
Lattice-Based zk-SNARKs from SSPs

Rosario Gennaro1, Michele Minelli2,3, Anca Nitulescu2,3, and Michele Orrù2,3

1 City College of New York, USA
2 DIENS, École normale supérieure, CNRS, PSL Research University, 75005 Paris, France

3 Inria

rosario@cs.ccny.cuny.edu

{michele.minelli, anca.nitulescu, michele.orru}@ens.fr

Abstract. Zero-knowledge SNARKs (zk-SNARKs) are non-interactive proof systems with
short (i.e., independent of the size of the witness) and efficiently verifiable proofs. They
elegantly resolve the juxtaposition of individual privacy and public trust, by providing an
efficient way of demonstrating knowledge of secret information without actually revealing
it. To this day, zk-SNARKs are widely deployed all over the planet and are used to keep
alive a system worth billion of euros, namely the cryptocurrency Zcash. However, all current
SNARKs implementations rely on so-called pre-quantum assumptions and, for this reason,
are not expected to withstand cryptanalitic efforts over the next few decades.
In this work, we introduce a new zk-SNARK that can be instantiated from lattice-based
assumptions, and which is thus believed to be post-quantum secure. We provide a general-
ization in the spirit of Gennaro et al. (Eurocrypt’13) to the SSP-based SNARK of Danezis et
al. (Asiacrypt’14) that relies on weaker computational assumptions. We focus on designated-
verifier proofs and propose a protocol in which a proof consists of just 5 LWE encodings.
We provide a concrete choice of parameters, showing that our construction is practically
instantiable.

Keywords: SNARK, zero-knowledge, post-quantum.

1 Introduction

In a zero-knowledge proof, a powerful prover P can prove to a weaker verifier V that a particular
statement x P L is true, for some NP language L (with corresponding witness relation R), without
revealing any additional information about the witness. For NP languages, P can be a polynomial
time machine with input also the witness w that x P L (the witness is a proof that x P L, i.e.
Rpx,wq holds, but is not a zero-knowledge proof, since it reveals more information than just the
mere fact that x P L). Since their introduction in [GMR89] zero-knowledge (ZK) proofs have been
shown to be a very powerful instrument in the design of secure cryptographic protocols.

For practical applications, researchers immediately recognized two limiting factors in zero-
knowledge proofs: the original protocols were interactive and the proof could be as long as (if not
longer than) the witness. Non-interactive zero-knowledge (NIZK) proofs [BFM88] and succinct
ZK arguments [Kil92, Mic94] were introduced shortly thereafter. Those results were considered
mostly theoretical proofs of concept until more recently, when several theoretical and practical
breakthroughs have shown that such proofs (renamed zk-SNARGs for Succinct Non-interactive
ARGuments or zk-SNARKs if the proofs also guarantee that the Prover knows the witness w) can
indeed be used in practical applications.

Gennaro, Gentry, Parno and Raykova [GGPR13] proposed a new, influential characterization of
the complexity class NP using Quadratic Span Programs (QSPs), a natural extension of span pro-
grams defined by Karchmer and Wigderson [KW93]. They show there is a very efficient reduction
from boolean circuit satisfiability problems to QSPs. Their work has lead to fast progress towards
practical verifiable computations. For instance, using Quadratic Arithmetic Programs (QAPs), a
generalization of QSPs for arithmetic circuits, Pinocchio [PHGR13] provides evidence that verified
remote computation can be faster than local computation. At the same time, their construction is

Table 1. Proof size and security estimate for different choices of LWE parameters (circuit size fixed to d “ 215).

security level λ n logα log q proof size ZK

medium
164 950 ´150 800 0.45 MB

172 1400 ´180 800 0.67 MB X

high
253 1200 ´150 800 0.57 MB

247 1700 ´180 800 0.81 MB X

paranoid
357 1450 ´150 800 0.69 MB

363 2100 ´180 800 1.00 MB X

zero-knowledge, enabling the server to keep intermediate and additional values used in the com-
putation private. Optimized versions of SNARK protocols based on QSPs approach are used in
various practical applications, including cryptocurrencies such as Zcash [BCG`14a], to guarantee
anonymity while preventing double-spending (via the ZK property).

The QSP approach was generalized in [BCI`13] under the concept of Linear PCP (LPCP) (there
is a construction of an LPCP for a QSP satisfiability problem) – these are a form of interactive
ZK proofs where security holds under the assumption that the prover is restricted to compute
only affine combinations of its inputs. These proofs can then be turned into (designated-verifier)
SNARKs by using a linear-only encryption, i.e. an encryption scheme where any adversary can
output a valid new ciphertext, only if this is an affine combination of some previous encodings that
the adversary had as input (intuitively this “limited malleability” of the encryption scheme, will
force the prover into the above restriction).

So far all known practical SNARKs rely on “classical” pre-quantum assumptions4. Yet, widely
deployed systems relying on SNARKs (such as the Zcash cryptocurrency [BCG`14b]) are expected
not to withstand cryptanalitic efforts over the course of the next 10 years [ABL`17, Appendix
C]. It is an interesting research question, as well our responsibility as cryptographers, to provide
protocols that can guarantee people’s privacy over the next decade. We attempt to make a step
forward in this direction by building a designated-verifier zk-SNARK that relies on the Learning
With Errors (LWE) assumption, initially proposed by Regev in 2005 [Reg05], and right now the
most widespread post-quantum cryptosystem supported by a theoretical proof of security.

SNARKs based on lattices. Recently, in two companion papers [BISW17, BISW18], Boneh et
al. provided the first designated-verifier SNARKs construction based on lattice assumptions.

The first paper has two main results: an improvement on the LPCP construction in [BCI`13]
and a construction of linear-only encryption based on LWE. The second paper presents a different
approach where the information-theoretic LPCP is replaced by a LPCP with multiple provers,
which is then compiled into a SNARK again via linear-only encryption. The main advantage of this
approach is that it reduces the overhead on the prover achieving what they call quasi-optimality5.

Our contributions. In this paper, we frame the construction of Danezis et al. [DFGK14] for
Square Span Programs in the framework of “encodings” introduced by Gennaro et al. [GGPR13].
We slightly modify the definition of encoding to accommodate for the noisy nature of LWE schemes.

4 We note that the original protocol of Kilian [Kil92] is a SNARK which can be instantiated with a
post-quantum assumption since it requires only a collision-resistant hash function – however (even in
the best optimized version recently proposed in [BSBHR18]) the protocol does not seem to scale well
for even moderately complex computations.

5 This is the first scheme where the prover does not have to compute a cryptographic group operation
for each wire of the circuit, which is instead true e.g., in QSP-based protocols.

2

This allows us to have a more fine-grained control over the error growth, while keeping previous
examples of encodings still suitable for our construction. Furthermore, SSPs are similar but simpler
than Quadratic Span Programs (QSPs) since they use a single series of polynomials rather than 2 or
3. We use SSPs to build simpler and more efficient designated-verifier SNARKs and Non-Interactive
Zero-Knowledge arguments (NIZKs) for circuit satisfiability (CIRC-SAT).

We think our approach is complementary to [BISW17, BISW18]. However, there are several
reasons why we believe that our approach is preferable:

– Zero-Knowledge. The LPCP-based protocols in [BISW17, BISW18] are not ZK and the
works do not explicitly describe ways to make them ZK (except by referring to generic trans-
formations). Considering the LPCP constructed for a QSP satisfiability problem, there is a
general transformation to obtain ZK property [BCI`13], but this introduces some overhead.
Nevertheless, in the lattice setting, we are not sure this approach still holds. In contrast, our
protocol is SSP-based and can thus be made ZK at essentially no cost for either the Prover or
the Verifier. Our transformation is different, exploiting special features of SSPs, and yields a
zk-SNARK with almost no overhead (if an adapted encoding is used).

– Weaker Assumptions. The linear-only property introduced in [BCI`13] implies all the se-
curity assumptions needed by a SSP-suitable encoding, but the reverse is not known to hold.
Our proof of security therefore relies on weaker assumptions, and by doing so, “distills” the
minimal known assumptions needed to prove security for SSP, and instantiates them with an
LWE-based approach.

– Simplicity and Efficiency. While the result in [BISW18] seems asymptotically more efficient
than any SSP-based approach, we suspect that, for many applications, the simplicity and
efficiency of the SSP construction will still provide a concrete advantage in practice. To drive
this point home we have been implementing our scheme and testing it on real-life applications
and the results are encouraging (on the other hand no implementation is offered for [BISW17,
BISW18] pointing to the theoretical nature of those results).

Technical challenges. Although conceptually similar to the original proof of security for QSP-
based SNARKs, our proof encounters some specific technical challenges due to the noise growth of
the LWE-based encoding. In particular these impose additional LWE-specific verification checks
not needed in a “pure” QSP implementation. Such issues arise from the reduction to the weaker
assumptions used in our proofs and are not needed in [BISW17, BISW18] because of the stronger
linear-only assumption used there. Additionally, we incorporate some optimizations from SSP-
based SNARKS [DFGK14].

Instantiating our encoding scheme with a lattice-based scheme like Regev encryption, differs
from [GGPR13] and introduces some technicalities, first in the verification step of the protocol,
and second in the proof of security. Our encoding scheme is additively homomorphic and supports
affine operations. On the other hand, we are constrained to only allow for a limited number of
homomorphic operations because of the bounded error growth in lattice-based encryption schemes.
Since in these schemes the error is additive, to compute a linear combination of N encodings (where
the coefficients for the linear combination are drawn from a field F “ Zp), we need to scale some
parameters for correctness to hold. However, if the encryption scheme supports modulus switching,
it may be possible to work with a smaller modulus during decoding. Anyway, we will consider in this
work that we are allowed to perform just a bounded number of “linear” operations on encodings
and make sure that this bound is sufficient to perform verification and to make a security reduction.

Furthermore, the operations considered are affine rather than linear. The main reason for this
adaptation is that the description is more appropriate for our proposed lattice-based encoding (in
which a careful analysis of the noise growth needs to be made).

2 Prerequisites

Notation. We denote the real numbers by R, the natural numbers by N, the integers by Z and
the integers modulo some q by Zq. Let λ P N be the computational security parameter, and κ P N

3

the statistical security parameter. For two integers a, b P Z, we denote with a{{b the quotient of
the Euclidean division between a and b. We say that a function is negligible in λ, and we denote
it by neglpλq, if it is a f pλq “ o pλ´cq for every fixed constant c. We also say that a probability is
overwhelming in λ if it is 1´ neglpλq. We let M.rlpλq be a length function (i.e. a function N Ñ N
polynomially bounded) in λ defining the length of the randomness for a probabilistic interactive
Turing Machine M. When sampling uniformly at random the value a from the set S, we employ
the notation aÐ$S. When sampling the value a from the probabilistic algorithm M, we employ
the notation a Ð M. We use :“ to denote assignment. For an n-dimensional column vector ~a, we
denote its i-th entry by ai. In the same way, given a polynomial f , we denote its i-th coefficient
by fi. Unless otherwise stated, the norm }¨} considered in this work is the `2 norm. We denote by

~a ¨~b the dot product between vectors ~a and ~b. For a NP relation R between a set of statements
denoted by u and witnesses denoted by w: we use LpRq to denote the language associated to R.

Unless otherwise specified, all the algorithms defined throughout this work are assumed to be
probabilistic Turing machines that run in time polypλq - i.e. PPT. An adversary is denoted by A;
when it is interacting with an oracle O we write AO. For two PPT machines A,B, with the writing
pA}Bqpxq we denote the execution of A followed by the execution of B on the same input x and
with the same random coins. The output of the two machines is concatenated and separated with
a semicolon, e.g., poutA; outBq Ð pA}Bq pxq.

2.1 Square Span Programs

We characterize NP as Square Span Programs (SSPs) over some field F of order p. SSPs were
introduced first by Danezis et al. [DFGK14].

Definition 1 (SSP). A Square Span Program (SSP) over the field F is a tuple consisting of m`1
polynomials v0pxq, . . . , vmpxq P Frxs and a target polynomial tpxq such that degpvipxqq ď degptpxqq
for all i “ 0, . . . ,m. We say that the square span program ssp has size m and degree d “ degptpxqq.
We say that ssp accepts an input a1, . . . , a` P t0, 1u if and only if there exist a``1, . . . , am P t0, 1u
satisfying:

tpxq divides

˜

v0pxq `
m
ÿ

i“1

aivipxq

¸2

´ 1.

We say that ssp verifies a boolean circuit C : t0, 1u` Ñ t0, 1u if it accepts exactly those inputs
pa1, . . . , a`q P t0, 1u

` that satisfy Cpa1, . . . , a`q “ 1.

Universal circuit. In the definition, we may see C as a logical specification of a satisfiability
problem. In our zk-SNARK we will split the ` inputs into `u public and `w private inputs to make
it compatible with universal circuits CU : t0, 1u`u ˆ t0, 1u`w Ñ t0, 1u, that take as input an `u-bit
description of a freely chosen circuit C and an `w-bit value w and return 1 if and only if Cpwq “ 1.
Along the lines of [DFGK14], we consider the “public” inputs from the point of view of the prover.
For an outsourced computation, they might include both the inputs sent by the clients and the
outputs returned by the server performing the computation. For CIRC-SAT, they may provide a
partial instantiation of the problem or parts of its solution. This treatment is more general than
CIRC-SAT, for which `u “ 0 - since the SSP is satisfied if the witness w satisfies Cpwq “ 1.

Theorem 2 ([DFGK14, Theorem 2]). For any boolean circuit C : t0, 1u` Ñ t0, 1u of m wires
and n fan-in 2 gates and for any prime p ě maxpn, 8q, there exist polynomials v0pxq, . . . , vmpxq
and distinct roots r1, . . . , rd P F such that C is satisfiable if and only if:

d
ź

i“1

px´ riq divides

˜

v0pxq `
m
ÿ

i“1

aivipxq

¸2

´ 1,

where a1, . . . , am P t0, 1u correspond to the values on the wires in a satisfying assignment for the
circuit.

4

Define tpxq :“
śd
i“1px ´ riq, then for any circuit C : t0, 1u` Ñ t0, 1u of m wires and n gates,

there exists a degree d “ m ` n square span program ssp “ pv0pxq, . . . , vmpxq, tpxqq over a field F
of order p that verifies C.

SSP generation. We consider the uniform probabilistic algorithm SSP, that on input a boolean
circuit C : t0, 1u` Ñ t0, 1u of m wires and d gates, chooses a field F, with |F| ě maxpn, 8q, and

samples d “ m`n random elements r1, . . . , rd P F to define the target polynomial tpxq “
śd
i“1px´

riq, together with the set of polynomials tv0pxq, . . . , vmpxqu composing the SSP corresponding to
C.

pv0pxq, . . . , vmpxq, tpxqq Ð SSPpCq

2.2 Succinct Non-Interactive Arguments

In this section we provide formal definitions for the notion of succinct non-interactive arguments
of knowledge (SNARKs).

Definition 3. A designated-verifier non-interactive proof system for a relation R is a triple of
algorithms Π “ pG,P,Vq as follows:

pvrs, crsq Ð Gp1λ,Rq takes as input some complexity 1λ and outputs a common reference string
crs that will be given publicly, and vrs, a trapdoor key that will be used for verification. For
simplicity, we will assume in the future that crs can be extracted from vrs, and that the unary
complexity 1λ can be derived as well from crs.

π Ð Ppcrs, u, wq takes as input the crs, a statement u and a witness w, and outputs some proof of
knowledge π.

boolÐ Vpvrs, u, πq takes as input a statement u together with a proof π, and the trapdoor key vrs,
and outputs true if the proof was accepted, false otherwise.

If the verification algorithm V takes as input the CRS instead of vrs, then the NI proof system
is called publicly verifiable.

Definition 4 (SNARK). A succinct non-interactive argument of knowledge (SNARK) is a non-
interactive proof system that satisfies the additional properties of completeness, succinctness, and
knowledge soundness.

Roughly speaking, completeness means that all correctly generated proofs verify; succinctness that
the size of the proof is linear in the security parameter λ; knowledge soundness [BG93] that for
any prover able to produce a valid proof for a statement in the language, there exists an efficient
algorithm capable of extracting a witness for the given statement. More formally:

Definition 5 (Completeness). A non-interactive proof system Π for the relation R is (compu-
tationally) complete if for any PPT adversary A:

Advcompl
Π,R,Apλq :“ Pr

“

COMPLΠ,R,Apλq
‰

“ 1´ neglpλq ,

where COMPLΠ,R,Apλq is the game depicted in Fig. 1.

Definition 6 (Knowledge Soundness). A non-interactive proof system Π for the relation R
is knowledge-sound if for any PPT adversary A there exists an extractor ExtA such that:

AdvksndΠ,R,A,ExtApλq :“ Pr
“

KSNDΠ,R,A,ExtApλq
‰

“ neglpλq ,

where KSNDΠ,R,A,ExtApλq is defined in Figure 1.

An argument of knowledge is a knowledge-sound proof system. If the adversary is computation-
ally unbounded, we speak of proofs rather than arguments.

5

Game KSNDΠ,R,A,ExtApλq

pcrs, vrsq Ð Π.Gp1λq

pu, π;wq Ð pA}ExtAqpcrsq

return pRpu,wq “ false ^ Π.Vpvrs, u, πqq

Game COMPLΠ,R,Apλq

crs Ð Π.Gp1λq

pu,wq Ð Apcrsq

π Ð Π.Ppcrs, u, wq

return Π.Vpcrs, u, πq and Rpu,wq “ true

Game ZKΠ,R,Sim,Apλq

pcrs, vkq Ð Π.Gp1λq

bÐ$ t0, 1u

b1 Ð AProve
pvrsq

return pb “ b1q

Oracle Provepu,wq

if Rpu,wq “ false return K

if b “ 1 π Ð Π.Ppcrs, u, wq

else π Ð Simpvrs, uq

return π

Fig. 1. Games for completeness (COMPL), knowledge soundness (KSND), and zero-knowledge (ZK).

Remark 7. An important consideration that arises when defining knowledge soundness in the
designated-verifier scenario is whether the adversary should be granted access to a proof-verification
oracle. Pragmatically, allowing a verification oracle captures whether or not a CRS can be reused
polypλq times. While this property follows immediately in the public-verifier setting, the same is
not true for the designated-verifier setting. In the specific case of our construction, we formulate
and prove our protocol with the stronger notion (which has been addressed to as strong soundness
in the past [BISW17]), and quickly discuss which optimizations can take place when using the
weaker notion of soundness.

We distinguish two types of arguments of knowledge: publicly verifiable ones, where the security
holds against adversaries that have access to vrs; and those with designated verifier, where the
verification step needs access to vrs. It is straightforward to note that, with the help of an encryption
scheme, any publicly-verifiable proof system can be transformed into an analogous designated-
verifier one. It is nonetheless important to note that in the standard model, all constructions we
are aware of so far somehow imply the existence of an encryption scheme.

A proof system Π for R is zero-knowledge if no information about the witness is leaked by the
proof. More precisely:

Definition 8 (Zero-Knowledge). A non-interactive proof system Π is zero-knowledge if there
exists a simulator Sim such that for any PPT adversary A:

AdvzkΠ,R,Sim,Apλq :“ Pr
“

ZKΠ,R,Sim,Apλq
‰

“ neglpλq ,

where ZKΠ,R,Sim,Apλq is defined in Figure 1. Zero-knowledge SNARKs are informally called zk-
SNARKs.

2.3 Encoding Schemes

Definition 9 (Encoding Scheme). An encoding scheme Enc over a field F is composed of the
following algorithms:

– ppk, skq Ð Kp1λq, a key generation algorithm that takes as input some complexity 1λ and
outputs some secret state sk together with some public information pk. To ease notation, we
are going to assume the message space is always part of the public information and that pk can
be derived from sk.

– S Ð Epaq, a non-deterministic encoding algorithm mapping a field element a to some encoding
space S, such that ttEpaqu : a P Fu partitions S, where tEpaqu denotes the set of the possible

6

evaluations of the algorithm E on a, that is tEpa; rq : r P E.rlpλqu. In other words, we require
the decoding algorithm D to be a function.
Depending on the encoding algorithm, E will require either the public information pk generated
from K or the secret state. For our application targeted at designated-verifier proofs it will be
the case of sk. To ease notation, we will omit this additional argument.

The above algorithms must satisfy the following properties:

d-affinely homomorphic: there exists a polypλq algorithm Eval that, given as input the public
parameters pk, a vector of encodings pEpaiqq

d
i , coefficients ~c “ pciq

d
i P F and constant factor

b P F, outputs a valid encoding of ~a ¨ ~c` b with probability overwhelming in λ. If the constant
factor is omitted, it is assumed to be 0.

quadratic root detection: there exists an efficiently computable algorithm Qpδ, ppq that, given
as input some parameter δ (either the public information pk or the verification key sk, depending
on the kind of verifier), can test if the evaluation of quadratic polynomial pp with coefficients
in the field is zero.

image verification: there exists an efficiently computable algorithm P that, given as input some
parameter δ (again, either pk or sk), can distinguish if an element c is a correct encoding of a
field element.

Sometimes, in order to ease notation, we will employ the writing ct :“ EvalppEpaiqq, pciqiq “ Epcq
actually meaning that ct is a valid encoding of c “

ř

aici, that is ct P tEpcqu. It will be clear from
the context (and the use of symbol for assignment instead of that for sampling) that the randomized
encoding algorithm is not actually invoked.

Decoding algorithm. When using an encryption scheme in order to instantiate an encoding
scheme, we can naturally define the decoding algorithm D that simply takes advantage of the
decryption procedure. Encoding schemes that only need the public parameters pk to perform
quadratic root detection and image verification lead to a SNARK that is publicly verifiable. En-
coding schemes that rely on the secret state sk - as those we focus on in this work - lead instead
to designated-verifier proofs. More specifically, since we study encoding schemes derived from en-
cryption functions, quadratic root detection for designated-verifiers is trivially obtained by using
the decoding algorithm D.

Remark 10. Our specific instantiation of the encoding scheme presents some slight differences with
[GGPR13]. First, we allow only for a limited number of homomorphic operations because of the
error growth in lattice-based encoding schemes. Furthermore, these operations are affine rather than
linear. The main reason for this adaptation is that the description is more apt for our proposed
lattice-based encoding (in which a careful analysis of the noise growth needs to be made), and that
at the same time it does not exclude previous constructions.

The reason for allowing affine operations rather limiting ourselves to only linear is a mere
technicality. The inhomogeneous part can always be constructed for linear-only schemes by adding
Ep1q to the public information pk, which, as a matter of fact, happens to be already present in all
previous encoding schemes. For example, in pairing-based encodings this is just the group generator,
and it is usually included already in the pairing group description. The converse cannot be said
about Regev encryption where, given Epmq, it is always possible to compute a valid encoding of
m`1 without any additional information. Furthermore, the bounds on the number of allowed linear
operations, those can simply be considered 8 for the encodings provided in the past [GGPR13].

In order to guarantee a security reduction of our construction of Section 4, we will have to
guarantee that some encoding provided by the adversary is not “too noisy” and that it is still
possible to perform homomorphic operations on it. Let us consider a function test-error which,
given as input the secret state sk together with some encoding ct, returns true or false depending
on whether it is still possible to compute a certain linear operation known in advance. Since the
function takes as input the secret key itself, it is easy to build such a function relying just on the
Eval and P - image verification - algorithms.

7

Game q-PKEEnc,A,ExtA,z
pλq

ppk, skq Ð Kp1λq

α, sÐ$F˚

σ Ð ppk,Epsq, . . . ,Epsqq,Epαq,Epαsq, . . . ,Epαsqqq

z Ð Zppk, σq

pct, pct; a1, . . . , aqq Ð pA}ExtAqpσ, zq

return ct P
!

Ep
řd
k aks

k
q

)

^ pct P
!

Epα
řd
k aks

k
q

)

Game q-PKEQEnc,A,ExtA
pλq

ppk, skq Ð Kp1λq

sÐ$F

crs Ð ppk,Epsq, . . . ,Epsqq,Epsq`2
q, . . . ,Eps2qqq

pEpcq, e; bq Ð pA}ExtAqpcrsq

if b “ 0 return e P tEpcqu

else return e R tEpcqu

Game q-PDHEnc,Apλq

ppk, skq Ð Kp1λq

sÐ$F

σ Ð pEpsq, . . . ,Epsqq,Epsq`2
q, . . . ,Eps2qqq

y Ð Apσq
return y P

Epsq`1
q
(

Fig. 2. Games for q-PKE, q-PKEQ, q-PDH assumptions.

Example 11. We present the classical example of encoding scheme using symmetric pairings on
elliptic curves. The asymmetric variant of this encoding scheme is the most classical example of
zk-SNARKs. Consider the cyclic groups G,GT of the same prime order p equipped with the bilinear
non-degenerate map e : G ˆ G Ñ GT . The groups G, GT are generated respectively by G P G
and by epG,Gq P GT . For instance, the family of elliptic curves G :“ EpFqq. described in [BF01]
satisfies the above description. The encoding scheme simply computes E : x ÞÑ xG. The public
information pk consists of the pairing group description Γ :“ pp,G,GT , e,Gq; the secret state sk is
set to K. This encoding satisfies the three requirements as follows:

– d-affine homomorphic evaluations between a vector of encodings pEpaiqq
d
i with the coefficients

pciq
d
i and constant term b is done as follows:

Eval
`

pEpaiqq
d
i , pciq

d
i , b

˘

:“
d
ÿ

i

Epaiciq ` b Ep1q,

In other words, the Eval algorithm simply outputs the group element
´

řd
i aici ` b

¯

G.

– The efficiently-computable quadratic root detection algorithm Q simply consists of the pairing
e : G ˆ G Ñ GT and the quadratic test takes place in the target group GT . More concretely,
given encodings pEpaiqq

d
i , use the bilinear map to compute epG,Gqpppa1,...,adq where pp is a

quadratic polynomial, and check whether it equals the identity element in GT .
– Image verification is straightforward. A group element P is an encoding of an element s in G

iff P “ sG “ Epsq.

A more concrete encoding scheme will be discussed in Section 3. In particular, we conjecture
that it satisfies the assumptions of the following section.

2.4 Assumptions

Throughout this paper we rely on a number of computational assumptions. All of them have been
introduced in the past (e.g., [GGPR13]): we report them here for completeness and in order to
explore the relations between them.

8

The q-power knowledge of exponent assumption (q-PKE) is a generalization of the knowledge of
exponent assumption (KEA) introduced by Damgard [Dam92]. It says that given Epsq, . . . ,Epsqq
and Epαsq, . . . ,Epαsqq for some coefficient α, it is difficult to generate ct, pct encodings of c, αc
without knowing the linear combination of the powers of s that produces ct.

Assumption 1 (q-PKE). The q-Power Knowledge of Exponent (q-PKE) assumption holds rel-
ative to an encoding scheme Enc and for the class Z of auxiliary input generators if, for every
non-uniform polynomial time auxiliary input generator z P Z and non-uniform PPT adversary A,
there exists a non-uniform extractor Ext such that:

AdvpkeEnc,A,ExtA
pλq :“ Pr

“

q-PKEEnc,A,ExtApλq
‰

“ neglpλq ,

where q-PKEEnc,A,ExtApλq is the game depicted in Figure 2.

The q-PDH assumption has been a long-standing, standard q-type assumption [Gro10, BBG05],
Basically it states that given pEpsq, . . . ,Epsqq,Epsq`2q, . . . ,Eps2qq, it is hard to compute an encoding
of the missing power Epsq`1q.

Assumption 2 (q-PDH). The q-Power Diffie-Hellman (q-PDH) assumption holds for encoding
Enc if for all PPT adversaries A we have:

Advq-pdhEnc,Apλq :“ Pr
“

q-PDHEnc,Apλq
‰

´ 1{2 “ neglpλq ,

where q-PDHEnc,Apλq is defined as in Figure 2.

Finally, we need another assumption to be able to “compare” encoded messages. The q-PKEQ
assumption boils down to the question of whether A can output pEpcq, eq without ExtA being able
to tell whether e is also an encoding of c.

Assumption 3 (q-PKEQ). The q-Power Knowledge of Equality (q-PKEQ) assumption holds for
the encoding scheme Enc if for every PPT adversary A there exists an extractor ExtA such that:

Advq-pkeqEnc,A,ExtA
pλq :“ Pr

“

q-PKEQEnc,A,ExtApλq
‰

“ neglpλq ,

where q-PKEQEnc,A,ExtApλq is the game depicted in Figure 2.

This last assumption is needed solely in the case where the attacker has access to a verification
oracle (see Remark 7). Since the encoding could be non-deterministic, the simulator in the security
reduction ofSection 5.2 needs to rely on q-PKEQ to simulate the verification oracle. Pragmatically,
this assumption allows us to test for equality of two encoded messages even without having access
to the secret key.

3 Lattice-based encodings

In this section we give a brief introduction to lattices and we describe a possible encoding scheme
based on lattice assumptions.

Lattices. A m-dimensional lattice Λ is a discrete additive subgroup of Rm. For an integer k ă m
and a rank k matrix B P Rmˆk, Λ pBq “

B~x P Rm | ~x P Zk
(

is the lattice generated by the
columns of B.

Gaussian distribution. For any σ P R`, let ρσp~xq :“ e´π}~x}
2
{σ2

be the Gaussian function over
Rn with mean 0 and parameter σ. For any discrete subset D Ď Rn we define ρσpDq :“

ř

~xPD ρσp~xq,
the discrete integral of ρσ over D. We then define χσ, the discrete Gaussian distribution over D
with mean 0 and parameter σ as:

χσ : D Ñ R` : ~y ÞÑ
ρσp~yq

ρσpDq
.

We denote by χnσ the discrete Gaussian distribution over Rn where each entry is independently
sampled from χσ.

9

Game dLWEPg,Apλq

Γ :“ pp, q, n, αq :“ Pgp1λq

~sÐ$Znq

bÐ$ t0, 1u

b1 Ð AEncode
pΓ q

return pb “ b1q

Oracle Encode

~aÐ$Znq

eÐ χqα

if b “ 1 c :“ ~s ¨ ~a` e

else cÐ$Zq

return p~a, cq

Fig. 3. The decisional LWE problem for parameters Γ .

Lattice-based Encoding Scheme. We propose an encoding scheme Enc that consists in three
algorithms as depicted in Figure 4. This is a slight variation of the classical LWE cryptosystem
initially presented by Regev [Reg05], described by parameters Γ :“ pq, n, p, αq, with q, n, p P N
and 0 ă α ă 1. This construction is an extension of the one presented in [BV11].

We assume the existence of a deterministic algorithm Pg that, given as input the security
parameter in unary 1λ, outputs a LWE encoding description Γ . Similar assumptions have been
used in the past by Bellare et al. [BFS16] for bilinear group descriptions. The main advantage in
choosing Pg to be deterministic is that every entity can (re)compute the description for the security
parameter, and that no single party needs to be trusted with generating the encoding parameters.
Moreover, real-world encodings have fixed parameters for some well-known values of λ. For the
sake of simplicity, we define our encoding scheme with a LWE encoding description Γ and assume
that the security parameter λ can be derived from Γ .

Roughly speaking, the public information is constituted by the LWE parameters Γ and an
encoding of m is simply an LWE encryption of m. The LWE secret key constitutes the secret
state of the encoding scheme. We say that the encoding scheme is (statistically) correct if all valid
encodings are decoded successfully (with overwhelming probability).

Assumption 4 (dLWE). The decisional Learning With Errors (dLWE) assumption holds for the
parameter generation algorithm Pg if for any PPT adversary A:

Advdlwe
Pg,Apλq :“ Pr

“

dLWEPg,Apλq
‰

´ 1{2 “ neglpλq ,

where dLWEPg,Apλq is defined as in Figure 3.

In [Reg05], Regev showed that solving the decisional LWE problem is as hard as solving some
lattice problems in the worst case. We recall here this result:

Theorem 12 (Hardness of dLWE [Reg05]). For any parameter generation algorithm Pg out-
putting p “ polypλq, a modulus q ď 2polypnq, and a (discretized) Gaussian error distribution pa-
rameter σ “ αq ě 2

?
n with 0 ă α ă 1, solving dLWEPg,Apλq is at least as hard as solving

GapSVPÕpn{αq.

Definition 13. An encoding scheme Enc is correct if, for any ~sÐ Gp1λq and m P Zp:

PrrDp~s,Ep~s,mqq ‰ ms “ neglpλq .

We say that an encoding ct of a message m under secret key ~s is valid if D p~s, ctq “ m. We say
that an encoding is fresh if it is generated through the E algorithm. We say that an encoding is
stale if it is not fresh.

Lemma 14 (Correctness). Let ct “ p´~a,~a ¨ ~s` pe`mq be an encoding. Then ct is a valid
encoding of a message m P Zp if e ă q

2p .

10

Kp1λq

Γ :“ pp, q, n, αq :“ Pgp1λq

~sÐ$Znq

return pΓ, ~sq

Ep~s,mq

Γ :“ pp, q, n, αq :“ Pgp1λq

~aÐ$Znq

σ :“ qα; eÐ χσ

return p´~a, ~a ¨ ~s` pe`mq

Dp~s, p~c0, c1qq

Γ :“ pp, q, n, αq :“ Pgp1λq

return p~c0 ¨ ~s` c1q pmod pq

Fig. 4. An encoding scheme based on LWE.

Image verification and quadratic root detection can be implemented using D, providing the
secret key as input. The algorithm P for image verification proceeds as follows: decrypts the encoded
element and tests for equality between the two messages. The algorithm Q for quadratic root
detection is straightforward: decrypt the message and evaluate the polynomial, testing if it is equal

to 0. Given a vector of d encodings ~ct P Z
dˆpn`1q
q , a vector of coefficients ~c P Zdp and a constant

b P Zp, the homomorphic evaluation algorithm is defined as follows: Eval
`

~ct,~c, b
˘

:“ ~c ¨ ~ct ` b.
As previously mentioned, whenever b is omitted from the arguments of Eval, we implicitly mean
b “ 0. During the homomorphic evaluation the noise grows as a result of the operations which are
performed on the encodings. Consequently, in order to ensure that the output of Eval is still a valid
encoding, we need to start with a sufficiently small noise in each of the initial encodings.

In order to bound the size of the noise, we first need a basic theorem on the tail bound of
discrete Gaussian distributions due to Banaszczyk [Ban95]:

Lemma 15 ([Ban95, Lemma 2.4]). For any σ, T P R` and ~a P Rn:

Prr~xÐ χnσ : |~x ¨ ~a| ě Tσ }~a}s ă 2 expp´πT 2q. (1)

At this point, this corollary follows:

Corollary 16. Let ~sÐ$ Znq be a secret key and ~m “ pm1, . . . ,mdq P Zdp be a vector of messages.

Let ~ct be a vector of d fresh encodings so that ~cti Ð E p~s,miq, and ~c P Zdp be a vector of coefficients.

If q ą 2p2σ
b

κd
π , then Eval

`

~c, ~ct
˘

outputs a valid encoding of ~m ¨ ~c under the secret key ~s with

probability overwhelming in κ.

Proof. The fact that the message part is ~m ¨ ~c is trivially true by simple homomorphic linear
operations on the encodings. Then the final encoding is valid if the error does not grow too much
during these operations. Let ~e P Zdp be the vector of all the error terms in the d encodings, and let

T “
a

κ{π. Then by Lemma 15 we have:

Pr

„

~eÐ χdσ : |~e ¨ ~c | ě

c

κ

π
σ }~c }

ă 2 expp´κq.

For correctness we need the absolute value of the final noise to be less than q{2p (cf. Lemma 14).
Since it holds that @~c P Zdp, }~c } ď p

?
d, we can state that correctness holds if

c

κ

π
σp
?
d ă

q

2p

which gives q ą 2p2σ

c

κd

π
. l

11

Procedure test-errorp~s, p~c0, c1qq

Γ :“ pp, q, n, αq :“ Pgp1λq

e1 :“ p~c0 ¨ ~s` c1q {{ p

return pEquation (2)q

Fig. 5. The error testing procedure.

Smudging. When computing a linear combination of encodings, the distribution of the error
term in the final encoding depends on the coefficients of the combination, and it could therefore
potentially leak information to whoever holds the secret key. We can solve this problem with the
well known technique of noise smudging (or flooding): roughly speaking, adding a term large enough
to the noise cancels out any dependency on the coefficients we want to hide.

Lemma 17 (Noise Smudging, [BGGK17]). Let B1 “ B1 pκq and B2 “ B2 pκq be positive
integers. Let x P r´B1, B1s be a fixed integer and yÐ$ r´B2, B2s. Then the distribution of y is
statistically indistinguishable from that of y ` x, as long as B1{B2 “ neglpκq.

Proof. Let ∆ denote the statistical distance between the two distributions. By its definition:

∆ “
1

2

B1`B2
ÿ

v“´pB1`B2q

|Pr ry “ vs ´ Pr ry “ v ´ xs| “ 1

2

¨

˝

´B2
ÿ

v“´pB1`B2q

1

B2
`

B1`B2
ÿ

v“B2

1

B2

˛

‚“
B1

B2
.

The result follows immediately. l

In order to preserve the correctness of the encoding scheme, we need once again q to be large enough
to accommodate for the flooding noise. In particular, q will have to be at least superpolynomial in
the statistical security parameter κ.

Corollary 18. Let ~s P Znq be a secret key and ~m “ pm1, . . . ,mdq P Zdp be a vector of messages.

Let ~ct be a vector of d encodings so that ~cti is a valid encoding of mi, and ~c P Zdp be a vector of

coefficients. Let eEval be the noise in the encoding output by Eval
`

~ct,~c
˘

and BEval a bound on its
absolute value. Finally, let Bsm “ 2κBEval, and esmÐ$ r´Bsm, Bsms. Then the statistical distance
between the distribution of esm and that of esm ` eEval is 2´κ. Moreover, if q ą 2pBEval p2

κ ` 1q

then the result of Eval
`

~ct,~c
˘

`

´

~0, esm

¯

is a valid encoding of ~m ¨ ~c under the secret key ~s.

Proof. The claim on the statistical distance follows immediately from Lemma 17 and the fact that
the message part is ~m ¨ ~c is true by simple homomorphic linear operations on the encodings. In
order to ensure that the final result is a valid encoding, we need to make sure that the error in this
output encoding remains smaller than q{2p. The final error is upper bounded by BEval ` Bsm, so
we have

BEval `Bsm ă
q

2p
ùñ BEval ` 2κBEval ă

q

2p
ùñ q ą 2pBEval p2

κ ` 1q .

l

Error testing. By making non-blackbox use of our LWE encoding scheme, it is possible to
define an implementation of the function test-error (cf. Section 2) that will be used later in our
construction in order to guarantee the existence of a security reduction. In fact, for LWE encodings,
it is sufficient to use the secret key, recover the error, and enforce an upper bound on its norm
(namely, the norm of the error must still allow for some homomorphic operations while holding
correctness). A possible implementation of test-error is displayed in Figure 5.

Now we give a lemma that will be useful later during the security proof. It essentially defines
the conditions under which we can take an encoding, add a smudging term to its noise, sum it
with the output of an execution of Eval and finally multiply the result by an element in Zp.

12

Lemma 19 (For reduction). Let ~s, ~ct, ~c, eEval, BEval be as in Corollary 18, and let ct1 “
p´~a1, ~s ¨ ~a1 ` pe1 `m1q be a valid encoding of a message m1 P Zp with noise e1 bounded by Be. Let
Bsm “ 2κBe and esmÐ$ r´Bsm, Bsms be a “smudging noise”. Then, if q ą 2p2 pp2κ ` 1qBe `BEvalq,
it is possible to add the smudging term esm to ct1, sum the result with the output of Eval

`

~ct,~c
˘

,
multiply the outcome by a coefficient bounded by p, and obtain a valid encoding of k p~m ¨ ~c`m1q.

Proof. The correctness of the message part comes immediately from performing homomorphic
linear operations on encodings, and the final output is valid if the noise remains below a certain
threshold. After adding the smudging term and performing the sum, the noise term is at most
Be `Bsm `BEval “ p2

κ ` 1qBe `BEval. After the multiplication by a coefficient bounded by p, it
is at most p pp2κ ` 1qBe `BEvalq. Thus, the encoding is valid if:

p pp2κ ` 1qBe `BEvalq ă
q

2p
, (2)

which immediately gives the result. l

Conditions on the modulus q. Corollaries 16 and 18 and Lemma 19 give the conditions that
the modulus q has to respect in order to allow for all the necessary computations. In particular,
Corollary 16 gives the condition to be able to homomorphically evaluate a linear combination of
fresh encodings through the algorithm Eval; Corollary 18 gives the condition to be able to add
a smudging noise to the result of such an evaluation; Lemma 19 gives a condition that will have
to be satisfied in the security reduction. They are ordered from the least stringent to the most
stringent, so the condition that must be satisfied in the end is the one given by Lemma 19. Let Be
be a bound on the absolute value of e1, then the following must hold:

q ą 2p2 pp2κ ` 1qBe `BEvalq (3)

Practical considerations. A single encoded value has size pn ` 1q log q “ rOpλq. Therefore, as
long as the prover sends a constant number of encodings, the proof is guaranteed to be (quasi)
succinct. As a matter of fact, we can generate the random vector ~a that composes the first term
of the encoding by fixing a small seed and then taking each entry of ~a as generated from a seeded
PRG. For example, the authors of New Hope [ADPS15] cite a work by Galbraith [Gal13] that
argues the existence of a security reduction in the random oracle model.

We now give some considerations on the bounds that were used in this section. Although
the scheme requires the noise terms to be sampled from a discrete Gaussian distribution, for
practical purposes we can sample them from a bounded uniform distribution. Choosing this bound
is equivalent to “cutting the tails” of the Gaussian distribution. In particular, given χσ, one can
choose a coefficient T P N such that Pr rxÐ χσ : |x| ą Tσs is as small as desired. Finally, the error
is sampled from r´Tσ, Tσs.

Table 1 shows some practical parameters for which we believe our scheme to be post-quantum
secure. The concrete estimate of the bits of security has been done using Albreicht’s LWE test
estimator6 [APS15].

4 Our designated-verifier zk-SNARK

Let Enc be an encoding scheme (Definition 9). Let C be some circuit taking as input an `u-bit
string and outputting 0 or 1. Let ` :“ `u` `w, where `u is the length of the “public” input, and `w
the length of the private input. The value m corresponds to the number of wires in C and n to the
number of fan-in 2 gates. Let d :“ m`n. We will construct a zk-SNARK scheme for any functions
`u, `w and families Rλ of relations R on pairs pu,wq P t0, 1u`u ˆ t0, 1u`w that can be computed by
polynomial size circuits C with m wires and n gates. Our protocol is formally depicted in Figure 6.

6
https://bitbucket.org/malb/lwe-estimator

13

https://bitbucket.org/malb/lwe-estimator

Setup Π.Gp1λ, Cq

ppk, skq Ð Kp1λq

pv0, . . . , vmpxq, tpxqq Ð SSPpCq

β, sÐ$F

Compute crs as per Eq. (4)

vrs :“ psk, s, βq

return pvrs, crsq

Verifier Π.Vpvrs, u, πq

pH, pH, pV , Vw, Bwq :“ π

Read pv0, . . . , vmpxq, tpxqq from vrs

ws :“ DpVwq; bs :“ DpBwq

hs :“ DpHq; phs :“ Dp pHq

pvs :“ DppV q

vs :“ v0psq `
ř`u
i aivipsq ` ws

Check Eqs. (eq-pke) to (eq-lin)

return test-errorps,Bwq

Prover Π.Ppcrs, u, wq

pv0, . . . , vmpxq, tpxqq Ð SSPpCq

u :“ pa1, . . . , a`uq P t0, 1u
`u ;

w :“ pa`u`1, . . . , amq

νpxq :“ v0pxq `
řm
i aivipxq ` γtpxq

vmidpxq :“
řm
ią`u

aivipxq ` γtpxq

hpxq “ pνpxq2 ´ 1q{tpxq

// Compute the proof terms as per Eq. (6)

H :“ EvalppEpsiqqi, phiqiq “ Ephpsqq

pH :“ EvalppEpαsiqqi, phiqiq “ Epαhpsqq

pV :“ EvalppEpαsiqi, pνiqiq “ Epανpsqq

Bw :“ EvalppEpβvipsqqqi}pEpβtpsqqq, paiqi}pγqq

Vw :“ EvalppEpsiqqi, pvmidiqiq “ Epvmidpsqq

return pH, pH, pV , Vw, Bwq

Fig. 6. Our zk-SNARK protocol Π.

CRS generation. The setup algorithm G takes as input some complexity 1λ in unary form and
the circuit C : t0, 1u`u ˆ t0, 1u`w Ñ t0, 1u. It generates a square span program that verifies C by
running:

pv0pxq, . . . , vmpxq, tpxqq Ð SSPpCq

Finally, it samples α, β, sÐ F such that tpsq ‰ 0, and returns the CRS:

crs :“
`

ssp, pk, Epsq, . . . ,Epsdq,

Epαq,Epαsq, . . . ,Epαsdq,

Epβtpsqq, pEpβviqqi
˘

(4)

The verification string simply consists of vrs :“ psk, s, βq.

Prover. The prover algorithm, on input some statement u :“ pa1, . . . , a`uq, computes a witness
w :“ pa`u`1, . . . , amq such that pu,wq “ pa1, . . . , amq is a satisfying assignment for the circuit C.
The paiqi are such that:

tpxq divides

˜

v0pxq `
m
ÿ

i

aivipxq

¸2

´ 1,

as per Theorem 2. Then, it samples γÐ$ F and sets νpxq :“ v0pxq `
řm
i“1 aivipxq ` γtpxq. Let:

hpxq :“
pv0pxq `

řm
i aivipxq ` γtpxqq

2 ´ 1

tpxq
“
νpxq2 ´ 1

tpxq
, (5)

whose coefficients can be computed from the polynomials provided in the ssp. By affine evaluation
it is possible to compute:

H :“ Ephpsqq, pH :“ Epαhpsqq, pV :“ E pανpsqq ,

Vw :“ E

˜

m
ÿ

i“`u`1

aivipsq ` γtpsq

¸

, Bw :“ E

˜

β

˜

m
ÿ

i“`u`1

aivipsq ` γtpsq

¸¸

.
(6)

14

In fact, H - respectively, pH - can be computed from the encodings of s, . . . , sd - respectively,
αs, . . . , αsd - and the coefficients of Equation (5). The element pV can be computed from the
encodings of αs, . . . , αsd. Finally, Vw - respectively, Bw - can be computed from the encodings of
s, . . . , sd - respectively, βtpsq, βv`u`1psq, . . . , βvmpsq. All these affine evaluations involve at most d
terms and the coefficients are bounded by p. Using the above elements, the prover returns a proof
π :“ pH, pH, pV , Vw, Bwq.

Verifier. Upon receiving a proof π and a statement u “ pa1, . . . , a`uq, the verifier proceeds with
the following verifications. First, it uses the quadratic root detection algorithm of the encoding
scheme Enc to verify that the proof satisfies:

phs ´ αhs “ 0 and pvs ´ αvs “ 0, (eq-pke)

pv2s ´ 1q ´ hsts “ 0, (eq-div)

bs ´ βws “ 0. (eq-lin)

where phs,phs, pvs, ws, bsq are the values encoded in pH, pH, pV , Vw, Bwq :“ π and vs is an encoding

of v0 `
ř`u
i aivipsq ` ws as per Fig. 6. Then, the verifier checks whether it is still possible to

perform some homomorphic operations, using the test-error procedure described in Section 2, and
implemented in Figure 5 for the specific case of lattice encodings. More precisely, the verifier
tests whether it is still possible to add another encoding and multiply the result by an element
bounded by p, without compromising the correctness of the encoded element. This will guarantee
the existence of a reduction in the knowledge soundness proof of Section 5.2. If all above checks
hold, return true. Otherwise, return false.

Remark 20. Instantiating our encoding scheme on top of a “noisy” encryption scheme like Regev’s
introduces multiple technicalities that affect the protocol, the security proof, and the parameters’
choice. For instance, in order to compute a linear combination of d encodings via Eval we need
to scale down the error parameter and consequently increase the parameters q and n in order to
maintain correctness and security. Similarly, for the proof to hold, we need the adversary to be
able to perform the same amount of homomorphic operations both in the real protocol as well as
in the reductions where we synthesize a CRS based on a q-PDH challenge. All these issues will be
formally addressed in Section 6.

5 Proofs of security

In this section, we prove our main theorem:

Theorem 21. If the q-PKE, q-PKEQ and q-PDH assumptions hold for the encoding scheme Enc,
the protocol Π on Enc is a zk-SNARK with statistical completeness, statistical zero-knowledge and
computational knowledge soundness.

Proof (of statistical completeness). Statistical completeness is straightforward from the encoding
scheme and Corollary 16. l

5.1 Zero-Knowledge

To obtain a zero-knowledge protocol, we do two things: we add a smudging term to the noise of
the encoding, in order to make the distribution of the final noise independent of the coefficients ai,
and we add randomized factors of the target polynomial tpxq to the answers, in order to achieve
zero-knowledge.

15

Simulator Simpvrs, uq

psk, s, βq :“ vrs; pa1, . . . , a`uq :“ u

δw Ð$F

hpsq :“
´

pv0pxq `
ř`u
i aivipxq ` δwq

2
´ 1

¯

{ tpxq

H Ð Ephpsqq; pH Ð Epαhpsqq

Vw Ð Epδwq; Bw Ð Epαv0psq `
ř`u
i aiαvipsq ` αδwq

pV Ð Epβδwq

return pH, pH, pV , Vw, Bwq

Fig. 7. Simulator for Zero-Knowledge.

Proof (of zero-knowledge). The simulator for zero-knowledge is shown in Figure 7. Checking that
the proof output by Sim indeed verifies is trivial. Statistical zero-knowledge follows immediately
by observing that both a simulated argument and a real one follow the same distribution. First,
we note that in the real world, since γ is chosen uniformly at random in F, so is γtpsq, because
tpsq ‰ 0. Therefore, Vw is an encoding of some uniformly random value ws. Once Vw is fixed, the

verification equation unequivocally defines Bw (which is an encryption of βws in both worlds), pV

(which is an encryption of αvs for vs “ v0psq `
ř

i aivipsq ` ws in both worlds) and H, pH, which
follow the same distribution in both worlds from for the same reasoning as above. l

The zero-knowledge property is certainly interesting, but SNARKs are already appealing on
their own, even without this feature. If we are only interested in building SNARKs (and not zk-
SNARKs), we can simplify the protocol by removing γtpxq from the computation of hpxq. Also,
we do not need to “smudge out” the noise anymore, which leads to better bounds on the noise
growth. This means that we can scale down our encoding space and make the protocol more
efficient. For this reason, in Table 1 we show some choices of parameters, both with and without
the zero-knowledge requirement. In the same way, the simulator Sim must sample the noise from
a distribution that is statistically close to the one used in the real world. Concretely, Corollary 18
guarantees that the smudged encoding output by the prover is statistically indistinguishable from
the smudged simulated values.

5.2 Knowledge Soundness

Before diving into the technical details of the proof of soundness, we provide some intuition in
an informal sketch of the security reductions: the CRS for the scheme contains encodings of
Epsq, . . . ,Epsdq, as well as encodings of these terms multiplied by some field elements α, β P F.
The scheme requires the prover P to exhibit encodings computed homomorphically from such
CRS.

The reason why we require the prover to duplicate its effort w.r.t. α is so that the simulator in
the security proof can extract representations of pV , pH as degree-d polynomials vpxq, hpxq such that
vpsq “ vs, hpsq “ hs, by the q-PKE assumption (for q “ d). The assumption also guarantees that
this extraction is efficient. This explains the first quadratic root detection check Equation (eq-pke)
in the verification algorithm.

Suppose an adversary manages to forge a SNARK of a false statement and pass the verification
test. Then, the soundness of the square span program (Theorem 2) implies that, for the extracted

polynomials vpxq, hpxq and for the new defined polynomial vmidpxq :“ vpxq ´ v0pxq ´
ř`u
i aivipxq,

one of the following must be true:

i. hpxqtpxq ‰ v2pxq ´ 1, but hpsqtpsq “ v2psq ´ 1, from Equation (eq-div);
ii. vmidpxq R Spanpv`u`1, . . . , vmq, but Bw is a valid encoding of Epβvmidpsqq, from Equation (eq-

lin).

16

If the first case holds, then ppxq :“ pv2pxq ´ 1q ´ hpxqtpxq is a nonzero polynomial of degree
some k ď 2d that has s as a root, since the verification test implies pv2psq ´ 1q ´ hpsqtpsq “ 0. The
simulator can use ppxq to solve q-PDH for q ě 2d ´ 1: using the fact that Ep0q “ E

`

sq`1´kppsq
˘

and subtracting off encodings of lower powers of s to get Epsq`1q.
To handle the second case, i.e., to ensure that vmidpxq is in the linear span of the vipxq’s with

`u ă i ď m we use an extra scalar β, supplement the CRS with the terms tEpβvipsqquią`u ,Epβtpsqq,
and require the prover to present (encoded) βvmidpsq in its proof. An adversary against q-PDH will
choose a polynomial βpxq convenient to solve the given instance. More specifically, it sets βpxq
with respect to the set of polynomials tvipxquią`u such that the coefficient for xq`1 in βpxqvmidpxq
is non-zero. Then, for the values in the crs it uses β :“ βpsq. All these allow it to run the SNARK
adversary and to obtain from its output Bw an encoding of sq`1 and thus solve q-PDH.

Proof (of computational knowledge soundness). Let AΠ be the PPT adversary in the game for
knowledge soundness (Figure 1) able to produce a proof π for which Π.V returned true. We first
claim that it is possible to extract the coefficients of the polynomial vpxq corresponding to the values
vs encoded in V . The setup algorithm first generates the parameters ppk, skq of an encoding scheme
Enc and picks α, β, s P F, which are used to compute Epsq, . . . ,Epsdq,Epαq,Epαsq, . . . ,Epαsdq. Fix
some circuit C, and let ssp be an SSP for C. Let APKE be the d-PKE adversary, that takes as input
a set of encodings:

σ :“
`

pk,Epsq, . . . ,Epsdq,Epαq,Epαsq, . . . ,Epαsdq
˘

.

The auxiliary input generator Z is a PPT machine that upon receiving as input σ, samples
βÐ$ Zp, constructs the remaining terms of the CRS (as per Equation (4)), and outputs them
in z. Thus, APKE sets crs :“ pssp}σ}zq and invokes AΠpcrsq. As a result, it obtains a proof

π “ pH, pH, pV , Vw, Bwq. On this proof, it computes:

V :“ Eval

˜

pVwq, p1q, v0 `
`u
ÿ

i“0

aivipsq

¸

“ E

˜

v0 `
`u
ÿ

i“0

aivipsq ` ws

¸

, (7)

where pVwq – respectively p1q – is the vector containing only Vw – respectively 1 –, and ws is

the element encoded in Vw. Finally, APKE returns ppV , V q. If the adversary A output a valid proof,

then by verification equation Eq. (eq-pke) it holds that the two encodings pV, pV q encode values
vs, pvs such that pvs ´ αvs “ 0. Therefore, by q-PKE assumption there exists an extractor ExtPKE

that, using the same input (and random coins) of APKE, outputs a vector pc0, . . . , cdq P Fd`1 such

that V is an encoding of
řd
i“0 cis

i and pV is an encoding of
řd
i“0 αcis

i. In the same way, it is

possible to recover the coefficients of the polynomial hpxq used to construct pH, pHq, the first two
elements of the proof of AΠ (again, by Eq. (eq-pke)).

Our witness-extractor ExtΠ, given crs, emulates the extractors ExtPKE above on the same input
σ, using as auxiliary information z the rest of the CRS given as input to ExtΠ. By the reasoning
discussed above, ExtΠ can recover pc0, . . . , cdq coefficients extracted from the encodings pV, pV q.

Consider now the polynomial vpxq :“
řd
i“0 cix

i. If it is possible to write the polynomial as vpxq “
v0pxq `

řm
i aivipxq ` δtpxq such that pa1, . . . , amq P t0, 1u

m satisfies the assignment for the circuit
C with u “ pa1, . . . , a`uq, then the extractor returns the witness w “ pa`u`1, . . . , amq.

With overwhelming probability, the extracted polynomial vpxq :“
řd
i“0 cix

i does indeed provide
a valid witness w. Otherwise, there exists a reduction to q-PDH that uses the SNARK adversary
AΠ. Define the polynomial:

vmidpxq :“ vpxq ´ v0pxq ´
`u
ÿ

i“0

aivipxq

We know by definition of SSP (Definition 1) and by Theorem 2 that C is satisfiable if and only if:

tpxq � v2pxq ´ 1 ^ vmidpxq “
d
ÿ

i

cix
i ´ v0pxq ´

`u
ÿ

i

aivipxq P Spanpv`u`1, . . . , vm, tq

17

Therefore, by contradiction, if the adversary AΠ does not know a witness w P t0, 1um´`u for
u (such that pu,wq P RC), knowing that the two verification checks Eq. (eq-div) and Eq. (eq-lin)
passed, we have that either one of the following two cases must hold:

i. tpxqhpxq ‰ v2pxq ´ 1, but tpsqhpsq “ v2psq ´ 1; or
ii. vmidpxq R Spanpv`u`1, . . . , vm, tq, but Bw is an encoding of βvmidpsq.

Let BPDH be an adversary against the q-PDH assumption. Given a q-PDH challenge:
`

Epsq, . . . ,Epsqq,E
`

sq`2
˘

, . . . ,E
`

s2q
˘˘

, for q P t2d´ 1, du

adversary BPDH samples uniformly at random αÐ$ F, and defines some β P F (that we will
formally construct later) and constructs a CRS as per Equation (4). There are some subtleties in
how BPDH generates the value β. In fact, β can be generated without knowing its value explicitly,

but rather knowing its representation over the power basis

si
(2q

i“0,i‰q`1
– that is, knowing a

polynomial βpxq and its evaluation in s. Some particular choices of β will allow us go provide a
solution for a q-PDH challenge. Using the CRS generated, BPDH invokes the adversary AΠ as well
as the extractor ExtΠ on the generated CRS, thus obtaining a proof π and the linear combination
used by the prover for the polynomials hpxq, vpxq and also extracts a witness for the truth of the
statement being proved.

In order to simulate the verification oracle and to answer the verification queries of AΠ, BPDH

has to compare its encodings (obtained from the extracted coefficients and its input) with A’s
proof terms, accepts if the terms match, and rejects otherwise. Because the encoding scheme is not
deterministic, adversary BPDH invokes the PKEQ extractor and simulates the verification oracle
correctly with overwhelming probability. By game of knowledge soundness (Figure 1), if the proof
output by the adversary AΠ verifies, then we can distinguish two cases:

i. The extracted polynomials hpxq and vpxq satisfy tpxqhpxq ‰ v2pxq´1, but tpsqhpsq “ v2psq´1.
By q-PDH assumption this can happen only with negligible probability. We define ppxq “
v2pxq ´ 1 ´ tpxqhpxq, that in this case is a non-zero polynomial of degree k ď 2d having s
as a root. Let pk be the highest nonzero coefficient of ppxq. Write p̃pxq “ xk ´ p´1

k ¨ ppxq.
Since s is a root of xk ´ p̃pxq, it is a root of xq`1 ´ xq`1´kp̃pxq. BPDH solves q-PDH by
computing Epsq`1q “ Epsq`1´kp̃psqq for q “ 2d ´ 1. Since degpp̃q ď k ´ 1, the latter is a
known linear combination of encodings Epsq, . . . ,Epsqq which are available from the q-PDH
challenge. More precisely, BPDH will compute EvalppEpsi`q`1´kqqi, pp̃iq

2d´1
i q on fresh encodings

Epsq,Eps2q, . . . ,Epsqq solving the q-PDH challenge for q ě 2d´ 1.
ii. In the second case, suppose that the polynomial vmid extracted as previously described cannot

be expressed as a linear combination of tv`u`1, . . . , vm, tu. The proof still passes the verification,
so we have a consistent value for Bw P tEpβvmidpsqqu.
BPDH generates a uniformly random polynomial apxq of degree q subject to the constraint that
all of the polynomials apxqtpxq and tapxqvipxqu

m
i“`u`1 have coefficient 0 for xq`1. Remark that

for q “ d, there are q ´ pm´ `uq ą 0 degrees of freedom in choosing apxq.
BPDH defines β to be the evaluation of apxq in s, i.e. β :“ apsq. Remark that BPDH does
not know s explicitly, but having access to the encodings of 2q ´ 1 powers of s, it is able to
generate valid encodings pEpβvipsqqqi and Epβtpsqq using Eval. Note that, by construction of
β, this evaluation is of d ` 1 elements in F and that the pq ` 1q-th power of s is never used.
Now, since vmidpxq is not in the proper span, then the coefficient of degree q`1 of xapxqvmidpxq
must be nonzero with overwhelming probability 1 ´ 1{|F|. The term Bw of the proof must

encode a known polynomial in s:
ř2q
i“0 bis

i :“ βvmidpsq “ apsqvmidpsq where the coefficient bq`1

is non-trivial. BPDH can subtract off encodings of multiples of other powers of s to recover
Epsq`1q and break q-PDH. This requires an evaluation on fresh encodings:

Eval

ˆ

pEpsiqqq`di“0
i‰q`1

, p´biq
q`d
i“0
i‰q`1

˙

. (8)

Adding the above to Bw and multiplying by the inverse of the pq`1q-th coefficient (using once
again Eval) will provide a solution to the q-PDH problem for q “ d.

18

Since the two above cases are not possible by q-PDH assumption, ExtΠ extracts a valid witness if
the proof of AΠ is valid. l

As previously mentioned in Remark 7, the proof of knowledge soundness allows oracle access
to the verification procedure. In the context of a weaker notion of soundness, the proof is almost
identical, except that there is no need for the BPDH adversary to simulate the verification oracle
relying on the q-PKEQ assumption.

6 Efficiency and concrete parameters

The prover’s computations are bounded by the security parameter and the size of the circuit, i.e.,
P P O pλdq. As in [GGPR13, DFGK14], the verifier’s computations depend solely on the security
parameter, i.e., V P O pλq. The proof consists of a constant number (precisely, 5) of LWE encodings,

i.e., |π| “ 5 ¨ rO pλq.
Using the propositions from Section 3 and knowing the exact number of homomorphic oper-

ations that need to be performed in order to produce a proof, we can now attempt at providing
some concrete parameters for our encoding scheme.

We fix the statistical security parameter κ :“ 32, as already done in [DM15, CGGI16]. We fix the
circuit size d :“ 215, which is sufficient for some practical applications; see [BCG`14a, PHGR13].

For a first attempt at implementing our solution, we assume a weaker notion of soundness, i.e.
that in the KSND game the adversary does not have access to a verification oracle (cf. Fig. 1).
Concretely, this means that the only bound in the size of p is given by the guessing probability of
the witness, and the guessing of a field element. We thus fix p “ 232 for the size of the message
space.

The CRS is composed of encodings of different nature: some of them are fresh
`

Epsq, . . . ,Epsdq
˘

,
some happen to be stale in the construction of APKE and the construction of BPDH Section 5.2
(Item i.) (Epαsq, . . . ,Epαsdq), and some are stale from the construction of BPDH Section 5.2
(Item ii.) (Epβtpsqq, pEpβvipsqqqi). They are displayed in Fig. 8. Since, as we have seen, BPDH

manipulates the q-PDH challenge via homomorphic operations, we must guarantee that the proto-
col adversary can at least perform the same number of homomorphic operations as in the real-world
protocol. Therefore, in the real protocol, we must intentionally increase the magnitude of the noise
in the CRS: the terms Epαsiq (with i “ 0, . . . , d) are generated by multiplying the respective fresh
encoding Epsiq by a term bounded by p; the terms Epβtpsqq,tEpβvipsqqui instead are generated via
Eval of d ` 1 elements with coefficients bounded by p. Concretely, when encoding these elements
using the encoding scheme of Section 3, the error for Epαsiq is sampled from p ¨ χσ; the error for
Epβtpsqq,Epβvipsqqq is sampled from pp

?
d` 1q ¨ χσ.

The proof π consists of five elements pH, pH, pV , Vw, Bwq, as per Eq. (6). H and Vw are computed

using an affine function on d encodings with coefficients modulo p; pH, pV are computed using a
linear function on d ` 1 encodings with coefficients modulo p; finally, Bw is computed using a
linear combination of m ´ `u encodings with coefficients in t0, 1u, except the last one which is
modulo p. Overall, the term that carries the highest load of homomorphic computations is Bw.
The generation of Bw is outlined in Fig. 8, and to it (as well as to the other proof terms) we add
a smudging term so for constructing a zero-knowledge proof π.

In the construction of the adversary BPDH (Item ii.) we need to perform some further homo-
morphic operations on the proof element Bw in order to solve the q-PDH challenge, namely one
addition (Equation (8)) and one multiplication by a known scalar b bounded by p. The result of
the first operation is denoted by Epb ¨ sq`1q in Fig. 8; the final result is the solution to the q-PDH
challenge.

We now outline the calculations that we use to choose the relevant parameters for our encoding
scheme. In particular, we will focus on the term Bw since, as already stated, it is the one that is
involved in the largest number of homomorphic operations. The chain of operations that need to
be supported is depicted in Figure 8: we now analyze them one by one. The correctness of the
other terms follows directly from Corollary 16.

19

βtpsq

Ep~s q Bw π Epb ¨ sq`1
q Epsq`1

q

βvipsq Ep~s q

Eval r
d`

1,
ps Eval

r1, ps

Eval r
m
´
`u
, 2sEval

rd
`

1, ps

smudging mult p

Eval r
2d
, p
s

APKE, BPDH Π.P BPDH

Fig. 8. Summary of evaluations in the security proof. The leftmost part of the figure refers to the construc-
tion of adversaries for q-PKE and q-PDH; the central part refers to the protocol itself (i.e., the construction
of the proof π); the rightmost part refers to the construction of the adversary for q-PDH (Section 5.2 -
Item ii.). The syntax Eval rd, ps denotes an homomorphic evaluation on d encodings with coefficients in Zp.
Ep~s q denotes the PDH challenge.

First of all, the terms pβvipsqqiPrm´`us and βtpsq are produced through the algorithm Eval
executed on d ` 1 fresh encodings with coefficients modulo p. Let σ be the discrete Gaussian
parameter of the noise terms in fresh encodings; then, by Pythagorean additivity, the Gaussian
parameter of encodings output by this homomorphic evaluation is σEval :“ pσ

?
d` 1. Then the

term βtpsq is multiplied by a coefficient in Zp, and the result is added to a subset sum of the
terms pβvipsqqi, i.e., a weighted sum with coefficients in t0, 1u. It is trivial to see that, for the
first term, the resulting Gaussian parameter is bounded by pσEval, whereas for the second term it
is bounded by σEval

?
m´ `u. The parameter of the sum of these two terms is then bounded by

σBw
:“ σEval

a

p2 `m´ `u. Let us then consider a constant factor T for “cutting the Gaussian
tails”, i.e., such that the probability of sampling from the distribution and obtaining a value with
magnitude larger than T times the standard deviation is as small as desired. We can then write that
the absolute value of the error in Bw is bounded by TσBw . At this point we add a smudging term,
which amounts to multiplying the norm of the noise by p2κ ` 1q (cf. Corollary 18). Finally, the
so-obtained encoding has to be summed with the output of an Eval invoked on 2d fresh encodings
with coefficients modulo p and multiplied by a constant in Zp. It is easy to calculate that the final
noise is then bounded by TpσBw

p2κ ` 1q ` TpσEval (cf. Lemma 19). By substituting the values of
σEval, σBw

, remembering that σ :“ αq and imposing the condition for having a valid encoding, we
obtain

Tp2αq
?
d` 1

´

a

p2 `m´ `u p2
κ ` 1q ` 1

¯

ă
q

2p
.

The above corresponds to Equation (3) with bounds Be :“ TσBw
and BEval :“ TσEval. By simpli-

fying q and isolating α, we get:

α ă
1

2Tp3
?
d` 1

´

a

p2 `m´ `u p2κ ` 1q ` 1
¯ .

With our choice of parameters and by taking T “ 8, we can select for instance α “ 2´180.
Once α and p are chosen, we select the remaining parameters q and n in order to achieve the

desired level of security for the LWE encoding scheme. To do so, we take advantage of Albrecht’s
estimator [APS15] which, as of now, covers the following attacks: meet-in-the-middle exhaustive
search, coded-BKW [GJS15], dual-lattice attack and small/sparse secret variant [Alb17], lattice-
reduction with enumeration [LP11], primal attack via uSVP [AFG14, BG14], Arora-Ge algorithm

20

[AG11] using Gröbner bases [ACFP14]. Some possible choices of parameters are reported in Ta-
ble 1.

Open problems. We list here some directions for future research. First of all, the proposed
approach requires a very large message space for the SNARK protocol to go through. It might be
possible to soften this requirement by employing some decomposition techniques, e.g., by encoding
terms bit-by-bit. We leave exploring this kind of optimizations as an interesting open problem.
Another natural question that comes up is whether it is possible to have a post-quantum designated-
verifier SNARK from QAP in the same spirit of Pinocchio [PHGR13]. A final, more broad, open
question is whether it is possible to do publicly-verifiable SNARKs from lattice assumptions. It
seems difficult to achieve this without some bilinear pairing map. However, the discovery of such a
map would constitute a major breakthrough in cryptography as, among the other things, it would
allow for indistinguishability obfuscation [BGI`01] and multilinear maps [BS02].

Acknowledgements. We would like to thank Balthazar Bauer and Florian Bourse for insightful
discussions. Rosario Gennaro was supported by NSF Award no. 1565403. Michele Minelli was
supported by European Union’s Horizon 2020 research and innovation programme under grant
agreement no. H2020-MSCA-ITN-2014-643161 ECRYPT-NET. Anca Nitulescu was supported by
the European Research Council under the European Community’s Seventh Framework Programme
(FP7/2007-2013 Grant Agreement no. 339563 – CryptoCloud). Michele Orrù was supported by
ERC grant 639554 (project aSCEND).

References

ABL`17. Divesh Aggarwal, Gavin K Brennen, Troy Lee, Miklos Santha, and Marco Tomamichel. Quan-
tum attacks on bitcoin, and how to protect against them. arXiv preprint arXiv:1710.10377,
2017.

ACFP14. Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, and Ludovic Perret. Algebraic algo-
rithms for LWE. Cryptology ePrint Archive, Report 2014/1018, 2014. http://eprint.iacr.

org/2014/1018.

ADPS15. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key ex-
change - a new hope. Cryptology ePrint Archive, Report 2015/1092, 2015. http://eprint.

iacr.org/2015/1092.

AFG14. Martin R. Albrecht, Robert Fitzpatrick, and Florian Göpfert. On the efficacy of solving LWE
by reduction to unique-SVP. In Hyang-Sook Lee and Dong-Guk Han, editors, ICISC 13,
volume 8565 of LNCS, pages 293–310. Springer, Heidelberg, November 2014.

AG11. Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In Luca Aceto,
Monika Henzinger, and Jiri Sgall, editors, ICALP 2011, Part I, volume 6755 of LNCS, pages
403–415. Springer, Heidelberg, July 2011.

Alb17. Martin R. Albrecht. On dual lattice attacks against small-secret LWE and parameter choices
in HElib and SEAL. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part II, volume 10211 of LNCS, pages 103–129. Springer, Heidelberg, May
2017.

APS15. Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

Ban95. Wojciech Banaszczyk. Inequalities for convex bodies and polar reciprocal lattices inr n. Discrete
& Computational Geometry, 13(2):217–231, 1995.

BBG05. Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with
constant size ciphertext. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of
LNCS, pages 440–456. Springer, Heidelberg, May 2005.

BCG`14a. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
2014 IEEE Symposium on Security and Privacy, pages 459–474. IEEE Computer Society Press,
May 2014.

21

http://eprint.iacr.org/2014/1018
http://eprint.iacr.org/2014/1018
http://eprint.iacr.org/2015/1092
http://eprint.iacr.org/2015/1092

BCG`14b. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from Bitcoin. Cryp-
tology ePrint Archive, Report 2014/349, 2014. http://eprint.iacr.org/2014/349.

BCI`13. Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct
non-interactive arguments via linear interactive proofs. In Amit Sahai, editor, TCC 2013,
volume 7785 of LNCS, pages 315–333. Springer, Heidelberg, March 2013.

BF01. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, Heidelberg,
August 2001.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its appli-
cations (extended abstract). In 20th ACM STOC, pages 103–112. ACM Press, May 1988.

BFS16. Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an untrusted CRS:
Security in the face of parameter subversion. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 777–804. Springer, Heidelberg,
December 2016.

BG93. Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ernest F. Brickell,
editor, CRYPTO’92, volume 740 of LNCS, pages 390–420. Springer, Heidelberg, August 1993.

BG14. Shi Bai and Steven D. Galbraith. Lattice decoding attacks on binary LWE. In Willy Susilo
and Yi Mu, editors, ACISP 14, volume 8544 of LNCS, pages 322–337. Springer, Heidelberg,
July 2014.

BGGK17. Dan Boneh, Rosario Gennaro, Steven Goldfeder, and Sam Kim. A lattice-based universal
thresholdizer for cryptographic systems. Cryptology ePrint Archive, Report 2017/251, 2017.
http://eprint.iacr.org/2017/251.

BGI`01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vad-
han, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Heidelberg, August 2001.

BISW17. Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs and their
application to more efficient obfuscation. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 247–277. Springer, Hei-
delberg, May 2017.

BISW18. Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Quasi-optimal snargs via linear
multi-prover interactive proofs. Cryptology ePrint Archive, Report 2018/133, 2018. https:

//eprint.iacr.org/2018/133.
BS02. Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography. Contem-

porary Mathematics, 324:71–90, 2002.
BSBHR18. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and

post-quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046,
2018. https://eprint.iacr.org/2018/046.

BV11. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS, pages 97–106. IEEE Computer
Society Press, October 2011.

CGGI16. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster fully homo-
morphic encryption: Bootstrapping in less than 0.1 seconds. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 3–33. Springer,
Heidelberg, December 2016.

Dam92. Ivan Damg̊ard. Towards practical public key systems secure against chosen ciphertext attacks.
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 445–456. Springer,
Heidelberg, August 1992.

DFGK14. George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span programs
with applications to succinct NIZK arguments. In Palash Sarkar and Tetsu Iwata, editors, ASI-
ACRYPT 2014, Part I, volume 8873 of LNCS, pages 532–550. Springer, Heidelberg, December
2014.

DM15. Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic encryption in less
than a second. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 617–640. Springer, Heidelberg, April 2015.

Gal13. Steven D. Galbraith. Space-efficient variants of cryptosystems based on learning with errors.
preprint, 2013. https://www.math.auckland.ac.nz/~sgal018/compact-LWE.pdf.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013.

22

http://eprint.iacr.org/2014/349
http://eprint.iacr.org/2017/251
https://eprint.iacr.org/2018/133
https://eprint.iacr.org/2018/133
https://eprint.iacr.org/2018/046
https://www.math.auckland.ac.nz/~sgal018/compact-LWE.pdf

GJS15. Qian Guo, Thomas Johansson, and Paul Stankovski. Coded-BKW: Solving LWE using lattice
codes. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I,
volume 9215 of LNCS, pages 23–42. Springer, Heidelberg, August 2015.

GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki
Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340. Springer, Heidelberg,
December 2010.

Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
24th ACM STOC, pages 723–732. ACM Press, May 1992.

KW93. M. Karchmer and A. Wigderson. On span programs. In IEEE Computer Society Press, editor,
In Proc. of the 8th IEEE Structure in Complexity Theory, pages 102–111, Gaithersburg, MD,
USA, 1993. IEEE Computer Society Press.

LP11. Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based encryption.
In Aggelos Kiayias, editor, CT-RSA 2011, volume 6558 of LNCS, pages 319–339. Springer,
Heidelberg, February 2011.

Mic94. Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453. IEEE Computer
Society Press, November 1994.

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages 238–252.
IEEE Computer Society Press, May 2013.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press,
May 2005.

23

	Lattice-Based zk-SNARKs from SSPs
	Introduction
	Prerequisites
	Square Span Programs
	Succinct Non-Interactive Arguments
	Encoding Schemes
	Assumptions

	Lattice-based encodings
	Our designated-verifier zk-SNARK
	Proofs of security
	Zero-Knowledge
	Knowledge Soundness

	Efficiency and concrete parameters

