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Abstract

Attribute based encryption (ABE) is an advanced encryption system with a built-in mech-
anism to generate keys associated with functions which in turn provide restricted access to
encrypted data. Most of the known candidates of attribute based encryption model the func-
tions as circuits. This results in significant efficiency bottlenecks, especially in the setting where
the function associated with the ABE key admits a RAM program whose runtime is sublinear
in the length of the attribute. In this work we study the notion of attribute based encryp-
tion for random access machines (RAMs), introduced in the work of Goldwasser, Kalai, Popa,
Vaikuntanathan and Zeldovich (Crypto 2013). We present a construction of attribute based
encryption for RAMs satisfying sublinear decryption complexity assuming learning with errors.
This improves upon the work of Goldwasser et al., who achieved this result based on SNARKs
and extractable witness encryption. However, unlike Goldwasser et al., the parameters in our
system (including attribute keys) grow with the attribute length and the worst case runtime
bound. We note that even with this size restriction on the keys, it was unclear how to achieve
sublinear decryption complexity under standard assumptions. Moreover, our work presents the
first construction to achieve input-specific runtime for ABE under standard assumptions.

En route to constructing this primitive, we introduce the notion of controlled homomor-
phic recoding (CHR) schemes. We present a generic transformation from this primitive to
attribute-based encryption for RAMs and then we show how to instantiate controlled homo-
morphic recoding schemes based on learning with errors (LWE).

1 Introduction

Attribute based encryption [SW05] is a powerful paradigm that provides a controlled access mech-
anism to encrypted data. Unlike a traditional encryption scheme, in an attribute based encryption
scheme, an authority can generate a constrained key skP for a program P such that it can de-
crypt an encryption of message µ, associated with attribute x, only if the condition P (x) = 0
is satisfied. The last decade of research in this area [SW05, GPSW06, OSW07, GJPS08, Wat09,
LW11, Wat12, GVW15a, GGH+13, GKP+13b, BGG+14, GGHZ14, Wee14, GVW15b, BV16] has
led to several useful applications including verifiable computation [PRV12] and reusable garbled
circuits [GKP+13a]. Special cases of ABE, such as identity based encryption [BF01, Wat05, DG17,
BLSV17], and generalizations of ABE, such as FE [BSW11, O’N10, GGH+16], have also been
extensively studied.

Current known constructions of ABE offer different flavors of efficiency guarantees and can be
based on various cryptographic assumptions. Barring few expections, all these constructions [GPSW06,
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Wat09, LOS+10, GVW15a, BGG+14, GVW15b] model the random access programs, associated
with the constrained keys, as circuits. However, transforming random access programs into circuits
is associated with significant efficiency costs. If the execution time of these programs were sub-linear
in the input length to begin with (for instance, binary search), modeling them as circuits destroys
the sub-linearity property. As a consequence, the decryption complexity could be exponential in
the running time of the programs. This is quite unsatisfactory as we often encounter scenarios
where sublinear computations have to be performed on massive data sets. Even if the programs
do not have sublinear complexity in the input length, another issue with modeling programs as
circuits is that the decryption algorithm could be drastically slower than the running time of the
original programs, not to mention the additional overhead involved in transforming programs into
circuits.

To circumvent these issues, Goldwasser et al. [GKP+13b] introduced the notion of ABE for
RAMs1 that showed how to generate keys for RAM programs directly without having to go through
the expensive RAM-to-circuit conversion. They presented a construction of ABE for RAMs based
on extractable witness encryption and SNARKs (succinct non-interactive arguments of knowledge).
Recent works [GGHW14, BP14, BSW16] have brought into question the veracity of the assumptions
of extractable witness encryption and SNARKs. While the existence of these assumptions have been
ruled out only in specific scenarios, they certainly guide us to be more careful about using them
for cryptographic applications.

1.1 Our Contributions

The goal of this work is to understand the feasibility of achieving ABE with sublinear decryption
complexity based on well studied cryptographic assumptions. Before stating our result, we explain
the model of ABE for RAMs below.

As defined in an ABE for circuits scheme, an ABE for RAMs scheme consists of setup, key
generation, encryption and decryption algorithms. The encryption algorithm takes as input an
attribute database D, a message µ and produces the ciphertext ct. The key generation takes
as input a RAM program P and produces attribute key skP associated with P . The decryption
algorithm, modeled as a RAM program, takes as input skP , a ciphertext ct and produces the
decrypted message µ only if PD (this notation means P has oracle access to the database D)
outputs 0.

We note that the syntax of Goldwasser et al. is slightly different. In particular, in their scheme
the key generation takes as input program P , database D while the encryption only takes as input
x. In the end, the decryption succeeds only if PD(x) = 0 and the requirement is that for sub-linear
programs, the decryption time is sub-linear in |D|.

The key efficiency requirement we place on our definition is that the decryption of skP on en-
cryption of µ should take time p(λ, T ), where T is an upper bound on the running time of P , for a
fixed polynomial p(·). In particular, if T is polylogarithmic in the length of the attribute, namely
|D|, then the decryption complexity is also polylogarithmic in |D|. We term this sublinear decryp-
tion property. Barring the work of Goldwasser et al. [GKP+13b], none of the ABE constructions
achieve sublinear decryption complexity property.

We show the following result:

1A RAM program is associated with a memory (initialized with the input to the RAM program) and step circuit.
In every step of the RAM computation, the step circuit outputs the next index to be read and additionally, it also
writes to a location in the memory. It differs from a Turing machine, in that a RAM program does not have to read
all the locations in the memory.
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Theorem 1.1 (Informal). Assuming learning with errors (with sub-exponential modulus2), there
is a construction of public key attribute-based encryption scheme for random access machines sat-
isfying sub-linear decryption property.

We emphasize that our scheme supports a priori unbounded number of attribute keys in the security
game (referred to as collusion resistance in literature). Also, our construction is in the selective
security setting. Even for programs that don’t have sublinear runtime, our work beats previous
works in terms of decryption complexity. We elaborate more on this when we compare our work
to previous works.

To prove the above theorem, we introduce a novel primitive that we call controlled homomorphic
recoding schemes. This primitive generalizes the concepts of fully key homomorphic encryption,
introduced in the work of [BGG+14]. Using this tool, we build ABE for RAMs and then we conclude
by instantiating this tool from lattice assumptions.

Comparison. We compare the parameters we obtain in our scheme with the parameters obtained
in the naive approach of RAM-to-circuit conversion and then applying previously known ABE for
circuits schemes. While the main construction presented in the technical section has decryption
complexity proportional to the worst case running time of the RAM programs, we can transform this
scheme into another scheme where the decryption complexity is input-specific. This is performed
by running log(T ) copies of the scheme by setting the worst case runtime of the first scheme to be
2, second scheme to be 22, so on and the runtime of the log(T )th scheme is set to be T . This idea
has been used in prior works (for instance, [GKP+13b]). Note that this increases the size of the
public parameters, keys and ciphertexts by a multiplicative factor of log(T ).

Schemes Size of Size of Size of Decryption
Public key Ciphertext Key of RAM P complexity

Via ABE

for circuits Õ(n(λ, T )2 ·NT ) Õ(n(λ, T )2 ·NT ) Õ(n(λ, T )2 · T ) Õ((T +N)3 · n(λ, T )2 · T )
[BGG+14]

Via ABE

for circuits Õ(n(λ, T )2 · T ) Õ(n(λ, T )2 ·NT ) Õ(n(λ, T )2 · T ) Õ((T +N)3 · n(λ, T )2 · T )
[BV16]

Our

Work Õ(n(λ, T )2 ·NT ) Õ(n(λ, T )2 ·NT ) Õ(n(λ, T )2 ·N · T 3) Õ(n(λ, t)2 · t)

Figure 1: We compare the parameters in our work with previous works. The polynomial n = n(·, ·)
denotes the lattice dimension and we set the polynomial m = Θ(n·log(q)) with q being the modulus.
In both our work and previous works, we set q to be exponential in T . The Õ notation suppresses
poly-logarithmic factors (in N and T ). The encryptor takes as input a database D of size N . The
attribute key is generated for a RAM program P with worst case runtime to be T and it takes time
t to compute on D. In previous works, an attribute key for P is generated by first transforming it
into a circuit of size (T +N)3 and depth T and then generating an attribute key for the resulting
circuit. We omit comparison with Goldwasser et al. [GKP+13b] since, as mentioned earlier, their
modeling of ABE definition differs from us.

2All the current known lattice-based ABE for general circuits [BGG+14] are based on the same assumption.
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In our scheme, in addition to the decryption complexity, the rest of the parameters in our system
also depend on the upper bound on the running time. In contrast, the scheme of Goldwasser et
al. [GKP+13b] achieve succinctness property, meaning that the encryption complexity and the key
generation complexity is independent of the time bound. A natural question to ask here is whether
we can achieve succinctness property without resorting to stronger assumptions. It turns out that
an attribute based encryption satisfying succinctness property would imply succinct randomized
encodings. This is because, attribute based encryption for RAMs satisfying succinctness implies
succinct randomized encodings for Turing machines3 [BGJ+16, AJS15]. Current constructions of
succinct randomized encodings are based on indistinguishability obfuscation [CHJV15, BGL+15,
KLW15] for circuits.

Yet another point to note is that the key sizes in our scheme grows with the attribute length.
Currently, we don’t have any evidence to suggest that this is inherent in LWE-based constructions
and so it would be interesting to remove this restriction.

1.2 Technical Overview

We first present a brief description of one of the ABE for circuits schemes and in particular, we
describe the scheme of Boneh et al. [BGG+14]. The reason why we choose [BGG+14] is that the
construction is relatively easier to describe (as opposed to the construction of [GVW15a]) and also,
some of the proof ideas introduced in [BGG+14] will be useful for us later.

Primer on [BGG+14]. The scheme is described as follows.

- The public key consists of matrices A,A1, . . . ,AN ∈ Zn×mq and the master secret key is a
matrix TA ∈ Zm×mq such that A ·TA = 0.

- The encryption of an attribute D = (x1, . . . , xN ) and message µ produces the ciphertext
consisting of,

sTA + eT, sT(A1 + x1G) + eT1 , . . . , s
T(AN + xNG) + eTN , Enc(sk, µ)

where s ∈ Znq is a randomly chosen secret vector, G is the gadget matrix [MP12], e, {ei}
are error vectors (chosen from an appropriate Gaussian distribution) and Enc is a symmetric
encryption scheme4 that allows for decrypting using “noisy” keys. In particular, given sk+err,
where err has small norm, we can distinguish Enc(sk, 0) and Enc(sk, 1).

- An attribute key corresponding to a circuit C is computed as follows: first homomorphically
evaluate C on the matrices A1, . . . ,A` to obtain the matrix AC. The attribute key consists
of the trapdoor TC, generated using the master secret key TA, such that the following holds:
[A|AC] · TC = sk. We can view TC as a recoding key; it recodes an encoding of a value
under AC into an encryption of the same value w.r.t Enc under sk. If instead we need to
compute an attribute key corresponding to a RAM program P , we could first transform P
into a circuit C and then compute an attribute key for C using the above procedure.

- The decryption consists of two steps: (i) homomorphism step: in this step, evaluate the
ciphertexts {sT(Ai + xiG) + eTi } to obtain the ciphertext that is approximately sT(AC +

3The works [BGJ+16, AJS15] show implication of ABE for Turing machines (as defined in [AJS15]) to succinct
randomized encodings (Appendix A.5 in [BGJ+16]. This implication assumes learning with errors. However, ABE
for RAMs satisfying succinctness property implies ABE for Turing machines.

4Boneh et al. use a specific lattice based symmetric encryption scheme.
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C(D)G), (ii) authentication step: in this step, we use the homomorphically computed
ciphertext and the trapdoor TC to obtain a noisy secret key sk only if C(D) = 0. The noisy
key then allows us to obtain the message µ.

At a high level, the security proof proceeds in the following steps: let the challenge attribute chosen
by the adversary be x∗ and attribute keys are generated for circuits C1, . . . ,Cq such that Ci(x

∗) = 1.
To show that the scheme is secure, we need to argue that the challenge ciphertext and the attribute
keys can be simulated.

• Simulation of Public Keys: The ith public key Ai is simulated using the ith bit of x∗.

• Simulation of Recoding Key: Suppose we want to simulate an attribute key for a circuit
C. Since the matrices {Ai}i∈[N ] are simulated, the result of homomorphically evaluating the
matrices {Ai}i∈[N ] using C results in a matrix AC that is simulated using C(x∗). This fact is
crucially used to simulate the trapdoor TC and in particular, the trapdoor TA is not used to
generate TC.

• Pseudorandomness of Ciphertexts: At this point, the ciphertext is sampled from uniform
distribution instead of generating it as Enc(sk, µ). A computationally bounded adversary will
not be able to distinguish this switch from the learning with errors assumption.

Constructing ABE for RAMs: First Attempt. We first discuss the hurdles involved in
extending the scheme of Boneh et al. [BGG+14] to directly construct ABE for RAMs and in
particular avoiding the costly RAM-to-circuit conversion.

Notice that the attribute key TC in [BGG+14] is generated as a function of the matrices {Ai}
and circuit C. This means key generation algorithm knows all the operations, specified by the
circuit C, that is to be performed on the data and thus can authenticate only those operations that
are legal. As an example, consider a circuit that consists of applying OR gates to its input and
then applying a giant AND gate at the top. At the time of generating the key for this circuit,
the authority knows that first applying OR and then AND is the only legal computation path
that can be taken and it can thus generate a trapdoor that only authenticates this computation.
However, if we were to generate attribute keys for RAM programs directly then we would run into
trouble. The operations performed during RAM computation can be highly data-dependent (unlike
circuits, which consist of data-oblivious operations) and hence it is unclear which set of operations
to authenticate during the key generation process. For instance, a RAM program P could read the
first bit of the database and if its value is 0 it executes a sequence of OR gates and then applies
a giant AND gate, otherwise if its value is 1 then it could simply output the second bit of the
database. This means that the computation path, i.e., a sequence of operations to be performed
on the data, is ill-defined during the key generation phase and hence its unclear how to execute the
authentication mechanism.

A first attempt to solve the above issue is enumerate all possible computation paths and then
generate a trapdoor for every computation path. In more detail, let T be an upper bound on the
running time of the program and for now, think of T as being a constant. This means that all
possible T -sized subsets of the memory locations can be accessed by the program during decryption.
For every possible T -sized set I ⊆ [N ], we first perform homomorphic evaluation on the matrices
{Ai}i∈I to obtain the matrix AI . The next step is to generate a trapdoor TI such that [A|AI ]·TI =
sk. Since T is a constant, the size of the attribute key is polynomial sized, as desired. On input
an encryption of attribute D and message µ, first determine the set of locations I∗ accessed by the
program. Then use the trapdoor TI∗ to obtain the noisy key and decrypt the message as before.
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This scheme achieves sublinear decryption complexity: the decryption algorithm only needs to touch
ciphertext encodings computed with respect to {Ai}i∈I∗ and trapdoor TI∗ . However, in terms of
security, this scheme fails. There is no mechanism in place that prevents a malicious evaluator from
illegally using a trapdoor TI′ , for I ′ 6= I∗. This suggests that we need a controlled authentication
mechanism that lets us evaluate only “legal” trapdoors depending on the data. Moreover, even if
we tweak the scheme to incorporate this mechanism, a bigger problem is that this does not scale
for the case when T is not a constant since the attribute key would no longer be polynomial sized.
We introduce the notion of controlled homomorphic recoding schemes that overcomes the above
barriers.

Our Approach: Controlled Homomorphic Recoding Scheme. The main insight in our
approach is to divide the computation into several tiny modules of computation and then apply
authentication mechanism after the execution of every module. A RAM program presents a natural
way to achieve such a modularization: a module corresponds to the associated step circuit of
the RAM program. As in the case of [BGG+14], the encryption will consist of encodings of the
database. We design the decryption process to proceed by homomorphically evaluating the step
circuit followed by authenticating its output which then is followed by homomorphic evaluation
of the step circuit for next time step and so on. In order to perform authentication after every
time step, we provide T auxiliary keys as part of the attribute key, where T is the maximum
running time of the associated RAM program. The main challenge we face when we try to nail
down this approach is that we need a mechanism to ‘stitch’ the intermediate homomorphism and
the authentication steps together. Specifically the authentication phase should not only verify the
correctness of the computation of the step circuit but it should also pass along the valid encoded
information to the next homomorphism phase. We term this phase, that performs the job of both
authentication and translation of encodings, as controlled recoding phase. Incorporating both the
homomorphism phase and the controlled recoding phase, we introduce the notion of controlled
homomorphic recoding scheme.
A controlled homomorphic recoding scheme allows for encoding messages x along with secret ran-
domness s with respect to public key pk. There are two main phases associated with a controlled
homomorphic recoding scheme, namely, (1) public homomorphism phase and, (2) controlled recod-
ing phase.
In more detail, we describe the algorithms associated with a controlled homomorphic recoding
scheme. Setup generates the public key pk and secret key sk. Enc is a mechanism to transform
attribute y and secret message s into a ciphertext ct. Equality test EqTest allows for checking if
two different ciphertexts ct1 and ct2 encode the same attribute bit, given the condition that they
both are computed with respect to the same public key pk and the same secret message s. The
rest of the algorithms are classified into public homomorphism and controlled recoding phases.

Public Homomorphism: There are two algorithms associated with this phase. The first algorithm
KeyEval takes as input many public keys pk1, . . . , pkn, circuit C and outputs a homomorphically
evaluated public key pkC . The second algorithm, takes as input ciphertexts ct1, . . . , ctn with cti
computed under pki, circuit C and it computes the ciphertext ct∗ under the resulting public key
C(pk1, . . . , pkn). Looking ahead, C will essentially represent the step circuit of a RAM program.
We present a pictorial representation of both these algorithms in Figure 3.

Controlled Recoding: The main goal of this phase is two-fold: first verify the computation
in the previous time step and if the verification phase succeeds then produce encodings for the
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x1 x2 x3 xi xj · · ·

Homomorphism
Phase

Controlled
Recoding
Phase

Homomorphism
Phase

x1 x2 x3 xi xj · · ·

Step circuit Step circuit

state

read j

write b

state

read j

write b

state

read j

xj

Figure 2: A high level description of how the two phases (homomorphism and controlled recoding)
mirror the execution of the RAM program. xi denotes the encoding of xi. The controlled recoding
phase translates the encodings of state and “read j” instruction from the previous time step to the
next time step. It also translates the jth database encoding into an encoding for the next time step.

pk1 · · · pkn

C(pk1, . . . , pkn)

C

pk1 x1 s · · · pkn xn s

C(pk1, . . . , pkn) C(x1, . . . , xn) s

C

Figure 3: Description of homomorphism algorithms. The topmost figure denotes the execution of
KeyEval and the next figure denotes the execution of CtEval.
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next homomorphism phase. The verification step implicitly captures the controlled authentication
mechanism that we touched upon earlier.

There are two algorithms associated with the controlled recoding phase. The ciphertext recoding
procedure ReEnc allows for recoding ciphertexts of {xi}i∈[n] under public keys (pk1, . . . , pkn) into
a ciphertext of f(x1, . . . , xn) under the public key pk∗ as long as f(x1, . . . , xn) 6= ⊥. This recoding
process is carried out with the help of a recoding key rkf , which is associated with a control
function f . The recoding key generation algorithm ReEncKG allows for generating such a recoding
key, rkf . Looking ahead, in the construction of ABE from CHR, the control functions will be
critical in controlling the information to be passed on from the output of step circuit in the ith step
to (i+ 1)th step.

Consider the following example. Let rkf be a recoding key that recodes ciphertexts under public
keys (pk1, pk100), where f is a function that takes as input (x, y) and outputs y if x = 100, otherwise
it outputs ⊥. This is useful for the reading operation in the ABE application. We can think of the
public key pk1 being used to encode the read address 100 and pk100 used to encode the value in the
100th memory location.

pk1 x1 s · · · pkn xn s

pk∗ f(x1, . . . , xn) s

rkf

Figure 4: Description of ciphertext recoding, ReEnc.

We explain the correctness requirement by considering a toy example. Consider three input bits
(x1, x2, x3), circuits C1, C2, and control function f such that f

(
C1(x1, x2, x3), C2(x1, x2, x3)

)
∈

{0, 1}.

• Suppose ct1, ct2, ct3 are encodings of (x1, x2, x3) (under the same randomness) respectively
under the public keys (pk1, pk2, pk3).

• Homomorphically evaluating (ct1, ct2, ct3) using the circuit C1 (resp., C2) yields cipher-
text of C1(x1, x2, x3) (resp., C2(x1, x2, x3)) under the public key C1(pk1, pk2, pk3) (resp.,
C2(pk1, pk2, pk3)). Call these two encodings ct′1 and ct′2.

• Suppose rkf is a recoding key that translates ciphertexts encoded under the public keys
pk1, pk2, pk3 into a ciphertext under public key pk∗. Upon executing ReEncKG on input
ct′1, ct

′
2 and recoding key rkf , let ct∗ be the resulting ciphertext.

We require the following condition to hold: EqTest should declare ct∗ and ct equal, as long as ct is
a ciphertext of f(C1(x1, x2, x3), C2(x1, x2, x3)) and secret randomness s under the public key pk∗.

Main Construction: ABE for RAMs from CHR. We now show how to construct ABE for
RAMs starting from a controlled recoding scheme. We only provide a high level template below
and this suffices to understand the main ideas in our construction. We also later identify some
technical challenges that arise when we try to implement this template and how to handle them.
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Setup: Let N be the length of the attribute. There are three main types of CHR public keys to be
generated: (i) public keys (Step[0].pkdb1 , . . . ,Step[0].pkdbN ) corresponding to the attribute database,
(ii) anchor public key-secret key pair (pk0, sk0), (iii) target public key pkout. In addition, CHR public
key used to encode the initial read address, namely Step[0].pkra and the CHR public key used to
encode the initial state information Step[0].pkst. All these public keys, denoted by Step[0].PK, will
be part of the ABE public parameters.

The anchor secret key sk0 will be set as the master secret key of the ABE scheme.

Key Generation: Let P be the RAM program for which we need to generate the ABE key with
run time upper bounded by T and let C be the step circuit associated with P .

Sample public keys for every step in [T − 1] and the number of such public keys for every step
is proportional to the input length of C. That is, generate Step[1].PK, . . . , Step[T − 1].PK, where
Step[i].PK denotes the set of public keys associated with the i-th step.

The next step is to generate recoding keys Step[1].RK, . . . , Step[T − 1].RK, where the recoding
keys in the set Step[i] recodes the encodings w.r.t the Step[i− 1] public keys to encodings w.r.t the
Step[i] public keys.

Execute the following two steps for every time step t ∈ [T ]:

• Homomorphism keys: Execute the key evaluation algorithm KeyEval of CHR on the set of
public keys on Step[t − 1].PK to obtain the set of public keys Step[t − 1].PKhom. The public
keys in Step[t− 1].PKhom is used to encode the output of C in the (t− 1)-th step.

• Controlled Recoding keys: Execute the key recoding algorithm ReEncKG of CHR on the
public keys Step[t− 1].PKhom and control functions in the class F to obtain the set of recoding
keys Step[t].RK, for every time step t ∈ [T ]. The class F is used to translate the output of the
(t− 1)-th step circuit to the input of t-th step circuit.

To give a glimpse of what F contains, we give two examples:

– Ind: this is an identity function. This is useful in converting an encoding of state output by
the previous step into an encoding input to the next step. This is also useful in transferring
the read address output by previous step to the next one.

– fi(i
′, b): this outputs b only if i = i′. This is useful for writing operation: suppose the step

circuit at some time t outputs a location i′ and value b to be written to. In this case, a
recoding key associated with fi will transform encoding of location i′ into encoding of b in the
i-th database location only if i = i′.

Set the ABE key of the program P to be (Step[1].RK, . . . , Step[T ].RK).

Encryption: It takes as input attribute x of size N and message µ. As before, it first samples
secret randomness s from a distribution. It computes the following encodings: (i) encoding of xi
and s under the public key pki, (ii) encoding of 0 and s under the public key pk0 and finally, (iii)
encoding ct∗ of µ and s under the public key pkout. Additionally, it also computes encoding of
initial read address (set to 1) under Step[0].pkra and the encoding of initial state (also set to 1s).
All the encodings computed will be part of the ABE ciphertext.

Decryption: This proceeds in T steps, where T is the runtime of the RAM program and in each
step, it executes homomorphism and controlled recoding phases. In more detail, in the tth step, it
executes:
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• Homomorphism: The step circuit C is homomorphically evaluated on the encodings out-
put by (t − 1)-th step to obtain encodings of output of t-th step under the public keys in
Step[t].PKhom.

• Controlled Recoding: Using the recoding keys in Step[t].RK, the encodings computed
under the public keys in Step[t].PKhom can be recoded to encodings computed under the
public keys in Step[t].PK. As described earlier, the recoding keys determine what value to
be fed to the t-th time step as a function of the (t− 1)-th time step.

In the last step, once we have an encoding of 0 and s under pkout, (as before) we then run the
equality test on this encoding and ct∗ (as computed in encryption). If they are equal, this means
that the secret message µ has to be 0, otherwise it has to be 1.

Challenges. The template described above captures the main ideas in our construction. However,
while implementing this high level template, we encounter additional difficulties and we highlight
a couple of them below.

Repeated Writing Issue. Yet another issue is that of malicious execution of the computation.
Suppose the 100th location was updated in the 11th step and also in the 25th step. Lets consider
what happens when the RAM program in the 30th step is supposed to read the 100th location. A
malicious evaluator could use the encryption computed in the 11th step to be input to the 30th

step, instead of 25th step. We need to implement suitable checks in place that prevents him from
performing these types of attacks.

In the technical sections, we introduce circuits Cup (Figure 5) and Cck (Figure 6) that keeps
track of all the addresses written so far along with the along with the most recent time stamps
associated with them. We also introduce the control function fij (Figure 2) is used to ensure that
only the correct encoding is recoded.

Early Termination. What if the program terminates much earlier than the upper time bound
T? The template described so far, as is, would have the decryption algorithm run in T steps even
if the program terminated early. We solve this by giving out multiple keys for programs upper
bounded by runtime 2, 22, . . . , 2log(T ). In particular, using this we can achieve input-specific run-
time. This would introduce an additional overhead of log(T ) in the size of the original key.

Security Overview. Ignoring the additional challenges for now, we describe the main steps in
the security proof of the above sketched template. Before sketching the steps in the security proof,
we give an overview of the security proof. As a simple example, let us consider the case when
the adversary receives a single challenge ciphertext of (D∗, µ∗) and an attribute key of program P .
The first step is to simulate the public key using the database D∗. Next, we simulate the attribute
key of P . Recall that the attribute key consists of T layers of recoding keys, one for every step in
the computation of P . Using the simulation of the public keys, the first layer recoding keys are
simulated. This is then propagated to simulation of second layer recoding keys and so on. We
explicitly describe below the security properties needed to carry out this simulation process.

Step 1. Simulation of Public Keys. As in the case of ABE for circuits scheme, the first step
is to simulate the public keys produced by Sim.CHRSetup. In particular, the challenge attribute
D∗ is programmed in Sim.CHRSetup. To carry out this step, we need to define a security property
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for the underlying CHR scheme.

I. Indistinguishability of Setup: To define this property, we first define a simulator Sim.CHRSetup
that takes as input a value v to be programmed and outputs a public key Sim.pk and a secret trap-
door τ . We require that the distribution of simulated public keys {Sim.pk} is indistinguishable to
the distribution of real public keys {pk}.

Step 2. Simulation of Intermediate Recoding Keys. The next goal is to simulate the inter-
mediate recoding keys (i.e, Step[1].RK, . . . , Step[T − 1].RK) in every attribute key. In particular,
these recoding keys need to be generated without the help of the anchor secret key. Recall that in
the case of ABE for circuits scheme, we could simulate the recoding key rkf since the output of f on
the challenge attribute was guaranteed to be 1. However, in the setting of ABE for RAMs, we have
no such guarantee for the intermediate steps of the computation. In particular, there could two
programs P0 and P1 that output 1 on x∗ but differ on every intermediate step of the computation.
Thus, we can no longer invoke the indistinguishability of the recoding keys property.

To handle this case, we introduce the following security property associated with the CHR
scheme.

II. Indistinguishability of Simulated Keys: We first define an associated simulator Sim.CHRkey.
In its basic form, it takes as input anchor public key pk, simulated public keys (Sim.CHRpk1, . . . ,
Sim.CHRpkn), associated trapdoors (τ1, . . . , τn), homomorphism circuit C, control function f and
it produces simulated recoding keys associated with (C, f) along with simulated target public keys.

Lets see how to use the above security property to simulate the intermediate recoding keys in the
attribute keys. For simplicity, consider the case when the adversary only makes a single attribute
key query for RAM program P . Using a standard hybrid argument, we can apply the argument
for the case of multiple key queries as well. As a first step, we switch the recoding keys Step[1].RK
in the attribute key of P to simulated recoding keys using the above security property. Note that
even the intermediate public keys Step[1].PK are simulated5. In particular, we use the fact that
the public keys in Step[0].PK are simulated using Sim.CHRSetup. Next, we simulate the recoding
keys in Step[2].RK. Recall that Step[2].RK was computed as a function of Step[1].PK and the
step circuit associated with P . Hence, in order to simulate Step[2].RK we first need to simulate
Step[1].PK. But note that we already simulated Step[1].PK by Sim.CHRkey in the previous step
itself! This allows for carry out successful simulation of Step[2].RK.

A remark about the definition of indistinguishability of simulated keys: there are two ways to
generate the simulated public keys (Sim.CHRpk1, . . . ,Sim.CHRpkn). We can use Sim.CHRSetup to
generate these keys. Indeed, to argue the security of the recoding keys in Step[1].RK, the public
keys in Step[0].PK is simulated using Sim.CHRSetup. Another option is to invoke Sim.CHRkey
to generate the {Sim.CHRpki}i. This is not circular since the simulated public keys produced by
Sim.CHRkey in the first step is used in the second step by Sim.CHRkey to produce the recoding keys
in Step[2].RK. In the technical sections, we formalize this by associating a distribution Eaux which
produces {Sim.CHRpki}.

5We emphasize that the intermediate public keys are generated afresh for every attribute key. This enables us to
apply the hybrid argument for the case of multiple key queries.
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Step 3. Simulation of Final Step Recoding Keys. Continuing this way, we can simulate
all the recoding keys in Step[1].RK, . . . , Step[T − 1].RK. We cannot, however, use the indistin-
guishability of simulated keys property to simulate Step[T ].RK. This is because, the simulator
Sim.CHRkey would end up simulating the target key, which in our construction is pkout. In turn this
means that we cannot apply the indistinguishability of simulated keys property (for the multiple
key queries case) as pkout is reused across different attribute keys. To get round this, we define the
indistinguishability of recoding keys property below.

III. Indistinguishability of Recoding Keys: The simulator Sim.CHRrk is defined as follows:
let the public keys used to encode the database be simulated as (Sim.pk1, . . . ,Sim.pkn), where the
ith attribute bit xi is programmed in Sim.pki. As long as the output of C on x is not 0, the recoding
key rkf associated with the attribute key of C, can be generated without the secret key sk0.

The indistinguishability of recoding keys property states that the distribution of honestly gen-
erated recoding keys is indistinguishable from the distribution of simulated recoding keys.

Step 4. Simulate Encryption of Secret Message. Once the anchor secret key is not used in
the generation of the recoding keys for any of the attribute keys, we can now invoke the pseudo-
randomness of ciphertexts property (defined below) to argue that the secret message in the ABE
encryption is hidden. This completes the security proof.

IV. Pseudorandomness of Ciphertexts: This property states that the encoding of b and se-
cret randomness s, under a public key pk, is indistinguishable from uniform distribution on the
space of encodings.

Instantiation of CHR. It remains to show that the controlled homomorphic recoding schemes
can be based on learning with errors. We first observe that it suffices to define a controlled homo-
morphic recoding schemes only for a specific class of control functions. See below for a description
of the control functions and we explain in Table 1 how they are used in the ABE construction.

Here, N denotes the length of the attribute and T denotes the maximum running time of the
RAM programs.

F = {Ind, h, {gi}, {fi}i∈[N ], {fij}i∈[N ],j∈[T ]} (1)

where,

fij(i
′, j′, b) =

{
b, if i = i′ ∧ j = j′

⊥, otherwise
, fi(i

′, b) =

{
b, if i = i′

⊥, otherwise
(2)

gi(x) =

{
i, if C(x) = i− 1

⊥, otherwise
, h(x) =

{
1, if x = 0

⊥, otherwise
(3)

where C is a gadget circuit defined as C(x) =
∑L

i=1 xi2
i, and x = (x1, . . . , xL). Finally we define

the identity function, Ind(x) = x.
The template for encoding and the key generation is inspired by the schemes of Gorbunov et

al. [GVW15a] and Boneh et al. [BGG+14]. To encode a message b with secret randomness s under
the public key pk, our encoding is of the form sT(A + bG) + eT, where sT,A and e are sampled
according to the parameters associated with the learning with errors assumption. Suppose we have
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Functions Usage

Ind recode current state (reading address) to next step

fij recode value of current reading address to next step

fi recode writing value to current writing address

gi recode (i− 1)-th time step to i-th time step

h recode current step to final step if the program terminates at this step

Table 1: Usage of Controlled Functions in ABE Setting

many encodings sT(A1 + b1G) + eT1 , . . . , sT(An + bnG) + eTn then we can compute an encoding of
the form sT(AC + C(b1, . . . , bn)G) + e

′T, where AC is homomorphically computed on public keys
A1, . . . ,An.

To handle the recoding process, we need to generate recoding keys individually for every control
function described above. The recoding keys are set to be lattice trapdoors. As an illustration, we
show how to generate lattice trapdoor for the case of control function Ind.

• Ind: Suppose the input to the recoding key generation is anchor public key pk0, secret key
sk0, public key pk1, target public key pktgt and control function Ind. We set pk0 = A0,
sk0 = TA0 (a trapdoor for A0), public key pk1 = A1, pktgt = Atgt. The recoding key is of the

form [R0|I]T such that [A0|A1] · [R0|I]T = Atgt. Using this recoding key, we can translate
encoding of any message b under A1 into an encoding of b under Atgt.

We use similar ideas to generate the other recoding keys for the control functions that are relevant
to the construction of ABE for RAMs.

1.3 Related Work

The constructions of ABE systems has a rich literature. The seminal result of Goyal, Pandey,
Sahai and Waters [GPSW06] presented the first construction of ABE for boolean formulas from
bilinear DDH assumption. Since then, several prominent works achieved stronger security guaran-
tees [LOS+10], better efficiency or design guarantees [Wee14, Att14, AC16] and achieving stronger
models of ABE for a restricted class of functions [KSW08]. The breakthrough work of Gorbunov,
Vaikuntanathan and Wee [GVW15a] presented the first construction of ABE for all polynomial-sized
circuits assuming learning with errors. Following this, several works [BGG+14, BV16] improved
this result in terms of efficiency and also considering stronger security models [GVW15a]. In ad-
dition to [GKP+13b], there are a few works that consider ABE in other models of computation.
Waters [Wat12] proposed a construction of functional encryption for regular languages and subse-
quently Agarwal and Singh [AS17] constructed reusable garbled finite automata from LWE. Ananth
and Sahai [AS16] construct functional encryption for Turing machines assuming sub-exponentially
secure functional encryption for circuits. Deshpande et al. [DKW16] present an alternate construc-
tion of attribute based encryption for Turing machines under the same assumptions.

2 Preliminaries

Notation. Let λ denote the security parameter, and ppt denote probabilistic polynomial time.
Bold uppercase letters are used to denote matrices M, and bold lowercase letters for vectors v. We
use [n] to denote the set {1, ..., n}. We say a function negl(·) : N→ (0, 1) is negligible, if for every
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constant c ∈ N, negl(n) < n−c for sufficiently large n. Let X and Y be two random variables taking
values in Ω. Define the statistical distance, denoted as ∆(X,Y ) as

∆(X,Y ) :=
1

2

∑
s∈Ω

|Pr[X = s]− Pr[Y = s]|

Let X(λ) and Y (λ) be distributions of random variables. We say that X and Y are statistically

close, denoted as X
s
≈ Y , if d(λ) := ∆(X(λ), Y (λ)) is a negligible function of λ. We say two

distributions X(λ) and Y (λ) are computationally indistinguishable, denoted as X
c
≈ Y if for any

ppt distinguisher D, it holds that |Pr[D(X(λ)) = 1]− Pr[D(Y (λ)) = 1]| = negl(λ).

2.1 Random Access Machines

We recall the definition of RAM program in [GHL+14]. A RAM computation consists of a RAM
program P and a database D. The representation size of P is independent of the length of the
database D. P has random access to the database D and we represent this as PD. On input x,
PD(x) outputs the answer y. In more detail, the computation proceeds as follows.

The RAM program P is represented as a step-circuit C. It takes as input internal state from
the previous step, location to be read, value at that location and it outputs the new state, location
to be written into, value to be written and the next location to be read. More formally, for every
i ∈ T , where T is the upper running time bound

(sti, loc
w
i , b

w
i , loc

r
i)← C(sti−1, loc

r
i−1, b

r
i−1),

where we have the following:

• sti−1 denotes the state from the (i − 1)-th step and sti denotes the state in the i-th step.
Initial state st0 is set to be x, which is the input to PD(·).

• locri−1 denotes the location to be read from, as output by the (i− 1)-th step.

• bri−1 denotes the bit at the location locri−1.

• locri denotes the location to be read from, in the next step.

• locwi denotes the location to be written into.

• bwi denotes the value to be written at the location locwi .

At the end of the computation, denote the final state to be stend. If the computation has been
performed correctly, stend = y. In this work, we consider a simpler case, where the RAM program
P does not take additional input x and the output of PD is in space {0, 1}.

2.2 Attribute-Based Encryption for RAMs

In this part, we recall the syntax and security definition of (key-policy) attribute-based encryption
(ABE). An ABE scheme for a RAM program P and a database D consists a tuple of ppt algorithms
Π = (Setup,KeyGen,Enc,Dec) with details as follows:

• Setup, Setup(1λ, 1T ): On input security parameter λ and upper time bound T , setup algo-
rithm outputs public parameters pp and master secret key msk.
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• Key Generation, KeyGen(msk, P ): On input a master secret key msk and a RAM program
P , it outputs a secret key skP .

• Encryption, Enc(pp, D, µ): On input public parameters pp, a database D and a message µ,
it outputs a ciphertext ctD.

• Decryption, Dec(skP , ctD): This is modeled as a RAM program. In particular, this algo-
rithm will have random access to the binary representations of the key skP and the ciphertext
ctD. It outputs the corresponding plaintext µ if the decryption is successful; otherwise, it
outputs ⊥.

We define the properties associated with the above scheme next.

Definition 2.1 (Correctness). We say the ABE described above is correct, if for any message µ,
any RAM program P , and any database D where PD outputs 0, we have Dec(skP , ctD) = µ, where
(msk, pp)← Setup(1λ, 1T ), skP ← KeyGen(msk, P ) and ctD ← Enc(pp, D, µ).

Efficiency. We define two efficiency properties associated with a ABE for RAMs scheme: namely
sub-linear decryption and input-specific runtime property. The latter property implies the former.

Sub-linear Decryption: This property states that the complexity of decryption is p(λ, T ) for
some fixed polynomial p. We call this sub-linear decryption for the following reason: suppose T
is sufficiently sublinear in |D| (for instance, poly-logarithmic in |D|) then the decryption time is

sub-linear in |D|. More specifically, suppose p(λ, T ) = λc
′ ·T c and if T << |D|

1
c then the decryption

complexity is sub-linear in |D|.

Definition 2.2 (Sublinear Decryption). An ABE for RAMs scheme ABE is said to satisfy sub-
linear decryption property if the following holds: for any database D, message µ, program P , (i)
(msk, pp) ← Setup(1λ, 1T ), (ii) skP ← KeyGen(msk, P ) for some RAM program P , (iii) ct ←
Enc(pp, D, x) and, (iv) the decryption Dec of the functional key skP on input the ciphertext ct takes
time poly(T, λ), where T is the running time of PD.

Input-specific Runtime: This property states that the time to decrypt a ciphertext ct of (D,µ)
using an attribute key of skP is p(λ, t) for some fixed polynomial p, where t is the execution time
of P on input database D.

Definition 2.3 (Input-specific Runtime). An ABE for RAMs scheme ABE is said to satisfy input-
specific runtime property if the following holds: for any database D, message µ, program P , (i)
(msk, pp) ← Setup(1λ, 1T ), (ii) skP ← KeyGen(msk, P ) for some RAM program P , (iii) ct ←
Enc(pp, D, x) and, (iv) the decryption Dec of the functional key skP on input the ciphertext ct takes
time poly(t, λ), where t is the running time of PD.

Remark 2.1. While the above properties focus on the decryption complexity, we can also corre-
spondingly define efficiency measures for setup, key generation and encryption. Since the focus
of this work is on decryption complexity, we postpone the discussion of these properties to future
works.

Security Definition. We present the simulation-based definition of selective security of attribute-
based encryption as follows
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Definition 2.4. An ABE scheme Π for RAMs is simulation-based selectively secure if there exist
ppt simulator S = (S1,S2,S3) such that for any ppt admissible adversary A = (A1,A2), the two

distributions {ExptrealA (1λ)}λ∈N
c
≈ {ExptidealS (1λ)}λ∈N are computationally indistinguishable

1. D∗ ← A1(1λ)
2. (pp,msk)← Setup(1λ, 1T , D∗)

3. µ← AKeyGen(msk,·)
2 (pp)

4. ctD∗ ← Enc(pp, D∗, µ)

5. α← AKeyGen(msk,·)
2 (pp, ctD∗)

6. Output (pp, µ, α)

(a) ExptrealA (1λ)

1. D∗ ← A1(1λ)
2. pp← S1(1λ, 1T , D∗)

3. µ← AS3(D∗,·)
2 (pp)

4. ctD∗ ← S2(pp, D∗, 1|µ|)

5. α← AS3(D∗,·)
2 (pp, ctD∗)

6. Output (pp, µ, α)

(b) ExptidealS (1λ)

We call adversary A = (A1,A2) admissible, if the queries Pi made by A2 satisfies Pi(D
∗)) 6= 0.

Remark 2.2. We note that we can generalize the ABE syntax, by allowing RAM program P to
take in auxiliary input x, denoted as PD(x). The encryption algorithm Enc(pp, D, x, µ) outputs
ciphertext ctD,x associated with database D and auxiliary input x. Correctness and security can
be defined similarly by replacing database D with (D,x).

2.3 Lattice Background

A full-rank m-dimensional integer lattice Λ ⊂ Zm is a discrete additive subgroup whose linear span
is Rm. The basis of Λ is a linearly independent set of vectors whose linear combinations are exactly
Λ. Every integer lattice is generated as the Z-linear combination of linearly independent vectors
B = {b1, ..., bm} ⊂ Zm. For a matrix A ∈ Zn×mq , we define the “q-ary” integer lattices:

Λ⊥q = {e ∈ Zm|Ae = 0 mod q}, Λu
q = {e ∈ Zm|Ae = u mod q}

It is obvious that Λu
q is a coset of Λ⊥q .

Let Λ be a discrete subset of Zm. For any vector c ∈ Rm, and any positive parameter σ ∈ R,
let ρσ,c(x) = exp(−π||x − c||2/σ2) be the Gaussian function on Rm with center c and parameter
σ. Next, we let ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) be the discrete integral of ρσ,x over Λ, and let DΛ,σ,c(y) :=

ρσ,c(y)
ρσ,c(Λ) . We abbreviate this as DΛ,σ when c = 0. We note that DZm,σ is

√
mσ-bounded.

Let Sm denote the set of vectors in Rm whose length is 1. The norm of a matrix R ∈ Rm×m
is defined to be supx∈Sm ||Rx||. The LWE problem was introduced by Regev [Reg05], who showed
that solving it on average is as hard as (quantumly) solving several standard lattice problems in
the worst case.

Definition 2.5 (LWE). For an integer q = q(n) ≥ 2, and an error distribution χ = χ(n) over
Zq, the Learning With Errors problem LWEn,m,q,χ is to distinguish between the following pairs of
distributions (e.g. as given by a sampling oracle O ∈ {Os,O$}):

{A, sTA + xT} and {A,u}

where A
$← Zn×mq , s

$← Znq , u
$← Zmq , and x← χm.
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Gadget matrix. The gadget matrix described below is proposed in [MP12, AP14].

Definition 2.6. Let m = n · dlog qe, and define the gadget matrix G = g2 ⊗ In ∈ Zn×mq , where the

vector g2 = (1, 2, 4, ..., 2blog qc) ∈ Zdlog qe
q . We will also refer to this gadget matrix as “powers-of-two”

matrix. We define the inverse function G−1 : Zn×mq → {0, 1}m×m which expands each entry a ∈ Zq
of the input matrix into a column of size dlog qe consisting of the bits of binary representations.
We have the property that for any matrix A ∈ Zn×mq , it holds that G ·G−1(A) = A.

Sampling Algorithms. We will use the following algorithms to sample short vectors from spec-
ified lattices.

Lemma 2.3 ([GPV08, AP10]). Let q, n,m be positive integers with q ≥ 2 and sufficiently large
m = Ω(n log q). There exists a ppt algorithm TrapGen(q, n,m) that with overwhelming probability
outputs a pair (A ∈ Zn×mq ,TA ∈ Zm×m) such that the distribution of A is statistically close to

uniform distribution over Zn×mq and TA is a basis for Λ⊥q (A) satisfying

||TA|| ≤ O(n log q) and ||T̃A|| ≤ O(
√
n log q)

except with negl(n) probability.

Lemma 2.4 ([GPV08, CHKP10, ABB10]). Let q > 2,m > n. There are three sampling algorithms
as follows:

• There is a ppt algorithm SamplePre(A,TA,u, s), that takes as input: (1) a rank-n matrix
A ∈ Zn×mq , (2) a “short” basis TA for lattice Λ⊥q (A), a vector u ∈ Znq , (3) a Gaussian

parameter s > ||T̃A|| · ω(
√

log(m)); then outputs a vector r ∈ Zm+m1 distributed statistically
close to DΛu

q (A),s.

• There is a ppt algorithm SampleLeft(A,B,TA,u, s), that takes as input: (1) a rank-n matrix
A ∈ Zn×mq , and any matrix B ∈ Zn×m1

q , (2) a “short” basis TA for lattice Λ⊥q (A), a vector

u ∈ Znq , (3) a Gaussian parameter s > ||T̃A|| · ω(
√

log(m+m1)); then outputs a vector
r ∈ Zm+m1 distributed statistically close to DΛu

q (F),s where F := (A|B).

• There is a ppt algorithm SampleRight(A,B,R,TB,u, s), that takes as input: (1) a matrix
A ∈ Zn×mq , and a rank-n matrix B ∈ Zn×mq , a matrix R ∈ Zm×mq , where sR := ||R|| =

supx:||x||=1 ||Rx||, (2) a “short” basis TB for lattice Λ⊥q (B), a vector u ∈ Znq , (3) a Gaussian

parameter s > ||T̃B|| · sR · ω(
√

logm); then outputs a vector r ∈ Z2m distributed statistically
close to DΛu

q (F),s where F := (A|AR + B).

Based on the above sampling algorithms, we have the following lemma:

Lemma 2.5 ([GVW15c]). Given integers n ≥ 1, q ≥ 2 there exists some m∗ = m∗(n, q) =

O(n log q), β = β(n, q) = O(n
√

log q) and s > ||T̃A|| · ω(
√

log(m)) such that for all m ≥ m∗

and all k, we have

A
s
≈ A′, (A,TA,U,V)

c
≈ (A,TA,U

′,V′)

where (A,TA) ← TrapGen(q, n,m),A′
$← Zn×mq and U ← DZm×k ,V = A · U, V′

$← Zn×kq and
U′ ← SamplePre(A,TA,V

′, s).
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2.4 Homomorphic Evaluation Algorithms

In this part, we recall three homomorphic evaluation algorithms (PubEval,TrapEval,CtEval). The
following definition about homomorphic evaluation respective to some circuits is implicitly used in
various constructions, such as attribute-based encryption [BGG+14, GV15] and predicate encryp-
tion [GVW15b].

Definition 2.7 (δ-expanding evaluation). The deterministic algorithms (PubEval,
TrapEval,CtEval) are δ-expanding with function (circuit with u inputs) f : X d → Y if they are
efficient and satisfy the following properties:

• PubEval({Di ∈ Zn×mq }i∈[d], f): On input matrices {Di}i∈[d] and a function f ∈ F , the public
evaluation algorithm outputs Df ∈ Zn×mq as the result.

• TrapEval(x ∈ X d,A ∈ Zn×mq , {Ri}i∈[d], f): the trapdoor evaluation algorithm outputs Rf ,
such that

PubEval({ARi + xiG}i∈[d], f) = ARf + f(x)G

Furthermore, we have ||Rf || ≤ δ ·maxi∈[d] ||Ri||.

• CtEval({ci}di=1,x, f): On input vectors {ci}di=1 ∈ Zmq , an attribute x and function f , the
ciphertext evaluation algorithm outputs cf(x) ∈ Zmq , such that

CtEval({sT(Di + xiG) + ei}i∈[d],x, f) = sT(Df + f(x)G) + e′

where x = (x1, ..., xd) and Df = PubEval({Di ∈ Zn×mq }i∈[d], f). Furthermore, we require
||e′|| ≤ δ ·maxi∈[d] ||ei||.

The definition can be extended to δ-expanding with a family of functions F . I.e., (PubEval,TrapEval)
are δ-expanding with F if and only if for all f ∈ F , the algorithms are δ-expanding with f .

3 Controlled Homomorphic Recoding Scheme

We propose a controlled homomorphic recoding scheme scheme consisting of probabilistic polynomial-
time computable algorithms CHR = (Setup,Enc,KeyEval,CtEval,ReEncKG,ReEnc,EqTest). Denote
by S to be the space of secret messages encrypted in the scheme. We first describe the basic
algorithms.

• Setup, CHR.Setup(1λ): On input security parameter λ, it outputs a public key pk and secret
key sk.

• Encoding procedure, CHR.Enc(pk, y, s): On input public key pk, public attribute y and
secret message s from space S, it outputs the ciphertext ct (containing attribute y).

Homomorphic Evaluation algorithms: We describe the homomorphic evaluation algorithms below.
The evaluation algorithm allows for homomorphically computing on the public keys and the at-
tribute messages.

• Homomorphic key evaluation, CHR.KeyEval({pki}ni=1, C): On input public keys {pki}ni=1

and circuit C, it homomorphically evaluates C with respect to {pki}i∈[n] to obtain the resulting
public key pkC .
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• Ciphertext evaluation, CHR.CtEval({cti}ni=1, {yi}ni=1, C): On input ciphertexts {cti}i∈[n]

under the public keys {pki}i∈[n], circuit C, it outputs the resulting ciphertext ct∗.

Looking ahead, in the correctness definition, we require that all the ciphertexts ct1, . . . , ctn
are encoded using same secret message s.

Controlled Recoding algorithms: We describe the controlled recoding algorithms below. The recod-
ing algorithm allows for translating ciphertexts which encode messages {yi}i∈[n] generated using
public keys {pki}i∈[n] into a ciphertext of C(y1, . . . , yn) under the target public key pk∗. This
translation is performed using a special recoding key rk.

• Recoding key generation, CHR.ReEncKG (pk1, . . . , pkn, ski, pk
∗, f): On input set of public

keys {pkj}j∈[n], secret key ski for the i-th public key, target public key pk∗, control function
f , it outputs the recoding key rk.

• Ciphertext recoding procedure, CHR.ReEnc
(
rk, {(pki, cti)}i∈[n]

)
6 : On input recoding key

rk, ciphertexts ct1, . . . , ctn computed under public keys pk1, . . . , pkn, it outputs the recoded
ciphertext ct∗.

Auxiliary algorithm: Equality Test. Finally, we describe an equality test algorithm. This determines
if two ciphertexts corresponds to encryptions of the same attribute message and secret message.

• Equality test, CHR.EqTest(pk, ct1, ct2): On input public key pk, two ciphertexts ct1, ct2, it
outputs Equal if both ct1 and ct2 encrypt the same attribute using the same secret message
and under the same public key pk. Otherwise, it outputs NotEqual.

Remark 3.1. Looking ahead, in the construction of ABE for RAMs from CHR, we sample an
anchor public key and secret key pair (pk0, sk0) and this pair is used in the generation of all the
recoding keys.

We describe the properties associated with a controlled homomorphic recoding scheme.

3.1 Correctness

We first begin with the correctness property. We describe some auxiliary algorithms that will be
useful to describe the correctness and security properties.

Derivation of Recoding Keys, DerivReKey
(
{pki}i∈[`], ski∗ , {Ci}i∈[L], pk

∗, f
)
: It takes as input

public keys {pki}i∈[`], secret key ski∗ for some i∗ ∈ [`], circuits {Ci}i∈[L], target public key pk∗ and
controlled function f , it does the following:

1. Evaluate public key, pkCi ← CHR.KeyEval(pk1, . . . , pk`, Ci), for i ∈ [L].

2. Obtain rk by running CHR.ReEncKG({pki}i∈[k], {pkCi}i∈[L], ski∗ , pk
∗, f), where k ≤ `. That

is, rk recodes ciphertexts encoded under the public keys {pki}i∈[k] and {pkCi}i∈[L].

Derivation of Recoded Ciphertexts, DerivReEnc
(
rk, {(pki, cti)}i∈[`], {Ci}i∈[L]

)
: It takes as

input recoding key rk, public keys {pki}i∈[`], original ciphertexts {cti}i∈[`], circuits {Ci}i∈[L], it
does the following:

6For ease of notation, we omit the public keys in the input to algorithm CHR.ReEnc when the context is clear.
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1. Evaluate public key, pkCi ← CHR.KeyEval(pk1, . . . , pk`, Ci), for i ∈ [L].

2. Evaluate ciphertexts ctCi ← CHR.CtEval(ct1, . . . , ct`, Ci) for i ∈ [L].

3. Compute the recoding algorithm, CHR.ReEnc(rk, {(pki, cti)}i∈[k], {(pkCi , ctCi)}i∈[L]), where
k ≤ `, to obtain the recoded ciphertext ct∗. Then output ct∗.

Put simply, the recoding key rk recodes ciphertexts computed with respect to the public keys
{pki}i∈[k] and {pkCi}i∈[L] into a ciphertext encoded with respect to the public key pk∗.

We explain the correctness property below. It incorporates the correctness of both the homo-
morphic and the recoding phases.

Definition 3.1 (CHR Correctness). Consider a message y ∈ {0, 1}`, secret message s and cipher-
texts ct1, . . . , ct`, circuits C1, . . . , CL and a function f . Consider the following process:

1. Execute CHR.Setup(1λ), ` number of times to obtain ` public/secret key pairs {(pki, ski)}i∈[`].

Also, compute target public key (pk∗, sk∗)← CHR.Setup(1λ).

2. Compute DerivReKey({pki}i∈[`], ski∗ , {Ci}i∈[L], pk
∗, f) to obtain the recoding key rk, for some

i∗ ∈ [`].

3. Compute DerivReEnc(rk, {(pki, cti)}i∈[`], {Ci}i∈[L]) to obtain ciphertext ct∗.

4. Finally, compute the ciphertext ct∗fresh ← CHR.Enc(pk∗, f(C1(y), . . . , CL(y)), s).

Suppose it holds that CHR.EqTest(cti,Enc(pki, yi, s)) = Equal with probability 1−negl(λ), where yi is
the i-th bit of y and s is uniformly random picked. Then it should hold that CHR.EqTest(ct∗, ct∗fresh) =
Equal with probability 1− negl(λ).

3.2 Security Definitions

The security definitions of controlled homomorphic recoding scheme Π consists of four parts: in-
distinguishability of setup, indistinguishability of simulated keys, indistinguishability of recoding
keys and pseudorandomness of ciphertexts. We describe them in detail below.

3.2.1 Indistinguishability of Setup

This property intuitively states that the distribution of public keys produced by real setup is
statistically close to that produced by simulated setup. We define the following simulated setup
algorithm:

Sim.CHRSetup(1λ, z): It takes as input security parameter λ, input z to be programmed and it
outputs the programmed simulated public key Sim.pk and associated trapdoor τ .

Definition 3.2 (Indistinguishability of Setup). A controlled homomorphic recoding scheme Π

is said to satisfy indistinguishability of setup if {pk}
s
≈ {Sim.pk} holds, where (pk, sk) ←

CHR.Setup(1λ) and (Sim.pk, τ)← Sim.CHRSetup(1λ, z) for some z ∈ Z.
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3.2.2 Indistinguishability of Simulated Keys

We will first define a simulated key generation algorithm.

Sim.CHRkey

(
pk, {Sim.pki, τi}i∈[`], {Cij}i∈[L],j∈[K], {fj}j∈[K]

)
: On input public keys pk, {Sim.pki}i∈[`]

with associated trapdoors {τi}i∈[`], circuits {Cij}i∈[L],j∈[K], functions {fj}j∈[K], it outputs
simulated recoding keys {Sim.rki}i∈[K] and simulated target public keys {Sim.pk∗i }i∈[K].

We now define this property formally. This property states the output distribution of the following
two procedures are statistically close:

• Simulating the original public keys (except one of the public keys pk). Generate the recoding
keys and target public key honestly, with the help of sk.

• Simulate the original public keys. Execute Sim.CHRkey to obtain the simulated recoding keys
and the target public keys.

Definition 3.3 (Indistinguishability of Simulated Keys). A controlled homomorphic recoding scheme
Π satisfies indistinguishability of simulated keys property with respect to a distribution Eaux
if the following holds: for any collection of circuits {Cij}i∈[L],j∈[K], control functions {fj}j∈[K],

{(pk∗j , rkj)j∈[K]}
s
≈ {(Sim.pk∗j ,Sim.rkj)j∈[K]},

where:

1. For j ∈ [K], compute the setup pk∗j ← CHR.Setup(1λ). Then compute normal setup algorithm

(pk, sk)← CHR.Setup(1λ). Next, for j ∈ [`], compute (Sim.pkj , τj)← Eaux(1λ, j).

2. For j ∈ [K], execute rkj ← DerivReKey(pk, {Sim.pki}i∈[`], sk, {Cij}i∈[L], pk
∗
j , fj).

3. Compute Sim.CHRkey(pk, {Sim.pkj , τj}j∈[`], {Cij}i∈[L],j∈[K], {fj}j∈[K]) to obtain the simulated
recoding keys {Sim.rkj}j∈[K] and simulated public keys {Sim.pk∗j}j∈[K] associated with trap-
doors {τ∗j }j∈[K].

We refer the reader to the technical overview for a brief explanation as to why Eaux is necessary in
the above definition.

3.2.3 Indistinguishability of Recoding Keys

This property intuitively says that it is hard to distinguish honestly generated recoding keys from
simulated recoding keys. To define this formally, we first describe a simulated recoding key gener-
ation algorithm as follows:

Sim.CHRrk(pk, {Sim.pki, τi}i∈[`], {Ci}i∈[L], pk
∗,P, f, aux): On input public key pk, simulated public

keys {Sim.pki}i∈[`] with associated trapdoors {τi}i∈[`], circuits {Ci}i∈[L], target public key
pk∗, predicate P, controlled function f and auxiliary information aux, it outputs a simulated
recoding key rksim only if the output of P(f, aux) = 1. Otherwise, it outputs ⊥.

Remark 3.2. Looking ahead, in the construction of ABE for RAMs, P(f, aux) tests if the compu-
tation has terminated and if so, its output depends on the result of the computation. For instance,
P(f, aux) 6= 1 if the computation has terminated and it outputs 0 (meaning that the message can
be decrypted in this case). And thus, we should precisely be able to simulate in the scenario where
the output of the computation is not 0 or if the computation has not terminated.
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Definition 3.4 (Indistinguishability of recoding Keys). A controlled homomorphic recoding scheme
Π satisfies indistinguishability of recoding keys property with respect to a distribution Eaux and

predicate P, if {rksim}
s
≈ {rkreal}, where circuits C1, . . . , CL, function f such that P(f, aux) = 1,

and we compute the distribution as:

• For i ∈ [`], compute the simulated setup (Sim.pki, τi) ← Eaux(1λ, i). Compute the setup
algorithm CHR.Setup(1λ) to obtain the public key-secret key pairs (pk, sk) and (pk∗, sk∗).

• Compute DerivReKey(pk, {Sim.pki}i∈[`], sk, {Ci}i∈L, pk∗, f) to obtain the recoding key rkreal.

• Compute Sim.CHRrk(pk, {Sim.pki, τi}i∈[`], {Ci}i∈[L], pk
∗,P, f, aux) to obtain the recoding key

rksim.

3.2.4 Pseudorandomness of Ciphertexts

Lastly, the pseudorandomness of ciphertexts requires that the distribution of ciphertexts is compu-
tationally close to the uniformly distribution over ciphertext space. We define the property formally
below.

Definition 3.5 (Pseudorandomness of Ciphertexts). A controlled homomorphic recoding scheme
Π is said to satisfy pseudorandomness of ciphertexts property if for any message y ∈ Z,
it is computationally hard to distinguish {Enc(pk, y, s)} from uniformly random distribution over

ciphertext space, where (pk, sk)← Setup(1λ), s
$←− S.

4 Instantiation of CHR from Lattices

In this part, we show how to instantiate controlled homomorphic recoding scheme from lattices,
particularly the LWE assumption (c.f. Definition 2.5). Then we prove the correctness of our
instantiation and set the parameters in the following subsection. We describe the algorithms CHR =
(Setup,Enc,KeyEval,CtEval,ReEncKG,ReEnc,EqTest) below: first, we start by describing the setup
and the encoding algorithms. Then we describe the homomorphism phase, followed by equality
test. We postpone the description of the recoding phase to the end. Our instantiation Π is as
follows:

Basic algorithms: We describe setup and encoding algorithms below.

• CHR.Setup(1λ): On input the security parameter λ, the setup algorithm generates a matrix
A ∈ Zn×mq along with its trapdoor TA using

(A,TA)← TrapGen(q, n,m)

Output pk = A and sk = TA.

• CHR.Enc(pk, y, s): On input a public key pk = A ∈ Zn×mq , an attribute bit y ∈ {0, 1}
and a secret vector s ∈ Znq , this encoding procedure outputs the ciphertext ct = (c =

sT(A + yG) + eT, y), where e← DZm,σ.
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Homomorphism Phase: We describe the key evaluation and ciphertext homomorphism phase
below.

• CHR.KeyEval(pk1, ..., pk`, C): On input {pki = Ai}`i=1 and a circuit C, the algorithm outputs
pkC = PubEval({Ai}i∈[`], C).

• CHR.CtEval(ct1, ..., ct`, C): On input ciphertexts {cti = (ci, yi)}i∈[`] encrypting {yi}i∈[`] under
public key {pki}i∈[`] respectively and a circuit C, the algorithm outputs ct = CtEval({ci}i∈[`], {yi}i∈[`],
C).

Equality Test: We describe the equality test below.

• CHR.EqTest(pk, ct1, ct2): On input pk = A and ct1, ct2 encrypting message under public key
pk, the algorithm outputs Equal if Round(ct1 − ct2) = 0, and NotEqual otherwise, where
function Round(·) is defined as

Round(x) =

{
0, if |x| < q/4

1, otherwise

The control functions we support for generating recoding keys are

{fij(i′, j′, b)|i, i′ ∈ [N ], j, j ∈ [T ], b ∈ {0, 1}}, {fi(i′, b)|i, i′ ∈ [N ]}, {gi(x)|i ∈ [N ]}, h(·)

with descriptions as

fij(i
′, j′, b) =

{
b, if i = i′ ∧ j = j′

⊥, otherwise
, fi(i

′, b) =

{
b, if i = i′

⊥, otherwise
(4)

gi(x) =

{
i, if C(x) = i− 1

⊥, otherwise
, h(x) =

{
1, if x = 0

⊥, otherwise
(5)

where C is a gadget circuit defined as C(x) =
∑L

i=1 xi2
i, and x = (x1, . . . , xL). Our recoding

algorithm describe below also support the identity function, Ind(x) = x. We use notation F to
denote the set of control functions supported by our lattice-based instantiation, i.e.

F = {Ind, h, {gi}, {fi}, {fij}} (6)

Remark 4.1. Jumping ahead, the controlled functions defined above are used in different scenarios
in the ABE scheme, particularly in the key generation algorithm. We use the following table to
illustrate their relations.

Recoding Phase. We describe the recoding phase next. The details of algorithms (ReEncKG,ReEnc)
are as follows. We abuse the notation of algorithm ReEncKG and ReEnc by allowing they taking
into several different forms of input and executing differently with respect to the inputs.

• CHR.ReEncKG (Inp): On input Inp, consider the following two cases:
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Functions Usage

Ind recode current state (reading address) to next step

fij recode value of current reading address to next step

fi recode writing value to current writing address

gi recode (i− 1)-th time step to i-th time step

h recode current step to final step if the program terminates at this step

Table 2: Usage of Controlled Functions in ABE Setting

– If Inp is of the form (pk0, pk1, sk0, pk
∗, Ind): Here the controlled function ind denotes the

identity function, i.e. ind(x) = x for any x. The public keys pk0, pk1, pk
∗, secret key sk0 and

target public public keys are parsed as follows,

pk0 = A0, pk1 = A1, sk0 = TA0 , pk∗ = A∗

the recoding key generation algorithm computes

R← SamplePre(A0,TA0 ,A
∗ −A1, σ)

such that

[A0|A1] ·
[

R
Im

]
= A∗

Then output rk = [R|Im].

– If Inp is of the form (pk0, pk1, sk0, pk
∗, h): The public keys pk0, pk1, secret key sk0, target

public key pk∗, controlled function h (c.f. Equation (5)) are parsed as follows,

pk0 = A0, {pki = Ai}, sk0 = TA0 , pk∗ = A∗

The recoding key generation algorithm computes

(R0,R1)← SampleLeft(A0,A1,TA0 ,A
∗, σ)

such that

[A0|A1] ·
[
R0

R1

]
= A∗

Then output rk = (R0,R1).

– if Inp is of the form (pk0, {pki}Li=1, sk0, pk
∗, gi): The public keys pk0, {pki}Li=1, secret key sk0,

target public key pk∗, controlled function gi (c.f. Equation (5)) are parsed as follows,

pk0 = A0, {pki = Ai}, sk0 = TA0 , pk∗ = A∗

the recoding key generation algorithm first computes AC = CHR.KeyEval(pk1, ...,
pkL, C), then computes

(R0,R1)← SampleLeft(A0,AC + (i− 1)G,TA0 ,A
∗ + iG, σ)

such that

[A0|AC + (i− 1)G] ·
[
R0

R1

]
= A∗ + iG

Then output rk = (R0,R1).
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– if Inp is of the form (pk0, pk1, pk2, sk0, pk
∗, fi): The public keys pk0, pk1, pk2, secret key sk0,

target public key pk∗, function fi (c.f. Equation (4)) are parsed as follows,

pk0 = A0, pk1 = A1, pk2 = A2, sk0 = TA0 , pk∗ = A∗

the recoding key generation algorithm first samples R1 ← DZm×m,σ and then computes

R0 ← SampleLeft(A0,TA0 ,A
∗ −A2 − (A1 + iG)R1, σ)

such that

[A0|A1 + iG|A2] ·

R0

R1

Im

 = A∗

Then output rki = [R0|R1|Im].

– If Inp is of the form (pk0, pk1,
pk2, pk3, sk0, pk

∗, fij): The public keys pk0, pk1, pk2, pk3, secret key sk0, target public key pk∗,
function fij (c.f. Equation (4)) are parsed as follows,

pk0 = A0, pk1 = A1, pk2 = A2, pk3 = A3, sk0 = TA0 , pk∗ = A∗

the recoding key generation algorithm first samples R2 ← DZm×m,σ and then computes

[R0|R1]← SampleLeft(A0,A + iG,TA0 ,A
∗ −A3 − (A2 + jG)R2, σ)

such that

[A0|A1 + iG|A2 + jG|A3] ·


R0

R1

R2

Im

 = A∗

Then output rkij = [R0|R1|R2|Im].

• CHR.ReEnc(Inp): On input Inp, consider the following two cases:

– If Inp is of the form (rk, pk0, ct0, pk1, ct1): The recoding key rk, pairs (pk0, ct0) and (pk1, ct1)
are parsed as follows,

rk = [R|Im], (pk0 = A0, ct0 = (c0, 0)), (pk1 = A1, ct1 = (c1, y1))

the recoding algorithm computes

c2 = (c0, c1) ·
[

R
Im

]
Output re-encrypted ciphertext (c2, y1).

– If Inp is of the form (rk, pk0, ct0, pk1, ct1): The recoding key rk, pairs (pk0, ct0) and (pk1, ct1)
are parsed as follows,

rk = [R0|R1], (pk0 = A0, ct0 = (c0, 0)), (pk1 = A1, ct1 = (c1, 0))

the recoding algorithm computes

c∗ = (c0, c1) ·
[
R0

R1

]
Output re-encrypted ciphertext (c∗, 0).
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– If Inp is of the form (rk, pk0, ct0, {pkj , ctj}Lj=1): The recoding key rk, pairs (pk0, ct0) and

{pkj , ctj}Lj=1 are parsed as follows,

rk = [R0|R1], (pk0 = A0, ct0 = (c0, 0)), {pkj = Aj , ctj = (cj , bj)}Lj=1

the recoding algorithm first computes c = CHR.CtEval(c1, . . . , ctL, C), and then calculates

c′ = (c0, c) ·
[
R0

R1

]
For j ∈ [L], compute c′j = CHR.CtEval(c′, Cj), where circuit C′j converts integer i to its j-th

bit. Output re-encrypted message {c′j , b′j}Lj=1.

– If Inp is of the form (rk, pk0, ct0, pk1, ct1, pk2, ct2): The recoding key rk and public key/ciphertext
pairs (pki, cti) for i ∈ {0, 1, 2} are parsed as follows,

rk = [R0|R1|Im], (pk0 = A0,ct0 = (c0, 0)), (pk1 = A1, ct1 = (c1, i)),

(pk2 = A3, ct2 = (c2, y))

the recoding algorithm computes

c∗ = (c0, c1, c2) ·

R0

R1

Im


Output re-encrypted message (c∗, y).

– If Inp is of the form (rk, pk0, ct0, pk1, ct1, pk2, ct2, pk3, ct3): The recoding key rk and public
key/ciphertext pairs (pki, cti) for i ∈ {0, 1, 2, 3} are parsed as follows,

rk = [R0|R1|R2], (pk0 = A0, ct0 = (c0, 0)), (pk1 = A1, ct1 = (c1, i)),

(pk2 = A2, ct2 = (c2, j)), (pk3 = A3, ct3 = (c3, y))

the recoding algorithm computes

c∗ = (c0, c1, c2, c3) ·


R0

R1

R2

Im


Output re-encrypted message (c∗, y).

4.1 Correctness and Parameters Setting

Next, we show the correctness of the instantiation Π from lattices.

Lemma 4.2. The above instantiation Π of CHR for supported controlled function F as defined in
Equation (6) from lattices is correct (c.f. Definition 3.1) given the parameters setting below.

Proof. For i ∈ {0} ∪ [`], let y0 = 0,y = (y1, ..., y`) ∈ {0, 1}` and (pki = Ai, ski = TAi) ←
CHR.Setup(1λ). For i ∈ {0} ∪ [`], encrypt the message as

cti = (ci, yi)← CHR.Enc(pk, yi, s)

where s
$← Znq and ci = sT(Ai + yiG) + eTi and ei ← DZm,σ. Then compute auxiliary algorithms

(DerivReKey,DerivReEnc) as
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• DerivReKey(Inp): On input Inp, consider the following cases:

– if Inp is of the form (pk0, {pki}i∈[`], sk0, C, pk
∗, Ind): first parse

{pki = Ai}i∈{0}∪[`], sk0 = TA0 , pk∗ = A∗

the algorithm evaluates pkC ← CHR.KeyEval({pki}i∈[`], C) and then computes rk by running
CHR.ReEncKG (pk0, pkC , pk

∗, sk0, Ind).

– if Inp is of the form (pk0, {pki}i∈[`], sk0, C, pk
∗, h): first parse

{pki = Ai}i∈{0}∪[`], sk0 = TA0 , pk∗ = A∗

the algorithm evaluates pkC ← CHR.KeyEval({pki}i∈[`], C) and then computes rk by running
CHR.ReEncKG (pk0, pkC , pk

∗, sk0, h).

– If Inp is of the form (pk0, {pki}Li=1, sk0, pk
∗, gi), then compute

rk← CHR.ReEncKG
(
pk0, {pki}Li=1, sk0, pk

∗, gi
)

– if Inp is of the form
(
pk0, {pki}i∈[`], pk

′, sk0, C, pk
∗, fj

)
: On input pki = Ai, for i ∈ {0} ∪ [`],

pk′ = A′, sk0 = TA0 , circuits C, a target public key pk∗ = A∗ and a controlled function fj as
defined in Equation (4), the algorithm first computes pkC ← CHR.KeyEval({pki}i∈[`], C), and
then runs

rk← CHR.ReEncKG
(
pk0, pkC , pk

′, sk0, pk
∗, fj

)
– if Inp is of the form

(
pk0, {pki}i∈[`], pk

′, sk0, C1, C2, pk
∗, fij

)
: On input pki = Ai, for i ∈

{0} ∪ [`], pk′ = A′, sk0 = TA0 , circuits {Ci}i∈[2], a target public key pk∗ = A∗ and a
controlled function fij as defined in Equation (4), the algorithm first computes pkCi ←
CHR.KeyEval({pki}i∈[`], Ci) for i ∈ [2] and then runs

rk← CHR.ReEncKG
(
pk0, pkC1

, pkC2
, pk′, sk0, pk

∗, fij
)

• DerivReEnc(Inp): On input Inp, consider the following cases:

– If rk← DerivReKey
(
pk0, {pki}i∈[`], sk0, C, pk

∗, Ind
)
: First evaluate the public key/ciphertext

pkC = AC = CHR.KeyEval({pki}i∈[`], C)

cC(y) = sT(AC + C(y)G) + eT = CHR.CtEval({cti}`i=1, C)

Next, compute the recoding

c∗ = CHR.ReEnc(rk, pk0, pkC , ct0, ctC(y))

= (sT[A0|AC + C(y)G] + (eT0 , e
T))

[
R
Im

]
= sT(A∗ + C(y)G) + (eT0 R + eT)

Output the recoded ciphertext ct∗ = (c∗, C(y)).
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– If rk← DerivReKey
(
pk0, {pki}i∈[`], sk0, C, pk

∗, h
)
: First evaluate the public key/ciphertext

pkC = AC = CHR.KeyEval({pki}i∈[`], C)

cC(y) = sT(AC + 0G) + eT = CHR.CtEval({cti}`i=1, C)

Next, compute the recoding

c∗ = CHR.ReEnc(rk, pk0, pkC , ct0, ctC(y))

= (sT[A0|AC + 0G] + (eT0 , e
T))

[
R0

R!

]
= sT(A∗ + 0G) + (eT0 R + eT)

Output the recoded ciphertext ct∗ = (c∗, 0).

– If rk← CHR.ReEncKG
(
pk0, {pki}Li=1, sk0, pk

∗, gi
)
: First evaluate the public key/ciphertext

pkC = AC = CHR.KeyEval({pki}i∈[L], C)

cCx) = sT(AC + (i− 1)G) + e = CHR.CtEval(ct1, ..., ctL, C)

Then, compute the recoding

c∗ = CHR.ReEnc(rk, pk0, pkC , ct0, ctC(x))

= (sT[A0|AC + (i− 1)G] + (eT0 , e
T))

[
R0

R1

]
= sT(A∗ + iG) + (eT0 R0 + eTR1)

Next, for j ∈ [L], compute c′j = CHR.CtEval(c′, Cj), where circuit C′j converts integer i to its

j-th bit. Output recoding {c′j , b′j}Lj=1, where {b′j}Lj=1 is the bit-representation of i.

– If rk← DerivReKey
(
pk0, pkC , pk

′, pk∗, sk0, fj
)
: First evaluate public key/ciphertext as

pkC = ACi ← CHR.KeyEval({pki}i∈[`], Ci)

cC(y) = sT(AC + C(y)G) + eT ← CtEval({cti}`i=1, C)

where C(y) = i. Let ct′ = (c′, b) = Enc(pk′, b, s), and c′ = sT(A′ + bG) + e
′T. Next, compute

c∗ = CHR.ReEnc(rk, pk0, ct0, {pkCi , ctCi(y)}i∈[2], pk
′, ct′)

= (sT[A0|AC1 + iG|AC2 + jG|A′ + bG] + (eT0 , e
T
1 , e

′T))

R0

R1

Im


= sT(A∗ + bG) + (eT0 R0 + eT1 R1 + e′T)

Output recoded ciphertext as ct∗ = (c∗, b).

– If rk ← DerivReKey
(
pk0, {pki}i∈[`], pk

′, sk0, C1, C2, pk
∗, fij

)
: For i ∈ [2], compute pkCi =

ACi ← CHR.KeyEval({pki}i∈[`], Ci). Then for i ∈ [2], evaluate ciphertexts as

cCi(y) = sT(AC + Ci(y)G) + eT1 ← CtEval({cti}`i=1, C)

28



where C1(y) = i and C2(y) = j. Let ct′ = (c′, b) = Enc(pk′, b, s), and c′ = sT(A′ + bG) + e
′T.

Next, compute

c∗ = CHR.ReEnc
(
rk, (pk0, ct0), {pkCi , ctCi(y)}i∈[2], (pk

′, ct′)
)

= (sT[A0|AC1 + iG|AC2 + jG|A′ + bG] + (eT0 , e
T
1 , e

T
2 , e

′T))


R0

R1

R2

Im


= sT(A∗ + bG) + (eT0 R0 + eT1 R1 + eT2 R2 + e′T)

Output recoded ciphertext as ct∗ = (c∗, b).

If we encrypt the message freshly under target public key, i.e. ct∗fresh = (c∗fresh, b) = Enc(pk∗, s, b),
the vector c∗fresh = sT(A∗ + bG) + eT, where e← DZm,σ. Thus, we have

bc∗ − c∗freshc = berrorc

where error can be various forms in different settings, and the in the most complex setting, error =
eT0 R0 + eT1 R1 + eT2 R2 + e′T − ẽT. By setting parameters appropriately in the following, we have
CHR.EqTest(ct∗, c̃t) = Equal.

Parameter Setting. We set the parameters in the instantiation as follows: For decryption (or
equal test) to work correctly, the modulus q should be slightly larger than the noise accumulated
in the ciphertext. If the circuit being evaluated has depth d, the noise in the ciphertexts grows in
the worst case by a factor of O(md). Hence, we need q be the order of Ω(Bmd), where B is the
maximum magnitude of noise added during encryption. The hardness of LWE assumption requires
that the ratio q/B is not too large. The LWE problem is believed to be hard even when q/B is 2n

ε

for some fixed 0 < ε < 1/2.
To support circuits of depth d(λ) for some polynomial d(·), we set n = Θ̃(d1/ε), modulus q = 2n

ε
,

dimension m = Θ(n log q), LWE noise bound B = O(n) and Gaussian parameter σ = O(
√
n log q).

4.2 Security Proof

In this part, we show that our instantiation Π of controlled homomorphic recoding scheme from
lattices satisfies the security definitions in Section 3.2, namely indistinguishability of setup, indis-
tinguishability of simulated keys, indistinguishability of recoding keys and pseudorandomness of
ciphertexts.

4.2.1 Indistinguishability of Setup

First, we describe the simulated setup algorithm Sim.CHRSetup(1λ, z) as follows:

Sim.CHRSetup(1λ, z): The simulated setup algorithm randomly chooses matrices A′ ← Zn×mq ,S←
{−1, 1}m×m, and outputs simulated public key Sim.pk = A = A′S− z ·G and trapdoor S.

We argue the statistical indistinguishability between the distribution of normally generated public
keys and simulated public keys in the following lemma.

Lemma 4.3. The instantiation Π of controlled homomorphic recoding scheme satisfies indistin-
guishability of setup (c.f. Definition 3.2).
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Proof. The difference between normal setup algorithm Setup(1λ) and simulated setup algorithm
Sim.CHRSetup(1λ, z) is that in Setup(1λ), the pk = A ∈ Zn×mq is generated by algorithm TrapGen(q, n,

m) and in Sim.CHRSetup(1λ, z), we compute Sim.pk = Ã = A′S − zG, where matrices A′
$←

Zn×mq ,S
$← {−1, 1}m×m. By property of algorithm TrapGen as stated in Lemma 2.3, the output

distribution of A is statistically close to uniform distribution. By Leftover Hash Lemma 2.5, the dis-

tribution of A′S is statistically close to uniform distribution given the facts that A′
$← Zn×mq ,S

$←
{−1, 1}m×m. Therefore, we have that the distribution {pk} is statistically close to {Sim.pk}.

Generalization of Sim.GenCHRSetup: We can further generalize the simulated setup by augmenting
its input as Sim.CHRSetup(1λ, z, `; A), where z ∈ {0, 1}`, and A is used in a similar way as A′ in
algorithm Sim.CHRSetup(1λ, z).

Sim.GenCHRSetup(Inp): On input Inp, consider the following two cases:

• If Inp is of form (1λ, z), then run Sim.CHRSetup(1λ, z).

• If Inp is of form (1λ, z, `; A), then for i ∈ [`], choose Si
$← {−1, 1}m×m, and set Sim.pki =

Ai = ASi−ziG, where zi is i-th bit of vector z. Output {Sim.pki}i∈[`] and trapdoors {Si}`i=1.

Similarly, we can also show that the distribution of public keys generalized by Sim.GenCHRSetup(Inp)
is statistically close to the distribution of running normal setup algorithm ` times.

Corollary 4.4. The instantiation of controlled homomorphic recoding scheme satisfies indistin-
guishability of setup.

The proof of the above corollary is very similar to the proof of Lemma 4.3, thus we omit it here.

Remark 4.5. Looking ahead, the sequence of integers z to be programmed in the generalized case
corresponds to challenge database committed by the adversary in the ABE setting.

Corollary 4.6. The distribution of (regularly generated or simulated) public keys is indistinguish-
able from uniformly random distribution over space Zn×mq .

Proof. For regularly generated public keys, they are computed by algorithm TrapGen. By Lemma 2.5,
the distribution of regularly generated public keys is statistically close to random distribution. For
simulated public keys, they are computed as A′S − zG, where A′ is chosen from random, and S
is chosen from distribution DZn×m,σ. Again by Lemma 2.5, the distribution of simulated keys is
statistically close to random.

4.2.2 Indistinguishability of Simulated Keys

We first describe the simulated key generation algorithm Sim.CHRkey(pk, {Sim.pki, τi}i∈[`], {Ci}i∈[L], {yi}`i=1, f).

The circuits {Ci}i∈[L] are defined as Ci : {0, 1}` → {0, 1}. To be consistent with our instantiation
of controlled homomorphic recoding scheme where we allow algorithm DerivReKey to take into two
different forms of inputs (c.f. proof of Lemma 4.2). For simplicity, we only consider the case where
L = 0, 1, 2 and variant controlled function f , which is how we define algorithm DerivReKey as above.
This proof can be generalized to the case where L is any arbitrary integer.

Case. L = 0 and f = gi (c.f. Equation (5)). Sim.CHRkey(pk, {Sim.pki, τi}i∈[`],

{bi}`i=1, gi): First parse part of the input as pk = A, Sim.pki = Ai = ASi − biG, τi = Si, where
C({bi}`i=1) = i. Evaluate public key as AC = ASC = KeyEval({Sim.pki}i∈[`], C)
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• If i = 1, then sample matrices R0,R1 from DZm×m,σ and output Sim.rk = [R0|R1], and
(Sim.pk∗i , τ

∗
i ) = (KeyEval(A∗, Ci),TrapEval(R0 + SC , Ci)) for i ∈ [`], where A∗ = A(R0 +

SCR1).

• If i > 1, then generate (Sim.pk, τ∗) = (A∗,S∗) ← Sim.GenCHRSetup(1λ). Then sample
[R0|R1], using

[R0|R1]← SampleRight(A,G,SC ,TG,A
∗, σ)

output Sim.rk = [R0|R1], and (Sim.pk∗i , τ
∗
i ) = (KeyEval(A∗, Ci),KeyEval(S∗, Ci)), for i ∈ [`].

Case. L = 1 and f = Ind. Sim.CHRkey(pk, {Sim.pki, τi}i∈[`],y, C, Ind): First parse part of
the input as pk = A, Sim.pki = Ai = ASi − yiG and τ = Si. Evaluate public key as AC =
ASC−C(y)G = KeyEval({Sim.pki}i∈[`], C), and sample a random matrix R from DZm×m . Output
Sim.rk = [R|Im], Sim.pk = A(R + SC)− C(y)G and its trapdoor R + SC .

Case. L = 1 and f = fi (c.f. Equation (4)). Sim.CHRkey(pk, {Sim.pki, τi}i∈[`],
Sim.pk′,y, C, fi): First parse part of the input as pk = A,Sim.pki = Ai = ASi− yiG, τi = Si, and
Sim.pk′ = AS′ − bG. Evaluate public key as AC = ASC − C(y)G = KeyEval({Sim.pki}i∈[`], Ci).

• If C(y) = i, sample matrices R0,R1 from DZm×m,σ and output Sim.pk∗ = A(R0 + SCR1 +
S′)− bG, its trapdoor (R0 + SCR1 + S′), and Sim.rk = [R0|R1|Im].

• If C(y) 6= i, generate Sim.pk = A∗ = AS∗ ← Sim.CHRSetup(A). Then sample [R0|R1],
using

[R0|R1]← SampleRight(A,G,SC1 ,TG,A
∗ −A′, σ)

output Sim.pk = A∗, its trapdoor S∗, and Sim.rk = [R0|R1|Im].

Case. L = 2 and f = fjk (c.f. Equation (4)). Sim.CHRkey(pk, {Sim.pki}i∈[`],
Sim.pk′,y, b, C1, C2, fjk): First parse part of the input as pk = A,Sim.pki = Ai = ASi −
yiG, and Sim.pk′ = A′ = AS′ − bG. Evaluate public key as ACi = ASCi − Ci(y)G =
KeyEval({Sim.pki}i∈[`], Ci), for i = 1, 2.

• If C1(y) = j and C2(y) = k, sample matrices R0,R1,R2 from DZm×m,σ and output Sim.pk =
A(R0 + SC1R1 + SC2R2 + S′)− bG, its trapdoor (R0 + SC1R1 + SC2R2 + S′), and Sim.rk =
[R0|R1|R2|Im].

• If C1(y) = j and C2(y) 6= k (or the other case), generate Sim.pk = A∗ = AS∗ ←
Sim.CHRSetup(A). First sample a matrix R1 from DZm×m,σ, and then sample [R0|R2],
using

[R0|R2]← SampleRight(A,G,SC2 ,TG,A
∗ −ASC1R1, σ)

output Sim.pk = A∗, its trapdoor S∗, and Sim.rk = [R0|R1|R2|Im].

• If C1(y) 6= j and C2(y) 6= k, generate Sim.pk = A∗ = AS∗ ← Sim.CHRSetup(A). First
sample a matrix R1 from DZm×m,σ, and then sample [R0|R2], using

[R0|R2]← SampleRight(A,G,SC2 ,TG,A
∗ −AC1R1, σ)

output Sim.pk = A∗, its trapdoor S∗, and Sim.rk = [R0|R1|R2|Im].

The indistinguishability of simulated keys property is proved below:

Lemma 4.7. The instantiation Π of controlled homomorphic recoding scheme satisfies indistin-
guishability of simulated keys (c.f. Definition 3.3) with respect to Eaux, where Eaux is defined
as follows:
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• Case I: Eaux is the same as Sim.CHRSetup(1λ, z), where aux corresponds to value being pro-
grammed, z.

• Case II: Eaux is the same as Sim.CHRkey.

Proof. The difference between the normal key generation DerivReKey and simulated key generation
Sim.CHRkey are summarized as below:

• In algorithm DerivReKey, the target public key A∗ is given as random matrix over Zn×mq and
recoding keys using the secret key sk = TA of pk = A via algorithm SamplePre or SampleLeft.

• In algorithm Sim.CHRkey, the target public key is not given as input, but generated via variant
computing methods as listed above, and recoding keys are sampled from Gaussian distribution
DZm×m (via direct sampling or algorithm SampleRight).

By Leftover Hash Lemma 2.5, the distribution (A,A∗) is statistically close to the distribution
(A,AR0). And by the properties of algorithms SamplePre, SampleLeft and SampleRight as stated
in Lemma 2.4, their outputs are statistically close to discrete Gaussian distribution DZm×m,σ. This
statement holds simulated public keys from algorithm Eaux (the two cases defined above), where
the simulated public keys are computed from algorithms Sim.CHRkey or Sim.CHRSetup. Therefore,

we have that (Sim.pk∗, rk)
c
≈ (Sim.pk,Sim.rk), and thus we prove our instantiation of controlled

homomorphic recoding scheme satisfies indistinguishability of simulated keys.

Generalization of Sim.CHRkey: We note that we can generalize algorithm Sim.CHRkey(pk,
{Sim.pki}i∈[`], pk

′,y, C1, C2, fjk) to generate a sequence of simulated recoding keys {Sim.rkij}i∈[N ],j∈[L]

(for some integers N,L as the range of circuits C1, C2 respectively) and one target simulated key:

Sim.GenCHRkey(pk, {Sim.pki}i∈[`], pk
′,y, C1, C2, N, L): First Evaluate y1 = C1(y) and y2 = C(y).

Then compute (Sim.pk∗,Sim.rky1y2) ← Sim.CHRkey(pk, {Sim.pki}i∈[`], pk
′,y, C1, C2, fy1y2), where

Sim.pk∗ = A∗. Then for j ∈ [L], k ∈ [N ],

• If j = y1 and k 6= y2, sample Rjk1 from DZm×m,σ, then compute

[Rjk0|Rjk2]← SampleRight(A,G,SC2 ,TG,A
∗ −ASC1Rjk1, σ)

• If j 6= y1 and k = y2, sample Rjk2 from DZm×m,σ, then compute

[Rjk0|Rjk1]← SampleRight(A,G,SC1 ,TG,A
∗ −ASC2Rjk2, σ)

• If j 6= y1 and k 6= y2, sample Rjk1 from DZm×m,σ, then compute

[Rjk0|Rjk2]← SampleRight(A,G,SC2 ,TG,A
∗ − (ASC1 − (y1 − j)G)Rjk1, σ)

Output simulated recoding keys and target public key as {Sim.rkij}i∈[N ],j∈[L] and Sim.pk.

Corollary 4.8. The generalized instantiation of controlled homomorphic recoding scheme satisfies
indistinguishability of simulated keys (c.f. Definition 3.3) with respect to Eaux as defined in
Lemma 4.7.

The proof of indistinguishability of simulated keys from the generalized algorithm is very similar
to the proof of Lemma 4.7, thus we omit it here.

Remark 4.9. Looking ahead, the above generalization of the algorithm Sim.CHRkey will be used in
the ABE scheme to generate the recoding keys for translating the output of the step circuit in the
i-th step into the (i+ 1)-th step.
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4.2.3 Indistinguishability of Recoding Keys

We first describe the simulated recoding key generation algorithm Sim.CHRrk(pk, {Sim.pki}i∈[`], {Ci}i∈[L],y, pk
∗, f).

In the inputs, for i ∈ [`], the circuit Ci : {0, 1}` → {0, 1} and f is defined as

f : {0, 1}L → {0, 1}, f({xi}i∈[L]) =

{
0, if ∧Li=1 x̄i = 1

1, otherwise
(7)

Remark 4.10. Looking ahead, in the ABE scheme, the function f will be used to signal whether
the output of the computation is all zero. If the output is all zero (earlier than the upper time bound
T ), then f outputs 0.

Sim.CHRrk(pk, {Sim.pki, τi}i∈[`], {Ci}i∈[L],y, pk
∗, f): If f(C1(y), . . . , CL(y)) = 0, then output ⊥.

Otherwise, parse the input as

pk = A, {Sim.pki = Ai}i∈[`] ← Sim.CHRSetup(1λ,y, `; A), pk∗ = A∗

where Ai = ASi − yiG and its trapdoor τi = Si. First for i ∈ [L], evaluate public key as
ACi = ASCi − Ci(y) = KeyEval({Sim.pkj}j∈[`], Ci). Since f({Ci(y)}i∈[L]) = 1, then there exists
an index k ∈ [L], such that Ck(y) = 1. For i ∈ [L] − {k}, sample matrices Ri ← DZm×m,σ, and
sample [R0|Rk], using

[R0|Rk]← SampleRight(A,G,SCk ,TG,A
∗ −

∑
i∈[L]−{k}

ACiRi)

Output simulated recoding key as Sim.rksim = {R}i∈[L].

The indistinguishability of recoding keys property is proved using the properties of sampling algo-
rithms used in the (simulated) recoding keys generation process as follows:

Lemma 4.11. The instantiation Π of controlled homomorphic recoding scheme satisfies indistin-
guishability of recoding keys (c.f. Definition 3.4) with respect to Eaux, where Eauxis defined in
Lemma 4.7.

Proof. The only difference between generating normal recoding keys through DerivReKey and sim-
ulated recoding keys through Sim.CHRrk is

• The normal recoding keys are generated using algorithm SampleLeft with sk.

• The simulated recoding keys are generated using algorithm SampleRight.

By the property of algorithms SampleLeft, SampleRight as stated in Lemma 2.4, their outputs are
statistically close to discrete Gaussian distribution. In simulated recoding generation, either the
recoding keys are generated using SampleRight or directly sampled from discrete Gaussian dis-

tribution. Therefore, we have {rksim}
c
≈ {rkreal}, and thus show our instantiation of controlled

homomorphic recoding scheme satisfies indistinguishability of recoding keys.

Generalization of Sim.CHRrk: We can generalized the above Sim.CHRrk algorithm (used in the
ABE construction), by evaluating public keys {ACi} with respect to the gadget circuit C before
generating the simulated recoding keys. We define the algorithm formally as

Sim.GenCHRrk(Inp): On input Inp, consider the following two cases:
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• If Inp is of form (pk, {Sim.pki}i∈[`], {Ci}i∈[L],y, pk
∗, f), the run

Sim.CHRrk(pk, {Sim.pki}i∈[`], {Ci}i∈[L],y, pk
∗, f)

• If Inp is of form (pk, {Sim.pki}i∈[`], {Ci}i∈[L],y, pk
∗, f, C), then If f(C1(y), . . . ,

CL(y)) = 0, output ⊥. Otherwise, first for i ∈ [L], evaluate public key as ACi = ASCi −
Ci(y) = KeyEval({Sim.pkj}j∈[`], Ci). Then evaluate {ACi} with respect to circuit C to obtain
AC = ASC − zG, where z 6= 0 since f(C1(y), . . . , CL(y)) = 1. Sample [R0|R1], using

[R0|R1]← SampleRight(A,G,SC,TG,A
∗, σ)

Output simulated recoding key Sim.rksim = [R0|R1].

Similarly, we can argue that the recoding key rksim key produced by the generalized algorithm
Sim.GenCHRrk(Inp) satisfies indistinguishability of recoding keys as

Corollary 4.12. The generalized instantiation of controlled homomorphic recoding scheme satisfies
indistinguishability of recoding keys (c.f. Definition 3.4) with respect to Eaux, where Eaux is
defined in Lemma 4.7.

The proof of indistinguishability of simulated keys from the generalized algorithm is very similar
to the proof of Lemma 4.11, thus we omit it here.

4.2.4 Pseudorandomness of Ciphertexts

We show pseudorandomness of ciphertexts (under simulated public keys or regularly generated
public keys) based on the hardness of LWE assumption. We first describe the simulated encryption
algorithm Sim.CHRct:

Sim.CHRct(Sim.pk, τ, y, s): On input the simulated public key Sim.pk = AS−yG, the trapdoor S,
the attribute y and secret message s, the simulated encryption algorithm computes and outputs
the simulated ciphertext

Sim.ct = sT(AS− yG + yG) + eTS

where vector e← DZm,σ.

Lemma 4.13. Assuming the hardness of sub-exponential LWE assumption (c.f. Definition 2.5),
the instantiation Π of controlled homomorphic recoding scheme satisfies pseudorandomness of
ciphertexts (c.f. Definition 3.5).

Proof. For regularly generated public keys, the ciphertext is of the form c = sT(A − yG) + eT,
where matrix A is chosen randomly from Zn×mq , vector s is secret and chosen randomly from Znq
and e ← DZm,σ. By hardness of LWE assumption, we have sTA + eT is computationally close to
uniformly random distribution over Zmq . For simulated public keys, the ciphertext is of the form

c = (sTA+eT)R. By the LWE assumption, we have sTA+eT is computationally close to uniform
distribution over Zmq , and since R← DZm×m and by Leftover Hash Lemma, we have (sTA + eT)R
is computationally close to uniformly random distribution over Zmq .

Therefore, we prove that the instantiation satisfies the property of pseudorandomness of cipher-
texts.
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5 ABE for RAMs from CHR

In this section, we present the construction of ABE for the class of RAM programs P from controlled
homomorphic encoding scheme. Before we present our construction, we first define auxiliary circuits
that will be associated with the step circuit of the RAM program.

Auxiliary Circuits. We define auxiliary circuits (Cup, Cck) that will keep track of all the loca-
tions that have been written so far along with the most recent time step they were updated. These
circuits will be useful to prevent an adversary from using an “illegal” encoding to recode to the
next step. For instance, suppose the step circuit outputs the location 112 to be read in the next
step. If the 112-th location has been written multiple times then the adversarial evaluator can use
an ‘old’ encoding of the 112-th location (and hence, illegal) in the recoding step. We refer to this
issue as repeated writing issue in the technical overview.

Thus, we have (Cup, Cck) to keep track of the updates made. Moreover, the pair of circuits
(Cup, Cck) will be combined with the step circuit at the cost of increasing the size as a function of
the upper bound T . We note that if there is not update happens in step i, we still need to add
(0, 0) to the update list to ensure the length grows with step number i.

We define auxiliary circuits Cup and Cck as

Input: a list L, location i, time j.
Computation: Traverse the list L to check whether there is a pair (i, j′) where j′ < j.
If yes, replace the pair (i, j′) with (i, j) and add (0, 0) to the list. Otherwise, add (i, j)
to the list.

Figure 5: Definition of circuit Cup

Input: a list L, location i, time j.
Computation: Traverse the list L to check whether there is a pair (i, j). If yes, then
return j, otherwise return 0.

Figure 6: Definition of circuit Cck

We assume that, for every program P ∈ P, the associated step circuit C always takes as input the
first location of memory, and the initial state is all 1. This is without loss of generality since every
program P can be modified such that this property holds, with the overhead of an extra time step.
We list the RAM parameters that will be used in our construction in the following table:

Parameters Description Setting

N maximum database length poly(λ)

T maximum running time poly(λ)

τ state bit-length poly(λ)

θ address bit-length logN

η update list unit bit-length logN + log T

φ Cck circuit output bit-length log T

Table 3: ABE Parameters
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Every RAM program P ∈ P is parameterized by running time t and memory length N and
represented as a step-circuit C, which is

(sti, loc
w
i , b

w
i , loc

r
i)← C(sti−1, loc

r
i−1, b

r
i−1)

We incorporate the auxiliary circuits described above in the description of every program P ∈ P.
In more detail, we have a different step circuit for every step of the computation. The step-circuit
Cj in the j-th step, decomposed into binary representation can be written as follows, i.e.

Cj =
(
{Cst

i }τi=1, {Cw
i }θi=1, C

wb, {Cr
i}θi=1, {C

up
k }

(j+1)η
k=1 , {Cck

i }
φ
i=1

)
where Cst

i outputs the i-th bit of st for i ∈ [τ ], (Cw
i , C

r
i ) output the i-th bit of the write/read address

respectively for i ∈ [θ], and Cwb outputs the bit to be written. Since the list maintained by update
circuit Cup increases by one component for each step, so for j-th step the number of decomposed
outputs in Cup is (j + 1)η.

Construction. We construct attribute based encryption for RAMs from CHR scheme CHR =
(Setup,Enc,KeyEval,CtEval,ReEncKG,ReEnc,EqTest). In our construction below, we define a gad-
get circuit C as C(x1, ..., xθ) =

∑θ
i=1 xi2

i, where xi ∈ {0, 1} for i ∈ [θ]. In the execution of RAM
program, we assume that the initial state is all 1s, the satisfying state is all 0s, and the program
always reads the 1st location of database. As mentioned in Table 2, we use different controlled func-
tions in different ABE settings. We denote the ABE scheme to be ABE = (Setup,KeyGen,Enc,Dec).

Notational convention: As explained in the technical overview, we need a layer of public keys for
every step of the computation. The 0-th layer of public keys and the target public key (for the last
step of computation) is reused across different encryptions. The intermediate layers of public keys,
however, are freshly sampled from one execution of key generation to another.

We use the superscript in the notation of public keys to denote the type of the value being
encoded. The subscript denotes the index of the binary representation of the value being encoded.

Notations Encoding

Step[j].pksti i-th bit of state in j-th step

Step[j].pkrai i-th bit of to-read address for (j + 1)-th step

Step[j].pklti i-th bit of update list until j-th step

Step[j].pkdbi i-th bit of database in j-th step

Step[j].pk reading value in j-th step

Step[i].pkt i-th time step

pkout target public key

Table 4: ABE Construction Notations

We use the notation Step[j].hompk to correspond to the public key obtained by homomorphically
evaluating on j-th layer public keys. The superscripts and subscripts on hompk hold the same
meaning as above.

• ABE.Setup(1λ, 1T ): On input security parameter λ and time bound T ,

� Public Keys associated with State: Generate the 0-th step public keys that are used to
encode the initial state. Compute CHR.Setup(1λ), τ number of times, to obtain {(Step[0].pksti ,
Step[0].sksti )}i∈[τ ].
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� Public Keys associated with Read Address: Generate the 0-th step public keys that is
used to encode the initial read address. Compute CHR.Setup(1λ), θ number of times, to obtain
{(Step[0].pkraj ,Step[0].skraj )}j∈[θ].

� Public Keys Associated with Address List: Generate the 0-th step public keys that
are used to encode the address list, which is initialized with zeroes. During the evaluation
process, the address list is populated with the addresses written so far and the most re-
cent time step they were written. Compute CHR.Setup(1λ), η number of times, to obtain
{(Step[0].pkltk ,Step[0].skltk)}k∈[η]. Generate Step[0].pkt to encode the 0-th time step.

� Public Keys Associated with Database: Generate the 0-th step public keys that is used
to encode the initial attribute database. Compute CHR.Setup(1λ), N number of times, to
obtain {(Step[0].pklti ,Step[0].sklti )}i∈[N ].

� Anchor Public key: Generate a public key-secret key pair (pk0, sk0) ← CHR.Setup(1λ).
The public key pk0 will participate in every recoding key process (during key generation), in
which the secret key sk0 will be used. We note that the secret keys generated in the above
bullets will be discarded and only the public keys will be used for the rest of the construction.

Output master secret key msk = sk0 and public parameter pp as

pp = ({Step[0].pksti }i∈[τ ], {Step[0].pkraj }j∈[θ], {Step[0].pkltk}k∈[η], {Step[0].pkdbi }i∈[N ],Step[0].pkt, pk0, pkout)

• ABE.KeyGen(msk, P ): On input master secret key msk and program P with upper time bound
T and database length N , the key generation algorithm parse the step circuit of program P as
({Cst

j }τj=1, {Cw
i }θj=1, C

wb, {Cr
j}θj=1) Then generate public keys along for each step as:

� Public Keys Associated with Read Value: For i ∈ [T ], generate the public key asso-
ciated with read value for each step. Compute CHR.Setup(1λ), T number of times, to obtain
{(Step[i].pk,Step[i].sk}i∈[T ].

� Public keys associated with time step: For i ∈ [T ], generate the public key associ-
ated with time step for each step. Compute CHR.Setup(1λ), T number of times, to obtain
{(Step[i].pkt, Step[i].skt}i∈[T ].

� Public keys associated with state: For i ∈ [T ], generate the i-th public keys that
are used to encode the state. Compute CHR.Setup(1λ), Tτ number of times, to obtain
{Step[i].pkstj ,Step[i].skstj }i∈[T ],j∈[τ ].

� public keys associated with read address: For i ∈ [T ], generate the i-th public keys
that are used to encode the read address for each step. Compute CHR.Setup(1λ), Tθ number
of times, to obtain {Step[i].pkraj ,Step[i].skraj }i∈[T ],j∈[θ].

� public keys associated with database: For i ∈ [T ], generate the i-th public keys that
are used to encode the database for each step. Compute CHR.Setup(1λ), TN number of times,
to obtain {Step[i].pkdb` ,Step[i].skdb` }i∈[T ],`∈[N ].

� public keys associated with address list: For i ∈ [T ], generate the public keys that are
used to encode the updated address list. In each step, the list grows by η entries as specified
in the Definition of circuit Cup (c.f. Figure 5). For i ∈ [T ], compute CHR.Setup(1λ), (i + 1)η
number of times, to obtain {Step[i].pkltj , Step[i].skltj }j∈(i+1)η.

For i ∈ [T ], generate the recoding key for time-step as

Step[i].rkt ← CHR.ReEncKG(pk0,Step[i].pkt, sk0, Step[i+ 1].pkt, gi)

where control function gi is defined in Equation (5). Next, for i ∈ {0} ∪ [T ], do the following:
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1. State circuit {Cst
j }j∈[τ ]: First for j ∈ [τ ], homomorphically compute public key Step[i].hompkstj

with respect to Cst
j , then evaluate the gadget circuit C on input the homomorphic public keys,

and provide a terminating recoding key Step[i].rkout from current i-th step to the output step.
Next, provide a recoding key Step[i].rkstj which recode the state information of i-th step to the
(i+ 1)-th step. The detail follows: For j ∈ [τ ], evaluate Cst

j

Step[i].hompkstj ← CHR.KeyEval({Step[i].pkstk }k∈[τ ], {Step[i].pkrak }k∈[θ], Step[i].pk, Cst
j )

And then compute Step[i].hompkst = CHR.KeyEval({Step[i].hompkstj }j∈[τ ], C), and use the se-
cret key sk0 to compute the recoding key

Step[i].rkout ← CHR.ReEncKG(pk0,Step[i].hompkst, sk0, pkout, h)

where control function h is defined in Equation (5). Next generate the recoding key as

Step[i].rkstj ← CHR.ReEncKG(pk0,Step[i].hompkstj , sk0, Step[i+ 1].pkstj , Ind)

2. Reading address circuit {Cr
j}j∈[θ]: First for j ∈ [θ], homomorphically compute public key

Step[i].hompkraj with respect to Cr
j , then provide a recoding key Step[i].rkraj which recode the

read address information of i-th step to the (i+1)-th step. Next, evaluate the gadget circuit C
on input the homomorphic public keys {Step[i].hompkraj } to obtain Step[i].pkra, and evaluate

the check circuit Cck on address list {Step[i].pkltk}k∈[iη] and Step[i].pkra. Provide recoding keys,
which recode the specific database location to read value, according to read address Step[i].pkra

and result Step[i].pkck of Cck. The detail follows: For j ∈ [θ], evaluate Cr
j as

Step[i].hompkraj ← CHR.KeyEval({Step[i].pkstk }k∈[τ ], {Step[i].pkrak }k∈[θ],Step[i].pk, Cr
j)

Then compute the following

Step[i].rkraj ← CHR.ReEncKG(pk0, Step[i].hompkraj , sk0, Step[i+ 1].pkrak , Ind)

Then evaluate gadget circuit C and the check circuit Cck (c.f. Figure 6) as

Step[i].pkra = CHR.KeyEval({Step[i].hompkraj }j∈[θ], C)

Step[i].pkck ← CHR.KeyEval(Step[i].pkra, {Step[i].pkltk}k∈[iη], Step[i].pkt, Cck)

Next, for k ∈ [N ], ` ∈ [i− 1], compute the following

Step[i].rkrk` ← CHR.ReEncKG(pk0, Step[i].pkra,Step[i].pkck, Step[`].pkdbk , sk0,Step[i+ 1].pk, fk`)

where {Step[`].pkdbk }k∈[N ],`∈[i−1] are freshly generated public keys in Writing address/value
part as described below, and control function fk` is defined in Equation (4).

3. Writing address/value circuits ({Cw
j }j∈[θ], C

wb): First for j ∈ [θ], homomorphically

compute public key Step[i].hompkwj with respect to Cw
j and Step[i].pkwb with respect to Cwb.

Then, evaluate the gadget circuit C on input the homomorphic public keys {Step[i].hompkwj }
to obtain Step[i].pkw. Next, for each entry of the database, provide a recoding key, which
recodes the writing value to the freshly generated database public key Step[i + 1].pkdb` . The
detail follows: For j ∈ [θ], evaluate Cw

j and Cwb as

Step[i].hompkwj ← CHR.KeyEval({Step[i].pkstk }k∈[τ ], {Step[i].pkrak }k∈[θ],Step[i].pk, Cw
j )
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Step[i].pkwb ← CHR.KeyEval({Step[i].pkstk }k∈[τ ], {Step[i].pkrak }k∈[θ], Step[i].pk, Cwb)

Then compute Step[i].pkw = CHR.KeyEval({Step[i].hompkj}j∈[θ], C), where circuit C is the
gadget circuit. Then do following computation for ` ∈ [N ]

Step[i].rkw` ← CHR.ReEncKG(pk0, Step[i].pkw, Step[i].pkwb, sk0,Step[i+ 1].pkdb` , f`)

where control function f` is defined in Equation (4).

4. Update circuit {Cup
j }j∈[(i+1)η]: First for j ∈ [(i+1)η], homomorphically compute public key

Step[i].hompkltj with respect to Cup
j . Then, provide a recoding key Step[i].rkltj which recode the

address list information of i-th step to the (i+1)-th step. The detail follows: For j ∈ [(i+1)η],
evaluate the update circuit Cup (c.f. Figure 5) as

Step[i].hompkltj ← CHR.KeyEval({Step[i].pkltj }j∈[iη], Step[i].pkw, Step[i].pkt, Cup
j )

Then use the secret key sk0 to generate recoding key as

Step[i].rkltj ← CHR.ReEncKG(pk0,Step[i].hompkltj , sk0,Step[i+ 1].pkltj , Ind)

Output the secret key for RAM program P as skP = (P, {Step[i].KEY}T−1
i=0 , ) where

Step[i].KEY = (Step[i].rkout,Step[i].rkt, {Step[i].rkstj }j∈[τ ], {Step[i].rkrj}j∈[θ],

{Step[i].rkrakj}k∈[i−1],j∈[N ], {Step[i].rkwj }j∈[θ], {Step[i].rkltj }j∈[(i+1)η])

• ABE.Enc(pp, D, µ): On input the public parameter pp, a database D = {xi}Ni=1 and a message µ,
the encryption algorithm first picks a secret message s uniformly at random from S and compute
the following ciphertexts:

� Database Encryption: For i ∈ [N ], generate ciphertexts for each entry of the database.
Compute Step[0].ctdbi = CHR.Enc(Step[0].pkdbi , xi, s), for i ∈ [N ].

� Initial state encryption For i ∈ [τ ], generate ciphertexts for initial state. Compute
Step[0].ctsti = CHR.Enc(Step[0].pksti , 1, s), for i ∈ [τ ].

� Initial Reading address Encryption: For i ∈ [θ], generate ciphertexts for initial reading
address. Compute Step[0].ctra1 = CHR.Enc(Step[0].pkra1 , 1, s), and for i = 2, . . . , θ compute
Step[0].ctrai = CHR.Enc(Step[0].pkrai , 0, s).

� Initial address list encryption: For i ∈ [η], generate ciphertexts for initial address list.
Compute Step[0].ctlti = CHR.Enc(Step[0].pklti , 0, s), for i ∈ [η].

� Auxiliary information encryption: Encrypt under the anchor public key c0 = CHR.Enc(pk0, 0, s)
and 0-th time step public key u0 = CHR.Enc(Step[0].pkt, 0, s).

� message encryption: If the message µ = 0, then compute ψ = Enc(pkout, 0, s). Otherwise,
if the message µ = 1, choose a random vector over the ciphertext space of CHR.

Output the ciphertext as

ctD = (D, c0, u1, {Step[0].ctsti }τi=1, {Step[0].ctdbi }Ni=1, {Step[0].ctrai }θi=1, {Step[0].ctlti }
η
i=1, ψ)

• ABE.Dec(skP , ctD): On input secret key skP for RAM program P and a ciphertext ctD, outputs
⊥ if PD 6= 0. Otherwise, parse skP = (P, {Step[i].KEY}T−1

i=0 ). Parse the step circuit Ci of the
RAM program as

Ci = ({Cst
j }τj=1, {Cw

i }θj=1, C
wb, {Cr

j}θj=1, {C
up
j }j∈[(i+1)η])
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1. State circuit {Cst
j }j∈[τ ]: First, for j ∈ [τ ], homomorphically compute ciphertext Step[i].homctstj

with respect to Cst
j . If at the current step, the state is all 0, the use the terminating key

Step[i].rkout) to recode the i-th step to the output step, and execute the last step algorithm.
Otherwise, use the recoding key Step[i].rkstj to recode the state information of i-th step to
(i+ 1)-th step. The detail follows: For j ∈ [τ ], evaluate Cst

j as

Step[i].homctstj ← CHR.CtEval({Step[i].ctstk }k∈[τ ], {Step[i].ctrak }k∈[θ], Step[i].ct, Cst
j )

If at the current step, the state is all 0, then evaluate the following function Step[i].ctst =
CHR.CtEval({Step[i].homctstj }j∈[τ ], C), compute

Step[i].ctout = CHR.ReEnc(c0,Step[i].ctst,Step[i].rkout)7

and, jump to the last step. Otherwise, for j ∈ [τ ], compute

Step[i+ 1].ctstj = CHR.ReEnc(c0, Step[i].homctstj ,Step[i].rkstj )

2. Reading address circuit {Cr
j}j∈[θ]: First, for j ∈ [θ], homomorphically compute ciphertext

Step[i].homctraj with respect to Cr
j . Then use the recoding key Step[i].rkraj to recode the read

address information of i-th step to (i+1)-th step. Next, homomorphically evaluate the gadget
circuit C and check circuit Cck to obtain Step[i].ctra and Step[i].ctck respectively. Recode the
value residing in correct location of database using Step[i].rkrk`, where k, ` can be determined
by the execution of PD. The detail follows: For j ∈ [θ], evaluate Cw

j as

Step[i].homctraj ← CHR.CtEval({Step[i].ctstk }k∈[τ ], {Step[i].ctrak }k∈[θ],Step[i].ct, Cr
j)

Then for j ∈ [θ], compute Step[i+ 1].ctraj = CHR.ReEnc(c0,Step[i].homctrj ,

Step[i].rkraj ). Next evaluate gadget circuit C and Cck (c.f. Figure 6)

Step[i].ctra = CHR.CtEval({Step[i].homctrj}j∈[θ], C)

Step[i].ctck = CHR.CtEval(Step[i].ctr, {Step[i].ctltj }j∈[iη], ui, C
ck)

where Step[i].ctra is encoding of read address j and Step[i].ctup is encoding of last written
time k, and ui is the encoding of time-step i that can be obtained by computing ui =
CHR.ReEnc(c0, ui−1,Step[i].rkt). We can determine k ∈ [N ] and ` ∈ [i − 1] by executing
P on the database D. And choose the corresponding re-key Step[i].rkrk`, then compute

Step[i+ 1].ctr = CHR.ReEnc(c0,Step[i].ctr,Step[i].ctck,Step[`].ctdbk , Step[i].rkrk`)

3. Writing address/value circuits ({Cw
j }j∈[θ], C

wb): First, for j ∈ [θ], homomorphically

compute ciphertext Step[i].homctwj with respect to Cw
j and compute Step[i].ctwb with respect

to Cwb. Then, evaluate the gadget circuit C on input ciphertexts {Step[i].homctwj } to obtain

Step[i].ctw. Next, recode the writing value along with the writing address to Step[i].ctdbk ,
using recoding key Step[i].rkwk , where k can be determined by the execution of PD. The detail
follows: For j ∈ [θ], evaluate Cw

i and Cwb as

Step[i].homctwj ← CHR.CtEval({Step[i].ctstk }k∈[τ ], {Step[i].ctrak }k∈[θ],Step[i].ct, Cw
j )

Step[i].ctwb ← CHR.CtEval({Step[i].ctstk }k∈[τ ], {Step[i].ctrak }k∈[θ],Step[i].ct, Cwb)

Then evaluate Step[i].ctw = CHR.CtEval({Step[i].homctwj }j∈[θ], C). Next, pick the correspond-
ing recoding key Step[i].rkwk , where k is the writing address, and compute

ctdbk = CHR.ReEnc(c0,Step[i].ctw, Step[i].ctwb, Step[i].rkwk )
7For ease of notation, we omit the public keys in the input to algorithm CHR.ReEnc when the context is clear.
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4. Update circuit {Cup
j }j∈[(i+1)η]: First, for j ∈ [(i+1)η], homomorphically compute ciphertext

Step[i].homctltj with respect to Cup
j . Then use the recoding key Step[i].rkltj to recode the address

list information of i-th step to (i + 1)-th step. The detail follows: For j ∈ [i + 1]η, evaluate
the update circuit Cup

j (c.f. Figure 5) as

Step[i].homctltj ← CHR.CtEval({Step[i].ctlt` }`∈[iη], Step[i].ctw, ui, C
up
j )

Then for j ∈ [(i+ 1)η], compute

Step[i+ 1].ctltj = CHR.ReEnc(c0, Step[i].rkltj ,Step[i].homctltj )

The algorithm of last step is to compute CHR.EqTest(pkout,Step[t].ctout, ψ), where t denotes the
time step when PD halts. If output of CHR.EqTest is equal, then output 0; otherwise output 1.

We show that the above scheme is a secure ABE for RAMs scheme. In particular, we prove the
following theorem.

Theorem 5.1. Assuming CHR for a class of controlled functions F (as defined in Equation (6)),
ABE (described above) is a secure ABE for RAMs scheme.

5.1 Correctness and Efficiency Analysis

We now show that the above ABE scheme satisfies the properties of correctness and desired effi-
ciency.

Correctness. We show the correctness proof below.

Lemma 5.2. Assuming the correctness of CHR for the set of controlled functions F as defined in
Equation (6), the above ABE construction satisfies correctness as defined in Definition 2.1.

Proof. We first define a notion, named i-th step temporary key

Step[i].TempKey = ({Step[i].pkstk }k∈[τ ], {Step[i].pkrak }k∈[θ],Step[i].pk)

Let the ciphertext be ctD and secret key be skP . At i-th step, by evaluating the ciphertext with
respect to circuits {Cst

j }j∈[τ ], {Cr
j}j∈[θ], {Cw

j }j∈[θ], C
wb and auxiliary circuits Cck, {Cup

j }j∈[(i+1)η], we
obtain the homomorphic ciphertexts

{Step[i].homctstj }j∈[τ ], {Step[i].homctraj , Step[i].homctwj }j∈[θ]Step[i].ctwb, {Step[i].homctltj }j∈[(i+1)η]

By the correctness of CHR scheme (c.f. Definition 3.1), we have that ciphertexts Step[i+1].ctstj ,Step[i+

1].ctrj , Step[i + 1].ctltj encrypt the same message under Step[i + 1].TempKey as their i-th step ho-
momorphically evaluated ciphertexts respectively. Since the evaluation of RAM program P on
database D is in the clear, so in the reading part, we choose the correct recoding key Step[i].rkrk`
to recode the value in the k-th location to Step[i+ 1].ct.

Suppose at step t, where t ≤ T , we have PD = 0, then evaluate

Step[t].ctst = CHR.CtEval({Step[t].homctstj }j∈[τ ], C)

where Step[t].ctst encrypts 0. Again by correctness of CHR scheme, the re-encrypted ciphertext
Step[i].ctout is also an encryption of 0. At last, the equality test CHR.EqTest(pkout, Step[t].ctout, ψ)
outputs correct µ by the property of algorithm CHR.EqTest.
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Remark 5.3. As mentioned in Remark 2.2, our ABE construction can support auxiliary input
y, i.e. PD(y), where this additional input y serves as initial input of step circuit. The only
change in the current construction is that in the encryption algorithm, we encode y as ctaux =
CHR.Enc(pkaux, y, s), where pkaux denotes public key for auxiliary input. The correctness and secu-
rity proofs closely follow the current ones.

Lattice Parameters Setting. Our ABE construction is based on CHR for a class of controlled
functions F (as defined in Equation (6), which may have other instantiations besides the lattice-
based one as specified in this paper. To make our ABE construction more clear from the lattice-
based perspective, we here set the lattice parameters for the underlying CHR scheme. As mentioned
before, in the CHR scheme, If the step circuit being evaluated has depth d, the noise in the cipher-
texts grows in the worst case by a factor of O(md). Thus, to support a RAM program with
worst-case running time T (the unit of time corresponds to one step), we set the (n,m, q) as

• Lattice dimension n is an integer such that n ≥ (Td log n)1/ε, for some fixed 0 < ε < 1/2.

• Modulus q is set to be q = 2n
ε
, since the noise in the ciphertexts grows by a factor of O(mTd).

Hence, we need q to be on the order of Ω(BmTd), where B = O(n) is the maximum magnitude
of noise (from discrete Gaussian distribution) added during encryption. To ensure correctness
of decryption and hardness of LWE, we set q = 2n

ε
.

• Lattice column parameter m is set to be m = Θ(n log q) to make the leftover hash lemma
hold.

For security we rely on the hardness of the LWE problem, which requires that the ratio q/B
is not too large, where B = O(n) is the maximum magnitude of noise (from discrete Gaussian
distribution) added during encryption. In particular, the underlying problem is believed to be hard
even when q/B is 2n

ε
.

Complexity of Our Construction. The (space/time) complexity of our construction can be
analyzed by the following aspects. Here, we use the notations in Table 3 and our lattice-based CHR
instantiation. The polynomial n(·, ·) denotes the lattice dimension.

• The public parameters contain (τ+θ+η+N+3) n×mmatrices in Zq, which is Õ(n(λ, T )2·NT )
in bit complexity. The master secret key is one m×m matrix.

• The secret key for RAM program P contains T (NT (T + 1)/2 + η(T + 2)T/2 + 2 + τ + θ)
m×m small matrices, which is Õ(n(λ, T )2 ·NT 3) in bit complexity.

• The ciphertext for database with length N contains (3 + τ + θ+ η+N) dimension-m vectors
in Zq, which is Õ(n(λ, T )2 ·NT ) in bit complexity.

• Suppose the running time of PD is t, and decryption involves matrix-vector multiplication.
The time complexity of decryption is Õ(n(λ, T )2 · t).

Sub-linear Decryption. We would like to show the following: if a program P on input database
D takes time at most T then correspondingly, the decryption of secret key for P on input an encryp-
tion of message x associated with attribute database D takes time p(λ, T ), for a fixed polynomial
p.

We analyze the time to decrypt an encryption of database D associated with message x using
a key of RAM program with runtime bounded by T : observe that in the description of ABE.Dec,
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bullets 1,2,3 and 4 are executed T number of steps. We focus on bounding the running time of
bulets 1,2,3 and 4 in any given step. We analyze all four cases below.

• State circuit: The runtime of CHR.CtEval is a polynomial in (λ, τ, θ, Tη). Observe that
τ is the length of the state, which is independent of the input length, and θ = logN, η =
log T + logN . Thus, the runtime of CHR.CtEval is upper bounded by a polynomial in (λ, T ).
The runtime of CHR.ReEnc is bounded by a polynomial in (λ, τ).

• Reading address circuit: In this step, CHR.CtEval is executed twice. The runtime of
first execution of CHR.CtEval is a polynomial in (λ, θ). The runtime of CHR.CtEval is upper
bounded by (λ, Tη). Determining j and k takes time at most T . The runtime of CHR.ReEnc
is bounded by a polynomial in λ.

• Writing address/value circuits: In this step, CHR.CtEval is executed twice. In both exe-
cutions, the runtime is bounded by a polynomial in (λ, τ, θ, Tη). The runtime of CHR.ReEnc
is bounded by a polynomial in λ.

• Update circuit: In this step, CHR.CtEval is bounded by a polynomial in (λ, Tη). In this
step, the runtime of CHR.ReEnc is upper bounded by (λ, Tη). The runtime of CHR.ReEnc is
upper bounded by (λ).

From the above observations, it follows that the runtime of the decryption algorithm is a polynomial
in (λ, T ), where the polynomial is independent of the length of the database.

In particular, notice that if T is polylogarithmic in the input length then the decryption time
is sub-linear in the input length.

5.2 Security Proof

We prove the security of our ABE construction based on security of controlled homomorphic recod-
ing scheme. Before proceeding to the proof, we describe some auxiliary algorithms that are useful
to the proof. There are five algorithms:

• Sim.ABESetup produces “programmed” public keys. That is, every public key produced as
part of setup has hardwired in it, a bit of the challenge database. To perform this operation,
we invoke the indistinguishability of setup security of CHR (Definition 3.2).

• Sim.StepKey takes as input the i-th layer of simulated public keys (called temporary keys
below) and produces the i-th layer of simulated recoding keys and (i + 1)-th layer of simu-
lated public keys, except for terminating keys Step[i].rkout, which is used for recoding from
current step to final step is the program terminates. To perform this operation, we invoke
the indistinguishability of simulated keys (Definition 3.3).

• Sim.OutKey takes as input the i-th layer of simulated public keys and produces the simulated
terminating keys. We use that fact PD

∗
i 6= 0 for any queried program Pi to simulate the ter-

minating keys Step[i].Simrkout. To perform this operation, we invoke the indistinguishability
of recoding keys (Definition 3.4).

• Real.StepKey on input the i-th layer of simulated public keys (called temporary keys) and
master secret key of CHR, it produces the i-th layer of ‘real’ recoding keys and (i+1)-th layer
of ‘real’ public keys.

• Sim.Enc produces a simulated encryption of the message. To perform this, we invoke the
pseudorandomness of ciphertext property (Definition 3.5).
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Proof Intuition. We explain the intuition of the proof next. For explaining the intuition, we
focus on weak selective security, where the adversary submits all the queries in the very beginning of
the security experiment. The adversary A submits the database D∗, secret message µ and program
queries P1, . . . , PQ such that PD

∗
i 6= 0.

Hybrid H1 corresponds to the real experiment, where all the parameters are sampled according
to CHR. First, the challenger simulates the public keys of ABE using the algorithm Sim.ABESetup
on input the database D∗ (hybrid H2). Also, in the same hybrid, generate all the layers of the
recoding keys in every attribute key using Real.StepKey. The challenger, over a sequence of hybrids
(H3,1,?), starts manipulating the attribute key of P1. Recall that the attribute key of P1 consists of
T sets of recoding keys, the step-keys. Next, switch every intermediate layer of recoding layers to be
simulated. That is, in the j-th step (H3,1,j), all the (j−1) layers of recoding keys are simulated using
Sim.StepKey while all the layer from (j + 1)-th onwards are computed using Real.StepKey. Switch
the j-th layer of recoding keys to be simulated using Sim.StepKey. At the end of this sequence
of hybrids, all the layers of recoding keys in the attribute key of P1 are simulated. Perform this
sequence of hybrids to the rest of the attribute keys associated with P2, . . . , PQ. Once this is done,
simulate the ciphertext of µ using Sim.Enc.

We present a formal descriptions of the above algorithms.

• Sim.ABESetup(1λ, D∗): On input security parameter λ and challenge database D∗ = {x∗i }Ni=1,
the simulated setup algorithm first generate the anchor public key pk0 along with sk0 by running
(pk0, sk0) ← CHR.Setup(1λ) and simulate public key for 0-th time step pkt0 and final public key
pkout as

(Simpkt0,Simpkout)← Sim.GenCHRSetup(1λ, 0, 2; pk0)

Then simulate the rest of public parameters as

1. Simulate public keys Step[0].Simpksti for initial state as

{Step[0].Simpksti }i∈[τ ] ← Sim.GenCHRSetup(1λ, 1, τ ; pk0)

2. Embed the challenge attribute database D∗ into Step[0].Simpkdbi as

{Step[0].Simpkdbi }i∈[N ] ← Sim.GenCHRSetup(1λ, D∗, N ; pk0)

3. Simulate public keys Step[0].Simpkri for read address as Step[0].Simpkr1 ← Sim.GenCHRSetup(1λ, 1, 1; pk0)

{Step[0].Simpkri}θi=2 ← Sim.GenCHRSetup(1λ, 0, θ − 1; pk0)

4. Simulate public keys Step[0].Simpklti for address list as

{Step[0].Simpklti }i∈[η] ← Sim.GenCHRSetup(1λ, 0η, η; pk0)

Output master secret key msk = sk0 and simulated public parameter Sim.pp as

Sim.pp = ({Step[0].Simpksti }i∈[τ ],{Step[0].Simpkrj}j∈[θ], {Step[0].Simpkltk}k∈[η],

{Step[0].Simpkdbi }i∈[N ], Simpkt0, pk0,Simpkout)

• Sim.StepKey(Sim.pp,msk, {Step[j].SimTempKey}j∈[i], P
D∗): On input simulated public param-

eters Sim.pp, master secret key msk, temporary keys {Step[i].SimTempKey}j∈[i] and i-th step
internal state yi (including state, reading address, etc., obtained by executing a RAM program
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on challenge database D∗ upto the i-th step), the simulated step key generation outputs i-th step
key Step[i].SimKEY and (i+ 1)-th simulated temporary key Step[i+ 1].SimTempKey. For j ∈ [i],
the algorithm parses

Step[j].SimTempKey = (Step[j].Simpkt,{(Step[j].Simpkstk }k∈[τ ], {(Step[j].Simpkrak }k∈[θ],

{Step[j].Simpkdbk }k∈[N ], {Step[j].Simpkltk}k∈(j+1)η,Step[j].Simpk)

We use Step[j].SimTrdr to denote the trapdoor of Step[j].SimTrdr. For the i-th step of execution
PD

∗
, let {stik}k∈[τ ] be the internal state, {raik}k∈[θ] be the reading address, wi be the writing

address, wbi be the writing bit, and {ltik}k∈(i+1)η be the update list. Denote the i-th step

execution status Ei for PD
∗

as

Ei = ({stik}k∈[τ ], {raik}k∈[θ], rbi)

Output ⊥ if Step[i].rkout if f({Cst
j (Ei)}τj=1) = 1, where controlled function f is defined in Defini-

tion (7). Otherwise, evaluate the public keys as

Step[i].Simhompkstj ← CHR.KeyEval({Step[i].Simpkstk }k∈[τ ], {Step[i].Simpkrak }k∈[θ], Step[i].Simpk, Cst
j )

And compute Step[i].Simhompkst = CHR.KeyEval({Step[i].Simhompkstj }j∈[τ ], C), then use the se-
cret key sk0 to compute the recoding key as

Step[i].rkout ← CHR.ReEncKG(pk0, Step[i].Simhompkst, sk0, pkout, h)

Do the following:

1. State circuit {Cst
k }k∈[τ ]: For k ∈ [τ ], compute

(Step[i].Simrkstk , Step[i+1].Simpkstk )← Sim.CHRkey(pk0, Step[i].SimTempKey,Step[j].SimTrdr, Ei, C
st
k , Ind)

2. Reading circuit {Cr
k}k∈[θ], for k ∈ [θ], compute

(Step[i].Simrkrak , Step[i+1].Simpkrak )← Sim.CHRkey(pk0,Step[i].SimTempKey,Step[j].SimTrdr, Ei, C
r
k, Ind)

3. Writing circuit {Cwk }k∈[θ] and Cwb: For j ∈ [N ], compute

(Step[i].Simrkwj ,Step[i+1].Simpkdbj )← Sim.CHRkey(pk0, Step[i].SimTempKey, Step[j].SimTrdr, Ei, C
w, fj)

4. Update circuit {Cup
k }k∈[i+1]η: For k ∈ [i+ 2]η, compute

(Step[i].Simrkltk , Step[i+ 1].Simpkltk)← Sim.CHRkey(pk0,Step[j].Simpkt, {Step[j].Simpkltk}k∈(j+1)η

Step[j].SimTrdr, wi, i, {ltik}k∈(i+1)η, C
lt
k , Ind)

5. Time step: Compute

(Step[i].Simrkt,Step[i+ 1].Simpkt)← Sim.CHRkey(pk0,Step[j].Simpkt,Step[j].SimTrdr, gi)

Let circuit Cra = C({Cra
k }k∈[θ]) and calculate Cra(yi) = j∗, Cup(yi, 0) = k∗. Then compute

({Step[i].Simrkrjk}j∈[N ],k∈[i−1], Step[i+ 1].Simpk)← Sim.GenCHRkey(pk0,Step[i].SimTempKey,

Step[j].SimTrdr, Ei, C
ra, Cup, N, i− 1)
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Output (Ei+1, Step[i].SimKEY,Step[i+ 1].SimTempKey) as

Step[i].SimKEY = (Step[i].rkout, Step[i].rkt, {Step[i].Simrkstj }, {Step[i].Simrkrak },
{Step[i].Simrkwj }, {Step[i].Simrkltk}, {Step[i].Simrkrjk})

Step[i+ 1].SimTempKey = (Step[i+ 1].Simpkt, {(Step[j].Simpkstk }k∈[τ ], {(Step[j].Simpkrak }k∈[θ],

{Step[j].Simpkdbk }k∈[N ], {Step[j].Simpkltk}k∈(j+1)η,Step[j].Simpk)

• Sim.OutKey(Sim.pp, {Step[j].SimTempKey}j∈[i], P
D∗): On input simulated public parameters Sim.pp,

temporary keys {Step[i].SimTempKey}j∈[i] and i-th step internal state yi (including state, reading
address, etc., obtained by executing a RAM program on challenge database D∗ upto the i-th
step), the simulated out key generation outputs i-th simulated out key Step[i].Simpkout. Denote
the i-th step execution status Ei for PD

∗
as above. Output ⊥ if f({Cst

j (Ei)}τj=1) = 1. Otherwise,
compute and output

Step[i].Simpkout ← Sim.GenCHRrk(pk0,Step[i].SimTempKey, Ei, {Cst
k }τk=1, h)

• Real.StepKey(Sim.pp,msk, {Step[j].SimTempKey}j∈[i]): On input simulated public parameters Sim.pp,
simulated temporary keys {Step[j].SimTempKey}j∈[i] and master secret key msk, the real step key
generation outputs i-th step key Step[i].KEY and (i+ 1)-th temporary key Step[i+ 1].TempKey.
the algorithm parses

Step[i].SimTempKey = ({(Sim.Step[i].pkstj }j∈[τ ],{(Sim.Step[i].pkraj }j∈[θ], {Sim.Step[i].pkdbj }j∈[N ],

{Sim.Step[i+ 1].pkltj }j∈iη,Sim.Step[i].pk)

Output ⊥ if Step[i].rkout if f({Cst
j (Ei)}τj=1) = 1, where controlled function f is defined in Defini-

tion (7). Otherwise, set Cst = C({Cst
j }j∈[τ ]) and compute

Step[i].rkout ← DerivReKey(pk0, Step[i].SimTempKey,yi, Sim.pk
out,msk, Cst)

For time step, first generate Step[i+ 1].pkt using CHR.Setup(1λ), and then compute

Step[i].rkt ← CHR.ReEncKG(pk0,Step[i].Simpkt, sk0, Step[i+ 1].pkt, gi)

Then for h ∈ [N ], j ∈ [τ ], k ∈ [θ], ` ∈ [(i + 1)η], generate Step[i].pkdbh , Step[i + 1].pkstj , Step[i +

1].pkrak , Step[i+ 1].pklt` using CHR.Setup(1λ) and then execute

Step[i].rkstj ← DerivReKey(pk0, Step[i].SimTempKey,msk, Cst
j , Step[i+ 1].pkstj , Ind)

Step[i].rkrak ← DerivReKey(pk0,Step[i].SimTempKey,msk, Cr
k,Step[i+ 1].pkrak , Ind)

Step[i].rkwh ← DerivReKey(pk0,Step[i].SimTempKey,msk, Cw, Cwb, Step[i].pkdbh , fh)

Step[i].rklt` ← DerivReKey(pk0, Step[i].SimTempKey,msk, C lt
` , Step[i+ 1].pklt` , Ind)

where circuit Cw = C({Cw
h }h∈[θ]) Next, for k ∈ [i− 1], j ∈ [N ], compute the following

Step[i].rkrkj ← DerivReKey(pk0,Step[i].SimTempKey,msk, Cr, Cup, Step[k].Simpkdbj , f
r
kj)

where circuit Cr = C({Cr
k}k∈[θ]). Output i-th step key Step[i].KEY and (i+ 1)-th temporary key

Step[i+ 1].TempKey.
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• Sim.Enc(Sim.pp, D∗, µ): On input simulated public parameters Sim.pp, challenge database D∗ =
{x∗i }Ni=1 and message µ, the simulated encryption algorithm outputs simulated ciphertext Sim.ct.
For ease of notation, we use Step[0].SimTrdr to denote the all trapdoor information of step 0.
The algorithm randomly chooses a secret message s, and for i ∈ [N ], encrypts the database as

Step[0].Simctdbi = Sim.CHRct(Step[0].Simpkdbi , Step[0].SimTrdr, x∗i , s)

For i ∈ [τ ], encrypt the initial state as

Step[0].Simctsti = Sim.CHRct(Step[0].Simpksti ,Step[0].SimTrdr, 1, s)

Next, it encrypt the auxiliary information as c0 = Sim.CHRct(Sim.pk0, I, 0, s), u1 = Sim.CHRct(Sim.pk
t
0,

Step[0].SimTrdr, 0, s) and initial list as Step[0].Simctlti = Sim.CHRct(Step[0].Simpklti ,
Step[0].SimTrdr, 0, s) for i ∈ [η]. Finally, choose a random vector ψ over the ciphertext space of
CHR.

Theorem 5.4. Assuming the security of CHR for controlled funcions F , the scheme ABE satisfies
the definition of ABE security (c.f. Definition 2.4).

Proof. Let Q be the number of key queries made by the adversary. We first describe a sequence of
hybrids as follows:

Hybrid H1: This corresponds to the real experiment.

• A specifies challenge attribute database D∗ and message µ.

• Challenger computes Setup(1λ) to obtain the public parameters pp and secret key msk. Then
challenger generates the challenge ciphertext ct∗ ← Enc(pp, D∗, µ). It sends ct∗ and pp to A.

• For i ∈ [Q], adversary A specifies the programs Pi such that PD
∗

i 6= 0. Challenger generates
the attribute keys for Pi, for i ∈ [Q], skPi ← KeyGen(msk, Pi). In more detail, skPi is generated
as follows:

– For every j ∈ [T ], compute

Step[j].KEYi ← Real.StepKey(pp,msk, {Step[j].TempKeyi}k∈[j])

– Set ski = ({Step[j].KEYi}j∈[T ]).

• Let b be the output of adversary. Output b.

Hybrid H2: H2 is the same as H1 except that it uses Sim.ABESetup(1λ, D∗) to generate Sim.pp
and msk.

• A specifies attribute D∗ and message µ.

• Challenger generates the setup Sim.ABESetup(1λ, D∗) to obtain the simulated public key Sim.pp
and master secret key msk. Then challenger generates the challenge ciphertext ct∗ ← Enc(Sim.pp, D∗, µ).
It sends ct∗ and Sim.pp to A.

• For i ∈ [Q], adversary A specifies the programs Pi such that PD
∗

i 6= 0. Challenger generates
the attribute keys for Pi, for i ∈ [Q], skPi ← KeyGen(msk, Pi). In more detail, skPi is generated
as follows:

– For every j ∈ [T ], compute

Step[j].KEYi ← Real.StepKey(Sim.pp,msk, {Step[k].TempKeyi}k∈[j])
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– Set ski = ({Step[j].KEYi}j∈[T ]).
8

• Let b be the output of adversary. Output b.

Hybrid {H3,i∗,j∗}i∗∈[Q],j∗∈[T ]: Simply put, in hybrid H3,i,j , for i < i∗, the secret key for query Pi
is simulated. For query Pi∗ , upto the j∗-th step, the step keys are simulated, for step j > j∗,
the step keys are generated normally. For query Pi, where i > i∗, its step keys are all generated
normally. We describe it in details below:

• Adversary specifies attribute D∗ and message µ.

• Challenger generates the setup Sim.ABESetup(1λ, D∗) to obtain the simulated public key Sim.pp
and master secret key msk. Then challenger generates the challenge ciphertext ct∗ ← Enc(Sim.pp, D∗, µ).
It sends ct∗ and Sim.pp to A.

• For i ∈ [Q], adversary A specifies the programs Pi such that PD
∗

i 6= 0. Challenger generates
the secret key skPi = ({Step[j].KEY}j∈[T ]) for Pi, as follows:

– For i < i∗,

1. For every j ∈ [T ], compute

(Step[j].SimKEYi,Step[j + 1].SimTempKeyi)←Sim.StepKey(Sim.pp,

msk, {Step[k].SimTempKeyi}k∈[j], P
D∗
i )

And then replace the Step[j].Simrkouti in Step[j].SimKEYi using

Step[j].Simrkouti ← Sim.OutKey(Sim.pp, {Step[k].SimTempKeyi}k∈[j], P
D∗
i )

2. Set ski = ({Step[j].SimKEYi}j∈[T ]).

– For i = i∗,

1. For j < j∗, generate

(Step[j].SimKEYi,Step[j + 1].SimTempKeyi)←Sim.StepKey(Sim.pp,

msk, {Step[k].SimTempKeyi}k∈[j], P
D∗
i∗ )

2. For j = j∗, generate

(Step[j].KEYi, Step[j+1].TempKeyi)← Real.StepKey(Sim.pp,msk, {Step[j].SimTempKeyi}j∈[i])

3. For j > j∗, generate

Step[j].KEYi ← Real.StepKey(Sim.pp, {Step[k].SimTempKeyi}k∈[j∗], {Step[k].TempKeyi}
j
k=j∗+1,msk)

4. Set ski = ({Step[j].SimKEYi}j∈[T ],j<j∗ , {Step[j].KEYi}j∈[T ],j≥j∗).

– For i > i∗,

1. For every j ∈ [T ], generate

Step[j].KEYi ← Real.StepKey(Sim.pp,msk, {Step[k].TempKeyi}k∈[j])

2. Set ski = ({Step[j].KEYi}j∈[T ]).

• Let b be the output of adversary. Output b.

8The subscript of Step[j].KEYi, i here, denotes for the i-th key query.
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Hybrid {H̃3,i∗,j∗}i∗∈[Q],j∗∈[T ]: Simply put, hybrid H̃3,i∗,j∗ happens right after H3,i∗,j∗ , and the only

difference between these two consecutive hybrids is in H̃3,i∗,j∗ , the recoding key Step[j∗].Simrkouti∗

in Step[j∗].SimKEY∗i is generated using algorithm Sim.OutKey instead of using Sim.StepKey (in
hybrid H3,i∗,j∗).

Hybrid H4: In H4, the secret keys for all queries are simulated without using msk. Therefore, we
sample the anchor public key Sim.pk0 (with its trapdoor I) randomly from space Zn×mq .

• Adversary specifies attribute D∗ and message µ.

• Challenger generates the setup Sim.ABESetup(1λ, D∗) to obtain the simulated public key Sim.pp.
Then challenger generates the challenge ciphertext ct∗ ← Enc(Sim.pp, D∗, µ). It sends ct∗ and
Sim.pp to A.

• For i ∈ [Q], adversary A specifies the programs Pi such that PD
∗

i 6= 0. Challenger generates
the attribute keys for Pi, for i ∈ [Q]. In more detail, skPi is generated as follows:

1. For every j ∈ [T ], generate

(Step[j].SimKEYi, Step[j+1].SimTempKeyi)← Sim.StepKey(Sim.pp, {Step[k].SimTempKeyi}k∈[j])

2. Set ski = ({Step[j].SimKEYi}j∈[T ]).

• Let b be the output of adversary. Output b.

Hybrid H5: H5 is the same as H4 except that it simulates challenge ciphertext.

• Adversary specifies attribute D∗ and message µ.

• Challenger generates the setup Sim.ABESetup(1λ) to obtain the simulated public key Sim.pp. It
sends Sim.pp to A.

• Challenger generates the simulated ciphertext Sim.ct∗ ← Sim.Enc(pp, D∗, µ). It sends Sim.ct∗

to A.

• For i ∈ [Q], adversary A specifies the programs Pi such that PD
∗

i 6= 0. Challenger generates
the attribute keys for Pi, for i ∈ [Q], skPi ← KeyGen(msk, Pi). In more detail, skPi is generated
as follows:

1. For every j ∈ [T ], generate

(Step[j].SimKEYi, Step[j+1].SimTempKeyi)← Sim.StepKey(Sim.pp, {Step[k].SimTempKeyi}k∈[j])

2. Set ski = ({Step[j].SimKEYi}j∈[T ]).

• Let b be the output of adversary. Output b.

Lemma 5.5. By the indistinguishability of setup property of CHR scheme (c.f. Definition 3.2), we

have H1
s
≈ H2.

Proof. The only difference between hybrid H1 and H2 is that in H2, the public parameters generated
by Sim.ABESetup(1λ, D∗) as described above. By the indistinguishability of setup property of CHR,

the distribution {Sim.pp} is statistically close to {pp}. Therefore, we have H1
s
≈ H2.

Lemma 5.6. The output distributions of hybrids H2 and H3,1,0 are identical.
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Proof. As described above, hybrid H3,1,0 is obtained by simulating {Step[0].SimKEY1} and gener-
ating all other step keys normally. As {Step[0].SimKEY1} does not exists in sk1, therefore we have
that hybrids H2 and H3,1,0 are identical.

Lemma 5.7. By the indistinguishability of simulated keys property of CHR scheme (c.f. Defini-

tion 3.3) with respect to Eaux, we have H̃3,i∗,j∗
s
≈ H3,i∗,j∗+1, where j∗ ∈ [T − 1] and Eaux consists of

two cases:

• Eaux is the distribution of simulated keys produced by Sim.CHRSetup in the (j∗)th step.

• Eaux is the distribution of simulated keys produced in 1st step, Sim.CHRkey

Proof. The difference between H̃3,i∗,j∗ and H3,i∗,j∗+1 is that in H3,i∗,j∗+1 the (j∗ + 1)-th step
key Step[j∗ + 1].SimKEYi∗ of query i∗ is simulated instead of normal generation. In algorithm
Sim.StepKey(Sim.pp, {Step[k].SimTempKeyi∗}k∈[j∗+1]), Step[i].Simrkout and the others in Step[j∗ +
1].SimKEYi∗ are computed as described above. By indistinguishability of simulated keys (c.f. Def-
inition 3.3), we have

{Step[j∗ + 1].SimKEYi∗ ,Step[j∗ + 2].SimTempKey}
s
≈ {Step[j∗ + 1].KEYi∗ , Step[j∗ + 2].TempKey}

Thus, we have {Step[j∗ + 1].SimKEYi∗}
s
≈ {Step[j∗ + 1].KEYi∗}, which means H̃3,i∗,j∗

s
≈ H3,i∗,j∗+1.

Lemma 5.8. By the indistinguishability of recoding keys property of CHR scheme (c.f. Defini-

tion 3.4) with respect to Eaux, we have H3,i∗,j∗
s
≈ H̃3,i∗,j∗, where j∗ ∈ [T − 1] and Eaux is the

distribution of public keys produced by Sim.CHRSetup in the (T − 1)th step.

Proof. The only difference between these two consecutive hybrids is in H̃3,i∗,j∗ , the recoding key
Step[j∗].Simrkouti∗ in Step[j∗].SimKEY∗i is generated using algorithm Sim.OutKey instead of using
Sim.StepKey (in hybrid H3,i∗,j∗). By the indistinguishability of recoding keys property of CHR
scheme (c.f. Definition 3.4), the distribution of recoding key Step[j∗].Simrkouti∗ is computationally

close to Step[j∗].rkouti∗ , thus we have H3,i∗,j∗
s
≈ H̃3,i∗,j∗ .

Lemma 5.9. The output distributions of hybrids H̃3,i∗,T and H3,i∗+1,0 are identical, when i∗ ∈ [Q].

Proof. The only difference between hybrids H̃3,i∗,T and H3,i∗+1,0 is that in hybrid H3,i∗+1,0, the step
key {Step[0].SimKEYi+1} is simulated. As {Step[0].SimKEYi+1} does not exists in ski+1, thus we

have that hybrids H̃3,i∗,T and H3,i∗+1,0 are identical.

Lemma 5.10. The output distributions of hybrids H̃3,Q,T and H4 are statistically close.

Proof. In hybrids H̃3,Q,T and H4, the only difference is that in H̃3,Q,T , the anchor public key pk0 is
generated along with sk0, using algorithm TrapGen, while in H4 the anchor public key pk0 is sampled

from random distribution. By Corollary 4.6, hybrids H̃3,Q,T and H4 are statistically close.

Lemma 5.11. By the pseudorandomness of ciphertexts of CHR scheme (c.f. Definition 3.5), we

have H4
c
≈ H5.
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Proof. The only difference between H4
c
≈ H5 is that in H5 is challenge ciphertext is generated by

algorithm Sim.Enc(Sim.pp, D∗, µ), where CHR.Enc is used as a subroutine and a randomly chose
vector ψ is chosen over ciphertext space. By the pseudorandomness of ciphertexts of CHR, we have
that the ciphertexts of both hybrids are computationally close to the uniformly random distribution

over ciphertext space. Therefore, we have H4
c
≈ H5.

Combining the hybrids and lemmas proved above, we prove that our ABE construction is secure,
as defined in Definition 2.4.

Generic Transformation: Sub-linear Decryption to Input-Specific Runtime. Note that
the construction described above satisfies only sub-linear decryption property and in particular,
does not satisfy input-specific runtime. However, [GKP+13b] showed how to generically transform
an ABE scheme satisfying sub-linear decryption property into a scheme satisfying input-specific
runtime property. We sketch the transformation below.

Suppose there exists an ABE scheme ABEsub that satisfies sub-linear decryption property. We
construct ABE∗ as follows: execute log(T ) copies of ABEsub, where the maximum runtime bound
in the ith copy of ABEi is set to be 2i. Note that ABE∗ is a secure ABE for RAMs scheme. In
terms of public key, ciphertext and attribute key sizes in ABE∗ are larger than the corresponding
parameterss in ABEsub by a factor of log(T ). However, the decryption time is input-specific: given
a ciphertext of attribute D and an attribute key of P , we use the ith copy of ABEsub where i is the
least integer such that the runtime of PD ≤ 2i. This means that the decryption time grows with
2i and not T .

Combining this with our construction satisfying sub-linear decryption complexity, we have:

Theorem 5.12. Assuming learning with errors, there exists an attribute-based encryption scheme
for RAMs satisfying input-specific runtime property.
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