Analysis of Deutsch-Jozsa Quantum Algorithm

Zhengjun Cao ${ }^{1}$, Jeffrey Uhlmann ${ }^{2}$, Lihua Liu ${ }^{3, *}$

Abstract

Deutsch-Jozsa quantum algorithm is of great importance to quantum computation. It directly inspired Shor's factoring algorithm. In this note, we remark that Deutsch-Jozsa algorithm has confused two unitary transformations: one is performed on a pure state, the other is performed on a superposition. In the past decades, no constructive specification on the essential unitary operator performed on a superposition has been found. Thus, we think the algorithm needs more specifications so as to facilitate the construction of the wanted quantum oracle.

Keywords: quantum computing, Deutsch-Jozsa algorithm, Shor's algorithm, superposition.

1 Introduction

Deutsch-Jozsa algorithm [5] is one of the first examples of a quantum algorithm that is exponentially faster than any possible deterministic classical algorithm. The algorithm has become the cornerstone for quantum computation and inspired Grover's algorithm [7] and Shor's algorithm [13]. In this note, we want to point out that Deutsch-Jozsa algorithm has confused two unitary transformations: one is performed on a pure state, the other is performed on a superposition. So far, no constructive specifications on the essential unitary transformation performed on a superposition have been found. We believe this fact renders the algorithm somewhat dubious.

2 Preliminaries

A qubit is a quantum state $|\Psi\rangle$ of the form $|\Psi\rangle=a|0\rangle+b|1\rangle$, where the amplitudes $a, b \in \mathbb{C}$ such that $|a|^{2}+|b|^{2}=1,|0\rangle$ and $|1\rangle$ are basis vectors of the Hilbert space. Two quantum mechanical systems are combined using the tensor product. For example, a system of two

[^0]qubits $|\Psi\rangle=a_{1}|0\rangle+a_{2}|1\rangle$ and $|\Phi\rangle=b_{1}|0\rangle+b_{2}|1\rangle$ can be written as
\[

|\Psi\rangle|\Phi\rangle=\binom{a_{1}}{a_{2}} \otimes\binom{b_{1}}{b_{2}}=\left($$
\begin{array}{l}
a_{1} b_{1} \\
a_{1} b_{2} \\
a_{2} b_{1} \\
a_{2} b_{2}
\end{array}
$$\right)
\]

Its shorthand notation is $|\Psi, \Phi\rangle$.
Operations on a qubit are described by 2×2 unitary matrices. Of these, the most important is the Hadamard gate $H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$. Clearly, $H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle), H^{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I_{2}$.

3 Deutsch-Jozsa quantum algorithm

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$. The Deutsch-Jozsa algorithm needs a quantum oracle computing $f(x)$ from x which doesn't decohere x. It begins with the $n+1$ bit state $|0\rangle^{\otimes n}|1\rangle$. That is, the first n qubits are each in the state $|0\rangle$ and the final qubit is in the state $|1\rangle$.

A Hadamard gate is applied to each qubit to obtain the following state

$$
\begin{equation*}
H^{\otimes(n+1)}: \quad|0\rangle^{\otimes n}|1\rangle \longrightarrow \frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^{n}-1}|x\rangle(|0\rangle-|1\rangle) . \tag{1}
\end{equation*}
$$

Suppose that the oracle $\mathcal{U}_{f}:|x\rangle|y\rangle \longrightarrow|x\rangle|y \oplus f(x)\rangle$ is available, where \oplus is addition modulo 2. Applying the quantum oracle, it gives

$$
\begin{equation*}
\mathcal{W}: \quad \frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^{n}-1}|x\rangle(|0\rangle-|1\rangle) \longrightarrow \frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^{n}-1}|x\rangle(|f(x)\rangle-|1 \oplus f(x)\rangle) . \tag{2}
\end{equation*}
$$

For each $x, f(x)$ is either 0 or 1 . The state can be written as $\frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^{n}-1}(-1)^{f(x)}|x\rangle(|0\rangle-|1\rangle)$.
Ignoring the last qubit and applying the Hadamard gate to each of the first n qubits, it gives

$$
\begin{equation*}
H^{\otimes n}: \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1}(-1)^{f(x)}|x\rangle \longrightarrow \frac{1}{2^{n}} \sum_{x=0}^{2^{n}-1}(-1)^{f(x)}\left[\sum_{y=0}^{2^{n}-1}(-1)^{x \cdot y}|y\rangle\right] \tag{3}
\end{equation*}
$$

where $x \cdot y=x_{0} y_{0} \oplus x_{1} y_{1} \oplus \cdots \oplus x_{n-1} y_{n-1}$ is the sum of the bitwise product. The above new superposition can be written as

$$
\frac{1}{2^{n}} \sum_{y=0}^{2^{n}-1}\left[\sum_{x=0}^{2^{n}-1}(-1)^{f(x)}(-1)^{x \cdot y}\right]|y\rangle
$$

The probability for measuring the state $|0\rangle^{\otimes n}$ is $\left|\frac{1}{2^{n}} \sum_{x=0}^{2^{n}-1}(-1)^{f(x)}\right|^{2}$.

4 Analysis of Deutsch-Jozsa algorithm

The process of Deutsch-Jozsa algorithm can be described as follows

$$
\begin{aligned}
|\underbrace{00 \cdots 0}_{n}\rangle|1\rangle & \xrightarrow{H^{\otimes(n+1)}} \frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^{n}-1}|x\rangle(|0\rangle-|1\rangle) \\
& \xrightarrow{\mathcal{W}} \frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^{n}-1}|x\rangle(|f(x)\rangle-|1 \oplus f(x)\rangle) \\
& \xrightarrow[\text { and obtaining the state }]{\text { ignoring the last qubit }} \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1}(-1)^{f(x)}|x\rangle \\
& \xrightarrow{H^{\otimes n}} \frac{1}{2^{n}} \sum_{x=0}^{2^{n}-1}(-1)^{f(x)} \\
& \xrightarrow[\text { obstaining its probability }]{\left.\sum_{y=0}^{2^{n}-1}(-1)^{x \cdot y}|y\rangle\right]} \mid \underbrace{00 \cdots 0}_{n} .
\end{aligned}
$$

4.1 How to practically construct the oracle performed on a pure state

In Deutsch-Jozsa algorithm, the quantum oracle $\mathcal{U}_{f}:|x\rangle|y\rangle \longrightarrow|x\rangle|y \oplus f(x)\rangle$ must be of the form

$$
\mathcal{U}_{f}=I_{2}^{\otimes n} \otimes \mathcal{V}_{f}
$$

where I_{2} is the 2×2 identity matrix and \mathcal{V}_{f} is a 2×2 unitary matrix.
Suppose that $\mathcal{V}_{f}=\left[\begin{array}{ll}X_{1} & X_{2} \\ X_{3} & X_{4}\end{array}\right]$. We have $\mathcal{V}_{f}|y\rangle=\left[\begin{array}{ll}X_{1} & X_{2} \\ X_{3} & X_{4}\end{array}\right]|y\rangle=|y \oplus f(x)\rangle$. If $y=0$, then $|0\rangle=\binom{1}{0}$. It gives $\binom{X_{1}}{X_{3}}=|f(x)\rangle$. Since $f(x) \in\{0,1\}$, we obtain $X_{1}, X_{3} \in\{0,1\}$. If $y=1$, then $|1\rangle=\binom{0}{1}$. It gives $\binom{X_{2}}{X_{4}}=|1 \oplus f(x)\rangle$. Since $f(x) \in\{0,1\}$, we obtain $X_{2}, X_{4} \in\{0,1\}$. Thus, \mathcal{V}_{f} is in the set

$$
\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\right\} .
$$

Clearly, to determine \mathcal{V}_{f}, one has to invoke the classical computational result $f(x)$. That means the unitary matrix \mathcal{V}_{f} should be further specified as $\mathcal{V}_{f(x)}$. The notation is very useful because it indicates the constructive specification of the involved unitary matrix. So it is better to rewrite the quantum oracle as

$$
\mathcal{U}_{f(x)}=I_{2}^{\otimes n} \otimes \mathcal{V}_{f_{(x)}}
$$

Note that the construction of the oracle depends essentially on the classical computational result $f(x)$. Besides, the oracle is performed on the pure state $|x\rangle|y\rangle$.

4.2 Is it possible to construct the oracle performed on a superposition

The unitary operator \mathcal{W} is performed on the superposition $\frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^{n}-1}|x\rangle(|0\rangle-|1\rangle)$ and keeps the states of the first n qubits. Hence, it can be decomposed as $\mathcal{W}=I_{2}^{\otimes n} \otimes \Gamma$, where Γ is a 2×2 unitary matrix.

By the description of Deutsch-Jozsa algorithm, we have

$$
\mathcal{W}=I_{2}^{\otimes n} \otimes \Gamma=\mathcal{U}_{f(x)}=I_{2}^{\otimes n} \otimes \mathcal{V}_{f_{(x)}}
$$

That means one has to extract a classical computational result $f(x)$ from the superposition $\frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^{n}-1}|x\rangle(|0\rangle-|1\rangle)$ in order to construct the operator \mathcal{W} practically. Since x runs through all values $0,1, \cdots, 2^{n}-1$, one has to measure the superposition so as to obtain a value \hat{x}.

Once the value \hat{x} is measured, applying $\mathcal{W}=I_{2}^{\otimes n} \otimes \mathcal{V}_{(\hat{x})}$ to $\frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^{n}-1}|x\rangle(|0\rangle-|1\rangle)$ will produce one state of the following

$$
\begin{aligned}
& \frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^{n}-1}|x\rangle\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right](|0\rangle-|1\rangle), \text { or } \frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^{n}-1}|x\rangle\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right](|0\rangle-|1\rangle), \\
& \text { or } \frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^{n}-1}|x\rangle\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right](|0\rangle-|1\rangle), \text { or } \frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^{n}-1}|x\rangle\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right](|0\rangle-|1\rangle), \\
& \text { or } \frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^{n}-1}|x\rangle\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right](|0\rangle-|1\rangle), \text { or } \frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^{n}-1}|x\rangle\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right](|0\rangle-|1\rangle),
\end{aligned}
$$

not the wanted state $\frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^{n}-1}|x\rangle(|f(x)\rangle-|1 \oplus f(x)\rangle)$.
All in all, it has confused a quantum oracle performed on a pure state with a quantum oracle performed on a superposition. We now want to ask: "is it possible to construct the wanted oracle performed on the superposition?"

Finally, we would like to stress that only the Hadamard gate H is applied to each of the first n qubits twice. Since $H^{2}=I_{2}$, we find the algorithm always produces the state

$$
|\underbrace{00 \cdots 0}_{n}\rangle|\chi\rangle
$$

where $\chi \in\{0,1\}$. The claim that the probability for the state $|0\rangle^{\otimes n}$ is $\left|\frac{1}{2^{n}} \sum_{x=0}^{2^{n}-1}(-1)^{f(x)}\right|^{2}$, is incorrect.

5 Conclusion

We point out that there are some flaws in Deutsch-Jozsa algorithm. We would like to stress that the construction of a unitary operator performed on a superposition must be compatible with tensor product [2], which describes the combination of two quantum systems. Some physical
experiments [4, 8, 10, 11, 12, 14] on Shor's algorithm are criticized for using less qubits in the second register and other deficiencies [1, 3]. So far, those so-called quantum computers, D-wave [6] and IBM 9], have been reported to optimize some combinatoric problems only, not accelerate any numerical computations. We think Deutsch-Jozsa algorithm needs more specifications so as to facilitate the construction of the wanted quantum oracle and check its correctness.

6 Acknowledgements

We thank the National Natural Science Foundation of China (61303200, 61411146001).

References

[1] Z.J. Cao and Z.F. Cao: On Shor's Factoring Algorithm with More Registers and the Problem to Certify Quantum Computers. IACR Cryptology ePrint Archive 2014: 721 (2014)
[2] Z.J. Cao, Z.F. Cao and L.H. Liu: Remarks on Quantum Modular Exponentiation and Some Experimental Demonstrations of Shor's Algorithm. IACR Cryptology ePrint Archive 2014: 828 (2014)
[3] Z.J. Cao, Z.F. Cao and L.H. Liu: Comment on Demonstrations of Shor's Algorithm in the Past Decades. IACR Cryptology ePrint Archive 2015: 1207 (2015)
[4] A. Dang, et al.: Optimising Matrix Product State Simulations of Shor's Algorithm, arXiv:1712.07311v2 (2017)
[5] D. Deutsch and R. Jozsa: Rapid solutions of problems by quantum computation. Proceedings of the Royal Society of London A, 439, 553 (1992)
[6] D-Wave Systems, PDF, 01-2017, http://www.dwavesys.com/sites/default/files/ D-Wave\%202000Q\%20Tech\%20Collateral_0117F.pdf
[7] L. K. Grover: A fast quantum mechanical algorithm for database search. Proceedings of the TwentyEighth Annual ACM Symposium on Theory of Computing. pp. 212C219 (1996)
[8] E. Lucero, et al.: Computing prime factors with a Josephson phase qubit quantum processor. Nature Physics 8, 719-723, 2012. arXiv:1202.5707 (2012)
[9] http://www.research.ibm.com/ibm-q/
[10] C.Y. Lu, et al.: Demonstration of a Compiled Version of Shor's Quantum Factoring Algorithm Using Photonic Qubits, Physical Review Letters 99 (25): 250504, arXiv:0705.1684 (2007)
[11] B. Lanyon, et al.: Experimental Demonstration of a Compiled Version of Shor's Algorithm with Quantum Entanglement", Physical Review Letters 99 (25): 250505. arXiv:0705.1398 (2007)
[12] E. Martín-López, et al.: Experimental realization of Shor's quantum factoring algorithm using qubit recycling. Nature Photonics. doi:10.1038/nphoton. 2012.259 (2012)
[13] P. Shor: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26 (5): 1484-1509 (1997)
[14] L. Vandersypen, et al.: Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance, Nature 414 (6866): 883-887, arXiv:quant-ph/0112176 (2001)

[^0]: ${ }^{1}$ Department of Mathematics, Shanghai University, Shanghai, 200444, China.
 ${ }^{2}$ Department of Computer Science, University of Missouri, Columbia, USA.
 ${ }^{3}$ Department of Mathematics, Shanghai Maritime University, Shanghai, 201306, China. * liulh@shmtu.edu.cn

