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Abstract. In this work, we present a new approach to constructing Oblivious RAM (ORAM). Some-
what surprisingly, and despite the large amount of research interest that ORAM has received, all
existing ORAM constructions are based on a handful of conceptually different approaches. We believe
it is of theoretical and practical interest to explore new ways to construct this primitive.
Our first construction is conceptually extremely simple and has a worst-case bandwidth overhead of

O
(√

N logN
log logN

)
, where N is the number of data blocks.

Our main construction, Lookahead ORAM, has a worst-case bandwidth overhead of O
(√

N
)

and an

additive storage overhead of
√

2N , which is the smallest concrete storage overhead among all existing
ORAM constructions with sublinear worst-case bandwidth overhead. A small storage overhead is par-
ticularly beneficial in outsourced storage settings, where data owners have to pay their storage provider
for the amount of storage they consume.
In addition to having a small storage overhead, Lookahead ORAM has perfect correctness, i.e. every
operation on the ORAM data structure succeeds with probability 1 and, assuming the client stores some
small stash of data locally, an online bandwidth overhead of O (1) without server-side computation. In
comparison with prior work that has sublinear worst-case bandwidth overhead, Lookahead ORAM is
asymptotically the most efficient ORAM with perfect correctness.

1 Introduction

Over the past years, more and more sensitive data is stored online. A basic attempt to keep data private
while storing it online on an untrusted server is to simply encrypt each data entry. Unfortunately, this
is not always sufficient. For instance, Islam et. al. [IKK12] showed that by observing the access patterns
induced by encrypted search queries over an encrypted database, an honest-but-curious3 server storing
the database, could learn significant amounts of information about the queries’ contents. A more viable
approach is to not only encrypt the data, but also hide the access patterns. Oblivious RAM (ORAM) is a
cryptographic primitive that allows a client to do exactly this, at the cost of some bandwidth and storage
overhead. It enables a client to outsource his data to an untrusted server inside of an ORAM data structure,
and then read and write to this dataset without leaking the position that was accessed or the operation
that was performed. After ORAM was first introduced by Goldreich and Ostrovsky [Gol87, GO96], much
work [OS97, GMOT11, WCS15, MMB15, RFK+15, GMP16, SSS12] has been done to construct ORAM with
asymptotically and practically good efficiency measures.

In this paper, we introduce two new ORAM constructions and make the following contributions:

Novel approach to constructing ORAM. We present a fundamentally new approach to constructing
ORAM. Somewhat surprisingly, and despite the large amount of research interest that ORAM has received,
all existing constructions are based on a handful of conceptually different approaches. We believe it is of
theoretical and practical interest to explore new ways to construct this primitive.

Our first construction is extremely simple and probabilistically correct in the sense that it works as
intended with an overwhelming probability and operations on the ORAM data structure only fail with a

negligible probability. It has a worst-case bandwidth overhead of O
(√

N c+log t+logN
log (c+log t+logN)

)
, where N is the

3 A honest-but-curious server follows the protocol specification, but tries to extract as much private information as
possible from the observed communication.



number of data blocks to be stored, t is an upper bound on the number of accesses, and c is the correctness
parameter that provides an upper bound of 2−c on the failure probability. To the best of our knowledge,
it is one of the conceptually simplest known ORAM constructions to date. The underlying logic is easy to
implement and the proof of security is straightforward. Due to its simplicity, we believe it is an interesting
open research direction to construct more complex primitives, like garbled RAM [LO13, GHL+14], with
practical efficiency based on this ORAM construction.

Our main construction, called Lookahead ORAM, is loosely based on our first construction. It has a

worst-case bandwidth overhead of O
(√

N
)

and is perfectly correct, in the sense that every operation on the

ORAM data structure succeeds with probability 1. It is the asymptotically most efficient perfectly correct
ORAM construction with respect to bandwidth overhead.

Small concrete storage overhead. Lookahead ORAM has the smallest concrete storage overhead among
all existing ORAM constructions with sublinear worst-case bandwidth overhead. Our construction only
incurs an additive storage overhead of

√
2N and in Section 4.5 we show it can be reduced even further at the

cost of slightly increasing the constants in the bandwidth overhead. A small storage overhead is particularly
beneficial in outsourced storage settings where data owners have to pay their storage provider for the storage
they consume. Although constructions with asymptotically smaller bandwidth overhead exist, they usually
incur a rather large storage overhead. For example, in the case of the popular Path-ORAM [SvDS+13]
construction, which has a bandwidth overhead of only O

(
log2N

)
, the storage overhead for storing N data

blocks, is 20N large4. The more storage efficient (deamortized) square-root ORAM [GMOT11] construction

has a storage overhead of 2
(
N + 2

√
N
)

, which is still over two times as expensive as our construction, while

at the same time being asymptotically slower in terms of bandwidth overhead. Lookahead ORAM has a small
storage overhead and at the same time it provides reasonable theoretical and practical efficiency guarantees
with respect to its bandwidth overhead. For a comparison of the most relevant existing schemes and our
construction with respect to storage overhead, see Table 1.

Constant online bandwidth overhead. In the original work of Goldreich and Ostrovsky [Gol87, GO96],
the authors showed, roughly speaking, a lower bound of Ω (logN ) on the bandwidth overhead of a large
class of ORAM constructions. One approach to circumvent the Goldreich and Ostrovsky lower bound was
introduced in [BMP11] and then improved upon in [DSS14, RFK+15]. Their main idea was to split the total
bandwidth overhead into two parts. The first part, the so called online overhead, is the amount of data that
needs to be transmitted between the client and the server to retrieve a desired data element obliviously.
The second part, the offline overhead, is the amount of data that needs to be transmitted between the two
parties to ensure obliviousness of future accesses. One can think of the offline overhead as background work
that, usually, moves around encrypted data elements in the ORAM data structure to ensure the desired
obliviousness guarantees. Splitting the total bandwidth overhead this way and then minimizing the online
overhead has practical advantages. It allows the client to efficiently retrieve data from the server without
much latency during bursts of requests and then do the background work during quieter phases.

In [BMP11], Boneh et al. presented a solution, for a primitive strongly, which is related to ORAM, that

has O(logN ) online and O
(√

N logN
)
5 worst-case overhead. In [DSS14, RFK+15] this idea of splitting the

total overhead has been further refined, and constructions that achieve an online bandwidth overhead of O(1)
are presented. However, these constructions require some server-side computation during the online phase,
which renders these solutions not applicable for “raw” storage providers that do not support these ORAM
constructions explicitly. That is, our construction works in combination with arbitrary storage providers

4 Although the authors experiment with smaller storage overheads in their evaluation section, the theoretical cor-
rectness guarantees only hold for the stated storage overhead of 20N

5 This worst-case complexity is slightly different from the original paper. The paper has a superlinear worst-case
overhead due to an expensive reshuffling phase, but when splitting shuffling over

√
N accesses, one can achieve the

stated complexity
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like Dropbox or Google Drive, whereas the constructions from [DSS14, RFK+15] only work with storage
providers that explicitly implement their given scheme.

Lookahead ORAM, assuming the client stores a (practically small) position map and a stash that can
hold up to

√
2N data blocks locally, allows the client to obliviously retrieve elements from the ORAM data

structure with no bandwidth overhead and no server-side computation in the online phase. That is, in the
online phase, the client can directly download the desired elements from the server.

To provide a better feeling for how expensive it is to store the stash and the position map locally, consider
a 1GB database with a block size of 1KB. To be able to make use of our online overhead feature, the client
would need to store a roughly 1.42MB stash and a 8MB position map locally. If the client chooses to not
use the minimizing online overhead feature, it can reduce its persistent storage to O(1).

Implementation and Evaluation. We implemented Lookahead ORAM in C using libsodium [BLS12]
to validate our calculation of specific constants in the Lookahead ORAM construction. We compare its
performance to the relevant related work in terms of required server-side storage and bandwidth overhead
per access. We show that Lookahead ORAM requires the least storage on the server-side, and is even
competitive with respect to the bandwidth overhead per access for a large range of parameters. A more
detailed description of our implementation and our performance benchmarks, can be found in Section 6.

Attack on [GMSS16]. We identify a flaw in the recent ORAM construction of [GMSS16] and outline an
attack that breaks the claimed obliviousness guarantees in Section A. We have contacted the authors and
they have acknowledged our attack.

1.1 Other Related Work

Construction Server Bandwidth Bandwidth Correctness
Storage Online Total

Square-root [GMOT11] 2
(
N + 2

√
N
)

O(1) O
(√

N logN
)

perfect

Hierarchical [GMOT11] > 10N – O
(
log3N

)
probabilistic

Path-ORAM [SvDS+13] 20N – O
(
log2N

)
probabilistic

Parallel Buffers [SSS12] 3N O(1) O
(√

N
)

probabilistic

Lookahead ORAM N +
√

2N O(1) O
(√

N
)

perfect

Fig. 1. Comparison of the most relevant fundamentally different ORAMs and their worst-case performance metrics.
For simplicity, we assume that clients store a small stash and the position map locally. Concrete storage overhead is
either directly reported from the paper or conservatively estimated. The storage overhead of Lookahead ORAM can
be made even smaller than what is reported in the table as is explained in Section 4.5.

In [Gol87, GO96], Goldreich and Ostrovsky proposed two constructions of ORAM, called square-root and
hierarchical ORAM, which both have sublinear amortized bandwidth overhead, but suffer from (super)linear
worst-case bandwidth overheads. In subsequent work [OS97, GMOT11], it was shown how to deamortize
both constructions, i.e. how to make their amortized overhead be their worst-case overhead, at the cost of
roughly doubling server’s storage overhead.

Another important result given in [Gol87, GO96] was a lower bound ofΩ (logN ) on the number of accesses
that are needed to simulate one oblivious access for a large class of ORAM constructions. This bound has been
further examined in [BN16]. Constructing an ORAM that matches this lower bound has been of large interest.
In a seminal result, Shi et al. [SCSL11] introduced a new approach for constructing ORAM based on binary
trees, which has a worst-case overhead of O

(
log3N

)
and is computationally as well as conceptually simpler

than previous works. In Path-ORAM [SvDS+13] this overhead has been further reduced to O
(
log2N

)
. Due
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to their simplicity and efficiency, [SCSL11, SvDS+13] have been the basis for many theoretical and practical
follow-up works [CP13, WCS15, MMB15, RFK+15, GMP16, DDF+16, SSS12].

In order to achieve practical efficiency and overcome the Ω (logN ) lower bound, several works have looked
at different refinements of the classical ORAM notion in the client server model. Path-PIR [MBC14] uses
server-side computations to achieve a practically very small, yet still poly-logarithmic bandwidth overhead.
In [AKST14], Apon et al. formally define the notion of Verifiable Oblivious Storage, which generalizes
the notion of ORAM by allowing the server to perform computations, and show that the ORAM lower
bound does not apply to their setting by providing a scheme with constant overhead per access based on
Fully Homomorphic Encryption. In [DDF+16] a scheme, called Onion ORAM, is presented that breaks the
lower bound, but only relies on additively homomorphic encryption. In this work we will only focus on
the classical notion of ORAM that does not allow server-side computation. Apart from being theoretically
interesting, this has also practical advantages. An efficient ORAM construction that does not require server-
side computations, can be deployed on any “raw” cloud storage provider. This is not the case for solutions
that require the server to implement some ORAM specific logic. In Table 1 we compare our solution to
the main alternative ORAM approaches that do not requires server-side computation and have sublinear
worst-case overheads.

Another approach, called Parallel Oblivious RAM [BCP16, CLT16, SZEA+16], aims at constructing
ORAM schemes that support parallel accesses. That is, several client requests can be executed at the same
time without losing obliviousness guarantees. We leave at as an interesting open question to extend our
solutions to this setting.

Lastly, a recent work by Gordon et al. [GMSS16] presents an ORAM construction that may seem superfi-
cially similar to ours. However, our work significantly differs from theirs in terms of performance guarantees
we achieve, underlying ideas we present, and security we obtain. Their construction, called Matrix-ORAM,
arranges the data elements in a fixed number of rows. The size of each row linearly depends on the size
of the total database and each row has its own stash. Accesses to their data structure are performed in a
conceptually and concretely different manner to ours. The authors claim a logarithmic bandwidth overhead.
In contrast, our data structures have a rectangular shape 6, and have a bandwidth overhead of roughly

O
(√

N
)

. We discovered a flaw in their construction and present a concrete attack on their scheme. This

flaw is discussed in detail in Section A.

2 Preliminaries

On a high level, the ORAM security definition assumes a honest-but-curious server and says that for any
two data access sequences, the corresponding access sequences to the ORAM data structure should be
indistinguishable. The security definition is taken almost verbatim from [SSS12].

Definition 1. (Security Definition) Let

((op1, a1, data1) , . . . , (opM , aM , dataM ))

be a data request sequence of length M , where each opi is either a read(ai) or a write(ai, data) operation.
Let oram(−→y ) denote the (possibly randomized) sequence of accesses to the remote storage given the sequence
of data requests −→y . An ORAM construction is said to be secure if for any two data request sequences −→y
and −→z of the same length, their access patterns oram(−→y ) and oram(−→z ) are computationally indistinguishable
and the construction is correct in the sense that it returns on input −→y data that is consistent with −→y with
probability at least 1− 2−c. We call c the correctness parameter.

Position Map. All known ORAM schemes need to maintain a position map of size O (N ) that keeps
track of the ordering of elements inside the ORAM data structure on the server. For the sake of simplicity
we will assume that the client stores the full position map locally. From a practical point of view, this

6 One may even say they look matrix shaped
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seems to be a reasonable assumption in many client-server settings. For example, the position map of a
1GB database containing 1KB blocks is only around 8MB large. From a theoretical point of view, to reduce
the client’s persistent storage to O (1), both of our constructions can be combined with the well-known
approach of recursively storing the position map in a sequence of smaller ORAMs, which was first introduced
in [SCSL11]. Recursively storing the position map on the server increases the number of round-trips per access
to O(logN ), but it does not change the asymptotic bandwidth overheads of our constructions. We explain
how to combine our main construction with the recursive approach in more detail in Section 5.

Block Size. If we want to use the recursive ORAM approach mentioned above to store the position map
on the server-side, then the data blocks need to be Ω (logN) large. In the setting, where the client stores
the position map locally, we do not make any assumptions about the data block size. However, for the
construction to be useful, the data blocks on the server should be larger than the position map that the
client stores locally.

Integrity. The ORAM security definition assumes the server to be honest-but-curious. Similar to previous
works [SvDS+13], our construction can be extended to prevent tampering of an actively malicious server by
using a Merkle Tree on top of our ORAM data structures.

3 A Simple Matrix Bucket ORAM

In this section, we will present a very simple oblivious RAM construction with reasonable efficiency and a
straightforward proof of security. To the best of our knowledge this is one of the, arguably, simplest ORAM
constructions known to date. Apart from being interesting on its own, it will also serve a stepping stone
towards our main construction by introducing some of the ideas behind our main approach.

Initially we are given an array A of length N of data elements. To initialize our scheme, we create a empty√
N ×

√
N matrix C, in which each matrix cell is a bucket of size w. We randomly (and independently)

assign each element from A to a bucket in C. Once all elements from A are distributed among buckets in C,
we encrypt each bucket separately, and store the matrix on the server. For the sake of simplicity, we assume
that the client stores a position map σ that maps indices of elements from A to columns of C locally.

Init(A)

1 C ← initBucketMatrix()

2 σ ← initPosMap()

3 for ` = 1 . . . N do
4 (i, j)← pickRandBucket()

5 C[i, j].put(A [`] ‖`)
6 σ (`) = j

7 C ← encryptBuckets(C)

Access(`, x)

1 c← readColumn(C, σ(`))
2 (i, j)← pickRandBucket()

3 r ← readRow(C, i)
4 rdec ← decrypt(r)
5 cdec ← decrypt(c)
6 data← popData(`, cdec)
7 putData(x‖`, rdec, j)
8 σ(`) = j
9 c∗ ← encrypt(cdec)

10 r∗ ← encrypt(rdec)
11 writeBack(c∗, r∗)
12 return data

Fig. 2. Pseudocode of simple Matrix ORAM construction

To obliviously access some element with index ` in A, we access column σ(`) in C. In addition, we pick
a uniformly random bucket (i, j) in the matrix and obtain row i. We find the element with index ` in the
retrieved column and perform our desired operation (read or write). We then remove element ` from its
current bucket, put it into bucket (i, j), re-encrypt all retrieved buckets, and write back the retrieved row

5



and column. Lastly, we update the position map to point to the new column that stores `, i.e., set σ(`) = j.
The pseudocode implementing this construction is given in Figure 2

3.1 Security

We prove the following theorem.

Theorem 1. Let E = (gen, encrypt, decrypt) be an IND-CPA secure encryption scheme. Then the construc-

tion in Figure 2 is a secure ORAM scheme with O
(√

N c+log t+logN
log (c+log t+logN)

)
bandwidth overhead, where N is

the number of data elements, c the correctness parameter, and t is the upper bound on the number of accesses.

Proof. The key idea of why the proposed scheme is oblivious stems from the basic observation that every
column intersects with every row. Intuitively, this means that if we obliviously write an element into some
uniformly random position in a row, then, from an adversarial point of view, every column is equally likely
a potential candidate for reading that element in a future access. In our scheme, whenever we read an
element through a column access, we move it to a new uniformly random bucket and, in particular, a new
uniformly random column, through a row access. Importantly, the movement of each element is completely
independent of the access history and the other elements residing in the matrix. From these observations it
is straightforward to see that the proposed scheme is oblivious.

What remains to show is the relation between the bucket size and the correctness parameter, i.e. we
want to pick our buckets sufficiently large such that a bucket overflows with negligible (in the correctness
parameter) probability. Towards this goal, we make an observation that simplifies our analysis. Let ExpN,t

move

be the experiment of first throwing N balls into N buckets once and then picking up a random ball from
a random bucket and moving it to a new random bucket t times. This experiment expresses the actual
movement of data during t many accesses in our oblivious ram construction. Let ExpNthrow be the experiment
of throwing N balls into N initially empty buckets of capacity w. Let Load>w

i denote the event that bucket
with index i at some point in time has more than w many elements in it and Load>w the event that this
happens to any of the buckets. We will analyze the probability of the event of one bucket overflowing in
ExpNthrow and use the following lemma to put ExpNthrow and ExpN,t

move into relation.

Lemma 1. Let t > 0, then

Pr[Load>w
i |Exp

N,t
move] ≤ t · Pr[Load>w

i |Exp
N
throw]

Proof. Given N balls and N bins, there are NN different possibilities to distribute the balls among the bins.
Let us call each way to distribute the balls a constellation. Let X be one arbitrary but fixed constellation
among them and, since all of them are equally probable, we have Pr[X|ExpNthrow] = 1

NN . Let us now consider
constellations, which are one ball move away from X. There are exactly N2−N such constellations, because
we can select any of the N balls, and pick any of N−1 buckets distinct from the current bucket of the selected
ball. Selecting a random ball uniformly and moving it to a random bucket yields the original constellation
with probability 1

N2 , and each of the neighbouring constellations with probability 1
N2 . As all ball moves are

reversible, each constellation can be obtained fromN2−N other constellations. The probability of obtainining
a constellation after a uniform selection of constellation and a single random ball move is therefore equal to
N2−N
N2

1
NN + 1

N
1

NN = 1
NN . The lemma follows by induction over t and then applying the union bound.

Using this lemma it is sufficient to upper bound the probability of a bucket overflowing in the experiment
ExpNthrow and then apply the union bound over all buckets. Let us first look at the probability of some
single bucket i overflowing by one element after ExpNthrow, i.e. the probability of a bucket containing (exactly)
z = w + 1 balls after throwing N balls into N buckets at random once. In the analysis we assume N to be
sufficiently large, i.e. N should be large enough for our bucket size w to be at least 8, so that our inequalities
work out. In the following calculation we will use two inequalities. First, ∀x ≥ 0 it holds that

(
1− 1

x

)x ≤ e−1
and, secondly, ∀0 ≤ k ≤ n it holds that

(
n
k

)k ≤ (nk) ≤ ( enk )k.
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Pr[Loadzi |Exp
N
throw] =

(
N

z

)(
1

N

)z (
1− 1

N

)N−z

≤
(
eN

z

)z

N−z

((
1− 1

N

)N
)1− z

N

≤
(
eN

z

)z

N−ze
z
N−1

= ezz−ze
z
N e−1

= 2z(log e−log z)+log e( z
N−1)

≤ 2z(log e−log z)

≤ 2−
1
2 z log z

We can provide an upper bound on the event of a single bucket having more than w balls after throwing
N balls into N buckets using geometric series as follows

Pr[Load>w
i |Exp

N
throw] ≤

N∑
z=w+1

2−
1
2 z log z

=

N−w∑
z=1

2−
1
2 (w+z) log (w+z)

=

N−w∑
z=1

2−
1
2 (w log (w+z)+z log (w+z))

≤
N−w∑
z=1

2−
1
2 (w logw+z log z)

= 2−
1
2w logw

N−w∑
z=1

2−
1
2 z log z

≤ 2−
1
2w logw+1

Applying the union bound over all buckets and using Lemma 1 we obtain

Pr[Load>w|ExpN,t
move] ≤ 2−

1
2w logw+1tN

We want to bound this probability of a bad event happening by some correctness parameter c, i.e. we
want this probability to be smaller than 2−c.

2−
1
2w logw+1tN ≤ 2−c

⇔ −1

2
w logw + 1 + log t+ logN ≤ −c

⇔ w logw ≥ 2(c+ log t+ logN + 1)

Hence, the bucket size w ∈ O
(

c+log t+logN
log (c+log t+logN)

)
and therefore the total bandwidth cost in our construc-

tion is O
(√

N c+log t+logN
log (c+log t+logN)

)
.
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4 Main Construction

In this section we are going to present our main Lookahead ORAM construction. The first difference between
our Matrix Bucket ORAM and Lookahead ORAM is that we replace all buckets by cells that can only hold
single elements. As a first try to construct a more efficient ORAM we could do the following: Initially,
randomly shuffle the data, distribute the data elements among matrix cells, and encrypt each cell separately.
To access an element, we retrieve the column corresponding to that element and a row corresponding to a
uniformly random cell. After accessing the desired element, we swap the accessed element with the uniformly
random cell, re-encrypt both row and column, and write them back into the matrix.

On an intuitive level, one could hope for this to be a secure ORAM construction, since every element will
be swapped into a new uniformly random column at every access. Unfortunately this is not the case. The
problem is that the distribution of columns into which elements are swapped is not uniformly random when
conditioned on the observed row accesses. In particular, the difference with the simple matrix construction
is that, here, the accessed element will change the position of another element, i.e the swap partner. It turns
out that the server can infer information about the positions of accessed elements whenever we access the
same row twice.

Figure 3 illustrates why the straightforward approach of directly swapping the accessed element with
an element from a uniformly random cell fails. In the figure, the root node depicts a 2 × 2 matrix holding
four encrypted entries. Initially the server has no knowledge about the arrangement of data elements in the
matrix. Let us assume we access two different data elements. With probability non-negligible in the security
parameter the following events will occur. On the first access the server observes the second column and
second row being accessed. Edges from the root to the first layer show the possible swaps that could have
happened, given the observed row and column accesses. a ↔ b means element a was accessed and swapped
with element b. On the second access the server observes the first column and, again, the second row being
accessed. The leaf nodes of this tree represent all possible arrangements of elements in the matrix, given
the observed access pattern. Dashed boxes indicate the case, where the first accessed element has changed
its column. Solid boxes indicate that the first accessed element is in its original column. Counting the leaf
nodes it can be seen that the first accessed element will more likely than not have switched columns after the
two accesses. Hence, from the server’s point of view, the elements are not distributed uniformly at random
among the columns and the approach does not provide the desired obliviousness guarantees.

4.1 Intuition for Lookahead ORAM

The main issue with this first approach is that the row accesses reveal too much information. Ideally, we
would like to have a swap procedure that allows us to directly access the desired element instead of the
whole column and then swap that accessed cell with a new cell without revealing the column or row of that
new cell. Observe, that to perform a swap, we have to perform two tasks. We have to remove the accessed
element from its cell and put it into the cell of its swap partner. Symmetrically, we have to remove the swap
partner from its cell and put it into the cell of the accessed element.

To realize such a swap procedure, we introduce two auxiliary stashes stashacc and stashswap, where stashacc
will be storing accessed elements and stash stashswap will store pre-selected swap partners. From a high-level
perspective, these stashes will help us to pretend that we immediately swap accessed elements to an unknown
new location in the matrix. From the server’s point of view, the client will always read both full stashes,
and a uniformly random cell in the matrix, since the client behaves as if accessed elements are immediately
swapped to their new locations in the matrix. In reality, accessed elements will go to stashacc from where
they will be eventually evicted into the cell of their respective swap partner obliviously. Swap partners will
be readily waiting in stashswap and upon accessing some element in the matrix, the swap partner will be
swapped from stashswap into the accessed cell directly. As an invariant we have that each element is either
at its expected location in the matrix or in one of the stashes.

Two issues that need to be addressed are, how do we get swap partners into stashswap before they are
used and how to get accessed elements from stashacc into their new cells in the matrix. To solve both these
issues, we introduce a (stateful) round-robin column access that will iterate through the columns. Using the
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2↔ 3

1↔ 2 1↔ 4

2↔ 4

1↔ 3 1↔ 2 3↔ 3 3↔ 2

4↔ 4

1↔ 3 1↔ 4 3↔ 3 3↔ 4

4↔ 3

1↔ 4 1↔ 3

Fig. 3. Illustration of why the naive approach of swapping two random cells via a column and a row access fails.
The root node depicts a encrypted 2 × 2 matrix. The leaf nodes depict all possible arrangements of data elements
that are possible after the observed access pattern. Dashed boxes indicate the case, where the first accessed element
has changed its column. Solid boxes indicate that the first accessed element is in its original column.

round-robin column access, we perform two “maintenance” tasks. To empty stashacc, we evict all elements
from it, whose destination is somewhere in the column of the current round-robin column access. Note that
for a matrix of size

√
N ×

√
N , the round-robin access will have accessed every cell of the matrix in

√
N

steps. This means that no element in stashacc will wait for more than
√
N steps to be evicted. Since, we

add at most one element to the stash per access, this means that stashacc will never contain more than
√
N

elements.

The second task is to ensure that, whenever we use a swap partner from stashswap, the content of the swap
partner’s cell must already be available in that stash. Observe, that the swap partner’s cell is a uniformly
random cell in the matrix, which does not depend on the access pattern and can be selected upfront. Assume
stashswap contains

√
N many preselected swap partners in a queue. These swap partners are sufficient for

the next
√
N accesses. Now upon performing an access, one swap partner from the stash will be used, and

we pre-select a uniformly random cell that will be the swap partner once all other swap partners from
stashswap are used. At this point in time, the content of the pre-selected swap partner is (likely) not in the

stash. However, since we have
√
N − 1 many more accesses before it will be used, we can be certain that

the round-robin column access will fetch it in time before it will be used. Since our stashes accommodate
accessed elements waiting to be evicted and swap partners waiting to be used, the total stash size is 2

√
N .

One detail that we have swept under the rug so far, is the case, where the element we want to access
is not in the matrix, but somewhere in the stashes. To get an intuitive feeling for the handling of these
cases, it is helpful to keep in mind that at every access, we are basically virtually swapping two cells in the
matrix. The stashes are just auxiliary data structures that make this process happen. Let (i, j) be the cell
in the matrix that is expected to contain the element we are accessing and let the next swap partner from
stashswap be some data element v originating from some cell (a, b). If the desired data element is not at
position (i, j) in the matrix, but rather in stashacc (waiting to be evicted to some cell (a′, b′)), then take the
next swap partner from stashswap and place its value v into the matrix at position (i, j). From now on the
element in stashacc that was expected to be at (i, j) will be waiting to be evicted to (a, b). If the accessed
element, expected at location (i, j), is in stashswap, this means that (i, j) is pre-selected as a swap partner
for some future access. Therefore the contents of (i, j) are not supposed to be in the matrix, but rather in
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Globals
1 C, σ
2 stash = (stashswap, stashacc)
3 indcol

Init(A)

1 C ← initEmptyMatrix(
√
N ×

√
N)

2 (A′, σ′)← shuffle(A)
3 σ ← fillMatrix(A′, σ′, C)
4 (stashswap, stashacc)← initStash()

5 for i = 1 . . .
√
N do

6 (i, j)← pickRandCell()

7 enqueue(((i, j) ,⊥) , stashswap)

8 indcol ← 0

9 for i = 1 . . .
√
N do

10 Background();

Access(`, x)

1 v.pos← σ (`)
2 (v.val, where)← ReadVirtual(v.pos)
3 s← dequeue(stashswap)

4 if x 6= ⊥ then
5 v.val = x

6 SwapVirtual(v, s, where)
7 swapInPosMap((i, j) , s.pos, σ)
8 (i′, j′)← pickRandCell()

9 enqueue(((i′, j′) ,⊥) , stashswap)

10 Background()

11 return v

SwapVirtual(v, s,where)

1 switch where do
2 case matrix
3 C [v.pos] = s.val

4 case readstash
5 remove(v.pos, v.val, stashacc)

C [v.pos] = s.val

6 case swapstash
7 t← find(v.pos, stashswap)

8 replaceVal(t, s.val, stashswap)

9 put(s.pos, v.val, stashacc)

Background()

1 c = readColumn(indcol, C)
2 for t ∈ stashacc do
3 if t.pos.j = indcol then
4 c [t.pos.i] == t.value
5 remove((i, j) , stashacc)

6 for t ∈ stashswap do
7 if t.pos.j == indcol then
8 if c [t.pos.i] 6= ⊥ then
9 t.value = c [t.pos.i]

10 c [t.pos.i] = ⊥

11 writeColumn(j, c, C)

12 indcol ← indcol + 1 mod
√
N

ReadVirtual((i, j))

1 if C [i, j] 6= ⊥ then
2 return (C [i, j] ,matrix)

3 v = lookup((i, j) , stashacc)
4 if v 6= ⊥ then
5 return (v, readstash)

6 v = lookup((i, j) , stashswap)

7 return (v, swapstash)

Fig. 4. Pseudocode of Lookahead ORAM
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the stashswap. In this case, we find (i, j) in the stashswap, put the value of (i, j) into stashacc to be evicted
into (a, b), and replace the value of (i, j) in stashswap with v.

4.2 Formal Description

Given this intuition about how our construction work, we are now ready to formally present our construction
in Figure 4. Let C be the matrix containing the encrypted data entries and σ be the position map that
maps array indices to matrix positions in C. We implement stashswap as a queue and stashacc as an map
from positions to values. Init(A) initializes the ORAM data structure, by permuting the elements and
storing them in an encrypted matrix C. Initially, both stashes are created empty. stashswap, is filled up
with random elements from the encrypted matrix. To write value x or just read at position ` in array A
inside the ORAM data structure, we use Access (`, x), which makes use of the ReadVirtual, WriteVirtual, and
Background subroutines. ReadVirtual (i, j) reads the stash and the matrix cell C[i, j] to find the data element
that is expected to be at position (i, j) inside the matrix C. SwapVirtual(v, s,where) simulates a swap of
accessed value v.val at position v.pos with pre-selected swap partner s with value s.val from position s.pos.
Background() implements the round-robin column access, which takes care of flushing elements out of stashacc
and fetching elements into stashswap.

4.3 Security

Theorem 2. Let E = (gen, encrypt, decrypt) be an IND-CPA secure encryption scheme. Then the construc-

tion in Figure 4 is a secure ORAM scheme with perfect correctness and O
(√

N
)

bandwidth overhead, where

N is the number of data elements.

Proof. Instead of directly arguing about the security of our proposed construction, we will rather argue about
the security of an idealized version, which leaks the same amount of information about the access pattern,
but is easier to analyze. As previously explained, from a high-level perspective, our construction directly
accesses the desired element in the matrix and then swaps it with a random cell. The swap is immediately
applied to the position map and we always directly access the cell in the matrix, which should contain a
desired element according to the position map. The stash and the round-robin column accesses are there to
enable us to virtually swap the accessed element into a new cell without leaking anything about that new
location.

IdealizedAccess1(σ, `)

1 (i, j)← σ (`)
2 (i′, j′)← pickRandCell(C)
3 v ← readCell(i, j, C)
4 C ← readMatrix(C)
5 swapInPosMap((i, j) , (i′, j′) , σ)
6 swapInPosMap((i, j) , (i′, j′) , C)
7 return v, σ

IdealizedAccess2(σ, `)

1 (i, j)← σ (`)
2 (i′, j′)← pickRandCell(C)
3 v ← readCell(i, j, C)
4 C ← readMatrix(C)
5 swapInPosMap((i, j) , (i′, j′) , σ)
6 (C, σ)← fullReshuffle(C, σ); return v, σ

Fig. 5. Idealized access procedures

Since both the stash and the the round-robin column access are always executed independently of the
access pattern, they leak no information. Hence, instead of analyzing our construction directly, we can
analyze a construction with the idealized access procedure IdealizedAccess1 depicted in Figure 5 on the
left. The initialization procedure corresponding to IdealizedAccess1 is a straightforward adaption of our main
construction and is not stated explicitly. In IdealizedAccess1, we directly access the cell that contains our data
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element and, next, we retrieve the full matrix to perform the swap operation locally. From an efficiency point
of view this is clearly a useless construction, but with respect to obliviousness both our main construction and
this idealized version thereof leak the same amount of information about the access pattern. More formally,
the success probability of any distinguisher D, distinguishing two data access sequences, is the same in our
main construction and in the construction with IdealizedAccess1.

Lemma 2. Let oram be the main construction from Figure 4 and oram∗1 the construction using the access
procedure IdealizedAccess1. Then, for any distinguisher D, for any two data request sequences −→y and −→z we
have

|Pr[D(oram(−→y )]− Pr[D(oram(−→z ))]|

= |Pr[D(oram∗1(−→y ))]− Pr[D(oram∗1(−→z ))]|

There are two components that are observable by the server in both our real construction and the idealized
access that can leak information about the access pattern. The first component is the swap logic that moves
accessed elements to a new position. The second component is the direct accesses to the desired elements,
i.e. we need to show that conditioned on previously observed accesses, each new access will fetch a uniformly
random cell in the matrix.

Towards showing the first part, let vk for 1 ≤ k ≤ N be some arbitrary data elements. Let ExpN,t
swap be

the experiment of, initially, distributing the N data elements vk in a matrix C with N cells uniformly at
random and then for t steps repeatedly swapping the contents of two uniformly random cells.

Lemma 3. Let C be a matrix of size
√
N ×

√
N and let vk ∈ V for 1 ≤ k ≤ N be arbitrary values from

some value space V. Then C, after running experiment ExpN,t
swap, is a uniformly random permutation of the

data elements vk.

Proof. Initially distributing the data elements vk uniformly at random in the matrix C corresponds to a
uniformly random permutation. For ExpN,1

swap, i.e. distributing the elements and then swapping two uniformly
random cells once, the statement holds, since we apply a random permutation of two elements to a uniformly
random permutation. The statement for t > 1 follows by induction over t.

To conclude the security proof it remains to show that even conditioned on the previously observed
accesses the distribution of data elements in C is uniformly random. Assume the server observes an access to
position (i, j) in the matrix to fetch some data element vk. The accessed element is going to be swapped into
every position in the matrix with equal probability. Since each element is equally likely, with a probability of
1
N , to be selected as a swap partner, every element is equally likely to end up in (i, j). From the accessed cells,
no other information about the access pattern is leaked. Hence, from the server’s perspective all distributions
of access patterns are equally likely, no matter what the actual data access sequence is.

For the sake of clarity, let us look at the slightly modified access procedure IdealizedAccess2 depicted
in Figure 5 on the right. In IdealizedAccess2 we do not just swap two cells locally, but we fully reshuffle
the whole matrix. Due to the full reshuffle, each access is completely independent of the previously observed
access pattern. It is straightforward to see that IdealizedAccess2 is a secure ORAM construction. Since in both
IdealizedAccess1 and IdealizedAccess2 the access patterns are distributed uniformly at random, IdealizedAccess2
leaks as much information as IdealizedAccess1.

4.4 Online Overhead

For some practical applications it may be of interest to split the total bandwidth overhead into an online and
an offline overhead. The point of this is to minimize the online bandwidth, which represents the amount of
data that needs to be transmitted, when a client requests an element, and then do some background work,
the offline overhead, to ensure the security of the ORAM, when no data requests are actively pending. This
way we can minimize the practical latency of user requests despite the inherent lower bound on the overhead
shown in [Gol87, GO96].
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Looking at our main construction, it is straightforward to split the total bandwidth overhead into online
and offline overhead. In the online phase, assuming we download the stash once, we can directly access the
desired elements in the matrix on the server without any overhead. In the offline phase we need to do the
remaining work, i.e. perform the round-robin column access, fill up the stash of pre-selected swap partners
and flush out elements that need to go back into the matrix.

While storing the stash locally can theoretically compromise data integrity in case of a client device
failure, the only part of the stash that cannot be randomly reinitialized is the cache of recently accessed
elements. If the server is is significantly more reliable than the client device, recently accessed elements can
be written to a separate server-side buffer of size

√
N in a round-robin manner. Each element will be stored

in this buffer for
√
N operations which is enough for the background operations to write it to its long-term

server-side storage position.

It is also possible to allow multiple online accesses in a single burst. The simplest way to do it increases
local storage requirements by twice the size of the maximum allowed burst length. Note that our imple-
mentation faithfully simulates the oram∗1 construction as long as the background work is performed at least√
N times between committing to a swap partner and its use, and background work is also performed at

least
√
N times between accessing the element and evicting it from the recently accessed element stash. If

there is additional stash space of size b for the potential swap partners and the same amount of space for
the recently accessed elements, we only need to have at least

√
N background work operations performed

during every interval when b+
√
N access operations are performed. Note that it is possible to perform some

part of the background work, handle an additional burst and then continue the background work as long
as enough background work is done to prevent exhaustion of the swap partners or overflow of the recently
accessed elements stash.

The same analysis shows that there is a trade off between stash size and bandwidth overhead. For example,
if we have a stash twice as large as needed, we can afford doing only half the background processing step
after each access.

4.5 Trading Off Bandwidth and Storage Overhead

For our main construction, the server’s storage overhead comes from the two auxiliary stashes that it needs
to store in addition to the encrypted data elements. For a matrix C, where the number of columns equals
the number of rows, this results in an additive storage overhead of 2

√
N . More generally, by considering an

arbitrary rectangle C with H rows and W columns, we can trade off the concrete storage and bandwidth
overhead costs of our construction. The number of columns W affects the time it takes the round-robin
column access to iterate over the whole rectangle C and thus it also affects the stashes which have to be of
size W each. The number of rows H, affects the size of the column that we need to download at each access.

For example, by setting H = 2
√
N and W = 1

2

√
N , we can, in comparison to a matrix shaped C, directly

reduce the additive storage overhead to
√
N and maintain a bandwidth overhead of 3

√
N + 1. By setting

H =
√

2N and W =
√

N
2 , we get a bandwidth overhead of 2

√
2
√
N + 1 and a storage overhead of

√
2N .

5 Recursive Position Map

So far we have assumed that the full position map is stored explicitly on the client side. Following the
approach of [SCSL11], we show that our construction can be modified to only require O (1) client-side
storage at the cost of O(logN ) rounds of interaction per access between the client and the server. To store
the position map on the server side, we will create a sequence of ORAM data structures that increase in
size, which represent the position map. This means that now the server stores a sequence of position map
ORAMs and an ORAM data structure that contains the actual data. To access an element at a certain
index, the client will use the position map ORAMs to determine, which index it should query in the ORAM
data structure that stores the actual data.
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Theorem 3. Consider an arbitrary ORAM construction with a client-side position map. Assume there exist
such constants K and C that for N entries with a block size of D > 4 logN , the ORAM construction has a
multiplicative bandwidth overhead of C

√
N and total storage of (N +K

√
N)D bits.

Such an ORAM can be converted into an ORAM with a server-side position map with a multiplicative
bandwidth overhead of 2C

√
N + 4 and total storage ND + 2KD

√
N + 2N logN bits.

Proof. The proof goes by induction over N . In the base case, for size N 6 4, we use a linear ORAM, which
simply reads and writes all the blocks for each access. This ORAM has a bandwidth overhead of 4 and no
storage overhead. For an arbitrary N , we use the induction hypothesis to replace an ORAM with client-side
position map with an ORAM that stores the position map on the server-side. We encode 4 blocks addresses
in the position map into one storage block inside the ORAM data structure. Using a block size of 4 logN
results in an ORAM data structure that stores N

4 blocks, storing 4 addresses each.

Now we apply the induction hypothesis. Since we want to store N
4 blocks with 4 logN bits per block,

by induction hypothesis our position map ORAM has a total storage cost of N logN + 2K(4 logN)
√

N
4 +

2N
4 logN bits. Adding the storage costs of our main ORAM, the total storage cost in bits will be

N logN + 2K(4 logN)

√
N

4
+ 2

N

4
logN +ND +KD

√
N

= ND +K(4 logN)
√
N +KD

√
N +

3

2
N logN

< ND + 2KD
√
N + 2N logN

In our construction, every access to the main ORAM requires one access to the position map. Note that
we do not need any additional position map accesses for the background work that moves data in our out of

the stash. The position map access adds its bandwidth cost of 2C
√

N
4 + 4 to the main ORAM bandwidth

cost of C
√
N . The total overhead is C

√
N + 2C

√
N
4 + 4 = 2C

√
N + 4.

This completes the proof of the inductive step.

6 Evaluation

To verify that our calculations of the concrete performance costs of Lookahead ORAM are correct and
complete, we implemented a prototype thereof in C and measured storage and bandwidth costs for different
parameter settings. Our implementation uses libsodium [BLS12] for the underlying encryption. Each block
is encrypted using Salsa20 in combination with MACs to provide authenticated encryption. Each encrypted
block is 40 bytes larger than the corresponding plaintext data block. Both the stash of accessed elements and
the stash of pre-selected swap partners are implemented as arrays. Each entry in the stash has an additional
20-byte header containing the blocks status, its logical index, and its corresponding position on the server.

When encryptingN data blocks of size B each, the server’s total storage isN×(B+40). The corresponding
position map is 8N , and the stash 2

√
N×(B+20) bytes large. Whenever the client performs an operation on

the ORAM data structure, it needs to download 40+(B+40)×(
√
N+1) and upload 80+(B+40)×(

√
N+1)

bytes. During initialization of our ORAM, we fill the storage with zeros and then fill the stash with pre-
selected swap partners. During this initalization, we upload 44 + (B+ 40)×N bytes to the server. All of the
above formulas have been calculated based on our theoretical construction and validated empirically based
on our concrete implementation. In the following, the data block size is fixed to 1024 bytes.

Storage overhead. We compare our storage overhead on the server-side to the storage overheads of the
most relevant related work. For our comparison, measure the total storage requirements on the server-side
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Fig. 6. Comparison of the storage overheads of different ORAM constructions. The x-axis shows different amounts of
data blocks. The data block size is fixed to 1024 bytes. The y-axis plots the total required storage on the server-side in
MiB. For Lookahead ORAM, the values are taken from empirical measurements of our implementation. For the other
schemes, the values are computed based on the concrete formulas and constants that are reported in the respective
papers.

for varying N . The data points for Lookahead ORAM were obtained through experiments. For the schemes
we compare ourselves to, we computed the data points based on the formulas (including constants) given
in the respective papers. It should be noted that in [SvDS+13] the authors obtain provable security for
Path-ORAM with a storage overhead of 20N , but evaluate their scheme on smaller parameter settings. Since
we are interested in provable security and correctness guarantees, we compare our scheme to theirs with a
storage overhead of 20N . The results are depicted in Figure 6.

Bandwidth overhead. We compare ourselves to Path-ORAM, which is known to be the most efficient
construction in terms of asymptotic and practical bandwidth overhead. For our comparison we use their
self-reported bandwidth overhead of 10 logN . The results of our comparison are depicted in Figure 7. As
expected from the asymptotic behaviour of Path-ORAM and Lookahead ORAM, we can see that Path-
ORAM becomes more efficient for large values of N . However, for values of N < 3000, Lookahead ORAM is
more efficient in terms of concrete bandwidth overhead.
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A Attack on [GMSS16]

In a recent work by Gordon et al. [GMSS16] the authors present an ORAM, called M-ORAM. Their con-
struction has a flaw and does not provide obliviousness. In the following, we give a high-level overview of
their scheme and sketch our attack that breaks their obliviousness claims.

The construction partitions the server-side storage into a fixed number of rows and a number of columns
that depends on the dataset’s size. Every cell in their rectangular storage layout holds one data element.
Additionally, every row has its own separate constant-sized stash.

Initially, all data elements are present in the storage rectangle in a randomly permuted order and the
stashes are empty. Simply speaking an access is performed by accessing one element in each row of their data
structure. In one of the rows the desired element is accessed and in all other rows a uniformly random cell is
selected. More precisely, the authors claim that to achieve obliviousness not all ”dummy” cells are selected
uniformly at random, instead some of them are random cells from the previous access. After retrieving one
cell from each row, the client shuffles the cells and puts one cell into each stash. The client picks one random
block from each stash and sends it back to the server as the new content of the retrieved cells.

Let x1, . . . , xN be some data elements stored in the ORAM data structure, then the access sequences
(read(x1), read(x2), read(x1)) and (read(x1), read(x2), read(x3)) can be distinguished with a success proba-
bility that is non-negligible in the security parameter. From a high-level perspective, every access selects
a subset of cells from the data structure and every two subsets corresponding to two consecutive accesses
intersect at some random cells. For three accesses the proposed approach breaks down. Looking at our first
access sequence, the proposed construction has a slightly higher bias of the first and third access subset
intersecting, since we are accessing the same element.

We have contacted the authors and they have acknowledge our attack.
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