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Abstract

Quantum Key Recycling aims to re-use the keys employed in quantum encryption and
quantum authentication schemes. We consider QKR protocols where classical information
is embedded in qubit states, as opposed to high-dimensional qudits. A security proof was
given by Fehr and Salvail [1] in the case where there is practically no noise. A scheme
for the noisy case was proposed by Škorić and de Vries [2], based on eight-state encoding,
which reduces leakage. However, a security proof was not given.

In this paper we introduce a small protocol modification to [2] and provide a security
proof. Our proof is based on a bound on the trace distance between the real quantum
state of the system and a state in which the keys are completely secure. We determine
how much privacy amplification is needed as a function of the tolerated bit error rate. It
turns out that less privacy amplification is needed than suggested by previous results.

1 Introduction

1.1 Quantum Key Recycling

Quantum cryptography uses the properties of quantum physics to achieve security feats that
are impossible with classical communication. Best known is Quantum Key Distribution
(QKD), first described in the famous BB84 paper [3]. QKD establishes a random secret
key known only to Alice and Bob, and exploits the no-cloning theorem for unknown quan-
tum states [4] to detect any manipulation of the quantum states. Already two years before
the invention of QKD, the possibility of Quantum Key Recycling (QKR) was considered
[5]. Let Alice and Bob encrypt classical data as quantum states, using a classical key to
determine the basis in which the data is encoded. If they do not detect any manipulation
of the quantum states, then Eve has learned almost nothing about the encryption key, and
hence it is safe for Alice and Bob to re-use the key. After the discovery of QKD, interest in
QKR was practically nonexistent for a long time, despite the benefits that QKR can offer for
communication complexity. QKR received some attention again in 2003 when Gottesman [6]
proposed an Unclonable Encryption scheme with partially re-usable keys. In 2005 Damg̊ard,
Pedersen and Salvail introduced a scheme that allows for complete key recycling, based on
mutually unbiased bases in a high-dimensional Hilbert space [7, 8]. Though elegant, their
scheme unfortunately needs a quantum computer for encryption and decryption. In 2017
Fehr and Salvail [1] introduced a qubit-based QKR scheme (similar to [5]) that does not need
a quantum computer, and they were able to prove its security in the regime of extremely low
noise. Škorić and de Vries [2] proposed a variant with 8-state encoding, which drastically
reduces the need for privacy amplification. It is meant to operate at the same noise levels as
QKD, but the security was not proven. Attacks on the qubit-based QKR schemes of [1, 2]
were studied in [9], but that did not yield a security proof.
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1.2 Contributions and outline

We investigate qubit-based Quantum Key Recycling, taking an ‘engineering’ point of view:
we do not aim for complete key re-use, but rather for a high ratio of message length versus
expended key bits.

• We introduce a small modification in the QKR protocol of Škorić and de Vries [2]. We
impose the condition that the one-time MAC function has key length equal to the tag
length.

• We give a security proof. We use the EPR formulation of the protocol. First we consider
attacks in which Eve collects quantum side information from one EPR pair at a time; then
we apply the post-selection method in order to get security in the case of general attacks.

• The required amount of privacy amplification depends on the bit error rate β tolerated
by the error-correcting code. When n qubits are sent, the amount of privacy amplifica-

tion in the case of 8-state encoding is 2n log[
√

(1− β)(1− 3
2β) +

√
1
2β(1− β) + β

√
2] bits

(asymptotically). This result is more favourable than the min-entropy analysis in [9] and
straightforward generalisations of [1] to the noisy case.

The outline of the paper is as follows. In the preliminaries section we introduce notation;
we briefly review proof techniques and methods for embedding classical bits in qubits, and
we summarise known results regarding Eve’s optimal extraction of information from a qubit
into a four-dimensional ancilla state. In Section 3 we discuss the QKR protocol. Section 4
states the main theorems. The proofs are given in Sections 6 and 7. Section 5 contains a
discussion of parameter choices, rates, comparison to the literature, handling of erasures, and
suggestions for future work.

2 Preliminaries

2.1 Notation and terminology

Classical Random Variables (RVs) are denoted with capital letters, and their realisations with
lowercase letters. The probability that a RV X takes value x is written as Pr[X = x]. The
expectation with respect to RV X is denoted as Exf(x) =

∑
x∈X Pr[X = x]f(x). Sets are

denoted in calligraphic font. We write [n] for the set {1, . . . , n}. For a string x and a set
of indices I the notation xI means the restriction of x to the indices in I. The notation
‘log’ stands for the logarithm with base 2. The notation h stands for the binary entropy
function h(p) = p log 1

p + (1−p) log 1
1−p . Bitwise XOR of binary strings is written as ‘⊕’. The

Kronecker delta is denoted as δab. The inverse of a bit b ∈ {0, 1} is written as b̄ = 1− b. We
will speak about ‘the bit error rate β of a quantum channel’. This is defined as the probability
that a classical bit g, sent by Alice embedded in a qubit, arrives at Bob’s side as ḡ.
For quantum states we use Dirac notation, with the standard qubit basis states |0〉 and |1〉
represented as

(
1
0

)
and

(
0
1

)
respectively. The Pauli matrices are denoted as σx, σy, σz, and we

write σ = (σx, σy, σz). The standard basis is the eigenbasis of σz, with |0〉 in the positive
z-direction. We write 1 for the identity matrix. The notation ‘tr’ stands for trace. The
Hermitian conjugate of an operator A is written as A†. The complex conjugate of z is denoted
as z∗. Let A have eigenvalues λi. The 1-norm of A is written as ‖A‖1 = tr

√
A†A =

∑
i |λi|.

The trace distance between matrices ρ and σ is denoted as δ(ρ;σ) = 1
2 ||ρ − σ||1. It is a
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generalisation of the statistical distance and represents the maximum possible advantage one
can have in distinguishing ρ from σ.
Consider a uniform classical variable X and a mixed state ρX that depends on X. The
combined classical-quantum state is ρXE = Ex|x〉〈x| ⊗ ρE

x . The states of the sub-systems ‘X’
and ‘E’ are obtained by tracing out one subspace, and are given by ρX = Ex|x〉〈x| and ρE =
ExρE

x respectively. The security of the variable X, given that Eve holds the ‘E’ subsystem,
can be expressed in terms of a trace distance as follows [10],

d(X|E)
def
= δ

(
ρXE ; ρX ⊗ ρE

)
(1)

i.e. the distance between the true classical-quantum state and a state in which the quantum
state is decoupled from X. X is said to be ε-secure with respect to ρ if d(X|ρ) ≤ ε. When
this is the case, it can be considered that X is ‘ideal’ except with probability ε.
A family of hash functions H = {h : X → T } is called pairwise independent (a.k.a. 2–
independent or strongly universal) [11] if for all distinct pairs x, x′ ∈ X and all pairs y, y′ ∈ T
it holds that Prh∈H [h(x) = y∧h(x′) = y′] = |T |−2. Here the probability is over random h ∈ H.
Pairwise independence can be achieved with a hash family of size |H| = |X |.

2.2 QKR proof structure

The protocol (see Section 3) has three basic steps. (i) Alice sends quantum states and classical
data to Bob. (ii) Bob responds with a decision bit c ∈ {Accept, Reject}. (iii) In case of Accept,
the key material K is re-used; in case of Reject, the key material is refreshed from K to K ′.
We will use a recursive proof structure as in [1]. The starting situation is an ‘ideal’ state
ρ(0) = ρK ⊗ ρE, in which the key material K is decoupled from Eve’s state. After one

round of QKR the state has evolved to ρ
(1)
c ; this includes actions by Eve as well as potential

key updates by Alice and Bob. Accept happens with probability Pacc and leads to a state

ρ
(1)
acc = Ek|k〉〈k|⊗ ρ̃E

k in which Eve has potentially gained knowledge about K; Reject happens

with probability Prej and yields a state ρ
(1)
rej = ρ̃K ⊗ ρ̃E which has factorised form due to the

key refreshment.
The notion of secure key re-use is expressed as follows. Under known-plaintext conditions,

a bound is derived on the distance between ρ
(1)
c and the ideal state ρ(0), given that Eve

observes the decision bit: Pacc‖ρ(1)
acc − ρ(0)‖1 + Prej‖ρ(1)

rej − ρ(0)‖1 ≤ ε, which is equivalent to

Pacc‖ρ(1)
acc − ρ(0)‖1 ≤ ε.

By induction Ec1···cN ‖ρ
(N)
c1···cN − ρ(0)‖1 ≤ Nε, where ρ(N) is the state after N rounds. This can

be seen as follows. After two rounds the state is ρ
(2)
c1c2 , and the security quantity of interest is

Ec1c2‖ρ
(2)
c1c2 − ρ(0)‖1 = P 2

acc‖ρ(2)
acc,acc − ρ(0)‖1 +PrejPacc‖ρ(2)

rej,acc − ρ(0)‖1 = P 2
acc‖ρ(2)

acc,acc − ρ(0)‖1
+PrejPacc‖ρ(1)

acc − ρ(0)‖1 ≤ P 2
acc‖ρ(2)

acc,acc − ρ(0)‖1 +Prejε. Using the triangle inequality the first

term is upperbounded as P 2
acc‖ρ(2)

acc,acc − ρ(0)‖1 ≤ P 2
acc‖ρ(2)

acc,acc − ρ
(1)
acc‖1 +P 2

acc‖ρ(1)
acc − ρ(0)‖1

≤ P 2
acc‖ρ(2)

acc,acc − ρ(1)
acc‖1 +Paccε. Finally it is used that the mapping from ρ(i) to ρ(i+1) is a

CPTP map, which cannot increase distance. Hence ‖ρ(2)
acc,acc − ρ(1)

acc‖1 ≤ ‖ρ(1)
acc − ρ(0)‖1. It

follows that Ec1c2‖ρ
(2)
c1c2 − ρ(0)‖1 ≤ 2ε.

2.3 Post-selection

In a collective attack Eve acts on individual qudits. This is not the most general attack.
For protocols that obey permutation symmetry, a post-selection argument [12] can be used
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to show that ε-security against collective attacks implies ε′-security against general attacks,
with ε′ = ε(n+ 1)d

4−1, where d is the dimension of the qudit space (d = 2 for qubits). Hence,
by paying a modest price in terms of privacy amplification, e.g. changing the usual privacy
amplification term 2 log 1

ε to 2 log 1
ε + 2(d4 − 1) log(n + 1), one can ‘buy’ security against

general attacks.

2.4 Encoding a classical bit in a qubit

We briefly review methods for embedding a classical bit g ∈ {0, 1} into a qubit state. The
standard basis is |0〉, |1〉 with |0〉 the positive z-direction on the Bloch sphere. The set of
bases used is denoted as B, and a basis choice as b ∈ B. The encoding of bit value g in basis
b is written as |ψbg〉. In BB84 encoding we write B = {0, 1}, with |ψ00〉 = |0〉, |ψ01〉 = |1〉,
|ψ10〉 = |0〉+|1〉√

2
, |ψ11〉 = |0〉−|1〉√

2
. In six-state encoding [13] the vectors are ±x, ±y, ±z on the

Bloch sphere. We have B = {0, 1, 2} and

|ψ00〉 = |0〉 ; |ψ01〉 = |1〉 ; |ψ10〉 =
|0〉+ |1〉√

2
; |ψ11〉 =

|0〉 − |1〉√
2

|ψ20〉 =
|0〉+ i|1〉√

2
; |ψ21〉 =

|0〉 − i|1〉√
2

(2)

For 8-state encoding [2] we have B = {0, 1, 2, 3} and the eight states are the corner points of
a cube on the Bloch sphere. We write b = 2u+ w, with u,w ∈ {0, 1}. The states are

|ψuwg〉 = (−1)gu
[
(−
√
i)g cos α2 |g ⊕ w〉+ (−1)u(

√
i)1−g sin α

2 |g ⊕ w〉
]
. (3)

The angle α is defined as cosα = 1/
√

3. For given g, the four states |ψuwg〉 are the Quantum
One-Time Pad (QOTP) encryptions [14, 15, 16] of |ψ00g〉. The ‘plaintext’ states |ψ000〉, |ψ001〉
correspond to the vectors ±(1, 1, 1)/

√
3 on the Bloch sphere.

2.5 Eve’s ancilla state

Attacks on QKR were studied in some detail in [9]. They formulated an EPR version of
qubit-based QKR protocol. Instead of creating |ψbixi〉 and sending it to Bob, Alice performs
a measurement on one half an EPR singlet state (using basis bi) while the other half goes
to Bob. Eve may manipulate the EPR state. Any manipulation turns the pure EPR state
into a mixed state. The noise symmetrisation technique of [17] was applied to simplify the
state. If Eve’s actions induce bit error probability β (defined as a bit mismatch in xi between
Alice and Bob), then this corresponds to a state of the AB subsystem of the form ρ̃AB =

(1− 3
2β)|Ψ−〉〈Ψ−|+ β

2

(
|Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|+ |Φ+〉〈Φ+|

)
, where |Ψ±〉 = |01〉±|10〉√

2
and |Φ±〉 =

|00〉±|11〉√
2

denote the Bell basis states.1 Eve’s state is obtained by purifying ρ̃AB. The pure

state is |ΨABE〉 =
√

1− 3
2β|Ψ−〉⊗ |m0〉+

√
β
2

(
−|Φ−〉 ⊗ |m1〉+ i|Ψ+〉 ⊗ |m2〉+ |Φ+〉 ⊗ |m3〉

)
,

where |mi〉 is some orthonormal basis in Eve’s four-dimensional ancilla space. Let v be a
3-component vector on the Bloch sphere describing the ‘0’ bit value in a certain basis. Let x
be the bit value that Alice measures, and y Bob’s bit value. (In the noiseless case we have

1For 4-state QKR an extra ingredient is needed to arrive at this expression: the use of decoy/test states so
as to probe more than a circle on the Bloch sphere. This allows us to treat 4, 6 and 8-state encoding on an
equal footing; the main theorem of this paper then also applies to 4-state encoding. (If the decoy/test states
are not used in 4-state QKR, Eve has a more powerful attack and the ancilla states ωbx are modified.)
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y = x̄ because of the anti-correlation in the singlet state.) One of the results of [9] is an
expression for Eve’s mixed ancilla state when v, x, y are fixed,

σvxy
def
= |Ev

xy〉〈Ev
xy|. (4)

|Ev
01〉 =

1√
1− β

[√
1− 3

2β|m0〉+

√
β
2 (vx|m1〉+ vy|m2〉+ vz|m3〉)

]
|Ev

10〉 =
1√

1− β

[√
1− 3

2β|m0〉 −
√

β
2 (vx|m1〉+ vy|m2〉+ vz|m3〉)

]
(5)

|Ev
00〉 =

1√
2(1− v2

z)

[
(−vxvz − ivy)|m1〉+ (−vyvz + ivx)|m2〉+ (1− v2

z)|m3〉
]

|Ev
11〉 =

1√
2(1− v2

z)

[
(−vxvz + ivy)|m1〉+ (−vyvz − ivx)|m2〉+ (1− v2

z)|m3〉
]
.

The E-vectors are not all orthogonal. We have 〈Ev
01|Ev

10〉 = 1−2β
1−β . (The rest of the inner

products are zero.) It holds that |−vxvz−ivy√
1−v2z

|2 = 1 − v2
x and |−vyvz+ivx√

1−v2z
|2 = 1 − v2

y . We have

|Ev
10〉 = |E−v01 〉 and |Ev

11〉 = |E−v00 〉.
Eve is primarily interested in learning x. At given b, x Eve’s state (averaged over y) is

ωbx(β)
def
= (1− β)σ

v(b)
xx̄ + βσv(b)

xx = (1− β)|Ev(b)
xx̄ 〉〈Ev(b)

xx̄ |+ β|Ev(b)
xx 〉〈Ev(b)

xx |. (6)

3 The QKR protocol

In this paper we consider the QKR scheme #2 proposed in [2], which is a slightly modified
version of the QEMC∗ scheme of Fehr and Salvail [1]. This protocol can be executed with
4-state, 6-state or 8-state encoding, where 8-state has the advantage that it needs less Privacy
Amplification [9]. We introduce a small change in the protocol:

• For efficiency reasons we demand that the one-time MAC function has a key size that
equals the tag size.2

The key material shared between Alice and Bob consists of four parts: a basis sequence b ∈ Bn,
a MAC key kMAC ∈ {0, 1}λ, an extractor key3 u ∈ U , and a classical OTP kSS ∈ {0, 1}a for
protecting the secure sketch. The plaintext is µ ∈ {0, 1}`.
Alice and Bob have agreed on a pairwise independent hash function Ext : U×{0, 1}n → {0, 1}`,
a MAC function M : {0, 1}λ × {0, 1}n+`+a → {0, 1}λ, a linear error-correcting code with
syndrome function S : {0, 1}n → {0, 1}a, and a Secure Sketch that uses this error-correcting
code. The basis set B, the functions Ext,M, S, and the Secure Sketch algorithm are publicly
known.
Encryption
Alice performs the following steps. Generate random x ∈ {0, 1}n. Compute s = kSS⊕S(x) and
z = Ext(u, x). Compute the ciphertext c = µ⊕z and authentication tag t = M(kMAC, x||c||s).

2Alternatively, it is an arbitrary information-theoretically secure MAC and the MAC key is be re-used
indefinitely; but then the tag has to be one-time padded and the pad has to be refreshed in every round. This
construction leads to the same amount of key expenditure and involves a few more operations.

3The extractor key was not mentioned explicitly in [2].
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Prepare the quantum state |Ψ〉 =
⊗n

i=1 |ψbixi〉 according to Section 2.4. Send |Ψ〉, s, c, t to
Bob.
Decryption
Bob receives |Ψ′〉, s′, c′, t′. He performs the following steps. Measure |Ψ′〉 in the b-basis. This
yields x′ ∈ {0, 1}n. Recover x̂ from x′ and kSS ⊕ s′ (by the reconstruction procedure of the
Secure Sketch). Compute ẑ = Ext(u, x̂) and µ̂ = c′ ⊕ ẑ. Accept the message µ̂ if the Secure
Sketch reconstruction succeeded and t′ = M(kMAC, x̂||c′||s′). Communicate Accept/Reject to
Alice (publicly but with authentication).
Key update
Alice and Bob perform the following actions. If Bob Accepts, replace kSS and kMAC. If Bob
Rejects, replace kSS, kMAC, b, u.

See Section 5.1 for a discussion of the balance between message length and key expenditure.

4 Main result

4.1 Attacker model and proof method

The attacker model is the one used in most works on QKD. Eve is able to manipulate the
classical channel and the quantum channel between Alice and Bob in any way. Eve has
no access to the private computations taking place in Alice and Bob’s devices. Eve has
unbounded (quantum) computation power and unbounded quantum memory.
First we consider attacks where Eve entangles her own quantum system with individual EPR
pairs one at a time. Eve is allowed to postpone all measurements. For this limited class of
attacks we derive a bound (Theorem 4.2) on the product Pacc · ‖ρ(1) − ρ(0)‖1 as explained in
Section 2.2. Finally we invoke post-selection to extend the validity of the security proof to
general attacks.

4.2 The result

Alice and Bob’s shared key material consists of kSS, kMAC, b and u. The only keys open
to attack are b and u, since kSS and kMAC get discarded after each round. Eve’s classical
side information consists of s (OTP’ed syndrome), t (authentication tag), and the ciphertext
c = z ⊕ µ. The s and t carry no information about b and u. We assume that Eve knows the
plaintext µ; this implies that she knows z.
Eve’s quantum side information consists of her ancilla particles which have interacted with
the EPR pairs. The state of the ancillas depends on x and b. Since z = Ext(u, x) and we are
interested only in the coupling between Eve’s state and the keys u, b, we will keep track only
of z, u and b. After one accepted QKR round the joint state of the key material and Eve’s
system (at fixed z) is given by

ρUBE
z = Eub|ub〉〈ub| ⊗ ρE

zub, (7)

where the states |ub〉 form an orthonormal basis for the classical variables u, b. We define
ρE
z = EubρE

zub. Our main result puts an upper bound on the distance between the actual state
and the ‘ideal’ state in which Eve has no information about U,B.

Theorem 4.1 Let the function f be defined as f(β) =
√

(1− β)(1− 3
2β) +

√
1
2β(1− β) +

β
√

2. Let Eve know z and create ancilla states for each EPR pair individually, as specified
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in Section 2.5, under the constraint that she causes average bit error rate γ ∈ [0, 1
2). Let Bob

accept. Then it holds that

Ez‖ρUBE
z − ρUB ⊗ ρE

z ‖1 <
√

2`−n+2n log f(γ). (8)

The proof is given in Section 6.

Theorem 4.2 Consider the same setting as in Theorem 4.1. Let σ be a security parameter.
Let the length ` be chosen as

` = n− 2n log f(β)− 2ξ, (9)

ξ ≥ min

(
f ′(β)

f(β)

[
σ +

√
σ2 + n 2

ln 2βσ
]
,

√
nσ

ln 2
+ σ · 2

√
2

)
(10)

where β is the bit error rate that the scheme is designed to resist. Let Pre-use be the probability
that Alice receives a decision bit with the value ‘Accept’. Then it holds that

Pre-useEz‖ρUBE
z − ρUB ⊗ ρE

z ‖1 ≤ 2 · 2−λ + 2−σ. (11)

The proof is given in Section 7.
Note that ξ scales as

√
n for large n.

• For 8-state encoding, the result (11) suffices to prove the security of the protocol. (The
Quantum One Time Pad protects the x perfectly as long as B is uniform.) See Section 2.2.
Theorem 4.2 tells us that ` must be set smaller than approximately n[1 − 2 log f(β)].
Asymptotically (n � 1) this yields a balance of {message length minus key expenditure}
that scales as n[1 − 2 log f(β) − h(β)]. See Section 5.1. This balance is positive up to
β ≈ 0.09, i.e. up to this noise level it makes sense to use the QKR protocol.

• In the case of 4-state and 6-state encoding, Eve has additional attacks. She may steal all the
qubits (causing a Reject) and extract partial information about x from the stolen qubits.
This was called the ‘M1 attack’ in [9]. This attack has to be countered by applying a proper
amount of Privacy Amplification, i.e. choosing the correct value for the message length `.
Expressed in terms of min-entropy loss4, 4-state encoding leaks 1− log(cos π8 )−2 ≈ 0.77 bits
per qubit; 6-state encoding leaks 1− log(cos α2 )−2 ≈ 0.66 bits per qubit, with α as defined
in Section 2.4. This leakage does not depend on β. It exists already at β = 0.

As explained in Section 2.3, by invoking post-selection we can ‘buy’ security against general
attacks by reducing the message length ` a bit. The bound (8) changes by a factor (n+ 1)15,
which can be compensated by shrinking ` from (9) to

` = n− 2n log f(β)− 2ξ − 30 log(n+ 1). (12)

5 Discussion

5.1 QKR rate; Choosing the parameter values

We want to characterize the performance of 8-state QKR under ideal circumstances. Consider
a sequence of QKR rounds with a large number of consecutive Accepts. Let ε = 2 · 2−λ + 2−σ

be the ‘imperfection’ induced by one round of QKR. Let θ be the maximum distance that

4The min-entropy loss gives a conservative (and possibly too pessimistic) bound.
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Alice and Bob are willing to tolerate between reality and the ideal state ρ(0). After N = bθ/εc
rounds they have to refresh all their key material. One can define a ‘QKR rate’ as {the total
amount of message data sent in N rounds minus the key material expended} divided by the
number of qubits and the number of rounds. The total message size is N`, with ` specified
in (12). The total key expenditure consists of N times two λ-bit authentication tags5, N a-bit
OTPs that protect the syndromes (asymptotically a ≈ nh(β)), 2n bits of basis key b, and n
bits of extractor key u. This gives

Rate = 1− a

n
− 2 log f(β)− 2ξ

n
− 30 log(n+ 1)

n
− 2λ

n
− 3

bθ/εc . (13)

Note that ξ/n scales as
√
σ/
√
n, and that ε can be made exponentially small (N exponentially

large) by increasing λ and σ. The asymptotic rate is

for n→∞, N →∞ : Rate→ 1− h(β)− 2 log f(β). (14)

See Fig. 1. The asymptotic rate is positive up to β ≈ 0.09. Up to this noise level using QKR
makes sense.
It is possible to reduce the key expenditure. “Scheme #3” in [2] greatly reduces the key
material spent on protecting the syndrome, but it increases the number of qubits needed to
convey the message. It does not modify the rate (13).
Instead of pairwise independent hashing one may use ‘almost pairwise independent’ hashes.
A small security penalty δ is incurred, but the length of the extractor key u is reduced from
n to approximately min(n− `, `+ 2 log 1

δ ).
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Figure 1: Bladiebla.

QKR ‘rate’, which we express as the message length minus the key expenditure, per round
and per qubit. For the message length we set ` = n�2n log f(�)�2 log N2

4⌦ in order to obtain

⌦n`�
N ⇡ ⌦ for some small constant ⌦.

|total msg| � |total key|
(N + 1)n

= 1� 2 log f(�)� �

n
�h(�)� 2

N + 1
� O(log N)

n
� 2 log N2

4⌦

(N + 1)n
. (42)

We see that the highest rate is obtained by setting N � 1, n � log N . Note that � is
constant. The asymptotic rate is 1 � h(�) � 2 log f(�).
@ plotje
@@ “Scheme #3” in [8] greatly reduces the key material spent on protecting the syndrome,
but it increases the number of qubits needed to convey the message. It does not modify the
rate (42).
@ plot the asymptotic rate and M2 in the same graph?

7.2 Comparison to existing results

@ Vergelijken met Fehr+Salvail
@ Vergelijken met Optimal Attacks paper. K2 min-entropie is te pessimistisch.

7.3 Erasures

7.4 Future work

@ betere e�cientie, bijv scheme3 gebruiken, of de MAC afleiden uit een stuk van z.
@ Scherpere afschattingen. Misschien von Neumann QKD PA.
h(3

2�) + 3�
2 log 3

Intuitief argument geven.
@ QOTP met halve sleutel
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Figure 1: The asymptotic rate 1− h(β)− 2 log f(β).

Typically θ is fixed. It makes sense to set λ − 1 ≈ σ. Increasing one of the two parameters
σ, λ far above the other one does not significantly reduce the sum ε = 2−λ+1 + 2−σ. Then it
remains to tune N (which via ε = θ/N fixes σ) and n as a function of (θ, β) so as to optimise
the rate. In Fig. 2 the non-asymptotic rate is plotted for θ = 2−256 and various choices of β,
N and n. We see that the asymptotic rate can be approached well for realistic values of N
and n, especially for channels with a low bit error rate β.

5.2 Comparison to existing results

The proof technique of Fehr and Salvail [1] requires a special property (‘key privacy’) of
the MAC function, and they have to keep track of the security of the MAC key. We avoid
this complication at the cost of spending λ additional bits of key material per round. An

5Both the tag t and the Accept/Reject bit are authenticated using λ bits of key material.
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Figure 2: Rate as a function of the number of qubits (n), for various values of the design
parameter N and tolerated noise β. The security parameter θ is set to θ = 2−256. We have
set λ = σ + 1. The dashed lines indicate the asymptotic rate (14).

interesting difference with respect to [1] is that we capture the security of the basis key B and
the extractor key U in a single quantity d(UB|ZE), whereas [1] uses a min-entropy result for
the basis key and a trace distance for the extractor key. In terms of QKR scheme construction,
the main differences are of course (i) that [1] tolerates practically no noise, and (ii) that the
use of 8-state encoding [2] as compared to 4-state (or 6-state) massively reduces the need for
privacy amplification at low β. These differences were already noted in [2, 9].

The min-entropy analysis of attacks in [9] has turned out to be too pessimistic in certain
respects. For the ‘K2 attack’ (a known-plaintext attack on b) a min-entropy loss of log(1 +√

6β(1− 3
2β)) bits per qubit was found for 8-state encoding; that is considerably more than

our leakage result 2 log f(β). Clearly min-entropy is too pessimistic as a measure of security
in this context. Note that in [1] all security bounds are expressed in terms of min-entropy.

5.3 Dealing with erasures

Our analysis has not taken into account quantum channels with erasures. (Particles failing
to arrive.) Consider a channel with erasure rate η and bit error rate β for the non-erased
states. The Alice-to-Bob channel capacity is (1 − η)(1 − h(β)). A capacity-achieving linear
error-correcting code that is able to deal with such a channel has a syndrome of size nh(β) +

9



nη[1 − h(β)]. Imagine the QKR scheme of Section 3 employing such an error-correcting
code. On the one hand, the key expenditure increases from nh(β) to nh(β) + nη[1 − h(β)].
On the other hand, the leakage increases. Every qubit not arriving at Bob’s side must
be considered to be in Eve’s possession; since an erasure can be parametrised as a qubit
with β = 1

2 , the leakage is 1 bit per erased qubit. Hence the leakage term n · 2 log f(β) in
Theorem 4.1 changes to n(1 − η)2 log f(β) + nη. The combined effect of the syndrome size
and the leakage increase has a serious effect on the QKR rate. The asymptotic rate becomes
1 − h(β) − η[1 − h(β)] − (1 − η)2 log f(β) − η. For β = 0 this is 1 − 2η; at zero bit error
rate no more than 50% erasures can be accommodated by the scheme. In long fiber optic
cables the erasure rate can be larger than 90%. Under such circumstances the QKR scheme
of Section 3 simply does not work. (Note that continuous-variable schemes have much lower
erasure rates.)
One can think of a number of straightforward ways to make the QKR protocol erasure-
resistant. Below we sketch a protocol variant in which Alice sends qubits, and Bob returns
an authenticated and encrypted message.

1. Alice sends a random string x ∈ {0, 1}m encoded in m qubits, with m(1− η) > n.

2. Bob receives qubits in positions i ∈ I, I ⊆ [m] and measures x′i in those positions. He
aborts the protocol if |I| < n. Bob selects a random subset J ′ ⊂ I, with |J ′| = n. He
constructs a string y′ = x′J ′ . He computes s′ = kSS ⊕ S(y′), z′ = Ext(u, y′), c′ = µ ⊕ z′,
t′ = M(kMAC,J ′||y′||c′||s′). He sends J ′, s′, c′, t′.

3. Alice receives this data as J , s, c, t. She computes y by running the Secure Sketch’s recon-
struction algorithm on xJ and the syndrome kSS ⊕ s. Then she computes z = Ext(u, y),
µ̂ = z ⊕ c and τ = M(kMAC,J ||y||c||s). Alice Accepts the message µ̂ if τ = t and Rejects
otherwise.

The security is not negatively affected by the existence of erasures. Assume that Eve holds
all the qubits that have not reached Bob. Since the data in the qubits is random, and does
not contribute to the computation of z′, it holds that (i) it is not important if Eve learns the
content of these bits, (ii) known plaintext does not translate to partial knowledge of the data
content of these qubits, which would endanger the basis key b and the extractor key u.

Many protocol modifications are possible. For instance, if Alice sends the qubits and the
message, then Bob needs to tell Alice where the erasures are before she can construct the
ciphertext.

5.4 Future work

It is interesting to note that QKR protocols which first send a random string z and then use
z for OTP encryption look a lot like Quantum Key Distribution, but with reduced commu-
nication complexity. This changes when the message is put directly into the qubits, e.g. as is
done in Gottesman’s Unclonable Encryption [6]. It remains a topic for future work to prove
security of such a QKR scheme.
The QKR scheme of Section 3 can be improved and embellished in various ways. For instance,
Alice’s λ-bit key expenditure for one-time MACing may not be necessary. The authentication
tag may simply be generated as part of the Ext function’s output, and then the security of
the MAC key can be proven just by proving the security of the extractor key u (similar to
what is done in [1]).

10



Furthermore, as mentioned in Section 5.1, one may use ‘scheme #3’ of [2] which protects the
syndrome by sending it through the quantum channel instead of classically OTP-ing it. This
too reduces the key expenditure and does not affect the rate.
Another interesting option is to deploy the Quantum One Time Pad with approximately half
the key length, which still yields information-theoretic security. This would improve the rate
(13) by reducing the cost 2

N to approximately 1
N .

We suspect that the inequality in (8) is not tight. Given the similarities between QKR
and QKD we would intuitively expect that the required amount of privacy amplification is
the same as for QKD. A known result for QKD, based on von Neumann entropy, is −(1 −
3
2β) log(1− 3

2β)− 3
2β log β

2 − h(β), which is less than the 2n log f(β) of (8) for all β. Perhaps
an improved proof technique can get closer to the QKD result.

6 Proof of Theorem 4.1

Our proof is similar to the derivation of the Leftover Hash Lemma (against quantum side
information), but with the difference that we apply an operator inequality on the square root
function and then compute the trace of a square root, instead of pulling the trace into the
square root via a Jensen, Cauchy-Schwartz or Hölder inequality.

6.1 Rewriting Eve’s state

We omit the superscript ‘E’ on Eve’s state. We allow Eve to cause different bit error proba-
bilities γi ∈ [0, 1

2) in each qubit position i individually. We have

ρzub = Ex:z=Ext(u,x)

n⊗
i=1

ωbixi(γi) = 2`
∑

x∈{0,1}n
δz,Ext(u,x)

n⊗
i=1

1
2ω

bi
xi(γi), (15)

where ωbixri
is defined as in (6). Using the properties of universal hash functions we get

Euδz,Ext(u,x) = 2−`, which yields

ρav
def
= Euρzub =

n⊗
i=1

ωbi0 (γi) + ωbi1 (γi)

2
. (16)

Note that ρav does not depend on z. In fact, it does not depend on b either! From (6) it
follows that

ωb0(γ) + ωb1(γ)

2
= (1− 3

2γ)|m0〉〈m0|+ γ
2 (1− |m0〉〈m0|). (17)

We have

ρav =

n⊗
i=1

{
(1− 3

2γi)|m0〉〈m0|+ γi
2 (1− |m0〉〈m0|)

}
. (18)

The special property holds that Ezρzub = Euρzub = ρav.

6.2 Bounding the distance

We start from D
def
= Ez‖ρUBE

z − ρUB⊗ ρz‖1 = Ezub‖ρzub− ρav‖1 = Ezubtr
√

[ρzub − ρav]2. Here
we have used the block structure of the state to pull the Eub out of the trace norm. We use

11



the fact that the square root function is operator-concave in order to move Eu into the square
root, and then use ρav = Euρzub.

D ≤ Ebztr
√

Eu[ρzub − ρav]2 = Ebztr
√

Euρ2
zub − ρ2

av. (19)

Next we expand ρzub twice and write

Euρ
2
zub = Eu22`

∑
xy

δz,Ext(u,x)δz,Ext(u,y)

n⊗
i=1

1
4ω

bi
xi(γi)ω

bi
yi(γi). (20)

The Euδδ is evaluated using the properties of pairwise independent hash functions. An oc-
currence x 6= y gives rise to 2−2`, whereas x = y yields 2−`.

Euρ
2
zub =

∑
xy

[2`δxy + (1− δxy)]
n⊗
i=1

1
4ω

bi
xi(γi)ω

bi
yi(γi) (21)

=
∑
xy

[(2` − 1)δxy + 1]

n⊗
i=1

1
4ω

bi
xi(γi)ω

bi
yi(γi) (22)

= (2` − 1)

n⊗
i=1

[ωbi0 (γi)]
2 + [ωbi1 (γi)]

2

4
+

n⊗
i=1

(ωbi0 (γi) + ωbi1 (γi)

2

)2
(23)

= (2` − 1)

n⊗
i=1

[ωbi0 (γi)]
2 + [ωbi1 (γi)]

2

4
+ ρ2

av. (24)

We define shorthand notation |v ·m〉 def
= vx|m1〉+ vy|m2〉+ vz|m3〉. Then

|Ev
01〉 =

√
1− 3

2γ

1− γ |m0〉+

√
1
2γ

1− γ |v ·m〉. (25)

Note that |m0〉, |v ·m〉, |Ev
00〉, |Ev

11〉 form an orthonormal basis. We have

[ωbx(γ)]2 = (1− γ)2σ
v(b)
xx̄ + γ2σv(b)

xx (26)

[ωb0(γ)]2 + [ωb1(γ)]2 = (1− γ)2[σ
v(b)
01 + σ

v(b)
10 ] + γ2[σ

v(b)
00 + σ

v(b)
11 ]

= 2(1− γ)2
[1− 3

2γ

1− γ |m0〉〈m0|+
1
2γ

1− γ |v(b) ·m〉〈v(b) ·m|
]

+γ2[σ
v(b)
00 + σ

v(b)
11 ]. (27)

The eigenvalues of [(ωb0)2 + (ωb1)2]/2 are

λ
(i)
1

def
= (1− γi)(1− 3

2γi); λ
(i)
2

def
= 1

2γi(1− γi); λ
(i)
3

def
= 1

2γ
2
i ; λ

(i)
4

def
= 1

2γ
2
i . (28)

Hence we get

tr
√

Euρ2
zub − ρ2

av =
√

(2` − 1)2−n
n∏
i=1

[ 4∑
j=1

√
λ

(i)
j

]
=
√

(2` − 1)2−n
n∏
i=1

f(γi) (29)

<
√

2`−n
n∏
i=1

f(γi) =

√
2`−n+2n· 1n

∑n
i=1 log f(γi) (30)

with f as defined in Theorem 4.1. We substitute (30) into (19). As log f(·) is a concave
function it holds that 1

n

∑n
i=1 log f(γi) ≤ log f( 1

n

∑
i γi). �
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7 Proof of Theorem 4.2

We omit the superscript ‘E’ on Eve’s state. We use shorthand notation D
def
= Ez‖ρUBE

z −
ρUB⊗ ρz‖1. Let γ be the noise parameter that Eve actually applies. The error rate tolerated
by the error-correcting code is β. The probability that Bob accepts is denoted as Pacc. We
distinguish between Pacc and Pre-use because it is possible that Bob sends a Reject bit and
Eve changes it to Accept, which leads to unintended key re-use. We have Pre-use = 2−λ+Pacc,
where 2−λ is Eve’s probability of forging Bob’s MAC tag.
The Pacc consists of two contributions: a term 2−λ from the possibility that Eve accidentally
forges a correct tag on Alice’s message, and a term PECC

acc (γ, β) =
∑

t≤nβ
(
n
t

)
γt(1 − γ)n−t

representing the probability that the number of bit flips in x′ remains below the threshold nβ
that can be handled by the error-correcting code.6

In the two cases where Eve forges a tag we use the bound D ≤ 1. This yields the term 2 · 2−λ
in (11). In the third case we use Theorem 4.1. Substitution of (9) into (8) yields

D < ∆(γ, β)
def
=
[f(γ)

f(β)

]n
2−ξ. (31)

We define a parameter βξ such that ∆(βξ, β) = 1. On the interval γ ≤ β we use PECC
acc ≤ 1,

which yields PECC
acc D < 2−ξ < 2−σ. (Here we have used that ξ > σ for relevant values

of β, i.e. the range that yields positive rate. See Section 5.1. In particular, we use that
f ′(β)/f(β) > 1/2.)
On the interval γ > βξ we use D ≤ 1. Furthermore, PECC

acc is a decreasing function of γ.
Hence for γ > βξ it holds that PECC

acc D < PECC
acc (βξ, β).

On the interval γ ∈ (β, βξ] we note that PECC
acc (γ, β)∆(γ, β) is an increasing function of γ. We

conclude that we can use the bound PECC
acc D < PECC

acc (βξ, β) on the whole interval γ > β. The
Chernoff bound yields PECC

acc (βξ, β) ≤ exp[− n
2βξ

(βξ − β)2].

First we define a parameter ασ such that βξ ≥ ασ implies PECC
acc (βξ, β) ≤ 2−σ. Solving for ασ

gives ασ = β + σ ln 2
n +

√
(σ ln 2

n )2 + 2β σ ln 2
n .

Next we note that (31) gives us an expression for ξ as a function of βξ, namely ξ = n log
f(βξ)
f(β) .

A sufficiently large value of ξ in order to achieve the desired security 2−σ is given by

ξsuff = n log
f(ασ)

f(β)
. (32)

We consider two ways to simplify (32).

1. The concavity of f allows us to write f(ασ) ≤ f(β) + (ασ − β)f ′(β). Substitution into

(32) and using ln(1 + u) ≤ u yields ξsuff ≤ n
ln 2

f ′(β)
f(β) (ασ − β), which is precisely the first

expression in (10).

2. ξsuff is a decreasing7 function of β. Hence we can upper bound it by the value taken at
β = 0. This gives ξsuff ≤ n

ln 2 ln f(2σ ln 2
n ). Using f(u) ≤ 1+

√
u/2+u

√
2 and ln(1+v) ≤ v

we get ξsuff ≤ n
ln 2 [
√

σ
n ln 2 + σ

n2
√

2 ln 2], which is the second expression in (10).

�
6We could allow Eve to apply a different γi for each EPR pair. However, the PECC

acc is maximized by setting
all γi equal to γ. Namely, PECC

acc =
∑
A⊂[n]:|A|≤nβ(

∏
i∈A γi)

∏
j∈Ac(1 − γj). Using Jensen’s inequality for

the logarithm function it is readily verified that
∏
i∈A γi ≤ ( 1

|A|
∑
i∈A γi)

|A| and similarly
∏
j∈Ac(1 − γj) ≤

(1 − 1
|Ac|

∑
j∈Ac γj)

|Ac|.
7This is easily verified by plotting d

dβ
f(ασ)
f(β)

and noting that it is always negative.
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