
Post-Quantum EPID Group Signatures from Symmetric Primitives

Dan Boneh
Stanford University

dabo@cs.stanford.edu

Saba Eskandarian
Stanford University

saba@cs.stanford.edu

Ben Fisch
Stanford University

bfisch@cs.stanford.edu

Abstract

Group signatures are used extensively for privacy in anonymous credentials schemes and in
real-world systems for hardware enclave attestation. As such, there is a strong interest in making
these schemes post-quantum secure. In this paper we initiate the study of group signature
schemes built only from symmetric primitives, such as hash functions and PRFs, widely regarded
as the safest primitives for post-quantum security. We present two constructions in the random
oracle model. The first is a group signature scheme satisfying the EPID group signature syntax
and security definitions needed for private hardware attestation used in Intel’s SGX. The second
achieves significantly shorter signatures for many applications, including the use case of remote
hardware attestation. While our group signatures for attestation are longer than standard (non-
group) post-quantum signatures, they are short enough for applications where the data being
signed is large, such as analytics on large private data sets, or streaming media to a trusted
display. We evaluate several instantiations of our schemes so that the costs and benefits of these
constructions are clear. Along the way we also give improvements to the zero-knowledge Merkle
inclusion proofs of Derler et al. (2017).

1 Introduction

Group signatures [24] allow members of a group to anonymously sign messages on behalf of the
group, with the added property that a group manager can revoke the credential or possibly strip
the anonymity of corrupt members.

In recent years group signatures have become an important privacy mechanism in real-world
systems, most prominently in trusted hardware attestation such as Intel’s SGX. Group signatures
are the essential ingredient in Enhanced Privacy ID, or EPID, used for private attestation [18,
40]. Attestation is a process by which a hardware enclave running on a client device proves the
authenticity of its execution environment to a remote party. EPID lets the client device attest,
without revealing its identity to the remote party. EPID is based on a group signature scheme [18]
that is not post-quantum secure. An adversary who has access to a quantum computer could
subvert the attestation process and break a hardware enclave’s security in the worst possible way.

In light of the above, there is a strong interest in developing group signatures that are post-
quantum secure. The safest way to ensure post-quantum security is to construct a group signature
scheme using only symmetric primitives. This is analogous to constructing a standard (non-group)
signature scheme from hash functions [10, 19, 23, 46, 47] to obtain a signature scheme whose post-
quantum security is virtually assured.

Can we build efficient and secure group signatures from symmetric primitives? Bellare et al. [7]
give a generic construction from a standard signature scheme, public-key encryption, and a non-
interactive zero-knowledge (NIZK) proof. In this generic construction, the group manager adds a

1

member to the group by signing that member’s public key. The member can then sign messages
anonymously by first using the private key to sign the message, and then computing a NIZK proof
of knowledge of both this signature and the group manager’s signature on the corresponding public
key. This NIZK proof is the member’s group signature. With some work, their framework can be
adapted to support the EPID group signature definition of Brickell and Li [18] and to only use
symmetric primitives. The NIZK can be built from the “MPC in the Head” technique of Ishai
et al. [4, 33, 39] using random oracles, and the standard signature scheme can also be built from
one-way functions and collision-resistant hashing [10, 23, 34, 46]. Camenisch and Groth [20] give
such a scheme from one-way functions and NIZKs. However, without careful optimization, this
generic approach leads to very inefficient group signatures due to the need for NIZK proofs on
complex circuits (the proof size and prover time of these NIZKs is proportional to the number of
multiplication gate in the arithmetic circuit representing the statement).

1.1 Our Contributions

We construct a group signature scheme from symmetric primitives, and take a significant step
towards reducing the signature size.

Towards this goal, we build two group signature schemes. Our first construction greatly reduces
the size of the NIZK statement in the group signature by using PRFs instead of signatures wherever
possible. In particular, we are able to replace the inner group member’s signature in the generic
approach with a PRF evaluation. Our construction does not treat the given primitives as a black-
box. Indeed, this is likely necessary by a separation result of Abdalla and Warinschi [1] which
rules out black-box constructions for group signatures from one way functions (under the Bellare
et al definition of group signatures [7]). Consequently, our scheme performs best when instantiated
with NIZK-friendly PRFs and CRHFs. In particular, we evaluate the scheme using the LowMC
cipher [3].

Next, we show how to significantly improve our group signature by adapting it to the specific
real-world use case where signature verification requires an interaction with the group manager to
ensure that the signer has not been revoked. We take advantage of this structure to dramatically
reduce the signature size by moving many heavy verification steps outside of the NIZK, without
compromising anonymity or affecting security. This significantly shrinks the signature size over the
first construction.

Along the way, we develop a technique for proving membership in a Merkle tree, without
revealing the leaf location, using a third preimage resistant hash function (Section 5.4). This also
provides an improvement to the recent post-quantum accumulators of Derler et al. [27].

Performance and use cases. In Section 5 we discuss options for instantiating our schemes, and
measure the sizes of the resulting signatures under different security assumptions. For the circuit
sizes needed inside NIZKs in our construction, ZKB++ [23] provides the most efficient proofs. We
report sizes for both the Random Oracle and Quantum Random Oracle models [14], and find that
our second group signature, designed for attestation, can support groups of over a million members
with 3.45 MB signatures at 128-bit post-quantum security. While these signatures are not short, it
is important to keep in mind that several megabytes of traffic for attestation is quite acceptable for
many applications of trusted hardware, especially where the data transfer needs of the higher-level
application dwarf the size of the attestation.

One example is the case of analytics over large private data sets, an area of heavy investment,

2

both in terms of research and financial resources [32, 52]. In this setting, nodes in a distributed
network (or the server in a client-server setting) provide a single remote attestation and then
exchange a great deal of data. As the quantity of data transferred exceeds millions of database
records, the size of the initial attestation ceases to present a major bottleneck.

The case of digital rights management (DRM), for which hardware enclaves such as Intel SGX
seem particularly well-suited [25], is another setting where the size of our signatures are accept-
able. Consider the common situation where a content provider wishes to stream a movie (easily
a few gigabytes in size) to a subscriber while preventing redistribution or unauthorized viewing of
copyrighted content [51,53]. The few additional megabytes of an attestation do not matter next to
a film or television series totaling several hundred times their size.

1.2 Additional Related Work

Group Signatures. Group signatures [24] allow members of a group to anonymously produce
signatures on behalf of the group, with the added restriction that a group manager has the power
to police the behavior of members, e.g. by revoking their group credentials or stripping their
anonymity. The most frequently used definitions of group signatures are described by Bellare et
al. [7, 8]. Subsequent work on group signatures has led to various schemes, for example, those
of Lysyanskaya and Camenisch [21, 22], Boneh et al. [13, 15], and a scheme of Groth [38]. These
constructions are not post-quantum secure.

Post-Quantum Signatures and Proofs. Lattice-based cryptography is a popular candidate
for post-quantum security. Lattice group signatures were introduced by Gordon et al. [37] and
extended in several subsequent works [42–45]. The resulting group signatures are shorter than the
ones developed here, but rely on qualitatively stronger post-quantum assumptions.

Another set of post-quantum tools come from the “MPC in the Head” technique [39] for con-
structing zero-knowledge proofs. This idea has been extended by ZKBoo [33], ZKB++ [23], and
Ligero [4]. In particular, Chase et al. use ZKB++ to construt two post-quantum signature schemes
Fish and Picnic [23]. The recent development of zk-STARKS [9] opens another avenue to post-
quantum zero-knowledge proofs. In concurrent work, El Bansarkhani and Misoczki [5] describe a
stateful group signature scheme based on hash functions. Their work features small signature sizes
but large keys and focuses on a different definition of group signatures than that considered here.

Trusted Hardware and Attestation. Hardware enclaves, particularly Intel’s SGX [25], have
recently been used for a variety of security applications [31,48]. One of the primary cryptographic
components of SGX is its use of direct anonymous attestation, a primitive introduced by Brickell
et al. [17] and which relies on group signatures. The EPID attestation mechanism currently in use
by SGX, is due to Brickell et al. [18, 40].

2 Preliminaries

Notation. Let x← F (y) denote the assignment of the output of F (y) to x, and let x←R S denote
assignment to x of a uniformly random element sampled from set S. We use λ to refer to a security
parameter and sometimes omit it if its presence is implicit. The notation [k] represents the set of
integers 1, 2, ..., k, and ∅ denotes the empty set. We use AH to denote that A has oracle access to
some function H. A function negl(x) is negligible if for all c > 0, there is an x0 such that for any
x > x0, negl(x) < 1

xc . We omit x if the parameter is implicit. We use f(x) ≈ g(x) to mean that for

3

two functions f, g, |f(x)− g(x)| < negl(x). PPT stands for probabilistic polynomial time. We use
the notation FuncA,B〈a, b〉 to refer to a protocol Func between parties A and B with inputs a and
b, respectively. Finally, we allow algorithms to output ⊥ to indicate failure.

Standard Primitives. In Appendix A we review the syntax for the standard cryptographic
primitives used throughout the paper along with their security properties. In particular, we define
pseudorandom functions, secure signatures, commitments, and collision resistant hashing.

Proof Systems. We briefly review the definitions of proof systems that we will need in later
sections. The main notion we will use is that of a non-interactive zero knowledge proof of knowledge
in the random oracle model. We use the definitions of [29], which modify prior commom reference
string-based definitions of non-interactive zero-knowledge for use in the Random Oracle Model.

Definition 1 (Non-interactive Proof System). A non-interactive proof system Π for a relation R
consists of prover algorithm that on input x,w outputs a proof π and a verifier algorithm that
on input x, π outputs a bit b. We say that (P, V) is correct and sound if it satisfies the following
properties:

– (x,w) ∈ R→ V (x, P (x,w)) = 1

– (x,w) /∈ R→ Pr[V (x, P ∗(x,w)) = 1] < negl for any (potentially cheating) prover P ∗.

For convenience and clarity of notation, we use P (public(·), private(·), R) to indicate that the
public parts of the input to a prover P for relation R correspond to the statement x and that the
private parts correspond to the witness w.

The zero-knowledge property [36] informally requires that a proof reveals nothing about (x,w)
except that (x,w) ∈ R. Formally, we model this property by describing a simulator that can
provide a legitimate proof given only x and not w. The simulator S keeps a state st and operates
in two modes: one where it generates responses to random oracle queries and another where it
generates the actual simulated proof. S takes three inputs: the number 1 or 2 to indicate the
mode, the state st, and either a random oracle query qi or a string x.

Definition 2 (Non-interactive Zero Knowledge [12]). Denote with (S1, S2) the oracles such that
S1(qi) returns the first output of (hi, st) ← S(1, st, qi) and S2(x,w) returns the first output of
(π, st)← S(2, st, x) if (x,w) ∈ R. We say a protocol (PH, V H), where H is a hash function modeled
as a random oracle, is a non-interactive zero knowledge (NIZK) proof for R in the random oracle
model if there exists a PPT simulator S such that for all PPT distinguishers D we have

Pr[DH(·),PH(·,·)(1λ) = 1] ≈ Pr[DS1(·),S2(·,·)(1λ) = 1]

where both P and S2 oracles output ⊥ if (x,w) /∈ R.

Extractability, informally, is a strengthening of the soundness property that requires any accept-
able proof to have an extractor algorithm that can efficiently recover w with high probability given
the ability to interact with the prover. We refer to Bellare and Goldreich [6] for a full definition.

Simulation-sound extractability further strengthens the extractability requirement of proofs of
knowledge to enable extracting a witness even after seeing many simulated proofs. The following
notion is defined as weak simulation extractability by Faust et al [29] because it allows the extractor
to rewind the adversary and see the responses to simulator queries, but it suffices for our purposes.

4

Definition 3 (Simulation-sound Extractability [29]). Consider a NIZK proof system (PH, V H) for
R with zero-knowledge simulator S. Denote with (S1, S2) the oracles such that S1(qi) returns the
first output of (hi, st) ← S(1, st, qi) and S2(x,w) returns the first output of (π, st) ← S(2, st, x) if
(x,w) ∈ R. We say (PH, V H) is simulation-sound extractable with extraction error ν and with
respect to S in the random oracle model, if for all PPT adversaries A there exists an efficient
algorithm EA with access to the answers TH, T of (S1, S2) respectively such that the following
holds. Let

acc = Pr[(x∗, π∗)← AS1(·),S2(·)(1λ)|(x∗, π∗) /∈ T , V S1(x∗, π∗) = 1],

ext = Pr[(x∗, π∗)← AS1(·),S2(·)(1λ), w∗ ← EA(x∗, π∗, TH, T)|(x∗, π∗) /∈ T , (x∗, w∗) ∈ R],

where the probability in both cases is taken over the random choices of S and the adversary’s
random tape. Then, there exists a constant d > 0 and a polynomial p such that whenever acc ≥ ν,
we have that ext ≥ 1

p(acc− ν)d.

Definition 4 (Simulation-Sound Extractable Non-interactive Zero Knowledge Proof of Knowl-
edge). We say a non-interactive proof system is a simulation-sound extractable non-interactive zero
knowledge proof of knowledge in the random oracle model if it has the correctness, zero-knowledge,
and simulation-sound extractability properties defined above.

3 Post-Quantum EPID Group Signatures

In this section we describe and prove the security of our first post-quantum group signature scheme.

3.1 EPID Group Signatures: Definitions

We construct our group signature to the match the syntax and security requirements as defined
by Brickel and Li [18]. First, anonymity must ensure that the group manager colluding with any
number of group members cannot uncover the identity of the signer. In particular, we do not want
the group manager to have a tracing key that lets it compromise a group member’s identity from
a group signature. Nevertheles, we will later briefly explain how to extend our scheme to achieve
traceability, if desired.

Second, we want a revocation property where a group manager can revoke a user’s ability to
sign by either:
• adding a revoked user’s leaked signing key to a revocation list KEY-RL, or
• adding a revoked user’s group signature to a revocation list SIG-RL.

A user is revoked if its key is included in the list KEY-RL, or if any of its signatures are included in
the list SIG-RL.

With this setup, we define the syntax and security properties for a group signature scheme as
follows.

Definition 5 (Group Signature). A group signature scheme G involving a group manager M and
n group members, parties P1 to Pn, consists of algorithms Init, Join, GPSign, GPVerify, RevokeKey
and RevokeSig:

– (gsk, gpk) ← Init(1λ): This algorithm takes as input a security parameter 1λ and outputs a
key pair (gsk, gpk).

5

– 〈certi, (ski, certi)〉 ← JoinM,Pi〈(gsk, gpk), gpk〉: This is a protocol between the group manager
and a group member Pi where each party has its keys as input, and both parties get party
Pi’s certificate as output. Pi also gets its secret key ski as an output.

– ⊥/sig ← GPSign(gpk, ski, certi,m,SIG-RL): This algorithm takes as input the public key, a
signature revocation list SIG-RL, and party Pi’s secret key and certificate. The output is a
group signature sig.

– 1/0← GPVerify(gpk,m,KEY-RL, SIG-RL, sig): This algorithm verifies a group signature sig on
a message m given the group public key and key/signature revocation lists KEY-RL, SIG-RL.
It outputs 1 to accept the signature and 0 to reject it.

– KEY-RL← RevokeKey(gpk,KEY-RL, ski): This algorithm adds a secret key ski to a key revo-
cation list, so signatures created with this key will no longer be accepted.

– SIG-RL ← RevokeSig(gpk,KEY-RL,SIG-RL,m, sig): This algorithm adds a signature sig to a
signature revocation list, so signatures created with the same key as sig will no longer be
accepted.

The algorithms must satisfy Correctness (Definition 6), Anonymity (Definition 9), and Unforge-
ability (Definition 12), which differ only on minor points from those of EPID [18]. We only need
one direction of the correctness definition of [18] because unforgeability implies the other direction.
That is, we require that if a group member has successfully completed the Join procedure and
neither its key nor any of its signatures have been revoked, then that group member’s signatures
should successfully verify.

Definition 6 (Correctness). Let Σi be the set of signatures issued by group member Pi who has
successfully run the Join procedure in group signature scheme G with security parameter λ. G is
correct if and only if

ski /∈ KEY-RL ∧ Σi ∩ SIG-RL = ∅ →
Pr[GPVerify(gpk,m,KEY-RL, SIG-RL,GPSign(gpk, ski, certi,m,SIG-RL)) 6= 1]

< negl(λ)

Next, we define anonymity via the Anonymity game. Informally, the property of being Anony-
mous requires that signatures in G hide the identity of the signer against any coalition of group
members (including the group manager) except the signer herself. The definition of anonymity also
implies notions of unlinkability between a signer and her signatures.

The strongest possible definition of anonymity, the full-anonymity of Bellare et al [7] which pro-
vides anonymity even against the signer herself, cannot be attained in our setting because we wish
to support revocation. Revocation is incompatible with full-anonymity because the compromise
of a user Pi in the full-anonymity game would reveal ski, the information needed to revoke Pi’s
credentials, to the adversary. If revocation were possible, the adversary could then, on its own,
build a revocation list that includes only Pi and use it to determine whether Pi signed a particular
message or not by checking whether the signature verifies.

6

Admissible adversaries The security games for both anonymity (Definition 7) and existential
unforgeability (Definition 10) follow the standard practice of defining admissible adversaries whose
behavior we restrict merely in order to simplify the presentation of the main game. We stress that
defining an admissible adversary is not the same as a semi-honest adversary. In each of our games
it is easy to see that any deviation from each admissibility criterion could be trivially detected
by the challenger (in either experiment) and rejected so that the adversary does not gain any
distinguishing advantage. Therefore, restricting to these admissible adversaries is without loss of
generality, i.e. does not weaken the adversary.

Definition 7 (Anonymity Experiment). The anonymity experiment denoted by ANON[A, λ, b]
with security parameter λ is played between adversary A and challenger C who is given input b.

1. Setup. Adversary A chooses (gpk, gsk)1 and sends gpk to challenger C.

2. Unrestricted Queries. A is allowed to make as many of the following queries to the C as it
wants:

– Join. A requests creation of a new group member Pi. C runs JoinA,Pi〈(gsk, gpk), gpk〉
with C playing the role of Pi, so that A gets certi and C gets (ski, certi).

– Sign. A requests a signature on a message m from party Pi relative to a signature
revocation list SIG-RL of its choosing, constructed from any subset of signatures it has
received thus far in the game. C computes sig ← GPSign(gpk, ski, certi,m,SIG-RL) and
sends it to A.

– Corrupt. A requests the private key of Pi. C sends ski.

3. Challenge. A sends C a message m, a signature list SIG-RL and two group member numbers
i0 and i1. C computes sig∗ = GPSign(gpk, skib , certib ,m,SIG-RL), and sends sig∗ to A.

4. Restricted Queries. A can make additional queries to C as above.

5. Output. A outputs b′.

ANON[A, λ, b] outputs the value b′ returned by A at the end of the game.

Definition 8 (Admissible Anonymity Adversary). An adversary A is admissible for ANON[A, λ, b]
if it satisfies the following criteria:

– only makes Sign or Corrupt queries on parties that have already participated in a Join and
does not make Join queries on parties that have already participated in a Join.

– only sends legitimate certificates certi in the join phase (well-formed according to the protocol,
e.g. signatures verify, over the correct values).

– chooses parties Pi0 and Pi1 that have already participated in a Join.

– chooses parties Pi0 and Pi1 that have not been corrupted and whose signatures have never
appeared in a revocation list.

1Note that the adversary may choose these keys arbitrarily and may even cause the join protocol to fail as a result.
However, it is easy to see that in our construction this will affect the adverary’s view in both experiments equally
(implicit in our security proof

7

– makes no Corrupt queries on Pi0 or Pi1 in the “Restricted Queries” stage.

– never includes sig∗ in SIG-RL during the “Restricted Queries” stage.

Definition 9 (Anonymous). Group signature scheme G is Anonymous if no admissible PPT adver-
sary can win the Anonymity game with greater than negligible advantage. That is, if the quantity
|Pr[ANON[A, λ, 0] = 1]− Pr[ANON[A, λ, 1] = 1]| ≤ negl(λ) for any admissible PPT A.

Finally, we define unforgeability. Our unforgeability game consists of an adversary who can add
arbitrary parties to a group and corrupt arbitrarily many members of a group. Security holds if
this adversary cannot forge the signature of an uncorrupted party on a message if its own choosing.

Definition 10 (Unforgeability Experiment). The unforgeability experiment FORGE[A, λ] with
security parameter λ is played between adversary A and challenger C.

1. Setup. C computes (gpk, gsk) ← Init(1λ) and sends gpk to A. C creates a set U of corrupted
parties and initializes it as U = ∅.

2. Queries. A is allowed to make as many of the following queries to C as it wants.

– Join. A requests creation of a new group member Pi. One of two cases follows:

i. C runs Join internally, adding a new party Pi to the group and keeping ski, certi. C
also sends certi to A.

ii. C and A run JoinC,Pi〈(gsk, gpk), gpk〉 with A playing the role of Pi, so that C gets
certi and A gets (ski, certi). A then sends ski to C who then appends i to U .

– Sign. A requests a signature on a message m from party Pi relative to a signature
revocation list SIG-RL of its choosing, constructed from any subset of signatures it has
received thus far in the game. C computes sig ← GPSign(gpk, ski, certi,m,SIG-RL) and
sends it to A.

– Corrupt. A requests the secret key of party Pi. C appends i to U and sends ski to A.

3. Forgery. A outputs a message m∗, revocation lists KEY-RL∗ and SIG-RL∗, and a signature sig∗.

FORGE[A, λ] outputs 1 (A wins the unforgeability game) if GPVerify(gpk,m∗,KEY-RL∗, SIG-RL∗, sig∗) =
1 and for every i ∈ U , either ski ∈ KEY-RL∗ or sig∗ signs a message in SIG-RL∗. Otherwise, it out-
puts 0.

Definition 11 (Admissible Unforgeability Adversary). An adversaryA is admissible for FORGE[A, λ]
if it satisfies the following criteria:

– only makes Sign or Corrupt queries on parties that have already participated in a Join.

– does not make Join queries on parties that have already participated in a Join.

– only sends legitimate values for ski in the join phase. That is, ski should correspond to the
certificate that C issues for it.

– does not obtain sig∗ by making a Sign query on m∗.

Definition 12 (Unforgeable). Group signature scheme G is Unforgeable if no admissible PPT
adversary can win the Unforgeability game with greater than negligible probability. That is, if the
quantity Pr[FORGE[A, λ] = 1] ≤ negl(λ) for any admissible PPT A.

8

3.2 Group Signature Construction I

Our construction uses a standard (non-group) signature scheme where each group member has its
own key pair and a certificate from the group manager. Instead of signature keys, however, we
construct our scheme so that each group member has a unique PRF secret key that will be used to
issue group signatures. As we will see, this leads to significant savings over the general framework
of Bellare et al. [7]. We still need a signature scheme for the group manager to produce certificates,
but the NIZK proof is done over a circuit that verifies a single signature (the group manager’s)
along with a few evaluations of the PRF. The signature scheme can be instantiated using a stateful
hash-based signature.

Collision Resistant PRF. We state and prove security of our scheme using a function f : K×X →
Y that is both a secure PRF and a collision resistant function. In fact, it suffices that f be collision-
resistant on the keyspace, meaning that for a target input x ∈ X chosen by the adversary, it should
be hard to find k0 6= k1 ∈ K such that f(k0, x) = f(k1, x). We explain how to construct an
MPC-friendly function with this property in Section 5.

Construction 13 (Group Signature). Our group signature scheme G = (Init, Join, GPSign, GPVer-
ify, RevokeKey, RevokeSig) with security parameter λ uses a signature scheme S = (Keygen, Sign, Verify),
a proof system Π = (P, V), and a PRF f that also serves as a collision-resistant hash function.

– Init(1λ): Group managerM runs Keygen(1λ) to get (gpk, gsk) and outputs this tuple (gpk is
published and gsk kept secret).

– JoinM,Pi〈(gsk, gpk), gpk〉:

- Group manager M sends challenge ci to member Pi.
- Pi chooses ski ←R {0, 1}λ and sends tjoin

i = f(ski, ci) back to M.

- M produces signature σi = Sign(gsk, (tjoin
i , ci)), and constructs certi = (tjoin

i , ci, σi), send-
ing a copy to Pi. If the signature scheme is stateful, then algorithm Join must maintain
a counter that is incremented for every user who joins the group.

- The group member’s private key is ski and both parties get copies of certi.

– GPSign(gpk, ski, certi, m, SIG-RL): Compute the following and output sig:

- r ←R {0, 1}λ
ci

- t← (f(ski, r), r)

- π ← P
(
public(λ,m, gpk, t,SIG-RL, KEY-RL), private(ski, certi), R1

)
- sig← (t, π).

We define the relation R1 in the proof of knowledge π for (sk∗i , cert
∗
i) to be true when the

following statements hold:

- t = (f(sk∗i , r), r)

- r 6= c∗i

9

- Verify(gpk, (tjoin∗
i , c∗i), σ

∗
i) = 1

- tjoin∗
i = f(sk∗i , c

∗
i)

- for each sigj ∈ SIG-RL, tsigj 6= (f(sk∗i , rsigj), rsigj)

– GPVerify(gpk, m, KEY-RL, SIG-RL, sig):

- Verify proof π: check V ((λ,m, gpk, t,SIG-RL, KEY-RL), π) = 1.

- For each skj ∈ KEY-RL, check that t 6= (f(skj , r), r).

- Check that sig /∈ SIG-RL.

- Output 1 if all of the above checks return 1; otherwise, output 0.

– RevokeKey(gpk, KEY-RL, ski): Return KEY-RL ∪ {ski}.

– RevokeSig(gpk, KEY-RL, SIG-RL, m, sig): return SIG-RL ∪ {sig} if
GPVerify(gpk, m, KEY-RL, SIG-RL, sig) = 1. Otherwise, return SIG-RL.

Performance. We discuss concrete instantiations of this scheme, and their performance in Sec-
tion 5.

Revocation. Although the difference between the two forms of revocation does not affect our
scheme’s security, the effect of revocation differs in practice depending on whether a group member
is revoked by key or by signature. A revocation by key renders all signatures, past or future,
invalid for that user, whereas a revocation by signature only applies to future signatures because
past signatures need to be verified with respect to the SIG-RL in place at the time of signing. This
does not matter for the purposes of the security game because the attempted forgery is always
the last signature produced in the game. For the same reason, the decision to include the check
that sig /∈ SIG-RL during GPVerify does not affect security for the purpose of the proof and can
be omitted. We include it only to better capture behavior that may be expected of revocation in
practice.

Traceable Signatures. Our approach can also be used to achieve traceable signatures. Traceabil-
ity requires that the group manager have the power to learn the identity of a signer. We presented
our scheme without a tracing property in order to guarantee a stronger anonymity property against
the group manager, but a similar approach could be used to achieve traceability. The group man-
ager could give each group member a signed secret token sk′′i , and every signature would include
the token t′ = (f(sk′′i , r

′), r′), for a newly picked random r′, along with a proof of knowledge of a
signature on sk′′i . Now the group manager can trace a signature by trying to reconstruct t′ with
the value of sk′′i for each signer, but anonymity will still hold against any other group member.
Despite being able to provide both traceability and anonymity, such a construction does not im-
ply public-key encryption via the result of [1] because our anonymity definition does not provide
privacy against the signer herself, a requirement of ‘full-anonymity’ as defined by Bellare et al [7].

Camenisch and Groth [20] also give a traceable group signature scheme from one-way functions
and NIZKs. Although their scheme can be instantiated under the same assumptions as ours, they
(loosely speaking) include a commitment to a credential for each group member in their public key

10

and give a proof of knowledge that a signature corresponds to one of those credentials. By avoiding
this cost, our scheme shrinks both the public key size and signature size by a factor O(N). Our
public key can also be published at group initialization time before any members have joined the
group.

3.3 Security proof

We now prove the security of our group signature scheme. Correctness follows almost immediately
from the construction with the caveat that we must ensure that the revocation checks do not
accidentally cause a signature from a legitimate key to be rejected.

Theorem 14. Assuming the correctness of signature scheme S and proof system Π and the pseu-
dorandomness of f , G is a correct group signature scheme.

Proof. Correctness follows from the construction. A group member that is not affected by revo-
cations of either form has all the necessary information to produce a signature that will verify,
given that the signature and the proof system also have correctness. Then it only remains to show
that an unrevoked signature or key ski will not “accidentally” satisfy the relation (f(ski, r), r) =
(f(skj , r

′), r′) for some revoked key skj or signature with key/randomness pair (skj , r). We call
these events BAD-KEY and BAD-SIG respectively and argue, using the fact that f is a PRF, that
they occur with negligible probability over the choices of ski, skj , r, and r′. We will only show the
proof for the case of BAD-KEY because the proof for BAD-SIG proceeds analogously.

Consider the transcript T = (t0, ..., tk) of k (polynomial in λ) responses to queries on f made
up of f(skj , r) for all skj ∈ KEY-RL as well as f(ski, r). The event BAD-KEY occurs exactly when
there exists some j such that f(skj , r) = f(ski, r). We can show that T is indistinguishable from a
list of random strings by a series of hybrids, where each successive hybrid replaces the next PRF
output with a random string. Each hybrid will be indistinguishable from the next by the security
of f . This is the case because an adversary who can distinguish between the list with PRF output
ti and the same list where ti is replaced by random string t′i can be given a list with the output of
a purported PRF in position i and determine whether that string is the output of a PRF or a truly
random function. Call the final hybrid T ′ = (t′0, ..., t

′
k). The probability of BAD-KEY in this hybrid

is equal to the probability that the random string t′k = t′j for some j ∈ [k− 1]. This is negligible in
the security parameter λ, completing the proof.

Next, we show that our group signature scheme provides anonymity. This property follows from
the zero-knowledge and pseudorandomness properties of the primitives used in our construction.
A full proof follows.

Theorem 15. Assuming that Π is a zero-knowledge proof system and that f is a PRF, G is an
anonymous group signature scheme.

Proof. We proceed by a series of hybrids and begin by describing our hybrids. In the following,
let x0 and x1 be distinct elements of [N], where N is an upper bound on the number of group
members. N is necessarily polynomial in λ because the adversary A is efficient.

– H0[x0, x1]: The real anonymity experiment, ANON[A, λ, 0] (Definition 7) run with an admis-
sible adversary A, except that we abort if A does not choose i0 = x0 and i1 = x1 in the
Challenge phase of the anonymity game.

11

– H1[x0, x1]: Same as the previous hybrid, but with the proof of knowledge π always replaced
with the output of its simulator. This is indistinguishable from the previous hybrid by the
zero-knowledge property of the proof.

– H2[x0, x1]: Same as the previous hybrid, but for group member Px0 , the output of f(skx0 , ·) is
replaced by a random string. This is indistinguishable from the previous hybrid by the PRF
security of f .

– H3[x0, x1]: Same as the previous hybrid, but for group member Px1 , the output of f(skx1 , ·)
is also replaced by a random string. This is indistinguishable from the previous hybrid by
the PRF security of f .

Indistinguishability between hybrids H0[x0, x1] and H1[x0, x1] follows immediately from the zero
knowledge property of proof π, so we omit this proof. Next, we prove indistinguishability between
the remaining hybrids.

Lemma 1. Assuming that f is a PRF, the outputs of H1[x0, x1] and H2[x0, x1] are indistinguishable.

Proof. We use an adversary A that distinguishes between the outputs of H1[x0, x1] and H2[x0, x1]
to construct an adversary B that wins the PRF security game. B acts as the challenger in the
anonymity game of H1[x0, x1] and simultaneously plays the PRF security game with a PRF security
game challenger. It reproduces the anonymity game for H1[x0, x1] exactly except any queries to
f(skx0 , ·) it replaces by queries to the PRF security game challenger (with a 0 prepended to the
input). B then passes on the output of A as its own output. Notice that in the anonymity game of
H1[x0, x1] the key skx0 is only used by the challenger to respond to queries for f(skx0 , ·) (because
the proof π has already been replaced by a simulated string). In particular, skx0 is never given to
the adversary A. Therefore, in the case that the PRF challenger is using a PRF on a randomly
sampled key then B provides a perfect simulation of H1[x0, x1] for A. In the case that the PRF
challenger is using a random function B provides a perfect simulation of H2[x0, x1]. If the output of
A distinguishes these two cases w.h.p, then B is able to win the PRF security game, contradicting
the PRF security assumption.

Lemma 2. Assuming that f is a PRF, the outputs of H2[x0, x1] and H3[x0, x1] are indistinguishable.

Proof. We use an adversary A that distinguishes between the outputs of H2[x0, x1] and H3[x0, x1]
to construct an adversary B that wins the PRF security game. B acts as the challenger in the
anonymity game of H2[x0, x1] and reproduces it exactly except any queries to f(skx1 , ·) are replaced
by queries to the PRF security game challenger (with a 1 prepended to the input). B then passes
on the output of A as its own output. Note that B provides a perfect simulation of either H2[x0, x1]
or H3[x0, x1] depending on whether the PRF challenger uses a PRF or a random function. As such,
the output of B will determine whether it was interacting with a PRF or a random function and
win the PRF security game.

By Lemmas 1 and 2, we have shown that H0[x0, x1] is indistinguishable from H3[x0, x1]. We can
define corresponding hybrids H′0-H′2[x0, x1] with accompanying indistinguishability proofs starting
from ANON[A, λ, 1]. Note that this implies hybrids H0[x0, x1] and H′0[x0, x1] are indistinguishable.

12

That is, for all admissible PPT adversaries A,

|Pr[ANON[A, λ, 0] = 1|i0 = x0, i1 = x1]− Pr[ANON[A, λ, 1] = 1|i0 = x0, i1 = x1]|
< negl(λ).

Now it only remains to show that the probability that i0 = x0, i1 = x1 is polynomial in λ to
complete the proof of anonymity. If we choose x0, x1 ←R [N], we will have that Pr[x0 = i0] = 1

N
and Pr[x1 = i1] = 1

N because x0, x1 are chosen independently of A. So the probability that
i0 = x0, i1 = x1 is 1

N2 which is polynomial in λ because N , an upper bound on the group size, is
polynomial in λ. Thus we have that

1

N2
|Pr[ANON[A, λ, 0] = 1]− Pr[ANON[A, λ, 1] = 1]| < negl(λ)

|Pr[ANON[A, λ, 0] = 1]− Pr[ANON[A, λ, 1] = 1]| < N2negl(λ).

Since N2negl(λ) is still negligible in λ, this completes the proof.

Finally, we show that our group signature scheme is unforgeable. Intuitively, unforgeability
comes from the fact that in order to produce a valid signature without the endorsement of the
group manager, an attacker must guess a group member’s unrevoked secret key.

Theorem 16. Assuming that Π is a zero knowledge proof of knowledge proof system with simulation-
sound extractability, S is an unforgeable signature scheme, that f is a PRF, and that f is addition-
ally a collision-resistant hash function, G is an unforgeable group signature scheme.

Proof. We proceed by a series of hybrids and begin by describing our hybrids:

– H0: The real unforgeability game, FORGE[A, λ] run with an admissible adversary A.

– H1: Same as previous hybrid, but we also run the extractor on each hidden value in the proof
of knowledge π from the forgery and output 0 (i.e. adversary loses) if the extractor fails.
This is indistinguishable from the previous world by the extractability property of the proof
of knowledge.

– H2: Same as the previous hybrid, but we output 0 (i.e. adversary loses) if the values of (tjoin
i ,

ci) extracted from the forgery are not from a certificate issued by the group manager. This
is indistinguishable from the previous world by the unforgeability of signature scheme S.

– H3: Same as previous hybrid, but we abort if there exists a j ∈ U , that is, a party Pj in the set

of corrupted group members, such that for certi extracted from the forgery, tjoin
i = f(skj , ci).

This is indistinguishable from the previous world by the collision-resistance of f .

Indistinguishability between hybrids H0 and H1 follows immediately from the extractability of π.
We therefore omit this proof. Next, we prove indistinguishability between the remaining hybrids.

Lemma 3. Assuming that S is an unforgeable signature scheme, the outputs of H1 and H2 are
indistinguishable.

13

Proof. Note that so long as the certi extracted from adversary A’s forgery contains values (tjoin
i , ci)

from a certificate issued by the group manager, the outputs of H1 and H2 are identical, so the only
case in which the two distributions differ is when Verify(gpk, (tjoin

i , ci), σi) = 1 and (tjoin
i , ci) were

not issued by the group manager (and the adversary wins). Call this event F . We will show that
F occurs with at most negligible probability.

We build an adversary B for S’s unforgeability game that wins with non-negligible probability
if Pr[F] > negl(λ). B acts as the challenger in the group signature unforgeability game H2 and
reproduces it exactly except any signing queries to Sign(gsk, ·) are sent to the unforgeability game
for S. As its forgery, B outputs the value tjoin

i extracted from adversary A’s group signature forgery.
B wins S’s unforgeability game exactly when event F occurs. Thus, if F occurs with more than

negligible probability, B breaks the unforgeability of signature scheme S. Since S is an unforgeable
signature scheme, F must occur with at most negligible probability, so the outputs of H1 and H2

must only differ with at most negligible probability.

Lemma 4. Assuming that f is a collision-resistant hash function, the outputs of H2 and H3 are
indistinguishable.

Proof. Note that so long as there is no j ∈ U such that for certi extracted from the forgery, tjoin
i =

f(skj , ci), the outputs of H2 and H3 are identical, so the only case in which the two distributions
differ is when there does exist such a j and the adversary A successfully outputs a forgery. Call
this event F . We will show that F occurs with at most negligible probability.

Since it is possible for j ∈ U to be revoked by key or by signature, we will show only the
case where the group member Pj is revoked by key. The case for revocation by signature is
analogous. Let ti be the value of t extracted from the A’s forgery. In order for event F to
occur, the adversary must produce a value ski such that (f(ski, r), r) = ti 6= (f(skj , r), r) and

f(ski, ci) = tjoin
i = f(skj , ci).

We build an adversary B that breaks the collision-resistance of f when event F occurs with
greater than negligible probability. B acts as the challenger in the group signature unforgeability
game H2. At the conclusion of the game, if there exists a group member Pj as defined in H3, B
outputs the values (ski, cj) and (skj , cj), where ski is extracted from A’s forgery and skj by a linear
search over compromised group member keys, as its candidate collision for f . Otherwise, it fails to
output a collision.
B outputs a successful collision on f whenever event F occurs. Thus, if F occurs with greater

than negligible probability, B breaks the collision-resistance of f on tjoin
j . Since f is collision-

resistant, F must occur with at most negligible probability, so the outputs of H2 and H3 must only
differ with negligible probability.

By Lemmas 3 and 4, we have shown that FORGE[A, λ] is indistinguishable from H3. Now we
will show how to use an adversary A who successfully outputs a forgery in H3 with non-negligible
probability to construct an adversary B that breaks the PRF security of f , completing the proof.

Adversary B begins by picking a value n∗ ←R [N], where N is an upper bound on the number of
members in the group. Then B acts as the challenger in the anonymity game of H3 and reproduces it
exactly except any queries to f(skn∗ , ·) are replaced by queries to the PRF security game challenger,
and any proofs using skn∗ are replaced with simulations (indistinguishable from the real proofs by

14

the simulation-sound extractability of the proof system). Let FPRF be the function computed by
the PRF adversary. If the certi extracted from the A’s forgery is not equal to certn∗ , B aborts.
Otherwise, for the value r used in A’s forgery, B queries the PRF adversary on r to get response
FPRF(r). If FPRF(r) = f(skn∗ , r) B outputs 1 (interacting with PRF). Otherwise, it outputs 0.

Now we argue that B successfully distinguishes between a PRF and a random function. First,
suppose for the certificate certi extracted from the forgery, that certi = certn∗ , so FPRF(cn∗) =
f(skn∗ , cn∗). If B is interacting with a random function, B will output 0 with high probability
because a random function only collides with f(skn∗ , ·) on r with negligible probability. On the
other hand, if B is interacting with a PRF with key skn′ , there are two cases:

– skn′ = skn∗ : In this case, B always outputs 1.

– skn′ 6= skn∗ : Then f(skn′ , cn∗) = f(skn∗ , cn∗) is a collision that violates the collision-resistance
of f . Note that this is where we need the check that r 6= c∗i because if this check were omitted,
an adversary could set r = c∗n and render the query FPRF(r) useless for B since B already
knows this value. Since all the algorithms involved in finding this collision are efficient, this
case must only occur with negligible probability.

All that remains is to show that certi = certn∗ with non-negligible probability. Since certi corre-
sponds to a certificate issued by the group manager with all but negligible probability (in which
case A would abort early), we are assured that i ∈ [N]. Since n∗ is chosen independently of A’s
choice of i, there is a 1

N chance that n∗ = i, which is certainly non-negligible in λ because there
can only be polynomially many group members created by A.

4 Practical Post-Quantum Group Signatures for Attestation

Attestation schemes (such as that used in Intel SGX [25,40]) involve an attestation service “in the
loop” every time an attestation needs to be verified despite the fact that this is not necessary for
the underlying group signature scheme. Put in terms of the group signature setting, every time a
group signature is verified, there is a step that involves contacting the group manager to get an
updated revocation list. This requirement means that frequent contact between the group manager
and group members should be possible. In this section, we leverage the continuing availability
of the group manager in the attestation setting to build significantly smaller post-quantum group
signatures.

The number of gates required to verify the signature on a group member’s certificate by far
outweighs that of other components in the proof of knowledge included in each signature of the
scheme from Section 3. Moving this verification outside of the proof would dramatically shrink
signature sizes, and this is exactly what we do. In our modified scheme, each group member’s
certificate is a leaf in a Merkle tree. The group manager signs the root of the tree and provides
each group member a membership proof as part of the Join process. Now the group manager’s
signature can be verified outside the proof of knowledge because the group manager’s signature on
the publicly known root of the tree leaks nothing about the identity of a particular signer. Instead
of verifying a signature inside a proof, the signer now only needs to verify a Merkle inclusion proof
– an operation that requires a much smaller circuit, compared to verifying a hash-based stateful
signature.

15

The above modification, while greatly improving efficiency, introduces a critical security flaw
in the model where each group member registers with the group manager once and then begins
creating signatures: a new Merkle tree root will need to be published by the group manager each
time a group member joins! As an immediate consequence, group members joining earlier suffer
from smaller anonymity sets. Even worse, a curious group manager could issue a sequence of Merkle
roots where each tree only included a valid credential for one group member, uniquely identifying
the member’s signatures.

Fortunately, the continuing contact between group members and the group manager enforced by
attestation in practice enable effective mitigations for the concerns listed above. Group members
can periodically “re-join” the group to update the Merkle root relative to which they provide
membership proofs, thereby increasing the size of their anonymity sets. In practice, we can ensure
that subsequent Merkle roots issued by the group manager only ever add new credentials to the
group and never omit previous ones by using a Merkle consistency proof such as the one proposed
by the Certificate Transparency standard [41] and proven secure by Dowling et al [28]. We model
the Merkle trees used in our proofs as accumulators with zero-knowledge membership proofs and
discuss how we instantiate this primitive with an improved construction in Section 5.

4.1 Definitions

In this section we define accumulators and group signatures for attestation. We begin with a special
case of the formalization of accumulators by [26].

Definition 17 (Accumulator). A static accumulator is a tuple of efficient algorithms (AGen, AEval,
AWitCreate, AVerify, AProveCon, ACheckCon) which are defined as follows:

• AGen(1λ): This algorithm takes a security parameter λ and returns a public key pk∧.

• AEval(pk∧,X): This deterministic algorithm takes a key pk∧ and a set X to be accumulated
and returns an accumulator ΛX .

• AWitCreate(pk∧,ΛX ,X , xi): This algorithm takes a key pk∧, an accumulator ΛX , the set X ,
and a value xi. It returns ⊥ if xi /∈ X and a witness witxi for xi otherwise.

• AVerify(pk∧, ΛX , witxi , xi): This algorithm takes a public key pk∧, an accumulator ΛX , a
witness witxi , and a value xi. It returns 1 if witxi is a witness for xi ∈ X and 0 otherwise.

We require accumulators to be correct, meaning that AVerify will accept an honestly generated
witness for xi ∈ X . We also require a soundness property dubbed collision-freeness, formally
defined below.

Definition 18 (Collision Freeness). An accumulator is collision free if for all PPT adversaries A,
we have that

Pr[AVerify(pk∧,Λ
∗,wit∗xi , x

∗
i) = 1 ∧ x∗i /∈ X ∗|

pk∧ ← AGen(1λ,Λ∗),Λ∗ ← Evalr∗(pk∧,X ∗), (wit∗xi , x
∗
i ,X ∗)← A(pk∧,Λ

∗)] ≤ negl(λ)

The setting of group signatures for attestation largely leaves the security definitions of Section 3
unaffected up to changes in syntax, so we present the updated syntax for clarity of presentation
and omit statements of the security properties. The only notable change is that in both security

16

games, the adversary can now choose to have a group member run the new GARejoin at any time
it chooses.

Definition 19 (Group Signature for Attestation). A group signature scheme GA for attestation
involving a group managerM and n group members parties P1 to Pn consists of algorithms GAInit,
GAJoin, GARejoin, GASign, GAVerify, RevokeKey and RevokeSig. In the following, X represents a
set, Λ represents a static accumulator representing X , and σΛ is a signature on Λ.

– (gsk, gpk) ← GAInit(1λ): This algorithm takes as input a security parameter 1λ and outputs
a key pair (gsk, gpk).

– 〈(certi,Λ, σ∧), (ski, certi,Λ, σ∧)〉 ← GAJoinM,Pi〈(gsk, gpk,X), gpk〉: This is a protocol between
the group manager and a group member Pi where each party has its keys as input, and the
group manager also has the set X of group member credentials. Both parties get party Pi’s
certificate, an accumulator value Λ, and a signature σ∧ on Λ from the group manager as
output. Pi also gets its secret key ski as an output.

– 〈(certi,Λ, σ∧), (certi,Λ, σ∧)〉 ← GARejoinM,Pi
〈(gsk, gpk,X ,Λ, σ∧), (gpk, certi)〉: This is a pro-

tocol between the group manager and a group member Pi where the group manager has the
group key pair, a set of user credentials X , an accumulator Λ for X , and a signature σ∧ on Λ
as inputs, and group member Pi has the group public key and its certificate as inputs. Both
parties get an updated certificate for Pi as well as the accumulator value Λ and signature σ∧
as outputs.

– ⊥/sig ← GASign(gpk, ski, certi,m,SIG-RL,Λ, σ∧): This algorithm takes as input the public
key, party Pi’s secret key and certificate, a signature revocation list SIG-RL, an accumulator
Λ, and a signature σ∧ on Λ from the group manager. The output is a group signature sig.

– 1/0← GAVerify(gpk,m,KEY-RL, SIG-RL, sig): This algorithm verifies a group signature sig on
a message m given the group public key and key/signature revocation lists KEY-RL, SIG-RL.
It outputs 1 to accept the signature and 0 to reject it.

– KEY-RL ← GARevokeKey(gpk,KEY-RL, ski): This algorithm adds a secret key ski to a key
revocation list, so signatures created with this key will no longer be accepted.

– SIG-RL ← GARevokeSig(gpk,KEY-RL, SIG-RL,m, sig): This algorithm adds a signature sig to
a signature revocation list, so signatures created with the same key as sig will no longer be
accepted.

In order to capture the security guarantees of our new setting, namely the fact that anonymity
only applies relative to the anonymity set of users with the same merkle root, we add the following
admissibility criterion for anonymity adversaries.

Definition 20 (Admissible Anonymity Adversary for Attestation). An adversary A is admissible
for ANON[A, λ, b] if it satisfies the following criteria:

– It is an admissible anonymity adversary as in Definition 8.

– It chooses parties Pi0 and Pi1 that produce signatures relative to the same accumulator Λ.

17

4.2 Group Signature Construction II

The full construction of the modified group signature scheme appears below. Structurally similar
to the construction in Section 3, the main changes involve the introduction of a post-quantum
accumulator and the resulting restructuring of what needs to be proven inside/outside the proof of
knowledge π.

Construction 21 (Group Signature for Attestation). Our group signature scheme for attes-
tation GA = (GAInit, GAJoin, GARejoin, GASign, GAVerify, GARevokeKey, GARevokeSig) with
security parameter λ uses a signature scheme S = (Keygen,Sign,Verify), a proof system Π =
(P, V), a PRF f that also serves as a collision-resistant hash function, and an accumulator Ac =
(AGen, AEval, AWitCreate, AVerify).

– GAInit(1λ): Group manager M runs Keygen(1λ) to get (pkgp, skgp) and runs AGEN(1λ), to
get pk∧. It outputs public key gpk = (pkgp, pk∧) and secret key gsk = skgp.

– GAJoinM,Pi〈(gsk, gpk,X), gpk〉:

- Group manager M sends challenge ci to member Pi.
- Pi picks ski ←R {0, 1}λ and sends tjoin

i = f(ski, ci) back to M.

- M defines xi = (tjoin
i , ci), sets X = X ∪ xi, sets Λ = AEval(pk∧,X), and produces

signature σ∧ = Sign(gsk,Λ). Next, M creates witxi = AWitCreate(pk∧,Λ,X , xi) and
constructs certi = (xi,witxi), sending a copy to Pi along with Λ and σ∧.

- The group member’s private key is ski and both parties get copies of certi, Λ, and σ∧.

– GARejoinM,Pi〈(gsk, gpk,X ,Λ, σ∧), (gpk, certi)〉:

- Pi sends certi to M.

- First, M verifies the signature in certi and aborts if verification fails. Then it creates
a new witxi = AWitCreate(pk∧,Λ,X , xi) and constructs the updated certi = (xi,witxi),
sending a copy to Pi along with Λ and σ∧.

- Pi updates its values of certi, Λ, and σ∧.

– GASign(gpk, ski, certi,m,SIG-RL,Λ, σ∧): Compute the following and output sig:

- Verify(pkgp, σ∧,Λ) (abort if it outputs 0)

- r ←R {0, 1}λ
ci

- t = (f(ski, r), r)

- π = P (public(λ,m, gpk, t,SIG-RL, KEY-RL,Λ), private(ski, certi), R2)

- sig = (t, π,Λ, σ∧).

We define R2 as a relation in the proof of knowledge of (sk∗i , cert
∗
i) such that the following

statements hold:

- t = (f(sk∗i , r), r)

18

- r 6= c∗i

- AVerify(pk∧,Λ,wit
∗
xi , (t

join∗
i , c∗i))

- tjoin∗
i = f(sk∗i , c

∗
i)

- for each sigj ∈ SIG-RL, tsigj 6= (f(sk∗i , rsigj), rsigj)

– GAVerify(gpk, m, KEY-RL, SIG-RL, sig):

- Verify signature σ∧: check Verify(pkgp, σ∧,Λ) = 1

- Verify proof π: check V ((λ,m, gpk, t,SIG-RL, KEY-RL,Λ), π) = 1.

- For each skj ∈ KEY-RL, check that t 6= (f(skj , r), r).

- Check that sig /∈ SIG-RL.

- If all of the above checks return 1, output 1. Else, output 0.

– GARevokeKey(gpk, KEY-RL, ski): Return KEY-RL ∪ ski.

– GARevokeSig(gpk, KEY-RL, SIG-RL, m, sig): If GAVerify(gpk, m, KEY-RL, SIG-RL, sig) = 1,
return SIG-RL ∪ sig. Otherwise, return SIG-RL.

Performance. We discuss concrete instantiations of this scheme, and their performance in Sec-
tion 5.

4.3 Security Proofs

Correctness and anonymity proofs for GA are almost completely unchanged from our standard
group signature scheme, so we only state the corresponding theorems and do not repeat the proofs.

Theorem 22. Assuming the correctness of signature scheme S, proof system Π, and accumulator
Ac, as well as the pseudorandomness of f , GA is a correct group signature scheme.

Theorem 23. Assuming that Π is a zero-knowledge proof system and that f is a PRF, GA is an
anonymous group signature scheme.

The unforgeability proof strongly resembles the proof of the original scheme, but we no longer
need to extract the group manager’s signatures before verifying them. Instead, we extract and
verify a membership proof. Since the two proofs are otherwise identical, we omit a full proof of
security and only state the hybrids used in the proof, sketching the transitions between them.

Theorem 24. Assuming that Π is a proof system for zero-knowledge proofs of knowledge with
simulation-sound extractability, S is an unforgeable signature scheme, that f is a PRF, that f is
additionally a collision-resistant hash function, and that Ac is a collision-free (sound) accumulator,
GA is an unforgeable group signature scheme.

Proof (sketch). We proceed by a series of hybrids:

– H0: The real unforgeability game, FORGE[A, λ] run with an admissible adversary A.

19

– H1: Same as the previous hybrid, but we output 0 (i.e. adversary loses) if the signature σ∧
received by the verifier in any ReJoin is not on an accumulator value Λ output byM in a Join
protocol. This is indistinguishable from the previous world by the unforgeability of signature
scheme S.

– H2: Same as the previous hybrid, but we output 0 (i.e. adversary loses) if the signature σ∧
in the forgery is not for the value of Λ included in the forgery or if Λ is not an accumulator
value output by M in a Join protocol. This is indistinguishable from the previous world by
the unforgeability of signature scheme S.

– H3: Same as previous hybrid, but we also run the extractor on each hidden value in the proof
of knowledge π from the forgery and output 0 (i.e. adversary loses) if the extractor fails.
This is indistinguishable from the previous world by the extractability property of the proof
of knowledge.

– H4: Same as the previous hybrid, but we output 0 (i.e. adversary loses) if the membership
proof witxi extracted from the forgery does not correspond to a value of xi ∈ X , the set
accumulated by Λ. This is indistinguishable from the previous world by the collision-freeness
of the accumulator Ac, as the proof witxi could be used to break collision-freeness if it were
produced with greater than negligible probability.

– H5: Same as previous hybrid, but we abort if there exists a j ∈ U , that is, a party Pj in the set

of corrupted group members, such that for certi extracted from the forgery, tjoin
i = f(skj , ci).

This is indistinguishable from the previous world by the collision-resistance of f .

Indistinguishability proofs between hybrids are analogous to those of group signature scheme
G, as is the final argument for unforgeability from Hybrid H5.

5 Instantiation of Protocols

We have now described and proven the security of our constructions, but the post-quantum security
of each construction relies on the existence of post-quantum secure instantiations of the various
primitives required. In particular we require a PRF that is also a collision-resistant hash function,
a signature scheme, zero knowledge proofs of knowledge (ZKPoKs), and an accumulator. In this
section we describe options for instantiating each primitive under different security assumptions
about the underlying ciphers used and report the signature sizes of our instantiated schemes in
both the Random Oracle (RO) and Quantum Random Oracle (QRO) models [14].

5.1 Zero Knowledge Proofs of Knowledge

In principle, standard symmetric primitives (AES, SHA) suffice for post-quantum security so long
as we double our security parameters. However, our schemes uses these primitives in a non-black
box manner by running them inside of a ZKPoK. In particular, the following ZKPoKs contribute
significantly to signature sizes:

1. ZKPoK of a PRF key k such that f(k, r) = t, for a PRF that is collision-resistant on its key
space.

20

2. ZKPoK of a signature σ on a message m such that Verify(m,σ) = 1 for a post-quantum
signature scheme S = (Keygen, Sign, Verify).

3. ZKPoK of membership of element xi in accumulator Λ for set X .

We restrict our choice of ZKPoK proof system to those systems which rely only on symmetric
primitives. This includes works following the “MPC in the Head” approach of Ishai et al [39] – ZK-
Boo [33], ZKB++ [23], and Ligero [4] – as well as zk-STARKs [9]. Although Ligero and zk-STARKs
offer proofs asymptotically sublinear in the size of the circuit to be proven, a preliminary analysis
suggested that, for our relatively small proof circuits, ZKB++ provides the smallest signature sizes
in practice without requiring heavy computing costs for the signer. Moreover, ZKB++ has proofs
of security in both the Random Oracle and Quantum Random Oracle models, whereas Ligero and
zk-STARKs only have proofs in the classical RO model. As such, we choose to instantiate our
signatures and measure signature size using ZKB++ as our underlying ZKPoK system.

In ZKB++ [23], the underlying statement to be proven is represented as an arithmetic circuit
over GF(2), and the proof size is proportional to the multiplicative complexity (i.e., number of
AND gates) in the circuit. The most important practical consideration in signature schemes is
signature size; therefore our main criterion in instantiating the PRF and outer signature scheme is
to minimize their multiplicative complexity over GF(2).

5.2 PRF and Collision-Resistant Hash Function

Recently the ciphers LowMC [3] and MiMC [2] have been proposed as alternatives to AES that have
significantly lower multiplicative complexity as arithmetic circuits over finite fields.2 Although rel-
atively new and less extensively studied, these ciphers were shown to resist statistical cryptanalytic
attacks, similar to other state-of-the-art designs. A number of works have already proposed using
LowMC as the best candidate to-date for instantiating ciphers inside ZKB++-style proofs [23,27].
The most recent public version of the LowMC cipher with parameters set for 128-bit post-quantum
security (256-bit key, 256-bit block size) involves only 1374 AND gates, a significant improvement
over the 7616 AND gates in AES-256 [3].

Derler et. al [27] also suggest using the LowMC round function in the sponge framework (as
described in [2]) to construct a collision-resistant hash function with low multiplicative complexity.
However, since only a collision-resistant compression function on a fixed message length is needed
(rather than full-blown indifferentiability from a random oracle), we propose applying the much
simpler Davies-Meyer transformation to the LowMC cipher. Collision resistance of Davies-Meyer is
proved in the ideal cipher model [16], which is only marginally stronger than the security assumption
underlying the sponge transformation. Given an ideal cipher E(k, x) on equal sized key and message
space, the Davies-Meyer compression function is H(m1||m2) = E(m1,m2) ⊕m2. For a collision-
resistant PRF we would use F (k, x) = E(k, x) ⊕ x; as long as E is a PRF then F is also a PRF.
Note that the multiplicative complexity of F is the same as E. To obtain a PRF that is collision-
resistant only on its keyspace we can rely on a slightly weaker assumption than the ideal cipher
model. The ideal cipher model assumes that E with any key is indistinguishable from a random
permutation, whereas we only need to assume there is an explicit fixed key kfix on which E(kfix, ·)
is indistinguishable from a random permutation. Then we can define Π(y) = E(kfix, y), and define

2LowMC optimizes multiplicative complexity over GF(2) while MiMC optimizes complexity over larger finite fields.
In ZKB++ the underlying circuit is represented in GF(2), which is why we prefer LowMC.

21

F ′(k, x) = Π(E(k, x))⊕ E(k, x). (The inner evaluation of E(k, x) ensures the PRF property while
Π(y)⊕ y is collision resistant as a special case of Davies-Meyer).

5.3 Post-Quantum Signature Scheme

Choices for post-quantum signatures that do not rely on stronger lattice assumptions include Merkle
signatures [46], Goldreich’s stateless signatures [34], SPHINCS signatures [10], or the Fish signatures
of Chase et al [23]. The recent literature on post-quantum signatures has focused on optimizing
signature size. When using signatures outside of proofs (in our construction of group signatures
for attestation) we propose using SPHINCS, which has the smallest signature size. However,
since our main group signature construction involves verifying the group manager’s post-quantum
signature inside a ZKPoK, there we care about optimizing the arithmetic multiplicative complexity
of signature verification rather than the signature size.

We examine two options for instantiating the group manager’s signature scheme for signatures
used inside a ZKPoK: one using stateful Merkle signatures, and other using Goldreich’s stateless
signatures.

Stateful Merkle signatures The signer runs a signature setup that generates a large number
of one-time signature (OTS) keypairs. We would use Lamport signatures from one-way functions
(instantiated with LowMC) for the OTS. The Lamport signature private key consists of 256 pairs
of pseudorandom 256-bit strings the public key consists of the 256 pairs of outputs generated
by applying the one-way function to each private key string. The signer finalizes the setup by
computing a Merkle tree (using a 2-to-1 collision resistant compression function) over the OTS
public keys at the leaves of the tree and publishing the root as the public verification key. Signing
a message involves singing the message with one of the leaf OTS keys and proving membership of
this OTS key in the Merkle tree. The signer needs to maintain state to ensure that no OTS key
is used more than once. The stateful requirement is not prohibitive in the setting of managing a
group of trusted hardware platforms. The preprocessing of a tree of up to 230 members would take
under a day on modern commodity hardware and would require the server to use only several GB
of storage.

Stateless Goldreich signatures Instead of maintaining state in the Merkle signature scheme
above, the signer could choose an OTS key at random. This requires squaring the size of the
tree to make collisions unlikely. For a group of 230 members storing a tree of size 260 keys would
be prohibitively expensive. However, Godlreich’s scheme provides a way to generate this tree
pseudorandomly from a small seed. In this scheme, the signer pseudorandomly generates an OTS
keypair for each node of the tree, which can be done by evaluating a PRF on the index of the tree
node. The OTS public key at the root of the tree is the overall public key. The OTS key pair on
each node of the tree is used to sign the hash of the public keys on each of its two child nodes. To
sign a message a random leaf is selected and the signature includes the OTS signatures along the
path from this leaf to the root, where each signature signs either a child public key or the actual
message at the leaf.

22

5.4 Reducing Circuit Size for Membership Proofs

As mentioned in Section 4, we will use Merkle trees to instantiate our accumulators. A recent work
of Derler et al [27] points out, however, that the circuit used to verify standard Merkle inclusion
proofs differs based on the path from the Merkle root to the leaf xi. The dependence arises based
on whether the hash at depth j of the tree becomes the left or right input the hash at depth j − 1.
This dependence of the AVerify circuit on i must be removed in order to generically create a zero-
knowledge inclusion proof with some zero-knowledge proof system. They suggest a modification to
the standard inclusion proof that allows the same circuit to verify inclusion regardless of the index i
whose inclusion is proven. The idea is as follows: suppose xi resides in a subtree rooted at internal
node a and that a has sibling and parent nodes b and c, respectively. At each level of the Merkle
tree, instead of simply calculating h(a, b) and only comparing the result to the root, they evaluate
the expression c = h(a, b) ∨ c = h(b, a) and reject the inclusion proof if it is not satisfied. This
allows the construction of a circuit AVerify’ with a fixed ordering of inputs to each hash function,
since as long as one ordering of inputs matches the node at the next level of the tree, correctness
will hold. The cost of this transformation is an extra hash evaluation, an equality check, and a
logical OR for each level of the tree.

We propose a solution that eliminates the need for equality checks at each level of the tree and
replaces the OR with an XOR, allowing smaller and more efficient zero-knowledge membership
proofs. Our idea is to replace the hash function h already used in computing the merkle root with
a modified function h′(x, y) = h(x, y)⊕ h(y, x). Using h′ in place of h proves that the input xi is a
dth preimage of the merkle root for a tree of depth d without any dependence on the position i of
xi among the tree’s leaves. Of course, h′ is trivially neither collision-resistant nor second preimage
resistant, as a swapping of the inputs x and y results in the same output. Below we prove that
h′ provides a third preimage resistance property and can be used to build the inclusion proofs we
desire.

First, we recall the standard notion of a second preimage resistant hash function.

Definition 25 (Second Preimage Resistance [16]). We say a hash function H defined over (M, T)
is second preimage resistant if given a random m ∈ M, it is difficult to find a different m′ ∈ M
such that H(m) = H(m′).

Now we define a third preimage resistant hash function and show that h′ satisfies this property
under certain conditions.

Definition 26 (Third Preimage Resistance). We say a hash function H defined over (M, T) is third
preimage resistant if given a random m = a||b ∈ M (with |a| = |b|) and a different m′ = b||a ∈ M
such that H(m) = H(m′), it is difficult to find an m′′ ∈M such that H(m′′) = H(m) = H(m′).

Lemma 5. Assuming the hash function h :M×M→M is a random function, the hash function
h′(x, y) = h(x, y)⊕ h(y, x) for x, y ∈M is third preimage resistant, provided x 6= y.

Proof. h′(x, y) admits a trivial collision h′(y, x). We argue it is hard to find any other collision
unless x = y (since h′(x, x) = 0 for all x). To find a third preimage of h′(x, y) an adversary must
produce w, z such that either h′(w, z) = h′(x, y) and either w 6= x or z 6= y. Since h is a random
function and (x, y), (y, x), (w, z), (z, w) are all distinct tuples, h(x, y), h(y, x), h(w, z), and h(z, w)
will all be independently random strings. The probability that h(x, y)⊕h(y, x) = h(w, z)⊕h(z, w)
is therefore negligible in the length |x| + |y|. Therefore no efficient adversary can find a third
preimage for h′.

23

Signature Sizes in RO Model

Group Size Ideal Cipher Random Permutation

27 1.37MB 2.28MB
210 1.85MB 3.21MB
220 3.45MB 6.31MB
230 5.05MB 9.41MB
240 6.65MB 12.5MB

Figure 1: Signature sizes for construction II under various security assumptions on LowMC, using
the Fiat-Shamir transform [30] to make proofs of knowledge noninteractive.

Signature Sizes in QRO Model

Group Size Ideal Cipher Random Permutation

27 2.64MB 4.45MB
210 3.59MB 6.30MB
220 6.74MB 12.5MB
230 9.89MB 18.6MB
240 13.0MB 24.8MB

Figure 2: Signature sizes for construction II under various security assumptions on LowMC, using
the Unruh transform [49] to make proofs of knowledge noninteractive.

In order to replace h with h′ in our merkle tree construction and retain security for the circuit
AVerify’, we only need to show that we will have no leaves x||y in the accumulator such that x = y.
Fortunately, since the elements in the accumulator for our particular case are challenge/response
pairs (f(ski, ci), ci) that serve as group member credentials (where f is collision-resistant and a
PRF), the probability that x = y is negligible in our setting.

Practically, using our new circuit AVerify’ reduces the number of equality checks needed inside
a ZKPoK from 2 log2(N) (where N is the group size) to 1. Additionally, log2(N) OR gates are
replaced with XORs which do not increase proof size.

5.5 Signature Sizes

As discussed above, we instantiate our signatures using LowMC, Merkle signatures (inside the
ZKPoK), SPHINCS signatures (outside the ZKPoK), ZKB++, and Merkle tree accumulators with
our modified membership proof circuit.

Figure 1 shows the sizes for our modified group signatures for various group sizes under (1) the
assumption that LowMC is and ideal cipher and (2) the assumption that LowMC with a public
fixed key is a random permutation. Figure 2 presents the same information, but uses the Unruh
transform [49] instead of the Fiat-Shamir transform [30] to make the ZKB++ proof noninteractive.
The Fiat-Shamir transform is proven secure in the Random Oracle model but only sometimes retains
security in the Quantom Random Oracle model [14,50]. As visible from the figures, groups of size up

24

to 220 could use post-quantum signatures of size 6.74MB (3.45MB in RO model) under our scheme,
a sufficiently small size for attestation in applications with heavy data transfer requirements. The
same signatures instantiated with AES-256 would require 33.8MB (16.9MB in RO model).

For comparison, our signature sizes are smaller than the recent ring signatures of Derler et
al [27], which require at least 10.4MB (5.26MB in RO Model) for signatures in a ring of 220

members3, despite providing a more elaborate functionality. The improvement comes from our
new accumulator membership proofs, as the accumulator constitutes the most costly component of
both constructions4.

Our general-purpose group signatures require 216.82MB for signatures in a group of size 230

assuming LowMC is an ideal cipher (110.81MB in QRO Model), a much larger value than the
variation designed for attestation. This motivates the question of how to generalize the specialized
version of our construction to apply to a wider range of use-cases. The most limiting component
of the modified construction is the requirement that the group manager remain available to parties
after joining in order for them to run GAReJoin and update their membership proofs. If this
procedure could be made non-interactive, many more use cases could be satisfied by the modified
group signatures. This could be achieved if there were a way to update an accumulator membership
proof given only the old and new accumulator values along with the old membership proof. We leave
the task of constructing an accumulator with such an update procedure from symmetric primitives
as an open problem.

6 Conclusion

We presented a general-purpose post-quantum EPID group signature scheme as well as a construc-
tion of a specialized group signature variant designed for trusted hardware enclave attestation. We
also gave an analysis of the concrete sizes of our signatures based on the best possible instantiations
with current tools and showed that our group signatures for attestation can achieve sizes acceptable
for use in some applications.

Group signatures play an important role in modern trusted hardware architectures. Making
these signatures post-quantum secure is an important goal, and doing it from symmetric primitives
alone is the safest way to do it. We hope that this work will spur further research on this question
that will further reduce the signature size.

Acknowledgments

We would like to thank David Wu for several helpful conversations. This work is supported by
NSF, the DARPA/ARL SAFEWARE project, the Simons foundation, and a grant from ONR. The
views expressed are those of the author and do not reflect the official policy or position of the
Department of Defense, the National Science Foundation, or the U.S. Government.

3This size represents an optimized version of the ring signatures instantiated assuming LowMC is an ideal cipher.
The original Derler et al paper (which has since been improved, see below) claimed slightly larger signatures of size
11.88MB (8MB in RO Model) for this ring size.

4Note that subsequent to our paper, the Derler et al paper has been updated with new results which reduce the
size of their signatures by a factor of 2. These techniques can be used in the same way to reduce signature sizes in
our construction II as well.

25

References

[1] Michel Abdalla and Bogdan Warinschi. On the minimal assumptions of group signature
schemes. In ICICS, pages 1–13, 2004.

[2] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen.
Mimc: Efficient encryption and cryptographic hashing with minimal multiplicative complexity.
In ASIACRYPT, pages 191–219, 2016.

[3] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael
Zohner. Ciphers for MPC and FHE. In EUROCRYPT, pages 430–454, 2015.

[4] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.
Ligero: Lightweight sublinear arguments without a trusted setup. In CCS, pages 2087–2104,
2017.

[5] Rachid El Bansarkhani and Rafael Misoczki. G-merkle: A hash-based group signature scheme
from standard assumptions. IACR Cryptology ePrint Archive, 2018.

[6] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In CRYPTO, pages
390–420, 1992.

[7] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general assumptions.
In EUROCRYPT, pages 614–629, 2003.

[8] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The case of
dynamic groups. In CT-RSA, pages 136–153, 2005.

[9] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. IACR Cryptology ePrint Archive, 2018.

[10] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederhagen,
Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko Wilcox-O’Hearn.
SPHINCS: practical stateless hash-based signatures. In EUROCRYPT, pages 368–397, 2015.

[11] Manuel Blum. Coin flipping by telephone. In Advances in Cryptology: A Report on CRYPTO
81, CRYPTO 81, IEEE Workshop on Communications Security, pages 11–15, 1981.

[12] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its appli-
cations (extended abstract). In STOC, pages 103–112, 1988.

[13] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In CRYPTO, pages
41–55, 2004.

[14] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark
Zhandry. Random oracles in a quantum world. In ASIACRYPT, pages 41–69, 2011.

[15] Dan Boneh and Hovav Shacham. Group signatures with verifier-local revocation. In Proceedings
of the 11th ACM Conference on Computer and Communications Security (CCS), pages 168–
177. ACM, 2004.

26

[16] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography. 2017.

[17] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation. In CCS,
pages 132–145, 2004.

[18] Ernie Brickell and Jiangtao Li. Enhanced privacy ID from bilinear pairing. IACR Cryptology
ePrint Archive, 2009:95, 2009.

[19] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. Xmss-a practical forward secure
signature scheme based on minimal security assumptions. In International Workshop on Post-
Quantum Cryptography, pages 117–129. Springer, 2011.

[20] Jan Camenisch and Jens Groth. Group signatures: Better efficiency and new theoretical
aspects. In Security in Communication Networks, 4th International Conference, SCN 2004,
Amalfi, Italy, September 8-10, 2004, Revised Selected Papers, pages 120–133, 2004.

[21] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In SCN,
pages 268–289, 2002.

[22] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In CRYPTO, pages 56–72, 2004.

[23] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Chris-
tian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and
signatures from symmetric-key primitives. In CCS, pages 1825–1842, 2017.

[24] David Chaum and Eugène van Heyst. Group signatures. In EUROCRYPT, pages 257–265,
1991.

[25] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryptology ePrint Archive,
2016:86, 2016.

[26] David Derler, Christian Hanser, and Daniel Slamanig. Revisiting cryptographic accumulators,
additional properties and relations to other primitives. In CT-RSA, pages 127–144, 2015.

[27] David Derler, Sebastian Ramacher, and Daniel Slamanig. Post-quantum zero-knowledge proofs
for accumulators with applications to ring signatures from symmetric-key primitives. IACR
Cryptology ePrint Archive, 2017.

[28] Benjamin Dowling, Felix Günther, Udyani Herath, and Douglas Stebila. Secure logging
schemes and certificate transparency. In ESORICS, pages 140–158, 2016.

[29] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. On the
non-malleability of the fiat-shamir transform. In INDOCRYPT, pages 60–79, 2012.

[30] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In CRYPTO, pages 186–194, 1986.

[31] Ben Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and Sergey Gorbunov. IRON: functional
encryption using intel SGX. In CCS, pages 765–782, 2017.

27

[32] Benjamin Fuller, Mayank Varia, Arkady Yerukhimovich, Emily Shen, Ariel Hamlin, Vijay
Gadepally, Richard Shay, John Darby Mitchell, and Robert K. Cunningham. Sok: Crypto-
graphically protected database search. In IEEE Symposium on Security and Privacy (Oakland),
pages 172–191, 2017.

[33] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster zero-knowledge for
boolean circuits. In USENIX Security, pages 1069–1083, 2016.

[34] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge
University Press, 2004.

[35] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic applications of
random functions. In CRYPTO, pages 276–288, 1984.

[36] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[37] S. Dov Gordon, Jonathan Katz, and Vinod Vaikuntanathan. A group signature scheme from
lattice assumptions. In ASIACRYPT, pages 395–412, 2010.

[38] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group
signatures. In ASIACRYPT, pages 444–459, 2006.

[39] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput., 39(3):1121–1152, 2009.

[40] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mckeen. Intel soft-
ware guard extensions: Epid provisioning and attestation services.

[41] B. Laurie, A. Langley, and E. Kasper. Certificate transparency. RFC 6962, June 2013.

[42] Benôıt Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huaxiong Wang. Signature
schemes with efficient protocols and dynamic group signatures from lattice assumptions. In
ASIACRYPT, pages 373–403, 2016.

[43] Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-knowledge arguments for
lattice-based accumulators: Logarithmic-size ring signatures and group signatures without
trapdoors. In EUROCRYPT, pages 1–31, 2016.

[44] San Ling, Khoa Nguyen, and Huaxiong Wang. Group signatures from lattices: Simpler, tighter,
shorter, ring-based. In PKC, pages 427–449, 2015.

[45] San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. Lattice-based group signatures:
Achieving full dynamicity with ease. In ACNS, pages 293–312, 2017.

[46] Ralph C. Merkle. A digital signature based on a conventional encryption function. In Advances
in Cryptology - CRYPTO ’87, A Conference on the Theory and Applications of Cryptographic
Techniques, Santa Barbara, California, USA, August 16-20, 1987, Proceedings, pages 369–378,
1987.

28

[47] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic appli-
cations. In Proceedings of the twenty-first annual ACM symposium on Theory of computing,
pages 33–43. ACM, 1989.

[48] Kartik Nayak, Christopher W. Fletcher, Ling Ren, Nishanth Chandran, Satya Lokam, Elaine
Shi, and Vipul Goyal. Hop: Hardware makes obfuscation practical. In NDSS.

[49] Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum random oracle
model. In EUROCRYPT, pages 755–784, 2015.

[50] Dominique Unruh. Post-quantum security of fiat-shamir. In Advances in Cryptology - ASI-
ACRYPT 2017 - 23rd International Conference on the Theory and Applications of Cryptology
and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I, pages
65–95, 2017.

[51] Miao Yu, Virgil D. Gligor, and Zongwei Zhou. Trusted display on untrusted commodity
platforms. In CCS, pages 989–1003, 2015.

[52] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E. Gonzalez, and
Ion Stoica. Opaque: An oblivious and encrypted distributed analytics platform. In NSDI,
pages 283–298, 2017.

[53] Zongwei Zhou, Virgil D. Gligor, James Newsome, and Jonathan M. McCune. Building verifi-
able trusted path on commodity x86 computers. In IEEE Symposium on Security and Privacy
(Oakland), pages 616–630, 2012.

A Standard Primitives: Definitions

Definition 27 (Pseudorandom Function [35]). Let F : {0, 1}n×{0, 1}n → {0, 1}n be an efficiently
computable, length-preserving keyed function. We say that F is a pseudorandom function (PRF)
if for all probabilistic polynomial time distinguishers D,

|Pr[DFk(1n) = 1]− Pr[Dfn(1n) = 1]|

is negligible where k ← {0, 1}n is chosen uniformly at random and fn is chosen uniformly at random
from the set of functions mapping n-bit strings to n-bit strings.

Definition 28 (Collision-Resistant Hash Function [16]). We say that a hash function h over (M, T)
is collision resistant if for all efficient uniform adversaries A, A cannot output two messages m0,m1

such that h(m0) = h(m1) with greater than negligible probability.

Definition 29 (Signature). A signature scheme S is a triple (KeyGen, Sign, Verify) of PPT algo-
rithms which are defined as follows:

– KeyGen(1λ): This algorithm takes a security parameter λ as input and outputs a secret
(signing) key sk and a public (verification) key pk.

– Sign(sk, m): This algorithm takes a secret key sk and a message m as input and outputs a
signature σ.

29

– Verify(pk, m, σ): This algorithm takes a public key pk, a message m, and a signature σ as
input and outputs a bit b ∈ {0, 1}.

The two properties we require from signatures are correctness and unforgeability. Correctness
requires that Verify(pk,m,Sign(sk,m)) = 1. Unforgeability (informally) requires that a computa-
tionally bounded adversary cannot forge a signature it has not seen with greater than negligible
probability. Formally, we define unforgeability using the notion of existential unforgeability under
a chosen message attack.

Definition 30 (Existential Unforgeability Under Chosen Message Attack (EUF-CMA)). A signa-
ture scheme S is existentially unforgeable under chosen message attacks if for all PPT adversaries
A, we have that:

Pr[(sk, pk)← KeyGen(1λ), (m∗, σ∗)← ASign(sk,·)(pk)|
Verify(pk,m∗, σ∗) = 1 ∧m∗ /∈ QSign] ≤ negl(λ)

where Qsign keeps track of the queries made by the adversary to the signing oracle.

Definition 31 (Commitment Scheme [11]). A commitment scheme consists of two algorithms
(Com,Vrfy) with the following properties:

– Com(m, r): On input of a message m and randomness r, the commitment algorithm outputs
a commitment c.

– Vrfy(c, m, r): On input a commitment c, message m, and randomness r, Vrfy outputs a bit
b ∈ {0, 1}.

We require that computationally secure commitments satisfy the following three properties:

– Correctness: Vrfy(Com(m, r), m, r)=1.

– Hiding: For every message pair m,m′, no computationally bounded adversary can distinguish
between commitments to m and m′ with greater than negligible advantage.

– Binding: No computationally bounded adversary can produce a commitment c such that
Vrfy(c,m, r) = Vrfy(c,m′, r′) = 1 for m 6= m′ with greater than negligible probability.

30

