2.47
15709 15004 22 682? 3.14 0.97 0.42 35.50 12.17 4.70
18631 18000 25 120 1.35 0.49 0.20 7.97 2.49 1.03
18631 18000 25 120? 1.65 0.58 0.29 13.89 4.30 1.67
24295 18816 28 42 0.47 0.23 0.15 4.98 1.37 0.61
24295 18816 28 42? 0.51 0.22 0.14 9.51 2.67 1.08

Table 4. MatMul1D/BlockMatMul1D (multi-core)

References

1. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic encryption without bootstrapping. In
Innovations in Theoretical Computer Science (ITCS’12), 2012. Available at http://eprint.iacr.org/2011/277.

2. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic encryption without bootstrapping.
ACM Transactions on Computation Theory, 6(3):13, 2014.

3. C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st ACM Symposium on
Theory of Computing – STOC 2009, pages 169–178. ACM, 2009.

4. C. Gentry, S. Halevi, and N. Smart. Fully homomorphic encryption with polylog overhead. In ”Advances in
Cryptology - EUROCRYPT 2012”, volume 7237 of Lecture Notes in Computer Science, pages 465–482. Springer,
2012. Full version at http://eprint.iacr.org/2011/566.

5. S. Halevi and V. Shoup. Algorithms in HElib. In J. A. Garay and R. Gennaro, editors, Advances in Cryptology
- CRYPTO 2014, Part I, pages 554–571. Springer, 2014. Long version at http://eprint.iacr.org/2014/106.

6. S. Halevi and V. Shoup. Bootstrapping for HElib. In EUROCRYPT (1), volume 9056 of Lecture Notes in
Computer Science, pages 641–670. Springer, 2015.

7. S. Halevi and V. Shoup. HElib - An Implementation of homomorphic encryption. https://github.com/shaih/

HElib/, Accessed September 2014.
8. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings. In H. Gilbert,

editor, Advances in Cryptology - EUROCRYPT’10, volume 6110 of Lecture Notes in Computer Science, pages
1–23. Springer, 2010.

9. R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms. In Foundations of Secure
Computation, pages 169–177. Academic Press, 1978.

10. S. Roman. Field Theory. Springer, 2nd edition, 2005.
11. N. P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Des. Codes Cryptography, 71(1):57–81,

2014. Early verion at http://eprint.iacr.org/2011/133.

20

