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Abstract. Quantum Key Recycling aims to re-use the keys employed in
quantum encryption and quantum authentication schemes. We consider
a QKR protocol that works with qubits, as opposed to high-dimensional
qudits. A security proof was given by Fehr and Salvail [1] in the case
where there is practically no noise. A scheme for the noisy case was
proposed by Škorić and de Vries [2], based on eight-state encoding, which
reduces leakage. However, a security proof was not given.
In this paper we introduce a small protocol modification to [2] and pro-
vide a security proof. Our proof is based on a bound on the trace distance
between the real quantum state of the system and a state in which the
keys are completely secure. We determine how much privacy amplifi-
cation is needed as a function of the tolerated bit error rate. It turns
out that less privacy amplification is needed than suggested by previous
results.

1 Introduction

1.1 Quantum Key Recycling

Quantum cryptography uses the properties of quantum physics to achieve se-
curity feats that are impossible with classical communication. Best known is
Quantum Key Distribution (QKD), first described in the famous BB84 paper
[3]. QKD establishes a random secret key known only to Alice and Bob, and
exploits the no-cloning theorem for unknown quantum states [4] to detect any
manipulation of the quantum states. Already two years before the invention of
QKD, the possibility of Quantum Key Recycling (QKR) was considered [5]. Let
Alice and Bob encrypt classical data as quantum states, using a classical key
to determine the basis in which the data is encoded. If they do not detect any
manipulation of the quantum states, then Eve has learned almost nothing about
the encryption key, and hence it is safe for Alice and Bob to re-use the key. After
the discovery of QKD, interest in QKR was practically nonexistent for a long
time, despite the benefits that QKR can offer for communication complexity.
QKR received some attention again in 2003 when Gottesman [6] proposed an
Unclonable Encryption scheme with partially re-usable keys. In 2005 Damg̊ard,
Pedersen and Salvail introduced a scheme that allows for complete key recy-
cling, based on mutually unbiased bases in a high-dimensional Hilbert space [7,
8]. Though elegant, their scheme unfortunately needs a quantum computer for
encryption and decryption. In 2017 Fehr and Salvail [1] introduced a qubit-based



QKR scheme (similar to [5]) that does not need a quantum computer, and they
were able to prove its security in the regime of extremely low noise. Škorić and
de Vries [2] proposed a variant with 8-state encoding, which drastically reduces
the need for privacy amplification. It is meant to operate at higher noise levels,
but the security was not proven. Attacks on the qubit-based QKR schemes of
[1, 2] were studied in [9], but that did not yield a security proof.

1.2 Contributions and outline

We investigate qubit-based Quantum Key Recycling with 8-state encoding, tak-
ing an ‘engineering’ point of view: we do not aim for complete key re-use, but
rather for a high ratio of message length versus expended key bits.

– We introduce a small modification in the QKR protocol of Škorić and de
Vries [2]. A constant amount of key material (not proportional to the message
size) is refreshed even in case of an Accept.

– We give a security proof. We use the EPR formulation of the protocol. First
we consider attacks in which Eve collects quantum side information from one
EPR pair at a time; then we apply the post-selection method in order to
obtain security against general attacks. We derive a non-asymptotic upper
bound on the amount of privacy amplification as a function of the number of
qubits (n) and the tolerated bit error rate (β).

– Asymptotically (large n, and without any further tricks such as smoothening)

our bound on the privacy amplification is nh(β) + 2n log[
√

(1− β)(1− 3
2β) +√

3
2β(1 + β)] bits. This result is more favourable than the min-entropy analy-

sis in [9] and straightforward generalisations of [1] to the noisy case. A positive
rate is possible up to β ≈ 0.069.

The outline of the paper is as follows. In the preliminaries section we introduce
notation; we briefly review proof techniques and methods for embedding clas-
sical bits in qubits, and we summarise known results regarding Eve’s optimal
extraction of information from a qubit into a four-dimensional ancilla state. In
Section 3 we motivate why we depart from the entanglement-monogamy based
proof technique. In Section 4 we present the modified QKR protocol. Section 5
states the main theorems and discusses rates and optimal parameter choices. In
Section 6 we compare to existing results, discuss erasures, and suggest topics for
future work.

2 Preliminaries

2.1 Notation and terminology

Classical Random Variables (RVs) are denoted with capital letters, and their
realisations with lowercase letters. The probability that a RV X takes value x
is written as Pr[X = x]. The expectation with respect to RV X is denoted as
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Exf(x) =
∑
x∈X Pr[X = x]f(x). Sets are denoted in calligraphic font. We write

[n] for the set {1, . . . , n}. For a string x and a set of indices I the notation xI
means the restriction of x to the indices in I. The notation ‘log’ stands for the
logarithm with base 2. The notation h stands for the binary entropy function
h(p) = p log 1

p + (1− p) log 1
1−p . Bitwise XOR of binary strings is written as ‘⊕’.

The Kronecker delta is denoted as δab. The inverse of a bit b ∈ {0, 1} is written
as b̄ = 1− b. The Hamming weight of a binary string x is written as |x|. We will
speak about ‘the bit error rate γ of a quantum channel’. This is defined as the
probability that a classical bit g, sent by Alice embedded in a qubit, arrives at
Bob’s side as ḡ.
For quantum states we use Dirac notation, with the standard qubit basis states
|0〉 and |1〉 represented as

(
1
0

)
and

(
0
1

)
respectively. The Pauli matrices are denoted

as σx, σy, σz, and we write σ = (σx, σy, σz). The standard basis is the eigenbasis
of σz, with |0〉 in the positive z-direction. We write 1 for the identity matrix.
The notation ‘tr’ stands for trace. The Hermitian conjugate of an operator A
is written as A†. The complex conjugate of z is denoted as z∗. Let A have
eigenvalues λi. The 1-norm of A is written as ‖A‖1 = tr

√
A†A =

∑
i |λi|. The

trace distance between matrices ρ and σ is denoted as δ(ρ;σ) = 1
2 ||ρ− σ||1. It is

a generalisation of the statistical distance and represents the maximum possible
advantage one can have in distinguishing ρ from σ.
Consider a uniform classical variable X and a mixed state ρX that depends on X.
The combined classical-quantum state is ρXE = Ex|x〉〈x| ⊗ ρE

x . The state of a
sub-system is obtained by tracing out one subspace, e.g. ρE = trXρ

XE = ExρE
x .

The fully mixed state of subsystem X is denoted as µX . The security of the
variable X, given that Eve holds the ‘E’ subsystem, can be expressed in terms
of a trace distance as follows [10],

d(X|E)
def
= δ

(
ρXE ; µX ⊗ ρE

)
(1)

i.e. the distance between the true classical-quantum state and a state in which
X is completely unknown to Eve. X is said to be ε-secure with respect to ρ if
d(X|ρ) ≤ ε. When this is the case, it can be considered that X is ‘ideal’ except
with probability ε.
A family of hash functions H = {h : X → T } is called pairwise independent
(a.k.a. 2–independent or strongly universal) [11] if for all distinct pairs x, x′ ∈ X
and all pairs y, y′ ∈ T it holds that Prh∈H [h(x) = y ∧ h(x′) = y′] = |T |−2. Here
the probability is over random h ∈ H. Pairwise independence can be achieved
with a hash family of size |H| = |X |.

2.2 QKR proof structure

The protocol (see Section 4) has three basic steps. (i) Alice sends quantum
states and classical data to Bob. (ii) Bob responds with a decision bit c ∈
{Accept, Reject}. (iii) In case of Accept, most of the key material K is re-used;
in case of Reject, the key material is refreshed from K to K ′.
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We will use a recursive proof structure as in [1]. The starting situation is an ‘ideal’
state ρ(0) = ρK⊗ρE, in which the key material K is decoupled from Eve’s state.

After one round of QKR the state has evolved to ρ
(1)
c ; this includes actions by

Eve as well as key updates by Alice and Bob. Accept happens with probability

Pacc and leads to a state ρ
(1)
acc = Ek|k〉〈k| ⊗ ρ̃E

k in which Eve has potentially
gained knowledge about K; Reject happens with probability Prej and yields a

state ρ
(1)
rej = ρ̃K ⊗ ρ̃E which has factorised form due to the key refreshment.

The notion of secure key re-use is expressed as follows. Under known-plaintext

conditions, a bound is derived on the distance between ρ
(1)
c and the ideal state

ρ(0), given that Eve observes the decision bit: Pacc‖ρ(1)
acc − ρ(0)‖1 + Prej‖ρ(1)

rej −
ρ(0)‖1 ≤ ε, which is equivalent to Pacc‖ρ(1)

acc − ρ(0)‖1 ≤ ε.
By induction Ec1···cN ‖ρ

(N)
c1···cN − ρ(0)‖1 ≤ Nε, where ρ(N) is the state after N

rounds. This can be seen as follows. After two rounds the state is ρ
(2)
c1c2 , and

the security quantity of interest is Ec1c2‖ρ
(2)
c1c2 − ρ(0)‖1 = P 2

acc‖ρ
(2)
acc,acc − ρ(0)‖1

+PrejPacc‖ρ(2)
rej,acc − ρ(0)‖1 = P 2

acc‖ρ
(2)
acc,acc − ρ(0)‖1 +PrejPacc‖ρ(1)

acc − ρ(0)‖1 ≤
P 2

acc‖ρ
(2)
acc,acc − ρ(0)‖1 +Prejε. Using the triangle inequality the first term is up-

perbounded as P 2
acc‖ρ

(2)
acc,acc− ρ(0)‖1 ≤ P 2

acc‖ρ
(2)
acc,acc− ρ(1)

acc‖1 +P 2
acc‖ρ

(1)
acc− ρ(0)‖1

≤ P 2
acc‖ρ

(2)
acc,acc − ρ(1)

acc‖1 +Paccε. Finally it is used that the mapping from ρ(i) to

ρ(i+1) is a CPTP map, which cannot increase distance. Hence ‖ρ(2)
acc,acc − ρ(1)

acc‖1
≤ ‖ρ(1)

acc − ρ(0)‖1. It follows that Ec1c2‖ρ
(2)
c1c2 − ρ(0)‖1 ≤ 2ε.

2.3 Post-selection

In a collective attack Eve acts on individual qudits. This is not the most gen-
eral attack. For protocols that obey permutation symmetry, a post-selection
argument [12] can be used to show that ε-security against collective attacks im-

plies ε′-security against general attacks, with ε′ = ε(n + 1)d
4−1, where d is the

dimension (d = 2 for qubits). Hence, by paying a modest price in terms of pri-
vacy amplification, e.g. changing the usual privacy amplification term 2 log 1

ε to
2 log 1

ε + 2(d4 − 1) log(n+ 1), one can ‘buy’ security against general attacks.

2.4 Encoding a classical bit in a qubit

We briefly review methods for embedding a classical bit g ∈ {0, 1} into a qubit
state. The standard basis is |0〉, |1〉 with |0〉 the positive z-direction on the Bloch
sphere. The set of bases used is denoted as B, and a basis choice as b ∈ B.
The encoding of bit value g in basis b is written as |ψbg〉. In BB84 encoding we

write B = {0, 1}, with |ψ00〉 = |0〉, |ψ01〉 = |1〉, |ψ10〉 = |0〉+|1〉√
2

, |ψ11〉 = |0〉−|1〉√
2

.

In six-state encoding [13] the vectors are ±x, ±y, ±z on the Bloch sphere. For
8-state encoding [2] we have B = {0, 1, 2, 3} and the eight states are the corner
points of a cube on the Bloch sphere. We write b = 2u + w, with u,w ∈ {0, 1}.
The states are

|ψuwg〉 = (−1)gu
[
(−
√
i)g cos α2 |g ⊕ w〉+ (−1)u(

√
i)1−g sin α

2 |g ⊕ w〉
]
. (2)
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The angle α is defined as cosα = 1/
√

3. For given g, the four states |ψuwg〉
are the Quantum One-Time Pad (QOTP) encryptions [14–16] of |ψ00g〉. The
‘plaintext’ states |ψ000〉, |ψ001〉 correspond to the vectors ±(1, 1, 1)/

√
3 on the

Bloch sphere.

2.5 Eve’s ancilla state

Attacks on QKR were studied in some detail in [9]. They formulated an EPR
version of qubit-based QKR protocol. Instead of creating |ψbixi〉 and sending
it to Bob, Alice performs a measurement on one half an EPR singlet state
(using basis bi) while the other half goes to Bob. Eve may manipulate the
EPR state; this turns the pure EPR state into a mixed state. The noise sym-
metrisation technique of [17] was applied to simplify the state. If Eve’s actions
induce bit error probability γ (defined as a bit mismatch in xi between Al-
ice and Bob), then this corresponds to a state of the AB subsystem of the
form ρ̃AB = (1 − 3

2γ)|Ψ−〉〈Ψ−| + γ
2

(
|Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|+ |Φ+〉〈Φ+|

)
, where

|Ψ±〉 = |01〉±|10〉√
2

and |Φ±〉 = |00〉±|11〉√
2

denote the Bell basis states.1 Eve’s state is

obtained by purifying ρ̃AB. The pure state is |ΨABE〉 =
√

1− 3
2γ|Ψ

−〉 ⊗ |m0〉+√
γ
2

(
−|Φ−〉 ⊗ |m1〉+ i|Ψ+〉 ⊗ |m2〉+ |Φ+〉 ⊗ |m3〉

)
, where |mi〉 is an orthonor-

mal basis in Eve’s four-dimensional ancilla space. Let v be a 3-component vector
on the Bloch sphere describing the ‘0’ bit value in a certain basis. Let x be the
bit value that Alice measures, and y Bob’s bit value. (In the noiseless case we
have y = x̄ because of the anti-correlation in the singlet state.) One of the results
of [9] is an expression for Eve’s mixed ancilla state when v, x, y are fixed,

σv
xy

def
= |Ev

xy〉〈Ev
xy|. (3)

|Ev
01〉 =

1√
1− γ

[√
1− 3

2γ|m0〉+
√

γ
2 (vx|m1〉+ vy|m2〉+ vz|m3〉)

]
|Ev

10〉 =
1√

1− γ

[√
1− 3

2γ|m0〉 −
√

γ
2 (vx|m1〉+ vy|m2〉+ vz|m3〉)

]
(4)

|Ev
00〉 =

1√
2(1− v2

z)

[
(−vxvz − ivy)|m1〉+ (−vyvz + ivx)|m2〉+ (1− v2

z)|m3〉
]

|Ev
11〉 =

1√
2(1− v2

z)

[
(−vxvz + ivy)|m1〉+ (−vyvz − ivx)|m2〉+ (1− v2

z)|m3〉
]
.

The E-vectors are not all orthogonal. We have 〈Ev
01|Ev

10〉 = 1−2γ
1−γ . (The rest of

the inner products are zero.) It holds that |−vxvz−ivy√
1−v2z

|2 = 1− v2
x and

|−vyvz+ivx√
1−v2z

|2 = 1− v2
y. We have |Ev

10〉 = |E−v01 〉 and |Ev
11〉 = |E−v00 〉.

1 For 4-state QKR an extra ingredient is needed to arrive at this expression: the use
of test states so as to probe more than a circle on the Bloch sphere.
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3 Motivation

A straightforward way of adding more noise tolerance to the construction of
Fehr and Salvail [1] is as follows. Alice sends to Bob an encrypted syndrome.
The encryption is done with a one-time pad, i.e. a certain amount of exist-
ing key material has to be spent. Let the number of qubits be n; the length
of the secret after privacy amplification is `; the tolerated bit error rate is β.
The proof technique in [1] is based on an entanglement monogamy game [18].

It yields a trace distance
√

2`pwin between ideality and reality, where pwin is
the winning probability, pwin ≤ µn2nh(β) (asymptotically), where µ = 1

|B| +

|B|−1
|B|

√
maxbb′∈B:b′ 6=b maxxx′ ‖F bxF b

′
x′‖∞. Here F bx is the projection operator that

corresponds to data bit x ∈ {0, 1} in the basis b. The value of µ is given by

µ4 = 1
2 + 1

2

√
1
2 ≈ 0.85, µ6 = 1

3 + 2
3

√
1
2 ≈ 0.80, µ8 = 1

4 + 3
4

√
2
3 ≈ 0.86 for

4-state, 6-state and 8-state encoding respectively.2 Given that an amount nh(β)
of key material has to be spent, the asymptotic QKR ‘rate’ `−expenditure

n is upper
bounded by 1− log(2µ)− 2h(β). This bound on the rate is unfavourable for the
8-state case, even though it is known that QKR with 8-state encoding has su-
perior properties [9]. Our aim is to obtain a tighter bound on the trace distance
for 8-state QKR.

4 Our adapted QKR protocol

In this paper we consider the QKR scheme #2 proposed in [2], which is a slightly
modified version of the QEMC∗ scheme of Fehr and Salvail [1]. We introduce a
small change in the protocol:

– A small amount of key refreshment of the basis key occurs even in case of an
Accept.

The key material shared between Alice and Bob consists of five parts: a basis
sequence b ∈ Bn, a MAC key kMAC ∈ {0, 1}λ, an extractor key3 u ∈ U , an
extractor key v ∈ V, and a classical OTP ksyn ∈ {0, 1}a for protecting the
syndrome. The plaintext is µ ∈ {0, 1}`.
Alice and Bob have agreed on a pairwise independent hash function Ext :
U×{0, 1}n → {0, 1}`, a pairwise independent hash function Mix : V×Bn+q → Bn,
a MAC function M : {0, 1}λ × {0, 1}n+`+a → {0, 1}λ, and a linear error-
correcting code with syndrome function Syn : {0, 1}n → {0, 1}a and decoder
SynDec: {0, 1}a → {0, 1}n. For efficiency reasons we take a one-time MAC func-
tion whose key size does not exceed the tag size.4

2 We note that the pwin obtained numerically with Semidefinite Programming is the
same for 6-state and 8-state.

3 The extractor key was not mentioned explicitly in [2].
4 Alternatively, it is an arbitrary information-theoretically secure MAC and the MAC

key is re-used indefinitely; but then the tag has to be one-time padded and the pad
has to be refreshed in every round. This construction leads to the same amount of
key expenditure and involves a few more operations.
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The basis set B and the functions Ext, Mix,M, Syn, SynDec are publicly known.
Encryption
Alice performs the following steps. Generate random x ∈ {0, 1}n. Compute s =
ksyn⊕Syn(x) and z = Ext(u, x). Compute the ciphertext c = µ⊕z and authenti-
cation tag τ = M(kMAC, x||c||s). Prepare the quantum state |Ψ〉 =

⊗n
i=1 |ψbixi〉

according to Section 2.4. Send |Ψ〉, s, c, τ to Bob.
Decryption
Bob receives |Ψ ′〉, s′, c′, τ ′. He performs the following steps. Measure |Ψ ′〉 in the
b-basis. This yields x′ ∈ {0, 1}n. Recover x̂ = x′ ⊕ SynDec(ksyn ⊕ s′). Compute
ẑ = Ext(u, x̂) and µ̂ = c′ ⊕ ẑ. Accept only if τ ′ = M(kMAC, x̂||c′||s′) holds and
the syndrome decoding was successful. Communicate Accept/Reject to Alice
(publicly but with authentication).
Key update
Alice and Bob perform the following actions.

– In case of Reject, they take new keys ksyn, kMAC, b, u, v.
– In case of Accept, they take new keys ksyn and kMAC. Furthermore they

replace the basis key b by b′ = Mix(v, b||r), where r ∈ Bq is key material.

The key update b 7→ b′ consumes existing secret key material shared between
Alice and Bob. See Section 5.3 for a discussion of the balance between message
length and key expenditure.

5 Main result

5.1 Attacker model and proof method

The attacker model is the one used in most works on QKD. Eve is able to
manipulate the classical channel and the quantum channel between Alice and
Bob in any way. Eve has no access to the private computations taking place in
Alice and Bob’s devices. Eve has unbounded (quantum) computation power and
unbounded quantum memory.
We work with the EPR version of the protocol. First we consider attacks where
Eve entangles her quantum system with individual EPR pairs. Eve is allowed
to postpone measurements. For this limited class of attacks we derive a bound
(Theorem 1) on the trace distance between the real state and an ideal state, as
explained in Section 2.2. Finally we invoke post-selection to extend the validity
of the security proof to general attacks.

5.2 The theorems

Alice and Bob’s shared key material consists of ksyn, kMAC, b, u, v. The only keys
open to attack are b, u, v, since kSS and kMAC get discarded after each round.
Eve’s classical side information consists of s (OTP’ed syndrome), τ (authentica-
tion tag), and the ciphertext c = z⊕µ. The s and τ carry no information about
b, u, v. We assume that Eve knows the plaintext µ; this implies that she knows z.
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Eve’s quantum side information consists of her ancilla particles which have in-
teracted with the EPR pairs. The state of the ancillas depends on x and b. Since
z = Ext(u, x) and we are interested only in the coupling between Eve’s state
and the keys b, u, v, we will keep track only of z, b, u, v. We introduce the binary
variable Ω, with Ω = 1 indicating that Alice receives a properly authenticated
Accept message from Bob. The keys after execution of one QKR round are de-
noted with a tilde. We have ũ = u, ṽ = v in case ω = 1, and a completely new
random ũ, ṽ in case ω = 0. Similarly we have b̃ = Mix(v, b||r) in case ω = 1 and
a new random b̃ in case ω = 0. We work with quantum-classical states; each
classical variable is assigned a quantum register, indicated as a capital-letter
superscript on the state ρ. Eve’s ancillas are denoted as the subsystem “E”. We
are interested in the security of the new keys b̃, ũ, ṽ given z, ω and Eve’s ancillas.

Hence the quantity of interest is ‖ρB̃ŨṼ ZΩE − µB̃ŨṼ ⊗ ρZΩE‖1.

Theorem 1. Consider one round of the QKR protocol (Section 4) with 8-state
encoding. Let Eve cause noise described by parameter γ as discussed in Sec-
tion 2.5. Let t be the number of errors that can be corrected by the error-correcting
code. Let Pcorr(t, γ) be the probability5 that Bob’s error correction succeeds. Let
the function f be defined as

f(γ)
def
=
√

(1− 3
2γ)(1− γ) +

√
3
2γ(1 + γ). (5)

The trace distance between the real state and the ideal state can be bounded as

1

2

∥∥∥ρB̃ŨṼ ZΩE−µB̃ŨṼ ⊗ρZΩE
∥∥∥

1
≤ 2

2λ

+ min

{
Pcorr(t, γ),

√
2`−n

2
+

1

2
√
|B|q

+
1

2

√
2`−n+2n log f(γ)

|B|q

}
. (6)

The proof is given in Appendix A.
For large γ the probability Pcorr(t, γ) is exponentially small. For small γ the
other expression in the min{·, ·} is exponentially small, if ` is set to be sufficiently
smaller than n− 2n log f(t/n).

Theorem 2. Consider the context of Theorem 1. Let β = t/n. Let σ be a secu-
rity parameter. Let the scheme parameters be chosen as

q ≥ σ (7)

` ≤ n− 2n log f(β)− 2ξ
√
σn− 2σ − 1 (8)

ξ
def
= min

{
f ′(β)

f(β)

[√
2β

ln 2
+
σ

n
+

√
σ

n

]
,

√
3

ln 2

}
. (9)

Then
1
2‖ρ

B̃ŨṼ ZΩE−µB̃ŨṼ ⊗ρZΩE‖1 ≤ 2 · 2−λ + 2−σ. (10)

5 We have Pcorr(t, γ) =
∑t
c=0

(
n
c

)
γc(1− γ)n−c.
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Proof: See Appendix C.
A typical choice for the tag length is λ = σ+1, resulting in 2/2σ in (10). Several
things are worth noting.

– Theorem 2 suffices to prove the security of the protocol. The keys BUV are
protected, and the Quantum One Time Pad protects the x perfectly as long
as B is uniform. (See Section 2.2.)

– The ξ is of order 1. Hence the term ξ
√
σn scales as

√
n.

– The function f is concave. We could have allowed Eve to apply position-
dependent noise γi. Due to the concavity of f the optimal attack for Eve is
to set all γi equal.

– Analysis of QKD instead of QKR using the same technique amounts to bound-
ing the distance 1

2‖ρ
ZBUΩE − µZ ⊗ ρBUΩE‖1. Without providing details we

note that this gives a result closely resembling Theorem 1: the second argu-
ment of the min{·, ·} in (6) is replaced by 1

2

√
2`−n+2n log f(γ). This suggests

that QKR’s noise tolerance is not much different from QKD’s.

As explained in Section 2.3, by invoking post-selection we can ‘buy’ security
against general attacks by reducing the message length ` a bit. The bound (6)
changes by a factor (n + 1)15, which can be compensated by shrinking ` from
(8) to

` = n− 2n log f(β)− 2ξ
√
σn− 2σ − 1− 30 log(n+ 1). (11)

5.3 QKR rate; Choosing the parameter values

We want to characterize the performance of 8-state QKR under ideal circum-
stances. Consider a sequence of QKR rounds with a large number of consecutive
Accepts. Let ε = 2 · 2−λ + 2−σ be the ‘imperfection’ induced by one round
of QKR. Let θ be the maximum distance that Alice and Bob are willing to tol-
erate between reality and the ideal state ρ(0). After N = bθ/εc rounds they have
to refresh all their key material. One can define a ‘QKR rate’ as

rate =
total message data sent in N rounds− expended key material

N · n
. (12)

The total message size is N`, with ` specified in (11). The total key expenditure
consists of N times two λ-bit authentication tags, N a-bit OTPs that protect the
syndromes (asymptotically a ≈ nh(β)), N times 2q bits of fresh key mixed into
b, 2n bits of basis key b, n bits of extractor key u and 2n+ 2q bits of extractor
key v. This gives

rate = 1− a

n
− 2 log f(β)− 2ξ

√
σ√
n
− 30 log(n+ 1)

n
− 2λ+ 2σ

n
− 5

N
− 2σ

Nn
. (13)

Note that ε can be made exponentially small (N exponentially large) by increas-
ing λ and σ. The asymptotic rate is

for n→∞, N →∞ : Rate→ 1− h(β)− 2 log f(β). (14)
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Fig. 1. Asymptotic QKR rates. The upper curve is the bound (14) for 8-state encoding
that follows from our proof technique, 1 − h(β) − 2 log f(β). The ‘EM6’ and ‘EM8’
curves correspond to the bound 1− log(2µ)−2h(β) based on Entanglement Monogamy,
with constants µ = µ6 and µ = µ8 respectively (see Section 3).

See Fig. 1. The asymptotic rate is positive up to β ≈ 0.069. Up to this noise
level it makes sense to use QKR. Fig. 1 also shows the bound derived using the
entanglement monogamy game (see Section 3). Our bound is clearly tighter.

It is possible to reduce the key expenditure. “Scheme #3” in [2] greatly reduces
the key material spent on protecting the syndrome, but it increases the number
of qubits needed to convey the message. It does not modify the rate (13).
Instead of pairwise independent hashing one may use ‘almost pairwise indepen-
dent’ hash functions. A small security penalty δ is incurred, but the length of
the extractor key u is reduced from n to approximately min(n− `, `+ 2 log 1

δ ).

Typically θ is fixed. Then it remains to tune N (which via ε = θ/N fixes σ)
and n for fixed (θ, β) so as to optimise the rate. In Fig. 2 the non-asymptotic
rate is plotted for θ = 2−256 and various values of β, N and n. We see that the
asymptotic rate can be approached well for realistic values of N and n.

5.4 Message bits per key bit

A figure of merit similar to the rate (12) is the number of message bits that are
protected per expended key bit. In our scheme this ratio is given by

message bits

key bits
=

N`

Na+N(4σ + 2) + 5n
=

1− 2 log f(β)−O( 1√
n

)

h(β) +O(
√
β√
n

+ 5
N + 1

n )
, (15)

i.e. almost N/5 in the noiseless case (assuming n � N) and steeply decreasing
as a function of β. This figure of merit can be improved in the same way as the
rate: by switching to almost-pairwise independent hashes, thereby reducing the
size of the extractor keys u, v (especially v).
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Fig. 2. Non-asymptotic bound on the QKR rate as a function of the number of qubits
(n), for various values of the design parameter N and tolerated noise β. The dashed
lines indicate the asymptotic rate (14). λ = σ + 1; θ = 2−256; the syndrome length a
is set to nh(β) +

√
nΦinv(10−6)

√
β(1− β) log 1−β

β
(see e.g. [19]), where Φ is defined as

Φ(z)
def
=
∫∞
z

(2π)−1/2 exp[−x2/2]dx.
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Furthermore, it is possible to send several keys for the next round (ksyn, r and
the two MAC protection OTPs) as part of the payload in the current round. This
removes the Na and N(4σ+2) terms from the denominator in (15) and subtracts

them from the N` in the numerator; this yields
message bits

key bits
→ N`−Na−N(4σ+2)

5n

which approximately equals N
5 times the rate (14).

6 Discussion

6.1 Comparison to existing results

The proof technique of Fehr and Salvail [1] requires a special property (‘key
privacy’) of the MAC function, and they have to keep track of the security of
the MAC key. We avoid this requirement at the cost of spending λ additional
bits of key material.

An interesting difference with respect to [1] is that we capture the security of the
basis key B and the extractor key U in a single quantity (a single trace distance),
whereas [1] uses a min-entropy result for the basis key and a trace distance for
the extractor key.

We compare our result to the min-entropy analysis of attacks in [9]. For the ‘K2

attack’ (a known-plaintext attack on b) a min-entropy loss of log(1+
√

6β(1− 3
2β))

bits per qubit was found for 8-state encoding; that is more than our leakage re-
sult 2 log f(β). We conclude that (non-smooth) min-entropy is too pessimistic
as a measure of security in this context.

6.2 Dealing with erasures

Our analysis has not taken into account quantum channels with erasures. (Parti-
cles failing to arrive.) Consider a channel with erasure rate η and bit error rate β
for the non-erased states. The Alice-to-Bob channel capacity is (1−η)(1−h(β)).
A capacity-achieving linear error-correcting code that is able to deal with such a
channel has a syndrome of size nh(β) + nη[1− h(β)]. Imagine the QKR scheme
of Section 4 employing such an error-correcting code. On the one hand, the key
expenditure increases from nh(β) to nh(β) + nη[1 − h(β)]. On the other hand,
the leakage increases. Every qubit not arriving at Bob’s side must be considered
to be in Eve’s possession; since an erasure can be parametrised as a qubit with
β = 1

2 , the leakage is 1 bit per erased qubit. Hence the leakage term n ·2 log f(β)
changes to n(1−η)2 log f(β)+nη. The combined effect of the syndrome size and
the leakage increase has a serious effect on the QKR rate. The asymptotic rate
becomes 1− h(β)− η[1− h(β)]− (1− η)2 log f(β)− η. For β = 0 this is 1− 2η;
at zero bit error rate no more than 50% erasures can be accommodated by the
scheme. In long fiber optic cables the erasure rate can be larger than 90%. Under
such circumstances the QKR scheme of Section 4 simply does not work. (Note
that continuous-variable schemes have much lower erasure rates.)
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One can think of a number of straightforward ways to make the QKR protocol
erasure-resistant. Below we sketch a protocol variant in which Alice sends qubits,
and Bob returns an authenticated and encrypted message.

1. Alice sends a random string x ∈ {0, 1}m encoded in m qubits, with m(1−η) >
n.

2. Bob receives qubits in positions i ∈ I, I ⊆ [m] and measures x′i in those
positions. He aborts the protocol if |I| < n. Bob selects a random subset
J ′ ⊂ I, with |J ′| = n. He constructs a string y′ = x′J ′ . He computes
s′ = kSS ⊕ S(y′), z′ = Ext(u, y′), c′ = µ⊕ z′, t′ = M(kMAC,J ′||y′||c′||s′). He
sends J ′, s′, c′, t′.

3. Alice receives this data as J , s, c, t. She computes y by doing error correction
on xJ and the syndrome kSS⊕s. Then she computes z = Ext(u, y), µ̂ = z⊕c
and τ = M(kMAC,J ||y||c||s). Alice Accepts the message µ̂ if τ = t and
Rejects otherwise.

The security is not negatively affected by the existence of erasures. Assume that
Eve holds all the qubits that have not reached Bob. Since the data in the qubits
is random, and does not contribute to the computation of z′, it holds that (i) it
is not important if Eve learns the content of these bits, (ii) known plaintext does
not translate to partial knowledge of the data content of these qubits, which
would endanger the basis key b and the extractor key u.

The above protocol looks a lot like QKD, but with reduced round complexity.

6.3 Future work

It is interesting to note that QKR protocols which first send a random string z
and then use z for OTP encryption look a lot like Quantum Key Distribution, but
with reduced communication complexity. This changes when the message is put
directly into the qubits, e.g. as is done in Gottesman’s Unclonable Encryption
[6]. It remains a topic for future work to prove security of such a QKR scheme.
The QKR scheme of Section 4 can be improved and embellished in various ways.
For instance, Alice’s λ-bit key expenditure for one-time MACing may not be
necessary. The authentication tag may simply be generated as part of the Ext

function’s output, and then the security of the MAC key can be proven just by
proving the security of the extractor key u (similar to what is done in [1]).
Furthermore, as mentioned in Section 5.3, one may use ‘scheme #3’ of [2] which
protects the syndrome by sending it through the quantum channel instead of
classically OTP-ing it. This too reduces the key expenditure, and it does not
affect the rate.
Another interesting option is to deploy the Quantum One Time Pad with ap-
proximately half the key length, which still yields information-theoretic security.
This would slightly improve the rate (13) by reducing the amortised cost of
refreshing b from 2

N to approximately 1
N .

As mentioned in Section 5.2, the trace distance we have derived closely resem-
bles the trace distance for QKD. It would be interesting to see if it is possible
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to prove that the noise tolerance of QKR is the same as that of QKD, e.g. using
state ‘smoothening’ as in Renner et al.’s work on smooth Rényi entropies. Fur-
thermore, various tricks from QKD may apply to improve the noise tolerance of
QKR, e.g. advantage distillation and artificial noise added by Alice.
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A Proof of Theorem 1

Our proof is similar to the derivation of the Leftover Hash Lemma (against
quantum side information), but with the difference that we apply an operator
inequality on the square root function and then compute the trace of a square
root, instead of pulling the trace into the square root via a Jensen, Cauchy-
Schwartz or Hölder inequality.

A.1 Rewriting the state

We introduce a binary variable θxy which indicates whether the error correction
succeeds.

θxy
def
=

{
1 if Hamm(x⊕ ȳ) ≤ t
0 otherwise

. (16)

(Note that ȳ appears instead of y, because of the anti-correlation in the singlet
state.) We write pxy = pxpy|x with px = 2−n and py|x = γ|x⊕ȳ|(1 − γ)n−|x⊕ȳ|.
The probability that the error correction succeeds is given by

Pcorr(t, γ) =
∑
xy

pxyθxy =

t∑
c=0

(
n

c

)
γc(1− γ)n−c. (17)

Alice will re-use keys (Ω = 1) if she receives an authenticated Accept bit from
Bob. The probability of this event can be bounded as

Pacc(t, γ) ≤ Pcorr(t, γ) + 2 · 2−λ. (18)

Here λ is the size of the authentication tag. One term 2−λ comes from the
possibility that Eve forges Alice’s MAC. Another term 2−λ comes from the
possibility that Eve forges Bob’s MAC on a Reject message and turns it into an
Accept message.

We introduce notation Eb
def
=
∑
b∈Bn

1
|B|n , Eu

def
=
∑
u∈U

1
|U| , Ev

def
=
∑
v∈V

1
|V| , and

in slight abuse of notation we define Eb̃,Eũ,Eṽ in the same way. Furthermore we
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introduce Er
def
=
∑
r∈Bq

1
|B|q , Exy

def
=
∑
x,y∈{0,1}n pxy. The full quantum-classical

state of all the classical variables and Eve’s system together is given by

ρBB̃UŨV Ṽ RXY ZΩE =

Eb
∑
b̃∈Bn

Eu
∑
ũ∈U

Ev
∑
ṽ∈V

ErExy
∑

z∈{0,1}`

∑
ω∈{0,1}

δz,Ext(u,x)

[
δω1(θxy + θxy21−λ)δũuδṽvδb̃,Mix(v,b||r) +

δω0θxy(1− 21−λ)

|B|n|U||V|

]
|bb̃uũvṽrxyzω〉〈bb̃uũvṽrxyzω| ⊗

n⊗
i=1

σbixiyi . (19)

We take the trace over the BUV RXY subsystems to focus on the variables
relevant to our analysis,

ρB̃ŨṼ ZΩE = Eb̃EũEṽ
∑

z∈{0,1}`

∑
ω∈{0,1}

|b̃ũṽzω〉〈b̃ũṽzω| ⊗

[
δω1Exy(θxy + θxy21−λ)δz,Ext(ũ,x)Er

∑
b

δb̃,Mix(ṽ,b||r)

n⊗
i=1

σbixiyi

+δω0Exyθxy(1− 21−λ)2−`Eb

n⊗
i=1

σbixiyi

]
. (20)

Here we have used the property Euδz,Ext(u,x) = 2−` of pairwise independent hash
functions. The marginal of the part known to Eve is

ρZΩE =
∑

z∈{0,1}`
2−`

∑
ω∈{0,1}

|zω〉〈zω| ⊗

Exy
[
δω1(θxy + θxy21−λ) + δω0θxy(1− 21−λ)

]
Eb

n⊗
i=1

σbixiyi . (21)

The difference between the true state and the decoupled state is

ρB̃ŨṼ ZΩE − µB̃ŨṼ ⊗ ρZΩE =

Eb̃ũṽ
∑

z∈{0,1}`

∑
ω∈{0,1}

δω1|b̃ũṽzω〉〈b̃ũṽzω| ⊗
∑
xy

pxy(θxy + θxy21−λ)

[
δz,Ext(ũ,x)Er

∑
b

δb̃,Mix(ṽ,b||r)

n⊗
i=1

σbixiyi − 2−`Eb

n⊗
i=1

σbixiyi

]
. (22)

The quantity of interest is

D
def
=

1

2

∥∥∥ρB̃ŨṼ ZΩE − µB̃ŨṼ ⊗ ρZΩE∥∥∥
1
. (23)
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Due to the block structure of the classical part we can write

D = 1
2Eb̃ũṽ

∑
z∈{0,1}`

2−`
∥∥(ϕ− Eũṽϕ) + 21−λ(χ− Eũṽχ)

∥∥
1

ϕ
def
=
∑
xy

pxyθxy2`δz,Ext(ũ,x)Er
∑
b

δb̃,Mix(ṽ,b||r)

n⊗
i=1

σbixiyi

χ
def
=
∑
xy

pxyθxy2`δz,Ext(ũ,x)Er
∑
b

δb̃,Mix(ṽ,b||r)

n⊗
i=1

σbixiyi . (24)

Using the norm inequality ‖A+B‖1 ≤ ‖A‖1 + ‖B‖1 we get D ≤ 21−λ +Dcorr,

Dcorr
def
= 1

2Eb̃ũṽ
∑

z∈{0,1}`
2−`
∥∥ϕ− Eũṽϕ

∥∥
1
. (25)

The ϕ is a sub-normalised mixed state, with trϕ = Pcorr.

A.2 Bound for large γ

Note that the expression ϕ−Eũṽϕ in (25) has the form Pcorr(t, γ)·(ρ1−ρ2), where
ρ1, ρ2 are normalised. Hence we immediately have an upper bound Dcorr ≤ Pcorr.

A.3 Bound for small γ

The form ϕ−Eũṽϕ in (25) allows us to write Eũṽ(ϕ−Eũṽϕ)2 = Eũṽϕ2−(Eũṽϕ)2.
We then have

Eũṽ‖ϕ− Eũṽϕ‖1 ≤ tr
√

Eũṽϕ2 − (Eũṽϕ)2. (26)

Here we used Jensen’s inequality for concave operators. Next we write

Eũṽϕ
2 =

∑
xx′yy′

pxypx′y′θxyθx′y′ [2
2`Eũδz,Ext(ũ,x)δz,Ext(ũ,x′)]

Err′
∑
bb′

[Eṽδb̃,Mix(ṽ,b||r)δb̃,Mix(ṽ,b′||r′)]
n⊗
i=1

σbixiyiσ
b′i
x′iy
′
i
. (27)

Next we use 22`Eũδz,Ext(ũ,x)δz,Ext(ũ,x′) = δxx′2
−`+(1− δxx′) ·1 = 1+ δxx′(2

`−1)
and

Eṽδb̃,Mix(ṽ,b||r)δb̃,Mix(ṽ,b′||r′) =
δbb′δrr′

|B|n
+

1− δbb′δrr′
|B|2n

=
1

|B|2n
+
δbb′δrr′

|B|n
(1− 1

|B|n
),

(28)
which hold due to the pairwise independence of Ext and Mix. Substitution into
(27) yields

Eũṽϕ
2 − (Eũṽϕ)2 = W1 +W2 +W3, (29)
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where we have defined

W1
def
= (2` − 1)

∑
xyy′

pxypxy′θxyθxy′Ebb′
n⊗
i=1

σbixiyiσ
b′i
xiy′i

=
2` − 1

2n
Ex

(∑
y

py|xθxyEb

n⊗
i=1

σbixiyi

)2

(30)

W2
def
= (1− 1

|B|n
)

1

|B|q
∑
xx′yy′

pxypx′y′θxyθx′y′Eb

n⊗
i=1

σbixiyiσ
bi
x′iy
′
i

(31)

W3
def
= (1− 1

|B|n
)
2` − 1

|B|q
∑
xyy′

pxypxy′θxyθxy′Eb

n⊗
i=1

σbixiyiσ
bi
xiy′i

= (1− 1

|B|n
)
2` − 1

|B|q
∑
xy

p2
xyθxyEb

n⊗
i=1

σbixiyi . (32)

For the trace distance we now have

Dcorr ≤ 1
2 tr
√
W1 +W2 +W3 ≤ 1

2 tr
√
W1 + 1

2 tr
√
W2 + 1

2 tr
√
W3. (33)

We write y = x̄ ⊕∆ and y′ = x′ ⊕∆′ and enforce the θxy, θx′y′ constraints by
taking |∆| ≤ t and |∆′| ≤ t. We introduce the notation p∆ = γ|∆|(1 − γ)n−|∆|.
We note that the product of σ-states has a special property,

σbixi,xi⊕∆iσ
bi
x′i,x

′
i⊕∆′i

= δ∆i∆′iσ
bi
xi,xi⊕∆iσ

bi
x′i,x

′
i⊕∆i

= δ∆i∆′i

[
δ∆i0(δxix′iσ

bi
xixi

+ δxix′iσ
bi
xixi

σbixixi) + δ∆i1δxix′iσ
bi
xixi

]
= δ∆i∆′i

[
δxix′iσ

bi
xi,xi⊕∆i + δxix′iδ∆i0σ

bi
xixi

σbixixi

]
. (34)

Hence the string ∆′ has to equal ∆, which allows us to simplify the operators
W1,W2,W3 to

W1 =
2` − 1

2n
Ex

 ∑
∆:|∆|≤t

p∆Eb

n⊗
i=1

σbixi,xi⊕∆i

2

(35)

W2 = (1− 1

|B|n
)

1

|B|q
∑

∆:|∆|≤t

p2
∆

n⊗
i=1

1
4

∑
xix′i

Ebiσ
bi
xi,xi⊕∆iσ

bi
x′i,x

′
i⊕∆i

(36)

W3 = (1− 1

|B|n
)
2` − 1

|B|q
∑
x

1

22n

∑
∆:|∆|≤t

p2
∆

n⊗
i=1

Ebiσ
bi
xi,xi⊕∆i . (37)

Next we need to evaluate the expectation over b.
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Lemma 1. Let x, x′, ∆ ∈ {0, 1} and b ∈ B. For 8-state encoding it holds that

Ebσ
b
x,x̄⊕∆ = |m0〉〈m0|δ∆0

1− 3
2γ

1− γ
+

∑3
j=1 |mj〉〈mj |

3

{
δ∆1 + δ∆0

γ/2

1− γ

}
(38)

1

4

∑
xx′

Ebσ
b
x,x̄⊕∆σ

b
x′,x′⊕∆ = |m0〉〈m0|δ∆0(

1− 3
2γ

1− γ
)2

+

∑3
j=1 |mj〉〈mj |

6

{
δ∆1 + δ∆0

1

2
(

γ

1− γ
)2

}
. (39)

Proof: See Appendix B. �
The W1 term
The Eb operation in (35) yields an expression that does not depend on x. Hence
the Ex does nothing and W1 is a square. We get

tr
√
W1 =

√
2` − 1

2n
Pcorr ≤

√
2` − 1

2n
. (40)

The W2 term
The eigenvectors of W2 and W3 are all of the same form: in k qubit systems a
vector in the |m〉-space, and in n− k qubit systems the vector |m0〉. We denote
the corresponding eigenvalues as λ2(k) and λ3(k). Without loss of generality we
place the m-components of the eigenvectors in positions i = 1 . . . k. Substitution
of (39) into (36) gives

λ2(k) = (1− 1

|B|n
)

1

|B|q
∑

∆∈{0,1}k
|∆|≤t

p2
∆(

1− 3
2γ

1− γ
)2n−2k(

1

6
)k

k∏
i=1

{
δ∆i1 + δ∆i0

γ2

2(1− γ)2

}

= (1− 1

|B|n
)

1

|B|q
t∑

c=0

∑
∆∈{0,1}k
|∆|=c

γ2c(1−γ)2n−2c(
1− 3

2γ

1− γ
)2n−2k(

1

6
)k[

γ2

2(1−γ)2
]k−c

= (1− 1

|B|n
)

1

|B|q
(
γ2

12
)k(1− 3

2γ)2n−2k
t∑

c=0

(
k

c

)
2c

≤ (1− 1

|B|n
)

1

|B|q
(
γ2

12
)k(1− 3

2γ)2n−2k · 3k

≤ 1

|B|q
(
γ

2
)2k(1− 3

2γ)2n−2k. (41)

In the first inequality we used that the sum over c ≤ t is upper bounded by the
full sum c ≤ k and then we applied the binomial sum rule. We get

tr
√
W2 =

n∑
k=0

(
n

k

)
3k
√
λ2(k) ≤ 1

|B|q/2
n∑
k=0

(
n

k

)
( 3

2γ)k(1− 3
2γ)n−k =

1

|B|q/2
.

(42)
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The W3 term

λ3(k) = (1− 1

|B|n
)
2` − 1

|B|q
1

2n

t∑
c=0

∑
∆∈{0,1}k
|∆|=c

p2
∆(

1− 3
2γ

1− γ
)n−k(

1

3
)k(

γ/2

1− γ
)k−c

≤ 2`−n

|B|q
(
γ

6
)k(1− 3

2γ)n−k(1− γ)n
t∑

c=0

(
k

c

)
(

2γ

1− γ
)c

≤ 2`−n

|B|q
(
γ

6
)k(1− 3

2γ)n−k(1− γ)n · (1 + γ

1− γ
)k

=
2`−n

|B|q
[
γ(1 + γ)

6
]k
[
(1− 3

2γ)(1− γ)
]n−k

. (43)

In the second inequality we used that the sum over c ≤ t is upper bounded by
the full sum c ≤ k and then we applied the binomial sum rule. We get

tr
√
W3 =

n∑
k=0

(
n

k

)
3k
√
λ3(k)

≤

√
2`−n

|B|q

[√
(1− 3

2γ)(1− γ) +
√

3
2γ(1 + γ)

]n
. (44)

This completes the proof of Theorem 1. �

B Proof of Lemma 1

For brevity of notation we introduce M
def
=
∑3
j=1 |mj〉〈mj | and write |v ·m〉 for

vx|m1〉+ vy|m2〉+ vz|m3〉. From (4) we get

σb01 =
1− 3

2γ

1− γ
|m0〉〈m0|+

γ/2

1− γ
|v ·m〉〈v ·m|

+

√
1
2γ(1− 3

2γ)

1− γ

(
|m0〉〈v ·m|+ |v ·m〉〈m0|

)
. (45)

Averaging over the basis b means averaging over de basis vector v, i.e. over the
four values 1√

3
(1, 1, 1), 1√

3
(−1,−1, 1), 1√

3
(−1, 1,−1), 1√

3
(1,−1,−1). The cross

term |m0〉〈v ·m| disappears. Furthermore, terms of the form vivj |mi〉〈mj | for
j 6= i also disappear. The average of v2

j is 1
3 for all j. This yields Ebσb01 =

1− 3
2γ

1−γ |m0〉〈m0| + 1
3M

γ/2
1−γ , which exactly matches the ∆ = 0 part of (38). The

analysis for σb10 is analogous, with v → −v. For σb00 we get

σb00 = 1
2M −

1
2 |v ·m〉〈v ·m|+ i

3∑
jkp=1

εjkpvj |mk〉〈mp| (46)
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where εjkp stands for the antisymmetric Levi-Civita symbol. When we average
over v the εjkp term disappears and the crossterms of the form vivj |mi〉〈mj | for
j 6= i disappear. What is left is Ebσb00 = 1

2M −
1
2 ·

1
3M = 1

3M , which exactly
matches the ∆ = 1 part of (38). The analysis for σb11 is analogous, with v → −v.
Next we look at the product of two σ-states (39). In the case ∆ = 1 we get

1
4

∑
xx′

σbxxσ
b
x′x′ = 1

4 (σb00 + σb11)2 = 1
4 (M − |v ·m〉〈v ·m|)2

= 1
4 (M − |v ·m〉〈v ·m|). (47)

Averaging over v yields 1
4 (M − 1

3M) = 1
6M . For ∆ = 0 we have

1
4

∑
xx′

σbxx̄σ
b
x′x′

= 1
4 (σb01 + σb10)2

=

(
1− 3

2γ

1− γ
|m0〉〈m0|+

γ/2

1− γ
|v ·m〉〈v ·m|

)2

= (
1− 3

2γ

1− γ
)2|m0〉〈m0|+ (

γ/2

1− γ
)2|v ·m〉〈v ·m|. (48)

Averaging over v yields (
1− 3

2γ

1−γ )2|m0〉〈m0|+ ( γ/21−γ )2 1
3M .

C Proof of Theorem 2

We (implicitly) define a function γmax(t, σ) as Pcorr(t, γmax) = 2−σ. For γ ≥
γmax eq. (10) clearly holds. Next we need to bound the expression log f(γ) for
γ ≤ γmax. Taking the Chernoff bound Pcorr(t, γ) ≤ exp[− n

2γ (γ− t
n )2] and solving

for γ we get

γmax(t, σ) ≤ γ0(t, σ)
def
=

t

n
+
σ ln 2

n
+

√
2
t

n

σ ln 2

n
+ (

σ ln 2

n
)2. (49)

We will bound the expression log f(γ0) in two different ways: for ‘large’ β and
for ‘small’ β.

– As f is a concave function we have f(γ0) ≤ f(β) + (γ0−β)f ′(β). This yields

log f(γ0) ≤ log f(β) + log[1 +
f ′(β)

f(β)
(γ0 − β)] ≤ log f(β) +

f ′(β)

f(β)

γ0 − β
ln 2

= log f(β) +
σ

n
+

√
2β

σ

n ln 2
+ (

σ

n
)2. (50)

– We write log f(γ0) = log f(β) + log f(γ0)
f(β) ≤ log f(β) + log f(γ0)

f(β)

∣∣∣
β=0

. The

inequality follows from the fact that f(γ0)/f(β) is a decreasing function
of β. This yields

log f(γ0) ≤ log f(β) + log f(
2σ

n
) ≤ log f(β) + log[1 +

√
3
2 ( 2σ

n )]

≤ log f(β) + 1
ln 2

√
3σ
n . (51)
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From (50) and (51) we conclude n log f(γmax(t, σ)) ≤ n log f(β)+ξ
√
σn with ξ as

defined in (9). With ` chosen according to (8), the expression
√

2`−n+2n log f(γmax)

in (6) is upper bounded by 2−σ/
√

2. We also bound
√

2n−` ≤ 2−σ/
√

2. Further-
more, setting q = σ yields 1/

√
|B|q = 2−σ. Hence the second expression in the

min{·, ·} (6) is upper bounded by 2−σ

2
√

2
+ 2−σ

2 + 2−2σ

2
√

2
< 2−σ. �
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9. D. Leermakers and B. Škorić. Optimal attacks on qubit-based Quantum Key
Recycling. Quantum Information Processing, 2018.

10. R. Renner and R. König. Universally composable privacy amplification against
quantum adversaries. In Theory of Cryptography, volume 3378 of LNCS, pages
407–425, 2005.

11. M.N. Wegman and J.W. Carter. New hash functions and their use in authentication
and set equality. Journal of computer and system sciences, 22:265–279, 1981.

12. M. Christandl, R. König, and R. Renner. Postselection technique for quantum
channels with applications to quantum cryptography. Phys. Rev. Lett., 102:020504,
Jan 2009.

13. D. Bruß. Optimal eavesdropping in quantum cryptography with six states. Phys.
Rev. Lett., 81(14):3018–3021, 1998.

14. A. Ambainis, M. Mosca, A. Tapp, and R. de Wolf. Private quantum channels. In
Annual Symposium on Foundations of Computer Science, pages 547–553, 2000.

15. D.W. Leung. Quantum Vernam cipher. Quantum Information and Computation,
2(1):14–34, 2002.

16. P.O. Boykin and V. Roychowdhury. Optimal encryption of quantum bits. Phys.
Rev. A, 67(4):042317, 2003.

17. R. Renner, N. Gisin, and B. Kraus. Information-theoretic security proof for
quantum-key-distribution protocols. Phys.Rev.A, 72:012332, 2005.

21



18. M. Tomamichel, S. Fehr, J. Kaniewski, and S. Wehner. One-sided device-
independent QKD and position-based cryptography from monogamy games. In
EUROCRYPT 2013, volume 7881 of LNCS, pages 609–625, 2013.

19. D. Baron, M.A. Khojastepour, and R.G. Baraniuk. How quickly can we approach
channel capacity? In Asilomar Conference on Signals, Systems and Computers,
pages 1096–1100. IEEE, 2004.

22


