
Towards Attribute-Based Encryption for RAMs
from LWE: Sub-linear Decryption, and More

Prabhanjan Ananth1, Xiong Fan2, and Elaine Shi2

1 MIT CASIL, Boston, MA, USA. prabhanjan@csail.mit.edu
2 Cornell University, Ithaca, NY, USA. {xfan, elaine}@cs.cornell.edu.

Abstract. Attribute based encryption (ABE) is an advanced encryp-
tion system with a built-in mechanism to generate keys associated with
functions which in turn provide restricted access to encrypted data. Most
of the known candidates of attribute based encryption model the func-
tions as circuits. This results in significant efficiency bottlenecks, espe-
cially in the setting where the function associated with the ABE key is
represented by a random access machine (RAM) and a database, with
the runtime of the RAM program being sublinear in the database size.
In this work we study the notion of attribute based encryption for ran-
dom access machines (RAMs), introduced in the work of Goldwasser,
Kalai, Popa, Vaikuntanathan and Zeldovich (Crypto 2013). We present
a construction of attribute based encryption for RAMs satisfying sublin-
ear decryption complexity assuming learning with errors; this is the first
construction based on standard assumptions. Previously, Goldwasser et
al. achieved this result based on non-falsifiable knowledge assumptions.
We also consider a dual notion of ABE for RAMs, where the database
is in the ciphertext and we show how to achieve this dual notion, albeit
with large attribute keys, also based on learning with errors.

1 Introduction

Attribute-based encryption (ABE) [54] is a powerful paradigm that provides a
controlled access mechanism to encrypted data. Unlike a traditional encryption
scheme, in an attribute-based encryption scheme, an authority can generate a
constrained key skP for a program P such that it can decrypt an encryption of
message µ, associated with attribute x, only if the condition P (x) = 0 is satisfied.
The last decade of research in this area [54,42,50,41,56,45,57,37,26,36,13,28,58,39,21]
has led to several useful applications including verifiable computation [51] and
reusable garbled circuits [35]. Special cases of ABE, such as identity-based en-
cryption [12,55,24,18], and generalizations of ABE, such as functional encryp-
tion [14,49,25], have also been extensively studied.

Current known constructions of ABE offer different flavors of efficiency guar-
antees and can be based on various cryptographic assumptions. Barring few
exceptions, all these constructions [42,56,46,38,13,39] model the program, as-
sociated with the constrained keys, as circuits. Real-world programs, however,
are composed in the so-called Random Access Machine (RAM) model. In this

paper, we consider the natural question of constructing attributed-based encryp-
tion scheme for RAM programs.

As in the circuit setting, an attribute-based encryption scheme for RAM
programs consists of the setup, key generation, encryption and decryption al-
gorithms. The key generation algorithm takes as input the master secret key,
program P , database D and produces an attribute key associated with (P,D).
The encryption algorithm takes as input attribute x, secret message µ and pro-
duces a ciphertext. Decrypting this ciphertext using the key of (P,D) yields the
secret message µ if and only if PD(x) = 0.

Towards constructing attribute-based encryption for RAMs, a näıve approach
is to convert RAM programs generically to circuits: a RAM program initialized
with N words of memory and running in time T can be converted to a circuit of
size O((N + T) · T) and depth T . Thus, the approach via näıve RAM-to-circuit
conversion would incur a (N + T) · T multiplicative factor in the decryption
time. In this paper, we are interested in the common case when T is sublinear
in N , e.g., imagine that the RAM is initialized with a large database with N
entries and the RAM program models a binary search on the database. Gold-
wasser et al. [36] gave the first feasibility result of ABE for RAM programs
with sub-linear decryption time based on the existence of extractable witness
encryption and succinct non-interactive arguments of knowledge (SNARK). Re-
cent works [27,15,10], however, have brought into question the veracity of the
assumptions of extractable witness encryption and SNARKs.

Since building ABE for RAMs on solid cryptographic foundations is an im-
portant problem, we ask the following natural question:

Is there an ABE for RAMs scheme with sublinear decryption overhead based
on standard assumptions? More specifically, we would like the decryption
overhead to be o(N) · poly(T, λ) where λ is the security parameter.

1.1 Our Results and Contributions

ABE for RAMs with sub-linear decryption efficiency. We construct an
ABE scheme for RAMs with sub-linear decryption overhead from the Learn-
ing With Errors (LWE) assumption. Henceforth we assume that the scheme is
parameterized with N and T which denote the size of the database and the
upper bound on the runtime of the RAM respectively, and a security parameter
denoted by λ. Our construction achieves the following:

– There is an initial setup phase that generates a global public parameter of
size poly(T, λ) and master secret key of size poly(T, λ).

– Anyone that has access to the public parameters can encrypt a message µ to
an attribute x of size λ (For simplicity, we set the size of attribute x to be
λ. However, the size of the attribute can be set in advance and of any fixed
polynomial in λ) — later x will serve as an input to a RAM program. The
encryption time and ciphertext size is upper bounded by poly(T, λ).

2

– An authority with master secret key can generate a decryption key skP,D
given the description of a RAM program P (where the description will in-
clude the RAM’s next instruction circuit) and a long attribute vector de-
noted by D of size N , and the size of the secret key skP,D is upper bounded
poly(T,N, λ).

– Finally, given the ciphertext ctx that is associated with the attribute x,
anyone with the public parameters and the decryption key skP,D can decrypt
the plaintext message µ if PD(x) = 0; and importantly decryption time is
poly(T, λ), i.e., independent of the RAM’s initial memory sizeN . For security,
we show that an adversary learns nothing about the encrypted plaintext µ
if he does not possess any skP such that PD(x) = 0.

More formally, our main theorem is the following:

Theorem 1.1 (ABE for RAMs) Assuming the hardness of the Learning With
Errors problem (with sub-exponential modulus)3, there exists an ABE scheme for
RAMs with poly(T, λ) decryption efficiency, i.e., independent of N .

Moreover, (i) the cost of generating public parameters is poly(T, λ), i.e., in-
dependent of N , (ii) the cost of generating secret keys is poly(N,T, λ) and, (iii)
the cost of generating ciphertexts is poly(T, λ).

Input-Specific Runtime. While the construction in the above theorem has de-
cryption complexity proportional to the worst case running time of the RAM
programs, we can transform this scheme into another scheme where the decryp-
tion complexity is input-specific. This is performed by running log T copies of
the scheme by setting the worst case runtime of the first scheme to be 2, second
scheme to be 22, so on and the runtime of the (log T)-th scheme is set to be
T . This idea has been used in prior works (for instance [36]). Note that this
increases the size of the public parameters, keys and ciphertexts by a multiplica-
tive factor of log T .

On fixing the attribute length. In our construction, the length of the attribute
is fixed at the time of setup. In particular, both the public parameters and the
attribute keys grow with the length of the attribute. Note that the attribute keys
already grow proportional to the length of the database and the database size
is typically larger than the attribute length. However, achieving public key sizes
independent of the attribute length would be interesting, especially given that
there are works [21] that have achieved this in the context of ABE for circuits.

Comparison with [36]. As mentioned earlier, [36] also achieves ABE for RAMs
with sub-linear decryption complexity from exotic assumptions. The only draw-
back in our scheme in comparison with [36] is that the parameters in the con-
struction of [36], specifically the public parameters, ciphertext size and the key
sizes do not grow with the maximum time bound. On the other hand, our pa-
rameters do grow with the maximum time bound T . There is evidence to suggest

3 All known lattice-based ABE for circuits [13] are based on the same assumption.

3

that an ABE for RAMs scheme whose parameters do not grow with the max-
imum time bound can only be based on strong cryptographic assumptions. In
particular such a notion would imply succinct randomized encodings for Turing
machines [11,6]4; a notion, despite numerous attempts, we don’t yet know how
to build from well-studied assumptions.

Comparison with Circuit-Based Schemes. We compare the parameters
we obtain in our scheme with the parameters obtained in the naive approach of
RAM-to-circuit conversion and then applying previously known ABE for circuits
schemes. Refer to Figure 1.

Schemes # of Zn×mq # of Zmq Size of Decryption
Public key Ciphertext Key of (P,D) complexity

of (x, µ)

Via ABE

for circuits [13] Õ(|x|) Õ(|x|) |P |+N +
(

Õ(1)

of Zn×mq

)
Õ((T +N)T)

Via ABE

for circuits [21] Õ(1) Õ(|x|) |P |+N +
(

Õ(1)

of Zn×mq

)
Õ((T +N)T)

Our Work for

RO-RAMs Õ(|x|+ T) Õ(|x|+ T) |P |+
(

Õ(TN)

of Zn×mq

)
Õ(T)

Our Work for

RAMs Õ(|x|+ T) Õ(|x|+ T) |P |+
(
Õ(T (N+T))

of Zn×mq

)
Õ(T)

Fig. 1: We compare the parameters in our work with previous works. The lattice
dimension (n,m, q) is asymptotically the same in all three approaches. The Õ
notation suppresses poly-logarithmic factors (in N and T). The encryptor takes
an auxiliary input x and the key generator takes as input a program P and
a database D of size N . The decryption complexity is calculated in terms of
vector-matrix multiplication over Zq. The attribute key is generated for a RAM
program P with worst case runtime to be T and it takes time t to compute on
D. In previous works, an attribute key for P is generated by first transforming
it into a circuit of size (T + N) and depth T and then generating an attribute
key for the resulting circuit.

While the key sizes in our scheme are larger than the ones obtained via
circuit ABE schemes, our scheme has the following advantage over ABE for
circuit schemes: since the same decryption keys, once generated, can be applied
to (unbounded polynomially) many ciphertexts, the cost of key generation and
its size can be amortized over multiple decryption queries. This is especially
useful in scenarios, where a client can perform a one-time cost of generating

4 The works [11,6] show implication of ABE for Turing machines (as defined in [6]) to
succinct randomized encodings (Appendix A.5 in [11])

4

keys and sending it over to the server during the offline phase and during the
online phase, can verifiably delegate multiple computations by suitably sending
encryptions of its inputs; note that in this scenario, we are only interested in
verifying whether the server has performed the computation correctly and not
hiding the computation itself.

Dual ABE for RAMs. We also consider an alternate notion of ABE for
RAMs, that we call dual ABE for RAMs. In this notion, the database is part
of the ciphertext and not the key. That is, the key generation procedure now
only takes as input the master secret key and the RAM program P while the
encryption procedure takes as input the database D, the auxiliary input x (in
the technical section, we consider x to be part of D) and the secret message µ.
As before, we require that it should be possible to recover µ if indeed PD(x) = 0.

We demonstrate a construction of dual ABE for RAMs, also based on the
learning with errors problem with the same decryption efficiency as stated in
Theorem 1.1. In more detail,

Theorem 1.2 (Dual ABE for RAMs) Assuming the hardness of the Learn-
ing With Errors problem (with sub-exponential modulus)5, there exists a dual
ABE scheme for RAMs with poly(T, λ) decryption efficiency, i.e., independent
of N .

Moreover, (i) the cost of generating public parameters is poly(N,T, λ), (ii)
the cost of generating secret keys is poly(N,T, λ) and, (iii) the cost of generating
ciphertexts is poly(N,T, λ).

On Large Attribute Keys. Unlike our construction of ABE for RAMs (Theo-
rem 1.1), our construction of dual ABE for RAMs has public keys that grow
proportional to the size of the database. Moreover, even the size of our attribute
keys depends on the database size. While this is not inherent and an undesirable
feature of our scheme, we see our work as a first step in achieving dual ABE
schemes beyond circuits; note that none of the previous ABE schemes achieved
sub-linear decryption property and our dual ABE construction is the first to do
so.

1.2 Technical Overview

We give an overview of the techniques employed in our main construction. We
later reuse some of the techniques used in our main construction to obtain a
construction in the dual setting.

Starting Point: Garbled RAMs. A natural idea to build ABE for RAMs is
to use garbled RAMs [32,29,30]. A garbled RAM allows for separately encoding
a RAM program6-database pair (P,D) and encoding an input x such that the
encodings only leak the output PD(x); computing both the encodings requires

5 All known lattice-based ABE for circuits [13] are based on the same assumption.
6 The formal definition of a RAM program can be found in the preliminaries.

5

a private key not revealed to the adversary. Notice that a garbled RAM scheme
implies a one-time, secret key ABE for RAM scheme; meaning that the adversary
only gets to make a single ciphertext query and a single attribute key query.
Indeed, it is unclear how to remove the one-time restriction while simultaneously
achieve a public-key ABE for RAMs scheme by generically using garbled RAMs.
Hence, we circumvent this conundrum by diving into the innards of the existing
garbled RAMs schemes. The hope would be to adopt some of the techniques
used in constructing garbled RAMs to build an ABE for RAMs scheme.

Most of the current known constructions of garbled RAMs have the follow-
ing blueprint: to garble a RAM program P (associated with a step circuit C),
database D, generate T garbled circuits, where T is an upper bound on the run-
ning time of P . The ith garbled circuit performs the execution of the ith time step
of P . Also, every entry of the database D is suitably encoded using an appropri-
ate encoding scheme (for instance, in [32], an IBE (identity-based encryption)
key is associated with every entry of the database). The garbling of P consists
of all the T garbled circuits and the encoding of the database D. The encoding
of input x consists of wire labels of the first garbled circuit corresponding to the
input x.

To evaluate a garbling of P on an encoded database D and wire labels of x,
perform the following operations for i = 1, . . . , T − 1:

– If i = 1, evaluate the first garbled circuit on wire labels of x.
– If i > 1, evaluate the ith garbled circuit to obtain output encodings of the
ith step of execution of PD on x.

– Next, we compute the recoding step that converts the output encodings of the
ith step into the input encodings of the (i+1)th step. These input encodings
will be fed to the (i+ 1)th garbled circuit.

The output of the T th garbled circuit determines the output of execution of
PD(x).

From Garbled RAMs to ABE for RAMs: Challenges. Towards realizing
our hope of using garbled RAMs techniques to build an ABE for RAMs scheme,
we encounter the following fundamental issues:

– The garbling and encoding operations in a garbled RAM scheme are in-
herently secret-key operations; they require a shared secret-key to compute
garbled program and database encodings respectively. Since our goal is to
construct public-key ABE for RAMs, the encryptor can perform neither the
garbling nor the encoding procedures.

– Garbling schemes typically do not offer any reusability property7; they are
useful only when a single computation needs to be hidden. It is unclear how to

7 An exception is the reusable garbling scheme of Goldwasser et al. [35], however
their scheme only offers one-sided reusability: that is, their scheme only allows the
adversary to get a single garbled circuit which can be reused across multiple input
encodings. This is not useful in our setting since the adversary gets to query multiple
keys. Moreover, just like any garbling scheme, even reusable garbled circuits require
secret-key to perform the encoding operations.

6

use garbled circuits, an integral part of current garbled RAM constructions,
in the ABE setting, where multiple attribute keys need to be issued.

– Tied to the issue of using garbled circuits is also the issue of implementing
the recoding step. We need to implement a recoding step that can be reused
across different computations.

Our Solution in a Nutshell. The main technical contribution of this paper is
to identify a template to solve this problem and instantiate this template using
a novel combination of existing lattice-based techniques.

We describe our template of ABE for RAMs. This will be an over-simplifcation
of our actual scheme and is intended to help the reader towards understanding
our final construction. For now, focus on the setting when the keys are only as-
sociated with read-only RAMs (i.e., they only read from the memory and never
write into the memory). This template can be easily adapted to the setting where
the program can also write to the memory.

– A key for a program P and a database D will consist of two parts: the first
part, denoted by skD, is associated with the database and the second part,
denoted by (StepKey1, . . . ,StepKeyT), consists of T sets of recoding keys
with T being the maximum running time of PD(·).

– A ciphertext for an input x and a secret message µ consists of two parts

(ct
(1)
x , ct

(2)
x) and an encryption of µ, namely ctµ (we will need a scheme that

satisfies some specific properties): the first part ct
(1)
x serves as encoding of the

initial input to the step circuit of the RAM program. We describe the role

of the second part ct
(2)
x when we describe the decryption operation below.

– The decryption of a ciphertext of (x, µ) using a key of (P,D) proceeds in
the following steps:
• Translation Step: First, using the second part of the ciphertext, i.e.,

using ct
(2)
x , and using the key associated with the database skD in the

attribute key, obtain a probabilistic encoding of D.
• The following operations are executed for time steps t = 1, . . . , T :
∗ Evaluation Step: Homomorphically evaluate on the input encodings

of the tth step to obtain the output encodings of the tth step. This is
akin to the evaluation of the tth garbled circuit in the garbled RAM
constructions.
∗ Recoding Step: Recode the output encodings of the tth step to obtain

the input encodings of the (t + 1)th step. This is akin to the recoding
step of the garbled RAM constructions.

The tth evaluation and the recoding steps are performed using the key
StepKeyt. Moreover, they interact with the probabilistic encoding of D
produced in the translation step.
If the output of the final T th step is an encoding of 0 then this is used to
decrypt the encryption of µ, given as part of the ciphertext, to obtain the
result µ.

We now show how to implement the above template using lattice-based tech-
niques. The starting point to our construction is the work of [13].

7

Implementation of Our Template: Read-only RAMs. We implement our
template using lattice-based techniques; as before, we first consider the read-only
setting. We start with the high level description of the encryption procedure:

let (ct
(1)
x , ct

(2)
x , ctµ) be the ciphertext associated with the input x and secret

message µ. The first part ct
(1)
x consists of lattice-based encodings of x, initial

state, initial read address and the initial read value of the RAM program. A
lattice-based encoding of a bit b is computed using s · (A + b · G) + e, where

s
$←− Z1×n

q ,A
$←− Zn×mq and e ∈ Z1×m

q is drawn from a suitable error distribution;
such lattice-based encodings has been studied by many works in the past [38,13].

We generate ctµ to be 〈s,u〉 + µdq/2e + e∗, where u, s
$←− Z1×n

q and e∗ ∈ Zq is
drawn from a suitable error distribution.

We will postpone the discussion on the generation of ct
(2)
x and the attribute

keys. Instead, we first mention the main ideas incorporated in the translation,
evaluation and the recoding steps; this will then guide us towards identifying

the attribute keys and also ct
(2)
x that will let us execute these steps.

– Implementing the translation step: The goal of this step is to ob-
tain a lattice-based encoding of the database D; in particular, this en-
coding should be computed with respect to the same secret s used in the

lattice-based encoding in ct
(1)
x . To do this, we generate ct

(2)
x and skD (be-

longing to the attribute key) such that evaluating skD on ct
(2)
x yields en-

codings of the form ({s · (A∗i + D[i]G) + ei})8. In more detail, ct
(2)
x con-

tains auxiliary encodings of many Boolean matrices such that given any
matrix, using these auxiliary encodings, we can compute an encoding of

this specific matrix. That is, ct
(2)
x will consist of encodings of the form

s · (Bjk`+2`Mjk)+ejk` and s ·B′jk`+e′jk`, where s
$←− Z1×n

q , (Bjk`,B
′
jk`)

$←−
Zn×mq for j ∈ [n], k ∈ [m], ` ∈ [log(q)] and (ejk`, e

′
jk`) ∈ Z1×m

q is drawn from

a suitable error distribution. Here, Mjk is a matrix with 1 in the (j, k)th

entry and zeroes everywhere else. Now, observe that using the additive ho-
momorphic properties, we can compute an encoding that is approximately

s ·


∑
jk`

ajk`Bjk` + (1− ajk`)B′jk` + A′i︸ ︷︷ ︸
A∗i

+D[i] ·G

, where ajk` denotes the

`th bit in the bit decomposition of the (j, k)th entry in the matrix A′i+D[i]·G,

with A′i +D[i] ·G being part of skD. Finally, we note that ct
(2)
x is indepen-

dent of the size of the database D; this is necessary since we require that
the ciphertext is of of size independent of the database length. We note that
this technique of transforming encodings of bit decomposition of matrices
into encodings of matrices have been studied in the past albeit for different
reasons (see [19] for example).

8 A∗i +D[i]G will be denoted by Ei in the technical sections.

8

An astute reader would notice that the translation step takes time propor-
tional to the database size and thus, would violate the sub-linear decryption
property! We avoid this problem by only translating only those database en-
tries that are going to read during the evaluation of PD(x); note that P,D
and x are public and hence, the entries that are going to be read can be
correctly identified.

– Implementing the evaluation step: This step would be a direct adap-
tation of the lattice-based evaluation procedure of [13]. Given approximate
encodings ({s · (Ai + biG)}), for bits b1, . . . , bn, and for any circuit C with
a single-bit output, the evaluation procedure of [13] (we will use the no-
tation later for this procedure as CtEval) allows for obtaining ({s · (AC +
C(b1, . . . , bn)G)ei}). The matrix AC is obtained by homomorphically eval-
uating the matrices (A1, . . . ,An) using the circuit C (later, we will refer to
this procedure as PubEval). We use the procedure of [13] to homomorphically
evaluate the step circuit.

– Implementing the recoding step: We use lattice trapdoors [33] to convert
output encodings of one time step into input encodings of the next time step.
To give a flavor of how the lattice trapdoors are generated, we will take a
simple case: suppose we need to translate an encoding of the read address
i ∈ [N] output by the τ th evaluation step, we first sample a matrix Aval,τ

and then generate Trd,τ
i such that the following holds:

[
Ard,τ + iG||A∗i +D[i] ·G

](Trd,τ
i

I

)
= Aval,τ +D[i] ·G (1)

where Ard,τ is the matrix computed during the τ th evaluation step. Recall
that A∗i + Di ·G is output by encryptor. Moreover, Aval,τ + bG will serve
as the matrix that is used to encode the read value for the (τ + 1)th step.
(Later we will see that in order to make the security proof work, we also
additionally need an anchor matrix A and this will be taken into account
when we generate the trapdoor matrices; see the technical sections for more
details). All the lattice trapdoors generated during the tth step will be part
of StepKeyt.

Implementation of Our Template: Handling Write Operations. To han-
dle RAM programs that also write to the memory, we do the following: first, we
view the database as an append-only data structure, with initial size to be N .
That is, every time the program wishes to write to some memory location i, it
instead appends this value to the end of the database, say at the (N + τ)th loca-
tion. However, this procedure introduces an additional issue. Before we describe
the issue, we point out that the current lattice-based techniques disallow us from
rewriting to the same location twice9 and thus, our only other option is to use
the append-only data structure.

9 This would tantamount to obtaining two approximate encodings of the form s(Ai +
bi ·G) and s(Ai + b′i ·G), where bi is the old value and b′i is the newly written value;
assuming b′i 6= bi, having these two encodings is sufficient to break LWE.

9

Suppose the ith location is written during the τ th step. This means that the
(N + τ)th location would now encode the latest value corresponding to the ith

location. If at a later point in time, i.e., in time step� τ , the ith location needs to
be read, there is no mechanism in place that prevents an adversarial evaluator to
use the old encoding of the ith memory location to perform an illegal evaluation.

To solve this problem, we introduce an auxiliary circuit Cup which keeps
track of all the writes done so far and thus, for any given location i, can correctly
identify the latest encoding to be used. In particular, the evaluation step from
the read-only setting needs to be revised to also take into account the circuit
Cup. That is, first the step circuit is homomorphically evaluated to obtain the
location i to be read next and then the circuit Cup is executed to correctly
identify the (N + τ)th encoding that contains the value associated with location
i, where τ is the time step where the ith memory location was last written to.
The translation and the recoding steps will be defined along the same lines as
that of the read-only setting; we defer the details to the technical sections.

Careful readers may notice that the run-time of circuit Cup is O(T), which
implies the decryption time would additionally incur a multiplicative overhead
of T . However, we can resolve this issue by first compiling a RAM into a last-
write-aware RAM. Given a RAM P , we can compile it into another machine
denoted RAM P ′ where the next-instruction circuit is replaced with a “next-
instruction RAM” that not only emits the next address to access, but also when
the next address was last written. We show such a compilation algorithm that
incurs only logarithmic overhead. The idea is to maintain a balanced search tree
(e.g., a 2-3 tree) that records for each logical address, when the last write was.
Moreover, in this balanced search tree, each parent also keeps track of the last
written times of its children. Now, when the next-instruction circuit of RAM
P decides to access some logical address addr, P ′ would search for addr in this
search tree to find out when addr was last written. Note that every search-tree
operation touches constant number of tree-paths, and since the parent knows
the last-written times of the children, during the search-tree operation, every
memory access always knows its last-written time.

The construction for the dual setting, where the database is part of the ciphertext
as against the attribute key, is obtained by a simple modification of the above
template. In particular, the translation step is not necessary for the dual setting
and hence, will be removed. The other steps, evaluation and recoding steps, will
be defined along the same lines as the above template.

1.3 Related Work

The constructions of ABE systems has a rich literature. The seminal result of
Goyal, Pandey, Sahai and Waters [42] presented the first construction of ABE
for boolean formulas from bilinear DDH assumption. Since then, several promi-
nent works achieved stronger security guarantees [46], better efficiency or design
guarantees [58,9,1] and achieving stronger models of ABE for a restricted class
of functions [43]. The breakthrough work of Gorbunov, Vaikuntanathan and

10

Wee [38] presented the first construction of ABE for all polynomial-sized circuits
assuming learning with errors. Following this, several works [13,21] improved this
result in terms of efficiency and also considering stronger security models [38].
In addition to [36], there are a few works that consider ABE in other models of
computation. Waters [57] proposed a construction of functional encryption for
regular languages and subsequently, Agarwal and Singh [4] constructed reusable
garbled finite automata from LWE. Ananth and Sahai [8] construct functional
encryption for Turing machines assuming sub-exponentially secure functional en-
cryption for circuits; later this assumption was weakened to polynomially secure
functional encryption by [3,31,7,44]. Deshpande et al. [23] present an alternate
construction of attribute based encryption for Turing machines under the same
assumptions.

2 Preliminaries

Notations. Let λ denote the security parameter, and ppt denote probabilistic
polynomial time. Bold uppercase letters are used to denote matrices M, and bold
lowercase letters for vectors v (row vector). We use [n] to denote the set {1, ..., n}.
We say a function negl(·) : N → (0, 1) is negligible, if for every constant c ∈ N,
negl(n) < n−c for sufficiently large n. Let X and Y be two random variables
taking values in Ω. Define the statistical distance, denoted as ∆(X,Y) as

∆(X,Y) :=
1

2

∑
s∈Ω
|Pr[X = s]− Pr[Y = s]|

Let X(λ) and Y (λ) be distributions of random variables. We say that X and Y

are statistically close, denoted as X
s
≈ Y , if d(λ) := ∆(X(λ), Y (λ)) is a negligible

function of λ. We say two distributions X(λ) and Y (λ) are computationally

indistinguishable, denoted as X
c
≈ Y if for any ppt distinguisher D, it holds that

|Pr[D(X(λ)) = 1]− Pr[D(Y (λ)) = 1]| = negl(λ).

2.1 Random Access Machines

We recall the definition of RAM program from [32]. A RAM computation con-
sists of a RAM program P and a database D. The representation size of P
is independent of the length of the database D. P has random access to the
database D and we represent this as PD. On input x, PD(x) outputs the answer
y. In more detail, the computation proceeds as follows.

The RAM program P is represented as a step-circuit C. It takes as input
internal state from the previous step, location to be read, value at that location
and it outputs the new state, location to be written into, value to be written
and the next location to be read. More formally, for every τ ∈ T , where T is the
upper running time bound

(stτ , rdτ ,wtτ ,wbτ)← C(stτ−1, rdτ−1, bτ)

where we have the following:

11

– stτ−1 denotes the state from the (τ − 1)-th step and stτ denotes the state in
the τ -th step.

– rdτ−1 denotes the location to be read from, as output by the (τ −1)-th step.
– bτ denotes the bit at the location rdτ−1.
– rdτ denotes the location to be read from, in the next step.
– wtτ denotes the location to be written into.
– wbτ denotes the value to be written at τ -th step at the location wtτ .

At the end of the computation, denote the final state to be stend. If the compu-
tation has been performed correctly, stend = y. In this work, we are interested
only in RAM programs with boolean outputs.

2.2 Attribute-Based Encryption for RAMs

We state the syntax and security definition of (key-policy) public-key attribute-
based encryption (ABE) for RAMs. It consists of a tuple of ppt algorithms
Π = (Setup,KeyGen,Enc,Dec) with details as follows:

– Setup, Setup(1λ, 1T): On input security parameter λ and upper time bound
T , setup algorithm outputs public parameters pp and master secret key msk.

– Key Generation, KeyGen(msk, P,D): On input a master secret key msk, a
RAM program P and database D, it outputs a secret key skP,D.

– Encryption, Enc(pp, x, µ): On input public parameters pp, an input x and
a message µ, it outputs a ciphertext ctx.

– Decryption, Dec(skP,D, ctx): This is modeled as a RAM program. In partic-
ular, this algorithm will have random access to the binary representations of
the key skP,D and the ciphertext ctx. It outputs the corresponding plaintext
µ if PD(x) = 0; otherwise, it outputs ⊥.

Definition 2.1 (Correctness) We say that the ABE for RAMs scheme de-
scribed above is correct, if for any message µ, any RAM program P , any database
D and any input x where PD(x) = 0, we have Dec(skP,D, ctx) = µ, where
(msk, pp)← Setup(1λ, 1T), skP,D ← KeyGen(msk, P,D) and ctx ← Enc(pp, x, µ).

We define the efficiency and security properties below.

Efficiency. We define two efficiency properties associated with an ABE for
RAMs scheme: namely sub-linear decryption and input-specific runtime prop-
erty. The latter property implies the former.

Sub-linear Decryption: This property states that the complexity of decryp-
tion is p(λ, T) for some fixed polynomial p, where T is the maximum runtime
bound specified as part of the setup. We call this sub-linear decryption for the
following reason: suppose T is sufficiently sublinear in |D| (for instance, poly-
logarithmic in |D|) then the decryption time is sub-linear in |D|. More specifi-

cally, suppose p(λ, T) = λc
′ · T c and if T << |D| 1c , for some constants c′, c ∈ N,

then the decryption complexity is sub-linear in |D|.

12

Definition 2.2 (Sublinear Decryption) An ABE for RAMs scheme ABE is
said to satisfy sublinear decryption property if the following holds: for any database
D, message µ, program P , input x, (i) (msk, pp)← Setup(1λ, 1T), (ii) skP,D ←
KeyGen(msk, P,D), (iii) ctx ← Enc(pp, x, µ) and, (iv) the decryption Dec of the
functional key skP,D on input the ciphertext ctx takes time poly(T, λ), where T
is the running time of PD(x).

Input-specific Runtime: This property states that the time to decrypt a ci-
phertext ct of (D,µ) using an attribute key of skP is p(λ, t) for some fixed
polynomial p, where t is the execution time of P on input database D. Note that
t could be much smaller than T , where T is the maximum bound on the running
time of the P .

Definition 2.3 (Input-specific Runtime) An ABE for RAMs scheme ABE
is said to satisfy input-specific runtime property if the following holds: for any
database D, message µ, program P , input x, (i) (msk, pp)← Setup(1λ, 1T), (ii)
skP,D ← KeyGen(msk, P,D), (iii) ctx ← Enc(pp, x) and, (iv) the decryption Dec
of the functional key skP,D on input the ciphertext ctx takes time poly(t, λ),
where t is the running time of PD(x).

Remark 2.4 While the above properties focus on the decryption complexity,
we can also correspondingly define efficiency measures for setup, key generation
and encryption. Since the focus of this work is on decryption complexity, we
postpone the discussion of these properties to future works.

Security. Our definition of security for ABE for RAMs will be simulation-
based and in the selective setting; along the same lines as that of ABE for
circuits. Informally speaking, the adversary is allowed to make multiple RAM
program and database queries and submit an input query x∗ such that for every
program/database (P,D) queried, we have PD(x∗) 6= 0. The adversary is also
allowed to submit the challenge message µ. We require that the adversary can-
not distinguish the two worlds: (i) when the attribute keys and ciphertext are
computed as per the scheme, (ii) when the attribute keys and ciphertext can be
simulated even without given µ.

Definition 2.5 An ABE scheme Π for RAMs is simulation-based selectively
secure if there exists ppt simulator S = (S1,S2,S3) such that for any ppt ad-

missible adversary A = (A1,A2), the two distributions {ExptrealA (1λ)}λ∈N
c
≈

{ExptidealS (1λ)}λ∈N are computationally indistinguishable

13

1. x∗ ← A1(1λ)
2. (pp,msk)← Setup(1λ, 1T)

3. µ← AKeyGen(msk,·,·)
2 (pp)

4. ctx∗ ← Enc(pp, x∗, µ)

5. α← AKeyGen(msk,·,·)
2 (pp, ctx∗)

6. Output (pp, µ, α)

(a) ExptrealA (1λ)

1. x∗ ← A1(1λ)
2. pp← S1(1λ, 1T , x∗)

3. µ← AS3(x
∗,·,·)

2 (pp)
4. ctx∗ ← S2(pp, x∗, 1|µ|)

5. α← AS3(x
∗,·,·)

2 (pp, ctx∗)
6. Output (pp, µ, α)

(b) ExptidealS (1λ)

We call adversary A = (A1,A2) admissible, if the query (Pi, Di) made by A2

satisfies PDii (x∗) 6= 0. In the ideal experiment ExptidealS (1λ): S1 is used to generate
simulated public paramters, S2 generates challenge ciphertext, and S3 answers
secret key queries.

Dual Setting. We also consider the dual setting of the syntax described above,
where the database is associated with ciphertext. We term this notion as dual
ABE for RAMs. As in the above definition, the dual scheme consists of algo-
rithms (Setup,KeyGen,Enc,Dec). The algorithms Setup and Dec are defined the
same way as above. We define KeyGen and Enc as follows.

– KeyGen(msk, P): On input a master secret key msk, a RAM program P , it
outputs a secret key skP .

– Enc(pp, D, x, µ): On input public parameters pp, a database D, an input x
and a message µ, it outputs a ciphertext ctD,x.

We omit the descriptions of the correctness, efficiency and security properties
of dual ABE for RAMs as they are defined analogously. Due to space limit, the
construction and its security proof are presented in the full version.

2.3 Learning With Errors

The learning with errors assumption was introduced by Regev [53]. This assump-
tion has been influential in basing the security of many cryptographic primitives
and most notably, fully homomorphic encryption.

Definition 2.6 (LWE) For an integer q = q(n) ≥ 2, and an error distribution
χ = χ(n) over Zq, the Learning With Errors problem LWEn,q,χ is to distinguish
between the following pairs of distributions (e.g. as given by a sampling oracle
O ∈ {Os,O$}):

{A, sA + x} and {A,u}

where A
$← Zn×mq , s

$← Znq , u
$← Zmq , and x← χm.

In this work we only consider the case where the modulus q ≤ 2n. Recall that
GapSVPγ is the (promise) problem of distinguishing, given a basis for a lattice

14

and a parameter d, between the case where the lattice has a vector shorter than
d, and the case where the lattice does not have any vector shorter than γ · d.

There are known reductions between LWEn,q,χ and those problems, which
allows us to appropriately choose the LWE parameters for our scheme. We sum-
marize in the following corollary (which addresses the regime of sub-exponential
modulus-to-noise ratio).

Theorem 2.7 ([53,52,47,48,17]) For any function B = B(n) ≥ Õ(
√
n) there

exists a B-bounded distribution ensemble χ = χ(n) over the integers s.t. for all
q = q(n), letting γ = Õ(

√
bq/B), it holds that LWEn,q,χ is at least as hard as the

quantum hardness of GapSVPγ . Classical hardness GapSVPγ follows if q(n) ≥
2n/2 or for other values of q for Ω̃(

√
n) dimensional lattices and approximation

factor q/B · poly(ndlog qe).

2.4 Trapdoors and Discrete Gaussians

Let n, q ∈ Z, and m = ndlog qe and g = (1, 2, 4, . . . , 2dlog qe−1). The gadget
matrix [48] G is defined as the diagonal concatenation of vector g n times.
Formally, G = g ⊗ In ∈ Zn×mq . For any t ∈ Z, the function G−1 : Zn×tq →
{0, 1}m×t expands each entry a ∈ Zq of the input matrix into a column of size
dlog qe consisting of the bit-representation of a. For any matrix A ∈ Zn×tq , it
holds that G ·G−1(A) = A mod q.

The (centered) discrete Gaussian distribution over Zm with parameter τ ,

denoted DZm,τ , is the distribution over Zm where for all x, Pr[x] ∝ e−π||x||2/τ2

.
The following lemmas have been established in a sequence of works.

Lemma 2.8 (Trapdoor Generation [33,48]) Let q, n,m be positive integers
with q ≥ 2 and sufficiently large m = Ω(n log q). There exists a ppt algo-
rithm TrapGen(1n, q,m) that with overwhelming probability outputs a pair (A ∈
Zn×mq ,TA ∈ Zm×m) such that the distribution of A is statistically close to uni-

form distribution over Zn×mq and ||TA|| ≤ O(
√
n log q).

Lemma 2.9 ([33,22,2]) Given integers n ≥ 1, q ≥ 2 there exists some m =
m(n, q) = O(n log q) There are sampling algorithms as follows:

– There is a ppt algorithm SampleLeft(A,B,TA,u, s), that takes as input: (1)
a rank-n matrix A ∈ Zn×mq , and any matrix B ∈ Zn×m1

q , (2) a “short”

basis TA for lattice Λ⊥q (A), a vector u ∈ Znq , (3) a Gaussian parameter

s > ||T̃A|| · ω(
√

log(m+m1)); then outputs a vector r ∈ Zm+m1 distributed
statistically close to DΛu

q (F),s where F := [A||B].

– There is a ppt algorithm SampleRight(A,B,R,TB,u, s), that takes as input:
(1) a matrix A ∈ Zn×mq , and a rank-n matrix B ∈ Zn×mq , a matrix R ∈
Zm×mq , where sR := ||R|| = supx:||x||=1 ||Rx||, (2) a “short” basis TB for

lattice Λ⊥q (B), a vector u ∈ Znq , (3) a Gaussian parameter s > ||T̃B|| · sR ·
ω(
√

logm); then outputs a vector r ∈ Z2m distributed statistically close to
DΛu

q (F),s where F := [A||AR + B].

15

Based on the above sampling algorithms, we have the following lemma:

Lemma 2.10 ([40]) Given integers n ≥ 1, q ≥ 2 there exists some m = m(n, q) =

O(n log q), β = β(n, q) = O(n
√

log q) and s > ||T̃A|| · ω(
√

log(m)) such that for
all m ≥ m∗ and all k, we have the following two distributions are statistically
close

(A,TA,B,U,V) ≈ (A,TA,B,U
′,V′)

where (A,TA) ← TrapGen(q, n,m), (A′,B)
$← Zn×mq and U ← DZ2m×k ,V =

A ·U, V′
$← Zn×kq and U′ ← SampleLeft(A,B,TA,V

′, s).

We conclude with a variant of Leftover Hash Lemma [2,13]:

Lemma 2.11 Suppose that m > (n + 1) log q + ω(log n) and that q > 2 is
prime. Let S be an m× k matrix chosen uniformly in {0, 1}m×k where k = k(n)
is polynomial in n. Let A and B be matrices chosen uniformly in Zn×mq and

Zn×kq respectively. Then, for all vectors e in Zmq , the distribution (A,AS, eS) is
statistically close to the distribution (A,B, eS).

2.5 Homomorphic Evaluation Procedures

The following is an abstraction of the evaluation procedure in recent LWE based
FHE and ABE schemes that developed in a long sequence of works [2,48,34,5,13,40].
We use a similar formalism as in [20,16,19].

Theorem 2.12 There exist efficient deterministic algorithms PubEval and CtEval
such that for all n, q, ` ∈ N, and for any sequence of matrices (D1, . . . ,D`) ∈
(Zn×ndlog qeq)`, for any depth-d Boolean circuit f : {0, 1}` → {0, 1} and for every
x = (x1, . . . , x`) ∈ {0, 1}`, the following properties hold:

– PubEval(f, {Di ∈ Zn×ndlog qeq }i∈[`]): On input matrices {Di}i∈[d] and a func-

tion f ∈ F , the public evaluation algorithm outputs Df ∈ Zn×ndlog qeq as the
result.

– TrapEval(f,x,A ∈ Zn×dlog qeq , {Ri}i∈[`]): the trapdoor evaluation algorithm
outputs Rf , such that

PubEval(f, {ARi + xiG}i∈[`]) = ARf + f(x)G

Furthermore, we have ||Rf || ≤ δ ·maxi∈[`] ||Ri||.
– CtEval(f,x, {ci}`i=1): On input vectors {ci}`i=1 ∈ Zmq , an attribute x and

function f , the ciphertext evaluation algorithm outputs cf(x) ∈ Zndlog qeq ,
such that

CtEval(f,x, {sT(Di + xiG) + ei}i∈[`]) = sT(Df + f(x)G) + e′

where x = (x1, . . . , x`) and Df = PubEval(f, {Di ∈ Zn×ndlog qeq }i∈[`]). Fur-
thermore, we require ||e′|| ≤ δ ·maxi∈[`] ||ei||.

16

3 ABE for RAMs: Read-Only Case

In this part, we describe our ABE construction for read-only RAMs. A RAM
program P , with random access to database D and input x, is said to be read-
only if it only reads from D and never writes to it. The step circuit for read-only
RAM will be defined as follows:

(stτ , rdτ)← C(stτ−1, rdτ−1, bτ)

where stτ denotes the state information at τ -th step, rdτ denotes the read address
at τ -th step and bτ is the read value.

Parameters of the Scheme. In the description below, the parameters we use
are specified in Table 1.

Parameters Description Setting

N maximum database length poly(λ)

T maximum running time poly(λ)

Lst state bit-length poly(λ)

Lrd address bit-length logN

Table 1: Read-only ABE Parameters

We use notation {rdτi }i∈[Lrd] to denote the bit representation of read address
rdτ ∈ [N].

3.1 Subroutines TranslatePK, StepEvalPK and StepEvalCT

Before proceeding to our ABE construction, we first describe the syntax of three
following subroutines that are used in the construction:

– ListMxDB← TranslatePK (MxPKaux, D): On input auxiliary encoding public
key MxPKaux and database D = {Di}i∈[N], the translation algorithm outputs
encoding matrices ListMxDB for the database.

– (StepKeyτ , ListMxPKτ) ← StepEvalPK (C, τ, ListMxPKτ−1,msk, D): On in-
put the step circuit C, step index τ , matrices ListMxPKτ−1 for the (τ −1)-th
step and master secret key msk, the key evaluation outputs the τ -th step key
StepKeyτ and encoding matrices ListMxPKτ for the τ -th step.

– ListVecCTτ ← StepEvalCT (C, τ, ListVecCTτ−1, StepKeyτ , D): On input the
step circuit C, step index τ , ciphertext ListVecCTτ−1 of the (τ − 1)-th step,
τ -th attribute key and databae D, the ciphertext evaluation outputs the
ciphertext ListVecCTτ of the τ -th step.

In the following description, we set function f : {0, 1}Lst → Z to be f
(
{xi}Lst

i=1

)
=∑

xi · 2i. The construction of StepEvalPK and StepEvalCT with respect to step
circuit C are as follows:

TranslatePK (MxPKaux, D): the translation algorithm does the following:

17

– Parse MxPKaux as
{

Bjk`,B
′
jk`

}
j∈[n],k∈[m],`∈dlog qe

.

– Sample N random matrices {A′i}i∈[N] from uniform distribution over Zn×mq .
– For i ∈ [N], set Ai = A′i +D[i]G.
– For i ∈ [N], compute the encoding of i-th entry Ei as

Ei =
∑
j,k,`

(
ajk`

(
Bjk` + 2`Mj,k

)
+ ājk`B

′
jk`

)
= Ai+

∑
j,k,`

(
ajk`Bjk` + ājk`B

′
jk`

)
where Mj,k ∈ {0, 1}n×m is matrix with 1 on the (j, k)-th element and 0
elsewhere, ajk` is `-th bit of the bit-decomposition of (j, k)-th element ajk
in matrix Ai, and ājk` is its complement. For ease of notation, we set Bi =∑
j,k,`

(
ajk`Bjk` + ājk`B

′
jk`

)
.

Output matrices ListMxDB = {(A′i,Bi,Ei)}i∈[N].

StepEvalPK (C, τ, ListMxPKτ−1,msk = TA, D): the key evaluation algorithm does
the following:

– Parse the encoding matrices ListMxPKτ−1 as(
A, ListMxPK,

{
Ast,τ−1
i

}
i∈[Lst]

,
{

Ard,τ−1
i

}
i∈[Lrd]

, Aval,τ−1
)

– Compute

({
Ast,τ
i

}
i∈[Lst]

,
{

Ard,τ
i

}
i∈[Lrd]

)
= PubEval (ListMxPKτ−1, C), where

algorithm PubEval is defined in Theorem 2.12.

– Sample Aval,τ $← Zn×mq . For i ∈ [N], compute Trd,τ
i as

Trd,τ
i ← SampleLeft(A,TA,A

rd,τ + iG,Aval,τ −A′i −Bi, s)

where Ard,τ = PubEval

(
f,
{

Ard,τ
i

}
i∈[Lrd]

)
, and ListMxPK = {A′i,Bi,Ei}i∈[N]

is computed from algorithm TranslatePK (MxPKaux, D). We have that

[
A||Ard,τ + iG||A′i + Bi +D[i]G

](Trd,τ
i

I

)
= Aval,τ +D[i]G

– Set StepKeyτ =
{

Trd,τ
i

}
i∈[N]

and

ListMxPKτ =

(
A, ListMxPK,

{
Ast,τ
i

}
i∈[Lst]

,
{

Ard,τ
i

}
i∈[Lrd]

, Aval,τ

)
Output (StepKeyτ , ListMxPKτ).

StepEvalCT (C, τ, ListVecCTτ−1, StepKeyτ , D): the ciphertext evaluation algo-
rithm does the following:

18

– Parse the ciphertext ListVecCTτ−1 as(
{ctijk, ct′ijk}i∈[n],j∈[m],

k∈[log q]
,
{
ctst,τ−1i

}
i∈[Lst]

,
{
ctrd,τ−1i

}
i∈[Lrd]

, ctval,τ−1

)

along with its associated value ListSTτ−1 =
(
{stτ−1}i∈[Lst], {rd

τ−1}i∈[Lrd], val
τ−1).

– Ciphertext evaluation: Compute({
ctst,τi

}
i∈[Lst]

,
{
ctrd,τi

}
i∈[Lrd]

)
= CtEval (ListMxPKτ−1, ListSTτ−1, C), where

algorithm CtEval is defined in Theorem 2.12.
– Ciphertext translation and recoding steps: Compute

ctval,τ =
(
ĉt, ctrd,τ , ctrdτ

)(Trd,τ
rdτ

I

)

where ctrd,τ = CtEval

({
ctrd,τi

}
i∈[Lrd]

, {rdτi }i∈[Lrd], f

)
and

ctrdτ =
∑
j,k,`

(
ajk`ctjk` + ājk`ct

′
jk`

)
ajk` is `-th bit of the bit-decomposition of (j, k)-th element ajk in matrix
Ardτ = A′rdτ +D[rdτ]G.

Output ListVecCTτ =

(
{ctijk, ct′ijk}i∈[n],j∈[m],

k∈[log q]
,
{
ctst,τi

}
i∈[Lst]

,
{
ctrd,τi

}
i∈[Lrd]

, ctval,τ

)
.

We note that StepEvalCT incorporates the translation, evaluation and the recod-
ing steps described in the technical overview.

3.2 Construction

In our construction below, we assume the initial states are all 1, the initial read
address is always the first index of database.

Our read-only ABE for RAMs construction Π = (Setup,KeyGen,Enc,Dec)
can be described as follows:

Setup, Setup(1λ, T): On input security parameter λ and time bound T , the
setup algorithm computes:

– (A,TA)← TrapGen(1n, 1q,m), the anchor matrix and its associated trapdoor.

– ∀i ∈ [Lst], sample Ast,0
i

$← Zn×mq , encoding matrix for the initial state.

– ∀i ∈ [Lrd], sample Ard,0
i

$← Zn×mq , encoding matrix for the initial read address.

– ∀j ∈ [n], k ∈ [m], ` ∈ dlog qe, sample
(
Bjk`,B

′
jk`

)
$← Zn×mq , encoding matrix

for the database.
– For i ∈ [λ], sample Aval,0

i
$← Zn×mq , encoding matrix for the initial read value.

19

– Sample u
$← Znq , encoding vector for the plaintext.

Set MxPKaux =
{(

Bjk`,B
′
jk`

)}
j∈[n],k∈[m],`∈dlog qe

. Output msk = (pp,TA) and

pp =

(
A,MxPKaux,

{
Ast,0
i

}
i∈[Lst]

,
{

Ard,0
i

}
i∈[Lrd]

,
{

Aval,0
i

}
i∈[λ]

,u

)
Key Generation, KeyGen(msk, P,D): On input master secret key msk, RAM
program P with step circuit C and database D, it does the following:

– First compute the translation algorithm

ListMxDB← TranslatePK (MxPKaux, D)

where ListMxDB = {(A′i,Bi,Ei)}i∈[N]. Set

ListMxPK0 =

(
A, ListMxDB,

{
Ast,0
i

}
i∈[Lst]

,
{

Ard,0
i

}
i∈[Lrd]

,
{

Aval,0
i

}
i∈[λ]

)
– For τ ∈ [T], compute

(ListMxPKτ ,StepKeyτ)← StepEvalPK (C, τ, ListMxPKτ−1,TA, D)

– Compute tst,T as

tst,T ← SampleLeft(A,TA,A
st,T
1 ,u, s)

such that [
A||Ast,T

1

]
· tst,T = u

Output skP,D =
(
P,D, ListMxDB, {StepKeyτ}τ∈[T], t

st,T
)
.

Encryption, Enc(pp, x, µ): On input public parameters pp, input x ∈ {0, 1}λ,
message µ, the encryption algorithm does the following:

– Sample vector s
$← Znq and error vectors ê, e∗ from Gaussian distribution

DZm .

– ∀i ∈ [Lst], compute ctst,0i = s
(
Ast,0
i + G

)
+ êRst,0

i , encoding of the initial

state, where Rst,0
i ← {0, 1}m×m.

– ∀i ∈ [Lrd], compute ctrd,0i = s
(
Ard,0
i + rd0iG

)
+ êRrd,0

i , encoding of the initial

read address, where Rrd,0
i ← {0, 1}m×m and {rd0i }i∈[Lrd] is the bit representa-

tion of 1.
– For i ∈ [λ], compute ctval,0i = s

(
Aval,0
i + x[i]G

)
+ êRval,0

i , encoding of the

initial read value, where Rval,0
i ← {0, 1}m×m.

20

– ∀j ∈ [n], k ∈ [m], ` ∈ dlog qe, compute

ctjk` = s
(
Bjk` + 2`Mj,k

)
+ êRjkl, ct′jk` = sB′jk` + êR′jkl

auxiliary encodings, where Rjk`,R
′
jk` ← {0, 1}m×m.

– Compute ĉt = sA + ê and ct∗ = suT + µdq/2e+ e∗.
– Set

ListVecCT0 =

({
ctst,0i

}
i∈[Lst]

,
{
ctrd,0i

}
i∈[Lrd]

,
{
ctval,0i

}
i∈[λ]
{ctijk, ct′ijk}i∈[n],j∈[m],

k∈[log q]

)

Output ciphertext ctx =
(
ĉt, ct∗, ListVecCT0,x

)
.

Decryption, Dec(skP,D, ctx): On input secret key skP,D, ciphertext ctx, the
decryption algorithm does the following:

– Output ⊥ if PD(x) 6= 0.
– For τ ∈ [T], compute,

ListVecCTτ ← StepEvalCT (C, τ, ListVecCTτ−1,StepKeyτ , D)

Check if
∣∣∣∣∣∣([ĉt||ctst,T1] · (tst,T)T

)
− ct∗

∣∣∣∣∣∣
∞
< q/4 and if so, output 0, otherwise

output 1.

3.3 Analysis of Correctness, Efficiency and Parameters

In this part, we show that the ABE construction described above is correct
(c.f. Definition 2.1), then analysis decryption time and set lattice parameters
afterwards.

Lemma 3.1 The ABE construction for read-only RAMs satisfies correctness as
defined in Definition 2.1.

Proof. Let the ciphertext be ctx and secret key be skP,D, such that PD(x) = 0.
At the τ -th step, by evaluating the ciphertext using algorithm StepEvalCT with

respect to the step circuit, we have
{
ctst,τi

}
i∈[Lst]

,
{
ctrd,τi

}
i∈[Lrd]

are encryption

of state and read address at the τ -th step respectively. Unfolding ciphertext
ctval,τ (ignoring the error terms), we obtain

ctval,τ =
(
ĉt, ctrd,τ , ctrdτ

)(Trd,τ
k

I

)
≈ s

[
A||Ard,τ + rdτG||Erdτ

](Trd,τ
i

I

)
≈ Aval,τ +D[rdτ]G

21

Thus, ciphertext ctval,τ encodes the read value of database at rdτ index, which
can be used in the next step evaluation.

Suppose at step T , we have PD = 0, then ctst,t1 encrypts state value 0. Thus,(
[ĉt||ctst,t1] · tst,t

)
− ct∗ = s

[
A||Ast,τ

1

]
· (tst,t)T + et − ct∗

= et − µdq/2e − e∗

By setting parameters appropriately as below, our ABE scheme is correct. ut

Parameters Setting. If the step circuit being evaluated has length d, then
the noise in ciphertext grows in the worst case by a factor of O(md). Thus,
to support a RAM program with maximum running time T (the unit of time
corresponds to one step), we set (n,m, q) as

– Lattice dimension n is an integer such that n ≥ (Td log n)1/ε, for some fixed
0 < ε < 1/2.

– Modulus q is set to be q = 2n
ε

, since the noise in the ciphertexts grows
by a factor of O(mTd). Hence, we need q to be on the order of Ω(BmTd),
where B = O(n) is the maximum magnitude of noise (from discrete Gaussian
distribution) added during encryption. To ensure correctness of decryption
and hardness of LWE, we set q = 2n

ε

.
– Lattice column parameter m is set to be m = Θ(n log q) to make the leftover

hash lemma hold.

The parameter s used in algorithms SampleLeft and SampleRight are set as s >√
n log q · ω(

√
logm), as required by Lemma 2.9.

For security we rely on the hardness of the LWE problem, which requires
that the ratio q/B is not too large, where B = O(n) is the maximum magni-
tude of noise (from discrete Gaussian distribution) added during encryption. In
particular, the underlying problem is believed to be hard even when q/B is 2n

ε

.

Efficiency Analysis. The (space/time) complexity of our construction can be
analyzed by the following aspects. The polynomial n(·, ·) denotes the lattice
dimension.

– The public parameters contain (Lst + Lrd + nmT) random n ×m matrices
in Zq, which is Õ(n(λ, T)2 · n2T 2) in bit complexity. The master secret key
is one m×m matrix.

– The secret key for program and database pair (P,D) contains T (N+1) small
m×m matrices, which is Õ(n(λ, T)2 ·NT) in bit complexity.

– The ciphertext for input x contains (Lst + Lrd + nmT + λ) dimension-m
vectors in Zq, which is Õ(n(λ, T) · λn2T 2) in bit complexity.

– Decryption involves matrix-vector multiplication. The time complexity of
decryption is Õ(T).

Next, we would like to show the following: if a program PD on input x takes
time at most T then correspondingly, the decryption of secret key for PD on

22

input an encryption of message µ associated with attribute input x takes time
p(λ, T), for a fixed polynomial p.

We analyze the time to decrypt an encryption of database x associated with
message µ using a key of RAM program/database with runtime bounded by
T . The essential algorithm StepEvalCT, which may be computed T times, in
decryption algorithm can be divided into two steps, as analyzed below

– Step circuit: The runtime of CtEval with respect to step circuit C is a
polynomial in (λ, Lst, Lrd). Observe that Lst is the length of the state, which
is independent of the input length, and Lrd = logN . Thus, the runtime of
CtEval is upper bounded by a polynomial in (λ, Lst).

– Recoding part: In this step, we compute CtEval with respect to the gadget
circuit f , then the translation part, and last multiplication. This part is
upper bounded by a polynomial in (λ, Lrd).

From the above observations, it follows that the runtime of the decryption al-
gorithm is a polynomial in (λ, T), where the polynomial is independent of the
length of the database. In particular, notice that if T is polylogarithmic in the
input length then the decryption time is sub-linear in the input length.

3.4 Security Proof

In this part, we show the security of our ABE for read-only RAM construc-
tion, assuming the hardness of LWE assumption. We first describe algorithms
(Sim.Setup,Sim.Enc,Sim.StepEvalPK) in the following:

– Sim.Setup produces “programmed” public parameters. That is, every pubic
matrix produced as part of algorithm Sim.Setup has hardwired in it, a bit of
the challenge ciphertext, initial state, read address, etc.

– Sim.Enc produces a simulated encryption of the message.
– Sim.StepEvalPK takes as input the (τ − 1)-th layer of simulated public keys

Sim.ListMxPKτ−1 and produces the τ -th layer of simulated public keys Sim.ListMxPKτ
and τ -th layer of step keys Sim.StepKeyτ .

These simulated algorithms can be constructed as follows:

Sim.Setup(1λ,x∗): On input the challenge input x∗, the simulated setup algo-
rithm does:

– Compute (A,TA)← TrapGen(1n, 1q,m) and sample u
$← Znq .

– ∀i ∈ [Lst], set Ast,0
i = ARst,0

i −G, where Rst,0
i ← {0, 1}m×m.

– ∀i ∈ [Lrd], set Ard,0
i = ARrd,0

i −G, where Rrd,0
i ← {0, 1}m×m.

– ∀j ∈ [n], k ∈ [m], ` ∈ dlog qe, set

Bjk` = ARjk` − 2`Mj,k, B′jk` = AR′jk`

where (Rjk`,R
′
jk`)← {0, 1}m×m.

23

– ∀i ∈ [λ], set Aval,0 = ARval,0
i − x∗[i]G, where Rval,0

i ← {0, 1}m×m.

Let Sim.MxPKaux =
(
Bjk`,B

′
jk`

)
j∈[n],k∈[m],`∈dlog qe

, and denote trapdoor matrix

for initial step as

ListMxTD0 =

({
Rst,0
i

}
i∈[Lst]

,
{

Rrd,0
i

}
i∈[Lrd]

, Rval,0

)
Output msk = (pp,TA) and

Sim.pp =

(
A,Sim.MxPKaux,

{
Ast,0
i

}
i∈[Lst]

,
{

Ard,0
i

}
i∈[Lrd]

,
{

Aval,0
i

}
i∈[λ]

,u

)
Sim.Enc(Sim.pp,x∗, 1|µ|, (A,u), (b, b′)): On input simulated public parameters

Sim.pp, challenge input x∗ and message length |µ| and LWE instance ((A,u), (b, b′)),
the simulated encryption algorithm does

– ∀i ∈ [Lst,0], compute ctst,0i = bRst,0
i , where Rst,0

i is generated in Sim.Setup.

– ∀i ∈ [Lrd,0], compute ctrd,0i = bRrd,0
i , where Rrd,0

i is generated in Sim.Setup.

– ∀i ∈ [λ], compute ctval,0i = bRval,0
i , where Rval,0

i is generated in Sim.Setup.
– ∀j ∈ [n], k ∈ [m], ` ∈ dlog qe, compute ctjk` = bRjk`, ct′jk` = bR′jk` where(

Rjk`,R
′
jk`

)
is generated in Sim.Setup.

– Set ĉt = b and ct∗ = b′.
– Define ListVecCT0 in the same way as the real scheme.

Output challenge ciphertext ctx∗ =
(
ĉt, ct∗, ListVecCT0, x

∗).
Sim.StepEvalPK(C, τ, Sim.ListMxPKτ−1,Sim.pp, D): On input the step circuit C

of program P satisfying PD(x∗) = 1, step index τ , simulated (τ − 1)-th layer
of simulated public keys Sim.ListMxPKτ−1, simulated public parameters Sim.pp
and database query D, if τ = 1, compute the translation algorithm

ListMxDB← TranslatePK (MxPKaux, D)

where ListMxDB = {(A′i,Bi,Ei)}i∈[N]. Set

ListMxPK0 =

(
A, ListMxDB,

{
Ast,0
i

}
i∈[Lst]

,
{

Ard,0
i

}
i∈[Lrd]

,
{

Aval,0
i

}
i∈[λ]

)
Otherwise, it does:

– Compute

({
Ast,τ
i

}
i∈[Lst]

,
{

Ard,τ
i

}
i∈[Lrd]

)
= PubEval (Sim.ListMxPKτ−1, C),

and then Ard,τ = PubEval

(
f,
{

Ard,τ
i

}
i∈[Lrd]

)
, where Ard,τ encodes the ac-

tual read address rdτ of PD(x∗) at τ -th step.

24

– Sample Trd,τ
rdτ =

(
Trd,τ

rdτ ,0,T
rd,τ
rdτ ,1

)
← DZm×m and set Aval,τ = A

(
Trd,τ

rdτ ,0 + Rrd,τTrd,τ
rdτ ,1

+ Ri

)
,

where Rrd,τ = TrapEval (f ◦ C, Sim.ListMxPKτ−1, ListMxTDτ−1) and Ri =∑
jk`

(
djk`Rjk` + d̄jk`R

′
jk`

)
and algorithm TrapEval is defined in Theorem 2.12.

– For i ∈ [N]− {rdτ}, compute Trd,τ
i as

Trd,τ
i ← SampleRight

(
A, (i− rdτ)G,Rrd,τ ,TG,A

val,τ −A′i −Bi, s
)

such that [
A||ARrd,τ + (i− rdτ)G||Ei

](Trd,τ
i

I

)
= Aval,τ +D[i]G

where {A′i,Bi,Ei} is computed by algorithm TranslatePK.

– As PD(x∗) = 1, so Ast,T
1 is the encoding of 1, i.e. Ast,T

1 = ARst,T
1 − G.

Compute tst,T as

tst,T ← SampleRight(A,G,Rst,T
1 ,TG,u, s)

such that [
A||ARst,T

1 −G
]
· tst,T = u

Set Sim.StepKeyτ =
{

Trd,τ
i

}
i∈[N]

. Output (Sim.StepKeyτ ,Sim.ListMxPKτ).

Theorem 3.2 Assuming the hardness of LWE assumption (with parameters as
specified above), our ABE construction is secure (c.f. Definition 2.5).

Proof. Let Q be the number of key queries made by the adversary. We first
describe a sequence of hybrids in the following:

Hybrid Hyb1: This corresponds to the real experiment:
– A specifies challenge attribute input x∗ and message µ.
– Challenger computes Setup(1λ) to obtain the public parameters pp and

secret key msk. Then challenger generates the challenge ciphertext ct∗ ←
Enc(pp,x∗, µ). It sends ct∗ and pp to A.

– For γ ∈ [Q], adversary A specifies the programs/database (Pγ , Dγ) such

that P
Dγ
γ (x∗) = 1. Challenger generates the attribute keys for (Pγ , Dγ),

for γ ∈ [Q], skPγ ,Dγ ← KeyGen(msk, Pγ , Dγ).
– Let b be the output of adversary. Output b.

Hybrid Hyb2: Hyb2 is the same as Hyb1 except that it uses Sim.Setup(1λ,x∗)
to generate Sim.pp.

Hybrid {Hyb3,i,j}i∈[Q],j∈[T]: Simply put, in hybrid Hyb3,i,j , for γ < i, the secret
key for query (Pγ , Dγ) is simulated. For query (Pi, Di), upto the j-th step, the
step keys are simulated. For τ > j, the step keys are normally generated. For
query (Pγ , Dγ), where γ > i, the secret key is normally generated. We describe
it in details below:
– Adversary specifies challenge attribute input x∗ and message µ.

25

– Challenger computes Sim.Setup(1λ) to obtain the public parameters pp and
secret key msk. Then challenger generates the challenge ciphertext ct∗ ←
Enc(pp, x∗, µ). It sends ct∗ and pp to A.

– For γ ∈ [Q], adversary A specifies the program/database (Pγ , Dγ) such

that P
Dγ
γ (x∗) = 1. Challenger generates the secret key skPγ ,Dγ as

skPγ ,Dγ = (Pγ , Dγ , {StepKeyτ}τ∈[T], t
st,T)

• For γ < i, answer secret key query Pγ as

1. For every τ ∈ [T], compute

(Sim.ListMxPKτ ,Sim.StepKeyτ)

← Sim.StepEvalPK(C,Sim.ListMxPKτ−1,Sim.pp)

2. Set skγ = ({Sim.StepKeyτ}τ∈[T]).

• For γ = i, answer secret key query (Pi, Di) as

1. For τ < j, generate

(Sim.ListMxPKτ ,Sim.StepKeyτ)

← Sim.StepEvalPK(C,Sim.ListMxPKτ−1,Sim.pp)

2. For τ ≥ j, generate

(ListMxPKτ ,StepKeyτ)← StepEvalPK(C,Sim.ListMxPKτ−1,Sim.pp)

Set ski = ({Sim.StepKeyτ}τ<i, {StepKeyτ}τ≥i).
• For γ > i, answer secret key query (Pγ , Dγ) as

1. For every τ ∈ [T], generate

(ListMxPKτ ,StepKeyτ)← StepEvalPK(C,Sim.ListMxPKτ−1,Sim.pp)

2. Set skγ = ({StepKeyτ}τ∈[T]).

Hybrid Hyb4: Hyb4 is the same as Hyb3,Q,T except that the anchor public key
A is sampled randomly from Zn×mq . In Hyb3,Q,T the secret keys for all queries
are simulated without using msk = TA.

Hybrid Hyb5: Hyb5 is the same as Hyb4 except that it uses algorithm Sim.Enc
to generate the challenge ciphertext.

Due to the space limit, we show the indistinguishability proof between adjacent
hybrids in the full version. ut

Acknowledgements.

We would like to thank the anonymous reviewers of Asiacrypt 2019 and Jiaxin
Pan for helpful suggestions to improve the presentation of the paper. Xiong Fan
is supported in part by IBM under Agreement 4915013672 and NSF Award
CNS-1561209. Elaine Shi is supported by NSF Award CNS-1617676.

26

References

1. Shashank Agrawal and Melissa Chase. A study of pair encodings: Predicate en-
cryption in prime order groups. In Eyal Kushilevitz and Tal Malkin, editors,
TCC 2016-A, Part II, volume 9563 of LNCS, pages 259–288. Springer, Heidelberg,
January 2016.

2. Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the
standard model. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of
LNCS, pages 553–572. Springer, Heidelberg, May / June 2010.

3. Shweta Agrawal and Monosij Maitra. FE and iO for turing machines from minimal
assumptions. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II,
volume 11240 of LNCS, pages 473–512. Springer, Heidelberg, November 2018.

4. Shweta Agrawal and Ishaan Preet Singh. Reusable garbled deterministic finite
automata from learning with errors. In LIPIcs-Leibniz International Proceedings in
Informatics, volume 80. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

5. Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial
error. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I,
volume 8616 of LNCS, pages 297–314. Springer, Heidelberg, August 2014.

6. Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfusca-
tion from functional encryption for simple functions. Cryptology ePrint Archive,
Report 2015/730, 2015. http://eprint.iacr.org/2015/730.

7. Prabhanjan Ananth and Alex Lombardi. Succinct garbling schemes from func-
tional encryption through a local simulation paradigm. In Theory of Cryptography
Conference, pages 455–472. Springer, 2018.

8. Prabhanjan Ananth and Amit Sahai. Functional encryption for turing machines.
In Theory of Cryptography Conference, pages 125–153. Springer, 2016.

9. Nuttapong Attrapadung. Dual system encryption via doubly selective security:
Framework, fully secure functional encryption for regular languages, and more.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume
8441 of LNCS, pages 557–577. Springer, Heidelberg, May 2014.

10. Mihir Bellare, Igors Stepanovs, and Brent Waters. New negative results on
differing-inputs obfuscation. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 792–821. Springer, 2016.

11. Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikun-
tanathan, and Brent Waters. Time-lock puzzles from randomized encodings. In
Madhu Sudan, editor, ITCS 2016, pages 345–356. ACM, January 2016.

12. Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing.
In Advances in Cryptology—CRYPTO 2001, pages 213–229. Springer, 2001.

13. Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume
8441 of LNCS, pages 533–556. Springer, Heidelberg, May 2014.

14. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions
and challenges. Theory of Cryptography, pages 253–273, 2011.

15. Elette Boyle and Rafael Pass. Limits of extractability assumptions with distribu-
tional auxiliary input. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 236–261. Springer, 2014.

16. Zvika Brakerski, David Cash, Rotem Tsabary, and Hoeteck Wee. Targeted homo-
morphic attribute-based encryption. In Martin Hirt and Adam D. Smith, editors,

27

http://eprint.iacr.org/2015/730

TCC 2016-B, Part II, volume 9986 of LNCS, pages 330–360. Springer, Heidelberg,
October / November 2016.

17. Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, 45th ACM STOC, pages 575–584. ACM Press, June
2013.

18. Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anony-
mous ibe, leakage resilience and circular security from new assumptions. Technical
report, Cryptology ePrint Archive, Report 2017/967, 2017. https://eprint. iacr.
org/2017/967, 2017.

19. Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Pri-
vate constrained PRFs (and more) from LWE. In Yael Kalai and Leonid Reyzin,
editors, TCC 2017, Part I, volume 10677 of LNCS, pages 264–302. Springer, Hei-
delberg, November 2017.

20. Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs
from standard lattice assumptions - or: How to secretly embed a circuit in your
PRF. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II,
volume 9015 of LNCS, pages 1–30. Springer, Heidelberg, March 2015.

21. Zvika Brakerski and Vinod Vaikuntanathan. Circuit-abe from lwe: unbounded
attributes and semi-adaptive security. In Annual Cryptology Conference, pages
363–384. Springer, 2016.

22. David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how
to delegate a lattice basis. In Henri Gilbert, editor, EUROCRYPT 2010, volume
6110 of LNCS, pages 523–552. Springer, Heidelberg, May / June 2010.

23. Apoorvaa Deshpande, Venkata Koppula, and Brent Waters. Constrained pseudo-
random functions for unconstrained inputs. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 124–153. Springer,
2016.

24. Nico Döttling and Sanjam Garg. Identity-based encryption from the diffie-hellman
assumption. In Annual International Cryptology Conference, pages 537–569.
Springer, 2017.

25. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. SIAM Journal on Computing, 45(3):882–929, 2016.

26. Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-
based encryption for circuits from multilinear maps. In Advances in Cryptology–
CRYPTO 2013, pages 479–499. Springer, 2013.

27. Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibility
of differing-inputs obfuscation and extractable witness encryption with auxiliary
input. In International Cryptology Conference, pages 518–535. Springer, 2014.

28. Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure at-
tribute based encryption from multilinear maps. Cryptology ePrint Archive, Re-
port 2014/622, 2014. http://eprint.iacr.org/2014/622.

29. Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box garbled ram. In Founda-
tions of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages
210–229. IEEE, 2015.

30. Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled ram
from one-way functions. In Proceedings of the forty-seventh annual ACM sympo-
sium on Theory of computing, pages 449–458. ACM, 2015.

31. Sanjam Garg and Akshayaram Srinivasan. A simple construction of io for turing
machines. In Theory of Cryptography Conference, pages 425–454. Springer, 2018.

28

http://eprint.iacr.org/2014/622

32. Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and
Daniel Wichs. Garbled RAM revisited. In Phong Q. Nguyen and Elisabeth Os-
wald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 405–422. Springer,
Heidelberg, May 2014.

33. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lat-
tices and new cryptographic constructions. In Richard E. Ladner and Cynthia
Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press, May 2008.

34. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042
of LNCS, pages 75–92. Springer, Heidelberg, August 2013.

35. Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nick-
olai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
Proceedings of the forty-fifth annual ACM symposium on Theory of computing,
pages 555–564. ACM, 2013.

36. Shafi Goldwasser, Yael Tauman Kalai, Raluca Ada Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. How to run turing machines on encrypted data. In Ad-
vances in Cryptology–CRYPTO 2013, pages 536–553. Springer, 2013.

37. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based en-
cryption for circuits. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, 45th ACM STOC, pages 545–554. ACM Press, June 2013.

38. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based en-
cryption for circuits. Journal of the ACM (JACM), 62(6):45, 2015.

39. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from lwe. In Annual Cryptology Conference, pages 503–523. Springer,
2015.

40. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully ho-
momorphic signatures from standard lattices. In Rocco A. Servedio and Ronitt
Rubinfeld, editors, 47th ACM STOC, pages 469–477. ACM Press, June 2015.

41. Vipul Goyal, Abhishek Jain, Omkant Pandey, and Amit Sahai. Bounded ciphertext
policy attribute based encryption. Automata, languages and programming, pages
579–591, 2008.

42. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Proceedings of the
13th ACM conference on Computer and communications security, pages 89–98.
Acm, 2006.

43. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. Advances in Cryptology–
EUROCRYPT 2008, pages 146–162, 2008.

44. Fuyuki Kitagawa, Ryo Nishimaki, Keisuke Tanaka, and Takashi Yamakawa. Adap-
tively secure and succinct functional encryption: Improving security and efficiency,
simultaneously. Cryptology ePrint Archive, Report 2018/974, 2018. https:

//eprint.iacr.org/2018/974.
45. Allison Lewko and Brent Waters. Decentralizing attribute-based encryption. In

Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 568–588. Springer, 2011.

46. Allison B Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent
Waters. Fully secure functional encryption: Attribute-based encryption and (hi-
erarchical) inner product encryption. In Eurocrypt, volume 6110, pages 62–91.
Springer, 2010.

29

https://eprint.iacr.org/2018/974
https://eprint.iacr.org/2018/974

47. Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample
complexity of LWE search-to-decision reductions. In Phillip Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 465–484. Springer, Heidelberg, Au-
gust 2011.

48. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer, Heidelberg, April
2012.

49. Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology
ePrint Archive, 2010:556, 2010.

50. Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with
non-monotonic access structures. In Proceedings of the 14th ACM conference on
Computer and communications security, pages 195–203. ACM, 2007.

51. Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and
verify in public: Verifiable computation from attribute-based encryption. In TCC,
volume 7194, pages 422–439. Springer, 2012.

52. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector prob-
lem: extended abstract. In Michael Mitzenmacher, editor, 41st ACM STOC, pages
333–342. ACM Press, May / June 2009.

53. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages
84–93. ACM Press, May 2005.

54. Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Eurocrypt,
volume 3494, pages 457–473. Springer, 2005.

55. Brent Waters. Efficient identity-based encryption without random oracles. In
Eurocrypt, volume 3494, pages 114–127. Springer, 2005.

56. Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under
simple assumptions. In Crypto, volume 5677, pages 619–636. Springer, 2009.

57. Brent Waters. Functional encryption for regular languages. In CRYPTO, volume
7417, pages 218–235. Springer, 2012.

58. Hoeteck Wee. Dual system encryption via predicate encodings. In Yehuda Lindell,
editor, TCC 2014, volume 8349 of LNCS, pages 616–637. Springer, Heidelberg,
February 2014.

30

	Towards Attribute-Based Encryption for RAMs from LWE: Sub-linear Decryption, and More

